1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67
68 #include "internal.h"
69 #include "swap.h"
70
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73
74 struct scan_control {
75 /* How many pages shrink_list() should reclaim */
76 unsigned long nr_to_reclaim;
77
78 /*
79 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 * are scanned.
81 */
82 nodemask_t *nodemask;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Scan pressure balancing between anon and file LRUs
92 */
93 unsigned long anon_cost;
94 unsigned long file_cost;
95
96 /* Can active folios be deactivated as part of reclaim? */
97 #define DEACTIVATE_ANON 1
98 #define DEACTIVATE_FILE 2
99 unsigned int may_deactivate:2;
100 unsigned int force_deactivate:1;
101 unsigned int skipped_deactivate:1;
102
103 /* Writepage batching in laptop mode; RECLAIM_WRITE */
104 unsigned int may_writepage:1;
105
106 /* Can mapped folios be reclaimed? */
107 unsigned int may_unmap:1;
108
109 /* Can folios be swapped as part of reclaim? */
110 unsigned int may_swap:1;
111
112 /* Proactive reclaim invoked by userspace through memory.reclaim */
113 unsigned int proactive:1;
114
115 /*
116 * Cgroup memory below memory.low is protected as long as we
117 * don't threaten to OOM. If any cgroup is reclaimed at
118 * reduced force or passed over entirely due to its memory.low
119 * setting (memcg_low_skipped), and nothing is reclaimed as a
120 * result, then go back for one more cycle that reclaims the protected
121 * memory (memcg_low_reclaim) to avert OOM.
122 */
123 unsigned int memcg_low_reclaim:1;
124 unsigned int memcg_low_skipped:1;
125
126 unsigned int hibernation_mode:1;
127
128 /* One of the zones is ready for compaction */
129 unsigned int compaction_ready:1;
130
131 /* There is easily reclaimable cold cache in the current node */
132 unsigned int cache_trim_mode:1;
133
134 /* The file folios on the current node are dangerously low */
135 unsigned int file_is_tiny:1;
136
137 /* Always discard instead of demoting to lower tier memory */
138 unsigned int no_demotion:1;
139
140 /* Allocation order */
141 s8 order;
142
143 /* Scan (total_size >> priority) pages at once */
144 s8 priority;
145
146 /* The highest zone to isolate folios for reclaim from */
147 s8 reclaim_idx;
148
149 /* This context's GFP mask */
150 gfp_t gfp_mask;
151
152 /* Incremented by the number of inactive pages that were scanned */
153 unsigned long nr_scanned;
154
155 /* Number of pages freed so far during a call to shrink_zones() */
156 unsigned long nr_reclaimed;
157
158 struct {
159 unsigned int dirty;
160 unsigned int unqueued_dirty;
161 unsigned int congested;
162 unsigned int writeback;
163 unsigned int immediate;
164 unsigned int file_taken;
165 unsigned int taken;
166 } nr;
167
168 /* for recording the reclaimed slab by now */
169 struct reclaim_state reclaim_state;
170 };
171
172 #ifdef ARCH_HAS_PREFETCHW
173 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
174 do { \
175 if ((_folio)->lru.prev != _base) { \
176 struct folio *prev; \
177 \
178 prev = lru_to_folio(&(_folio->lru)); \
179 prefetchw(&prev->_field); \
180 } \
181 } while (0)
182 #else
183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
184 #endif
185
186 /*
187 * From 0 .. 200. Higher means more swappy.
188 */
189 int vm_swappiness = 60;
190
191 LIST_HEAD(shrinker_list);
192 DECLARE_RWSEM(shrinker_rwsem);
193
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
shrinker_map_size(int nr_items)198 static inline int shrinker_map_size(int nr_items)
199 {
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202
shrinker_defer_size(int nr_items)203 static inline int shrinker_defer_size(int nr_items)
204 {
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207
shrinker_info_protected(struct mem_cgroup * memcg,int nid)208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210 {
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213 }
214
expand_one_shrinker_info(struct mem_cgroup * memcg,int map_size,int defer_size,int old_map_size,int old_defer_size,int new_nr_max)215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size,
218 int new_nr_max)
219 {
220 struct shrinker_info *new, *old;
221 struct mem_cgroup_per_node *pn;
222 int nid;
223 int size = map_size + defer_size;
224
225 for_each_node(nid) {
226 pn = memcg->nodeinfo[nid];
227 old = shrinker_info_protected(memcg, nid);
228 /* Not yet online memcg */
229 if (!old)
230 return 0;
231
232 /* Already expanded this shrinker_info */
233 if (new_nr_max <= old->map_nr_max)
234 continue;
235
236 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
237 if (!new)
238 return -ENOMEM;
239
240 new->nr_deferred = (atomic_long_t *)(new + 1);
241 new->map = (void *)new->nr_deferred + defer_size;
242 new->map_nr_max = new_nr_max;
243
244 /* map: set all old bits, clear all new bits */
245 memset(new->map, (int)0xff, old_map_size);
246 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
247 /* nr_deferred: copy old values, clear all new values */
248 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
249 memset((void *)new->nr_deferred + old_defer_size, 0,
250 defer_size - old_defer_size);
251
252 rcu_assign_pointer(pn->shrinker_info, new);
253 kvfree_rcu(old, rcu);
254 }
255
256 return 0;
257 }
258
free_shrinker_info(struct mem_cgroup * memcg)259 void free_shrinker_info(struct mem_cgroup *memcg)
260 {
261 struct mem_cgroup_per_node *pn;
262 struct shrinker_info *info;
263 int nid;
264
265 for_each_node(nid) {
266 pn = memcg->nodeinfo[nid];
267 info = rcu_dereference_protected(pn->shrinker_info, true);
268 kvfree(info);
269 rcu_assign_pointer(pn->shrinker_info, NULL);
270 }
271 }
272
alloc_shrinker_info(struct mem_cgroup * memcg)273 int alloc_shrinker_info(struct mem_cgroup *memcg)
274 {
275 struct shrinker_info *info;
276 int nid, size, ret = 0;
277 int map_size, defer_size = 0;
278
279 down_write(&shrinker_rwsem);
280 map_size = shrinker_map_size(shrinker_nr_max);
281 defer_size = shrinker_defer_size(shrinker_nr_max);
282 size = map_size + defer_size;
283 for_each_node(nid) {
284 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
285 if (!info) {
286 free_shrinker_info(memcg);
287 ret = -ENOMEM;
288 break;
289 }
290 info->nr_deferred = (atomic_long_t *)(info + 1);
291 info->map = (void *)info->nr_deferred + defer_size;
292 info->map_nr_max = shrinker_nr_max;
293 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
294 }
295 up_write(&shrinker_rwsem);
296
297 return ret;
298 }
299
expand_shrinker_info(int new_id)300 static int expand_shrinker_info(int new_id)
301 {
302 int ret = 0;
303 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
304 int map_size, defer_size = 0;
305 int old_map_size, old_defer_size = 0;
306 struct mem_cgroup *memcg;
307
308 if (!root_mem_cgroup)
309 goto out;
310
311 lockdep_assert_held(&shrinker_rwsem);
312
313 map_size = shrinker_map_size(new_nr_max);
314 defer_size = shrinker_defer_size(new_nr_max);
315 old_map_size = shrinker_map_size(shrinker_nr_max);
316 old_defer_size = shrinker_defer_size(shrinker_nr_max);
317
318 memcg = mem_cgroup_iter(NULL, NULL, NULL);
319 do {
320 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
321 old_map_size, old_defer_size,
322 new_nr_max);
323 if (ret) {
324 mem_cgroup_iter_break(NULL, memcg);
325 goto out;
326 }
327 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
328 out:
329 if (!ret)
330 shrinker_nr_max = new_nr_max;
331
332 return ret;
333 }
334
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)335 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
336 {
337 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
338 struct shrinker_info *info;
339
340 rcu_read_lock();
341 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
342 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
345 set_bit(shrinker_id, info->map);
346 }
347 rcu_read_unlock();
348 }
349 }
350
351 static DEFINE_IDR(shrinker_idr);
352
prealloc_memcg_shrinker(struct shrinker * shrinker)353 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354 {
355 int id, ret = -ENOMEM;
356
357 if (mem_cgroup_disabled())
358 return -ENOSYS;
359
360 down_write(&shrinker_rwsem);
361 /* This may call shrinker, so it must use down_read_trylock() */
362 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
363 if (id < 0)
364 goto unlock;
365
366 if (id >= shrinker_nr_max) {
367 if (expand_shrinker_info(id)) {
368 idr_remove(&shrinker_idr, id);
369 goto unlock;
370 }
371 }
372 shrinker->id = id;
373 ret = 0;
374 unlock:
375 up_write(&shrinker_rwsem);
376 return ret;
377 }
378
unregister_memcg_shrinker(struct shrinker * shrinker)379 static void unregister_memcg_shrinker(struct shrinker *shrinker)
380 {
381 int id = shrinker->id;
382
383 BUG_ON(id < 0);
384
385 lockdep_assert_held(&shrinker_rwsem);
386
387 idr_remove(&shrinker_idr, id);
388 }
389
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391 struct mem_cgroup *memcg)
392 {
393 struct shrinker_info *info;
394
395 info = shrinker_info_protected(memcg, nid);
396 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
397 }
398
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 struct mem_cgroup *memcg)
401 {
402 struct shrinker_info *info;
403
404 info = shrinker_info_protected(memcg, nid);
405 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
406 }
407
reparent_shrinker_deferred(struct mem_cgroup * memcg)408 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
409 {
410 int i, nid;
411 long nr;
412 struct mem_cgroup *parent;
413 struct shrinker_info *child_info, *parent_info;
414
415 parent = parent_mem_cgroup(memcg);
416 if (!parent)
417 parent = root_mem_cgroup;
418
419 /* Prevent from concurrent shrinker_info expand */
420 down_read(&shrinker_rwsem);
421 for_each_node(nid) {
422 child_info = shrinker_info_protected(memcg, nid);
423 parent_info = shrinker_info_protected(parent, nid);
424 for (i = 0; i < child_info->map_nr_max; i++) {
425 nr = atomic_long_read(&child_info->nr_deferred[i]);
426 atomic_long_add(nr, &parent_info->nr_deferred[i]);
427 }
428 }
429 up_read(&shrinker_rwsem);
430 }
431
432 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)433 static bool cgroup_reclaim(struct scan_control *sc)
434 {
435 return sc->target_mem_cgroup;
436 }
437
438 /*
439 * Returns true for reclaim on the root cgroup. This is true for direct
440 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
441 */
root_reclaim(struct scan_control * sc)442 static bool root_reclaim(struct scan_control *sc)
443 {
444 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
445 }
446
447 /**
448 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
449 * @sc: scan_control in question
450 *
451 * The normal page dirty throttling mechanism in balance_dirty_pages() is
452 * completely broken with the legacy memcg and direct stalling in
453 * shrink_folio_list() is used for throttling instead, which lacks all the
454 * niceties such as fairness, adaptive pausing, bandwidth proportional
455 * allocation and configurability.
456 *
457 * This function tests whether the vmscan currently in progress can assume
458 * that the normal dirty throttling mechanism is operational.
459 */
writeback_throttling_sane(struct scan_control * sc)460 static bool writeback_throttling_sane(struct scan_control *sc)
461 {
462 if (!cgroup_reclaim(sc))
463 return true;
464 #ifdef CONFIG_CGROUP_WRITEBACK
465 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 return true;
467 #endif
468 return false;
469 }
470 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)471 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
472 {
473 return -ENOSYS;
474 }
475
unregister_memcg_shrinker(struct shrinker * shrinker)476 static void unregister_memcg_shrinker(struct shrinker *shrinker)
477 {
478 }
479
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)480 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
481 struct mem_cgroup *memcg)
482 {
483 return 0;
484 }
485
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)486 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
487 struct mem_cgroup *memcg)
488 {
489 return 0;
490 }
491
cgroup_reclaim(struct scan_control * sc)492 static bool cgroup_reclaim(struct scan_control *sc)
493 {
494 return false;
495 }
496
root_reclaim(struct scan_control * sc)497 static bool root_reclaim(struct scan_control *sc)
498 {
499 return true;
500 }
501
writeback_throttling_sane(struct scan_control * sc)502 static bool writeback_throttling_sane(struct scan_control *sc)
503 {
504 return true;
505 }
506 #endif
507
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)508 static void set_task_reclaim_state(struct task_struct *task,
509 struct reclaim_state *rs)
510 {
511 /* Check for an overwrite */
512 WARN_ON_ONCE(rs && task->reclaim_state);
513
514 /* Check for the nulling of an already-nulled member */
515 WARN_ON_ONCE(!rs && !task->reclaim_state);
516
517 task->reclaim_state = rs;
518 }
519
520 /*
521 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
522 * scan_control->nr_reclaimed.
523 */
flush_reclaim_state(struct scan_control * sc)524 static void flush_reclaim_state(struct scan_control *sc)
525 {
526 /*
527 * Currently, reclaim_state->reclaimed includes three types of pages
528 * freed outside of vmscan:
529 * (1) Slab pages.
530 * (2) Clean file pages from pruned inodes (on highmem systems).
531 * (3) XFS freed buffer pages.
532 *
533 * For all of these cases, we cannot universally link the pages to a
534 * single memcg. For example, a memcg-aware shrinker can free one object
535 * charged to the target memcg, causing an entire page to be freed.
536 * If we count the entire page as reclaimed from the memcg, we end up
537 * overestimating the reclaimed amount (potentially under-reclaiming).
538 *
539 * Only count such pages for global reclaim to prevent under-reclaiming
540 * from the target memcg; preventing unnecessary retries during memcg
541 * charging and false positives from proactive reclaim.
542 *
543 * For uncommon cases where the freed pages were actually mostly
544 * charged to the target memcg, we end up underestimating the reclaimed
545 * amount. This should be fine. The freed pages will be uncharged
546 * anyway, even if they are not counted here properly, and we will be
547 * able to make forward progress in charging (which is usually in a
548 * retry loop).
549 *
550 * We can go one step further, and report the uncharged objcg pages in
551 * memcg reclaim, to make reporting more accurate and reduce
552 * underestimation, but it's probably not worth the complexity for now.
553 */
554 if (current->reclaim_state && root_reclaim(sc)) {
555 sc->nr_reclaimed += current->reclaim_state->reclaimed;
556 current->reclaim_state->reclaimed = 0;
557 }
558 }
559
xchg_nr_deferred(struct shrinker * shrinker,struct shrink_control * sc)560 static long xchg_nr_deferred(struct shrinker *shrinker,
561 struct shrink_control *sc)
562 {
563 int nid = sc->nid;
564
565 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
566 nid = 0;
567
568 if (sc->memcg &&
569 (shrinker->flags & SHRINKER_MEMCG_AWARE))
570 return xchg_nr_deferred_memcg(nid, shrinker,
571 sc->memcg);
572
573 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
574 }
575
576
add_nr_deferred(long nr,struct shrinker * shrinker,struct shrink_control * sc)577 static long add_nr_deferred(long nr, struct shrinker *shrinker,
578 struct shrink_control *sc)
579 {
580 int nid = sc->nid;
581
582 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
583 nid = 0;
584
585 if (sc->memcg &&
586 (shrinker->flags & SHRINKER_MEMCG_AWARE))
587 return add_nr_deferred_memcg(nr, nid, shrinker,
588 sc->memcg);
589
590 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
591 }
592
can_demote(int nid,struct scan_control * sc)593 static bool can_demote(int nid, struct scan_control *sc)
594 {
595 if (!numa_demotion_enabled)
596 return false;
597 if (sc && sc->no_demotion)
598 return false;
599 if (next_demotion_node(nid) == NUMA_NO_NODE)
600 return false;
601
602 return true;
603 }
604
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)605 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
606 int nid,
607 struct scan_control *sc)
608 {
609 if (memcg == NULL) {
610 /*
611 * For non-memcg reclaim, is there
612 * space in any swap device?
613 */
614 if (get_nr_swap_pages() > 0)
615 return true;
616 } else {
617 /* Is the memcg below its swap limit? */
618 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
619 return true;
620 }
621
622 /*
623 * The page can not be swapped.
624 *
625 * Can it be reclaimed from this node via demotion?
626 */
627 return can_demote(nid, sc);
628 }
629
630 /*
631 * This misses isolated folios which are not accounted for to save counters.
632 * As the data only determines if reclaim or compaction continues, it is
633 * not expected that isolated folios will be a dominating factor.
634 */
zone_reclaimable_pages(struct zone * zone)635 unsigned long zone_reclaimable_pages(struct zone *zone)
636 {
637 unsigned long nr;
638
639 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
640 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
641 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
642 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
643 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
644 /*
645 * If there are no reclaimable file-backed or anonymous pages,
646 * ensure zones with sufficient free pages are not skipped.
647 * This prevents zones like DMA32 from being ignored in reclaim
648 * scenarios where they can still help alleviate memory pressure.
649 */
650 if (nr == 0)
651 nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
652 return nr;
653 }
654
655 /**
656 * lruvec_lru_size - Returns the number of pages on the given LRU list.
657 * @lruvec: lru vector
658 * @lru: lru to use
659 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
660 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)661 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
662 int zone_idx)
663 {
664 unsigned long size = 0;
665 int zid;
666
667 for (zid = 0; zid <= zone_idx; zid++) {
668 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
669
670 if (!managed_zone(zone))
671 continue;
672
673 if (!mem_cgroup_disabled())
674 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
675 else
676 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
677 }
678 return size;
679 }
680
681 /*
682 * Add a shrinker callback to be called from the vm.
683 */
__prealloc_shrinker(struct shrinker * shrinker)684 static int __prealloc_shrinker(struct shrinker *shrinker)
685 {
686 unsigned int size;
687 int err;
688
689 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
690 err = prealloc_memcg_shrinker(shrinker);
691 if (err != -ENOSYS)
692 return err;
693
694 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
695 }
696
697 size = sizeof(*shrinker->nr_deferred);
698 if (shrinker->flags & SHRINKER_NUMA_AWARE)
699 size *= nr_node_ids;
700
701 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
702 if (!shrinker->nr_deferred)
703 return -ENOMEM;
704
705 return 0;
706 }
707
708 #ifdef CONFIG_SHRINKER_DEBUG
prealloc_shrinker(struct shrinker * shrinker,const char * fmt,...)709 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
710 {
711 va_list ap;
712 int err;
713
714 va_start(ap, fmt);
715 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
716 va_end(ap);
717 if (!shrinker->name)
718 return -ENOMEM;
719
720 err = __prealloc_shrinker(shrinker);
721 if (err) {
722 kfree_const(shrinker->name);
723 shrinker->name = NULL;
724 }
725
726 return err;
727 }
728 #else
prealloc_shrinker(struct shrinker * shrinker,const char * fmt,...)729 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
730 {
731 return __prealloc_shrinker(shrinker);
732 }
733 #endif
734
free_prealloced_shrinker(struct shrinker * shrinker)735 void free_prealloced_shrinker(struct shrinker *shrinker)
736 {
737 #ifdef CONFIG_SHRINKER_DEBUG
738 kfree_const(shrinker->name);
739 shrinker->name = NULL;
740 #endif
741 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
742 down_write(&shrinker_rwsem);
743 unregister_memcg_shrinker(shrinker);
744 up_write(&shrinker_rwsem);
745 return;
746 }
747
748 kfree(shrinker->nr_deferred);
749 shrinker->nr_deferred = NULL;
750 }
751
register_shrinker_prepared(struct shrinker * shrinker)752 void register_shrinker_prepared(struct shrinker *shrinker)
753 {
754 down_write(&shrinker_rwsem);
755 list_add_tail(&shrinker->list, &shrinker_list);
756 shrinker->flags |= SHRINKER_REGISTERED;
757 shrinker_debugfs_add(shrinker);
758 up_write(&shrinker_rwsem);
759 }
760
__register_shrinker(struct shrinker * shrinker)761 static int __register_shrinker(struct shrinker *shrinker)
762 {
763 int err = __prealloc_shrinker(shrinker);
764
765 if (err)
766 return err;
767 register_shrinker_prepared(shrinker);
768 return 0;
769 }
770
771 #ifdef CONFIG_SHRINKER_DEBUG
register_shrinker(struct shrinker * shrinker,const char * fmt,...)772 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
773 {
774 va_list ap;
775 int err;
776
777 va_start(ap, fmt);
778 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
779 va_end(ap);
780 if (!shrinker->name)
781 return -ENOMEM;
782
783 err = __register_shrinker(shrinker);
784 if (err) {
785 kfree_const(shrinker->name);
786 shrinker->name = NULL;
787 }
788 return err;
789 }
790 #else
register_shrinker(struct shrinker * shrinker,const char * fmt,...)791 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
792 {
793 return __register_shrinker(shrinker);
794 }
795 #endif
796 EXPORT_SYMBOL(register_shrinker);
797
798 /*
799 * Remove one
800 */
unregister_shrinker(struct shrinker * shrinker)801 void unregister_shrinker(struct shrinker *shrinker)
802 {
803 struct dentry *debugfs_entry;
804 int debugfs_id;
805
806 if (!(shrinker->flags & SHRINKER_REGISTERED))
807 return;
808
809 down_write(&shrinker_rwsem);
810 list_del(&shrinker->list);
811 shrinker->flags &= ~SHRINKER_REGISTERED;
812 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
813 unregister_memcg_shrinker(shrinker);
814 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
815 up_write(&shrinker_rwsem);
816
817 shrinker_debugfs_remove(debugfs_entry, debugfs_id);
818
819 kfree(shrinker->nr_deferred);
820 shrinker->nr_deferred = NULL;
821 }
822 EXPORT_SYMBOL(unregister_shrinker);
823
824 /**
825 * synchronize_shrinkers - Wait for all running shrinkers to complete.
826 *
827 * This is equivalent to calling unregister_shrink() and register_shrinker(),
828 * but atomically and with less overhead. This is useful to guarantee that all
829 * shrinker invocations have seen an update, before freeing memory, similar to
830 * rcu.
831 */
synchronize_shrinkers(void)832 void synchronize_shrinkers(void)
833 {
834 down_write(&shrinker_rwsem);
835 up_write(&shrinker_rwsem);
836 }
837 EXPORT_SYMBOL(synchronize_shrinkers);
838
839 #define SHRINK_BATCH 128
840
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)841 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
842 struct shrinker *shrinker, int priority)
843 {
844 unsigned long freed = 0;
845 unsigned long long delta;
846 long total_scan;
847 long freeable;
848 long nr;
849 long new_nr;
850 long batch_size = shrinker->batch ? shrinker->batch
851 : SHRINK_BATCH;
852 long scanned = 0, next_deferred;
853
854 freeable = shrinker->count_objects(shrinker, shrinkctl);
855 if (freeable == 0 || freeable == SHRINK_EMPTY)
856 return freeable;
857
858 /*
859 * copy the current shrinker scan count into a local variable
860 * and zero it so that other concurrent shrinker invocations
861 * don't also do this scanning work.
862 */
863 nr = xchg_nr_deferred(shrinker, shrinkctl);
864
865 if (shrinker->seeks) {
866 delta = freeable >> priority;
867 delta *= 4;
868 do_div(delta, shrinker->seeks);
869 } else {
870 /*
871 * These objects don't require any IO to create. Trim
872 * them aggressively under memory pressure to keep
873 * them from causing refetches in the IO caches.
874 */
875 delta = freeable / 2;
876 }
877
878 total_scan = nr >> priority;
879 total_scan += delta;
880 total_scan = min(total_scan, (2 * freeable));
881
882 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
883 freeable, delta, total_scan, priority);
884
885 /*
886 * Normally, we should not scan less than batch_size objects in one
887 * pass to avoid too frequent shrinker calls, but if the slab has less
888 * than batch_size objects in total and we are really tight on memory,
889 * we will try to reclaim all available objects, otherwise we can end
890 * up failing allocations although there are plenty of reclaimable
891 * objects spread over several slabs with usage less than the
892 * batch_size.
893 *
894 * We detect the "tight on memory" situations by looking at the total
895 * number of objects we want to scan (total_scan). If it is greater
896 * than the total number of objects on slab (freeable), we must be
897 * scanning at high prio and therefore should try to reclaim as much as
898 * possible.
899 */
900 while (total_scan >= batch_size ||
901 total_scan >= freeable) {
902 unsigned long ret;
903 unsigned long nr_to_scan = min(batch_size, total_scan);
904
905 shrinkctl->nr_to_scan = nr_to_scan;
906 shrinkctl->nr_scanned = nr_to_scan;
907 ret = shrinker->scan_objects(shrinker, shrinkctl);
908 if (ret == SHRINK_STOP)
909 break;
910 freed += ret;
911
912 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
913 total_scan -= shrinkctl->nr_scanned;
914 scanned += shrinkctl->nr_scanned;
915
916 cond_resched();
917 }
918
919 /*
920 * The deferred work is increased by any new work (delta) that wasn't
921 * done, decreased by old deferred work that was done now.
922 *
923 * And it is capped to two times of the freeable items.
924 */
925 next_deferred = max_t(long, (nr + delta - scanned), 0);
926 next_deferred = min(next_deferred, (2 * freeable));
927
928 /*
929 * move the unused scan count back into the shrinker in a
930 * manner that handles concurrent updates.
931 */
932 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
933
934 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
935 return freed;
936 }
937
938 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)939 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
940 struct mem_cgroup *memcg, int priority)
941 {
942 struct shrinker_info *info;
943 unsigned long ret, freed = 0;
944 int i;
945
946 if (!mem_cgroup_online(memcg))
947 return 0;
948
949 if (!down_read_trylock(&shrinker_rwsem))
950 return 0;
951
952 info = shrinker_info_protected(memcg, nid);
953 if (unlikely(!info))
954 goto unlock;
955
956 for_each_set_bit(i, info->map, info->map_nr_max) {
957 struct shrink_control sc = {
958 .gfp_mask = gfp_mask,
959 .nid = nid,
960 .memcg = memcg,
961 };
962 struct shrinker *shrinker;
963
964 shrinker = idr_find(&shrinker_idr, i);
965 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
966 if (!shrinker)
967 clear_bit(i, info->map);
968 continue;
969 }
970
971 /* Call non-slab shrinkers even though kmem is disabled */
972 if (!memcg_kmem_online() &&
973 !(shrinker->flags & SHRINKER_NONSLAB))
974 continue;
975
976 ret = do_shrink_slab(&sc, shrinker, priority);
977 if (ret == SHRINK_EMPTY) {
978 clear_bit(i, info->map);
979 /*
980 * After the shrinker reported that it had no objects to
981 * free, but before we cleared the corresponding bit in
982 * the memcg shrinker map, a new object might have been
983 * added. To make sure, we have the bit set in this
984 * case, we invoke the shrinker one more time and reset
985 * the bit if it reports that it is not empty anymore.
986 * The memory barrier here pairs with the barrier in
987 * set_shrinker_bit():
988 *
989 * list_lru_add() shrink_slab_memcg()
990 * list_add_tail() clear_bit()
991 * <MB> <MB>
992 * set_bit() do_shrink_slab()
993 */
994 smp_mb__after_atomic();
995 ret = do_shrink_slab(&sc, shrinker, priority);
996 if (ret == SHRINK_EMPTY)
997 ret = 0;
998 else
999 set_shrinker_bit(memcg, nid, i);
1000 }
1001 freed += ret;
1002
1003 if (rwsem_is_contended(&shrinker_rwsem)) {
1004 freed = freed ? : 1;
1005 break;
1006 }
1007 }
1008 unlock:
1009 up_read(&shrinker_rwsem);
1010 return freed;
1011 }
1012 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)1013 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1014 struct mem_cgroup *memcg, int priority)
1015 {
1016 return 0;
1017 }
1018 #endif /* CONFIG_MEMCG */
1019
1020 /**
1021 * shrink_slab - shrink slab caches
1022 * @gfp_mask: allocation context
1023 * @nid: node whose slab caches to target
1024 * @memcg: memory cgroup whose slab caches to target
1025 * @priority: the reclaim priority
1026 *
1027 * Call the shrink functions to age shrinkable caches.
1028 *
1029 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1030 * unaware shrinkers will receive a node id of 0 instead.
1031 *
1032 * @memcg specifies the memory cgroup to target. Unaware shrinkers
1033 * are called only if it is the root cgroup.
1034 *
1035 * @priority is sc->priority, we take the number of objects and >> by priority
1036 * in order to get the scan target.
1037 *
1038 * Returns the number of reclaimed slab objects.
1039 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)1040 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1041 struct mem_cgroup *memcg,
1042 int priority)
1043 {
1044 unsigned long ret, freed = 0;
1045 struct shrinker *shrinker;
1046
1047 /*
1048 * The root memcg might be allocated even though memcg is disabled
1049 * via "cgroup_disable=memory" boot parameter. This could make
1050 * mem_cgroup_is_root() return false, then just run memcg slab
1051 * shrink, but skip global shrink. This may result in premature
1052 * oom.
1053 */
1054 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1055 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1056
1057 if (!down_read_trylock(&shrinker_rwsem))
1058 goto out;
1059
1060 list_for_each_entry(shrinker, &shrinker_list, list) {
1061 struct shrink_control sc = {
1062 .gfp_mask = gfp_mask,
1063 .nid = nid,
1064 .memcg = memcg,
1065 };
1066
1067 ret = do_shrink_slab(&sc, shrinker, priority);
1068 if (ret == SHRINK_EMPTY)
1069 ret = 0;
1070 freed += ret;
1071 /*
1072 * Bail out if someone want to register a new shrinker to
1073 * prevent the registration from being stalled for long periods
1074 * by parallel ongoing shrinking.
1075 */
1076 if (rwsem_is_contended(&shrinker_rwsem)) {
1077 freed = freed ? : 1;
1078 break;
1079 }
1080 }
1081
1082 up_read(&shrinker_rwsem);
1083 out:
1084 cond_resched();
1085 return freed;
1086 }
1087
drop_slab_node(int nid)1088 static unsigned long drop_slab_node(int nid)
1089 {
1090 unsigned long freed = 0;
1091 struct mem_cgroup *memcg = NULL;
1092
1093 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1094 do {
1095 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1096 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1097
1098 return freed;
1099 }
1100
drop_slab(void)1101 void drop_slab(void)
1102 {
1103 int nid;
1104 int shift = 0;
1105 unsigned long freed;
1106
1107 do {
1108 freed = 0;
1109 for_each_online_node(nid) {
1110 if (fatal_signal_pending(current))
1111 return;
1112
1113 freed += drop_slab_node(nid);
1114 }
1115 } while ((freed >> shift++) > 1);
1116 }
1117
reclaimer_offset(void)1118 static int reclaimer_offset(void)
1119 {
1120 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1121 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1122 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1123 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1124 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1125 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1126 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1127 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1128
1129 if (current_is_kswapd())
1130 return 0;
1131 if (current_is_khugepaged())
1132 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1133 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1134 }
1135
is_page_cache_freeable(struct folio * folio)1136 static inline int is_page_cache_freeable(struct folio *folio)
1137 {
1138 /*
1139 * A freeable page cache folio is referenced only by the caller
1140 * that isolated the folio, the page cache and optional filesystem
1141 * private data at folio->private.
1142 */
1143 return folio_ref_count(folio) - folio_test_private(folio) ==
1144 1 + folio_nr_pages(folio);
1145 }
1146
1147 /*
1148 * We detected a synchronous write error writing a folio out. Probably
1149 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1150 * fsync(), msync() or close().
1151 *
1152 * The tricky part is that after writepage we cannot touch the mapping: nothing
1153 * prevents it from being freed up. But we have a ref on the folio and once
1154 * that folio is locked, the mapping is pinned.
1155 *
1156 * We're allowed to run sleeping folio_lock() here because we know the caller has
1157 * __GFP_FS.
1158 */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)1159 static void handle_write_error(struct address_space *mapping,
1160 struct folio *folio, int error)
1161 {
1162 folio_lock(folio);
1163 if (folio_mapping(folio) == mapping)
1164 mapping_set_error(mapping, error);
1165 folio_unlock(folio);
1166 }
1167
skip_throttle_noprogress(pg_data_t * pgdat)1168 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1169 {
1170 int reclaimable = 0, write_pending = 0;
1171 int i;
1172
1173 /*
1174 * If kswapd is disabled, reschedule if necessary but do not
1175 * throttle as the system is likely near OOM.
1176 */
1177 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1178 return true;
1179
1180 /*
1181 * If there are a lot of dirty/writeback folios then do not
1182 * throttle as throttling will occur when the folios cycle
1183 * towards the end of the LRU if still under writeback.
1184 */
1185 for (i = 0; i < MAX_NR_ZONES; i++) {
1186 struct zone *zone = pgdat->node_zones + i;
1187
1188 if (!managed_zone(zone))
1189 continue;
1190
1191 reclaimable += zone_reclaimable_pages(zone);
1192 write_pending += zone_page_state_snapshot(zone,
1193 NR_ZONE_WRITE_PENDING);
1194 }
1195 if (2 * write_pending <= reclaimable)
1196 return true;
1197
1198 return false;
1199 }
1200
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)1201 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1202 {
1203 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1204 long timeout, ret;
1205 DEFINE_WAIT(wait);
1206
1207 /*
1208 * Do not throttle user workers, kthreads other than kswapd or
1209 * workqueues. They may be required for reclaim to make
1210 * forward progress (e.g. journalling workqueues or kthreads).
1211 */
1212 if (!current_is_kswapd() &&
1213 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1214 cond_resched();
1215 return;
1216 }
1217
1218 /*
1219 * These figures are pulled out of thin air.
1220 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1221 * parallel reclaimers which is a short-lived event so the timeout is
1222 * short. Failing to make progress or waiting on writeback are
1223 * potentially long-lived events so use a longer timeout. This is shaky
1224 * logic as a failure to make progress could be due to anything from
1225 * writeback to a slow device to excessive referenced folios at the tail
1226 * of the inactive LRU.
1227 */
1228 switch(reason) {
1229 case VMSCAN_THROTTLE_WRITEBACK:
1230 timeout = HZ/10;
1231
1232 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1233 WRITE_ONCE(pgdat->nr_reclaim_start,
1234 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1235 }
1236
1237 break;
1238 case VMSCAN_THROTTLE_CONGESTED:
1239 fallthrough;
1240 case VMSCAN_THROTTLE_NOPROGRESS:
1241 if (skip_throttle_noprogress(pgdat)) {
1242 cond_resched();
1243 return;
1244 }
1245
1246 timeout = 1;
1247
1248 break;
1249 case VMSCAN_THROTTLE_ISOLATED:
1250 timeout = HZ/50;
1251 break;
1252 default:
1253 WARN_ON_ONCE(1);
1254 timeout = HZ;
1255 break;
1256 }
1257
1258 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1259 ret = schedule_timeout(timeout);
1260 finish_wait(wqh, &wait);
1261
1262 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1263 atomic_dec(&pgdat->nr_writeback_throttled);
1264
1265 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1266 jiffies_to_usecs(timeout - ret),
1267 reason);
1268 }
1269
1270 /*
1271 * Account for folios written if tasks are throttled waiting on dirty
1272 * folios to clean. If enough folios have been cleaned since throttling
1273 * started then wakeup the throttled tasks.
1274 */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)1275 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1276 int nr_throttled)
1277 {
1278 unsigned long nr_written;
1279
1280 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1281
1282 /*
1283 * This is an inaccurate read as the per-cpu deltas may not
1284 * be synchronised. However, given that the system is
1285 * writeback throttled, it is not worth taking the penalty
1286 * of getting an accurate count. At worst, the throttle
1287 * timeout guarantees forward progress.
1288 */
1289 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1290 READ_ONCE(pgdat->nr_reclaim_start);
1291
1292 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1293 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1294 }
1295
1296 /* possible outcome of pageout() */
1297 typedef enum {
1298 /* failed to write folio out, folio is locked */
1299 PAGE_KEEP,
1300 /* move folio to the active list, folio is locked */
1301 PAGE_ACTIVATE,
1302 /* folio has been sent to the disk successfully, folio is unlocked */
1303 PAGE_SUCCESS,
1304 /* folio is clean and locked */
1305 PAGE_CLEAN,
1306 } pageout_t;
1307
1308 /*
1309 * pageout is called by shrink_folio_list() for each dirty folio.
1310 * Calls ->writepage().
1311 */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug)1312 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1313 struct swap_iocb **plug)
1314 {
1315 /*
1316 * If the folio is dirty, only perform writeback if that write
1317 * will be non-blocking. To prevent this allocation from being
1318 * stalled by pagecache activity. But note that there may be
1319 * stalls if we need to run get_block(). We could test
1320 * PagePrivate for that.
1321 *
1322 * If this process is currently in __generic_file_write_iter() against
1323 * this folio's queue, we can perform writeback even if that
1324 * will block.
1325 *
1326 * If the folio is swapcache, write it back even if that would
1327 * block, for some throttling. This happens by accident, because
1328 * swap_backing_dev_info is bust: it doesn't reflect the
1329 * congestion state of the swapdevs. Easy to fix, if needed.
1330 */
1331 if (!is_page_cache_freeable(folio))
1332 return PAGE_KEEP;
1333 if (!mapping) {
1334 /*
1335 * Some data journaling orphaned folios can have
1336 * folio->mapping == NULL while being dirty with clean buffers.
1337 */
1338 if (folio_test_private(folio)) {
1339 if (try_to_free_buffers(folio)) {
1340 folio_clear_dirty(folio);
1341 pr_info("%s: orphaned folio\n", __func__);
1342 return PAGE_CLEAN;
1343 }
1344 }
1345 return PAGE_KEEP;
1346 }
1347 if (mapping->a_ops->writepage == NULL)
1348 return PAGE_ACTIVATE;
1349
1350 if (folio_clear_dirty_for_io(folio)) {
1351 int res;
1352 struct writeback_control wbc = {
1353 .sync_mode = WB_SYNC_NONE,
1354 .nr_to_write = SWAP_CLUSTER_MAX,
1355 .range_start = 0,
1356 .range_end = LLONG_MAX,
1357 .for_reclaim = 1,
1358 .swap_plug = plug,
1359 };
1360
1361 folio_set_reclaim(folio);
1362 res = mapping->a_ops->writepage(&folio->page, &wbc);
1363 if (res < 0)
1364 handle_write_error(mapping, folio, res);
1365 if (res == AOP_WRITEPAGE_ACTIVATE) {
1366 folio_clear_reclaim(folio);
1367 return PAGE_ACTIVATE;
1368 }
1369
1370 if (!folio_test_writeback(folio)) {
1371 /* synchronous write or broken a_ops? */
1372 folio_clear_reclaim(folio);
1373 }
1374 trace_mm_vmscan_write_folio(folio);
1375 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1376 return PAGE_SUCCESS;
1377 }
1378
1379 return PAGE_CLEAN;
1380 }
1381
1382 /*
1383 * Same as remove_mapping, but if the folio is removed from the mapping, it
1384 * gets returned with a refcount of 0.
1385 */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)1386 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1387 bool reclaimed, struct mem_cgroup *target_memcg)
1388 {
1389 int refcount;
1390 void *shadow = NULL;
1391
1392 BUG_ON(!folio_test_locked(folio));
1393 BUG_ON(mapping != folio_mapping(folio));
1394
1395 if (!folio_test_swapcache(folio))
1396 spin_lock(&mapping->host->i_lock);
1397 xa_lock_irq(&mapping->i_pages);
1398 /*
1399 * The non racy check for a busy folio.
1400 *
1401 * Must be careful with the order of the tests. When someone has
1402 * a ref to the folio, it may be possible that they dirty it then
1403 * drop the reference. So if the dirty flag is tested before the
1404 * refcount here, then the following race may occur:
1405 *
1406 * get_user_pages(&page);
1407 * [user mapping goes away]
1408 * write_to(page);
1409 * !folio_test_dirty(folio) [good]
1410 * folio_set_dirty(folio);
1411 * folio_put(folio);
1412 * !refcount(folio) [good, discard it]
1413 *
1414 * [oops, our write_to data is lost]
1415 *
1416 * Reversing the order of the tests ensures such a situation cannot
1417 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1418 * load is not satisfied before that of folio->_refcount.
1419 *
1420 * Note that if the dirty flag is always set via folio_mark_dirty,
1421 * and thus under the i_pages lock, then this ordering is not required.
1422 */
1423 refcount = 1 + folio_nr_pages(folio);
1424 if (!folio_ref_freeze(folio, refcount))
1425 goto cannot_free;
1426 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1427 if (unlikely(folio_test_dirty(folio))) {
1428 folio_ref_unfreeze(folio, refcount);
1429 goto cannot_free;
1430 }
1431
1432 if (folio_test_swapcache(folio)) {
1433 swp_entry_t swap = folio->swap;
1434
1435 if (reclaimed && !mapping_exiting(mapping))
1436 shadow = workingset_eviction(folio, target_memcg);
1437 __delete_from_swap_cache(folio, swap, shadow);
1438 mem_cgroup_swapout(folio, swap);
1439 xa_unlock_irq(&mapping->i_pages);
1440 put_swap_folio(folio, swap);
1441 } else {
1442 void (*free_folio)(struct folio *);
1443
1444 free_folio = mapping->a_ops->free_folio;
1445 /*
1446 * Remember a shadow entry for reclaimed file cache in
1447 * order to detect refaults, thus thrashing, later on.
1448 *
1449 * But don't store shadows in an address space that is
1450 * already exiting. This is not just an optimization,
1451 * inode reclaim needs to empty out the radix tree or
1452 * the nodes are lost. Don't plant shadows behind its
1453 * back.
1454 *
1455 * We also don't store shadows for DAX mappings because the
1456 * only page cache folios found in these are zero pages
1457 * covering holes, and because we don't want to mix DAX
1458 * exceptional entries and shadow exceptional entries in the
1459 * same address_space.
1460 */
1461 if (reclaimed && folio_is_file_lru(folio) &&
1462 !mapping_exiting(mapping) && !dax_mapping(mapping))
1463 shadow = workingset_eviction(folio, target_memcg);
1464 __filemap_remove_folio(folio, shadow);
1465 xa_unlock_irq(&mapping->i_pages);
1466 if (mapping_shrinkable(mapping))
1467 inode_add_lru(mapping->host);
1468 spin_unlock(&mapping->host->i_lock);
1469
1470 if (free_folio)
1471 free_folio(folio);
1472 }
1473
1474 return 1;
1475
1476 cannot_free:
1477 xa_unlock_irq(&mapping->i_pages);
1478 if (!folio_test_swapcache(folio))
1479 spin_unlock(&mapping->host->i_lock);
1480 return 0;
1481 }
1482
1483 /**
1484 * remove_mapping() - Attempt to remove a folio from its mapping.
1485 * @mapping: The address space.
1486 * @folio: The folio to remove.
1487 *
1488 * If the folio is dirty, under writeback or if someone else has a ref
1489 * on it, removal will fail.
1490 * Return: The number of pages removed from the mapping. 0 if the folio
1491 * could not be removed.
1492 * Context: The caller should have a single refcount on the folio and
1493 * hold its lock.
1494 */
remove_mapping(struct address_space * mapping,struct folio * folio)1495 long remove_mapping(struct address_space *mapping, struct folio *folio)
1496 {
1497 if (__remove_mapping(mapping, folio, false, NULL)) {
1498 /*
1499 * Unfreezing the refcount with 1 effectively
1500 * drops the pagecache ref for us without requiring another
1501 * atomic operation.
1502 */
1503 folio_ref_unfreeze(folio, 1);
1504 return folio_nr_pages(folio);
1505 }
1506 return 0;
1507 }
1508
1509 /**
1510 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1511 * @folio: Folio to be returned to an LRU list.
1512 *
1513 * Add previously isolated @folio to appropriate LRU list.
1514 * The folio may still be unevictable for other reasons.
1515 *
1516 * Context: lru_lock must not be held, interrupts must be enabled.
1517 */
folio_putback_lru(struct folio * folio)1518 void folio_putback_lru(struct folio *folio)
1519 {
1520 folio_add_lru(folio);
1521 folio_put(folio); /* drop ref from isolate */
1522 }
1523
1524 enum folio_references {
1525 FOLIOREF_RECLAIM,
1526 FOLIOREF_RECLAIM_CLEAN,
1527 FOLIOREF_KEEP,
1528 FOLIOREF_ACTIVATE,
1529 };
1530
folio_check_references(struct folio * folio,struct scan_control * sc)1531 static enum folio_references folio_check_references(struct folio *folio,
1532 struct scan_control *sc)
1533 {
1534 int referenced_ptes, referenced_folio;
1535 unsigned long vm_flags;
1536
1537 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1538 &vm_flags);
1539 referenced_folio = folio_test_clear_referenced(folio);
1540
1541 /*
1542 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1543 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1544 */
1545 if (vm_flags & VM_LOCKED)
1546 return FOLIOREF_ACTIVATE;
1547
1548 /* rmap lock contention: rotate */
1549 if (referenced_ptes == -1)
1550 return FOLIOREF_KEEP;
1551
1552 if (referenced_ptes) {
1553 /*
1554 * All mapped folios start out with page table
1555 * references from the instantiating fault, so we need
1556 * to look twice if a mapped file/anon folio is used more
1557 * than once.
1558 *
1559 * Mark it and spare it for another trip around the
1560 * inactive list. Another page table reference will
1561 * lead to its activation.
1562 *
1563 * Note: the mark is set for activated folios as well
1564 * so that recently deactivated but used folios are
1565 * quickly recovered.
1566 */
1567 folio_set_referenced(folio);
1568
1569 if (referenced_folio || referenced_ptes > 1)
1570 return FOLIOREF_ACTIVATE;
1571
1572 /*
1573 * Activate file-backed executable folios after first usage.
1574 */
1575 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1576 return FOLIOREF_ACTIVATE;
1577
1578 return FOLIOREF_KEEP;
1579 }
1580
1581 /* Reclaim if clean, defer dirty folios to writeback */
1582 if (referenced_folio && folio_is_file_lru(folio))
1583 return FOLIOREF_RECLAIM_CLEAN;
1584
1585 return FOLIOREF_RECLAIM;
1586 }
1587
1588 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)1589 static void folio_check_dirty_writeback(struct folio *folio,
1590 bool *dirty, bool *writeback)
1591 {
1592 struct address_space *mapping;
1593
1594 /*
1595 * Anonymous folios are not handled by flushers and must be written
1596 * from reclaim context. Do not stall reclaim based on them.
1597 * MADV_FREE anonymous folios are put into inactive file list too.
1598 * They could be mistakenly treated as file lru. So further anon
1599 * test is needed.
1600 */
1601 if (!folio_is_file_lru(folio) ||
1602 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1603 *dirty = false;
1604 *writeback = false;
1605 return;
1606 }
1607
1608 /* By default assume that the folio flags are accurate */
1609 *dirty = folio_test_dirty(folio);
1610 *writeback = folio_test_writeback(folio);
1611
1612 /* Verify dirty/writeback state if the filesystem supports it */
1613 if (!folio_test_private(folio))
1614 return;
1615
1616 mapping = folio_mapping(folio);
1617 if (mapping && mapping->a_ops->is_dirty_writeback)
1618 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1619 }
1620
alloc_demote_folio(struct folio * src,unsigned long private)1621 static struct folio *alloc_demote_folio(struct folio *src,
1622 unsigned long private)
1623 {
1624 struct folio *dst;
1625 nodemask_t *allowed_mask;
1626 struct migration_target_control *mtc;
1627
1628 mtc = (struct migration_target_control *)private;
1629
1630 allowed_mask = mtc->nmask;
1631 /*
1632 * make sure we allocate from the target node first also trying to
1633 * demote or reclaim pages from the target node via kswapd if we are
1634 * low on free memory on target node. If we don't do this and if
1635 * we have free memory on the slower(lower) memtier, we would start
1636 * allocating pages from slower(lower) memory tiers without even forcing
1637 * a demotion of cold pages from the target memtier. This can result
1638 * in the kernel placing hot pages in slower(lower) memory tiers.
1639 */
1640 mtc->nmask = NULL;
1641 mtc->gfp_mask |= __GFP_THISNODE;
1642 dst = alloc_migration_target(src, (unsigned long)mtc);
1643 if (dst)
1644 return dst;
1645
1646 mtc->gfp_mask &= ~__GFP_THISNODE;
1647 mtc->nmask = allowed_mask;
1648
1649 return alloc_migration_target(src, (unsigned long)mtc);
1650 }
1651
1652 /*
1653 * Take folios on @demote_folios and attempt to demote them to another node.
1654 * Folios which are not demoted are left on @demote_folios.
1655 */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1656 static unsigned int demote_folio_list(struct list_head *demote_folios,
1657 struct pglist_data *pgdat)
1658 {
1659 int target_nid = next_demotion_node(pgdat->node_id);
1660 unsigned int nr_succeeded;
1661 nodemask_t allowed_mask;
1662
1663 struct migration_target_control mtc = {
1664 /*
1665 * Allocate from 'node', or fail quickly and quietly.
1666 * When this happens, 'page' will likely just be discarded
1667 * instead of migrated.
1668 */
1669 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1670 __GFP_NOMEMALLOC | GFP_NOWAIT,
1671 .nid = target_nid,
1672 .nmask = &allowed_mask
1673 };
1674
1675 if (list_empty(demote_folios))
1676 return 0;
1677
1678 if (target_nid == NUMA_NO_NODE)
1679 return 0;
1680
1681 node_get_allowed_targets(pgdat, &allowed_mask);
1682
1683 /* Demotion ignores all cpuset and mempolicy settings */
1684 migrate_pages(demote_folios, alloc_demote_folio, NULL,
1685 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1686 &nr_succeeded);
1687
1688 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1689
1690 return nr_succeeded;
1691 }
1692
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1693 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1694 {
1695 if (gfp_mask & __GFP_FS)
1696 return true;
1697 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1698 return false;
1699 /*
1700 * We can "enter_fs" for swap-cache with only __GFP_IO
1701 * providing this isn't SWP_FS_OPS.
1702 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1703 * but that will never affect SWP_FS_OPS, so the data_race
1704 * is safe.
1705 */
1706 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1707 }
1708
1709 /*
1710 * shrink_folio_list() returns the number of reclaimed pages
1711 */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1712 static unsigned int shrink_folio_list(struct list_head *folio_list,
1713 struct pglist_data *pgdat, struct scan_control *sc,
1714 struct reclaim_stat *stat, bool ignore_references)
1715 {
1716 LIST_HEAD(ret_folios);
1717 LIST_HEAD(free_folios);
1718 LIST_HEAD(demote_folios);
1719 unsigned int nr_reclaimed = 0;
1720 unsigned int pgactivate = 0;
1721 bool do_demote_pass;
1722 struct swap_iocb *plug = NULL;
1723
1724 memset(stat, 0, sizeof(*stat));
1725 cond_resched();
1726 do_demote_pass = can_demote(pgdat->node_id, sc);
1727
1728 retry:
1729 while (!list_empty(folio_list)) {
1730 struct address_space *mapping;
1731 struct folio *folio;
1732 enum folio_references references = FOLIOREF_RECLAIM;
1733 bool dirty, writeback;
1734 unsigned int nr_pages;
1735
1736 cond_resched();
1737
1738 folio = lru_to_folio(folio_list);
1739 list_del(&folio->lru);
1740
1741 if (!folio_trylock(folio))
1742 goto keep;
1743
1744 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1745
1746 nr_pages = folio_nr_pages(folio);
1747
1748 /* Account the number of base pages */
1749 sc->nr_scanned += nr_pages;
1750
1751 if (unlikely(!folio_evictable(folio)))
1752 goto activate_locked;
1753
1754 if (!sc->may_unmap && folio_mapped(folio))
1755 goto keep_locked;
1756
1757 /* folio_update_gen() tried to promote this page? */
1758 if (lru_gen_enabled() && !ignore_references &&
1759 folio_mapped(folio) && folio_test_referenced(folio))
1760 goto keep_locked;
1761
1762 /*
1763 * The number of dirty pages determines if a node is marked
1764 * reclaim_congested. kswapd will stall and start writing
1765 * folios if the tail of the LRU is all dirty unqueued folios.
1766 */
1767 folio_check_dirty_writeback(folio, &dirty, &writeback);
1768 if (dirty || writeback)
1769 stat->nr_dirty += nr_pages;
1770
1771 if (dirty && !writeback)
1772 stat->nr_unqueued_dirty += nr_pages;
1773
1774 /*
1775 * Treat this folio as congested if folios are cycling
1776 * through the LRU so quickly that the folios marked
1777 * for immediate reclaim are making it to the end of
1778 * the LRU a second time.
1779 */
1780 if (writeback && folio_test_reclaim(folio))
1781 stat->nr_congested += nr_pages;
1782
1783 /*
1784 * If a folio at the tail of the LRU is under writeback, there
1785 * are three cases to consider.
1786 *
1787 * 1) If reclaim is encountering an excessive number
1788 * of folios under writeback and this folio has both
1789 * the writeback and reclaim flags set, then it
1790 * indicates that folios are being queued for I/O but
1791 * are being recycled through the LRU before the I/O
1792 * can complete. Waiting on the folio itself risks an
1793 * indefinite stall if it is impossible to writeback
1794 * the folio due to I/O error or disconnected storage
1795 * so instead note that the LRU is being scanned too
1796 * quickly and the caller can stall after the folio
1797 * list has been processed.
1798 *
1799 * 2) Global or new memcg reclaim encounters a folio that is
1800 * not marked for immediate reclaim, or the caller does not
1801 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1802 * not to fs). In this case mark the folio for immediate
1803 * reclaim and continue scanning.
1804 *
1805 * Require may_enter_fs() because we would wait on fs, which
1806 * may not have submitted I/O yet. And the loop driver might
1807 * enter reclaim, and deadlock if it waits on a folio for
1808 * which it is needed to do the write (loop masks off
1809 * __GFP_IO|__GFP_FS for this reason); but more thought
1810 * would probably show more reasons.
1811 *
1812 * 3) Legacy memcg encounters a folio that already has the
1813 * reclaim flag set. memcg does not have any dirty folio
1814 * throttling so we could easily OOM just because too many
1815 * folios are in writeback and there is nothing else to
1816 * reclaim. Wait for the writeback to complete.
1817 *
1818 * In cases 1) and 2) we activate the folios to get them out of
1819 * the way while we continue scanning for clean folios on the
1820 * inactive list and refilling from the active list. The
1821 * observation here is that waiting for disk writes is more
1822 * expensive than potentially causing reloads down the line.
1823 * Since they're marked for immediate reclaim, they won't put
1824 * memory pressure on the cache working set any longer than it
1825 * takes to write them to disk.
1826 */
1827 if (folio_test_writeback(folio)) {
1828 /* Case 1 above */
1829 if (current_is_kswapd() &&
1830 folio_test_reclaim(folio) &&
1831 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1832 stat->nr_immediate += nr_pages;
1833 goto activate_locked;
1834
1835 /* Case 2 above */
1836 } else if (writeback_throttling_sane(sc) ||
1837 !folio_test_reclaim(folio) ||
1838 !may_enter_fs(folio, sc->gfp_mask)) {
1839 /*
1840 * This is slightly racy -
1841 * folio_end_writeback() might have
1842 * just cleared the reclaim flag, then
1843 * setting the reclaim flag here ends up
1844 * interpreted as the readahead flag - but
1845 * that does not matter enough to care.
1846 * What we do want is for this folio to
1847 * have the reclaim flag set next time
1848 * memcg reclaim reaches the tests above,
1849 * so it will then wait for writeback to
1850 * avoid OOM; and it's also appropriate
1851 * in global reclaim.
1852 */
1853 folio_set_reclaim(folio);
1854 stat->nr_writeback += nr_pages;
1855 goto activate_locked;
1856
1857 /* Case 3 above */
1858 } else {
1859 folio_unlock(folio);
1860 folio_wait_writeback(folio);
1861 /* then go back and try same folio again */
1862 list_add_tail(&folio->lru, folio_list);
1863 continue;
1864 }
1865 }
1866
1867 if (!ignore_references)
1868 references = folio_check_references(folio, sc);
1869
1870 switch (references) {
1871 case FOLIOREF_ACTIVATE:
1872 goto activate_locked;
1873 case FOLIOREF_KEEP:
1874 stat->nr_ref_keep += nr_pages;
1875 goto keep_locked;
1876 case FOLIOREF_RECLAIM:
1877 case FOLIOREF_RECLAIM_CLEAN:
1878 ; /* try to reclaim the folio below */
1879 }
1880
1881 /*
1882 * Before reclaiming the folio, try to relocate
1883 * its contents to another node.
1884 */
1885 if (do_demote_pass &&
1886 (thp_migration_supported() || !folio_test_large(folio))) {
1887 list_add(&folio->lru, &demote_folios);
1888 folio_unlock(folio);
1889 continue;
1890 }
1891
1892 /*
1893 * Anonymous process memory has backing store?
1894 * Try to allocate it some swap space here.
1895 * Lazyfree folio could be freed directly
1896 */
1897 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1898 if (!folio_test_swapcache(folio)) {
1899 if (!(sc->gfp_mask & __GFP_IO))
1900 goto keep_locked;
1901 if (folio_maybe_dma_pinned(folio))
1902 goto keep_locked;
1903 if (folio_test_large(folio)) {
1904 /* cannot split folio, skip it */
1905 if (!can_split_folio(folio, NULL))
1906 goto activate_locked;
1907 /*
1908 * Split folios without a PMD map right
1909 * away. Chances are some or all of the
1910 * tail pages can be freed without IO.
1911 */
1912 if (!folio_entire_mapcount(folio) &&
1913 split_folio_to_list(folio,
1914 folio_list))
1915 goto activate_locked;
1916 }
1917 if (!add_to_swap(folio)) {
1918 if (!folio_test_large(folio))
1919 goto activate_locked_split;
1920 /* Fallback to swap normal pages */
1921 if (split_folio_to_list(folio,
1922 folio_list))
1923 goto activate_locked;
1924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1925 count_vm_event(THP_SWPOUT_FALLBACK);
1926 #endif
1927 if (!add_to_swap(folio))
1928 goto activate_locked_split;
1929 }
1930 }
1931 } else if (folio_test_swapbacked(folio) &&
1932 folio_test_large(folio)) {
1933 /* Split shmem folio */
1934 if (split_folio_to_list(folio, folio_list))
1935 goto keep_locked;
1936 }
1937
1938 /*
1939 * If the folio was split above, the tail pages will make
1940 * their own pass through this function and be accounted
1941 * then.
1942 */
1943 if ((nr_pages > 1) && !folio_test_large(folio)) {
1944 sc->nr_scanned -= (nr_pages - 1);
1945 nr_pages = 1;
1946 }
1947
1948 /*
1949 * The folio is mapped into the page tables of one or more
1950 * processes. Try to unmap it here.
1951 */
1952 if (folio_mapped(folio)) {
1953 enum ttu_flags flags = TTU_BATCH_FLUSH;
1954 bool was_swapbacked = folio_test_swapbacked(folio);
1955
1956 if (folio_test_pmd_mappable(folio))
1957 flags |= TTU_SPLIT_HUGE_PMD;
1958
1959 try_to_unmap(folio, flags);
1960 if (folio_mapped(folio)) {
1961 stat->nr_unmap_fail += nr_pages;
1962 if (!was_swapbacked &&
1963 folio_test_swapbacked(folio))
1964 stat->nr_lazyfree_fail += nr_pages;
1965 goto activate_locked;
1966 }
1967 }
1968
1969 /*
1970 * Folio is unmapped now so it cannot be newly pinned anymore.
1971 * No point in trying to reclaim folio if it is pinned.
1972 * Furthermore we don't want to reclaim underlying fs metadata
1973 * if the folio is pinned and thus potentially modified by the
1974 * pinning process as that may upset the filesystem.
1975 */
1976 if (folio_maybe_dma_pinned(folio))
1977 goto activate_locked;
1978
1979 mapping = folio_mapping(folio);
1980 if (folio_test_dirty(folio)) {
1981 /*
1982 * Only kswapd can writeback filesystem folios
1983 * to avoid risk of stack overflow. But avoid
1984 * injecting inefficient single-folio I/O into
1985 * flusher writeback as much as possible: only
1986 * write folios when we've encountered many
1987 * dirty folios, and when we've already scanned
1988 * the rest of the LRU for clean folios and see
1989 * the same dirty folios again (with the reclaim
1990 * flag set).
1991 */
1992 if (folio_is_file_lru(folio) &&
1993 (!current_is_kswapd() ||
1994 !folio_test_reclaim(folio) ||
1995 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1996 /*
1997 * Immediately reclaim when written back.
1998 * Similar in principle to folio_deactivate()
1999 * except we already have the folio isolated
2000 * and know it's dirty
2001 */
2002 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2003 nr_pages);
2004 folio_set_reclaim(folio);
2005
2006 goto activate_locked;
2007 }
2008
2009 if (references == FOLIOREF_RECLAIM_CLEAN)
2010 goto keep_locked;
2011 if (!may_enter_fs(folio, sc->gfp_mask))
2012 goto keep_locked;
2013 if (!sc->may_writepage)
2014 goto keep_locked;
2015
2016 /*
2017 * Folio is dirty. Flush the TLB if a writable entry
2018 * potentially exists to avoid CPU writes after I/O
2019 * starts and then write it out here.
2020 */
2021 try_to_unmap_flush_dirty();
2022 switch (pageout(folio, mapping, &plug)) {
2023 case PAGE_KEEP:
2024 goto keep_locked;
2025 case PAGE_ACTIVATE:
2026 goto activate_locked;
2027 case PAGE_SUCCESS:
2028 stat->nr_pageout += nr_pages;
2029
2030 if (folio_test_writeback(folio))
2031 goto keep;
2032 if (folio_test_dirty(folio))
2033 goto keep;
2034
2035 /*
2036 * A synchronous write - probably a ramdisk. Go
2037 * ahead and try to reclaim the folio.
2038 */
2039 if (!folio_trylock(folio))
2040 goto keep;
2041 if (folio_test_dirty(folio) ||
2042 folio_test_writeback(folio))
2043 goto keep_locked;
2044 mapping = folio_mapping(folio);
2045 fallthrough;
2046 case PAGE_CLEAN:
2047 ; /* try to free the folio below */
2048 }
2049 }
2050
2051 /*
2052 * If the folio has buffers, try to free the buffer
2053 * mappings associated with this folio. If we succeed
2054 * we try to free the folio as well.
2055 *
2056 * We do this even if the folio is dirty.
2057 * filemap_release_folio() does not perform I/O, but it
2058 * is possible for a folio to have the dirty flag set,
2059 * but it is actually clean (all its buffers are clean).
2060 * This happens if the buffers were written out directly,
2061 * with submit_bh(). ext3 will do this, as well as
2062 * the blockdev mapping. filemap_release_folio() will
2063 * discover that cleanness and will drop the buffers
2064 * and mark the folio clean - it can be freed.
2065 *
2066 * Rarely, folios can have buffers and no ->mapping.
2067 * These are the folios which were not successfully
2068 * invalidated in truncate_cleanup_folio(). We try to
2069 * drop those buffers here and if that worked, and the
2070 * folio is no longer mapped into process address space
2071 * (refcount == 1) it can be freed. Otherwise, leave
2072 * the folio on the LRU so it is swappable.
2073 */
2074 if (folio_needs_release(folio)) {
2075 if (!filemap_release_folio(folio, sc->gfp_mask))
2076 goto activate_locked;
2077 if (!mapping && folio_ref_count(folio) == 1) {
2078 folio_unlock(folio);
2079 if (folio_put_testzero(folio))
2080 goto free_it;
2081 else {
2082 /*
2083 * rare race with speculative reference.
2084 * the speculative reference will free
2085 * this folio shortly, so we may
2086 * increment nr_reclaimed here (and
2087 * leave it off the LRU).
2088 */
2089 nr_reclaimed += nr_pages;
2090 continue;
2091 }
2092 }
2093 }
2094
2095 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2096 /* follow __remove_mapping for reference */
2097 if (!folio_ref_freeze(folio, 1))
2098 goto keep_locked;
2099 /*
2100 * The folio has only one reference left, which is
2101 * from the isolation. After the caller puts the
2102 * folio back on the lru and drops the reference, the
2103 * folio will be freed anyway. It doesn't matter
2104 * which lru it goes on. So we don't bother checking
2105 * the dirty flag here.
2106 */
2107 count_vm_events(PGLAZYFREED, nr_pages);
2108 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2109 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2110 sc->target_mem_cgroup))
2111 goto keep_locked;
2112
2113 folio_unlock(folio);
2114 free_it:
2115 /*
2116 * Folio may get swapped out as a whole, need to account
2117 * all pages in it.
2118 */
2119 nr_reclaimed += nr_pages;
2120
2121 /*
2122 * Is there need to periodically free_folio_list? It would
2123 * appear not as the counts should be low
2124 */
2125 if (unlikely(folio_test_large(folio)))
2126 destroy_large_folio(folio);
2127 else
2128 list_add(&folio->lru, &free_folios);
2129 continue;
2130
2131 activate_locked_split:
2132 /*
2133 * The tail pages that are failed to add into swap cache
2134 * reach here. Fixup nr_scanned and nr_pages.
2135 */
2136 if (nr_pages > 1) {
2137 sc->nr_scanned -= (nr_pages - 1);
2138 nr_pages = 1;
2139 }
2140 activate_locked:
2141 /* Not a candidate for swapping, so reclaim swap space. */
2142 if (folio_test_swapcache(folio) &&
2143 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2144 folio_free_swap(folio);
2145 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2146 if (!folio_test_mlocked(folio)) {
2147 int type = folio_is_file_lru(folio);
2148 folio_set_active(folio);
2149 stat->nr_activate[type] += nr_pages;
2150 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2151 }
2152 keep_locked:
2153 folio_unlock(folio);
2154 keep:
2155 list_add(&folio->lru, &ret_folios);
2156 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2157 folio_test_unevictable(folio), folio);
2158 }
2159 /* 'folio_list' is always empty here */
2160
2161 /* Migrate folios selected for demotion */
2162 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2163 /* Folios that could not be demoted are still in @demote_folios */
2164 if (!list_empty(&demote_folios)) {
2165 /* Folios which weren't demoted go back on @folio_list */
2166 list_splice_init(&demote_folios, folio_list);
2167
2168 /*
2169 * goto retry to reclaim the undemoted folios in folio_list if
2170 * desired.
2171 *
2172 * Reclaiming directly from top tier nodes is not often desired
2173 * due to it breaking the LRU ordering: in general memory
2174 * should be reclaimed from lower tier nodes and demoted from
2175 * top tier nodes.
2176 *
2177 * However, disabling reclaim from top tier nodes entirely
2178 * would cause ooms in edge scenarios where lower tier memory
2179 * is unreclaimable for whatever reason, eg memory being
2180 * mlocked or too hot to reclaim. We can disable reclaim
2181 * from top tier nodes in proactive reclaim though as that is
2182 * not real memory pressure.
2183 */
2184 if (!sc->proactive) {
2185 do_demote_pass = false;
2186 goto retry;
2187 }
2188 }
2189
2190 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2191
2192 mem_cgroup_uncharge_list(&free_folios);
2193 try_to_unmap_flush();
2194 free_unref_page_list(&free_folios);
2195
2196 list_splice(&ret_folios, folio_list);
2197 count_vm_events(PGACTIVATE, pgactivate);
2198
2199 if (plug)
2200 swap_write_unplug(plug);
2201 return nr_reclaimed;
2202 }
2203
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)2204 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2205 struct list_head *folio_list)
2206 {
2207 struct scan_control sc = {
2208 .gfp_mask = GFP_KERNEL,
2209 .may_unmap = 1,
2210 };
2211 struct reclaim_stat stat;
2212 unsigned int nr_reclaimed;
2213 struct folio *folio, *next;
2214 LIST_HEAD(clean_folios);
2215 unsigned int noreclaim_flag;
2216
2217 list_for_each_entry_safe(folio, next, folio_list, lru) {
2218 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2219 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2220 !folio_test_unevictable(folio)) {
2221 folio_clear_active(folio);
2222 list_move(&folio->lru, &clean_folios);
2223 }
2224 }
2225
2226 /*
2227 * We should be safe here since we are only dealing with file pages and
2228 * we are not kswapd and therefore cannot write dirty file pages. But
2229 * call memalloc_noreclaim_save() anyway, just in case these conditions
2230 * change in the future.
2231 */
2232 noreclaim_flag = memalloc_noreclaim_save();
2233 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2234 &stat, true);
2235 memalloc_noreclaim_restore(noreclaim_flag);
2236
2237 list_splice(&clean_folios, folio_list);
2238 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2239 -(long)nr_reclaimed);
2240 /*
2241 * Since lazyfree pages are isolated from file LRU from the beginning,
2242 * they will rotate back to anonymous LRU in the end if it failed to
2243 * discard so isolated count will be mismatched.
2244 * Compensate the isolated count for both LRU lists.
2245 */
2246 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2247 stat.nr_lazyfree_fail);
2248 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2249 -(long)stat.nr_lazyfree_fail);
2250 return nr_reclaimed;
2251 }
2252
2253 /*
2254 * Update LRU sizes after isolating pages. The LRU size updates must
2255 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2256 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)2257 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2258 enum lru_list lru, unsigned long *nr_zone_taken)
2259 {
2260 int zid;
2261
2262 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2263 if (!nr_zone_taken[zid])
2264 continue;
2265
2266 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2267 }
2268
2269 }
2270
2271 /*
2272 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2273 *
2274 * lruvec->lru_lock is heavily contended. Some of the functions that
2275 * shrink the lists perform better by taking out a batch of pages
2276 * and working on them outside the LRU lock.
2277 *
2278 * For pagecache intensive workloads, this function is the hottest
2279 * spot in the kernel (apart from copy_*_user functions).
2280 *
2281 * Lru_lock must be held before calling this function.
2282 *
2283 * @nr_to_scan: The number of eligible pages to look through on the list.
2284 * @lruvec: The LRU vector to pull pages from.
2285 * @dst: The temp list to put pages on to.
2286 * @nr_scanned: The number of pages that were scanned.
2287 * @sc: The scan_control struct for this reclaim session
2288 * @lru: LRU list id for isolating
2289 *
2290 * returns how many pages were moved onto *@dst.
2291 */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)2292 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2293 struct lruvec *lruvec, struct list_head *dst,
2294 unsigned long *nr_scanned, struct scan_control *sc,
2295 enum lru_list lru)
2296 {
2297 struct list_head *src = &lruvec->lists[lru];
2298 unsigned long nr_taken = 0;
2299 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2300 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2301 unsigned long skipped = 0;
2302 unsigned long scan, total_scan, nr_pages;
2303 LIST_HEAD(folios_skipped);
2304
2305 total_scan = 0;
2306 scan = 0;
2307 while (scan < nr_to_scan && !list_empty(src)) {
2308 struct list_head *move_to = src;
2309 struct folio *folio;
2310
2311 folio = lru_to_folio(src);
2312 prefetchw_prev_lru_folio(folio, src, flags);
2313
2314 nr_pages = folio_nr_pages(folio);
2315 total_scan += nr_pages;
2316
2317 if (folio_zonenum(folio) > sc->reclaim_idx) {
2318 nr_skipped[folio_zonenum(folio)] += nr_pages;
2319 move_to = &folios_skipped;
2320 goto move;
2321 }
2322
2323 /*
2324 * Do not count skipped folios because that makes the function
2325 * return with no isolated folios if the LRU mostly contains
2326 * ineligible folios. This causes the VM to not reclaim any
2327 * folios, triggering a premature OOM.
2328 * Account all pages in a folio.
2329 */
2330 scan += nr_pages;
2331
2332 if (!folio_test_lru(folio))
2333 goto move;
2334 if (!sc->may_unmap && folio_mapped(folio))
2335 goto move;
2336
2337 /*
2338 * Be careful not to clear the lru flag until after we're
2339 * sure the folio is not being freed elsewhere -- the
2340 * folio release code relies on it.
2341 */
2342 if (unlikely(!folio_try_get(folio)))
2343 goto move;
2344
2345 if (!folio_test_clear_lru(folio)) {
2346 /* Another thread is already isolating this folio */
2347 folio_put(folio);
2348 goto move;
2349 }
2350
2351 nr_taken += nr_pages;
2352 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2353 move_to = dst;
2354 move:
2355 list_move(&folio->lru, move_to);
2356 }
2357
2358 /*
2359 * Splice any skipped folios to the start of the LRU list. Note that
2360 * this disrupts the LRU order when reclaiming for lower zones but
2361 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2362 * scanning would soon rescan the same folios to skip and waste lots
2363 * of cpu cycles.
2364 */
2365 if (!list_empty(&folios_skipped)) {
2366 int zid;
2367
2368 list_splice(&folios_skipped, src);
2369 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2370 if (!nr_skipped[zid])
2371 continue;
2372
2373 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2374 skipped += nr_skipped[zid];
2375 }
2376 }
2377 *nr_scanned = total_scan;
2378 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2379 total_scan, skipped, nr_taken,
2380 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2381 update_lru_sizes(lruvec, lru, nr_zone_taken);
2382 return nr_taken;
2383 }
2384
2385 /**
2386 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2387 * @folio: Folio to isolate from its LRU list.
2388 *
2389 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2390 * corresponding to whatever LRU list the folio was on.
2391 *
2392 * The folio will have its LRU flag cleared. If it was found on the
2393 * active list, it will have the Active flag set. If it was found on the
2394 * unevictable list, it will have the Unevictable flag set. These flags
2395 * may need to be cleared by the caller before letting the page go.
2396 *
2397 * Context:
2398 *
2399 * (1) Must be called with an elevated refcount on the folio. This is a
2400 * fundamental difference from isolate_lru_folios() (which is called
2401 * without a stable reference).
2402 * (2) The lru_lock must not be held.
2403 * (3) Interrupts must be enabled.
2404 *
2405 * Return: true if the folio was removed from an LRU list.
2406 * false if the folio was not on an LRU list.
2407 */
folio_isolate_lru(struct folio * folio)2408 bool folio_isolate_lru(struct folio *folio)
2409 {
2410 bool ret = false;
2411
2412 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2413
2414 if (folio_test_clear_lru(folio)) {
2415 struct lruvec *lruvec;
2416
2417 folio_get(folio);
2418 lruvec = folio_lruvec_lock_irq(folio);
2419 lruvec_del_folio(lruvec, folio);
2420 unlock_page_lruvec_irq(lruvec);
2421 ret = true;
2422 }
2423
2424 return ret;
2425 }
2426
2427 /*
2428 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2429 * then get rescheduled. When there are massive number of tasks doing page
2430 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2431 * the LRU list will go small and be scanned faster than necessary, leading to
2432 * unnecessary swapping, thrashing and OOM.
2433 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)2434 static int too_many_isolated(struct pglist_data *pgdat, int file,
2435 struct scan_control *sc)
2436 {
2437 unsigned long inactive, isolated;
2438 bool too_many;
2439
2440 if (current_is_kswapd())
2441 return 0;
2442
2443 if (!writeback_throttling_sane(sc))
2444 return 0;
2445
2446 if (file) {
2447 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2448 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2449 } else {
2450 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2451 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2452 }
2453
2454 /*
2455 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2456 * won't get blocked by normal direct-reclaimers, forming a circular
2457 * deadlock.
2458 */
2459 if (gfp_has_io_fs(sc->gfp_mask))
2460 inactive >>= 3;
2461
2462 too_many = isolated > inactive;
2463
2464 /* Wake up tasks throttled due to too_many_isolated. */
2465 if (!too_many)
2466 wake_throttle_isolated(pgdat);
2467
2468 return too_many;
2469 }
2470
2471 /*
2472 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2473 * On return, @list is reused as a list of folios to be freed by the caller.
2474 *
2475 * Returns the number of pages moved to the given lruvec.
2476 */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)2477 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2478 struct list_head *list)
2479 {
2480 int nr_pages, nr_moved = 0;
2481 LIST_HEAD(folios_to_free);
2482
2483 while (!list_empty(list)) {
2484 struct folio *folio = lru_to_folio(list);
2485
2486 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2487 list_del(&folio->lru);
2488 if (unlikely(!folio_evictable(folio))) {
2489 spin_unlock_irq(&lruvec->lru_lock);
2490 folio_putback_lru(folio);
2491 spin_lock_irq(&lruvec->lru_lock);
2492 continue;
2493 }
2494
2495 /*
2496 * The folio_set_lru needs to be kept here for list integrity.
2497 * Otherwise:
2498 * #0 move_folios_to_lru #1 release_pages
2499 * if (!folio_put_testzero())
2500 * if (folio_put_testzero())
2501 * !lru //skip lru_lock
2502 * folio_set_lru()
2503 * list_add(&folio->lru,)
2504 * list_add(&folio->lru,)
2505 */
2506 folio_set_lru(folio);
2507
2508 if (unlikely(folio_put_testzero(folio))) {
2509 __folio_clear_lru_flags(folio);
2510
2511 if (unlikely(folio_test_large(folio))) {
2512 spin_unlock_irq(&lruvec->lru_lock);
2513 destroy_large_folio(folio);
2514 spin_lock_irq(&lruvec->lru_lock);
2515 } else
2516 list_add(&folio->lru, &folios_to_free);
2517
2518 continue;
2519 }
2520
2521 /*
2522 * All pages were isolated from the same lruvec (and isolation
2523 * inhibits memcg migration).
2524 */
2525 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2526 lruvec_add_folio(lruvec, folio);
2527 nr_pages = folio_nr_pages(folio);
2528 nr_moved += nr_pages;
2529 if (folio_test_active(folio))
2530 workingset_age_nonresident(lruvec, nr_pages);
2531 }
2532
2533 /*
2534 * To save our caller's stack, now use input list for pages to free.
2535 */
2536 list_splice(&folios_to_free, list);
2537
2538 return nr_moved;
2539 }
2540
2541 /*
2542 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2543 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2544 * we should not throttle. Otherwise it is safe to do so.
2545 */
current_may_throttle(void)2546 static int current_may_throttle(void)
2547 {
2548 return !(current->flags & PF_LOCAL_THROTTLE);
2549 }
2550
2551 /*
2552 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2553 * of reclaimed pages
2554 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2555 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2556 struct lruvec *lruvec, struct scan_control *sc,
2557 enum lru_list lru)
2558 {
2559 LIST_HEAD(folio_list);
2560 unsigned long nr_scanned;
2561 unsigned int nr_reclaimed = 0;
2562 unsigned long nr_taken;
2563 struct reclaim_stat stat;
2564 bool file = is_file_lru(lru);
2565 enum vm_event_item item;
2566 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2567 bool stalled = false;
2568
2569 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2570 if (stalled)
2571 return 0;
2572
2573 /* wait a bit for the reclaimer. */
2574 stalled = true;
2575 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2576
2577 /* We are about to die and free our memory. Return now. */
2578 if (fatal_signal_pending(current))
2579 return SWAP_CLUSTER_MAX;
2580 }
2581
2582 lru_add_drain();
2583
2584 spin_lock_irq(&lruvec->lru_lock);
2585
2586 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2587 &nr_scanned, sc, lru);
2588
2589 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2590 item = PGSCAN_KSWAPD + reclaimer_offset();
2591 if (!cgroup_reclaim(sc))
2592 __count_vm_events(item, nr_scanned);
2593 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2594 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2595
2596 spin_unlock_irq(&lruvec->lru_lock);
2597
2598 if (nr_taken == 0)
2599 return 0;
2600
2601 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2602
2603 spin_lock_irq(&lruvec->lru_lock);
2604 move_folios_to_lru(lruvec, &folio_list);
2605
2606 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2607 item = PGSTEAL_KSWAPD + reclaimer_offset();
2608 if (!cgroup_reclaim(sc))
2609 __count_vm_events(item, nr_reclaimed);
2610 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2611 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2612 spin_unlock_irq(&lruvec->lru_lock);
2613
2614 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2615 mem_cgroup_uncharge_list(&folio_list);
2616 free_unref_page_list(&folio_list);
2617
2618 /*
2619 * If dirty folios are scanned that are not queued for IO, it
2620 * implies that flushers are not doing their job. This can
2621 * happen when memory pressure pushes dirty folios to the end of
2622 * the LRU before the dirty limits are breached and the dirty
2623 * data has expired. It can also happen when the proportion of
2624 * dirty folios grows not through writes but through memory
2625 * pressure reclaiming all the clean cache. And in some cases,
2626 * the flushers simply cannot keep up with the allocation
2627 * rate. Nudge the flusher threads in case they are asleep.
2628 */
2629 if (stat.nr_unqueued_dirty == nr_taken) {
2630 wakeup_flusher_threads(WB_REASON_VMSCAN);
2631 /*
2632 * For cgroupv1 dirty throttling is achieved by waking up
2633 * the kernel flusher here and later waiting on folios
2634 * which are in writeback to finish (see shrink_folio_list()).
2635 *
2636 * Flusher may not be able to issue writeback quickly
2637 * enough for cgroupv1 writeback throttling to work
2638 * on a large system.
2639 */
2640 if (!writeback_throttling_sane(sc))
2641 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2642 }
2643
2644 sc->nr.dirty += stat.nr_dirty;
2645 sc->nr.congested += stat.nr_congested;
2646 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2647 sc->nr.writeback += stat.nr_writeback;
2648 sc->nr.immediate += stat.nr_immediate;
2649 sc->nr.taken += nr_taken;
2650 if (file)
2651 sc->nr.file_taken += nr_taken;
2652
2653 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2654 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2655 return nr_reclaimed;
2656 }
2657
2658 /*
2659 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2660 *
2661 * We move them the other way if the folio is referenced by one or more
2662 * processes.
2663 *
2664 * If the folios are mostly unmapped, the processing is fast and it is
2665 * appropriate to hold lru_lock across the whole operation. But if
2666 * the folios are mapped, the processing is slow (folio_referenced()), so
2667 * we should drop lru_lock around each folio. It's impossible to balance
2668 * this, so instead we remove the folios from the LRU while processing them.
2669 * It is safe to rely on the active flag against the non-LRU folios in here
2670 * because nobody will play with that bit on a non-LRU folio.
2671 *
2672 * The downside is that we have to touch folio->_refcount against each folio.
2673 * But we had to alter folio->flags anyway.
2674 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2675 static void shrink_active_list(unsigned long nr_to_scan,
2676 struct lruvec *lruvec,
2677 struct scan_control *sc,
2678 enum lru_list lru)
2679 {
2680 unsigned long nr_taken;
2681 unsigned long nr_scanned;
2682 unsigned long vm_flags;
2683 LIST_HEAD(l_hold); /* The folios which were snipped off */
2684 LIST_HEAD(l_active);
2685 LIST_HEAD(l_inactive);
2686 unsigned nr_deactivate, nr_activate;
2687 unsigned nr_rotated = 0;
2688 int file = is_file_lru(lru);
2689 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2690
2691 lru_add_drain();
2692
2693 spin_lock_irq(&lruvec->lru_lock);
2694
2695 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2696 &nr_scanned, sc, lru);
2697
2698 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2699
2700 if (!cgroup_reclaim(sc))
2701 __count_vm_events(PGREFILL, nr_scanned);
2702 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2703
2704 spin_unlock_irq(&lruvec->lru_lock);
2705
2706 while (!list_empty(&l_hold)) {
2707 struct folio *folio;
2708
2709 cond_resched();
2710 folio = lru_to_folio(&l_hold);
2711 list_del(&folio->lru);
2712
2713 if (unlikely(!folio_evictable(folio))) {
2714 folio_putback_lru(folio);
2715 continue;
2716 }
2717
2718 if (unlikely(buffer_heads_over_limit)) {
2719 if (folio_needs_release(folio) &&
2720 folio_trylock(folio)) {
2721 filemap_release_folio(folio, 0);
2722 folio_unlock(folio);
2723 }
2724 }
2725
2726 /* Referenced or rmap lock contention: rotate */
2727 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2728 &vm_flags) != 0) {
2729 /*
2730 * Identify referenced, file-backed active folios and
2731 * give them one more trip around the active list. So
2732 * that executable code get better chances to stay in
2733 * memory under moderate memory pressure. Anon folios
2734 * are not likely to be evicted by use-once streaming
2735 * IO, plus JVM can create lots of anon VM_EXEC folios,
2736 * so we ignore them here.
2737 */
2738 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2739 nr_rotated += folio_nr_pages(folio);
2740 list_add(&folio->lru, &l_active);
2741 continue;
2742 }
2743 }
2744
2745 folio_clear_active(folio); /* we are de-activating */
2746 folio_set_workingset(folio);
2747 list_add(&folio->lru, &l_inactive);
2748 }
2749
2750 /*
2751 * Move folios back to the lru list.
2752 */
2753 spin_lock_irq(&lruvec->lru_lock);
2754
2755 nr_activate = move_folios_to_lru(lruvec, &l_active);
2756 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2757 /* Keep all free folios in l_active list */
2758 list_splice(&l_inactive, &l_active);
2759
2760 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2761 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2762
2763 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2764 spin_unlock_irq(&lruvec->lru_lock);
2765
2766 if (nr_rotated)
2767 lru_note_cost(lruvec, file, 0, nr_rotated);
2768 mem_cgroup_uncharge_list(&l_active);
2769 free_unref_page_list(&l_active);
2770 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2771 nr_deactivate, nr_rotated, sc->priority, file);
2772 }
2773
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2774 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2775 struct pglist_data *pgdat)
2776 {
2777 struct reclaim_stat dummy_stat;
2778 unsigned int nr_reclaimed;
2779 struct folio *folio;
2780 struct scan_control sc = {
2781 .gfp_mask = GFP_KERNEL,
2782 .may_writepage = 1,
2783 .may_unmap = 1,
2784 .may_swap = 1,
2785 .no_demotion = 1,
2786 };
2787
2788 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2789 while (!list_empty(folio_list)) {
2790 folio = lru_to_folio(folio_list);
2791 list_del(&folio->lru);
2792 folio_putback_lru(folio);
2793 }
2794
2795 return nr_reclaimed;
2796 }
2797
reclaim_pages(struct list_head * folio_list)2798 unsigned long reclaim_pages(struct list_head *folio_list)
2799 {
2800 int nid;
2801 unsigned int nr_reclaimed = 0;
2802 LIST_HEAD(node_folio_list);
2803 unsigned int noreclaim_flag;
2804
2805 if (list_empty(folio_list))
2806 return nr_reclaimed;
2807
2808 noreclaim_flag = memalloc_noreclaim_save();
2809
2810 nid = folio_nid(lru_to_folio(folio_list));
2811 do {
2812 struct folio *folio = lru_to_folio(folio_list);
2813
2814 if (nid == folio_nid(folio)) {
2815 folio_clear_active(folio);
2816 list_move(&folio->lru, &node_folio_list);
2817 continue;
2818 }
2819
2820 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2821 nid = folio_nid(lru_to_folio(folio_list));
2822 } while (!list_empty(folio_list));
2823
2824 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2825
2826 memalloc_noreclaim_restore(noreclaim_flag);
2827
2828 return nr_reclaimed;
2829 }
2830
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2831 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2832 struct lruvec *lruvec, struct scan_control *sc)
2833 {
2834 if (is_active_lru(lru)) {
2835 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2836 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2837 else
2838 sc->skipped_deactivate = 1;
2839 return 0;
2840 }
2841
2842 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2843 }
2844
2845 /*
2846 * The inactive anon list should be small enough that the VM never has
2847 * to do too much work.
2848 *
2849 * The inactive file list should be small enough to leave most memory
2850 * to the established workingset on the scan-resistant active list,
2851 * but large enough to avoid thrashing the aggregate readahead window.
2852 *
2853 * Both inactive lists should also be large enough that each inactive
2854 * folio has a chance to be referenced again before it is reclaimed.
2855 *
2856 * If that fails and refaulting is observed, the inactive list grows.
2857 *
2858 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2859 * on this LRU, maintained by the pageout code. An inactive_ratio
2860 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2861 *
2862 * total target max
2863 * memory ratio inactive
2864 * -------------------------------------
2865 * 10MB 1 5MB
2866 * 100MB 1 50MB
2867 * 1GB 3 250MB
2868 * 10GB 10 0.9GB
2869 * 100GB 31 3GB
2870 * 1TB 101 10GB
2871 * 10TB 320 32GB
2872 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2873 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2874 {
2875 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2876 unsigned long inactive, active;
2877 unsigned long inactive_ratio;
2878 unsigned long gb;
2879
2880 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2881 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2882
2883 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2884 if (gb)
2885 inactive_ratio = int_sqrt(10 * gb);
2886 else
2887 inactive_ratio = 1;
2888
2889 return inactive * inactive_ratio < active;
2890 }
2891
2892 enum scan_balance {
2893 SCAN_EQUAL,
2894 SCAN_FRACT,
2895 SCAN_ANON,
2896 SCAN_FILE,
2897 };
2898
prepare_scan_count(pg_data_t * pgdat,struct scan_control * sc)2899 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2900 {
2901 unsigned long file;
2902 struct lruvec *target_lruvec;
2903
2904 if (lru_gen_enabled())
2905 return;
2906
2907 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2908
2909 /*
2910 * Flush the memory cgroup stats, so that we read accurate per-memcg
2911 * lruvec stats for heuristics.
2912 */
2913 mem_cgroup_flush_stats();
2914
2915 /*
2916 * Determine the scan balance between anon and file LRUs.
2917 */
2918 spin_lock_irq(&target_lruvec->lru_lock);
2919 sc->anon_cost = target_lruvec->anon_cost;
2920 sc->file_cost = target_lruvec->file_cost;
2921 spin_unlock_irq(&target_lruvec->lru_lock);
2922
2923 /*
2924 * Target desirable inactive:active list ratios for the anon
2925 * and file LRU lists.
2926 */
2927 if (!sc->force_deactivate) {
2928 unsigned long refaults;
2929
2930 /*
2931 * When refaults are being observed, it means a new
2932 * workingset is being established. Deactivate to get
2933 * rid of any stale active pages quickly.
2934 */
2935 refaults = lruvec_page_state(target_lruvec,
2936 WORKINGSET_ACTIVATE_ANON);
2937 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2938 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2939 sc->may_deactivate |= DEACTIVATE_ANON;
2940 else
2941 sc->may_deactivate &= ~DEACTIVATE_ANON;
2942
2943 refaults = lruvec_page_state(target_lruvec,
2944 WORKINGSET_ACTIVATE_FILE);
2945 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2946 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2947 sc->may_deactivate |= DEACTIVATE_FILE;
2948 else
2949 sc->may_deactivate &= ~DEACTIVATE_FILE;
2950 } else
2951 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2952
2953 /*
2954 * If we have plenty of inactive file pages that aren't
2955 * thrashing, try to reclaim those first before touching
2956 * anonymous pages.
2957 */
2958 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2959 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2960 sc->cache_trim_mode = 1;
2961 else
2962 sc->cache_trim_mode = 0;
2963
2964 /*
2965 * Prevent the reclaimer from falling into the cache trap: as
2966 * cache pages start out inactive, every cache fault will tip
2967 * the scan balance towards the file LRU. And as the file LRU
2968 * shrinks, so does the window for rotation from references.
2969 * This means we have a runaway feedback loop where a tiny
2970 * thrashing file LRU becomes infinitely more attractive than
2971 * anon pages. Try to detect this based on file LRU size.
2972 */
2973 if (!cgroup_reclaim(sc)) {
2974 unsigned long total_high_wmark = 0;
2975 unsigned long free, anon;
2976 int z;
2977
2978 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2979 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2980 node_page_state(pgdat, NR_INACTIVE_FILE);
2981
2982 for (z = 0; z < MAX_NR_ZONES; z++) {
2983 struct zone *zone = &pgdat->node_zones[z];
2984
2985 if (!managed_zone(zone))
2986 continue;
2987
2988 total_high_wmark += high_wmark_pages(zone);
2989 }
2990
2991 /*
2992 * Consider anon: if that's low too, this isn't a
2993 * runaway file reclaim problem, but rather just
2994 * extreme pressure. Reclaim as per usual then.
2995 */
2996 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2997
2998 sc->file_is_tiny =
2999 file + free <= total_high_wmark &&
3000 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3001 anon >> sc->priority;
3002 }
3003 }
3004
3005 /*
3006 * Determine how aggressively the anon and file LRU lists should be
3007 * scanned.
3008 *
3009 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3010 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3011 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)3012 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3013 unsigned long *nr)
3014 {
3015 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3016 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3017 unsigned long anon_cost, file_cost, total_cost;
3018 int swappiness = mem_cgroup_swappiness(memcg);
3019 u64 fraction[ANON_AND_FILE];
3020 u64 denominator = 0; /* gcc */
3021 enum scan_balance scan_balance;
3022 unsigned long ap, fp;
3023 enum lru_list lru;
3024
3025 /* If we have no swap space, do not bother scanning anon folios. */
3026 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3027 scan_balance = SCAN_FILE;
3028 goto out;
3029 }
3030
3031 /*
3032 * Global reclaim will swap to prevent OOM even with no
3033 * swappiness, but memcg users want to use this knob to
3034 * disable swapping for individual groups completely when
3035 * using the memory controller's swap limit feature would be
3036 * too expensive.
3037 */
3038 if (cgroup_reclaim(sc) && !swappiness) {
3039 scan_balance = SCAN_FILE;
3040 goto out;
3041 }
3042
3043 /*
3044 * Do not apply any pressure balancing cleverness when the
3045 * system is close to OOM, scan both anon and file equally
3046 * (unless the swappiness setting disagrees with swapping).
3047 */
3048 if (!sc->priority && swappiness) {
3049 scan_balance = SCAN_EQUAL;
3050 goto out;
3051 }
3052
3053 /*
3054 * If the system is almost out of file pages, force-scan anon.
3055 */
3056 if (sc->file_is_tiny) {
3057 scan_balance = SCAN_ANON;
3058 goto out;
3059 }
3060
3061 /*
3062 * If there is enough inactive page cache, we do not reclaim
3063 * anything from the anonymous working right now.
3064 */
3065 if (sc->cache_trim_mode) {
3066 scan_balance = SCAN_FILE;
3067 goto out;
3068 }
3069
3070 scan_balance = SCAN_FRACT;
3071 /*
3072 * Calculate the pressure balance between anon and file pages.
3073 *
3074 * The amount of pressure we put on each LRU is inversely
3075 * proportional to the cost of reclaiming each list, as
3076 * determined by the share of pages that are refaulting, times
3077 * the relative IO cost of bringing back a swapped out
3078 * anonymous page vs reloading a filesystem page (swappiness).
3079 *
3080 * Although we limit that influence to ensure no list gets
3081 * left behind completely: at least a third of the pressure is
3082 * applied, before swappiness.
3083 *
3084 * With swappiness at 100, anon and file have equal IO cost.
3085 */
3086 total_cost = sc->anon_cost + sc->file_cost;
3087 anon_cost = total_cost + sc->anon_cost;
3088 file_cost = total_cost + sc->file_cost;
3089 total_cost = anon_cost + file_cost;
3090
3091 ap = swappiness * (total_cost + 1);
3092 ap /= anon_cost + 1;
3093
3094 fp = (200 - swappiness) * (total_cost + 1);
3095 fp /= file_cost + 1;
3096
3097 fraction[0] = ap;
3098 fraction[1] = fp;
3099 denominator = ap + fp;
3100 out:
3101 for_each_evictable_lru(lru) {
3102 int file = is_file_lru(lru);
3103 unsigned long lruvec_size;
3104 unsigned long low, min;
3105 unsigned long scan;
3106
3107 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3108 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3109 &min, &low);
3110
3111 if (min || low) {
3112 /*
3113 * Scale a cgroup's reclaim pressure by proportioning
3114 * its current usage to its memory.low or memory.min
3115 * setting.
3116 *
3117 * This is important, as otherwise scanning aggression
3118 * becomes extremely binary -- from nothing as we
3119 * approach the memory protection threshold, to totally
3120 * nominal as we exceed it. This results in requiring
3121 * setting extremely liberal protection thresholds. It
3122 * also means we simply get no protection at all if we
3123 * set it too low, which is not ideal.
3124 *
3125 * If there is any protection in place, we reduce scan
3126 * pressure by how much of the total memory used is
3127 * within protection thresholds.
3128 *
3129 * There is one special case: in the first reclaim pass,
3130 * we skip over all groups that are within their low
3131 * protection. If that fails to reclaim enough pages to
3132 * satisfy the reclaim goal, we come back and override
3133 * the best-effort low protection. However, we still
3134 * ideally want to honor how well-behaved groups are in
3135 * that case instead of simply punishing them all
3136 * equally. As such, we reclaim them based on how much
3137 * memory they are using, reducing the scan pressure
3138 * again by how much of the total memory used is under
3139 * hard protection.
3140 */
3141 unsigned long cgroup_size = mem_cgroup_size(memcg);
3142 unsigned long protection;
3143
3144 /* memory.low scaling, make sure we retry before OOM */
3145 if (!sc->memcg_low_reclaim && low > min) {
3146 protection = low;
3147 sc->memcg_low_skipped = 1;
3148 } else {
3149 protection = min;
3150 }
3151
3152 /* Avoid TOCTOU with earlier protection check */
3153 cgroup_size = max(cgroup_size, protection);
3154
3155 scan = lruvec_size - lruvec_size * protection /
3156 (cgroup_size + 1);
3157
3158 /*
3159 * Minimally target SWAP_CLUSTER_MAX pages to keep
3160 * reclaim moving forwards, avoiding decrementing
3161 * sc->priority further than desirable.
3162 */
3163 scan = max(scan, SWAP_CLUSTER_MAX);
3164 } else {
3165 scan = lruvec_size;
3166 }
3167
3168 scan >>= sc->priority;
3169
3170 /*
3171 * If the cgroup's already been deleted, make sure to
3172 * scrape out the remaining cache.
3173 */
3174 if (!scan && !mem_cgroup_online(memcg))
3175 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3176
3177 switch (scan_balance) {
3178 case SCAN_EQUAL:
3179 /* Scan lists relative to size */
3180 break;
3181 case SCAN_FRACT:
3182 /*
3183 * Scan types proportional to swappiness and
3184 * their relative recent reclaim efficiency.
3185 * Make sure we don't miss the last page on
3186 * the offlined memory cgroups because of a
3187 * round-off error.
3188 */
3189 scan = mem_cgroup_online(memcg) ?
3190 div64_u64(scan * fraction[file], denominator) :
3191 DIV64_U64_ROUND_UP(scan * fraction[file],
3192 denominator);
3193 break;
3194 case SCAN_FILE:
3195 case SCAN_ANON:
3196 /* Scan one type exclusively */
3197 if ((scan_balance == SCAN_FILE) != file)
3198 scan = 0;
3199 break;
3200 default:
3201 /* Look ma, no brain */
3202 BUG();
3203 }
3204
3205 nr[lru] = scan;
3206 }
3207 }
3208
3209 /*
3210 * Anonymous LRU management is a waste if there is
3211 * ultimately no way to reclaim the memory.
3212 */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)3213 static bool can_age_anon_pages(struct pglist_data *pgdat,
3214 struct scan_control *sc)
3215 {
3216 /* Aging the anon LRU is valuable if swap is present: */
3217 if (total_swap_pages > 0)
3218 return true;
3219
3220 /* Also valuable if anon pages can be demoted: */
3221 return can_demote(pgdat->node_id, sc);
3222 }
3223
3224 #ifdef CONFIG_LRU_GEN
3225
3226 #ifdef CONFIG_LRU_GEN_ENABLED
3227 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3228 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3229 #else
3230 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3231 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3232 #endif
3233
should_walk_mmu(void)3234 static bool should_walk_mmu(void)
3235 {
3236 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
3237 }
3238
should_clear_pmd_young(void)3239 static bool should_clear_pmd_young(void)
3240 {
3241 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
3242 }
3243
3244 /******************************************************************************
3245 * shorthand helpers
3246 ******************************************************************************/
3247
3248 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3249
3250 #define DEFINE_MAX_SEQ(lruvec) \
3251 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3252
3253 #define DEFINE_MIN_SEQ(lruvec) \
3254 unsigned long min_seq[ANON_AND_FILE] = { \
3255 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3256 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3257 }
3258
3259 #define for_each_gen_type_zone(gen, type, zone) \
3260 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3261 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3262 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3263
3264 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
3265 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
3266
get_lruvec(struct mem_cgroup * memcg,int nid)3267 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3268 {
3269 struct pglist_data *pgdat = NODE_DATA(nid);
3270
3271 #ifdef CONFIG_MEMCG
3272 if (memcg) {
3273 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3274
3275 /* see the comment in mem_cgroup_lruvec() */
3276 if (!lruvec->pgdat)
3277 lruvec->pgdat = pgdat;
3278
3279 return lruvec;
3280 }
3281 #endif
3282 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3283
3284 return &pgdat->__lruvec;
3285 }
3286
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)3287 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3288 {
3289 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3290 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3291
3292 if (!sc->may_swap)
3293 return 0;
3294
3295 if (!can_demote(pgdat->node_id, sc) &&
3296 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3297 return 0;
3298
3299 return mem_cgroup_swappiness(memcg);
3300 }
3301
get_nr_gens(struct lruvec * lruvec,int type)3302 static int get_nr_gens(struct lruvec *lruvec, int type)
3303 {
3304 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3305 }
3306
seq_is_valid(struct lruvec * lruvec)3307 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3308 {
3309 /* see the comment on lru_gen_folio */
3310 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3311 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3312 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3313 }
3314
3315 /******************************************************************************
3316 * Bloom filters
3317 ******************************************************************************/
3318
3319 /*
3320 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3321 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3322 * bits in a bitmap, k is the number of hash functions and n is the number of
3323 * inserted items.
3324 *
3325 * Page table walkers use one of the two filters to reduce their search space.
3326 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3327 * aging uses the double-buffering technique to flip to the other filter each
3328 * time it produces a new generation. For non-leaf entries that have enough
3329 * leaf entries, the aging carries them over to the next generation in
3330 * walk_pmd_range(); the eviction also report them when walking the rmap
3331 * in lru_gen_look_around().
3332 *
3333 * For future optimizations:
3334 * 1. It's not necessary to keep both filters all the time. The spare one can be
3335 * freed after the RCU grace period and reallocated if needed again.
3336 * 2. And when reallocating, it's worth scaling its size according to the number
3337 * of inserted entries in the other filter, to reduce the memory overhead on
3338 * small systems and false positives on large systems.
3339 * 3. Jenkins' hash function is an alternative to Knuth's.
3340 */
3341 #define BLOOM_FILTER_SHIFT 15
3342
filter_gen_from_seq(unsigned long seq)3343 static inline int filter_gen_from_seq(unsigned long seq)
3344 {
3345 return seq % NR_BLOOM_FILTERS;
3346 }
3347
get_item_key(void * item,int * key)3348 static void get_item_key(void *item, int *key)
3349 {
3350 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3351
3352 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3353
3354 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3355 key[1] = hash >> BLOOM_FILTER_SHIFT;
3356 }
3357
test_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3358 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3359 {
3360 int key[2];
3361 unsigned long *filter;
3362 int gen = filter_gen_from_seq(seq);
3363
3364 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3365 if (!filter)
3366 return true;
3367
3368 get_item_key(item, key);
3369
3370 return test_bit(key[0], filter) && test_bit(key[1], filter);
3371 }
3372
update_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3373 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3374 {
3375 int key[2];
3376 unsigned long *filter;
3377 int gen = filter_gen_from_seq(seq);
3378
3379 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3380 if (!filter)
3381 return;
3382
3383 get_item_key(item, key);
3384
3385 if (!test_bit(key[0], filter))
3386 set_bit(key[0], filter);
3387 if (!test_bit(key[1], filter))
3388 set_bit(key[1], filter);
3389 }
3390
reset_bloom_filter(struct lruvec * lruvec,unsigned long seq)3391 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3392 {
3393 unsigned long *filter;
3394 int gen = filter_gen_from_seq(seq);
3395
3396 filter = lruvec->mm_state.filters[gen];
3397 if (filter) {
3398 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3399 return;
3400 }
3401
3402 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3403 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3404 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3405 }
3406
3407 /******************************************************************************
3408 * mm_struct list
3409 ******************************************************************************/
3410
get_mm_list(struct mem_cgroup * memcg)3411 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3412 {
3413 static struct lru_gen_mm_list mm_list = {
3414 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3415 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3416 };
3417
3418 #ifdef CONFIG_MEMCG
3419 if (memcg)
3420 return &memcg->mm_list;
3421 #endif
3422 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3423
3424 return &mm_list;
3425 }
3426
lru_gen_add_mm(struct mm_struct * mm)3427 void lru_gen_add_mm(struct mm_struct *mm)
3428 {
3429 int nid;
3430 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3431 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3432
3433 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3434 #ifdef CONFIG_MEMCG
3435 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3436 mm->lru_gen.memcg = memcg;
3437 #endif
3438 spin_lock(&mm_list->lock);
3439
3440 for_each_node_state(nid, N_MEMORY) {
3441 struct lruvec *lruvec = get_lruvec(memcg, nid);
3442
3443 /* the first addition since the last iteration */
3444 if (lruvec->mm_state.tail == &mm_list->fifo)
3445 lruvec->mm_state.tail = &mm->lru_gen.list;
3446 }
3447
3448 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3449
3450 spin_unlock(&mm_list->lock);
3451 }
3452
lru_gen_del_mm(struct mm_struct * mm)3453 void lru_gen_del_mm(struct mm_struct *mm)
3454 {
3455 int nid;
3456 struct lru_gen_mm_list *mm_list;
3457 struct mem_cgroup *memcg = NULL;
3458
3459 if (list_empty(&mm->lru_gen.list))
3460 return;
3461
3462 #ifdef CONFIG_MEMCG
3463 memcg = mm->lru_gen.memcg;
3464 #endif
3465 mm_list = get_mm_list(memcg);
3466
3467 spin_lock(&mm_list->lock);
3468
3469 for_each_node(nid) {
3470 struct lruvec *lruvec = get_lruvec(memcg, nid);
3471
3472 /* where the current iteration continues after */
3473 if (lruvec->mm_state.head == &mm->lru_gen.list)
3474 lruvec->mm_state.head = lruvec->mm_state.head->prev;
3475
3476 /* where the last iteration ended before */
3477 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3478 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3479 }
3480
3481 list_del_init(&mm->lru_gen.list);
3482
3483 spin_unlock(&mm_list->lock);
3484
3485 #ifdef CONFIG_MEMCG
3486 mem_cgroup_put(mm->lru_gen.memcg);
3487 mm->lru_gen.memcg = NULL;
3488 #endif
3489 }
3490
3491 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)3492 void lru_gen_migrate_mm(struct mm_struct *mm)
3493 {
3494 struct mem_cgroup *memcg;
3495 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3496
3497 VM_WARN_ON_ONCE(task->mm != mm);
3498 lockdep_assert_held(&task->alloc_lock);
3499
3500 /* for mm_update_next_owner() */
3501 if (mem_cgroup_disabled())
3502 return;
3503
3504 /* migration can happen before addition */
3505 if (!mm->lru_gen.memcg)
3506 return;
3507
3508 rcu_read_lock();
3509 memcg = mem_cgroup_from_task(task);
3510 rcu_read_unlock();
3511 if (memcg == mm->lru_gen.memcg)
3512 return;
3513
3514 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3515
3516 lru_gen_del_mm(mm);
3517 lru_gen_add_mm(mm);
3518 }
3519 #endif
3520
reset_mm_stats(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,bool last)3521 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3522 {
3523 int i;
3524 int hist;
3525
3526 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3527
3528 if (walk) {
3529 hist = lru_hist_from_seq(walk->max_seq);
3530
3531 for (i = 0; i < NR_MM_STATS; i++) {
3532 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3533 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3534 walk->mm_stats[i] = 0;
3535 }
3536 }
3537
3538 if (NR_HIST_GENS > 1 && last) {
3539 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3540
3541 for (i = 0; i < NR_MM_STATS; i++)
3542 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3543 }
3544 }
3545
should_skip_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3546 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3547 {
3548 int type;
3549 unsigned long size = 0;
3550 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3551 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3552
3553 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3554 return true;
3555
3556 clear_bit(key, &mm->lru_gen.bitmap);
3557
3558 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3559 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3560 get_mm_counter(mm, MM_ANONPAGES) +
3561 get_mm_counter(mm, MM_SHMEMPAGES);
3562 }
3563
3564 if (size < MIN_LRU_BATCH)
3565 return true;
3566
3567 return !mmget_not_zero(mm);
3568 }
3569
iterate_mm_list(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3570 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3571 struct mm_struct **iter)
3572 {
3573 bool first = false;
3574 bool last = false;
3575 struct mm_struct *mm = NULL;
3576 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3577 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3578 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3579
3580 /*
3581 * mm_state->seq is incremented after each iteration of mm_list. There
3582 * are three interesting cases for this page table walker:
3583 * 1. It tries to start a new iteration with a stale max_seq: there is
3584 * nothing left to do.
3585 * 2. It started the next iteration: it needs to reset the Bloom filter
3586 * so that a fresh set of PTE tables can be recorded.
3587 * 3. It ended the current iteration: it needs to reset the mm stats
3588 * counters and tell its caller to increment max_seq.
3589 */
3590 spin_lock(&mm_list->lock);
3591
3592 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3593
3594 if (walk->max_seq <= mm_state->seq)
3595 goto done;
3596
3597 if (!mm_state->head)
3598 mm_state->head = &mm_list->fifo;
3599
3600 if (mm_state->head == &mm_list->fifo)
3601 first = true;
3602
3603 do {
3604 mm_state->head = mm_state->head->next;
3605 if (mm_state->head == &mm_list->fifo) {
3606 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3607 last = true;
3608 break;
3609 }
3610
3611 /* force scan for those added after the last iteration */
3612 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3613 mm_state->tail = mm_state->head->next;
3614 walk->force_scan = true;
3615 }
3616
3617 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3618 if (should_skip_mm(mm, walk))
3619 mm = NULL;
3620 } while (!mm);
3621 done:
3622 if (*iter || last)
3623 reset_mm_stats(lruvec, walk, last);
3624
3625 spin_unlock(&mm_list->lock);
3626
3627 if (mm && first)
3628 reset_bloom_filter(lruvec, walk->max_seq + 1);
3629
3630 if (*iter)
3631 mmput_async(*iter);
3632
3633 *iter = mm;
3634
3635 return last;
3636 }
3637
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long max_seq)3638 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3639 {
3640 bool success = false;
3641 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3642 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3643 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3644
3645 spin_lock(&mm_list->lock);
3646
3647 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3648
3649 if (max_seq > mm_state->seq) {
3650 mm_state->head = NULL;
3651 mm_state->tail = NULL;
3652 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3653 reset_mm_stats(lruvec, NULL, true);
3654 success = true;
3655 }
3656
3657 spin_unlock(&mm_list->lock);
3658
3659 return success;
3660 }
3661
3662 /******************************************************************************
3663 * PID controller
3664 ******************************************************************************/
3665
3666 /*
3667 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3668 *
3669 * The P term is refaulted/(evicted+protected) from a tier in the generation
3670 * currently being evicted; the I term is the exponential moving average of the
3671 * P term over the generations previously evicted, using the smoothing factor
3672 * 1/2; the D term isn't supported.
3673 *
3674 * The setpoint (SP) is always the first tier of one type; the process variable
3675 * (PV) is either any tier of the other type or any other tier of the same
3676 * type.
3677 *
3678 * The error is the difference between the SP and the PV; the correction is to
3679 * turn off protection when SP>PV or turn on protection when SP<PV.
3680 *
3681 * For future optimizations:
3682 * 1. The D term may discount the other two terms over time so that long-lived
3683 * generations can resist stale information.
3684 */
3685 struct ctrl_pos {
3686 unsigned long refaulted;
3687 unsigned long total;
3688 int gain;
3689 };
3690
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3691 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3692 struct ctrl_pos *pos)
3693 {
3694 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3695 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3696
3697 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3698 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3699 pos->total = lrugen->avg_total[type][tier] +
3700 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3701 if (tier)
3702 pos->total += lrugen->protected[hist][type][tier - 1];
3703 pos->gain = gain;
3704 }
3705
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3706 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3707 {
3708 int hist, tier;
3709 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3710 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3711 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3712
3713 lockdep_assert_held(&lruvec->lru_lock);
3714
3715 if (!carryover && !clear)
3716 return;
3717
3718 hist = lru_hist_from_seq(seq);
3719
3720 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3721 if (carryover) {
3722 unsigned long sum;
3723
3724 sum = lrugen->avg_refaulted[type][tier] +
3725 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3726 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3727
3728 sum = lrugen->avg_total[type][tier] +
3729 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3730 if (tier)
3731 sum += lrugen->protected[hist][type][tier - 1];
3732 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3733 }
3734
3735 if (clear) {
3736 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3737 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3738 if (tier)
3739 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3740 }
3741 }
3742 }
3743
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3744 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3745 {
3746 /*
3747 * Return true if the PV has a limited number of refaults or a lower
3748 * refaulted/total than the SP.
3749 */
3750 return pv->refaulted < MIN_LRU_BATCH ||
3751 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3752 (sp->refaulted + 1) * pv->total * pv->gain;
3753 }
3754
3755 /******************************************************************************
3756 * the aging
3757 ******************************************************************************/
3758
3759 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3760 static int folio_update_gen(struct folio *folio, int gen)
3761 {
3762 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3763
3764 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3765 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3766
3767 do {
3768 /* lru_gen_del_folio() has isolated this page? */
3769 if (!(old_flags & LRU_GEN_MASK)) {
3770 /* for shrink_folio_list() */
3771 new_flags = old_flags | BIT(PG_referenced);
3772 continue;
3773 }
3774
3775 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3776 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3777 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3778
3779 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3780 }
3781
3782 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3783 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3784 {
3785 int type = folio_is_file_lru(folio);
3786 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3787 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3788 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3789
3790 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3791
3792 do {
3793 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3794 /* folio_update_gen() has promoted this page? */
3795 if (new_gen >= 0 && new_gen != old_gen)
3796 return new_gen;
3797
3798 new_gen = (old_gen + 1) % MAX_NR_GENS;
3799
3800 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3801 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3802 /* for folio_end_writeback() */
3803 if (reclaiming)
3804 new_flags |= BIT(PG_reclaim);
3805 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3806
3807 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3808
3809 return new_gen;
3810 }
3811
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3812 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3813 int old_gen, int new_gen)
3814 {
3815 int type = folio_is_file_lru(folio);
3816 int zone = folio_zonenum(folio);
3817 int delta = folio_nr_pages(folio);
3818
3819 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3820 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3821
3822 walk->batched++;
3823
3824 walk->nr_pages[old_gen][type][zone] -= delta;
3825 walk->nr_pages[new_gen][type][zone] += delta;
3826 }
3827
reset_batch_size(struct lruvec * lruvec,struct lru_gen_mm_walk * walk)3828 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3829 {
3830 int gen, type, zone;
3831 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3832
3833 walk->batched = 0;
3834
3835 for_each_gen_type_zone(gen, type, zone) {
3836 enum lru_list lru = type * LRU_INACTIVE_FILE;
3837 int delta = walk->nr_pages[gen][type][zone];
3838
3839 if (!delta)
3840 continue;
3841
3842 walk->nr_pages[gen][type][zone] = 0;
3843 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3844 lrugen->nr_pages[gen][type][zone] + delta);
3845
3846 if (lru_gen_is_active(lruvec, gen))
3847 lru += LRU_ACTIVE;
3848 __update_lru_size(lruvec, lru, zone, delta);
3849 }
3850 }
3851
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3852 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3853 {
3854 struct address_space *mapping;
3855 struct vm_area_struct *vma = args->vma;
3856 struct lru_gen_mm_walk *walk = args->private;
3857
3858 if (!vma_is_accessible(vma))
3859 return true;
3860
3861 if (is_vm_hugetlb_page(vma))
3862 return true;
3863
3864 if (!vma_has_recency(vma))
3865 return true;
3866
3867 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3868 return true;
3869
3870 if (vma == get_gate_vma(vma->vm_mm))
3871 return true;
3872
3873 if (vma_is_anonymous(vma))
3874 return !walk->can_swap;
3875
3876 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3877 return true;
3878
3879 mapping = vma->vm_file->f_mapping;
3880 if (mapping_unevictable(mapping))
3881 return true;
3882
3883 if (shmem_mapping(mapping))
3884 return !walk->can_swap;
3885
3886 /* to exclude special mappings like dax, etc. */
3887 return !mapping->a_ops->read_folio;
3888 }
3889
3890 /*
3891 * Some userspace memory allocators map many single-page VMAs. Instead of
3892 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3893 * table to reduce zigzags and improve cache performance.
3894 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3895 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3896 unsigned long *vm_start, unsigned long *vm_end)
3897 {
3898 unsigned long start = round_up(*vm_end, size);
3899 unsigned long end = (start | ~mask) + 1;
3900 VMA_ITERATOR(vmi, args->mm, start);
3901
3902 VM_WARN_ON_ONCE(mask & size);
3903 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3904
3905 for_each_vma(vmi, args->vma) {
3906 if (end && end <= args->vma->vm_start)
3907 return false;
3908
3909 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3910 continue;
3911
3912 *vm_start = max(start, args->vma->vm_start);
3913 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3914
3915 return true;
3916 }
3917
3918 return false;
3919 }
3920
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr)3921 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3922 {
3923 unsigned long pfn = pte_pfn(pte);
3924
3925 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3926
3927 if (!pte_present(pte) || is_zero_pfn(pfn))
3928 return -1;
3929
3930 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3931 return -1;
3932
3933 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3934 return -1;
3935
3936 return pfn;
3937 }
3938
3939 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)3940 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3941 {
3942 unsigned long pfn = pmd_pfn(pmd);
3943
3944 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3945
3946 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3947 return -1;
3948
3949 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3950 return -1;
3951
3952 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3953 return -1;
3954
3955 return pfn;
3956 }
3957 #endif
3958
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)3959 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3960 struct pglist_data *pgdat, bool can_swap)
3961 {
3962 struct folio *folio;
3963
3964 /* try to avoid unnecessary memory loads */
3965 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3966 return NULL;
3967
3968 folio = pfn_folio(pfn);
3969 if (folio_nid(folio) != pgdat->node_id)
3970 return NULL;
3971
3972 if (folio_memcg_rcu(folio) != memcg)
3973 return NULL;
3974
3975 /* file VMAs can contain anon pages from COW */
3976 if (!folio_is_file_lru(folio) && !can_swap)
3977 return NULL;
3978
3979 return folio;
3980 }
3981
suitable_to_scan(int total,int young)3982 static bool suitable_to_scan(int total, int young)
3983 {
3984 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3985
3986 /* suitable if the average number of young PTEs per cacheline is >=1 */
3987 return young * n >= total;
3988 }
3989
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3990 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3991 struct mm_walk *args)
3992 {
3993 int i;
3994 pte_t *pte;
3995 spinlock_t *ptl;
3996 unsigned long addr;
3997 int total = 0;
3998 int young = 0;
3999 struct lru_gen_mm_walk *walk = args->private;
4000 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4001 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4002 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4003
4004 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
4005 if (!pte)
4006 return false;
4007 if (!spin_trylock(ptl)) {
4008 pte_unmap(pte);
4009 return false;
4010 }
4011
4012 arch_enter_lazy_mmu_mode();
4013 restart:
4014 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4015 unsigned long pfn;
4016 struct folio *folio;
4017 pte_t ptent = ptep_get(pte + i);
4018
4019 total++;
4020 walk->mm_stats[MM_LEAF_TOTAL]++;
4021
4022 pfn = get_pte_pfn(ptent, args->vma, addr);
4023 if (pfn == -1)
4024 continue;
4025
4026 if (!pte_young(ptent)) {
4027 walk->mm_stats[MM_LEAF_OLD]++;
4028 continue;
4029 }
4030
4031 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4032 if (!folio)
4033 continue;
4034
4035 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4036 VM_WARN_ON_ONCE(true);
4037
4038 young++;
4039 walk->mm_stats[MM_LEAF_YOUNG]++;
4040
4041 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4042 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4043 !folio_test_swapcache(folio)))
4044 folio_mark_dirty(folio);
4045
4046 old_gen = folio_update_gen(folio, new_gen);
4047 if (old_gen >= 0 && old_gen != new_gen)
4048 update_batch_size(walk, folio, old_gen, new_gen);
4049 }
4050
4051 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4052 goto restart;
4053
4054 arch_leave_lazy_mmu_mode();
4055 pte_unmap_unlock(pte, ptl);
4056
4057 return suitable_to_scan(total, young);
4058 }
4059
4060 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)4061 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4062 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4063 {
4064 int i;
4065 pmd_t *pmd;
4066 spinlock_t *ptl;
4067 struct lru_gen_mm_walk *walk = args->private;
4068 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4069 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4070 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4071
4072 VM_WARN_ON_ONCE(pud_leaf(*pud));
4073
4074 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4075 if (*first == -1) {
4076 *first = addr;
4077 bitmap_zero(bitmap, MIN_LRU_BATCH);
4078 return;
4079 }
4080
4081 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4082 if (i && i <= MIN_LRU_BATCH) {
4083 __set_bit(i - 1, bitmap);
4084 return;
4085 }
4086
4087 pmd = pmd_offset(pud, *first);
4088
4089 ptl = pmd_lockptr(args->mm, pmd);
4090 if (!spin_trylock(ptl))
4091 goto done;
4092
4093 arch_enter_lazy_mmu_mode();
4094
4095 do {
4096 unsigned long pfn;
4097 struct folio *folio;
4098
4099 /* don't round down the first address */
4100 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4101
4102 pfn = get_pmd_pfn(pmd[i], vma, addr);
4103 if (pfn == -1)
4104 goto next;
4105
4106 if (!pmd_trans_huge(pmd[i])) {
4107 if (should_clear_pmd_young())
4108 pmdp_test_and_clear_young(vma, addr, pmd + i);
4109 goto next;
4110 }
4111
4112 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4113 if (!folio)
4114 goto next;
4115
4116 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4117 goto next;
4118
4119 walk->mm_stats[MM_LEAF_YOUNG]++;
4120
4121 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4122 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4123 !folio_test_swapcache(folio)))
4124 folio_mark_dirty(folio);
4125
4126 old_gen = folio_update_gen(folio, new_gen);
4127 if (old_gen >= 0 && old_gen != new_gen)
4128 update_batch_size(walk, folio, old_gen, new_gen);
4129 next:
4130 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4131 } while (i <= MIN_LRU_BATCH);
4132
4133 arch_leave_lazy_mmu_mode();
4134 spin_unlock(ptl);
4135 done:
4136 *first = -1;
4137 }
4138 #else
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)4139 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4140 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4141 {
4142 }
4143 #endif
4144
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)4145 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4146 struct mm_walk *args)
4147 {
4148 int i;
4149 pmd_t *pmd;
4150 unsigned long next;
4151 unsigned long addr;
4152 struct vm_area_struct *vma;
4153 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
4154 unsigned long first = -1;
4155 struct lru_gen_mm_walk *walk = args->private;
4156
4157 VM_WARN_ON_ONCE(pud_leaf(*pud));
4158
4159 /*
4160 * Finish an entire PMD in two passes: the first only reaches to PTE
4161 * tables to avoid taking the PMD lock; the second, if necessary, takes
4162 * the PMD lock to clear the accessed bit in PMD entries.
4163 */
4164 pmd = pmd_offset(pud, start & PUD_MASK);
4165 restart:
4166 /* walk_pte_range() may call get_next_vma() */
4167 vma = args->vma;
4168 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4169 pmd_t val = pmdp_get_lockless(pmd + i);
4170
4171 next = pmd_addr_end(addr, end);
4172
4173 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4174 walk->mm_stats[MM_LEAF_TOTAL]++;
4175 continue;
4176 }
4177
4178 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4179 if (pmd_trans_huge(val)) {
4180 unsigned long pfn = pmd_pfn(val);
4181 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4182
4183 walk->mm_stats[MM_LEAF_TOTAL]++;
4184
4185 if (!pmd_young(val)) {
4186 walk->mm_stats[MM_LEAF_OLD]++;
4187 continue;
4188 }
4189
4190 /* try to avoid unnecessary memory loads */
4191 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4192 continue;
4193
4194 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4195 continue;
4196 }
4197 #endif
4198 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4199
4200 if (should_clear_pmd_young()) {
4201 if (!pmd_young(val))
4202 continue;
4203
4204 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4205 }
4206
4207 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4208 continue;
4209
4210 walk->mm_stats[MM_NONLEAF_FOUND]++;
4211
4212 if (!walk_pte_range(&val, addr, next, args))
4213 continue;
4214
4215 walk->mm_stats[MM_NONLEAF_ADDED]++;
4216
4217 /* carry over to the next generation */
4218 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4219 }
4220
4221 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4222
4223 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4224 goto restart;
4225 }
4226
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)4227 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4228 struct mm_walk *args)
4229 {
4230 int i;
4231 pud_t *pud;
4232 unsigned long addr;
4233 unsigned long next;
4234 struct lru_gen_mm_walk *walk = args->private;
4235
4236 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4237
4238 pud = pud_offset(p4d, start & P4D_MASK);
4239 restart:
4240 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4241 pud_t val = READ_ONCE(pud[i]);
4242
4243 next = pud_addr_end(addr, end);
4244
4245 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4246 continue;
4247
4248 walk_pmd_range(&val, addr, next, args);
4249
4250 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4251 end = (addr | ~PUD_MASK) + 1;
4252 goto done;
4253 }
4254 }
4255
4256 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4257 goto restart;
4258
4259 end = round_up(end, P4D_SIZE);
4260 done:
4261 if (!end || !args->vma)
4262 return 1;
4263
4264 walk->next_addr = max(end, args->vma->vm_start);
4265
4266 return -EAGAIN;
4267 }
4268
walk_mm(struct lruvec * lruvec,struct mm_struct * mm,struct lru_gen_mm_walk * walk)4269 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4270 {
4271 static const struct mm_walk_ops mm_walk_ops = {
4272 .test_walk = should_skip_vma,
4273 .p4d_entry = walk_pud_range,
4274 .walk_lock = PGWALK_RDLOCK,
4275 };
4276
4277 int err;
4278 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4279
4280 walk->next_addr = FIRST_USER_ADDRESS;
4281
4282 do {
4283 DEFINE_MAX_SEQ(lruvec);
4284
4285 err = -EBUSY;
4286
4287 /* another thread might have called inc_max_seq() */
4288 if (walk->max_seq != max_seq)
4289 break;
4290
4291 /* folio_update_gen() requires stable folio_memcg() */
4292 if (!mem_cgroup_trylock_pages(memcg))
4293 break;
4294
4295 /* the caller might be holding the lock for write */
4296 if (mmap_read_trylock(mm)) {
4297 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4298
4299 mmap_read_unlock(mm);
4300 }
4301
4302 mem_cgroup_unlock_pages();
4303
4304 if (walk->batched) {
4305 spin_lock_irq(&lruvec->lru_lock);
4306 reset_batch_size(lruvec, walk);
4307 spin_unlock_irq(&lruvec->lru_lock);
4308 }
4309
4310 cond_resched();
4311 } while (err == -EAGAIN);
4312 }
4313
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)4314 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4315 {
4316 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4317
4318 if (pgdat && current_is_kswapd()) {
4319 VM_WARN_ON_ONCE(walk);
4320
4321 walk = &pgdat->mm_walk;
4322 } else if (!walk && force_alloc) {
4323 VM_WARN_ON_ONCE(current_is_kswapd());
4324
4325 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4326 }
4327
4328 current->reclaim_state->mm_walk = walk;
4329
4330 return walk;
4331 }
4332
clear_mm_walk(void)4333 static void clear_mm_walk(void)
4334 {
4335 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4336
4337 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4338 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4339
4340 current->reclaim_state->mm_walk = NULL;
4341
4342 if (!current_is_kswapd())
4343 kfree(walk);
4344 }
4345
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)4346 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4347 {
4348 int zone;
4349 int remaining = MAX_LRU_BATCH;
4350 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4351 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4352
4353 if (type == LRU_GEN_ANON && !can_swap)
4354 goto done;
4355
4356 /* prevent cold/hot inversion if force_scan is true */
4357 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4358 struct list_head *head = &lrugen->folios[old_gen][type][zone];
4359
4360 while (!list_empty(head)) {
4361 struct folio *folio = lru_to_folio(head);
4362
4363 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4364 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4365 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4366 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4367
4368 new_gen = folio_inc_gen(lruvec, folio, false);
4369 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4370
4371 if (!--remaining)
4372 return false;
4373 }
4374 }
4375 done:
4376 reset_ctrl_pos(lruvec, type, true);
4377 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4378
4379 return true;
4380 }
4381
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)4382 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4383 {
4384 int gen, type, zone;
4385 bool success = false;
4386 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4387 DEFINE_MIN_SEQ(lruvec);
4388
4389 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4390
4391 /* find the oldest populated generation */
4392 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4393 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4394 gen = lru_gen_from_seq(min_seq[type]);
4395
4396 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4397 if (!list_empty(&lrugen->folios[gen][type][zone]))
4398 goto next;
4399 }
4400
4401 min_seq[type]++;
4402 }
4403 next:
4404 ;
4405 }
4406
4407 /* see the comment on lru_gen_folio */
4408 if (can_swap) {
4409 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4410 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4411 }
4412
4413 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4414 if (min_seq[type] == lrugen->min_seq[type])
4415 continue;
4416
4417 reset_ctrl_pos(lruvec, type, true);
4418 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4419 success = true;
4420 }
4421
4422 return success;
4423 }
4424
inc_max_seq(struct lruvec * lruvec,bool can_swap,bool force_scan)4425 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4426 {
4427 int prev, next;
4428 int type, zone;
4429 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4430 restart:
4431 spin_lock_irq(&lruvec->lru_lock);
4432
4433 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4434
4435 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4436 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4437 continue;
4438
4439 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4440
4441 if (inc_min_seq(lruvec, type, can_swap))
4442 continue;
4443
4444 spin_unlock_irq(&lruvec->lru_lock);
4445 cond_resched();
4446 goto restart;
4447 }
4448
4449 /*
4450 * Update the active/inactive LRU sizes for compatibility. Both sides of
4451 * the current max_seq need to be covered, since max_seq+1 can overlap
4452 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4453 * overlap, cold/hot inversion happens.
4454 */
4455 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4456 next = lru_gen_from_seq(lrugen->max_seq + 1);
4457
4458 for (type = 0; type < ANON_AND_FILE; type++) {
4459 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4460 enum lru_list lru = type * LRU_INACTIVE_FILE;
4461 long delta = lrugen->nr_pages[prev][type][zone] -
4462 lrugen->nr_pages[next][type][zone];
4463
4464 if (!delta)
4465 continue;
4466
4467 __update_lru_size(lruvec, lru, zone, delta);
4468 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4469 }
4470 }
4471
4472 for (type = 0; type < ANON_AND_FILE; type++)
4473 reset_ctrl_pos(lruvec, type, false);
4474
4475 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4476 /* make sure preceding modifications appear */
4477 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4478
4479 spin_unlock_irq(&lruvec->lru_lock);
4480 }
4481
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,bool force_scan)4482 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4483 struct scan_control *sc, bool can_swap, bool force_scan)
4484 {
4485 bool success;
4486 struct lru_gen_mm_walk *walk;
4487 struct mm_struct *mm = NULL;
4488 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4489
4490 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4491
4492 /* see the comment in iterate_mm_list() */
4493 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4494 success = false;
4495 goto done;
4496 }
4497
4498 /*
4499 * If the hardware doesn't automatically set the accessed bit, fallback
4500 * to lru_gen_look_around(), which only clears the accessed bit in a
4501 * handful of PTEs. Spreading the work out over a period of time usually
4502 * is less efficient, but it avoids bursty page faults.
4503 */
4504 if (!should_walk_mmu()) {
4505 success = iterate_mm_list_nowalk(lruvec, max_seq);
4506 goto done;
4507 }
4508
4509 walk = set_mm_walk(NULL, true);
4510 if (!walk) {
4511 success = iterate_mm_list_nowalk(lruvec, max_seq);
4512 goto done;
4513 }
4514
4515 walk->lruvec = lruvec;
4516 walk->max_seq = max_seq;
4517 walk->can_swap = can_swap;
4518 walk->force_scan = force_scan;
4519
4520 do {
4521 success = iterate_mm_list(lruvec, walk, &mm);
4522 if (mm)
4523 walk_mm(lruvec, mm, walk);
4524 } while (mm);
4525 done:
4526 if (success)
4527 inc_max_seq(lruvec, can_swap, force_scan);
4528
4529 return success;
4530 }
4531
4532 /******************************************************************************
4533 * working set protection
4534 ******************************************************************************/
4535
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4536 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4537 {
4538 int priority;
4539 unsigned long reclaimable;
4540
4541 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4542 return;
4543 /*
4544 * Determine the initial priority based on
4545 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4546 * where reclaimed_to_scanned_ratio = inactive / total.
4547 */
4548 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4549 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4550 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4551
4552 /* round down reclaimable and round up sc->nr_to_reclaim */
4553 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4554
4555 /*
4556 * The estimation is based on LRU pages only, so cap it to prevent
4557 * overshoots of shrinker objects by large margins.
4558 */
4559 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4560 }
4561
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4562 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4563 {
4564 int gen, type, zone;
4565 unsigned long total = 0;
4566 bool can_swap = get_swappiness(lruvec, sc);
4567 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4568 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4569 DEFINE_MAX_SEQ(lruvec);
4570 DEFINE_MIN_SEQ(lruvec);
4571
4572 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4573 unsigned long seq;
4574
4575 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4576 gen = lru_gen_from_seq(seq);
4577
4578 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4579 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4580 }
4581 }
4582
4583 /* whether the size is big enough to be helpful */
4584 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4585 }
4586
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4587 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4588 unsigned long min_ttl)
4589 {
4590 int gen;
4591 unsigned long birth;
4592 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4593 DEFINE_MIN_SEQ(lruvec);
4594
4595 if (mem_cgroup_below_min(NULL, memcg))
4596 return false;
4597
4598 if (!lruvec_is_sizable(lruvec, sc))
4599 return false;
4600
4601 /* see the comment on lru_gen_folio */
4602 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4603 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4604
4605 return time_is_before_jiffies(birth + min_ttl);
4606 }
4607
4608 /* to protect the working set of the last N jiffies */
4609 static unsigned long lru_gen_min_ttl __read_mostly;
4610
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4611 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4612 {
4613 struct mem_cgroup *memcg;
4614 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4615 bool reclaimable = !min_ttl;
4616
4617 VM_WARN_ON_ONCE(!current_is_kswapd());
4618
4619 set_initial_priority(pgdat, sc);
4620
4621 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4622 do {
4623 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4624
4625 mem_cgroup_calculate_protection(NULL, memcg);
4626
4627 if (!reclaimable)
4628 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4629 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4630
4631 /*
4632 * The main goal is to OOM kill if every generation from all memcgs is
4633 * younger than min_ttl. However, another possibility is all memcgs are
4634 * either too small or below min.
4635 */
4636 if (!reclaimable && mutex_trylock(&oom_lock)) {
4637 struct oom_control oc = {
4638 .gfp_mask = sc->gfp_mask,
4639 };
4640
4641 out_of_memory(&oc);
4642
4643 mutex_unlock(&oom_lock);
4644 }
4645 }
4646
4647 /******************************************************************************
4648 * rmap/PT walk feedback
4649 ******************************************************************************/
4650
4651 /*
4652 * This function exploits spatial locality when shrink_folio_list() walks the
4653 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4654 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4655 * the PTE table to the Bloom filter. This forms a feedback loop between the
4656 * eviction and the aging.
4657 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4658 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4659 {
4660 int i;
4661 unsigned long start;
4662 unsigned long end;
4663 struct lru_gen_mm_walk *walk;
4664 int young = 0;
4665 pte_t *pte = pvmw->pte;
4666 unsigned long addr = pvmw->address;
4667 struct vm_area_struct *vma = pvmw->vma;
4668 struct folio *folio = pfn_folio(pvmw->pfn);
4669 bool can_swap = !folio_is_file_lru(folio);
4670 struct mem_cgroup *memcg = folio_memcg(folio);
4671 struct pglist_data *pgdat = folio_pgdat(folio);
4672 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4673 DEFINE_MAX_SEQ(lruvec);
4674 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4675
4676 lockdep_assert_held(pvmw->ptl);
4677 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4678
4679 if (spin_is_contended(pvmw->ptl))
4680 return;
4681
4682 /* exclude special VMAs containing anon pages from COW */
4683 if (vma->vm_flags & VM_SPECIAL)
4684 return;
4685
4686 /* avoid taking the LRU lock under the PTL when possible */
4687 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4688
4689 start = max(addr & PMD_MASK, vma->vm_start);
4690 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4691
4692 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4693 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4694 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4695 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4696 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4697 else {
4698 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4699 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4700 }
4701 }
4702
4703 /* folio_update_gen() requires stable folio_memcg() */
4704 if (!mem_cgroup_trylock_pages(memcg))
4705 return;
4706
4707 arch_enter_lazy_mmu_mode();
4708
4709 pte -= (addr - start) / PAGE_SIZE;
4710
4711 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4712 unsigned long pfn;
4713 pte_t ptent = ptep_get(pte + i);
4714
4715 pfn = get_pte_pfn(ptent, vma, addr);
4716 if (pfn == -1)
4717 continue;
4718
4719 if (!pte_young(ptent))
4720 continue;
4721
4722 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4723 if (!folio)
4724 continue;
4725
4726 if (!ptep_test_and_clear_young(vma, addr, pte + i))
4727 VM_WARN_ON_ONCE(true);
4728
4729 young++;
4730
4731 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4732 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4733 !folio_test_swapcache(folio)))
4734 folio_mark_dirty(folio);
4735
4736 if (walk) {
4737 old_gen = folio_update_gen(folio, new_gen);
4738 if (old_gen >= 0 && old_gen != new_gen)
4739 update_batch_size(walk, folio, old_gen, new_gen);
4740
4741 continue;
4742 }
4743
4744 old_gen = folio_lru_gen(folio);
4745 if (old_gen < 0)
4746 folio_set_referenced(folio);
4747 else if (old_gen != new_gen)
4748 folio_activate(folio);
4749 }
4750
4751 arch_leave_lazy_mmu_mode();
4752 mem_cgroup_unlock_pages();
4753
4754 /* feedback from rmap walkers to page table walkers */
4755 if (suitable_to_scan(i, young))
4756 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4757 }
4758
4759 /******************************************************************************
4760 * memcg LRU
4761 ******************************************************************************/
4762
4763 /* see the comment on MEMCG_NR_GENS */
4764 enum {
4765 MEMCG_LRU_NOP,
4766 MEMCG_LRU_HEAD,
4767 MEMCG_LRU_TAIL,
4768 MEMCG_LRU_OLD,
4769 MEMCG_LRU_YOUNG,
4770 };
4771
4772 #ifdef CONFIG_MEMCG
4773
lru_gen_memcg_seg(struct lruvec * lruvec)4774 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4775 {
4776 return READ_ONCE(lruvec->lrugen.seg);
4777 }
4778
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4779 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4780 {
4781 int seg;
4782 int old, new;
4783 unsigned long flags;
4784 int bin = get_random_u32_below(MEMCG_NR_BINS);
4785 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4786
4787 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4788
4789 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4790
4791 seg = 0;
4792 new = old = lruvec->lrugen.gen;
4793
4794 /* see the comment on MEMCG_NR_GENS */
4795 if (op == MEMCG_LRU_HEAD)
4796 seg = MEMCG_LRU_HEAD;
4797 else if (op == MEMCG_LRU_TAIL)
4798 seg = MEMCG_LRU_TAIL;
4799 else if (op == MEMCG_LRU_OLD)
4800 new = get_memcg_gen(pgdat->memcg_lru.seq);
4801 else if (op == MEMCG_LRU_YOUNG)
4802 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4803 else
4804 VM_WARN_ON_ONCE(true);
4805
4806 WRITE_ONCE(lruvec->lrugen.seg, seg);
4807 WRITE_ONCE(lruvec->lrugen.gen, new);
4808
4809 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4810
4811 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4812 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4813 else
4814 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4815
4816 pgdat->memcg_lru.nr_memcgs[old]--;
4817 pgdat->memcg_lru.nr_memcgs[new]++;
4818
4819 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4820 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4821
4822 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4823 }
4824
lru_gen_online_memcg(struct mem_cgroup * memcg)4825 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4826 {
4827 int gen;
4828 int nid;
4829 int bin = get_random_u32_below(MEMCG_NR_BINS);
4830
4831 for_each_node(nid) {
4832 struct pglist_data *pgdat = NODE_DATA(nid);
4833 struct lruvec *lruvec = get_lruvec(memcg, nid);
4834
4835 spin_lock_irq(&pgdat->memcg_lru.lock);
4836
4837 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4838
4839 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4840
4841 lruvec->lrugen.gen = gen;
4842
4843 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4844 pgdat->memcg_lru.nr_memcgs[gen]++;
4845
4846 spin_unlock_irq(&pgdat->memcg_lru.lock);
4847 }
4848 }
4849
lru_gen_offline_memcg(struct mem_cgroup * memcg)4850 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4851 {
4852 int nid;
4853
4854 for_each_node(nid) {
4855 struct lruvec *lruvec = get_lruvec(memcg, nid);
4856
4857 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4858 }
4859 }
4860
lru_gen_release_memcg(struct mem_cgroup * memcg)4861 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4862 {
4863 int gen;
4864 int nid;
4865
4866 for_each_node(nid) {
4867 struct pglist_data *pgdat = NODE_DATA(nid);
4868 struct lruvec *lruvec = get_lruvec(memcg, nid);
4869
4870 spin_lock_irq(&pgdat->memcg_lru.lock);
4871
4872 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4873 goto unlock;
4874
4875 gen = lruvec->lrugen.gen;
4876
4877 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4878 pgdat->memcg_lru.nr_memcgs[gen]--;
4879
4880 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4881 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4882 unlock:
4883 spin_unlock_irq(&pgdat->memcg_lru.lock);
4884 }
4885 }
4886
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4887 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4888 {
4889 struct lruvec *lruvec = get_lruvec(memcg, nid);
4890
4891 /* see the comment on MEMCG_NR_GENS */
4892 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4893 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4894 }
4895
4896 #else /* !CONFIG_MEMCG */
4897
lru_gen_memcg_seg(struct lruvec * lruvec)4898 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4899 {
4900 return 0;
4901 }
4902
4903 #endif
4904
4905 /******************************************************************************
4906 * the eviction
4907 ******************************************************************************/
4908
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4909 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4910 int tier_idx)
4911 {
4912 bool success;
4913 int gen = folio_lru_gen(folio);
4914 int type = folio_is_file_lru(folio);
4915 int zone = folio_zonenum(folio);
4916 int delta = folio_nr_pages(folio);
4917 int refs = folio_lru_refs(folio);
4918 int tier = lru_tier_from_refs(refs);
4919 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4920
4921 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4922
4923 /* unevictable */
4924 if (!folio_evictable(folio)) {
4925 success = lru_gen_del_folio(lruvec, folio, true);
4926 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4927 folio_set_unevictable(folio);
4928 lruvec_add_folio(lruvec, folio);
4929 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4930 return true;
4931 }
4932
4933 /* dirty lazyfree */
4934 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4935 success = lru_gen_del_folio(lruvec, folio, true);
4936 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4937 folio_set_swapbacked(folio);
4938 lruvec_add_folio_tail(lruvec, folio);
4939 return true;
4940 }
4941
4942 /* promoted */
4943 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4944 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4945 return true;
4946 }
4947
4948 /* protected */
4949 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4950 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4951
4952 gen = folio_inc_gen(lruvec, folio, false);
4953 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4954
4955 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4956 lrugen->protected[hist][type][tier - 1] + delta);
4957 return true;
4958 }
4959
4960 /* ineligible */
4961 if (zone > sc->reclaim_idx) {
4962 gen = folio_inc_gen(lruvec, folio, false);
4963 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4964 return true;
4965 }
4966
4967 /* waiting for writeback */
4968 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4969 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4970 gen = folio_inc_gen(lruvec, folio, true);
4971 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4972 return true;
4973 }
4974
4975 return false;
4976 }
4977
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4978 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4979 {
4980 bool success;
4981
4982 /* swapping inhibited */
4983 if (!(sc->gfp_mask & __GFP_IO) &&
4984 (folio_test_dirty(folio) ||
4985 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4986 return false;
4987
4988 /* raced with release_pages() */
4989 if (!folio_try_get(folio))
4990 return false;
4991
4992 /* raced with another isolation */
4993 if (!folio_test_clear_lru(folio)) {
4994 folio_put(folio);
4995 return false;
4996 }
4997
4998 /* see the comment on MAX_NR_TIERS */
4999 if (!folio_test_referenced(folio))
5000 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
5001
5002 /* for shrink_folio_list() */
5003 folio_clear_reclaim(folio);
5004 folio_clear_referenced(folio);
5005
5006 success = lru_gen_del_folio(lruvec, folio, true);
5007 VM_WARN_ON_ONCE_FOLIO(!success, folio);
5008
5009 return true;
5010 }
5011
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)5012 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
5013 int type, int tier, struct list_head *list)
5014 {
5015 int i;
5016 int gen;
5017 enum vm_event_item item;
5018 int sorted = 0;
5019 int scanned = 0;
5020 int isolated = 0;
5021 int remaining = MAX_LRU_BATCH;
5022 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5023 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5024
5025 VM_WARN_ON_ONCE(!list_empty(list));
5026
5027 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
5028 return 0;
5029
5030 gen = lru_gen_from_seq(lrugen->min_seq[type]);
5031
5032 for (i = MAX_NR_ZONES; i > 0; i--) {
5033 LIST_HEAD(moved);
5034 int skipped = 0;
5035 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
5036 struct list_head *head = &lrugen->folios[gen][type][zone];
5037
5038 while (!list_empty(head)) {
5039 struct folio *folio = lru_to_folio(head);
5040 int delta = folio_nr_pages(folio);
5041
5042 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5043 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5044 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5045 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5046
5047 scanned += delta;
5048
5049 if (sort_folio(lruvec, folio, sc, tier))
5050 sorted += delta;
5051 else if (isolate_folio(lruvec, folio, sc)) {
5052 list_add(&folio->lru, list);
5053 isolated += delta;
5054 } else {
5055 list_move(&folio->lru, &moved);
5056 skipped += delta;
5057 }
5058
5059 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5060 break;
5061 }
5062
5063 if (skipped) {
5064 list_splice(&moved, head);
5065 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5066 }
5067
5068 if (!remaining || isolated >= MIN_LRU_BATCH)
5069 break;
5070 }
5071
5072 item = PGSCAN_KSWAPD + reclaimer_offset();
5073 if (!cgroup_reclaim(sc)) {
5074 __count_vm_events(item, isolated);
5075 __count_vm_events(PGREFILL, sorted);
5076 }
5077 __count_memcg_events(memcg, item, isolated);
5078 __count_memcg_events(memcg, PGREFILL, sorted);
5079 __count_vm_events(PGSCAN_ANON + type, isolated);
5080
5081 /*
5082 * There might not be eligible folios due to reclaim_idx. Check the
5083 * remaining to prevent livelock if it's not making progress.
5084 */
5085 return isolated || !remaining ? scanned : 0;
5086 }
5087
get_tier_idx(struct lruvec * lruvec,int type)5088 static int get_tier_idx(struct lruvec *lruvec, int type)
5089 {
5090 int tier;
5091 struct ctrl_pos sp, pv;
5092
5093 /*
5094 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5095 * This value is chosen because any other tier would have at least twice
5096 * as many refaults as the first tier.
5097 */
5098 read_ctrl_pos(lruvec, type, 0, 1, &sp);
5099 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5100 read_ctrl_pos(lruvec, type, tier, 2, &pv);
5101 if (!positive_ctrl_err(&sp, &pv))
5102 break;
5103 }
5104
5105 return tier - 1;
5106 }
5107
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)5108 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5109 {
5110 int type, tier;
5111 struct ctrl_pos sp, pv;
5112 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5113
5114 /*
5115 * Compare the first tier of anon with that of file to determine which
5116 * type to scan. Also need to compare other tiers of the selected type
5117 * with the first tier of the other type to determine the last tier (of
5118 * the selected type) to evict.
5119 */
5120 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5121 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5122 type = positive_ctrl_err(&sp, &pv);
5123
5124 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5125 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5126 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5127 if (!positive_ctrl_err(&sp, &pv))
5128 break;
5129 }
5130
5131 *tier_idx = tier - 1;
5132
5133 return type;
5134 }
5135
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)5136 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5137 int *type_scanned, struct list_head *list)
5138 {
5139 int i;
5140 int type;
5141 int scanned;
5142 int tier = -1;
5143 DEFINE_MIN_SEQ(lruvec);
5144
5145 /*
5146 * Try to make the obvious choice first. When anon and file are both
5147 * available from the same generation, interpret swappiness 1 as file
5148 * first and 200 as anon first.
5149 */
5150 if (!swappiness)
5151 type = LRU_GEN_FILE;
5152 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5153 type = LRU_GEN_ANON;
5154 else if (swappiness == 1)
5155 type = LRU_GEN_FILE;
5156 else if (swappiness == 200)
5157 type = LRU_GEN_ANON;
5158 else
5159 type = get_type_to_scan(lruvec, swappiness, &tier);
5160
5161 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5162 if (tier < 0)
5163 tier = get_tier_idx(lruvec, type);
5164
5165 scanned = scan_folios(lruvec, sc, type, tier, list);
5166 if (scanned)
5167 break;
5168
5169 type = !type;
5170 tier = -1;
5171 }
5172
5173 *type_scanned = type;
5174
5175 return scanned;
5176 }
5177
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)5178 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5179 {
5180 int type;
5181 int scanned;
5182 int reclaimed;
5183 LIST_HEAD(list);
5184 LIST_HEAD(clean);
5185 struct folio *folio;
5186 struct folio *next;
5187 enum vm_event_item item;
5188 struct reclaim_stat stat;
5189 struct lru_gen_mm_walk *walk;
5190 bool skip_retry = false;
5191 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5192 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5193
5194 spin_lock_irq(&lruvec->lru_lock);
5195
5196 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5197
5198 scanned += try_to_inc_min_seq(lruvec, swappiness);
5199
5200 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5201 scanned = 0;
5202
5203 spin_unlock_irq(&lruvec->lru_lock);
5204
5205 if (list_empty(&list))
5206 return scanned;
5207 retry:
5208 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5209 sc->nr_reclaimed += reclaimed;
5210
5211 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5212 if (!folio_evictable(folio)) {
5213 list_del(&folio->lru);
5214 folio_putback_lru(folio);
5215 continue;
5216 }
5217
5218 if (folio_test_reclaim(folio) &&
5219 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5220 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5221 if (folio_test_workingset(folio))
5222 folio_set_referenced(folio);
5223 continue;
5224 }
5225
5226 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5227 folio_mapped(folio) || folio_test_locked(folio) ||
5228 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5229 /* don't add rejected folios to the oldest generation */
5230 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5231 BIT(PG_active));
5232 continue;
5233 }
5234
5235 /* retry folios that may have missed folio_rotate_reclaimable() */
5236 list_move(&folio->lru, &clean);
5237 }
5238
5239 spin_lock_irq(&lruvec->lru_lock);
5240
5241 move_folios_to_lru(lruvec, &list);
5242
5243 walk = current->reclaim_state->mm_walk;
5244 if (walk && walk->batched)
5245 reset_batch_size(lruvec, walk);
5246
5247 item = PGSTEAL_KSWAPD + reclaimer_offset();
5248 if (!cgroup_reclaim(sc))
5249 __count_vm_events(item, reclaimed);
5250 __count_memcg_events(memcg, item, reclaimed);
5251 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5252
5253 spin_unlock_irq(&lruvec->lru_lock);
5254
5255 mem_cgroup_uncharge_list(&list);
5256 free_unref_page_list(&list);
5257
5258 INIT_LIST_HEAD(&list);
5259 list_splice_init(&clean, &list);
5260
5261 if (!list_empty(&list)) {
5262 skip_retry = true;
5263 goto retry;
5264 }
5265
5266 return scanned;
5267 }
5268
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,unsigned long * nr_to_scan)5269 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5270 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5271 {
5272 int gen, type, zone;
5273 unsigned long old = 0;
5274 unsigned long young = 0;
5275 unsigned long total = 0;
5276 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5277 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5278 DEFINE_MIN_SEQ(lruvec);
5279
5280 /* whether this lruvec is completely out of cold folios */
5281 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5282 *nr_to_scan = 0;
5283 return true;
5284 }
5285
5286 for (type = !can_swap; type < ANON_AND_FILE; type++) {
5287 unsigned long seq;
5288
5289 for (seq = min_seq[type]; seq <= max_seq; seq++) {
5290 unsigned long size = 0;
5291
5292 gen = lru_gen_from_seq(seq);
5293
5294 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5295 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5296
5297 total += size;
5298 if (seq == max_seq)
5299 young += size;
5300 else if (seq + MIN_NR_GENS == max_seq)
5301 old += size;
5302 }
5303 }
5304
5305 /* try to scrape all its memory if this memcg was deleted */
5306 if (!mem_cgroup_online(memcg)) {
5307 *nr_to_scan = total;
5308 return false;
5309 }
5310
5311 *nr_to_scan = total >> sc->priority;
5312
5313 /*
5314 * The aging tries to be lazy to reduce the overhead, while the eviction
5315 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5316 * ideal number of generations is MIN_NR_GENS+1.
5317 */
5318 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5319 return false;
5320
5321 /*
5322 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5323 * of the total number of pages for each generation. A reasonable range
5324 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5325 * aging cares about the upper bound of hot pages, while the eviction
5326 * cares about the lower bound of cold pages.
5327 */
5328 if (young * MIN_NR_GENS > total)
5329 return true;
5330 if (old * (MIN_NR_GENS + 2) < total)
5331 return true;
5332
5333 return false;
5334 }
5335
5336 /*
5337 * For future optimizations:
5338 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5339 * reclaim.
5340 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap)5341 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5342 {
5343 unsigned long nr_to_scan;
5344 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5345 DEFINE_MAX_SEQ(lruvec);
5346
5347 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5348 return -1;
5349
5350 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5351 return nr_to_scan;
5352
5353 /* skip the aging path at the default priority */
5354 if (sc->priority == DEF_PRIORITY)
5355 return nr_to_scan;
5356
5357 /* skip this lruvec as it's low on cold folios */
5358 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5359 }
5360
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)5361 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
5362 {
5363 int i;
5364 enum zone_watermarks mark;
5365
5366 /* don't abort memcg reclaim to ensure fairness */
5367 if (!root_reclaim(sc))
5368 return false;
5369
5370 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
5371 return true;
5372
5373 /* check the order to exclude compaction-induced reclaim */
5374 if (!current_is_kswapd() || sc->order)
5375 return false;
5376
5377 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
5378 WMARK_PROMO : WMARK_HIGH;
5379
5380 for (i = 0; i <= sc->reclaim_idx; i++) {
5381 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5382 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
5383
5384 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
5385 return false;
5386 }
5387
5388 /* kswapd should abort if all eligible zones are safe */
5389 return true;
5390 }
5391
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5392 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5393 {
5394 long nr_to_scan;
5395 unsigned long scanned = 0;
5396 int swappiness = get_swappiness(lruvec, sc);
5397
5398 /* clean file folios are more likely to exist */
5399 if (swappiness && !(sc->gfp_mask & __GFP_IO))
5400 swappiness = 1;
5401
5402 while (true) {
5403 int delta;
5404
5405 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5406 if (nr_to_scan <= 0)
5407 break;
5408
5409 delta = evict_folios(lruvec, sc, swappiness);
5410 if (!delta)
5411 break;
5412
5413 scanned += delta;
5414 if (scanned >= nr_to_scan)
5415 break;
5416
5417 if (should_abort_scan(lruvec, sc))
5418 break;
5419
5420 cond_resched();
5421 }
5422
5423 /* whether this lruvec should be rotated */
5424 return nr_to_scan < 0;
5425 }
5426
shrink_one(struct lruvec * lruvec,struct scan_control * sc)5427 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5428 {
5429 bool success;
5430 unsigned long scanned = sc->nr_scanned;
5431 unsigned long reclaimed = sc->nr_reclaimed;
5432 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5433 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5434
5435 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
5436 if (mem_cgroup_below_min(NULL, memcg))
5437 return MEMCG_LRU_YOUNG;
5438
5439 if (mem_cgroup_below_low(NULL, memcg)) {
5440 /* see the comment on MEMCG_NR_GENS */
5441 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL)
5442 return MEMCG_LRU_TAIL;
5443
5444 memcg_memory_event(memcg, MEMCG_LOW);
5445 }
5446
5447 success = try_to_shrink_lruvec(lruvec, sc);
5448
5449 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5450
5451 if (!sc->proactive)
5452 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5453 sc->nr_reclaimed - reclaimed);
5454
5455 flush_reclaim_state(sc);
5456
5457 if (success && mem_cgroup_online(memcg))
5458 return MEMCG_LRU_YOUNG;
5459
5460 if (!success && lruvec_is_sizable(lruvec, sc))
5461 return 0;
5462
5463 /* one retry if offlined or too small */
5464 return lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL ?
5465 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5466 }
5467
5468 #ifdef CONFIG_MEMCG
5469
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5470 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5471 {
5472 int op;
5473 int gen;
5474 int bin;
5475 int first_bin;
5476 struct lruvec *lruvec;
5477 struct lru_gen_folio *lrugen;
5478 struct mem_cgroup *memcg;
5479 struct hlist_nulls_node *pos;
5480
5481 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5482 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5483 restart:
5484 op = 0;
5485 memcg = NULL;
5486
5487 rcu_read_lock();
5488
5489 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5490 if (op) {
5491 lru_gen_rotate_memcg(lruvec, op);
5492 op = 0;
5493 }
5494
5495 mem_cgroup_put(memcg);
5496 memcg = NULL;
5497
5498 if (gen != READ_ONCE(lrugen->gen))
5499 continue;
5500
5501 lruvec = container_of(lrugen, struct lruvec, lrugen);
5502 memcg = lruvec_memcg(lruvec);
5503
5504 if (!mem_cgroup_tryget(memcg)) {
5505 lru_gen_release_memcg(memcg);
5506 memcg = NULL;
5507 continue;
5508 }
5509
5510 rcu_read_unlock();
5511
5512 op = shrink_one(lruvec, sc);
5513
5514 rcu_read_lock();
5515
5516 if (should_abort_scan(lruvec, sc))
5517 break;
5518 }
5519
5520 rcu_read_unlock();
5521
5522 if (op)
5523 lru_gen_rotate_memcg(lruvec, op);
5524
5525 mem_cgroup_put(memcg);
5526
5527 if (!is_a_nulls(pos))
5528 return;
5529
5530 /* restart if raced with lru_gen_rotate_memcg() */
5531 if (gen != get_nulls_value(pos))
5532 goto restart;
5533
5534 /* try the rest of the bins of the current generation */
5535 bin = get_memcg_bin(bin + 1);
5536 if (bin != first_bin)
5537 goto restart;
5538 }
5539
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5540 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5541 {
5542 struct blk_plug plug;
5543
5544 VM_WARN_ON_ONCE(root_reclaim(sc));
5545 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5546
5547 lru_add_drain();
5548
5549 blk_start_plug(&plug);
5550
5551 set_mm_walk(NULL, sc->proactive);
5552
5553 if (try_to_shrink_lruvec(lruvec, sc))
5554 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5555
5556 clear_mm_walk();
5557
5558 blk_finish_plug(&plug);
5559 }
5560
5561 #else /* !CONFIG_MEMCG */
5562
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5563 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5564 {
5565 BUILD_BUG();
5566 }
5567
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5568 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5569 {
5570 BUILD_BUG();
5571 }
5572
5573 #endif
5574
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5575 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5576 {
5577 struct blk_plug plug;
5578 unsigned long reclaimed = sc->nr_reclaimed;
5579
5580 VM_WARN_ON_ONCE(!root_reclaim(sc));
5581
5582 /*
5583 * Unmapped clean folios are already prioritized. Scanning for more of
5584 * them is likely futile and can cause high reclaim latency when there
5585 * is a large number of memcgs.
5586 */
5587 if (!sc->may_writepage || !sc->may_unmap)
5588 goto done;
5589
5590 lru_add_drain();
5591
5592 blk_start_plug(&plug);
5593
5594 set_mm_walk(pgdat, sc->proactive);
5595
5596 set_initial_priority(pgdat, sc);
5597
5598 if (current_is_kswapd())
5599 sc->nr_reclaimed = 0;
5600
5601 if (mem_cgroup_disabled())
5602 shrink_one(&pgdat->__lruvec, sc);
5603 else
5604 shrink_many(pgdat, sc);
5605
5606 if (current_is_kswapd())
5607 sc->nr_reclaimed += reclaimed;
5608
5609 clear_mm_walk();
5610
5611 blk_finish_plug(&plug);
5612 done:
5613 if (sc->nr_reclaimed > reclaimed)
5614 pgdat->kswapd_failures = 0;
5615 }
5616
5617 /******************************************************************************
5618 * state change
5619 ******************************************************************************/
5620
state_is_valid(struct lruvec * lruvec)5621 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5622 {
5623 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5624
5625 if (lrugen->enabled) {
5626 enum lru_list lru;
5627
5628 for_each_evictable_lru(lru) {
5629 if (!list_empty(&lruvec->lists[lru]))
5630 return false;
5631 }
5632 } else {
5633 int gen, type, zone;
5634
5635 for_each_gen_type_zone(gen, type, zone) {
5636 if (!list_empty(&lrugen->folios[gen][type][zone]))
5637 return false;
5638 }
5639 }
5640
5641 return true;
5642 }
5643
fill_evictable(struct lruvec * lruvec)5644 static bool fill_evictable(struct lruvec *lruvec)
5645 {
5646 enum lru_list lru;
5647 int remaining = MAX_LRU_BATCH;
5648
5649 for_each_evictable_lru(lru) {
5650 int type = is_file_lru(lru);
5651 bool active = is_active_lru(lru);
5652 struct list_head *head = &lruvec->lists[lru];
5653
5654 while (!list_empty(head)) {
5655 bool success;
5656 struct folio *folio = lru_to_folio(head);
5657
5658 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5659 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5660 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5661 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5662
5663 lruvec_del_folio(lruvec, folio);
5664 success = lru_gen_add_folio(lruvec, folio, false);
5665 VM_WARN_ON_ONCE(!success);
5666
5667 if (!--remaining)
5668 return false;
5669 }
5670 }
5671
5672 return true;
5673 }
5674
drain_evictable(struct lruvec * lruvec)5675 static bool drain_evictable(struct lruvec *lruvec)
5676 {
5677 int gen, type, zone;
5678 int remaining = MAX_LRU_BATCH;
5679
5680 for_each_gen_type_zone(gen, type, zone) {
5681 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5682
5683 while (!list_empty(head)) {
5684 bool success;
5685 struct folio *folio = lru_to_folio(head);
5686
5687 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5688 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5689 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5690 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5691
5692 success = lru_gen_del_folio(lruvec, folio, false);
5693 VM_WARN_ON_ONCE(!success);
5694 lruvec_add_folio(lruvec, folio);
5695
5696 if (!--remaining)
5697 return false;
5698 }
5699 }
5700
5701 return true;
5702 }
5703
lru_gen_change_state(bool enabled)5704 static void lru_gen_change_state(bool enabled)
5705 {
5706 static DEFINE_MUTEX(state_mutex);
5707
5708 struct mem_cgroup *memcg;
5709
5710 cgroup_lock();
5711 cpus_read_lock();
5712 get_online_mems();
5713 mutex_lock(&state_mutex);
5714
5715 if (enabled == lru_gen_enabled())
5716 goto unlock;
5717
5718 if (enabled)
5719 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5720 else
5721 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5722
5723 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5724 do {
5725 int nid;
5726
5727 for_each_node(nid) {
5728 struct lruvec *lruvec = get_lruvec(memcg, nid);
5729
5730 spin_lock_irq(&lruvec->lru_lock);
5731
5732 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5733 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5734
5735 lruvec->lrugen.enabled = enabled;
5736
5737 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5738 spin_unlock_irq(&lruvec->lru_lock);
5739 cond_resched();
5740 spin_lock_irq(&lruvec->lru_lock);
5741 }
5742
5743 spin_unlock_irq(&lruvec->lru_lock);
5744 }
5745
5746 cond_resched();
5747 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5748 unlock:
5749 mutex_unlock(&state_mutex);
5750 put_online_mems();
5751 cpus_read_unlock();
5752 cgroup_unlock();
5753 }
5754
5755 /******************************************************************************
5756 * sysfs interface
5757 ******************************************************************************/
5758
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5759 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5760 {
5761 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5762 }
5763
5764 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5765 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5766 const char *buf, size_t len)
5767 {
5768 unsigned int msecs;
5769
5770 if (kstrtouint(buf, 0, &msecs))
5771 return -EINVAL;
5772
5773 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5774
5775 return len;
5776 }
5777
5778 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5779
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5780 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5781 {
5782 unsigned int caps = 0;
5783
5784 if (get_cap(LRU_GEN_CORE))
5785 caps |= BIT(LRU_GEN_CORE);
5786
5787 if (should_walk_mmu())
5788 caps |= BIT(LRU_GEN_MM_WALK);
5789
5790 if (should_clear_pmd_young())
5791 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5792
5793 return sysfs_emit(buf, "0x%04x\n", caps);
5794 }
5795
5796 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5797 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5798 const char *buf, size_t len)
5799 {
5800 int i;
5801 unsigned int caps;
5802
5803 if (tolower(*buf) == 'n')
5804 caps = 0;
5805 else if (tolower(*buf) == 'y')
5806 caps = -1;
5807 else if (kstrtouint(buf, 0, &caps))
5808 return -EINVAL;
5809
5810 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5811 bool enabled = caps & BIT(i);
5812
5813 if (i == LRU_GEN_CORE)
5814 lru_gen_change_state(enabled);
5815 else if (enabled)
5816 static_branch_enable(&lru_gen_caps[i]);
5817 else
5818 static_branch_disable(&lru_gen_caps[i]);
5819 }
5820
5821 return len;
5822 }
5823
5824 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5825
5826 static struct attribute *lru_gen_attrs[] = {
5827 &lru_gen_min_ttl_attr.attr,
5828 &lru_gen_enabled_attr.attr,
5829 NULL
5830 };
5831
5832 static const struct attribute_group lru_gen_attr_group = {
5833 .name = "lru_gen",
5834 .attrs = lru_gen_attrs,
5835 };
5836
5837 /******************************************************************************
5838 * debugfs interface
5839 ******************************************************************************/
5840
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5841 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5842 {
5843 struct mem_cgroup *memcg;
5844 loff_t nr_to_skip = *pos;
5845
5846 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5847 if (!m->private)
5848 return ERR_PTR(-ENOMEM);
5849
5850 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5851 do {
5852 int nid;
5853
5854 for_each_node_state(nid, N_MEMORY) {
5855 if (!nr_to_skip--)
5856 return get_lruvec(memcg, nid);
5857 }
5858 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5859
5860 return NULL;
5861 }
5862
lru_gen_seq_stop(struct seq_file * m,void * v)5863 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5864 {
5865 if (!IS_ERR_OR_NULL(v))
5866 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5867
5868 kvfree(m->private);
5869 m->private = NULL;
5870 }
5871
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5872 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5873 {
5874 int nid = lruvec_pgdat(v)->node_id;
5875 struct mem_cgroup *memcg = lruvec_memcg(v);
5876
5877 ++*pos;
5878
5879 nid = next_memory_node(nid);
5880 if (nid == MAX_NUMNODES) {
5881 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5882 if (!memcg)
5883 return NULL;
5884
5885 nid = first_memory_node;
5886 }
5887
5888 return get_lruvec(memcg, nid);
5889 }
5890
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5891 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5892 unsigned long max_seq, unsigned long *min_seq,
5893 unsigned long seq)
5894 {
5895 int i;
5896 int type, tier;
5897 int hist = lru_hist_from_seq(seq);
5898 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5899
5900 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5901 seq_printf(m, " %10d", tier);
5902 for (type = 0; type < ANON_AND_FILE; type++) {
5903 const char *s = " ";
5904 unsigned long n[3] = {};
5905
5906 if (seq == max_seq) {
5907 s = "RT ";
5908 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5909 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5910 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5911 s = "rep";
5912 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5913 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5914 if (tier)
5915 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5916 }
5917
5918 for (i = 0; i < 3; i++)
5919 seq_printf(m, " %10lu%c", n[i], s[i]);
5920 }
5921 seq_putc(m, '\n');
5922 }
5923
5924 seq_puts(m, " ");
5925 for (i = 0; i < NR_MM_STATS; i++) {
5926 const char *s = " ";
5927 unsigned long n = 0;
5928
5929 if (seq == max_seq && NR_HIST_GENS == 1) {
5930 s = "LOYNFA";
5931 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5932 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5933 s = "loynfa";
5934 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5935 }
5936
5937 seq_printf(m, " %10lu%c", n, s[i]);
5938 }
5939 seq_putc(m, '\n');
5940 }
5941
5942 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5943 static int lru_gen_seq_show(struct seq_file *m, void *v)
5944 {
5945 unsigned long seq;
5946 bool full = !debugfs_real_fops(m->file)->write;
5947 struct lruvec *lruvec = v;
5948 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5949 int nid = lruvec_pgdat(lruvec)->node_id;
5950 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5951 DEFINE_MAX_SEQ(lruvec);
5952 DEFINE_MIN_SEQ(lruvec);
5953
5954 if (nid == first_memory_node) {
5955 const char *path = memcg ? m->private : "";
5956
5957 #ifdef CONFIG_MEMCG
5958 if (memcg)
5959 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5960 #endif
5961 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5962 }
5963
5964 seq_printf(m, " node %5d\n", nid);
5965
5966 if (!full)
5967 seq = min_seq[LRU_GEN_ANON];
5968 else if (max_seq >= MAX_NR_GENS)
5969 seq = max_seq - MAX_NR_GENS + 1;
5970 else
5971 seq = 0;
5972
5973 for (; seq <= max_seq; seq++) {
5974 int type, zone;
5975 int gen = lru_gen_from_seq(seq);
5976 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5977
5978 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5979
5980 for (type = 0; type < ANON_AND_FILE; type++) {
5981 unsigned long size = 0;
5982 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5983
5984 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5985 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5986
5987 seq_printf(m, " %10lu%c", size, mark);
5988 }
5989
5990 seq_putc(m, '\n');
5991
5992 if (full)
5993 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5994 }
5995
5996 return 0;
5997 }
5998
5999 static const struct seq_operations lru_gen_seq_ops = {
6000 .start = lru_gen_seq_start,
6001 .stop = lru_gen_seq_stop,
6002 .next = lru_gen_seq_next,
6003 .show = lru_gen_seq_show,
6004 };
6005
run_aging(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,bool can_swap,bool force_scan)6006 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6007 bool can_swap, bool force_scan)
6008 {
6009 DEFINE_MAX_SEQ(lruvec);
6010 DEFINE_MIN_SEQ(lruvec);
6011
6012 if (seq < max_seq)
6013 return 0;
6014
6015 if (seq > max_seq)
6016 return -EINVAL;
6017
6018 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
6019 return -ERANGE;
6020
6021 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
6022
6023 return 0;
6024 }
6025
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)6026 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6027 int swappiness, unsigned long nr_to_reclaim)
6028 {
6029 DEFINE_MAX_SEQ(lruvec);
6030
6031 if (seq + MIN_NR_GENS > max_seq)
6032 return -EINVAL;
6033
6034 sc->nr_reclaimed = 0;
6035
6036 while (!signal_pending(current)) {
6037 DEFINE_MIN_SEQ(lruvec);
6038
6039 if (seq < min_seq[!swappiness])
6040 return 0;
6041
6042 if (sc->nr_reclaimed >= nr_to_reclaim)
6043 return 0;
6044
6045 if (!evict_folios(lruvec, sc, swappiness))
6046 return 0;
6047
6048 cond_resched();
6049 }
6050
6051 return -EINTR;
6052 }
6053
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)6054 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6055 struct scan_control *sc, int swappiness, unsigned long opt)
6056 {
6057 struct lruvec *lruvec;
6058 int err = -EINVAL;
6059 struct mem_cgroup *memcg = NULL;
6060
6061 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6062 return -EINVAL;
6063
6064 if (!mem_cgroup_disabled()) {
6065 rcu_read_lock();
6066
6067 memcg = mem_cgroup_from_id(memcg_id);
6068 if (!mem_cgroup_tryget(memcg))
6069 memcg = NULL;
6070
6071 rcu_read_unlock();
6072
6073 if (!memcg)
6074 return -EINVAL;
6075 }
6076
6077 if (memcg_id != mem_cgroup_id(memcg))
6078 goto done;
6079
6080 lruvec = get_lruvec(memcg, nid);
6081
6082 if (swappiness < 0)
6083 swappiness = get_swappiness(lruvec, sc);
6084 else if (swappiness > 200)
6085 goto done;
6086
6087 switch (cmd) {
6088 case '+':
6089 err = run_aging(lruvec, seq, sc, swappiness, opt);
6090 break;
6091 case '-':
6092 err = run_eviction(lruvec, seq, sc, swappiness, opt);
6093 break;
6094 }
6095 done:
6096 mem_cgroup_put(memcg);
6097
6098 return err;
6099 }
6100
6101 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)6102 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6103 size_t len, loff_t *pos)
6104 {
6105 void *buf;
6106 char *cur, *next;
6107 unsigned int flags;
6108 struct blk_plug plug;
6109 int err = -EINVAL;
6110 struct scan_control sc = {
6111 .may_writepage = true,
6112 .may_unmap = true,
6113 .may_swap = true,
6114 .reclaim_idx = MAX_NR_ZONES - 1,
6115 .gfp_mask = GFP_KERNEL,
6116 };
6117
6118 buf = kvmalloc(len + 1, GFP_KERNEL);
6119 if (!buf)
6120 return -ENOMEM;
6121
6122 if (copy_from_user(buf, src, len)) {
6123 kvfree(buf);
6124 return -EFAULT;
6125 }
6126
6127 set_task_reclaim_state(current, &sc.reclaim_state);
6128 flags = memalloc_noreclaim_save();
6129 blk_start_plug(&plug);
6130 if (!set_mm_walk(NULL, true)) {
6131 err = -ENOMEM;
6132 goto done;
6133 }
6134
6135 next = buf;
6136 next[len] = '\0';
6137
6138 while ((cur = strsep(&next, ",;\n"))) {
6139 int n;
6140 int end;
6141 char cmd;
6142 unsigned int memcg_id;
6143 unsigned int nid;
6144 unsigned long seq;
6145 unsigned int swappiness = -1;
6146 unsigned long opt = -1;
6147
6148 cur = skip_spaces(cur);
6149 if (!*cur)
6150 continue;
6151
6152 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6153 &seq, &end, &swappiness, &end, &opt, &end);
6154 if (n < 4 || cur[end]) {
6155 err = -EINVAL;
6156 break;
6157 }
6158
6159 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6160 if (err)
6161 break;
6162 }
6163 done:
6164 clear_mm_walk();
6165 blk_finish_plug(&plug);
6166 memalloc_noreclaim_restore(flags);
6167 set_task_reclaim_state(current, NULL);
6168
6169 kvfree(buf);
6170
6171 return err ? : len;
6172 }
6173
lru_gen_seq_open(struct inode * inode,struct file * file)6174 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6175 {
6176 return seq_open(file, &lru_gen_seq_ops);
6177 }
6178
6179 static const struct file_operations lru_gen_rw_fops = {
6180 .open = lru_gen_seq_open,
6181 .read = seq_read,
6182 .write = lru_gen_seq_write,
6183 .llseek = seq_lseek,
6184 .release = seq_release,
6185 };
6186
6187 static const struct file_operations lru_gen_ro_fops = {
6188 .open = lru_gen_seq_open,
6189 .read = seq_read,
6190 .llseek = seq_lseek,
6191 .release = seq_release,
6192 };
6193
6194 /******************************************************************************
6195 * initialization
6196 ******************************************************************************/
6197
lru_gen_init_lruvec(struct lruvec * lruvec)6198 void lru_gen_init_lruvec(struct lruvec *lruvec)
6199 {
6200 int i;
6201 int gen, type, zone;
6202 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6203
6204 lrugen->max_seq = MIN_NR_GENS + 1;
6205 lrugen->enabled = lru_gen_enabled();
6206
6207 for (i = 0; i <= MIN_NR_GENS + 1; i++)
6208 lrugen->timestamps[i] = jiffies;
6209
6210 for_each_gen_type_zone(gen, type, zone)
6211 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6212
6213 lruvec->mm_state.seq = MIN_NR_GENS;
6214 }
6215
6216 #ifdef CONFIG_MEMCG
6217
lru_gen_init_pgdat(struct pglist_data * pgdat)6218 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6219 {
6220 int i, j;
6221
6222 spin_lock_init(&pgdat->memcg_lru.lock);
6223
6224 for (i = 0; i < MEMCG_NR_GENS; i++) {
6225 for (j = 0; j < MEMCG_NR_BINS; j++)
6226 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6227 }
6228 }
6229
lru_gen_init_memcg(struct mem_cgroup * memcg)6230 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6231 {
6232 INIT_LIST_HEAD(&memcg->mm_list.fifo);
6233 spin_lock_init(&memcg->mm_list.lock);
6234 }
6235
lru_gen_exit_memcg(struct mem_cgroup * memcg)6236 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6237 {
6238 int i;
6239 int nid;
6240
6241 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6242
6243 for_each_node(nid) {
6244 struct lruvec *lruvec = get_lruvec(memcg, nid);
6245
6246 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6247 sizeof(lruvec->lrugen.nr_pages)));
6248
6249 lruvec->lrugen.list.next = LIST_POISON1;
6250
6251 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6252 bitmap_free(lruvec->mm_state.filters[i]);
6253 lruvec->mm_state.filters[i] = NULL;
6254 }
6255 }
6256 }
6257
6258 #endif /* CONFIG_MEMCG */
6259
init_lru_gen(void)6260 static int __init init_lru_gen(void)
6261 {
6262 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6263 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6264
6265 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6266 pr_err("lru_gen: failed to create sysfs group\n");
6267
6268 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6269 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6270
6271 return 0;
6272 };
6273 late_initcall(init_lru_gen);
6274
6275 #else /* !CONFIG_LRU_GEN */
6276
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)6277 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6278 {
6279 }
6280
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)6281 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6282 {
6283 }
6284
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)6285 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6286 {
6287 }
6288
6289 #endif /* CONFIG_LRU_GEN */
6290
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)6291 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6292 {
6293 unsigned long nr[NR_LRU_LISTS];
6294 unsigned long targets[NR_LRU_LISTS];
6295 unsigned long nr_to_scan;
6296 enum lru_list lru;
6297 unsigned long nr_reclaimed = 0;
6298 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6299 bool proportional_reclaim;
6300 struct blk_plug plug;
6301
6302 if (lru_gen_enabled() && !root_reclaim(sc)) {
6303 lru_gen_shrink_lruvec(lruvec, sc);
6304 return;
6305 }
6306
6307 get_scan_count(lruvec, sc, nr);
6308
6309 /* Record the original scan target for proportional adjustments later */
6310 memcpy(targets, nr, sizeof(nr));
6311
6312 /*
6313 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6314 * event that can occur when there is little memory pressure e.g.
6315 * multiple streaming readers/writers. Hence, we do not abort scanning
6316 * when the requested number of pages are reclaimed when scanning at
6317 * DEF_PRIORITY on the assumption that the fact we are direct
6318 * reclaiming implies that kswapd is not keeping up and it is best to
6319 * do a batch of work at once. For memcg reclaim one check is made to
6320 * abort proportional reclaim if either the file or anon lru has already
6321 * dropped to zero at the first pass.
6322 */
6323 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6324 sc->priority == DEF_PRIORITY);
6325
6326 blk_start_plug(&plug);
6327 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6328 nr[LRU_INACTIVE_FILE]) {
6329 unsigned long nr_anon, nr_file, percentage;
6330 unsigned long nr_scanned;
6331
6332 for_each_evictable_lru(lru) {
6333 if (nr[lru]) {
6334 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6335 nr[lru] -= nr_to_scan;
6336
6337 nr_reclaimed += shrink_list(lru, nr_to_scan,
6338 lruvec, sc);
6339 }
6340 }
6341
6342 cond_resched();
6343
6344 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6345 continue;
6346
6347 /*
6348 * For kswapd and memcg, reclaim at least the number of pages
6349 * requested. Ensure that the anon and file LRUs are scanned
6350 * proportionally what was requested by get_scan_count(). We
6351 * stop reclaiming one LRU and reduce the amount scanning
6352 * proportional to the original scan target.
6353 */
6354 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6355 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6356
6357 /*
6358 * It's just vindictive to attack the larger once the smaller
6359 * has gone to zero. And given the way we stop scanning the
6360 * smaller below, this makes sure that we only make one nudge
6361 * towards proportionality once we've got nr_to_reclaim.
6362 */
6363 if (!nr_file || !nr_anon)
6364 break;
6365
6366 if (nr_file > nr_anon) {
6367 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6368 targets[LRU_ACTIVE_ANON] + 1;
6369 lru = LRU_BASE;
6370 percentage = nr_anon * 100 / scan_target;
6371 } else {
6372 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6373 targets[LRU_ACTIVE_FILE] + 1;
6374 lru = LRU_FILE;
6375 percentage = nr_file * 100 / scan_target;
6376 }
6377
6378 /* Stop scanning the smaller of the LRU */
6379 nr[lru] = 0;
6380 nr[lru + LRU_ACTIVE] = 0;
6381
6382 /*
6383 * Recalculate the other LRU scan count based on its original
6384 * scan target and the percentage scanning already complete
6385 */
6386 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6387 nr_scanned = targets[lru] - nr[lru];
6388 nr[lru] = targets[lru] * (100 - percentage) / 100;
6389 nr[lru] -= min(nr[lru], nr_scanned);
6390
6391 lru += LRU_ACTIVE;
6392 nr_scanned = targets[lru] - nr[lru];
6393 nr[lru] = targets[lru] * (100 - percentage) / 100;
6394 nr[lru] -= min(nr[lru], nr_scanned);
6395 }
6396 blk_finish_plug(&plug);
6397 sc->nr_reclaimed += nr_reclaimed;
6398
6399 /*
6400 * Even if we did not try to evict anon pages at all, we want to
6401 * rebalance the anon lru active/inactive ratio.
6402 */
6403 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6404 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6405 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6406 sc, LRU_ACTIVE_ANON);
6407 }
6408
6409 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)6410 static bool in_reclaim_compaction(struct scan_control *sc)
6411 {
6412 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
6413 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6414 sc->priority < DEF_PRIORITY - 2))
6415 return true;
6416
6417 return false;
6418 }
6419
6420 /*
6421 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6422 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6423 * true if more pages should be reclaimed such that when the page allocator
6424 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6425 * It will give up earlier than that if there is difficulty reclaiming pages.
6426 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)6427 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6428 unsigned long nr_reclaimed,
6429 struct scan_control *sc)
6430 {
6431 unsigned long pages_for_compaction;
6432 unsigned long inactive_lru_pages;
6433 int z;
6434
6435 /* If not in reclaim/compaction mode, stop */
6436 if (!in_reclaim_compaction(sc))
6437 return false;
6438
6439 /*
6440 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6441 * number of pages that were scanned. This will return to the caller
6442 * with the risk reclaim/compaction and the resulting allocation attempt
6443 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6444 * allocations through requiring that the full LRU list has been scanned
6445 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6446 * scan, but that approximation was wrong, and there were corner cases
6447 * where always a non-zero amount of pages were scanned.
6448 */
6449 if (!nr_reclaimed)
6450 return false;
6451
6452 /* If compaction would go ahead or the allocation would succeed, stop */
6453 for (z = 0; z <= sc->reclaim_idx; z++) {
6454 struct zone *zone = &pgdat->node_zones[z];
6455 if (!managed_zone(zone))
6456 continue;
6457
6458 /* Allocation can already succeed, nothing to do */
6459 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6460 sc->reclaim_idx, 0))
6461 return false;
6462
6463 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6464 return false;
6465 }
6466
6467 /*
6468 * If we have not reclaimed enough pages for compaction and the
6469 * inactive lists are large enough, continue reclaiming
6470 */
6471 pages_for_compaction = compact_gap(sc->order);
6472 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6473 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6474 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6475
6476 return inactive_lru_pages > pages_for_compaction;
6477 }
6478
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)6479 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6480 {
6481 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6482 struct mem_cgroup *memcg;
6483
6484 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6485 do {
6486 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6487 unsigned long reclaimed;
6488 unsigned long scanned;
6489
6490 /*
6491 * This loop can become CPU-bound when target memcgs
6492 * aren't eligible for reclaim - either because they
6493 * don't have any reclaimable pages, or because their
6494 * memory is explicitly protected. Avoid soft lockups.
6495 */
6496 cond_resched();
6497
6498 mem_cgroup_calculate_protection(target_memcg, memcg);
6499
6500 if (mem_cgroup_below_min(target_memcg, memcg)) {
6501 /*
6502 * Hard protection.
6503 * If there is no reclaimable memory, OOM.
6504 */
6505 continue;
6506 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6507 /*
6508 * Soft protection.
6509 * Respect the protection only as long as
6510 * there is an unprotected supply
6511 * of reclaimable memory from other cgroups.
6512 */
6513 if (!sc->memcg_low_reclaim) {
6514 sc->memcg_low_skipped = 1;
6515 continue;
6516 }
6517 memcg_memory_event(memcg, MEMCG_LOW);
6518 }
6519
6520 reclaimed = sc->nr_reclaimed;
6521 scanned = sc->nr_scanned;
6522
6523 shrink_lruvec(lruvec, sc);
6524
6525 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6526 sc->priority);
6527
6528 /* Record the group's reclaim efficiency */
6529 if (!sc->proactive)
6530 vmpressure(sc->gfp_mask, memcg, false,
6531 sc->nr_scanned - scanned,
6532 sc->nr_reclaimed - reclaimed);
6533
6534 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6535 }
6536
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6537 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6538 {
6539 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6540 struct lruvec *target_lruvec;
6541 bool reclaimable = false;
6542
6543 if (lru_gen_enabled() && root_reclaim(sc)) {
6544 lru_gen_shrink_node(pgdat, sc);
6545 return;
6546 }
6547
6548 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6549
6550 again:
6551 memset(&sc->nr, 0, sizeof(sc->nr));
6552
6553 nr_reclaimed = sc->nr_reclaimed;
6554 nr_scanned = sc->nr_scanned;
6555
6556 prepare_scan_count(pgdat, sc);
6557
6558 shrink_node_memcgs(pgdat, sc);
6559
6560 flush_reclaim_state(sc);
6561
6562 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6563
6564 /* Record the subtree's reclaim efficiency */
6565 if (!sc->proactive)
6566 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6567 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6568
6569 if (nr_node_reclaimed)
6570 reclaimable = true;
6571
6572 if (current_is_kswapd()) {
6573 /*
6574 * If reclaim is isolating dirty pages under writeback,
6575 * it implies that the long-lived page allocation rate
6576 * is exceeding the page laundering rate. Either the
6577 * global limits are not being effective at throttling
6578 * processes due to the page distribution throughout
6579 * zones or there is heavy usage of a slow backing
6580 * device. The only option is to throttle from reclaim
6581 * context which is not ideal as there is no guarantee
6582 * the dirtying process is throttled in the same way
6583 * balance_dirty_pages() manages.
6584 *
6585 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6586 * count the number of pages under pages flagged for
6587 * immediate reclaim and stall if any are encountered
6588 * in the nr_immediate check below.
6589 */
6590 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6591 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6592
6593 /* Allow kswapd to start writing pages during reclaim.*/
6594 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6595 set_bit(PGDAT_DIRTY, &pgdat->flags);
6596
6597 /*
6598 * If kswapd scans pages marked for immediate
6599 * reclaim and under writeback (nr_immediate), it
6600 * implies that pages are cycling through the LRU
6601 * faster than they are written so forcibly stall
6602 * until some pages complete writeback.
6603 */
6604 if (sc->nr.immediate)
6605 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6606 }
6607
6608 /*
6609 * Tag a node/memcg as congested if all the dirty pages were marked
6610 * for writeback and immediate reclaim (counted in nr.congested).
6611 *
6612 * Legacy memcg will stall in page writeback so avoid forcibly
6613 * stalling in reclaim_throttle().
6614 */
6615 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6616 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6617 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6618
6619 if (current_is_kswapd())
6620 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6621 }
6622
6623 /*
6624 * Stall direct reclaim for IO completions if the lruvec is
6625 * node is congested. Allow kswapd to continue until it
6626 * starts encountering unqueued dirty pages or cycling through
6627 * the LRU too quickly.
6628 */
6629 if (!current_is_kswapd() && current_may_throttle() &&
6630 !sc->hibernation_mode &&
6631 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6632 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6633 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6634
6635 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6636 goto again;
6637
6638 /*
6639 * Kswapd gives up on balancing particular nodes after too
6640 * many failures to reclaim anything from them and goes to
6641 * sleep. On reclaim progress, reset the failure counter. A
6642 * successful direct reclaim run will revive a dormant kswapd.
6643 */
6644 if (reclaimable)
6645 pgdat->kswapd_failures = 0;
6646 }
6647
6648 /*
6649 * Returns true if compaction should go ahead for a costly-order request, or
6650 * the allocation would already succeed without compaction. Return false if we
6651 * should reclaim first.
6652 */
compaction_ready(struct zone * zone,struct scan_control * sc)6653 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6654 {
6655 unsigned long watermark;
6656
6657 if (!gfp_compaction_allowed(sc->gfp_mask))
6658 return false;
6659
6660 /* Allocation can already succeed, nothing to do */
6661 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6662 sc->reclaim_idx, 0))
6663 return true;
6664
6665 /* Compaction cannot yet proceed. Do reclaim. */
6666 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6667 return false;
6668
6669 /*
6670 * Compaction is already possible, but it takes time to run and there
6671 * are potentially other callers using the pages just freed. So proceed
6672 * with reclaim to make a buffer of free pages available to give
6673 * compaction a reasonable chance of completing and allocating the page.
6674 * Note that we won't actually reclaim the whole buffer in one attempt
6675 * as the target watermark in should_continue_reclaim() is lower. But if
6676 * we are already above the high+gap watermark, don't reclaim at all.
6677 */
6678 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6679
6680 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6681 }
6682
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6683 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6684 {
6685 /*
6686 * If reclaim is making progress greater than 12% efficiency then
6687 * wake all the NOPROGRESS throttled tasks.
6688 */
6689 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6690 wait_queue_head_t *wqh;
6691
6692 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6693 if (waitqueue_active(wqh))
6694 wake_up(wqh);
6695
6696 return;
6697 }
6698
6699 /*
6700 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6701 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6702 * under writeback and marked for immediate reclaim at the tail of the
6703 * LRU.
6704 */
6705 if (current_is_kswapd() || cgroup_reclaim(sc))
6706 return;
6707
6708 /* Throttle if making no progress at high prioities. */
6709 if (sc->priority == 1 && !sc->nr_reclaimed)
6710 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6711 }
6712
6713 /*
6714 * This is the direct reclaim path, for page-allocating processes. We only
6715 * try to reclaim pages from zones which will satisfy the caller's allocation
6716 * request.
6717 *
6718 * If a zone is deemed to be full of pinned pages then just give it a light
6719 * scan then give up on it.
6720 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6721 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6722 {
6723 struct zoneref *z;
6724 struct zone *zone;
6725 unsigned long nr_soft_reclaimed;
6726 unsigned long nr_soft_scanned;
6727 gfp_t orig_mask;
6728 pg_data_t *last_pgdat = NULL;
6729 pg_data_t *first_pgdat = NULL;
6730
6731 /*
6732 * If the number of buffer_heads in the machine exceeds the maximum
6733 * allowed level, force direct reclaim to scan the highmem zone as
6734 * highmem pages could be pinning lowmem pages storing buffer_heads
6735 */
6736 orig_mask = sc->gfp_mask;
6737 if (buffer_heads_over_limit) {
6738 sc->gfp_mask |= __GFP_HIGHMEM;
6739 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6740 }
6741
6742 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6743 sc->reclaim_idx, sc->nodemask) {
6744 /*
6745 * Take care memory controller reclaiming has small influence
6746 * to global LRU.
6747 */
6748 if (!cgroup_reclaim(sc)) {
6749 if (!cpuset_zone_allowed(zone,
6750 GFP_KERNEL | __GFP_HARDWALL))
6751 continue;
6752
6753 /*
6754 * If we already have plenty of memory free for
6755 * compaction in this zone, don't free any more.
6756 * Even though compaction is invoked for any
6757 * non-zero order, only frequent costly order
6758 * reclamation is disruptive enough to become a
6759 * noticeable problem, like transparent huge
6760 * page allocations.
6761 */
6762 if (IS_ENABLED(CONFIG_COMPACTION) &&
6763 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6764 compaction_ready(zone, sc)) {
6765 sc->compaction_ready = true;
6766 continue;
6767 }
6768
6769 /*
6770 * Shrink each node in the zonelist once. If the
6771 * zonelist is ordered by zone (not the default) then a
6772 * node may be shrunk multiple times but in that case
6773 * the user prefers lower zones being preserved.
6774 */
6775 if (zone->zone_pgdat == last_pgdat)
6776 continue;
6777
6778 /*
6779 * This steals pages from memory cgroups over softlimit
6780 * and returns the number of reclaimed pages and
6781 * scanned pages. This works for global memory pressure
6782 * and balancing, not for a memcg's limit.
6783 */
6784 nr_soft_scanned = 0;
6785 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6786 sc->order, sc->gfp_mask,
6787 &nr_soft_scanned);
6788 sc->nr_reclaimed += nr_soft_reclaimed;
6789 sc->nr_scanned += nr_soft_scanned;
6790 /* need some check for avoid more shrink_zone() */
6791 }
6792
6793 if (!first_pgdat)
6794 first_pgdat = zone->zone_pgdat;
6795
6796 /* See comment about same check for global reclaim above */
6797 if (zone->zone_pgdat == last_pgdat)
6798 continue;
6799 last_pgdat = zone->zone_pgdat;
6800 shrink_node(zone->zone_pgdat, sc);
6801 }
6802
6803 if (first_pgdat)
6804 consider_reclaim_throttle(first_pgdat, sc);
6805
6806 /*
6807 * Restore to original mask to avoid the impact on the caller if we
6808 * promoted it to __GFP_HIGHMEM.
6809 */
6810 sc->gfp_mask = orig_mask;
6811 }
6812
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6813 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6814 {
6815 struct lruvec *target_lruvec;
6816 unsigned long refaults;
6817
6818 if (lru_gen_enabled())
6819 return;
6820
6821 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6822 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6823 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6824 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6825 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6826 }
6827
6828 /*
6829 * This is the main entry point to direct page reclaim.
6830 *
6831 * If a full scan of the inactive list fails to free enough memory then we
6832 * are "out of memory" and something needs to be killed.
6833 *
6834 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6835 * high - the zone may be full of dirty or under-writeback pages, which this
6836 * caller can't do much about. We kick the writeback threads and take explicit
6837 * naps in the hope that some of these pages can be written. But if the
6838 * allocating task holds filesystem locks which prevent writeout this might not
6839 * work, and the allocation attempt will fail.
6840 *
6841 * returns: 0, if no pages reclaimed
6842 * else, the number of pages reclaimed
6843 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6844 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6845 struct scan_control *sc)
6846 {
6847 int initial_priority = sc->priority;
6848 pg_data_t *last_pgdat;
6849 struct zoneref *z;
6850 struct zone *zone;
6851 retry:
6852 delayacct_freepages_start();
6853
6854 if (!cgroup_reclaim(sc))
6855 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6856
6857 do {
6858 if (!sc->proactive)
6859 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6860 sc->priority);
6861 sc->nr_scanned = 0;
6862 shrink_zones(zonelist, sc);
6863
6864 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6865 break;
6866
6867 if (sc->compaction_ready)
6868 break;
6869
6870 /*
6871 * If we're getting trouble reclaiming, start doing
6872 * writepage even in laptop mode.
6873 */
6874 if (sc->priority < DEF_PRIORITY - 2)
6875 sc->may_writepage = 1;
6876 } while (--sc->priority >= 0);
6877
6878 last_pgdat = NULL;
6879 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6880 sc->nodemask) {
6881 if (zone->zone_pgdat == last_pgdat)
6882 continue;
6883 last_pgdat = zone->zone_pgdat;
6884
6885 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6886
6887 if (cgroup_reclaim(sc)) {
6888 struct lruvec *lruvec;
6889
6890 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6891 zone->zone_pgdat);
6892 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6893 }
6894 }
6895
6896 delayacct_freepages_end();
6897
6898 if (sc->nr_reclaimed)
6899 return sc->nr_reclaimed;
6900
6901 /* Aborted reclaim to try compaction? don't OOM, then */
6902 if (sc->compaction_ready)
6903 return 1;
6904
6905 /*
6906 * We make inactive:active ratio decisions based on the node's
6907 * composition of memory, but a restrictive reclaim_idx or a
6908 * memory.low cgroup setting can exempt large amounts of
6909 * memory from reclaim. Neither of which are very common, so
6910 * instead of doing costly eligibility calculations of the
6911 * entire cgroup subtree up front, we assume the estimates are
6912 * good, and retry with forcible deactivation if that fails.
6913 */
6914 if (sc->skipped_deactivate) {
6915 sc->priority = initial_priority;
6916 sc->force_deactivate = 1;
6917 sc->skipped_deactivate = 0;
6918 goto retry;
6919 }
6920
6921 /* Untapped cgroup reserves? Don't OOM, retry. */
6922 if (sc->memcg_low_skipped) {
6923 sc->priority = initial_priority;
6924 sc->force_deactivate = 0;
6925 sc->memcg_low_reclaim = 1;
6926 sc->memcg_low_skipped = 0;
6927 goto retry;
6928 }
6929
6930 return 0;
6931 }
6932
allow_direct_reclaim(pg_data_t * pgdat)6933 static bool allow_direct_reclaim(pg_data_t *pgdat)
6934 {
6935 struct zone *zone;
6936 unsigned long pfmemalloc_reserve = 0;
6937 unsigned long free_pages = 0;
6938 int i;
6939 bool wmark_ok;
6940
6941 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6942 return true;
6943
6944 for (i = 0; i <= ZONE_NORMAL; i++) {
6945 zone = &pgdat->node_zones[i];
6946 if (!managed_zone(zone))
6947 continue;
6948
6949 if (!zone_reclaimable_pages(zone))
6950 continue;
6951
6952 pfmemalloc_reserve += min_wmark_pages(zone);
6953 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6954 }
6955
6956 /* If there are no reserves (unexpected config) then do not throttle */
6957 if (!pfmemalloc_reserve)
6958 return true;
6959
6960 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6961
6962 /* kswapd must be awake if processes are being throttled */
6963 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6964 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6965 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6966
6967 wake_up_interruptible(&pgdat->kswapd_wait);
6968 }
6969
6970 return wmark_ok;
6971 }
6972
6973 /*
6974 * Throttle direct reclaimers if backing storage is backed by the network
6975 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6976 * depleted. kswapd will continue to make progress and wake the processes
6977 * when the low watermark is reached.
6978 *
6979 * Returns true if a fatal signal was delivered during throttling. If this
6980 * happens, the page allocator should not consider triggering the OOM killer.
6981 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6982 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6983 nodemask_t *nodemask)
6984 {
6985 struct zoneref *z;
6986 struct zone *zone;
6987 pg_data_t *pgdat = NULL;
6988
6989 /*
6990 * Kernel threads should not be throttled as they may be indirectly
6991 * responsible for cleaning pages necessary for reclaim to make forward
6992 * progress. kjournald for example may enter direct reclaim while
6993 * committing a transaction where throttling it could forcing other
6994 * processes to block on log_wait_commit().
6995 */
6996 if (current->flags & PF_KTHREAD)
6997 goto out;
6998
6999 /*
7000 * If a fatal signal is pending, this process should not throttle.
7001 * It should return quickly so it can exit and free its memory
7002 */
7003 if (fatal_signal_pending(current))
7004 goto out;
7005
7006 /*
7007 * Check if the pfmemalloc reserves are ok by finding the first node
7008 * with a usable ZONE_NORMAL or lower zone. The expectation is that
7009 * GFP_KERNEL will be required for allocating network buffers when
7010 * swapping over the network so ZONE_HIGHMEM is unusable.
7011 *
7012 * Throttling is based on the first usable node and throttled processes
7013 * wait on a queue until kswapd makes progress and wakes them. There
7014 * is an affinity then between processes waking up and where reclaim
7015 * progress has been made assuming the process wakes on the same node.
7016 * More importantly, processes running on remote nodes will not compete
7017 * for remote pfmemalloc reserves and processes on different nodes
7018 * should make reasonable progress.
7019 */
7020 for_each_zone_zonelist_nodemask(zone, z, zonelist,
7021 gfp_zone(gfp_mask), nodemask) {
7022 if (zone_idx(zone) > ZONE_NORMAL)
7023 continue;
7024
7025 /* Throttle based on the first usable node */
7026 pgdat = zone->zone_pgdat;
7027 if (allow_direct_reclaim(pgdat))
7028 goto out;
7029 break;
7030 }
7031
7032 /* If no zone was usable by the allocation flags then do not throttle */
7033 if (!pgdat)
7034 goto out;
7035
7036 /* Account for the throttling */
7037 count_vm_event(PGSCAN_DIRECT_THROTTLE);
7038
7039 /*
7040 * If the caller cannot enter the filesystem, it's possible that it
7041 * is due to the caller holding an FS lock or performing a journal
7042 * transaction in the case of a filesystem like ext[3|4]. In this case,
7043 * it is not safe to block on pfmemalloc_wait as kswapd could be
7044 * blocked waiting on the same lock. Instead, throttle for up to a
7045 * second before continuing.
7046 */
7047 if (!(gfp_mask & __GFP_FS))
7048 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
7049 allow_direct_reclaim(pgdat), HZ);
7050 else
7051 /* Throttle until kswapd wakes the process */
7052 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7053 allow_direct_reclaim(pgdat));
7054
7055 if (fatal_signal_pending(current))
7056 return true;
7057
7058 out:
7059 return false;
7060 }
7061
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)7062 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7063 gfp_t gfp_mask, nodemask_t *nodemask)
7064 {
7065 unsigned long nr_reclaimed;
7066 struct scan_control sc = {
7067 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7068 .gfp_mask = current_gfp_context(gfp_mask),
7069 .reclaim_idx = gfp_zone(gfp_mask),
7070 .order = order,
7071 .nodemask = nodemask,
7072 .priority = DEF_PRIORITY,
7073 .may_writepage = !laptop_mode,
7074 .may_unmap = 1,
7075 .may_swap = 1,
7076 };
7077
7078 /*
7079 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7080 * Confirm they are large enough for max values.
7081 */
7082 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7083 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7084 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7085
7086 /*
7087 * Do not enter reclaim if fatal signal was delivered while throttled.
7088 * 1 is returned so that the page allocator does not OOM kill at this
7089 * point.
7090 */
7091 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7092 return 1;
7093
7094 set_task_reclaim_state(current, &sc.reclaim_state);
7095 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7096
7097 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7098
7099 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7100 set_task_reclaim_state(current, NULL);
7101
7102 return nr_reclaimed;
7103 }
7104
7105 #ifdef CONFIG_MEMCG
7106
7107 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)7108 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7109 gfp_t gfp_mask, bool noswap,
7110 pg_data_t *pgdat,
7111 unsigned long *nr_scanned)
7112 {
7113 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7114 struct scan_control sc = {
7115 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7116 .target_mem_cgroup = memcg,
7117 .may_writepage = !laptop_mode,
7118 .may_unmap = 1,
7119 .reclaim_idx = MAX_NR_ZONES - 1,
7120 .may_swap = !noswap,
7121 };
7122
7123 WARN_ON_ONCE(!current->reclaim_state);
7124
7125 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7126 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7127
7128 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7129 sc.gfp_mask);
7130
7131 /*
7132 * NOTE: Although we can get the priority field, using it
7133 * here is not a good idea, since it limits the pages we can scan.
7134 * if we don't reclaim here, the shrink_node from balance_pgdat
7135 * will pick up pages from other mem cgroup's as well. We hack
7136 * the priority and make it zero.
7137 */
7138 shrink_lruvec(lruvec, &sc);
7139
7140 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7141
7142 *nr_scanned = sc.nr_scanned;
7143
7144 return sc.nr_reclaimed;
7145 }
7146
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options)7147 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7148 unsigned long nr_pages,
7149 gfp_t gfp_mask,
7150 unsigned int reclaim_options)
7151 {
7152 unsigned long nr_reclaimed;
7153 unsigned int noreclaim_flag;
7154 struct scan_control sc = {
7155 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7156 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7157 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7158 .reclaim_idx = MAX_NR_ZONES - 1,
7159 .target_mem_cgroup = memcg,
7160 .priority = DEF_PRIORITY,
7161 .may_writepage = !laptop_mode,
7162 .may_unmap = 1,
7163 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7164 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7165 };
7166 /*
7167 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7168 * equal pressure on all the nodes. This is based on the assumption that
7169 * the reclaim does not bail out early.
7170 */
7171 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7172
7173 set_task_reclaim_state(current, &sc.reclaim_state);
7174 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7175 noreclaim_flag = memalloc_noreclaim_save();
7176
7177 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7178
7179 memalloc_noreclaim_restore(noreclaim_flag);
7180 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7181 set_task_reclaim_state(current, NULL);
7182
7183 return nr_reclaimed;
7184 }
7185 #endif
7186
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)7187 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7188 {
7189 struct mem_cgroup *memcg;
7190 struct lruvec *lruvec;
7191
7192 if (lru_gen_enabled()) {
7193 lru_gen_age_node(pgdat, sc);
7194 return;
7195 }
7196
7197 if (!can_age_anon_pages(pgdat, sc))
7198 return;
7199
7200 lruvec = mem_cgroup_lruvec(NULL, pgdat);
7201 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7202 return;
7203
7204 memcg = mem_cgroup_iter(NULL, NULL, NULL);
7205 do {
7206 lruvec = mem_cgroup_lruvec(memcg, pgdat);
7207 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7208 sc, LRU_ACTIVE_ANON);
7209 memcg = mem_cgroup_iter(NULL, memcg, NULL);
7210 } while (memcg);
7211 }
7212
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)7213 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7214 {
7215 int i;
7216 struct zone *zone;
7217
7218 /*
7219 * Check for watermark boosts top-down as the higher zones
7220 * are more likely to be boosted. Both watermarks and boosts
7221 * should not be checked at the same time as reclaim would
7222 * start prematurely when there is no boosting and a lower
7223 * zone is balanced.
7224 */
7225 for (i = highest_zoneidx; i >= 0; i--) {
7226 zone = pgdat->node_zones + i;
7227 if (!managed_zone(zone))
7228 continue;
7229
7230 if (zone->watermark_boost)
7231 return true;
7232 }
7233
7234 return false;
7235 }
7236
7237 /*
7238 * Returns true if there is an eligible zone balanced for the request order
7239 * and highest_zoneidx
7240 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)7241 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7242 {
7243 int i;
7244 unsigned long mark = -1;
7245 struct zone *zone;
7246
7247 /*
7248 * Check watermarks bottom-up as lower zones are more likely to
7249 * meet watermarks.
7250 */
7251 for (i = 0; i <= highest_zoneidx; i++) {
7252 zone = pgdat->node_zones + i;
7253
7254 if (!managed_zone(zone))
7255 continue;
7256
7257 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7258 mark = wmark_pages(zone, WMARK_PROMO);
7259 else
7260 mark = high_wmark_pages(zone);
7261 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7262 return true;
7263 }
7264
7265 /*
7266 * If a node has no managed zone within highest_zoneidx, it does not
7267 * need balancing by definition. This can happen if a zone-restricted
7268 * allocation tries to wake a remote kswapd.
7269 */
7270 if (mark == -1)
7271 return true;
7272
7273 return false;
7274 }
7275
7276 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)7277 static void clear_pgdat_congested(pg_data_t *pgdat)
7278 {
7279 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7280
7281 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
7282 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
7283 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7284 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7285 }
7286
7287 /*
7288 * Prepare kswapd for sleeping. This verifies that there are no processes
7289 * waiting in throttle_direct_reclaim() and that watermarks have been met.
7290 *
7291 * Returns true if kswapd is ready to sleep
7292 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)7293 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7294 int highest_zoneidx)
7295 {
7296 /*
7297 * The throttled processes are normally woken up in balance_pgdat() as
7298 * soon as allow_direct_reclaim() is true. But there is a potential
7299 * race between when kswapd checks the watermarks and a process gets
7300 * throttled. There is also a potential race if processes get
7301 * throttled, kswapd wakes, a large process exits thereby balancing the
7302 * zones, which causes kswapd to exit balance_pgdat() before reaching
7303 * the wake up checks. If kswapd is going to sleep, no process should
7304 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7305 * the wake up is premature, processes will wake kswapd and get
7306 * throttled again. The difference from wake ups in balance_pgdat() is
7307 * that here we are under prepare_to_wait().
7308 */
7309 if (waitqueue_active(&pgdat->pfmemalloc_wait))
7310 wake_up_all(&pgdat->pfmemalloc_wait);
7311
7312 /* Hopeless node, leave it to direct reclaim */
7313 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7314 return true;
7315
7316 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7317 clear_pgdat_congested(pgdat);
7318 return true;
7319 }
7320
7321 return false;
7322 }
7323
7324 /*
7325 * kswapd shrinks a node of pages that are at or below the highest usable
7326 * zone that is currently unbalanced.
7327 *
7328 * Returns true if kswapd scanned at least the requested number of pages to
7329 * reclaim or if the lack of progress was due to pages under writeback.
7330 * This is used to determine if the scanning priority needs to be raised.
7331 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)7332 static bool kswapd_shrink_node(pg_data_t *pgdat,
7333 struct scan_control *sc)
7334 {
7335 struct zone *zone;
7336 int z;
7337 unsigned long nr_reclaimed = sc->nr_reclaimed;
7338
7339 /* Reclaim a number of pages proportional to the number of zones */
7340 sc->nr_to_reclaim = 0;
7341 for (z = 0; z <= sc->reclaim_idx; z++) {
7342 zone = pgdat->node_zones + z;
7343 if (!managed_zone(zone))
7344 continue;
7345
7346 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7347 }
7348
7349 /*
7350 * Historically care was taken to put equal pressure on all zones but
7351 * now pressure is applied based on node LRU order.
7352 */
7353 shrink_node(pgdat, sc);
7354
7355 /*
7356 * Fragmentation may mean that the system cannot be rebalanced for
7357 * high-order allocations. If twice the allocation size has been
7358 * reclaimed then recheck watermarks only at order-0 to prevent
7359 * excessive reclaim. Assume that a process requested a high-order
7360 * can direct reclaim/compact.
7361 */
7362 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7363 sc->order = 0;
7364
7365 /* account for progress from mm_account_reclaimed_pages() */
7366 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
7367 }
7368
7369 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7370 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)7371 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7372 {
7373 int i;
7374 struct zone *zone;
7375
7376 for (i = 0; i <= highest_zoneidx; i++) {
7377 zone = pgdat->node_zones + i;
7378
7379 if (!managed_zone(zone))
7380 continue;
7381
7382 if (active)
7383 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7384 else
7385 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7386 }
7387 }
7388
7389 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7390 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7391 {
7392 update_reclaim_active(pgdat, highest_zoneidx, true);
7393 }
7394
7395 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7396 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7397 {
7398 update_reclaim_active(pgdat, highest_zoneidx, false);
7399 }
7400
7401 /*
7402 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7403 * that are eligible for use by the caller until at least one zone is
7404 * balanced.
7405 *
7406 * Returns the order kswapd finished reclaiming at.
7407 *
7408 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7409 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7410 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7411 * or lower is eligible for reclaim until at least one usable zone is
7412 * balanced.
7413 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)7414 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7415 {
7416 int i;
7417 unsigned long nr_soft_reclaimed;
7418 unsigned long nr_soft_scanned;
7419 unsigned long pflags;
7420 unsigned long nr_boost_reclaim;
7421 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7422 bool boosted;
7423 struct zone *zone;
7424 struct scan_control sc = {
7425 .gfp_mask = GFP_KERNEL,
7426 .order = order,
7427 .may_unmap = 1,
7428 };
7429
7430 set_task_reclaim_state(current, &sc.reclaim_state);
7431 psi_memstall_enter(&pflags);
7432 __fs_reclaim_acquire(_THIS_IP_);
7433
7434 count_vm_event(PAGEOUTRUN);
7435
7436 /*
7437 * Account for the reclaim boost. Note that the zone boost is left in
7438 * place so that parallel allocations that are near the watermark will
7439 * stall or direct reclaim until kswapd is finished.
7440 */
7441 nr_boost_reclaim = 0;
7442 for (i = 0; i <= highest_zoneidx; i++) {
7443 zone = pgdat->node_zones + i;
7444 if (!managed_zone(zone))
7445 continue;
7446
7447 nr_boost_reclaim += zone->watermark_boost;
7448 zone_boosts[i] = zone->watermark_boost;
7449 }
7450 boosted = nr_boost_reclaim;
7451
7452 restart:
7453 set_reclaim_active(pgdat, highest_zoneidx);
7454 sc.priority = DEF_PRIORITY;
7455 do {
7456 unsigned long nr_reclaimed = sc.nr_reclaimed;
7457 bool raise_priority = true;
7458 bool balanced;
7459 bool ret;
7460
7461 sc.reclaim_idx = highest_zoneidx;
7462
7463 /*
7464 * If the number of buffer_heads exceeds the maximum allowed
7465 * then consider reclaiming from all zones. This has a dual
7466 * purpose -- on 64-bit systems it is expected that
7467 * buffer_heads are stripped during active rotation. On 32-bit
7468 * systems, highmem pages can pin lowmem memory and shrinking
7469 * buffers can relieve lowmem pressure. Reclaim may still not
7470 * go ahead if all eligible zones for the original allocation
7471 * request are balanced to avoid excessive reclaim from kswapd.
7472 */
7473 if (buffer_heads_over_limit) {
7474 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7475 zone = pgdat->node_zones + i;
7476 if (!managed_zone(zone))
7477 continue;
7478
7479 sc.reclaim_idx = i;
7480 break;
7481 }
7482 }
7483
7484 /*
7485 * If the pgdat is imbalanced then ignore boosting and preserve
7486 * the watermarks for a later time and restart. Note that the
7487 * zone watermarks will be still reset at the end of balancing
7488 * on the grounds that the normal reclaim should be enough to
7489 * re-evaluate if boosting is required when kswapd next wakes.
7490 */
7491 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7492 if (!balanced && nr_boost_reclaim) {
7493 nr_boost_reclaim = 0;
7494 goto restart;
7495 }
7496
7497 /*
7498 * If boosting is not active then only reclaim if there are no
7499 * eligible zones. Note that sc.reclaim_idx is not used as
7500 * buffer_heads_over_limit may have adjusted it.
7501 */
7502 if (!nr_boost_reclaim && balanced)
7503 goto out;
7504
7505 /* Limit the priority of boosting to avoid reclaim writeback */
7506 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7507 raise_priority = false;
7508
7509 /*
7510 * Do not writeback or swap pages for boosted reclaim. The
7511 * intent is to relieve pressure not issue sub-optimal IO
7512 * from reclaim context. If no pages are reclaimed, the
7513 * reclaim will be aborted.
7514 */
7515 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7516 sc.may_swap = !nr_boost_reclaim;
7517
7518 /*
7519 * Do some background aging, to give pages a chance to be
7520 * referenced before reclaiming. All pages are rotated
7521 * regardless of classzone as this is about consistent aging.
7522 */
7523 kswapd_age_node(pgdat, &sc);
7524
7525 /*
7526 * If we're getting trouble reclaiming, start doing writepage
7527 * even in laptop mode.
7528 */
7529 if (sc.priority < DEF_PRIORITY - 2)
7530 sc.may_writepage = 1;
7531
7532 /* Call soft limit reclaim before calling shrink_node. */
7533 sc.nr_scanned = 0;
7534 nr_soft_scanned = 0;
7535 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7536 sc.gfp_mask, &nr_soft_scanned);
7537 sc.nr_reclaimed += nr_soft_reclaimed;
7538
7539 /*
7540 * There should be no need to raise the scanning priority if
7541 * enough pages are already being scanned that that high
7542 * watermark would be met at 100% efficiency.
7543 */
7544 if (kswapd_shrink_node(pgdat, &sc))
7545 raise_priority = false;
7546
7547 /*
7548 * If the low watermark is met there is no need for processes
7549 * to be throttled on pfmemalloc_wait as they should not be
7550 * able to safely make forward progress. Wake them
7551 */
7552 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7553 allow_direct_reclaim(pgdat))
7554 wake_up_all(&pgdat->pfmemalloc_wait);
7555
7556 /* Check if kswapd should be suspending */
7557 __fs_reclaim_release(_THIS_IP_);
7558 ret = try_to_freeze();
7559 __fs_reclaim_acquire(_THIS_IP_);
7560 if (ret || kthread_should_stop())
7561 break;
7562
7563 /*
7564 * Raise priority if scanning rate is too low or there was no
7565 * progress in reclaiming pages
7566 */
7567 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7568 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7569
7570 /*
7571 * If reclaim made no progress for a boost, stop reclaim as
7572 * IO cannot be queued and it could be an infinite loop in
7573 * extreme circumstances.
7574 */
7575 if (nr_boost_reclaim && !nr_reclaimed)
7576 break;
7577
7578 if (raise_priority || !nr_reclaimed)
7579 sc.priority--;
7580 } while (sc.priority >= 1);
7581
7582 if (!sc.nr_reclaimed)
7583 pgdat->kswapd_failures++;
7584
7585 out:
7586 clear_reclaim_active(pgdat, highest_zoneidx);
7587
7588 /* If reclaim was boosted, account for the reclaim done in this pass */
7589 if (boosted) {
7590 unsigned long flags;
7591
7592 for (i = 0; i <= highest_zoneidx; i++) {
7593 if (!zone_boosts[i])
7594 continue;
7595
7596 /* Increments are under the zone lock */
7597 zone = pgdat->node_zones + i;
7598 spin_lock_irqsave(&zone->lock, flags);
7599 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7600 spin_unlock_irqrestore(&zone->lock, flags);
7601 }
7602
7603 /*
7604 * As there is now likely space, wakeup kcompact to defragment
7605 * pageblocks.
7606 */
7607 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7608 }
7609
7610 snapshot_refaults(NULL, pgdat);
7611 __fs_reclaim_release(_THIS_IP_);
7612 psi_memstall_leave(&pflags);
7613 set_task_reclaim_state(current, NULL);
7614
7615 /*
7616 * Return the order kswapd stopped reclaiming at as
7617 * prepare_kswapd_sleep() takes it into account. If another caller
7618 * entered the allocator slow path while kswapd was awake, order will
7619 * remain at the higher level.
7620 */
7621 return sc.order;
7622 }
7623
7624 /*
7625 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7626 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7627 * not a valid index then either kswapd runs for first time or kswapd couldn't
7628 * sleep after previous reclaim attempt (node is still unbalanced). In that
7629 * case return the zone index of the previous kswapd reclaim cycle.
7630 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7631 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7632 enum zone_type prev_highest_zoneidx)
7633 {
7634 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7635
7636 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7637 }
7638
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7639 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7640 unsigned int highest_zoneidx)
7641 {
7642 long remaining = 0;
7643 DEFINE_WAIT(wait);
7644
7645 if (freezing(current) || kthread_should_stop())
7646 return;
7647
7648 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7649
7650 /*
7651 * Try to sleep for a short interval. Note that kcompactd will only be
7652 * woken if it is possible to sleep for a short interval. This is
7653 * deliberate on the assumption that if reclaim cannot keep an
7654 * eligible zone balanced that it's also unlikely that compaction will
7655 * succeed.
7656 */
7657 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7658 /*
7659 * Compaction records what page blocks it recently failed to
7660 * isolate pages from and skips them in the future scanning.
7661 * When kswapd is going to sleep, it is reasonable to assume
7662 * that pages and compaction may succeed so reset the cache.
7663 */
7664 reset_isolation_suitable(pgdat);
7665
7666 /*
7667 * We have freed the memory, now we should compact it to make
7668 * allocation of the requested order possible.
7669 */
7670 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7671
7672 remaining = schedule_timeout(HZ/10);
7673
7674 /*
7675 * If woken prematurely then reset kswapd_highest_zoneidx and
7676 * order. The values will either be from a wakeup request or
7677 * the previous request that slept prematurely.
7678 */
7679 if (remaining) {
7680 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7681 kswapd_highest_zoneidx(pgdat,
7682 highest_zoneidx));
7683
7684 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7685 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7686 }
7687
7688 finish_wait(&pgdat->kswapd_wait, &wait);
7689 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7690 }
7691
7692 /*
7693 * After a short sleep, check if it was a premature sleep. If not, then
7694 * go fully to sleep until explicitly woken up.
7695 */
7696 if (!remaining &&
7697 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7698 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7699
7700 /*
7701 * vmstat counters are not perfectly accurate and the estimated
7702 * value for counters such as NR_FREE_PAGES can deviate from the
7703 * true value by nr_online_cpus * threshold. To avoid the zone
7704 * watermarks being breached while under pressure, we reduce the
7705 * per-cpu vmstat threshold while kswapd is awake and restore
7706 * them before going back to sleep.
7707 */
7708 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7709
7710 if (!kthread_should_stop())
7711 schedule();
7712
7713 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7714 } else {
7715 if (remaining)
7716 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7717 else
7718 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7719 }
7720 finish_wait(&pgdat->kswapd_wait, &wait);
7721 }
7722
7723 /*
7724 * The background pageout daemon, started as a kernel thread
7725 * from the init process.
7726 *
7727 * This basically trickles out pages so that we have _some_
7728 * free memory available even if there is no other activity
7729 * that frees anything up. This is needed for things like routing
7730 * etc, where we otherwise might have all activity going on in
7731 * asynchronous contexts that cannot page things out.
7732 *
7733 * If there are applications that are active memory-allocators
7734 * (most normal use), this basically shouldn't matter.
7735 */
kswapd(void * p)7736 static int kswapd(void *p)
7737 {
7738 unsigned int alloc_order, reclaim_order;
7739 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7740 pg_data_t *pgdat = (pg_data_t *)p;
7741 struct task_struct *tsk = current;
7742 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7743
7744 if (!cpumask_empty(cpumask))
7745 set_cpus_allowed_ptr(tsk, cpumask);
7746
7747 /*
7748 * Tell the memory management that we're a "memory allocator",
7749 * and that if we need more memory we should get access to it
7750 * regardless (see "__alloc_pages()"). "kswapd" should
7751 * never get caught in the normal page freeing logic.
7752 *
7753 * (Kswapd normally doesn't need memory anyway, but sometimes
7754 * you need a small amount of memory in order to be able to
7755 * page out something else, and this flag essentially protects
7756 * us from recursively trying to free more memory as we're
7757 * trying to free the first piece of memory in the first place).
7758 */
7759 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7760 set_freezable();
7761
7762 WRITE_ONCE(pgdat->kswapd_order, 0);
7763 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7764 atomic_set(&pgdat->nr_writeback_throttled, 0);
7765 for ( ; ; ) {
7766 bool ret;
7767
7768 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7769 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7770 highest_zoneidx);
7771
7772 kswapd_try_sleep:
7773 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7774 highest_zoneidx);
7775
7776 /* Read the new order and highest_zoneidx */
7777 alloc_order = READ_ONCE(pgdat->kswapd_order);
7778 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7779 highest_zoneidx);
7780 WRITE_ONCE(pgdat->kswapd_order, 0);
7781 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7782
7783 ret = try_to_freeze();
7784 if (kthread_should_stop())
7785 break;
7786
7787 /*
7788 * We can speed up thawing tasks if we don't call balance_pgdat
7789 * after returning from the refrigerator
7790 */
7791 if (ret)
7792 continue;
7793
7794 /*
7795 * Reclaim begins at the requested order but if a high-order
7796 * reclaim fails then kswapd falls back to reclaiming for
7797 * order-0. If that happens, kswapd will consider sleeping
7798 * for the order it finished reclaiming at (reclaim_order)
7799 * but kcompactd is woken to compact for the original
7800 * request (alloc_order).
7801 */
7802 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7803 alloc_order);
7804 reclaim_order = balance_pgdat(pgdat, alloc_order,
7805 highest_zoneidx);
7806 if (reclaim_order < alloc_order)
7807 goto kswapd_try_sleep;
7808 }
7809
7810 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7811
7812 return 0;
7813 }
7814
7815 /*
7816 * A zone is low on free memory or too fragmented for high-order memory. If
7817 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7818 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7819 * has failed or is not needed, still wake up kcompactd if only compaction is
7820 * needed.
7821 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7822 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7823 enum zone_type highest_zoneidx)
7824 {
7825 pg_data_t *pgdat;
7826 enum zone_type curr_idx;
7827
7828 if (!managed_zone(zone))
7829 return;
7830
7831 if (!cpuset_zone_allowed(zone, gfp_flags))
7832 return;
7833
7834 pgdat = zone->zone_pgdat;
7835 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7836
7837 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7838 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7839
7840 if (READ_ONCE(pgdat->kswapd_order) < order)
7841 WRITE_ONCE(pgdat->kswapd_order, order);
7842
7843 if (!waitqueue_active(&pgdat->kswapd_wait))
7844 return;
7845
7846 /* Hopeless node, leave it to direct reclaim if possible */
7847 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7848 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7849 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7850 /*
7851 * There may be plenty of free memory available, but it's too
7852 * fragmented for high-order allocations. Wake up kcompactd
7853 * and rely on compaction_suitable() to determine if it's
7854 * needed. If it fails, it will defer subsequent attempts to
7855 * ratelimit its work.
7856 */
7857 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7858 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7859 return;
7860 }
7861
7862 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7863 gfp_flags);
7864 wake_up_interruptible(&pgdat->kswapd_wait);
7865 }
7866
7867 #ifdef CONFIG_HIBERNATION
7868 /*
7869 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7870 * freed pages.
7871 *
7872 * Rather than trying to age LRUs the aim is to preserve the overall
7873 * LRU order by reclaiming preferentially
7874 * inactive > active > active referenced > active mapped
7875 */
shrink_all_memory(unsigned long nr_to_reclaim)7876 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7877 {
7878 struct scan_control sc = {
7879 .nr_to_reclaim = nr_to_reclaim,
7880 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7881 .reclaim_idx = MAX_NR_ZONES - 1,
7882 .priority = DEF_PRIORITY,
7883 .may_writepage = 1,
7884 .may_unmap = 1,
7885 .may_swap = 1,
7886 .hibernation_mode = 1,
7887 };
7888 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7889 unsigned long nr_reclaimed;
7890 unsigned int noreclaim_flag;
7891
7892 fs_reclaim_acquire(sc.gfp_mask);
7893 noreclaim_flag = memalloc_noreclaim_save();
7894 set_task_reclaim_state(current, &sc.reclaim_state);
7895
7896 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7897
7898 set_task_reclaim_state(current, NULL);
7899 memalloc_noreclaim_restore(noreclaim_flag);
7900 fs_reclaim_release(sc.gfp_mask);
7901
7902 return nr_reclaimed;
7903 }
7904 #endif /* CONFIG_HIBERNATION */
7905
7906 /*
7907 * This kswapd start function will be called by init and node-hot-add.
7908 */
kswapd_run(int nid)7909 void __meminit kswapd_run(int nid)
7910 {
7911 pg_data_t *pgdat = NODE_DATA(nid);
7912
7913 pgdat_kswapd_lock(pgdat);
7914 if (!pgdat->kswapd) {
7915 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7916 if (IS_ERR(pgdat->kswapd)) {
7917 /* failure at boot is fatal */
7918 BUG_ON(system_state < SYSTEM_RUNNING);
7919 pr_err("Failed to start kswapd on node %d\n", nid);
7920 pgdat->kswapd = NULL;
7921 }
7922 }
7923 pgdat_kswapd_unlock(pgdat);
7924 }
7925
7926 /*
7927 * Called by memory hotplug when all memory in a node is offlined. Caller must
7928 * be holding mem_hotplug_begin/done().
7929 */
kswapd_stop(int nid)7930 void __meminit kswapd_stop(int nid)
7931 {
7932 pg_data_t *pgdat = NODE_DATA(nid);
7933 struct task_struct *kswapd;
7934
7935 pgdat_kswapd_lock(pgdat);
7936 kswapd = pgdat->kswapd;
7937 if (kswapd) {
7938 kthread_stop(kswapd);
7939 pgdat->kswapd = NULL;
7940 }
7941 pgdat_kswapd_unlock(pgdat);
7942 }
7943
kswapd_init(void)7944 static int __init kswapd_init(void)
7945 {
7946 int nid;
7947
7948 swap_setup();
7949 for_each_node_state(nid, N_MEMORY)
7950 kswapd_run(nid);
7951 return 0;
7952 }
7953
7954 module_init(kswapd_init)
7955
7956 #ifdef CONFIG_NUMA
7957 /*
7958 * Node reclaim mode
7959 *
7960 * If non-zero call node_reclaim when the number of free pages falls below
7961 * the watermarks.
7962 */
7963 int node_reclaim_mode __read_mostly;
7964
7965 /*
7966 * Priority for NODE_RECLAIM. This determines the fraction of pages
7967 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7968 * a zone.
7969 */
7970 #define NODE_RECLAIM_PRIORITY 4
7971
7972 /*
7973 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7974 * occur.
7975 */
7976 int sysctl_min_unmapped_ratio = 1;
7977
7978 /*
7979 * If the number of slab pages in a zone grows beyond this percentage then
7980 * slab reclaim needs to occur.
7981 */
7982 int sysctl_min_slab_ratio = 5;
7983
node_unmapped_file_pages(struct pglist_data * pgdat)7984 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7985 {
7986 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7987 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7988 node_page_state(pgdat, NR_ACTIVE_FILE);
7989
7990 /*
7991 * It's possible for there to be more file mapped pages than
7992 * accounted for by the pages on the file LRU lists because
7993 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7994 */
7995 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7996 }
7997
7998 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7999 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
8000 {
8001 unsigned long nr_pagecache_reclaimable;
8002 unsigned long delta = 0;
8003
8004 /*
8005 * If RECLAIM_UNMAP is set, then all file pages are considered
8006 * potentially reclaimable. Otherwise, we have to worry about
8007 * pages like swapcache and node_unmapped_file_pages() provides
8008 * a better estimate
8009 */
8010 if (node_reclaim_mode & RECLAIM_UNMAP)
8011 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
8012 else
8013 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
8014
8015 /* If we can't clean pages, remove dirty pages from consideration */
8016 if (!(node_reclaim_mode & RECLAIM_WRITE))
8017 delta += node_page_state(pgdat, NR_FILE_DIRTY);
8018
8019 /* Watch for any possible underflows due to delta */
8020 if (unlikely(delta > nr_pagecache_reclaimable))
8021 delta = nr_pagecache_reclaimable;
8022
8023 return nr_pagecache_reclaimable - delta;
8024 }
8025
8026 /*
8027 * Try to free up some pages from this node through reclaim.
8028 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)8029 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8030 {
8031 /* Minimum pages needed in order to stay on node */
8032 const unsigned long nr_pages = 1 << order;
8033 struct task_struct *p = current;
8034 unsigned int noreclaim_flag;
8035 struct scan_control sc = {
8036 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
8037 .gfp_mask = current_gfp_context(gfp_mask),
8038 .order = order,
8039 .priority = NODE_RECLAIM_PRIORITY,
8040 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
8041 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
8042 .may_swap = 1,
8043 .reclaim_idx = gfp_zone(gfp_mask),
8044 };
8045 unsigned long pflags;
8046
8047 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
8048 sc.gfp_mask);
8049
8050 cond_resched();
8051 psi_memstall_enter(&pflags);
8052 fs_reclaim_acquire(sc.gfp_mask);
8053 /*
8054 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8055 */
8056 noreclaim_flag = memalloc_noreclaim_save();
8057 set_task_reclaim_state(p, &sc.reclaim_state);
8058
8059 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8060 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8061 /*
8062 * Free memory by calling shrink node with increasing
8063 * priorities until we have enough memory freed.
8064 */
8065 do {
8066 shrink_node(pgdat, &sc);
8067 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8068 }
8069
8070 set_task_reclaim_state(p, NULL);
8071 memalloc_noreclaim_restore(noreclaim_flag);
8072 fs_reclaim_release(sc.gfp_mask);
8073 psi_memstall_leave(&pflags);
8074
8075 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8076
8077 return sc.nr_reclaimed >= nr_pages;
8078 }
8079
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)8080 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8081 {
8082 int ret;
8083
8084 /*
8085 * Node reclaim reclaims unmapped file backed pages and
8086 * slab pages if we are over the defined limits.
8087 *
8088 * A small portion of unmapped file backed pages is needed for
8089 * file I/O otherwise pages read by file I/O will be immediately
8090 * thrown out if the node is overallocated. So we do not reclaim
8091 * if less than a specified percentage of the node is used by
8092 * unmapped file backed pages.
8093 */
8094 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8095 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8096 pgdat->min_slab_pages)
8097 return NODE_RECLAIM_FULL;
8098
8099 /*
8100 * Do not scan if the allocation should not be delayed.
8101 */
8102 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8103 return NODE_RECLAIM_NOSCAN;
8104
8105 /*
8106 * Only run node reclaim on the local node or on nodes that do not
8107 * have associated processors. This will favor the local processor
8108 * over remote processors and spread off node memory allocations
8109 * as wide as possible.
8110 */
8111 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8112 return NODE_RECLAIM_NOSCAN;
8113
8114 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8115 return NODE_RECLAIM_NOSCAN;
8116
8117 ret = __node_reclaim(pgdat, gfp_mask, order);
8118 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8119
8120 if (!ret)
8121 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8122
8123 return ret;
8124 }
8125 #endif
8126
8127 /**
8128 * check_move_unevictable_folios - Move evictable folios to appropriate zone
8129 * lru list
8130 * @fbatch: Batch of lru folios to check.
8131 *
8132 * Checks folios for evictability, if an evictable folio is in the unevictable
8133 * lru list, moves it to the appropriate evictable lru list. This function
8134 * should be only used for lru folios.
8135 */
check_move_unevictable_folios(struct folio_batch * fbatch)8136 void check_move_unevictable_folios(struct folio_batch *fbatch)
8137 {
8138 struct lruvec *lruvec = NULL;
8139 int pgscanned = 0;
8140 int pgrescued = 0;
8141 int i;
8142
8143 for (i = 0; i < fbatch->nr; i++) {
8144 struct folio *folio = fbatch->folios[i];
8145 int nr_pages = folio_nr_pages(folio);
8146
8147 pgscanned += nr_pages;
8148
8149 /* block memcg migration while the folio moves between lrus */
8150 if (!folio_test_clear_lru(folio))
8151 continue;
8152
8153 lruvec = folio_lruvec_relock_irq(folio, lruvec);
8154 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8155 lruvec_del_folio(lruvec, folio);
8156 folio_clear_unevictable(folio);
8157 lruvec_add_folio(lruvec, folio);
8158 pgrescued += nr_pages;
8159 }
8160 folio_set_lru(folio);
8161 }
8162
8163 if (lruvec) {
8164 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8165 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8166 unlock_page_lruvec_irq(lruvec);
8167 } else if (pgscanned) {
8168 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8169 }
8170 }
8171 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8172