1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration-stats.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/error.h"
46 #include "qapi/qapi-types-migration.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qapi-commands-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "system/cpu-throttle.h"
56 #include "savevm.h"
57 #include "qemu/iov.h"
58 #include "multifd.h"
59 #include "system/runstate.h"
60 #include "rdma.h"
61 #include "options.h"
62 #include "system/dirtylimit.h"
63 #include "system/kvm.h"
64
65 #include "hw/boards.h" /* for machine_dump_guest_core() */
66
67 #if defined(__linux__)
68 #include "qemu/userfaultfd.h"
69 #endif /* defined(__linux__) */
70
71 /***********************************************************/
72 /* ram save/restore */
73
74 /*
75 * mapped-ram migration supports O_DIRECT, so we need to make sure the
76 * userspace buffer, the IO operation size and the file offset are
77 * aligned according to the underlying device's block size. The first
78 * two are already aligned to page size, but we need to add padding to
79 * the file to align the offset. We cannot read the block size
80 * dynamically because the migration file can be moved between
81 * different systems, so use 1M to cover most block sizes and to keep
82 * the file offset aligned at page size as well.
83 */
84 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
85
86 /*
87 * When doing mapped-ram migration, this is the amount we read from
88 * the pages region in the migration file at a time.
89 */
90 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
91
92 XBZRLECacheStats xbzrle_counters;
93
94 /* used by the search for pages to send */
95 struct PageSearchStatus {
96 /* The migration channel used for a specific host page */
97 QEMUFile *pss_channel;
98 /* Last block from where we have sent data */
99 RAMBlock *last_sent_block;
100 /* Current block being searched */
101 RAMBlock *block;
102 /* Current page to search from */
103 unsigned long page;
104 /* Set once we wrap around */
105 bool complete_round;
106 /* Whether we're sending a host page */
107 bool host_page_sending;
108 /* The start/end of current host page. Invalid if host_page_sending==false */
109 unsigned long host_page_start;
110 unsigned long host_page_end;
111 };
112 typedef struct PageSearchStatus PageSearchStatus;
113
114 /* struct contains XBZRLE cache and a static page
115 used by the compression */
116 static struct {
117 /* buffer used for XBZRLE encoding */
118 uint8_t *encoded_buf;
119 /* buffer for storing page content */
120 uint8_t *current_buf;
121 /* Cache for XBZRLE, Protected by lock. */
122 PageCache *cache;
123 QemuMutex lock;
124 /* it will store a page full of zeros */
125 uint8_t *zero_target_page;
126 /* buffer used for XBZRLE decoding */
127 uint8_t *decoded_buf;
128 } XBZRLE;
129
XBZRLE_cache_lock(void)130 static void XBZRLE_cache_lock(void)
131 {
132 if (migrate_xbzrle()) {
133 qemu_mutex_lock(&XBZRLE.lock);
134 }
135 }
136
XBZRLE_cache_unlock(void)137 static void XBZRLE_cache_unlock(void)
138 {
139 if (migrate_xbzrle()) {
140 qemu_mutex_unlock(&XBZRLE.lock);
141 }
142 }
143
144 /**
145 * xbzrle_cache_resize: resize the xbzrle cache
146 *
147 * This function is called from migrate_params_apply in main
148 * thread, possibly while a migration is in progress. A running
149 * migration may be using the cache and might finish during this call,
150 * hence changes to the cache are protected by XBZRLE.lock().
151 *
152 * Returns 0 for success or -1 for error
153 *
154 * @new_size: new cache size
155 * @errp: set *errp if the check failed, with reason
156 */
xbzrle_cache_resize(uint64_t new_size,Error ** errp)157 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
158 {
159 PageCache *new_cache;
160 int64_t ret = 0;
161
162 /* Check for truncation */
163 if (new_size != (size_t)new_size) {
164 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
165 "exceeding address space");
166 return -1;
167 }
168
169 if (new_size == migrate_xbzrle_cache_size()) {
170 /* nothing to do */
171 return 0;
172 }
173
174 XBZRLE_cache_lock();
175
176 if (XBZRLE.cache != NULL) {
177 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
178 if (!new_cache) {
179 ret = -1;
180 goto out;
181 }
182
183 cache_fini(XBZRLE.cache);
184 XBZRLE.cache = new_cache;
185 }
186 out:
187 XBZRLE_cache_unlock();
188 return ret;
189 }
190
postcopy_preempt_active(void)191 static bool postcopy_preempt_active(void)
192 {
193 return migrate_postcopy_preempt() && migration_in_postcopy();
194 }
195
migrate_ram_is_ignored(RAMBlock * block)196 bool migrate_ram_is_ignored(RAMBlock *block)
197 {
198 MigMode mode = migrate_mode();
199 return !qemu_ram_is_migratable(block) ||
200 mode == MIG_MODE_CPR_TRANSFER ||
201 (migrate_ignore_shared() && qemu_ram_is_shared(block)
202 && qemu_ram_is_named_file(block));
203 }
204
205 #undef RAMBLOCK_FOREACH
206
foreach_not_ignored_block(RAMBlockIterFunc func,void * opaque)207 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
208 {
209 RAMBlock *block;
210 int ret = 0;
211
212 RCU_READ_LOCK_GUARD();
213
214 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
215 ret = func(block, opaque);
216 if (ret) {
217 break;
218 }
219 }
220 return ret;
221 }
222
ramblock_recv_map_init(void)223 static void ramblock_recv_map_init(void)
224 {
225 RAMBlock *rb;
226
227 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
228 assert(!rb->receivedmap);
229 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
230 }
231 }
232
ramblock_recv_bitmap_test(RAMBlock * rb,void * host_addr)233 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
234 {
235 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
236 rb->receivedmap);
237 }
238
ramblock_recv_bitmap_test_byte_offset(RAMBlock * rb,uint64_t byte_offset)239 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
240 {
241 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
242 }
243
ramblock_recv_bitmap_set(RAMBlock * rb,void * host_addr)244 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
245 {
246 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
247 }
248
ramblock_recv_bitmap_set_range(RAMBlock * rb,void * host_addr,size_t nr)249 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
250 size_t nr)
251 {
252 bitmap_set_atomic(rb->receivedmap,
253 ramblock_recv_bitmap_offset(host_addr, rb),
254 nr);
255 }
256
ramblock_recv_bitmap_set_offset(RAMBlock * rb,uint64_t byte_offset)257 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
258 {
259 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
260 }
261 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
262
263 /*
264 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
265 *
266 * Returns >0 if success with sent bytes, or <0 if error.
267 */
ramblock_recv_bitmap_send(QEMUFile * file,const char * block_name)268 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
269 const char *block_name)
270 {
271 RAMBlock *block = qemu_ram_block_by_name(block_name);
272 unsigned long *le_bitmap, nbits;
273 uint64_t size;
274
275 if (!block) {
276 error_report("%s: invalid block name: %s", __func__, block_name);
277 return -1;
278 }
279
280 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
281
282 /*
283 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
284 * machines we may need 4 more bytes for padding (see below
285 * comment). So extend it a bit before hand.
286 */
287 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
288
289 /*
290 * Always use little endian when sending the bitmap. This is
291 * required that when source and destination VMs are not using the
292 * same endianness. (Note: big endian won't work.)
293 */
294 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
295
296 /* Size of the bitmap, in bytes */
297 size = DIV_ROUND_UP(nbits, 8);
298
299 /*
300 * size is always aligned to 8 bytes for 64bit machines, but it
301 * may not be true for 32bit machines. We need this padding to
302 * make sure the migration can survive even between 32bit and
303 * 64bit machines.
304 */
305 size = ROUND_UP(size, 8);
306
307 qemu_put_be64(file, size);
308 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
309 g_free(le_bitmap);
310 /*
311 * Mark as an end, in case the middle part is screwed up due to
312 * some "mysterious" reason.
313 */
314 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
315 int ret = qemu_fflush(file);
316 if (ret) {
317 return ret;
318 }
319
320 return size + sizeof(size);
321 }
322
323 /*
324 * An outstanding page request, on the source, having been received
325 * and queued
326 */
327 struct RAMSrcPageRequest {
328 RAMBlock *rb;
329 hwaddr offset;
330 hwaddr len;
331
332 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
333 };
334
335 /* State of RAM for migration */
336 struct RAMState {
337 /*
338 * PageSearchStatus structures for the channels when send pages.
339 * Protected by the bitmap_mutex.
340 */
341 PageSearchStatus pss[RAM_CHANNEL_MAX];
342 /* UFFD file descriptor, used in 'write-tracking' migration */
343 int uffdio_fd;
344 /* total ram size in bytes */
345 uint64_t ram_bytes_total;
346 /* Last block that we have visited searching for dirty pages */
347 RAMBlock *last_seen_block;
348 /* Last dirty target page we have sent */
349 ram_addr_t last_page;
350 /* last ram version we have seen */
351 uint32_t last_version;
352 /* How many times we have dirty too many pages */
353 int dirty_rate_high_cnt;
354 /* these variables are used for bitmap sync */
355 /* last time we did a full bitmap_sync */
356 int64_t time_last_bitmap_sync;
357 /* bytes transferred at start_time */
358 uint64_t bytes_xfer_prev;
359 /* number of dirty pages since start_time */
360 uint64_t num_dirty_pages_period;
361 /* xbzrle misses since the beginning of the period */
362 uint64_t xbzrle_cache_miss_prev;
363 /* Amount of xbzrle pages since the beginning of the period */
364 uint64_t xbzrle_pages_prev;
365 /* Amount of xbzrle encoded bytes since the beginning of the period */
366 uint64_t xbzrle_bytes_prev;
367 /* Are we really using XBZRLE (e.g., after the first round). */
368 bool xbzrle_started;
369 /* Are we on the last stage of migration */
370 bool last_stage;
371
372 /* total handled target pages at the beginning of period */
373 uint64_t target_page_count_prev;
374 /* total handled target pages since start */
375 uint64_t target_page_count;
376 /* number of dirty bits in the bitmap */
377 uint64_t migration_dirty_pages;
378 /*
379 * Protects:
380 * - dirty/clear bitmap
381 * - migration_dirty_pages
382 * - pss structures
383 */
384 QemuMutex bitmap_mutex;
385 /* The RAMBlock used in the last src_page_requests */
386 RAMBlock *last_req_rb;
387 /* Queue of outstanding page requests from the destination */
388 QemuMutex src_page_req_mutex;
389 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
390
391 /*
392 * This is only used when postcopy is in recovery phase, to communicate
393 * between the migration thread and the return path thread on dirty
394 * bitmap synchronizations. This field is unused in other stages of
395 * RAM migration.
396 */
397 unsigned int postcopy_bmap_sync_requested;
398 };
399 typedef struct RAMState RAMState;
400
401 static RAMState *ram_state;
402
403 static NotifierWithReturnList precopy_notifier_list;
404
405 /* Whether postcopy has queued requests? */
postcopy_has_request(RAMState * rs)406 static bool postcopy_has_request(RAMState *rs)
407 {
408 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
409 }
410
precopy_infrastructure_init(void)411 void precopy_infrastructure_init(void)
412 {
413 notifier_with_return_list_init(&precopy_notifier_list);
414 }
415
precopy_add_notifier(NotifierWithReturn * n)416 void precopy_add_notifier(NotifierWithReturn *n)
417 {
418 notifier_with_return_list_add(&precopy_notifier_list, n);
419 }
420
precopy_remove_notifier(NotifierWithReturn * n)421 void precopy_remove_notifier(NotifierWithReturn *n)
422 {
423 notifier_with_return_remove(n);
424 }
425
precopy_notify(PrecopyNotifyReason reason,Error ** errp)426 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
427 {
428 PrecopyNotifyData pnd;
429 pnd.reason = reason;
430
431 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
432 }
433
ram_bytes_remaining(void)434 uint64_t ram_bytes_remaining(void)
435 {
436 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
437 0;
438 }
439
ram_transferred_add(uint64_t bytes)440 void ram_transferred_add(uint64_t bytes)
441 {
442 if (runstate_is_running()) {
443 stat64_add(&mig_stats.precopy_bytes, bytes);
444 } else if (migration_in_postcopy()) {
445 stat64_add(&mig_stats.postcopy_bytes, bytes);
446 } else {
447 stat64_add(&mig_stats.downtime_bytes, bytes);
448 }
449 }
450
451 static int ram_save_host_page_urgent(PageSearchStatus *pss);
452
453 /* NOTE: page is the PFN not real ram_addr_t. */
pss_init(PageSearchStatus * pss,RAMBlock * rb,ram_addr_t page)454 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
455 {
456 pss->block = rb;
457 pss->page = page;
458 pss->complete_round = false;
459 }
460
461 /*
462 * Check whether two PSSs are actively sending the same page. Return true
463 * if it is, false otherwise.
464 */
pss_overlap(PageSearchStatus * pss1,PageSearchStatus * pss2)465 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
466 {
467 return pss1->host_page_sending && pss2->host_page_sending &&
468 (pss1->host_page_start == pss2->host_page_start);
469 }
470
471 /**
472 * save_page_header: write page header to wire
473 *
474 * If this is the 1st block, it also writes the block identification
475 *
476 * Returns the number of bytes written
477 *
478 * @pss: current PSS channel status
479 * @block: block that contains the page we want to send
480 * @offset: offset inside the block for the page
481 * in the lower bits, it contains flags
482 */
save_page_header(PageSearchStatus * pss,QEMUFile * f,RAMBlock * block,ram_addr_t offset)483 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
484 RAMBlock *block, ram_addr_t offset)
485 {
486 size_t size, len;
487 bool same_block = (block == pss->last_sent_block);
488
489 if (same_block) {
490 offset |= RAM_SAVE_FLAG_CONTINUE;
491 }
492 qemu_put_be64(f, offset);
493 size = 8;
494
495 if (!same_block) {
496 len = strlen(block->idstr);
497 qemu_put_byte(f, len);
498 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
499 size += 1 + len;
500 pss->last_sent_block = block;
501 }
502 return size;
503 }
504
505 /**
506 * mig_throttle_guest_down: throttle down the guest
507 *
508 * Reduce amount of guest cpu execution to hopefully slow down memory
509 * writes. If guest dirty memory rate is reduced below the rate at
510 * which we can transfer pages to the destination then we should be
511 * able to complete migration. Some workloads dirty memory way too
512 * fast and will not effectively converge, even with auto-converge.
513 */
mig_throttle_guest_down(uint64_t bytes_dirty_period,uint64_t bytes_dirty_threshold)514 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
515 uint64_t bytes_dirty_threshold)
516 {
517 uint64_t pct_initial = migrate_cpu_throttle_initial();
518 uint64_t pct_increment = migrate_cpu_throttle_increment();
519 bool pct_tailslow = migrate_cpu_throttle_tailslow();
520 int pct_max = migrate_max_cpu_throttle();
521
522 uint64_t throttle_now = cpu_throttle_get_percentage();
523 uint64_t cpu_now, cpu_ideal, throttle_inc;
524
525 /* We have not started throttling yet. Let's start it. */
526 if (!cpu_throttle_active()) {
527 cpu_throttle_set(pct_initial);
528 } else {
529 /* Throttling already on, just increase the rate */
530 if (!pct_tailslow) {
531 throttle_inc = pct_increment;
532 } else {
533 /* Compute the ideal CPU percentage used by Guest, which may
534 * make the dirty rate match the dirty rate threshold. */
535 cpu_now = 100 - throttle_now;
536 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
537 bytes_dirty_period);
538 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
539 }
540 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
541 }
542 }
543
mig_throttle_counter_reset(void)544 void mig_throttle_counter_reset(void)
545 {
546 RAMState *rs = ram_state;
547
548 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
549 rs->num_dirty_pages_period = 0;
550 rs->bytes_xfer_prev = migration_transferred_bytes();
551 }
552
553 /**
554 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
555 *
556 * @current_addr: address for the zero page
557 *
558 * Update the xbzrle cache to reflect a page that's been sent as all 0.
559 * The important thing is that a stale (not-yet-0'd) page be replaced
560 * by the new data.
561 * As a bonus, if the page wasn't in the cache it gets added so that
562 * when a small write is made into the 0'd page it gets XBZRLE sent.
563 */
xbzrle_cache_zero_page(ram_addr_t current_addr)564 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
565 {
566 /* We don't care if this fails to allocate a new cache page
567 * as long as it updated an old one */
568 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
569 stat64_get(&mig_stats.dirty_sync_count));
570 }
571
572 #define ENCODING_FLAG_XBZRLE 0x1
573
574 /**
575 * save_xbzrle_page: compress and send current page
576 *
577 * Returns: 1 means that we wrote the page
578 * 0 means that page is identical to the one already sent
579 * -1 means that xbzrle would be longer than normal
580 *
581 * @rs: current RAM state
582 * @pss: current PSS channel
583 * @current_data: pointer to the address of the page contents
584 * @current_addr: addr of the page
585 * @block: block that contains the page we want to send
586 * @offset: offset inside the block for the page
587 */
save_xbzrle_page(RAMState * rs,PageSearchStatus * pss,uint8_t ** current_data,ram_addr_t current_addr,RAMBlock * block,ram_addr_t offset)588 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
589 uint8_t **current_data, ram_addr_t current_addr,
590 RAMBlock *block, ram_addr_t offset)
591 {
592 int encoded_len = 0, bytes_xbzrle;
593 uint8_t *prev_cached_page;
594 QEMUFile *file = pss->pss_channel;
595 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
596
597 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
598 xbzrle_counters.cache_miss++;
599 if (!rs->last_stage) {
600 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
601 generation) == -1) {
602 return -1;
603 } else {
604 /* update *current_data when the page has been
605 inserted into cache */
606 *current_data = get_cached_data(XBZRLE.cache, current_addr);
607 }
608 }
609 return -1;
610 }
611
612 /*
613 * Reaching here means the page has hit the xbzrle cache, no matter what
614 * encoding result it is (normal encoding, overflow or skipping the page),
615 * count the page as encoded. This is used to calculate the encoding rate.
616 *
617 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
618 * 2nd page turns out to be skipped (i.e. no new bytes written to the
619 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
620 * skipped page included. In this way, the encoding rate can tell if the
621 * guest page is good for xbzrle encoding.
622 */
623 xbzrle_counters.pages++;
624 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
625
626 /* save current buffer into memory */
627 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
628
629 /* XBZRLE encoding (if there is no overflow) */
630 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
631 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
632 TARGET_PAGE_SIZE);
633
634 /*
635 * Update the cache contents, so that it corresponds to the data
636 * sent, in all cases except where we skip the page.
637 */
638 if (!rs->last_stage && encoded_len != 0) {
639 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
640 /*
641 * In the case where we couldn't compress, ensure that the caller
642 * sends the data from the cache, since the guest might have
643 * changed the RAM since we copied it.
644 */
645 *current_data = prev_cached_page;
646 }
647
648 if (encoded_len == 0) {
649 trace_save_xbzrle_page_skipping();
650 return 0;
651 } else if (encoded_len == -1) {
652 trace_save_xbzrle_page_overflow();
653 xbzrle_counters.overflow++;
654 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
655 return -1;
656 }
657
658 /* Send XBZRLE based compressed page */
659 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
660 offset | RAM_SAVE_FLAG_XBZRLE);
661 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
662 qemu_put_be16(file, encoded_len);
663 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
664 bytes_xbzrle += encoded_len + 1 + 2;
665 /*
666 * The xbzrle encoded bytes don't count the 8 byte header with
667 * RAM_SAVE_FLAG_CONTINUE.
668 */
669 xbzrle_counters.bytes += bytes_xbzrle - 8;
670 ram_transferred_add(bytes_xbzrle);
671
672 return 1;
673 }
674
675 /**
676 * pss_find_next_dirty: find the next dirty page of current ramblock
677 *
678 * This function updates pss->page to point to the next dirty page index
679 * within the ramblock to migrate, or the end of ramblock when nothing
680 * found. Note that when pss->host_page_sending==true it means we're
681 * during sending a host page, so we won't look for dirty page that is
682 * outside the host page boundary.
683 *
684 * @pss: the current page search status
685 */
pss_find_next_dirty(PageSearchStatus * pss)686 static void pss_find_next_dirty(PageSearchStatus *pss)
687 {
688 RAMBlock *rb = pss->block;
689 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
690 unsigned long *bitmap = rb->bmap;
691
692 if (migrate_ram_is_ignored(rb)) {
693 /* Points directly to the end, so we know no dirty page */
694 pss->page = size;
695 return;
696 }
697
698 /*
699 * If during sending a host page, only look for dirty pages within the
700 * current host page being send.
701 */
702 if (pss->host_page_sending) {
703 assert(pss->host_page_end);
704 size = MIN(size, pss->host_page_end);
705 }
706
707 pss->page = find_next_bit(bitmap, size, pss->page);
708 }
709
migration_clear_memory_region_dirty_bitmap(RAMBlock * rb,unsigned long page)710 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
711 unsigned long page)
712 {
713 uint8_t shift;
714 hwaddr size, start;
715
716 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
717 return;
718 }
719
720 shift = rb->clear_bmap_shift;
721 /*
722 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
723 * can make things easier sometimes since then start address
724 * of the small chunk will always be 64 pages aligned so the
725 * bitmap will always be aligned to unsigned long. We should
726 * even be able to remove this restriction but I'm simply
727 * keeping it.
728 */
729 assert(shift >= 6);
730
731 size = 1ULL << (TARGET_PAGE_BITS + shift);
732 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
733 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
734 memory_region_clear_dirty_bitmap(rb->mr, start, size);
735 }
736
737 static void
migration_clear_memory_region_dirty_bitmap_range(RAMBlock * rb,unsigned long start,unsigned long npages)738 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
739 unsigned long start,
740 unsigned long npages)
741 {
742 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
743 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
744 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
745
746 /*
747 * Clear pages from start to start + npages - 1, so the end boundary is
748 * exclusive.
749 */
750 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
751 migration_clear_memory_region_dirty_bitmap(rb, i);
752 }
753 }
754
755 /*
756 * colo_bitmap_find_diry:find contiguous dirty pages from start
757 *
758 * Returns the page offset within memory region of the start of the contiguout
759 * dirty page
760 *
761 * @rs: current RAM state
762 * @rb: RAMBlock where to search for dirty pages
763 * @start: page where we start the search
764 * @num: the number of contiguous dirty pages
765 */
766 static inline
colo_bitmap_find_dirty(RAMState * rs,RAMBlock * rb,unsigned long start,unsigned long * num)767 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
768 unsigned long start, unsigned long *num)
769 {
770 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
771 unsigned long *bitmap = rb->bmap;
772 unsigned long first, next;
773
774 *num = 0;
775
776 if (migrate_ram_is_ignored(rb)) {
777 return size;
778 }
779
780 first = find_next_bit(bitmap, size, start);
781 if (first >= size) {
782 return first;
783 }
784 next = find_next_zero_bit(bitmap, size, first + 1);
785 assert(next >= first);
786 *num = next - first;
787 return first;
788 }
789
migration_bitmap_clear_dirty(RAMState * rs,RAMBlock * rb,unsigned long page)790 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
791 RAMBlock *rb,
792 unsigned long page)
793 {
794 bool ret;
795
796 /*
797 * Clear dirty bitmap if needed. This _must_ be called before we
798 * send any of the page in the chunk because we need to make sure
799 * we can capture further page content changes when we sync dirty
800 * log the next time. So as long as we are going to send any of
801 * the page in the chunk we clear the remote dirty bitmap for all.
802 * Clearing it earlier won't be a problem, but too late will.
803 */
804 migration_clear_memory_region_dirty_bitmap(rb, page);
805
806 ret = test_and_clear_bit(page, rb->bmap);
807 if (ret) {
808 rs->migration_dirty_pages--;
809 }
810
811 return ret;
812 }
813
dirty_bitmap_clear_section(MemoryRegionSection * section,void * opaque)814 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
815 void *opaque)
816 {
817 const hwaddr offset = section->offset_within_region;
818 const hwaddr size = int128_get64(section->size);
819 const unsigned long start = offset >> TARGET_PAGE_BITS;
820 const unsigned long npages = size >> TARGET_PAGE_BITS;
821 RAMBlock *rb = section->mr->ram_block;
822 uint64_t *cleared_bits = opaque;
823
824 /*
825 * We don't grab ram_state->bitmap_mutex because we expect to run
826 * only when starting migration or during postcopy recovery where
827 * we don't have concurrent access.
828 */
829 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
830 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
831 }
832 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
833 bitmap_clear(rb->bmap, start, npages);
834 }
835
836 /*
837 * Exclude all dirty pages from migration that fall into a discarded range as
838 * managed by a RamDiscardManager responsible for the mapped memory region of
839 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
840 *
841 * Discarded pages ("logically unplugged") have undefined content and must
842 * not get migrated, because even reading these pages for migration might
843 * result in undesired behavior.
844 *
845 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
846 *
847 * Note: The result is only stable while migrating (precopy/postcopy).
848 */
ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock * rb)849 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
850 {
851 uint64_t cleared_bits = 0;
852
853 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
854 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
855 MemoryRegionSection section = {
856 .mr = rb->mr,
857 .offset_within_region = 0,
858 .size = int128_make64(qemu_ram_get_used_length(rb)),
859 };
860
861 ram_discard_manager_replay_discarded(rdm, §ion,
862 dirty_bitmap_clear_section,
863 &cleared_bits);
864 }
865 return cleared_bits;
866 }
867
868 /*
869 * Check if a host-page aligned page falls into a discarded range as managed by
870 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
871 *
872 * Note: The result is only stable while migrating (precopy/postcopy).
873 */
ramblock_page_is_discarded(RAMBlock * rb,ram_addr_t start)874 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
875 {
876 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
877 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
878 MemoryRegionSection section = {
879 .mr = rb->mr,
880 .offset_within_region = start,
881 .size = int128_make64(qemu_ram_pagesize(rb)),
882 };
883
884 return !ram_discard_manager_is_populated(rdm, §ion);
885 }
886 return false;
887 }
888
889 /* Called with RCU critical section */
ramblock_sync_dirty_bitmap(RAMState * rs,RAMBlock * rb)890 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
891 {
892 uint64_t new_dirty_pages =
893 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
894
895 rs->migration_dirty_pages += new_dirty_pages;
896 rs->num_dirty_pages_period += new_dirty_pages;
897 }
898
899 /**
900 * ram_pagesize_summary: calculate all the pagesizes of a VM
901 *
902 * Returns a summary bitmap of the page sizes of all RAMBlocks
903 *
904 * For VMs with just normal pages this is equivalent to the host page
905 * size. If it's got some huge pages then it's the OR of all the
906 * different page sizes.
907 */
ram_pagesize_summary(void)908 uint64_t ram_pagesize_summary(void)
909 {
910 RAMBlock *block;
911 uint64_t summary = 0;
912
913 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
914 summary |= block->page_size;
915 }
916
917 return summary;
918 }
919
ram_get_total_transferred_pages(void)920 uint64_t ram_get_total_transferred_pages(void)
921 {
922 return stat64_get(&mig_stats.normal_pages) +
923 stat64_get(&mig_stats.zero_pages) +
924 xbzrle_counters.pages;
925 }
926
migration_update_rates(RAMState * rs,int64_t end_time)927 static void migration_update_rates(RAMState *rs, int64_t end_time)
928 {
929 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
930
931 /* calculate period counters */
932 stat64_set(&mig_stats.dirty_pages_rate,
933 rs->num_dirty_pages_period * 1000 /
934 (end_time - rs->time_last_bitmap_sync));
935
936 if (!page_count) {
937 return;
938 }
939
940 if (migrate_xbzrle()) {
941 double encoded_size, unencoded_size;
942
943 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
944 rs->xbzrle_cache_miss_prev) / page_count;
945 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
946 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
947 TARGET_PAGE_SIZE;
948 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
949 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
950 xbzrle_counters.encoding_rate = 0;
951 } else {
952 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
953 }
954 rs->xbzrle_pages_prev = xbzrle_counters.pages;
955 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
956 }
957 }
958
959 /*
960 * Enable dirty-limit to throttle down the guest
961 */
migration_dirty_limit_guest(void)962 static void migration_dirty_limit_guest(void)
963 {
964 /*
965 * dirty page rate quota for all vCPUs fetched from
966 * migration parameter 'vcpu_dirty_limit'
967 */
968 static int64_t quota_dirtyrate;
969 MigrationState *s = migrate_get_current();
970
971 /*
972 * If dirty limit already enabled and migration parameter
973 * vcpu-dirty-limit untouched.
974 */
975 if (dirtylimit_in_service() &&
976 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
977 return;
978 }
979
980 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
981
982 /*
983 * Set all vCPU a quota dirtyrate, note that the second
984 * parameter will be ignored if setting all vCPU for the vm
985 */
986 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
987 trace_migration_dirty_limit_guest(quota_dirtyrate);
988 }
989
migration_trigger_throttle(RAMState * rs)990 static void migration_trigger_throttle(RAMState *rs)
991 {
992 uint64_t threshold = migrate_throttle_trigger_threshold();
993 uint64_t bytes_xfer_period =
994 migration_transferred_bytes() - rs->bytes_xfer_prev;
995 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
996 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
997
998 /*
999 * The following detection logic can be refined later. For now:
1000 * Check to see if the ratio between dirtied bytes and the approx.
1001 * amount of bytes that just got transferred since the last time
1002 * we were in this routine reaches the threshold. If that happens
1003 * twice, start or increase throttling.
1004 */
1005 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1006 (++rs->dirty_rate_high_cnt >= 2)) {
1007 rs->dirty_rate_high_cnt = 0;
1008 if (migrate_auto_converge()) {
1009 trace_migration_throttle();
1010 mig_throttle_guest_down(bytes_dirty_period,
1011 bytes_dirty_threshold);
1012 } else if (migrate_dirty_limit()) {
1013 migration_dirty_limit_guest();
1014 }
1015 }
1016 }
1017
migration_bitmap_sync(RAMState * rs,bool last_stage)1018 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1019 {
1020 RAMBlock *block;
1021 int64_t end_time;
1022
1023 stat64_add(&mig_stats.dirty_sync_count, 1);
1024
1025 if (!rs->time_last_bitmap_sync) {
1026 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1027 }
1028
1029 trace_migration_bitmap_sync_start();
1030 memory_global_dirty_log_sync(last_stage);
1031
1032 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
1033 WITH_RCU_READ_LOCK_GUARD() {
1034 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1035 ramblock_sync_dirty_bitmap(rs, block);
1036 }
1037 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1038 }
1039 }
1040
1041 memory_global_after_dirty_log_sync();
1042 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1043
1044 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1045
1046 /* more than 1 second = 1000 millisecons */
1047 if (end_time > rs->time_last_bitmap_sync + 1000) {
1048 migration_trigger_throttle(rs);
1049
1050 migration_update_rates(rs, end_time);
1051
1052 rs->target_page_count_prev = rs->target_page_count;
1053
1054 /* reset period counters */
1055 rs->time_last_bitmap_sync = end_time;
1056 rs->num_dirty_pages_period = 0;
1057 rs->bytes_xfer_prev = migration_transferred_bytes();
1058 }
1059 if (migrate_events()) {
1060 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1061 qapi_event_send_migration_pass(generation);
1062 }
1063 }
1064
migration_bitmap_sync_precopy(bool last_stage)1065 void migration_bitmap_sync_precopy(bool last_stage)
1066 {
1067 Error *local_err = NULL;
1068 assert(ram_state);
1069
1070 /*
1071 * The current notifier usage is just an optimization to migration, so we
1072 * don't stop the normal migration process in the error case.
1073 */
1074 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1075 error_report_err(local_err);
1076 local_err = NULL;
1077 }
1078
1079 migration_bitmap_sync(ram_state, last_stage);
1080
1081 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1082 error_report_err(local_err);
1083 }
1084 }
1085
ram_release_page(const char * rbname,uint64_t offset)1086 void ram_release_page(const char *rbname, uint64_t offset)
1087 {
1088 if (!migrate_release_ram() || !migration_in_postcopy()) {
1089 return;
1090 }
1091
1092 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1093 }
1094
1095 /**
1096 * save_zero_page: send the zero page to the stream
1097 *
1098 * Returns the number of pages written.
1099 *
1100 * @rs: current RAM state
1101 * @pss: current PSS channel
1102 * @offset: offset inside the block for the page
1103 */
save_zero_page(RAMState * rs,PageSearchStatus * pss,ram_addr_t offset)1104 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1105 ram_addr_t offset)
1106 {
1107 uint8_t *p = pss->block->host + offset;
1108 QEMUFile *file = pss->pss_channel;
1109 int len = 0;
1110
1111 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1112 return 0;
1113 }
1114
1115 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1116 return 0;
1117 }
1118
1119 stat64_add(&mig_stats.zero_pages, 1);
1120
1121 if (migrate_mapped_ram()) {
1122 /* zero pages are not transferred with mapped-ram */
1123 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1124 return 1;
1125 }
1126
1127 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1128 qemu_put_byte(file, 0);
1129 len += 1;
1130 ram_release_page(pss->block->idstr, offset);
1131 ram_transferred_add(len);
1132
1133 /*
1134 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1135 * page would be stale.
1136 */
1137 if (rs->xbzrle_started) {
1138 XBZRLE_cache_lock();
1139 xbzrle_cache_zero_page(pss->block->offset + offset);
1140 XBZRLE_cache_unlock();
1141 }
1142
1143 return len;
1144 }
1145
1146 /*
1147 * @pages: the number of pages written by the control path,
1148 * < 0 - error
1149 * > 0 - number of pages written
1150 *
1151 * Return true if the pages has been saved, otherwise false is returned.
1152 */
control_save_page(PageSearchStatus * pss,ram_addr_t offset,int * pages)1153 static bool control_save_page(PageSearchStatus *pss,
1154 ram_addr_t offset, int *pages)
1155 {
1156 int ret;
1157
1158 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1159 TARGET_PAGE_SIZE);
1160 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1161 return false;
1162 }
1163
1164 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1165 *pages = 1;
1166 return true;
1167 }
1168 *pages = ret;
1169 return true;
1170 }
1171
1172 /*
1173 * directly send the page to the stream
1174 *
1175 * Returns the number of pages written.
1176 *
1177 * @pss: current PSS channel
1178 * @block: block that contains the page we want to send
1179 * @offset: offset inside the block for the page
1180 * @buf: the page to be sent
1181 * @async: send to page asyncly
1182 */
save_normal_page(PageSearchStatus * pss,RAMBlock * block,ram_addr_t offset,uint8_t * buf,bool async)1183 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1184 ram_addr_t offset, uint8_t *buf, bool async)
1185 {
1186 QEMUFile *file = pss->pss_channel;
1187
1188 if (migrate_mapped_ram()) {
1189 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1190 block->pages_offset + offset);
1191 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1192 } else {
1193 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1194 offset | RAM_SAVE_FLAG_PAGE));
1195 if (async) {
1196 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1197 migrate_release_ram() &&
1198 migration_in_postcopy());
1199 } else {
1200 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1201 }
1202 }
1203 ram_transferred_add(TARGET_PAGE_SIZE);
1204 stat64_add(&mig_stats.normal_pages, 1);
1205 return 1;
1206 }
1207
1208 /**
1209 * ram_save_page: send the given page to the stream
1210 *
1211 * Returns the number of pages written.
1212 * < 0 - error
1213 * >=0 - Number of pages written - this might legally be 0
1214 * if xbzrle noticed the page was the same.
1215 *
1216 * @rs: current RAM state
1217 * @block: block that contains the page we want to send
1218 * @offset: offset inside the block for the page
1219 */
ram_save_page(RAMState * rs,PageSearchStatus * pss)1220 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1221 {
1222 int pages = -1;
1223 uint8_t *p;
1224 bool send_async = true;
1225 RAMBlock *block = pss->block;
1226 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1227 ram_addr_t current_addr = block->offset + offset;
1228
1229 p = block->host + offset;
1230 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1231
1232 XBZRLE_cache_lock();
1233 if (rs->xbzrle_started && !migration_in_postcopy()) {
1234 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1235 block, offset);
1236 if (!rs->last_stage) {
1237 /* Can't send this cached data async, since the cache page
1238 * might get updated before it gets to the wire
1239 */
1240 send_async = false;
1241 }
1242 }
1243
1244 /* XBZRLE overflow or normal page */
1245 if (pages == -1) {
1246 pages = save_normal_page(pss, block, offset, p, send_async);
1247 }
1248
1249 XBZRLE_cache_unlock();
1250
1251 return pages;
1252 }
1253
ram_save_multifd_page(RAMBlock * block,ram_addr_t offset)1254 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1255 {
1256 if (!multifd_queue_page(block, offset)) {
1257 return -1;
1258 }
1259
1260 return 1;
1261 }
1262
1263
1264 #define PAGE_ALL_CLEAN 0
1265 #define PAGE_TRY_AGAIN 1
1266 #define PAGE_DIRTY_FOUND 2
1267 /**
1268 * find_dirty_block: find the next dirty page and update any state
1269 * associated with the search process.
1270 *
1271 * Returns:
1272 * <0: An error happened
1273 * PAGE_ALL_CLEAN: no dirty page found, give up
1274 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1275 * PAGE_DIRTY_FOUND: dirty page found
1276 *
1277 * @rs: current RAM state
1278 * @pss: data about the state of the current dirty page scan
1279 * @again: set to false if the search has scanned the whole of RAM
1280 */
find_dirty_block(RAMState * rs,PageSearchStatus * pss)1281 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1282 {
1283 /* Update pss->page for the next dirty bit in ramblock */
1284 pss_find_next_dirty(pss);
1285
1286 if (pss->complete_round && pss->block == rs->last_seen_block &&
1287 pss->page >= rs->last_page) {
1288 /*
1289 * We've been once around the RAM and haven't found anything.
1290 * Give up.
1291 */
1292 return PAGE_ALL_CLEAN;
1293 }
1294 if (!offset_in_ramblock(pss->block,
1295 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1296 /* Didn't find anything in this RAM Block */
1297 pss->page = 0;
1298 pss->block = QLIST_NEXT_RCU(pss->block, next);
1299 if (!pss->block) {
1300 if (multifd_ram_sync_per_round()) {
1301 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1302 int ret = multifd_ram_flush_and_sync(f);
1303 if (ret < 0) {
1304 return ret;
1305 }
1306 }
1307
1308 /* Hit the end of the list */
1309 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1310 /* Flag that we've looped */
1311 pss->complete_round = true;
1312 /* After the first round, enable XBZRLE. */
1313 if (migrate_xbzrle()) {
1314 rs->xbzrle_started = true;
1315 }
1316 }
1317 /* Didn't find anything this time, but try again on the new block */
1318 return PAGE_TRY_AGAIN;
1319 } else {
1320 /* We've found something */
1321 return PAGE_DIRTY_FOUND;
1322 }
1323 }
1324
1325 /**
1326 * unqueue_page: gets a page of the queue
1327 *
1328 * Helper for 'get_queued_page' - gets a page off the queue
1329 *
1330 * Returns the block of the page (or NULL if none available)
1331 *
1332 * @rs: current RAM state
1333 * @offset: used to return the offset within the RAMBlock
1334 */
unqueue_page(RAMState * rs,ram_addr_t * offset)1335 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1336 {
1337 struct RAMSrcPageRequest *entry;
1338 RAMBlock *block = NULL;
1339
1340 if (!postcopy_has_request(rs)) {
1341 return NULL;
1342 }
1343
1344 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1345
1346 /*
1347 * This should _never_ change even after we take the lock, because no one
1348 * should be taking anything off the request list other than us.
1349 */
1350 assert(postcopy_has_request(rs));
1351
1352 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1353 block = entry->rb;
1354 *offset = entry->offset;
1355
1356 if (entry->len > TARGET_PAGE_SIZE) {
1357 entry->len -= TARGET_PAGE_SIZE;
1358 entry->offset += TARGET_PAGE_SIZE;
1359 } else {
1360 memory_region_unref(block->mr);
1361 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1362 g_free(entry);
1363 migration_consume_urgent_request();
1364 }
1365
1366 return block;
1367 }
1368
1369 #if defined(__linux__)
1370 /**
1371 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1372 * is found, return RAM block pointer and page offset
1373 *
1374 * Returns pointer to the RAMBlock containing faulting page,
1375 * NULL if no write faults are pending
1376 *
1377 * @rs: current RAM state
1378 * @offset: page offset from the beginning of the block
1379 */
poll_fault_page(RAMState * rs,ram_addr_t * offset)1380 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1381 {
1382 struct uffd_msg uffd_msg;
1383 void *page_address;
1384 RAMBlock *block;
1385 int res;
1386
1387 if (!migrate_background_snapshot()) {
1388 return NULL;
1389 }
1390
1391 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1392 if (res <= 0) {
1393 return NULL;
1394 }
1395
1396 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1397 block = qemu_ram_block_from_host(page_address, false, offset);
1398 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1399 return block;
1400 }
1401
1402 /**
1403 * ram_save_release_protection: release UFFD write protection after
1404 * a range of pages has been saved
1405 *
1406 * @rs: current RAM state
1407 * @pss: page-search-status structure
1408 * @start_page: index of the first page in the range relative to pss->block
1409 *
1410 * Returns 0 on success, negative value in case of an error
1411 */
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1412 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1413 unsigned long start_page)
1414 {
1415 int res = 0;
1416
1417 /* Check if page is from UFFD-managed region. */
1418 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1419 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1420 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1421
1422 /* Flush async buffers before un-protect. */
1423 qemu_fflush(pss->pss_channel);
1424 /* Un-protect memory range. */
1425 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1426 false, false);
1427 }
1428
1429 return res;
1430 }
1431
1432 /* ram_write_tracking_available: check if kernel supports required UFFD features
1433 *
1434 * Returns true if supports, false otherwise
1435 */
ram_write_tracking_available(void)1436 bool ram_write_tracking_available(void)
1437 {
1438 uint64_t uffd_features;
1439 int res;
1440
1441 res = uffd_query_features(&uffd_features);
1442 return (res == 0 &&
1443 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1444 }
1445
1446 /* ram_write_tracking_compatible: check if guest configuration is
1447 * compatible with 'write-tracking'
1448 *
1449 * Returns true if compatible, false otherwise
1450 */
ram_write_tracking_compatible(void)1451 bool ram_write_tracking_compatible(void)
1452 {
1453 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1454 int uffd_fd;
1455 RAMBlock *block;
1456 bool ret = false;
1457
1458 /* Open UFFD file descriptor */
1459 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1460 if (uffd_fd < 0) {
1461 return false;
1462 }
1463
1464 RCU_READ_LOCK_GUARD();
1465
1466 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1467 uint64_t uffd_ioctls;
1468
1469 /* Nothing to do with read-only and MMIO-writable regions */
1470 if (block->mr->readonly || block->mr->rom_device) {
1471 continue;
1472 }
1473 /* Try to register block memory via UFFD-IO to track writes */
1474 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1475 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1476 goto out;
1477 }
1478 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1479 goto out;
1480 }
1481 }
1482 ret = true;
1483
1484 out:
1485 uffd_close_fd(uffd_fd);
1486 return ret;
1487 }
1488
populate_read_range(RAMBlock * block,ram_addr_t offset,ram_addr_t size)1489 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1490 ram_addr_t size)
1491 {
1492 const ram_addr_t end = offset + size;
1493
1494 /*
1495 * We read one byte of each page; this will preallocate page tables if
1496 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1497 * where no page was populated yet. This might require adaption when
1498 * supporting other mappings, like shmem.
1499 */
1500 for (; offset < end; offset += block->page_size) {
1501 char tmp = *((char *)block->host + offset);
1502
1503 /* Don't optimize the read out */
1504 asm volatile("" : "+r" (tmp));
1505 }
1506 }
1507
populate_read_section(MemoryRegionSection * section,void * opaque)1508 static inline int populate_read_section(MemoryRegionSection *section,
1509 void *opaque)
1510 {
1511 const hwaddr size = int128_get64(section->size);
1512 hwaddr offset = section->offset_within_region;
1513 RAMBlock *block = section->mr->ram_block;
1514
1515 populate_read_range(block, offset, size);
1516 return 0;
1517 }
1518
1519 /*
1520 * ram_block_populate_read: preallocate page tables and populate pages in the
1521 * RAM block by reading a byte of each page.
1522 *
1523 * Since it's solely used for userfault_fd WP feature, here we just
1524 * hardcode page size to qemu_real_host_page_size.
1525 *
1526 * @block: RAM block to populate
1527 */
ram_block_populate_read(RAMBlock * rb)1528 static void ram_block_populate_read(RAMBlock *rb)
1529 {
1530 /*
1531 * Skip populating all pages that fall into a discarded range as managed by
1532 * a RamDiscardManager responsible for the mapped memory region of the
1533 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1534 * must not get populated automatically. We don't have to track
1535 * modifications via userfaultfd WP reliably, because these pages will
1536 * not be part of the migration stream either way -- see
1537 * ramblock_dirty_bitmap_exclude_discarded_pages().
1538 *
1539 * Note: The result is only stable while migrating (precopy/postcopy).
1540 */
1541 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1542 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1543 MemoryRegionSection section = {
1544 .mr = rb->mr,
1545 .offset_within_region = 0,
1546 .size = rb->mr->size,
1547 };
1548
1549 ram_discard_manager_replay_populated(rdm, §ion,
1550 populate_read_section, NULL);
1551 } else {
1552 populate_read_range(rb, 0, rb->used_length);
1553 }
1554 }
1555
1556 /*
1557 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1558 */
ram_write_tracking_prepare(void)1559 void ram_write_tracking_prepare(void)
1560 {
1561 RAMBlock *block;
1562
1563 RCU_READ_LOCK_GUARD();
1564
1565 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1566 /* Nothing to do with read-only and MMIO-writable regions */
1567 if (block->mr->readonly || block->mr->rom_device) {
1568 continue;
1569 }
1570
1571 /*
1572 * Populate pages of the RAM block before enabling userfault_fd
1573 * write protection.
1574 *
1575 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1576 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1577 * pages with pte_none() entries in page table.
1578 */
1579 ram_block_populate_read(block);
1580 }
1581 }
1582
uffd_protect_section(MemoryRegionSection * section,void * opaque)1583 static inline int uffd_protect_section(MemoryRegionSection *section,
1584 void *opaque)
1585 {
1586 const hwaddr size = int128_get64(section->size);
1587 const hwaddr offset = section->offset_within_region;
1588 RAMBlock *rb = section->mr->ram_block;
1589 int uffd_fd = (uintptr_t)opaque;
1590
1591 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1592 false);
1593 }
1594
ram_block_uffd_protect(RAMBlock * rb,int uffd_fd)1595 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1596 {
1597 assert(rb->flags & RAM_UF_WRITEPROTECT);
1598
1599 /* See ram_block_populate_read() */
1600 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1601 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1602 MemoryRegionSection section = {
1603 .mr = rb->mr,
1604 .offset_within_region = 0,
1605 .size = rb->mr->size,
1606 };
1607
1608 return ram_discard_manager_replay_populated(rdm, §ion,
1609 uffd_protect_section,
1610 (void *)(uintptr_t)uffd_fd);
1611 }
1612 return uffd_change_protection(uffd_fd, rb->host,
1613 rb->used_length, true, false);
1614 }
1615
1616 /*
1617 * ram_write_tracking_start: start UFFD-WP memory tracking
1618 *
1619 * Returns 0 for success or negative value in case of error
1620 */
ram_write_tracking_start(void)1621 int ram_write_tracking_start(void)
1622 {
1623 int uffd_fd;
1624 RAMState *rs = ram_state;
1625 RAMBlock *block;
1626
1627 /* Open UFFD file descriptor */
1628 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1629 if (uffd_fd < 0) {
1630 return uffd_fd;
1631 }
1632 rs->uffdio_fd = uffd_fd;
1633
1634 RCU_READ_LOCK_GUARD();
1635
1636 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1637 /* Nothing to do with read-only and MMIO-writable regions */
1638 if (block->mr->readonly || block->mr->rom_device) {
1639 continue;
1640 }
1641
1642 /* Register block memory with UFFD to track writes */
1643 if (uffd_register_memory(rs->uffdio_fd, block->host,
1644 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1645 goto fail;
1646 }
1647 block->flags |= RAM_UF_WRITEPROTECT;
1648 memory_region_ref(block->mr);
1649
1650 /* Apply UFFD write protection to the block memory range */
1651 if (ram_block_uffd_protect(block, uffd_fd)) {
1652 goto fail;
1653 }
1654
1655 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1656 block->host, block->max_length);
1657 }
1658
1659 return 0;
1660
1661 fail:
1662 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1663
1664 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1665 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1666 continue;
1667 }
1668 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1669 /* Cleanup flags and remove reference */
1670 block->flags &= ~RAM_UF_WRITEPROTECT;
1671 memory_region_unref(block->mr);
1672 }
1673
1674 uffd_close_fd(uffd_fd);
1675 rs->uffdio_fd = -1;
1676 return -1;
1677 }
1678
1679 /**
1680 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1681 */
ram_write_tracking_stop(void)1682 void ram_write_tracking_stop(void)
1683 {
1684 RAMState *rs = ram_state;
1685 RAMBlock *block;
1686
1687 RCU_READ_LOCK_GUARD();
1688
1689 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1690 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1691 continue;
1692 }
1693 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1694
1695 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1696 block->host, block->max_length);
1697
1698 /* Cleanup flags and remove reference */
1699 block->flags &= ~RAM_UF_WRITEPROTECT;
1700 memory_region_unref(block->mr);
1701 }
1702
1703 /* Finally close UFFD file descriptor */
1704 uffd_close_fd(rs->uffdio_fd);
1705 rs->uffdio_fd = -1;
1706 }
1707
1708 #else
1709 /* No target OS support, stubs just fail or ignore */
1710
poll_fault_page(RAMState * rs,ram_addr_t * offset)1711 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1712 {
1713 (void) rs;
1714 (void) offset;
1715
1716 return NULL;
1717 }
1718
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1719 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1720 unsigned long start_page)
1721 {
1722 (void) rs;
1723 (void) pss;
1724 (void) start_page;
1725
1726 return 0;
1727 }
1728
ram_write_tracking_available(void)1729 bool ram_write_tracking_available(void)
1730 {
1731 return false;
1732 }
1733
ram_write_tracking_compatible(void)1734 bool ram_write_tracking_compatible(void)
1735 {
1736 g_assert_not_reached();
1737 }
1738
ram_write_tracking_start(void)1739 int ram_write_tracking_start(void)
1740 {
1741 g_assert_not_reached();
1742 }
1743
ram_write_tracking_stop(void)1744 void ram_write_tracking_stop(void)
1745 {
1746 g_assert_not_reached();
1747 }
1748 #endif /* defined(__linux__) */
1749
1750 /**
1751 * get_queued_page: unqueue a page from the postcopy requests
1752 *
1753 * Skips pages that are already sent (!dirty)
1754 *
1755 * Returns true if a queued page is found
1756 *
1757 * @rs: current RAM state
1758 * @pss: data about the state of the current dirty page scan
1759 */
get_queued_page(RAMState * rs,PageSearchStatus * pss)1760 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1761 {
1762 RAMBlock *block;
1763 ram_addr_t offset;
1764 bool dirty = false;
1765
1766 do {
1767 block = unqueue_page(rs, &offset);
1768 /*
1769 * We're sending this page, and since it's postcopy nothing else
1770 * will dirty it, and we must make sure it doesn't get sent again
1771 * even if this queue request was received after the background
1772 * search already sent it.
1773 */
1774 if (block) {
1775 unsigned long page;
1776
1777 page = offset >> TARGET_PAGE_BITS;
1778 dirty = test_bit(page, block->bmap);
1779 if (!dirty) {
1780 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1781 page);
1782 } else {
1783 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1784 }
1785 }
1786
1787 } while (block && !dirty);
1788
1789 if (!block) {
1790 /*
1791 * Poll write faults too if background snapshot is enabled; that's
1792 * when we have vcpus got blocked by the write protected pages.
1793 */
1794 block = poll_fault_page(rs, &offset);
1795 }
1796
1797 if (block) {
1798 /*
1799 * We want the background search to continue from the queued page
1800 * since the guest is likely to want other pages near to the page
1801 * it just requested.
1802 */
1803 pss->block = block;
1804 pss->page = offset >> TARGET_PAGE_BITS;
1805
1806 /*
1807 * This unqueued page would break the "one round" check, even is
1808 * really rare.
1809 */
1810 pss->complete_round = false;
1811 }
1812
1813 return !!block;
1814 }
1815
1816 /**
1817 * migration_page_queue_free: drop any remaining pages in the ram
1818 * request queue
1819 *
1820 * It should be empty at the end anyway, but in error cases there may
1821 * be some left. in case that there is any page left, we drop it.
1822 *
1823 */
migration_page_queue_free(RAMState * rs)1824 static void migration_page_queue_free(RAMState *rs)
1825 {
1826 struct RAMSrcPageRequest *mspr, *next_mspr;
1827 /* This queue generally should be empty - but in the case of a failed
1828 * migration might have some droppings in.
1829 */
1830 RCU_READ_LOCK_GUARD();
1831 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1832 memory_region_unref(mspr->rb->mr);
1833 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1834 g_free(mspr);
1835 }
1836 }
1837
1838 /**
1839 * ram_save_queue_pages: queue the page for transmission
1840 *
1841 * A request from postcopy destination for example.
1842 *
1843 * Returns zero on success or negative on error
1844 *
1845 * @rbname: Name of the RAMBLock of the request. NULL means the
1846 * same that last one.
1847 * @start: starting address from the start of the RAMBlock
1848 * @len: length (in bytes) to send
1849 */
ram_save_queue_pages(const char * rbname,ram_addr_t start,ram_addr_t len,Error ** errp)1850 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1851 Error **errp)
1852 {
1853 RAMBlock *ramblock;
1854 RAMState *rs = ram_state;
1855
1856 stat64_add(&mig_stats.postcopy_requests, 1);
1857 RCU_READ_LOCK_GUARD();
1858
1859 if (!rbname) {
1860 /* Reuse last RAMBlock */
1861 ramblock = rs->last_req_rb;
1862
1863 if (!ramblock) {
1864 /*
1865 * Shouldn't happen, we can't reuse the last RAMBlock if
1866 * it's the 1st request.
1867 */
1868 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1869 return -1;
1870 }
1871 } else {
1872 ramblock = qemu_ram_block_by_name(rbname);
1873
1874 if (!ramblock) {
1875 /* We shouldn't be asked for a non-existent RAMBlock */
1876 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1877 return -1;
1878 }
1879 rs->last_req_rb = ramblock;
1880 }
1881 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1882 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1883 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1884 "start=" RAM_ADDR_FMT " len="
1885 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1886 start, len, ramblock->used_length);
1887 return -1;
1888 }
1889
1890 /*
1891 * When with postcopy preempt, we send back the page directly in the
1892 * rp-return thread.
1893 */
1894 if (postcopy_preempt_active()) {
1895 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1896 size_t page_size = qemu_ram_pagesize(ramblock);
1897 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1898 int ret = 0;
1899
1900 qemu_mutex_lock(&rs->bitmap_mutex);
1901
1902 pss_init(pss, ramblock, page_start);
1903 /*
1904 * Always use the preempt channel, and make sure it's there. It's
1905 * safe to access without lock, because when rp-thread is running
1906 * we should be the only one who operates on the qemufile
1907 */
1908 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1909 assert(pss->pss_channel);
1910
1911 /*
1912 * It must be either one or multiple of host page size. Just
1913 * assert; if something wrong we're mostly split brain anyway.
1914 */
1915 assert(len % page_size == 0);
1916 while (len) {
1917 if (ram_save_host_page_urgent(pss)) {
1918 error_setg(errp, "ram_save_host_page_urgent() failed: "
1919 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1920 ramblock->idstr, start);
1921 ret = -1;
1922 break;
1923 }
1924 /*
1925 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1926 * will automatically be moved and point to the next host page
1927 * we're going to send, so no need to update here.
1928 *
1929 * Normally QEMU never sends >1 host page in requests, so
1930 * logically we don't even need that as the loop should only
1931 * run once, but just to be consistent.
1932 */
1933 len -= page_size;
1934 };
1935 qemu_mutex_unlock(&rs->bitmap_mutex);
1936
1937 return ret;
1938 }
1939
1940 struct RAMSrcPageRequest *new_entry =
1941 g_new0(struct RAMSrcPageRequest, 1);
1942 new_entry->rb = ramblock;
1943 new_entry->offset = start;
1944 new_entry->len = len;
1945
1946 memory_region_ref(ramblock->mr);
1947 qemu_mutex_lock(&rs->src_page_req_mutex);
1948 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1949 migration_make_urgent_request();
1950 qemu_mutex_unlock(&rs->src_page_req_mutex);
1951
1952 return 0;
1953 }
1954
1955 /**
1956 * ram_save_target_page: save one target page to the precopy thread
1957 * OR to multifd workers.
1958 *
1959 * @rs: current RAM state
1960 * @pss: data about the page we want to send
1961 */
ram_save_target_page(RAMState * rs,PageSearchStatus * pss)1962 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
1963 {
1964 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1965 int res;
1966
1967 /* Hand over to RDMA first */
1968 if (control_save_page(pss, offset, &res)) {
1969 return res;
1970 }
1971
1972 if (!migrate_multifd()
1973 || migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
1974 if (save_zero_page(rs, pss, offset)) {
1975 return 1;
1976 }
1977 }
1978
1979 if (migrate_multifd()) {
1980 RAMBlock *block = pss->block;
1981 return ram_save_multifd_page(block, offset);
1982 }
1983
1984 return ram_save_page(rs, pss);
1985 }
1986
1987 /* Should be called before sending a host page */
pss_host_page_prepare(PageSearchStatus * pss)1988 static void pss_host_page_prepare(PageSearchStatus *pss)
1989 {
1990 /* How many guest pages are there in one host page? */
1991 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
1992
1993 pss->host_page_sending = true;
1994 if (guest_pfns <= 1) {
1995 /*
1996 * This covers both when guest psize == host psize, or when guest
1997 * has larger psize than the host (guest_pfns==0).
1998 *
1999 * For the latter, we always send one whole guest page per
2000 * iteration of the host page (example: an Alpha VM on x86 host
2001 * will have guest psize 8K while host psize 4K).
2002 */
2003 pss->host_page_start = pss->page;
2004 pss->host_page_end = pss->page + 1;
2005 } else {
2006 /*
2007 * The host page spans over multiple guest pages, we send them
2008 * within the same host page iteration.
2009 */
2010 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2011 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2012 }
2013 }
2014
2015 /*
2016 * Whether the page pointed by PSS is within the host page being sent.
2017 * Must be called after a previous pss_host_page_prepare().
2018 */
pss_within_range(PageSearchStatus * pss)2019 static bool pss_within_range(PageSearchStatus *pss)
2020 {
2021 ram_addr_t ram_addr;
2022
2023 assert(pss->host_page_sending);
2024
2025 /* Over host-page boundary? */
2026 if (pss->page >= pss->host_page_end) {
2027 return false;
2028 }
2029
2030 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2031
2032 return offset_in_ramblock(pss->block, ram_addr);
2033 }
2034
pss_host_page_finish(PageSearchStatus * pss)2035 static void pss_host_page_finish(PageSearchStatus *pss)
2036 {
2037 pss->host_page_sending = false;
2038 /* This is not needed, but just to reset it */
2039 pss->host_page_start = pss->host_page_end = 0;
2040 }
2041
2042 /*
2043 * Send an urgent host page specified by `pss'. Need to be called with
2044 * bitmap_mutex held.
2045 *
2046 * Returns 0 if save host page succeeded, false otherwise.
2047 */
ram_save_host_page_urgent(PageSearchStatus * pss)2048 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2049 {
2050 bool page_dirty, sent = false;
2051 RAMState *rs = ram_state;
2052 int ret = 0;
2053
2054 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2055 pss_host_page_prepare(pss);
2056
2057 /*
2058 * If precopy is sending the same page, let it be done in precopy, or
2059 * we could send the same page in two channels and none of them will
2060 * receive the whole page.
2061 */
2062 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2063 trace_postcopy_preempt_hit(pss->block->idstr,
2064 pss->page << TARGET_PAGE_BITS);
2065 return 0;
2066 }
2067
2068 do {
2069 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2070
2071 if (page_dirty) {
2072 /* Be strict to return code; it must be 1, or what else? */
2073 if (ram_save_target_page(rs, pss) != 1) {
2074 error_report_once("%s: ram_save_target_page failed", __func__);
2075 ret = -1;
2076 goto out;
2077 }
2078 sent = true;
2079 }
2080 pss_find_next_dirty(pss);
2081 } while (pss_within_range(pss));
2082 out:
2083 pss_host_page_finish(pss);
2084 /* For urgent requests, flush immediately if sent */
2085 if (sent) {
2086 qemu_fflush(pss->pss_channel);
2087 }
2088 return ret;
2089 }
2090
2091 /**
2092 * ram_save_host_page: save a whole host page
2093 *
2094 * Starting at *offset send pages up to the end of the current host
2095 * page. It's valid for the initial offset to point into the middle of
2096 * a host page in which case the remainder of the hostpage is sent.
2097 * Only dirty target pages are sent. Note that the host page size may
2098 * be a huge page for this block.
2099 *
2100 * The saving stops at the boundary of the used_length of the block
2101 * if the RAMBlock isn't a multiple of the host page size.
2102 *
2103 * The caller must be with ram_state.bitmap_mutex held to call this
2104 * function. Note that this function can temporarily release the lock, but
2105 * when the function is returned it'll make sure the lock is still held.
2106 *
2107 * Returns the number of pages written or negative on error
2108 *
2109 * @rs: current RAM state
2110 * @pss: data about the page we want to send
2111 */
ram_save_host_page(RAMState * rs,PageSearchStatus * pss)2112 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2113 {
2114 bool page_dirty, preempt_active = postcopy_preempt_active();
2115 int tmppages, pages = 0;
2116 size_t pagesize_bits =
2117 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2118 unsigned long start_page = pss->page;
2119 int res;
2120
2121 if (migrate_ram_is_ignored(pss->block)) {
2122 error_report("block %s should not be migrated !", pss->block->idstr);
2123 return 0;
2124 }
2125
2126 /* Update host page boundary information */
2127 pss_host_page_prepare(pss);
2128
2129 do {
2130 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2131
2132 /* Check the pages is dirty and if it is send it */
2133 if (page_dirty) {
2134 /*
2135 * Properly yield the lock only in postcopy preempt mode
2136 * because both migration thread and rp-return thread can
2137 * operate on the bitmaps.
2138 */
2139 if (preempt_active) {
2140 qemu_mutex_unlock(&rs->bitmap_mutex);
2141 }
2142 tmppages = ram_save_target_page(rs, pss);
2143 if (tmppages >= 0) {
2144 pages += tmppages;
2145 /*
2146 * Allow rate limiting to happen in the middle of huge pages if
2147 * something is sent in the current iteration.
2148 */
2149 if (pagesize_bits > 1 && tmppages > 0) {
2150 migration_rate_limit();
2151 }
2152 }
2153 if (preempt_active) {
2154 qemu_mutex_lock(&rs->bitmap_mutex);
2155 }
2156 } else {
2157 tmppages = 0;
2158 }
2159
2160 if (tmppages < 0) {
2161 pss_host_page_finish(pss);
2162 return tmppages;
2163 }
2164
2165 pss_find_next_dirty(pss);
2166 } while (pss_within_range(pss));
2167
2168 pss_host_page_finish(pss);
2169
2170 res = ram_save_release_protection(rs, pss, start_page);
2171 return (res < 0 ? res : pages);
2172 }
2173
2174 /**
2175 * ram_find_and_save_block: finds a dirty page and sends it to f
2176 *
2177 * Called within an RCU critical section.
2178 *
2179 * Returns the number of pages written where zero means no dirty pages,
2180 * or negative on error
2181 *
2182 * @rs: current RAM state
2183 *
2184 * On systems where host-page-size > target-page-size it will send all the
2185 * pages in a host page that are dirty.
2186 */
ram_find_and_save_block(RAMState * rs)2187 static int ram_find_and_save_block(RAMState *rs)
2188 {
2189 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2190 int pages = 0;
2191
2192 /* No dirty page as there is zero RAM */
2193 if (!rs->ram_bytes_total) {
2194 return pages;
2195 }
2196
2197 /*
2198 * Always keep last_seen_block/last_page valid during this procedure,
2199 * because find_dirty_block() relies on these values (e.g., we compare
2200 * last_seen_block with pss.block to see whether we searched all the
2201 * ramblocks) to detect the completion of migration. Having NULL value
2202 * of last_seen_block can conditionally cause below loop to run forever.
2203 */
2204 if (!rs->last_seen_block) {
2205 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2206 rs->last_page = 0;
2207 }
2208
2209 pss_init(pss, rs->last_seen_block, rs->last_page);
2210
2211 while (true){
2212 if (!get_queued_page(rs, pss)) {
2213 /* priority queue empty, so just search for something dirty */
2214 int res = find_dirty_block(rs, pss);
2215 if (res != PAGE_DIRTY_FOUND) {
2216 if (res == PAGE_ALL_CLEAN) {
2217 break;
2218 } else if (res == PAGE_TRY_AGAIN) {
2219 continue;
2220 } else if (res < 0) {
2221 pages = res;
2222 break;
2223 }
2224 }
2225 }
2226 pages = ram_save_host_page(rs, pss);
2227 if (pages) {
2228 break;
2229 }
2230 }
2231
2232 rs->last_seen_block = pss->block;
2233 rs->last_page = pss->page;
2234
2235 return pages;
2236 }
2237
ram_bytes_total_with_ignored(void)2238 static uint64_t ram_bytes_total_with_ignored(void)
2239 {
2240 RAMBlock *block;
2241 uint64_t total = 0;
2242
2243 RCU_READ_LOCK_GUARD();
2244
2245 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2246 total += block->used_length;
2247 }
2248 return total;
2249 }
2250
ram_bytes_total(void)2251 uint64_t ram_bytes_total(void)
2252 {
2253 RAMBlock *block;
2254 uint64_t total = 0;
2255
2256 RCU_READ_LOCK_GUARD();
2257
2258 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2259 total += block->used_length;
2260 }
2261 return total;
2262 }
2263
xbzrle_load_setup(void)2264 static void xbzrle_load_setup(void)
2265 {
2266 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2267 }
2268
xbzrle_load_cleanup(void)2269 static void xbzrle_load_cleanup(void)
2270 {
2271 g_free(XBZRLE.decoded_buf);
2272 XBZRLE.decoded_buf = NULL;
2273 }
2274
ram_state_cleanup(RAMState ** rsp)2275 static void ram_state_cleanup(RAMState **rsp)
2276 {
2277 if (*rsp) {
2278 migration_page_queue_free(*rsp);
2279 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2280 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2281 g_free(*rsp);
2282 *rsp = NULL;
2283 }
2284 }
2285
xbzrle_cleanup(void)2286 static void xbzrle_cleanup(void)
2287 {
2288 XBZRLE_cache_lock();
2289 if (XBZRLE.cache) {
2290 cache_fini(XBZRLE.cache);
2291 g_free(XBZRLE.encoded_buf);
2292 g_free(XBZRLE.current_buf);
2293 g_free(XBZRLE.zero_target_page);
2294 XBZRLE.cache = NULL;
2295 XBZRLE.encoded_buf = NULL;
2296 XBZRLE.current_buf = NULL;
2297 XBZRLE.zero_target_page = NULL;
2298 }
2299 XBZRLE_cache_unlock();
2300 }
2301
ram_bitmaps_destroy(void)2302 static void ram_bitmaps_destroy(void)
2303 {
2304 RAMBlock *block;
2305
2306 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2307 g_free(block->clear_bmap);
2308 block->clear_bmap = NULL;
2309 g_free(block->bmap);
2310 block->bmap = NULL;
2311 g_free(block->file_bmap);
2312 block->file_bmap = NULL;
2313 }
2314 }
2315
ram_save_cleanup(void * opaque)2316 static void ram_save_cleanup(void *opaque)
2317 {
2318 RAMState **rsp = opaque;
2319
2320 /* We don't use dirty log with background snapshots */
2321 if (!migrate_background_snapshot()) {
2322 /* caller have hold BQL or is in a bh, so there is
2323 * no writing race against the migration bitmap
2324 */
2325 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2326 /*
2327 * do not stop dirty log without starting it, since
2328 * memory_global_dirty_log_stop will assert that
2329 * memory_global_dirty_log_start/stop used in pairs
2330 */
2331 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2332 }
2333 }
2334
2335 ram_bitmaps_destroy();
2336
2337 xbzrle_cleanup();
2338 multifd_ram_save_cleanup();
2339 ram_state_cleanup(rsp);
2340 }
2341
ram_state_reset(RAMState * rs)2342 static void ram_state_reset(RAMState *rs)
2343 {
2344 int i;
2345
2346 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2347 rs->pss[i].last_sent_block = NULL;
2348 }
2349
2350 rs->last_seen_block = NULL;
2351 rs->last_page = 0;
2352 rs->last_version = ram_list.version;
2353 rs->xbzrle_started = false;
2354 }
2355
2356 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2357
2358 /* **** functions for postcopy ***** */
2359
ram_postcopy_migrated_memory_release(MigrationState * ms)2360 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2361 {
2362 struct RAMBlock *block;
2363
2364 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2365 unsigned long *bitmap = block->bmap;
2366 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2367 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2368
2369 while (run_start < range) {
2370 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2371 ram_discard_range(block->idstr,
2372 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2373 ((ram_addr_t)(run_end - run_start))
2374 << TARGET_PAGE_BITS);
2375 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2376 }
2377 }
2378 }
2379
2380 /**
2381 * postcopy_send_discard_bm_ram: discard a RAMBlock
2382 *
2383 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2384 *
2385 * @ms: current migration state
2386 * @block: RAMBlock to discard
2387 */
postcopy_send_discard_bm_ram(MigrationState * ms,RAMBlock * block)2388 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2389 {
2390 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2391 unsigned long current;
2392 unsigned long *bitmap = block->bmap;
2393
2394 for (current = 0; current < end; ) {
2395 unsigned long one = find_next_bit(bitmap, end, current);
2396 unsigned long zero, discard_length;
2397
2398 if (one >= end) {
2399 break;
2400 }
2401
2402 zero = find_next_zero_bit(bitmap, end, one + 1);
2403
2404 if (zero >= end) {
2405 discard_length = end - one;
2406 } else {
2407 discard_length = zero - one;
2408 }
2409 postcopy_discard_send_range(ms, one, discard_length);
2410 current = one + discard_length;
2411 }
2412 }
2413
2414 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2415
2416 /**
2417 * postcopy_each_ram_send_discard: discard all RAMBlocks
2418 *
2419 * Utility for the outgoing postcopy code.
2420 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2421 * passing it bitmap indexes and name.
2422 * (qemu_ram_foreach_block ends up passing unscaled lengths
2423 * which would mean postcopy code would have to deal with target page)
2424 *
2425 * @ms: current migration state
2426 */
postcopy_each_ram_send_discard(MigrationState * ms)2427 static void postcopy_each_ram_send_discard(MigrationState *ms)
2428 {
2429 struct RAMBlock *block;
2430
2431 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2432 postcopy_discard_send_init(ms, block->idstr);
2433
2434 /*
2435 * Deal with TPS != HPS and huge pages. It discard any partially sent
2436 * host-page size chunks, mark any partially dirty host-page size
2437 * chunks as all dirty. In this case the host-page is the host-page
2438 * for the particular RAMBlock, i.e. it might be a huge page.
2439 */
2440 postcopy_chunk_hostpages_pass(ms, block);
2441
2442 /*
2443 * Postcopy sends chunks of bitmap over the wire, but it
2444 * just needs indexes at this point, avoids it having
2445 * target page specific code.
2446 */
2447 postcopy_send_discard_bm_ram(ms, block);
2448 postcopy_discard_send_finish(ms);
2449 }
2450 }
2451
2452 /**
2453 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2454 *
2455 * Helper for postcopy_chunk_hostpages; it's called twice to
2456 * canonicalize the two bitmaps, that are similar, but one is
2457 * inverted.
2458 *
2459 * Postcopy requires that all target pages in a hostpage are dirty or
2460 * clean, not a mix. This function canonicalizes the bitmaps.
2461 *
2462 * @ms: current migration state
2463 * @block: block that contains the page we want to canonicalize
2464 */
postcopy_chunk_hostpages_pass(MigrationState * ms,RAMBlock * block)2465 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2466 {
2467 RAMState *rs = ram_state;
2468 unsigned long *bitmap = block->bmap;
2469 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2470 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2471 unsigned long run_start;
2472
2473 if (block->page_size == TARGET_PAGE_SIZE) {
2474 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2475 return;
2476 }
2477
2478 /* Find a dirty page */
2479 run_start = find_next_bit(bitmap, pages, 0);
2480
2481 while (run_start < pages) {
2482
2483 /*
2484 * If the start of this run of pages is in the middle of a host
2485 * page, then we need to fixup this host page.
2486 */
2487 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2488 /* Find the end of this run */
2489 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2490 /*
2491 * If the end isn't at the start of a host page, then the
2492 * run doesn't finish at the end of a host page
2493 * and we need to discard.
2494 */
2495 }
2496
2497 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2498 unsigned long page;
2499 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2500 host_ratio);
2501 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2502
2503 /* Clean up the bitmap */
2504 for (page = fixup_start_addr;
2505 page < fixup_start_addr + host_ratio; page++) {
2506 /*
2507 * Remark them as dirty, updating the count for any pages
2508 * that weren't previously dirty.
2509 */
2510 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2511 }
2512 }
2513
2514 /* Find the next dirty page for the next iteration */
2515 run_start = find_next_bit(bitmap, pages, run_start);
2516 }
2517 }
2518
2519 /**
2520 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2521 *
2522 * Transmit the set of pages to be discarded after precopy to the target
2523 * these are pages that:
2524 * a) Have been previously transmitted but are now dirty again
2525 * b) Pages that have never been transmitted, this ensures that
2526 * any pages on the destination that have been mapped by background
2527 * tasks get discarded (transparent huge pages is the specific concern)
2528 * Hopefully this is pretty sparse
2529 *
2530 * @ms: current migration state
2531 */
ram_postcopy_send_discard_bitmap(MigrationState * ms)2532 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2533 {
2534 RAMState *rs = ram_state;
2535
2536 RCU_READ_LOCK_GUARD();
2537
2538 /* This should be our last sync, the src is now paused */
2539 migration_bitmap_sync(rs, false);
2540
2541 /* Easiest way to make sure we don't resume in the middle of a host-page */
2542 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2543 rs->last_seen_block = NULL;
2544 rs->last_page = 0;
2545
2546 postcopy_each_ram_send_discard(ms);
2547
2548 trace_ram_postcopy_send_discard_bitmap();
2549 }
2550
2551 /**
2552 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2553 *
2554 * Returns zero on success
2555 *
2556 * @rbname: name of the RAMBlock of the request. NULL means the
2557 * same that last one.
2558 * @start: RAMBlock starting page
2559 * @length: RAMBlock size
2560 */
ram_discard_range(const char * rbname,uint64_t start,size_t length)2561 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2562 {
2563 trace_ram_discard_range(rbname, start, length);
2564
2565 RCU_READ_LOCK_GUARD();
2566 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2567
2568 if (!rb) {
2569 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2570 return -1;
2571 }
2572
2573 /*
2574 * On source VM, we don't need to update the received bitmap since
2575 * we don't even have one.
2576 */
2577 if (rb->receivedmap) {
2578 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2579 length >> qemu_target_page_bits());
2580 }
2581
2582 return ram_block_discard_range(rb, start, length);
2583 }
2584
2585 /*
2586 * For every allocation, we will try not to crash the VM if the
2587 * allocation failed.
2588 */
xbzrle_init(Error ** errp)2589 static bool xbzrle_init(Error **errp)
2590 {
2591 if (!migrate_xbzrle()) {
2592 return true;
2593 }
2594
2595 XBZRLE_cache_lock();
2596
2597 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2598 if (!XBZRLE.zero_target_page) {
2599 error_setg(errp, "%s: Error allocating zero page", __func__);
2600 goto err_out;
2601 }
2602
2603 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2604 TARGET_PAGE_SIZE, errp);
2605 if (!XBZRLE.cache) {
2606 goto free_zero_page;
2607 }
2608
2609 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2610 if (!XBZRLE.encoded_buf) {
2611 error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2612 goto free_cache;
2613 }
2614
2615 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2616 if (!XBZRLE.current_buf) {
2617 error_setg(errp, "%s: Error allocating current_buf", __func__);
2618 goto free_encoded_buf;
2619 }
2620
2621 /* We are all good */
2622 XBZRLE_cache_unlock();
2623 return true;
2624
2625 free_encoded_buf:
2626 g_free(XBZRLE.encoded_buf);
2627 XBZRLE.encoded_buf = NULL;
2628 free_cache:
2629 cache_fini(XBZRLE.cache);
2630 XBZRLE.cache = NULL;
2631 free_zero_page:
2632 g_free(XBZRLE.zero_target_page);
2633 XBZRLE.zero_target_page = NULL;
2634 err_out:
2635 XBZRLE_cache_unlock();
2636 return false;
2637 }
2638
ram_state_init(RAMState ** rsp,Error ** errp)2639 static bool ram_state_init(RAMState **rsp, Error **errp)
2640 {
2641 *rsp = g_try_new0(RAMState, 1);
2642
2643 if (!*rsp) {
2644 error_setg(errp, "%s: Init ramstate fail", __func__);
2645 return false;
2646 }
2647
2648 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2649 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2650 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2651 (*rsp)->ram_bytes_total = ram_bytes_total();
2652
2653 /*
2654 * Count the total number of pages used by ram blocks not including any
2655 * gaps due to alignment or unplugs.
2656 * This must match with the initial values of dirty bitmap.
2657 */
2658 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2659 ram_state_reset(*rsp);
2660
2661 return true;
2662 }
2663
ram_list_init_bitmaps(void)2664 static void ram_list_init_bitmaps(void)
2665 {
2666 MigrationState *ms = migrate_get_current();
2667 RAMBlock *block;
2668 unsigned long pages;
2669 uint8_t shift;
2670
2671 /* Skip setting bitmap if there is no RAM */
2672 if (ram_bytes_total()) {
2673 shift = ms->clear_bitmap_shift;
2674 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2675 error_report("clear_bitmap_shift (%u) too big, using "
2676 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2677 shift = CLEAR_BITMAP_SHIFT_MAX;
2678 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2679 error_report("clear_bitmap_shift (%u) too small, using "
2680 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2681 shift = CLEAR_BITMAP_SHIFT_MIN;
2682 }
2683
2684 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2685 pages = block->max_length >> TARGET_PAGE_BITS;
2686 /*
2687 * The initial dirty bitmap for migration must be set with all
2688 * ones to make sure we'll migrate every guest RAM page to
2689 * destination.
2690 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2691 * new migration after a failed migration, ram_list.
2692 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2693 * guest memory.
2694 */
2695 block->bmap = bitmap_new(pages);
2696 bitmap_set(block->bmap, 0, pages);
2697 if (migrate_mapped_ram()) {
2698 block->file_bmap = bitmap_new(pages);
2699 }
2700 block->clear_bmap_shift = shift;
2701 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2702 }
2703 }
2704 }
2705
migration_bitmap_clear_discarded_pages(RAMState * rs)2706 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2707 {
2708 unsigned long pages;
2709 RAMBlock *rb;
2710
2711 RCU_READ_LOCK_GUARD();
2712
2713 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2714 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2715 rs->migration_dirty_pages -= pages;
2716 }
2717 }
2718
ram_init_bitmaps(RAMState * rs,Error ** errp)2719 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2720 {
2721 bool ret = true;
2722
2723 qemu_mutex_lock_ramlist();
2724
2725 WITH_RCU_READ_LOCK_GUARD() {
2726 ram_list_init_bitmaps();
2727 /* We don't use dirty log with background snapshots */
2728 if (!migrate_background_snapshot()) {
2729 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2730 if (!ret) {
2731 goto out_unlock;
2732 }
2733 migration_bitmap_sync_precopy(false);
2734 }
2735 }
2736 out_unlock:
2737 qemu_mutex_unlock_ramlist();
2738
2739 if (!ret) {
2740 ram_bitmaps_destroy();
2741 return false;
2742 }
2743
2744 /*
2745 * After an eventual first bitmap sync, fixup the initial bitmap
2746 * containing all 1s to exclude any discarded pages from migration.
2747 */
2748 migration_bitmap_clear_discarded_pages(rs);
2749 return true;
2750 }
2751
ram_init_all(RAMState ** rsp,Error ** errp)2752 static int ram_init_all(RAMState **rsp, Error **errp)
2753 {
2754 if (!ram_state_init(rsp, errp)) {
2755 return -1;
2756 }
2757
2758 if (!xbzrle_init(errp)) {
2759 ram_state_cleanup(rsp);
2760 return -1;
2761 }
2762
2763 if (!ram_init_bitmaps(*rsp, errp)) {
2764 return -1;
2765 }
2766
2767 return 0;
2768 }
2769
ram_state_resume_prepare(RAMState * rs,QEMUFile * out)2770 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2771 {
2772 RAMBlock *block;
2773 uint64_t pages = 0;
2774
2775 /*
2776 * Postcopy is not using xbzrle/compression, so no need for that.
2777 * Also, since source are already halted, we don't need to care
2778 * about dirty page logging as well.
2779 */
2780
2781 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2782 pages += bitmap_count_one(block->bmap,
2783 block->used_length >> TARGET_PAGE_BITS);
2784 }
2785
2786 /* This may not be aligned with current bitmaps. Recalculate. */
2787 rs->migration_dirty_pages = pages;
2788
2789 ram_state_reset(rs);
2790
2791 /* Update RAMState cache of output QEMUFile */
2792 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2793
2794 trace_ram_state_resume_prepare(pages);
2795 }
2796
2797 /*
2798 * This function clears bits of the free pages reported by the caller from the
2799 * migration dirty bitmap. @addr is the host address corresponding to the
2800 * start of the continuous guest free pages, and @len is the total bytes of
2801 * those pages.
2802 */
qemu_guest_free_page_hint(void * addr,size_t len)2803 void qemu_guest_free_page_hint(void *addr, size_t len)
2804 {
2805 RAMBlock *block;
2806 ram_addr_t offset;
2807 size_t used_len, start, npages;
2808
2809 /* This function is currently expected to be used during live migration */
2810 if (!migration_is_running()) {
2811 return;
2812 }
2813
2814 for (; len > 0; len -= used_len, addr += used_len) {
2815 block = qemu_ram_block_from_host(addr, false, &offset);
2816 if (unlikely(!block || offset >= block->used_length)) {
2817 /*
2818 * The implementation might not support RAMBlock resize during
2819 * live migration, but it could happen in theory with future
2820 * updates. So we add a check here to capture that case.
2821 */
2822 error_report_once("%s unexpected error", __func__);
2823 return;
2824 }
2825
2826 if (len <= block->used_length - offset) {
2827 used_len = len;
2828 } else {
2829 used_len = block->used_length - offset;
2830 }
2831
2832 start = offset >> TARGET_PAGE_BITS;
2833 npages = used_len >> TARGET_PAGE_BITS;
2834
2835 qemu_mutex_lock(&ram_state->bitmap_mutex);
2836 /*
2837 * The skipped free pages are equavalent to be sent from clear_bmap's
2838 * perspective, so clear the bits from the memory region bitmap which
2839 * are initially set. Otherwise those skipped pages will be sent in
2840 * the next round after syncing from the memory region bitmap.
2841 */
2842 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2843 ram_state->migration_dirty_pages -=
2844 bitmap_count_one_with_offset(block->bmap, start, npages);
2845 bitmap_clear(block->bmap, start, npages);
2846 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2847 }
2848 }
2849
2850 #define MAPPED_RAM_HDR_VERSION 1
2851 struct MappedRamHeader {
2852 uint32_t version;
2853 /*
2854 * The target's page size, so we know how many pages are in the
2855 * bitmap.
2856 */
2857 uint64_t page_size;
2858 /*
2859 * The offset in the migration file where the pages bitmap is
2860 * stored.
2861 */
2862 uint64_t bitmap_offset;
2863 /*
2864 * The offset in the migration file where the actual pages (data)
2865 * are stored.
2866 */
2867 uint64_t pages_offset;
2868 } QEMU_PACKED;
2869 typedef struct MappedRamHeader MappedRamHeader;
2870
mapped_ram_setup_ramblock(QEMUFile * file,RAMBlock * block)2871 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2872 {
2873 g_autofree MappedRamHeader *header = NULL;
2874 size_t header_size, bitmap_size;
2875 long num_pages;
2876
2877 header = g_new0(MappedRamHeader, 1);
2878 header_size = sizeof(MappedRamHeader);
2879
2880 num_pages = block->used_length >> TARGET_PAGE_BITS;
2881 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2882
2883 /*
2884 * Save the file offsets of where the bitmap and the pages should
2885 * go as they are written at the end of migration and during the
2886 * iterative phase, respectively.
2887 */
2888 block->bitmap_offset = qemu_get_offset(file) + header_size;
2889 block->pages_offset = ROUND_UP(block->bitmap_offset +
2890 bitmap_size,
2891 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2892
2893 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2894 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
2895 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
2896 header->pages_offset = cpu_to_be64(block->pages_offset);
2897
2898 qemu_put_buffer(file, (uint8_t *) header, header_size);
2899
2900 /* prepare offset for next ramblock */
2901 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
2902 }
2903
mapped_ram_read_header(QEMUFile * file,MappedRamHeader * header,Error ** errp)2904 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
2905 Error **errp)
2906 {
2907 size_t ret, header_size = sizeof(MappedRamHeader);
2908
2909 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
2910 if (ret != header_size) {
2911 error_setg(errp, "Could not read whole mapped-ram migration header "
2912 "(expected %zd, got %zd bytes)", header_size, ret);
2913 return false;
2914 }
2915
2916 /* migration stream is big-endian */
2917 header->version = be32_to_cpu(header->version);
2918
2919 if (header->version > MAPPED_RAM_HDR_VERSION) {
2920 error_setg(errp, "Migration mapped-ram capability version not "
2921 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
2922 header->version);
2923 return false;
2924 }
2925
2926 header->page_size = be64_to_cpu(header->page_size);
2927 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
2928 header->pages_offset = be64_to_cpu(header->pages_offset);
2929
2930 return true;
2931 }
2932
2933 /*
2934 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2935 * long-running RCU critical section. When rcu-reclaims in the code
2936 * start to become numerous it will be necessary to reduce the
2937 * granularity of these critical sections.
2938 */
2939
2940 /**
2941 * ram_save_setup: Setup RAM for migration
2942 *
2943 * Returns zero to indicate success and negative for error
2944 *
2945 * @f: QEMUFile where to send the data
2946 * @opaque: RAMState pointer
2947 * @errp: pointer to Error*, to store an error if it happens.
2948 */
ram_save_setup(QEMUFile * f,void * opaque,Error ** errp)2949 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
2950 {
2951 RAMState **rsp = opaque;
2952 RAMBlock *block;
2953 int ret, max_hg_page_size;
2954
2955 /* migration has already setup the bitmap, reuse it. */
2956 if (!migration_in_colo_state()) {
2957 if (ram_init_all(rsp, errp) != 0) {
2958 return -1;
2959 }
2960 }
2961 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
2962
2963 /*
2964 * ??? Mirrors the previous value of qemu_host_page_size,
2965 * but is this really what was intended for the migration?
2966 */
2967 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
2968
2969 WITH_RCU_READ_LOCK_GUARD() {
2970 qemu_put_be64(f, ram_bytes_total_with_ignored()
2971 | RAM_SAVE_FLAG_MEM_SIZE);
2972
2973 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2974 qemu_put_byte(f, strlen(block->idstr));
2975 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2976 qemu_put_be64(f, block->used_length);
2977 if (migrate_postcopy_ram() &&
2978 block->page_size != max_hg_page_size) {
2979 qemu_put_be64(f, block->page_size);
2980 }
2981 if (migrate_ignore_shared()) {
2982 qemu_put_be64(f, block->mr->addr);
2983 }
2984
2985 if (migrate_mapped_ram()) {
2986 mapped_ram_setup_ramblock(f, block);
2987 }
2988 }
2989 }
2990
2991 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
2992 if (ret < 0) {
2993 error_setg(errp, "%s: failed to start RDMA registration", __func__);
2994 qemu_file_set_error(f, ret);
2995 return ret;
2996 }
2997
2998 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
2999 if (ret < 0) {
3000 error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3001 qemu_file_set_error(f, ret);
3002 return ret;
3003 }
3004
3005 if (migrate_multifd()) {
3006 multifd_ram_save_setup();
3007 }
3008
3009 /*
3010 * This operation is unfortunate..
3011 *
3012 * For legacy QEMUs using per-section sync
3013 * =======================================
3014 *
3015 * This must exist because the EOS below requires the SYNC messages
3016 * per-channel to work.
3017 *
3018 * For modern QEMUs using per-round sync
3019 * =====================================
3020 *
3021 * Logically such sync is not needed, and recv threads should not run
3022 * until setup ready (using things like channels_ready on src). Then
3023 * we should be all fine.
3024 *
3025 * However even if we add channels_ready to recv side in new QEMUs, old
3026 * QEMU won't have them so this sync will still be needed to make sure
3027 * multifd recv threads won't start processing guest pages early before
3028 * ram_load_setup() is properly done.
3029 *
3030 * Let's stick with this. Fortunately the overhead is low to sync
3031 * during setup because the VM is running, so at least it's not
3032 * accounted as part of downtime.
3033 */
3034 bql_unlock();
3035 ret = multifd_ram_flush_and_sync(f);
3036 bql_lock();
3037 if (ret < 0) {
3038 error_setg(errp, "%s: multifd synchronization failed", __func__);
3039 return ret;
3040 }
3041
3042 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3043 ret = qemu_fflush(f);
3044 if (ret < 0) {
3045 error_setg_errno(errp, -ret, "%s failed", __func__);
3046 }
3047 return ret;
3048 }
3049
ram_save_file_bmap(QEMUFile * f)3050 static void ram_save_file_bmap(QEMUFile *f)
3051 {
3052 RAMBlock *block;
3053
3054 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3055 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3056 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3057
3058 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3059 block->bitmap_offset);
3060 ram_transferred_add(bitmap_size);
3061
3062 /*
3063 * Free the bitmap here to catch any synchronization issues
3064 * with multifd channels. No channels should be sending pages
3065 * after we've written the bitmap to file.
3066 */
3067 g_free(block->file_bmap);
3068 block->file_bmap = NULL;
3069 }
3070 }
3071
ramblock_set_file_bmap_atomic(RAMBlock * block,ram_addr_t offset,bool set)3072 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3073 {
3074 if (set) {
3075 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3076 } else {
3077 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3078 }
3079 }
3080
3081 /**
3082 * ram_save_iterate: iterative stage for migration
3083 *
3084 * Returns zero to indicate success and negative for error
3085 *
3086 * @f: QEMUFile where to send the data
3087 * @opaque: RAMState pointer
3088 */
ram_save_iterate(QEMUFile * f,void * opaque)3089 static int ram_save_iterate(QEMUFile *f, void *opaque)
3090 {
3091 RAMState **temp = opaque;
3092 RAMState *rs = *temp;
3093 int ret = 0;
3094 int i;
3095 int64_t t0;
3096 int done = 0;
3097
3098 /*
3099 * We'll take this lock a little bit long, but it's okay for two reasons.
3100 * Firstly, the only possible other thread to take it is who calls
3101 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3102 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3103 * guarantees that we'll at least released it in a regular basis.
3104 */
3105 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3106 WITH_RCU_READ_LOCK_GUARD() {
3107 if (ram_list.version != rs->last_version) {
3108 ram_state_reset(rs);
3109 }
3110
3111 /* Read version before ram_list.blocks */
3112 smp_rmb();
3113
3114 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3115 if (ret < 0) {
3116 qemu_file_set_error(f, ret);
3117 goto out;
3118 }
3119
3120 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3121 i = 0;
3122 while ((ret = migration_rate_exceeded(f)) == 0 ||
3123 postcopy_has_request(rs)) {
3124 int pages;
3125
3126 if (qemu_file_get_error(f)) {
3127 break;
3128 }
3129
3130 pages = ram_find_and_save_block(rs);
3131 /* no more pages to sent */
3132 if (pages == 0) {
3133 done = 1;
3134 break;
3135 }
3136
3137 if (pages < 0) {
3138 qemu_file_set_error(f, pages);
3139 break;
3140 }
3141
3142 rs->target_page_count += pages;
3143
3144 /*
3145 * we want to check in the 1st loop, just in case it was the 1st
3146 * time and we had to sync the dirty bitmap.
3147 * qemu_clock_get_ns() is a bit expensive, so we only check each
3148 * some iterations
3149 */
3150 if ((i & 63) == 0) {
3151 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3152 1000000;
3153 if (t1 > MAX_WAIT) {
3154 trace_ram_save_iterate_big_wait(t1, i);
3155 break;
3156 }
3157 }
3158 i++;
3159 }
3160 }
3161 }
3162
3163 /*
3164 * Must occur before EOS (or any QEMUFile operation)
3165 * because of RDMA protocol.
3166 */
3167 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3168 if (ret < 0) {
3169 qemu_file_set_error(f, ret);
3170 }
3171
3172 out:
3173 if (ret >= 0 && migration_is_running()) {
3174 if (multifd_ram_sync_per_section()) {
3175 ret = multifd_ram_flush_and_sync(f);
3176 if (ret < 0) {
3177 return ret;
3178 }
3179 }
3180
3181 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3182 ram_transferred_add(8);
3183 ret = qemu_fflush(f);
3184 }
3185 if (ret < 0) {
3186 return ret;
3187 }
3188
3189 return done;
3190 }
3191
3192 /**
3193 * ram_save_complete: function called to send the remaining amount of ram
3194 *
3195 * Returns zero to indicate success or negative on error
3196 *
3197 * Called with the BQL
3198 *
3199 * @f: QEMUFile where to send the data
3200 * @opaque: RAMState pointer
3201 */
ram_save_complete(QEMUFile * f,void * opaque)3202 static int ram_save_complete(QEMUFile *f, void *opaque)
3203 {
3204 RAMState **temp = opaque;
3205 RAMState *rs = *temp;
3206 int ret = 0;
3207
3208 rs->last_stage = !migration_in_colo_state();
3209
3210 WITH_RCU_READ_LOCK_GUARD() {
3211 if (!migration_in_postcopy()) {
3212 migration_bitmap_sync_precopy(true);
3213 }
3214
3215 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3216 if (ret < 0) {
3217 qemu_file_set_error(f, ret);
3218 return ret;
3219 }
3220
3221 /* try transferring iterative blocks of memory */
3222
3223 /* flush all remaining blocks regardless of rate limiting */
3224 qemu_mutex_lock(&rs->bitmap_mutex);
3225 while (true) {
3226 int pages;
3227
3228 pages = ram_find_and_save_block(rs);
3229 /* no more blocks to sent */
3230 if (pages == 0) {
3231 break;
3232 }
3233 if (pages < 0) {
3234 qemu_mutex_unlock(&rs->bitmap_mutex);
3235 return pages;
3236 }
3237 }
3238 qemu_mutex_unlock(&rs->bitmap_mutex);
3239
3240 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3241 if (ret < 0) {
3242 qemu_file_set_error(f, ret);
3243 return ret;
3244 }
3245 }
3246
3247 if (multifd_ram_sync_per_section()) {
3248 /*
3249 * Only the old dest QEMU will need this sync, because each EOS
3250 * will require one SYNC message on each channel.
3251 */
3252 ret = multifd_ram_flush_and_sync(f);
3253 if (ret < 0) {
3254 return ret;
3255 }
3256 }
3257
3258 if (migrate_mapped_ram()) {
3259 ram_save_file_bmap(f);
3260
3261 if (qemu_file_get_error(f)) {
3262 Error *local_err = NULL;
3263 int err = qemu_file_get_error_obj(f, &local_err);
3264
3265 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3266 return -err;
3267 }
3268 }
3269
3270 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3271 return qemu_fflush(f);
3272 }
3273
ram_state_pending_estimate(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3274 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3275 uint64_t *can_postcopy)
3276 {
3277 RAMState **temp = opaque;
3278 RAMState *rs = *temp;
3279
3280 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3281
3282 if (migrate_postcopy_ram()) {
3283 /* We can do postcopy, and all the data is postcopiable */
3284 *can_postcopy += remaining_size;
3285 } else {
3286 *must_precopy += remaining_size;
3287 }
3288 }
3289
ram_state_pending_exact(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3290 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3291 uint64_t *can_postcopy)
3292 {
3293 RAMState **temp = opaque;
3294 RAMState *rs = *temp;
3295 uint64_t remaining_size;
3296
3297 if (!migration_in_postcopy()) {
3298 bql_lock();
3299 WITH_RCU_READ_LOCK_GUARD() {
3300 migration_bitmap_sync_precopy(false);
3301 }
3302 bql_unlock();
3303 }
3304
3305 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3306
3307 if (migrate_postcopy_ram()) {
3308 /* We can do postcopy, and all the data is postcopiable */
3309 *can_postcopy += remaining_size;
3310 } else {
3311 *must_precopy += remaining_size;
3312 }
3313 }
3314
load_xbzrle(QEMUFile * f,ram_addr_t addr,void * host)3315 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3316 {
3317 unsigned int xh_len;
3318 int xh_flags;
3319 uint8_t *loaded_data;
3320
3321 /* extract RLE header */
3322 xh_flags = qemu_get_byte(f);
3323 xh_len = qemu_get_be16(f);
3324
3325 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3326 error_report("Failed to load XBZRLE page - wrong compression!");
3327 return -1;
3328 }
3329
3330 if (xh_len > TARGET_PAGE_SIZE) {
3331 error_report("Failed to load XBZRLE page - len overflow!");
3332 return -1;
3333 }
3334 loaded_data = XBZRLE.decoded_buf;
3335 /* load data and decode */
3336 /* it can change loaded_data to point to an internal buffer */
3337 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3338
3339 /* decode RLE */
3340 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3341 TARGET_PAGE_SIZE) == -1) {
3342 error_report("Failed to load XBZRLE page - decode error!");
3343 return -1;
3344 }
3345
3346 return 0;
3347 }
3348
3349 /**
3350 * ram_block_from_stream: read a RAMBlock id from the migration stream
3351 *
3352 * Must be called from within a rcu critical section.
3353 *
3354 * Returns a pointer from within the RCU-protected ram_list.
3355 *
3356 * @mis: the migration incoming state pointer
3357 * @f: QEMUFile where to read the data from
3358 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3359 * @channel: the channel we're using
3360 */
ram_block_from_stream(MigrationIncomingState * mis,QEMUFile * f,int flags,int channel)3361 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3362 QEMUFile *f, int flags,
3363 int channel)
3364 {
3365 RAMBlock *block = mis->last_recv_block[channel];
3366 char id[256];
3367 uint8_t len;
3368
3369 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3370 if (!block) {
3371 error_report("Ack, bad migration stream!");
3372 return NULL;
3373 }
3374 return block;
3375 }
3376
3377 len = qemu_get_byte(f);
3378 qemu_get_buffer(f, (uint8_t *)id, len);
3379 id[len] = 0;
3380
3381 block = qemu_ram_block_by_name(id);
3382 if (!block) {
3383 error_report("Can't find block %s", id);
3384 return NULL;
3385 }
3386
3387 if (migrate_ram_is_ignored(block)) {
3388 error_report("block %s should not be migrated !", id);
3389 return NULL;
3390 }
3391
3392 mis->last_recv_block[channel] = block;
3393
3394 return block;
3395 }
3396
host_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3397 static inline void *host_from_ram_block_offset(RAMBlock *block,
3398 ram_addr_t offset)
3399 {
3400 if (!offset_in_ramblock(block, offset)) {
3401 return NULL;
3402 }
3403
3404 return block->host + offset;
3405 }
3406
host_page_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3407 static void *host_page_from_ram_block_offset(RAMBlock *block,
3408 ram_addr_t offset)
3409 {
3410 /* Note: Explicitly no check against offset_in_ramblock(). */
3411 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3412 block->page_size);
3413 }
3414
host_page_offset_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3415 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3416 ram_addr_t offset)
3417 {
3418 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3419 }
3420
colo_record_bitmap(RAMBlock * block,ram_addr_t * normal,uint32_t pages)3421 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3422 {
3423 qemu_mutex_lock(&ram_state->bitmap_mutex);
3424 for (int i = 0; i < pages; i++) {
3425 ram_addr_t offset = normal[i];
3426 ram_state->migration_dirty_pages += !test_and_set_bit(
3427 offset >> TARGET_PAGE_BITS,
3428 block->bmap);
3429 }
3430 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3431 }
3432
colo_cache_from_block_offset(RAMBlock * block,ram_addr_t offset,bool record_bitmap)3433 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3434 ram_addr_t offset, bool record_bitmap)
3435 {
3436 if (!offset_in_ramblock(block, offset)) {
3437 return NULL;
3438 }
3439 if (!block->colo_cache) {
3440 error_report("%s: colo_cache is NULL in block :%s",
3441 __func__, block->idstr);
3442 return NULL;
3443 }
3444
3445 /*
3446 * During colo checkpoint, we need bitmap of these migrated pages.
3447 * It help us to decide which pages in ram cache should be flushed
3448 * into VM's RAM later.
3449 */
3450 if (record_bitmap) {
3451 colo_record_bitmap(block, &offset, 1);
3452 }
3453 return block->colo_cache + offset;
3454 }
3455
3456 /**
3457 * ram_handle_zero: handle the zero page case
3458 *
3459 * If a page (or a whole RDMA chunk) has been
3460 * determined to be zero, then zap it.
3461 *
3462 * @host: host address for the zero page
3463 * @ch: what the page is filled from. We only support zero
3464 * @size: size of the zero page
3465 */
ram_handle_zero(void * host,uint64_t size)3466 void ram_handle_zero(void *host, uint64_t size)
3467 {
3468 if (!buffer_is_zero(host, size)) {
3469 memset(host, 0, size);
3470 }
3471 }
3472
colo_init_ram_state(void)3473 static void colo_init_ram_state(void)
3474 {
3475 Error *local_err = NULL;
3476
3477 if (!ram_state_init(&ram_state, &local_err)) {
3478 error_report_err(local_err);
3479 }
3480 }
3481
3482 /*
3483 * colo cache: this is for secondary VM, we cache the whole
3484 * memory of the secondary VM, it is need to hold the global lock
3485 * to call this helper.
3486 */
colo_init_ram_cache(void)3487 int colo_init_ram_cache(void)
3488 {
3489 RAMBlock *block;
3490
3491 WITH_RCU_READ_LOCK_GUARD() {
3492 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3493 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3494 NULL, false, false);
3495 if (!block->colo_cache) {
3496 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3497 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3498 block->used_length);
3499 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3500 if (block->colo_cache) {
3501 qemu_anon_ram_free(block->colo_cache, block->used_length);
3502 block->colo_cache = NULL;
3503 }
3504 }
3505 return -errno;
3506 }
3507 if (!machine_dump_guest_core(current_machine)) {
3508 qemu_madvise(block->colo_cache, block->used_length,
3509 QEMU_MADV_DONTDUMP);
3510 }
3511 }
3512 }
3513
3514 /*
3515 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3516 * with to decide which page in cache should be flushed into SVM's RAM. Here
3517 * we use the same name 'ram_bitmap' as for migration.
3518 */
3519 if (ram_bytes_total()) {
3520 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3521 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3522 block->bmap = bitmap_new(pages);
3523 }
3524 }
3525
3526 colo_init_ram_state();
3527 return 0;
3528 }
3529
3530 /* TODO: duplicated with ram_init_bitmaps */
colo_incoming_start_dirty_log(void)3531 void colo_incoming_start_dirty_log(void)
3532 {
3533 RAMBlock *block = NULL;
3534 Error *local_err = NULL;
3535
3536 /* For memory_global_dirty_log_start below. */
3537 bql_lock();
3538 qemu_mutex_lock_ramlist();
3539
3540 memory_global_dirty_log_sync(false);
3541 WITH_RCU_READ_LOCK_GUARD() {
3542 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3543 ramblock_sync_dirty_bitmap(ram_state, block);
3544 /* Discard this dirty bitmap record */
3545 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3546 }
3547 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3548 &local_err)) {
3549 error_report_err(local_err);
3550 }
3551 }
3552 ram_state->migration_dirty_pages = 0;
3553 qemu_mutex_unlock_ramlist();
3554 bql_unlock();
3555 }
3556
3557 /* It is need to hold the global lock to call this helper */
colo_release_ram_cache(void)3558 void colo_release_ram_cache(void)
3559 {
3560 RAMBlock *block;
3561
3562 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3563 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3564 g_free(block->bmap);
3565 block->bmap = NULL;
3566 }
3567
3568 WITH_RCU_READ_LOCK_GUARD() {
3569 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3570 if (block->colo_cache) {
3571 qemu_anon_ram_free(block->colo_cache, block->used_length);
3572 block->colo_cache = NULL;
3573 }
3574 }
3575 }
3576 ram_state_cleanup(&ram_state);
3577 }
3578
3579 /**
3580 * ram_load_setup: Setup RAM for migration incoming side
3581 *
3582 * Returns zero to indicate success and negative for error
3583 *
3584 * @f: QEMUFile where to receive the data
3585 * @opaque: RAMState pointer
3586 * @errp: pointer to Error*, to store an error if it happens.
3587 */
ram_load_setup(QEMUFile * f,void * opaque,Error ** errp)3588 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3589 {
3590 xbzrle_load_setup();
3591 ramblock_recv_map_init();
3592
3593 return 0;
3594 }
3595
ram_load_cleanup(void * opaque)3596 static int ram_load_cleanup(void *opaque)
3597 {
3598 RAMBlock *rb;
3599
3600 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3601 qemu_ram_block_writeback(rb);
3602 }
3603
3604 xbzrle_load_cleanup();
3605
3606 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3607 g_free(rb->receivedmap);
3608 rb->receivedmap = NULL;
3609 }
3610
3611 return 0;
3612 }
3613
3614 /**
3615 * ram_postcopy_incoming_init: allocate postcopy data structures
3616 *
3617 * Returns 0 for success and negative if there was one error
3618 *
3619 * @mis: current migration incoming state
3620 *
3621 * Allocate data structures etc needed by incoming migration with
3622 * postcopy-ram. postcopy-ram's similarly names
3623 * postcopy_ram_incoming_init does the work.
3624 */
ram_postcopy_incoming_init(MigrationIncomingState * mis)3625 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3626 {
3627 return postcopy_ram_incoming_init(mis);
3628 }
3629
3630 /**
3631 * ram_load_postcopy: load a page in postcopy case
3632 *
3633 * Returns 0 for success or -errno in case of error
3634 *
3635 * Called in postcopy mode by ram_load().
3636 * rcu_read_lock is taken prior to this being called.
3637 *
3638 * @f: QEMUFile where to send the data
3639 * @channel: the channel to use for loading
3640 */
ram_load_postcopy(QEMUFile * f,int channel)3641 int ram_load_postcopy(QEMUFile *f, int channel)
3642 {
3643 int flags = 0, ret = 0;
3644 bool place_needed = false;
3645 bool matches_target_page_size = false;
3646 MigrationIncomingState *mis = migration_incoming_get_current();
3647 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3648
3649 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3650 ram_addr_t addr;
3651 void *page_buffer = NULL;
3652 void *place_source = NULL;
3653 RAMBlock *block = NULL;
3654 uint8_t ch;
3655
3656 addr = qemu_get_be64(f);
3657
3658 /*
3659 * If qemu file error, we should stop here, and then "addr"
3660 * may be invalid
3661 */
3662 ret = qemu_file_get_error(f);
3663 if (ret) {
3664 break;
3665 }
3666
3667 flags = addr & ~TARGET_PAGE_MASK;
3668 addr &= TARGET_PAGE_MASK;
3669
3670 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3671 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3672 block = ram_block_from_stream(mis, f, flags, channel);
3673 if (!block) {
3674 ret = -EINVAL;
3675 break;
3676 }
3677
3678 /*
3679 * Relying on used_length is racy and can result in false positives.
3680 * We might place pages beyond used_length in case RAM was shrunk
3681 * while in postcopy, which is fine - trying to place via
3682 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3683 */
3684 if (!block->host || addr >= block->postcopy_length) {
3685 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3686 ret = -EINVAL;
3687 break;
3688 }
3689 tmp_page->target_pages++;
3690 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3691 /*
3692 * Postcopy requires that we place whole host pages atomically;
3693 * these may be huge pages for RAMBlocks that are backed by
3694 * hugetlbfs.
3695 * To make it atomic, the data is read into a temporary page
3696 * that's moved into place later.
3697 * The migration protocol uses, possibly smaller, target-pages
3698 * however the source ensures it always sends all the components
3699 * of a host page in one chunk.
3700 */
3701 page_buffer = tmp_page->tmp_huge_page +
3702 host_page_offset_from_ram_block_offset(block, addr);
3703 /* If all TP are zero then we can optimise the place */
3704 if (tmp_page->target_pages == 1) {
3705 tmp_page->host_addr =
3706 host_page_from_ram_block_offset(block, addr);
3707 } else if (tmp_page->host_addr !=
3708 host_page_from_ram_block_offset(block, addr)) {
3709 /* not the 1st TP within the HP */
3710 error_report("Non-same host page detected on channel %d: "
3711 "Target host page %p, received host page %p "
3712 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3713 channel, tmp_page->host_addr,
3714 host_page_from_ram_block_offset(block, addr),
3715 block->idstr, addr, tmp_page->target_pages);
3716 ret = -EINVAL;
3717 break;
3718 }
3719
3720 /*
3721 * If it's the last part of a host page then we place the host
3722 * page
3723 */
3724 if (tmp_page->target_pages ==
3725 (block->page_size / TARGET_PAGE_SIZE)) {
3726 place_needed = true;
3727 }
3728 place_source = tmp_page->tmp_huge_page;
3729 }
3730
3731 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3732 case RAM_SAVE_FLAG_ZERO:
3733 ch = qemu_get_byte(f);
3734 if (ch != 0) {
3735 error_report("Found a zero page with value %d", ch);
3736 ret = -EINVAL;
3737 break;
3738 }
3739 /*
3740 * Can skip to set page_buffer when
3741 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3742 */
3743 if (!matches_target_page_size) {
3744 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3745 }
3746 break;
3747
3748 case RAM_SAVE_FLAG_PAGE:
3749 tmp_page->all_zero = false;
3750 if (!matches_target_page_size) {
3751 /* For huge pages, we always use temporary buffer */
3752 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3753 } else {
3754 /*
3755 * For small pages that matches target page size, we
3756 * avoid the qemu_file copy. Instead we directly use
3757 * the buffer of QEMUFile to place the page. Note: we
3758 * cannot do any QEMUFile operation before using that
3759 * buffer to make sure the buffer is valid when
3760 * placing the page.
3761 */
3762 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3763 TARGET_PAGE_SIZE);
3764 }
3765 break;
3766 case RAM_SAVE_FLAG_EOS:
3767 break;
3768 default:
3769 error_report("Unknown combination of migration flags: 0x%x"
3770 " (postcopy mode)", flags);
3771 ret = -EINVAL;
3772 break;
3773 }
3774
3775 /* Detect for any possible file errors */
3776 if (!ret && qemu_file_get_error(f)) {
3777 ret = qemu_file_get_error(f);
3778 }
3779
3780 if (!ret && place_needed) {
3781 if (tmp_page->all_zero) {
3782 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3783 } else {
3784 ret = postcopy_place_page(mis, tmp_page->host_addr,
3785 place_source, block);
3786 }
3787 place_needed = false;
3788 postcopy_temp_page_reset(tmp_page);
3789 }
3790 }
3791
3792 return ret;
3793 }
3794
postcopy_is_running(void)3795 static bool postcopy_is_running(void)
3796 {
3797 PostcopyState ps = postcopy_state_get();
3798 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3799 }
3800
3801 /*
3802 * Flush content of RAM cache into SVM's memory.
3803 * Only flush the pages that be dirtied by PVM or SVM or both.
3804 */
colo_flush_ram_cache(void)3805 void colo_flush_ram_cache(void)
3806 {
3807 RAMBlock *block = NULL;
3808 void *dst_host;
3809 void *src_host;
3810 unsigned long offset = 0;
3811
3812 memory_global_dirty_log_sync(false);
3813 qemu_mutex_lock(&ram_state->bitmap_mutex);
3814 WITH_RCU_READ_LOCK_GUARD() {
3815 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3816 ramblock_sync_dirty_bitmap(ram_state, block);
3817 }
3818 }
3819
3820 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3821 WITH_RCU_READ_LOCK_GUARD() {
3822 block = QLIST_FIRST_RCU(&ram_list.blocks);
3823
3824 while (block) {
3825 unsigned long num = 0;
3826
3827 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3828 if (!offset_in_ramblock(block,
3829 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3830 offset = 0;
3831 num = 0;
3832 block = QLIST_NEXT_RCU(block, next);
3833 } else {
3834 unsigned long i = 0;
3835
3836 for (i = 0; i < num; i++) {
3837 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3838 }
3839 dst_host = block->host
3840 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3841 src_host = block->colo_cache
3842 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3843 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3844 offset += num;
3845 }
3846 }
3847 }
3848 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3849 trace_colo_flush_ram_cache_end();
3850 }
3851
ram_load_multifd_pages(void * host_addr,size_t size,uint64_t offset)3852 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3853 uint64_t offset)
3854 {
3855 MultiFDRecvData *data = multifd_get_recv_data();
3856
3857 data->opaque = host_addr;
3858 data->file_offset = offset;
3859 data->size = size;
3860
3861 if (!multifd_recv()) {
3862 return 0;
3863 }
3864
3865 return size;
3866 }
3867
read_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,long num_pages,unsigned long * bitmap,Error ** errp)3868 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3869 long num_pages, unsigned long *bitmap,
3870 Error **errp)
3871 {
3872 ERRP_GUARD();
3873 unsigned long set_bit_idx, clear_bit_idx;
3874 ram_addr_t offset;
3875 void *host;
3876 size_t read, unread, size;
3877
3878 for (set_bit_idx = find_first_bit(bitmap, num_pages);
3879 set_bit_idx < num_pages;
3880 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3881
3882 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3883
3884 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3885 offset = set_bit_idx << TARGET_PAGE_BITS;
3886
3887 while (unread > 0) {
3888 host = host_from_ram_block_offset(block, offset);
3889 if (!host) {
3890 error_setg(errp, "page outside of ramblock %s range",
3891 block->idstr);
3892 return false;
3893 }
3894
3895 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
3896
3897 if (migrate_multifd()) {
3898 read = ram_load_multifd_pages(host, size,
3899 block->pages_offset + offset);
3900 } else {
3901 read = qemu_get_buffer_at(f, host, size,
3902 block->pages_offset + offset);
3903 }
3904
3905 if (!read) {
3906 goto err;
3907 }
3908 offset += read;
3909 unread -= read;
3910 }
3911 }
3912
3913 return true;
3914
3915 err:
3916 qemu_file_get_error_obj(f, errp);
3917 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
3918 "from file offset %" PRIx64 ": ", block->idstr, offset,
3919 block->pages_offset + offset);
3920 return false;
3921 }
3922
parse_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,ram_addr_t length,Error ** errp)3923 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3924 ram_addr_t length, Error **errp)
3925 {
3926 g_autofree unsigned long *bitmap = NULL;
3927 MappedRamHeader header;
3928 size_t bitmap_size;
3929 long num_pages;
3930
3931 if (!mapped_ram_read_header(f, &header, errp)) {
3932 return;
3933 }
3934
3935 block->pages_offset = header.pages_offset;
3936
3937 /*
3938 * Check the alignment of the file region that contains pages. We
3939 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
3940 * value to change in the future. Do only a sanity check with page
3941 * size alignment.
3942 */
3943 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
3944 error_setg(errp,
3945 "Error reading ramblock %s pages, region has bad alignment",
3946 block->idstr);
3947 return;
3948 }
3949
3950 num_pages = length / header.page_size;
3951 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3952
3953 bitmap = g_malloc0(bitmap_size);
3954 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
3955 header.bitmap_offset) != bitmap_size) {
3956 error_setg(errp, "Error reading dirty bitmap");
3957 return;
3958 }
3959
3960 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
3961 return;
3962 }
3963
3964 /* Skip pages array */
3965 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
3966
3967 return;
3968 }
3969
parse_ramblock(QEMUFile * f,RAMBlock * block,ram_addr_t length)3970 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
3971 {
3972 int ret = 0;
3973 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3974 bool postcopy_advised = migration_incoming_postcopy_advised();
3975 int max_hg_page_size;
3976 Error *local_err = NULL;
3977
3978 assert(block);
3979
3980 if (migrate_mapped_ram()) {
3981 parse_ramblock_mapped_ram(f, block, length, &local_err);
3982 if (local_err) {
3983 error_report_err(local_err);
3984 return -EINVAL;
3985 }
3986 return 0;
3987 }
3988
3989 if (!qemu_ram_is_migratable(block)) {
3990 error_report("block %s should not be migrated !", block->idstr);
3991 return -EINVAL;
3992 }
3993
3994 if (length != block->used_length) {
3995 ret = qemu_ram_resize(block, length, &local_err);
3996 if (local_err) {
3997 error_report_err(local_err);
3998 return ret;
3999 }
4000 }
4001
4002 /*
4003 * ??? Mirrors the previous value of qemu_host_page_size,
4004 * but is this really what was intended for the migration?
4005 */
4006 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4007
4008 /* For postcopy we need to check hugepage sizes match */
4009 if (postcopy_advised && migrate_postcopy_ram() &&
4010 block->page_size != max_hg_page_size) {
4011 uint64_t remote_page_size = qemu_get_be64(f);
4012 if (remote_page_size != block->page_size) {
4013 error_report("Mismatched RAM page size %s "
4014 "(local) %zd != %" PRId64, block->idstr,
4015 block->page_size, remote_page_size);
4016 return -EINVAL;
4017 }
4018 }
4019 if (migrate_ignore_shared()) {
4020 hwaddr addr = qemu_get_be64(f);
4021 if (migrate_ram_is_ignored(block) &&
4022 block->mr->addr != addr) {
4023 error_report("Mismatched GPAs for block %s "
4024 "%" PRId64 "!= %" PRId64, block->idstr,
4025 (uint64_t)addr, (uint64_t)block->mr->addr);
4026 return -EINVAL;
4027 }
4028 }
4029 ret = rdma_block_notification_handle(f, block->idstr);
4030 if (ret < 0) {
4031 qemu_file_set_error(f, ret);
4032 }
4033
4034 return ret;
4035 }
4036
parse_ramblocks(QEMUFile * f,ram_addr_t total_ram_bytes)4037 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4038 {
4039 int ret = 0;
4040
4041 /* Synchronize RAM block list */
4042 while (!ret && total_ram_bytes) {
4043 RAMBlock *block;
4044 char id[256];
4045 ram_addr_t length;
4046 int len = qemu_get_byte(f);
4047
4048 qemu_get_buffer(f, (uint8_t *)id, len);
4049 id[len] = 0;
4050 length = qemu_get_be64(f);
4051
4052 block = qemu_ram_block_by_name(id);
4053 if (block) {
4054 ret = parse_ramblock(f, block, length);
4055 } else {
4056 error_report("Unknown ramblock \"%s\", cannot accept "
4057 "migration", id);
4058 ret = -EINVAL;
4059 }
4060 total_ram_bytes -= length;
4061 }
4062
4063 return ret;
4064 }
4065
4066 /**
4067 * ram_load_precopy: load pages in precopy case
4068 *
4069 * Returns 0 for success or -errno in case of error
4070 *
4071 * Called in precopy mode by ram_load().
4072 * rcu_read_lock is taken prior to this being called.
4073 *
4074 * @f: QEMUFile where to send the data
4075 */
ram_load_precopy(QEMUFile * f)4076 static int ram_load_precopy(QEMUFile *f)
4077 {
4078 MigrationIncomingState *mis = migration_incoming_get_current();
4079 int flags = 0, ret = 0, invalid_flags = 0, i = 0;
4080
4081 if (migrate_mapped_ram()) {
4082 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4083 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4084 RAM_SAVE_FLAG_ZERO);
4085 }
4086
4087 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4088 ram_addr_t addr;
4089 void *host = NULL, *host_bak = NULL;
4090 uint8_t ch;
4091
4092 /*
4093 * Yield periodically to let main loop run, but an iteration of
4094 * the main loop is expensive, so do it each some iterations
4095 */
4096 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4097 aio_co_schedule(qemu_get_current_aio_context(),
4098 qemu_coroutine_self());
4099 qemu_coroutine_yield();
4100 }
4101 i++;
4102
4103 addr = qemu_get_be64(f);
4104 ret = qemu_file_get_error(f);
4105 if (ret) {
4106 error_report("Getting RAM address failed");
4107 break;
4108 }
4109
4110 flags = addr & ~TARGET_PAGE_MASK;
4111 addr &= TARGET_PAGE_MASK;
4112
4113 if (flags & invalid_flags) {
4114 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4115
4116 ret = -EINVAL;
4117 break;
4118 }
4119
4120 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4121 RAM_SAVE_FLAG_XBZRLE)) {
4122 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4123 RAM_CHANNEL_PRECOPY);
4124
4125 host = host_from_ram_block_offset(block, addr);
4126 /*
4127 * After going into COLO stage, we should not load the page
4128 * into SVM's memory directly, we put them into colo_cache firstly.
4129 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4130 * Previously, we copied all these memory in preparing stage of COLO
4131 * while we need to stop VM, which is a time-consuming process.
4132 * Here we optimize it by a trick, back-up every page while in
4133 * migration process while COLO is enabled, though it affects the
4134 * speed of the migration, but it obviously reduce the downtime of
4135 * back-up all SVM'S memory in COLO preparing stage.
4136 */
4137 if (migration_incoming_colo_enabled()) {
4138 if (migration_incoming_in_colo_state()) {
4139 /* In COLO stage, put all pages into cache temporarily */
4140 host = colo_cache_from_block_offset(block, addr, true);
4141 } else {
4142 /*
4143 * In migration stage but before COLO stage,
4144 * Put all pages into both cache and SVM's memory.
4145 */
4146 host_bak = colo_cache_from_block_offset(block, addr, false);
4147 }
4148 }
4149 if (!host) {
4150 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4151 ret = -EINVAL;
4152 break;
4153 }
4154 if (!migration_incoming_in_colo_state()) {
4155 ramblock_recv_bitmap_set(block, host);
4156 }
4157
4158 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4159 }
4160
4161 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4162 case RAM_SAVE_FLAG_MEM_SIZE:
4163 ret = parse_ramblocks(f, addr);
4164 /*
4165 * For mapped-ram migration (to a file) using multifd, we sync
4166 * once and for all here to make sure all tasks we queued to
4167 * multifd threads are completed, so that all the ramblocks
4168 * (including all the guest memory pages within) are fully
4169 * loaded after this sync returns.
4170 */
4171 if (migrate_mapped_ram()) {
4172 multifd_recv_sync_main();
4173 }
4174 break;
4175
4176 case RAM_SAVE_FLAG_ZERO:
4177 ch = qemu_get_byte(f);
4178 if (ch != 0) {
4179 error_report("Found a zero page with value %d", ch);
4180 ret = -EINVAL;
4181 break;
4182 }
4183 ram_handle_zero(host, TARGET_PAGE_SIZE);
4184 break;
4185
4186 case RAM_SAVE_FLAG_PAGE:
4187 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4188 break;
4189
4190 case RAM_SAVE_FLAG_XBZRLE:
4191 if (load_xbzrle(f, addr, host) < 0) {
4192 error_report("Failed to decompress XBZRLE page at "
4193 RAM_ADDR_FMT, addr);
4194 ret = -EINVAL;
4195 break;
4196 }
4197 break;
4198 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4199 multifd_recv_sync_main();
4200 break;
4201 case RAM_SAVE_FLAG_EOS:
4202 /* normal exit */
4203 if (migrate_multifd() &&
4204 migrate_multifd_flush_after_each_section() &&
4205 /*
4206 * Mapped-ram migration flushes once and for all after
4207 * parsing ramblocks. Always ignore EOS for it.
4208 */
4209 !migrate_mapped_ram()) {
4210 multifd_recv_sync_main();
4211 }
4212 break;
4213 case RAM_SAVE_FLAG_HOOK:
4214 ret = rdma_registration_handle(f);
4215 if (ret < 0) {
4216 qemu_file_set_error(f, ret);
4217 }
4218 break;
4219 default:
4220 error_report("Unknown combination of migration flags: 0x%x", flags);
4221 ret = -EINVAL;
4222 }
4223 if (!ret) {
4224 ret = qemu_file_get_error(f);
4225 }
4226 if (!ret && host_bak) {
4227 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4228 }
4229 }
4230
4231 return ret;
4232 }
4233
ram_load(QEMUFile * f,void * opaque,int version_id)4234 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4235 {
4236 int ret = 0;
4237 static uint64_t seq_iter;
4238 /*
4239 * If system is running in postcopy mode, page inserts to host memory must
4240 * be atomic
4241 */
4242 bool postcopy_running = postcopy_is_running();
4243
4244 seq_iter++;
4245
4246 if (version_id != 4) {
4247 return -EINVAL;
4248 }
4249
4250 /*
4251 * This RCU critical section can be very long running.
4252 * When RCU reclaims in the code start to become numerous,
4253 * it will be necessary to reduce the granularity of this
4254 * critical section.
4255 */
4256 trace_ram_load_start();
4257 WITH_RCU_READ_LOCK_GUARD() {
4258 if (postcopy_running) {
4259 /*
4260 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4261 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4262 * service fast page faults.
4263 */
4264 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4265 } else {
4266 ret = ram_load_precopy(f);
4267 }
4268 }
4269 trace_ram_load_complete(ret, seq_iter);
4270
4271 return ret;
4272 }
4273
ram_has_postcopy(void * opaque)4274 static bool ram_has_postcopy(void *opaque)
4275 {
4276 RAMBlock *rb;
4277 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4278 if (ramblock_is_pmem(rb)) {
4279 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4280 "is not supported now!", rb->idstr, rb->host);
4281 return false;
4282 }
4283 }
4284
4285 return migrate_postcopy_ram();
4286 }
4287
4288 /* Sync all the dirty bitmap with destination VM. */
ram_dirty_bitmap_sync_all(MigrationState * s,RAMState * rs)4289 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4290 {
4291 RAMBlock *block;
4292 QEMUFile *file = s->to_dst_file;
4293
4294 trace_ram_dirty_bitmap_sync_start();
4295
4296 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4297 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4298 qemu_savevm_send_recv_bitmap(file, block->idstr);
4299 trace_ram_dirty_bitmap_request(block->idstr);
4300 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4301 }
4302
4303 trace_ram_dirty_bitmap_sync_wait();
4304
4305 /* Wait until all the ramblocks' dirty bitmap synced */
4306 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4307 if (migration_rp_wait(s)) {
4308 return -1;
4309 }
4310 }
4311
4312 trace_ram_dirty_bitmap_sync_complete();
4313
4314 return 0;
4315 }
4316
4317 /*
4318 * Read the received bitmap, revert it as the initial dirty bitmap.
4319 * This is only used when the postcopy migration is paused but wants
4320 * to resume from a middle point.
4321 *
4322 * Returns true if succeeded, false for errors.
4323 */
ram_dirty_bitmap_reload(MigrationState * s,RAMBlock * block,Error ** errp)4324 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4325 {
4326 /* from_dst_file is always valid because we're within rp_thread */
4327 QEMUFile *file = s->rp_state.from_dst_file;
4328 g_autofree unsigned long *le_bitmap = NULL;
4329 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4330 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4331 uint64_t size, end_mark;
4332 RAMState *rs = ram_state;
4333
4334 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4335
4336 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4337 error_setg(errp, "Reload bitmap in incorrect state %s",
4338 MigrationStatus_str(s->state));
4339 return false;
4340 }
4341
4342 /*
4343 * Note: see comments in ramblock_recv_bitmap_send() on why we
4344 * need the endianness conversion, and the paddings.
4345 */
4346 local_size = ROUND_UP(local_size, 8);
4347
4348 /* Add paddings */
4349 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4350
4351 size = qemu_get_be64(file);
4352
4353 /* The size of the bitmap should match with our ramblock */
4354 if (size != local_size) {
4355 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4356 " != 0x%"PRIx64")", block->idstr, size, local_size);
4357 return false;
4358 }
4359
4360 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4361 end_mark = qemu_get_be64(file);
4362
4363 if (qemu_file_get_error(file) || size != local_size) {
4364 error_setg(errp, "read bitmap failed for ramblock '%s': "
4365 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4366 block->idstr, local_size, size);
4367 return false;
4368 }
4369
4370 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4371 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4372 block->idstr, end_mark);
4373 return false;
4374 }
4375
4376 /*
4377 * Endianness conversion. We are during postcopy (though paused).
4378 * The dirty bitmap won't change. We can directly modify it.
4379 */
4380 bitmap_from_le(block->bmap, le_bitmap, nbits);
4381
4382 /*
4383 * What we received is "received bitmap". Revert it as the initial
4384 * dirty bitmap for this ramblock.
4385 */
4386 bitmap_complement(block->bmap, block->bmap, nbits);
4387
4388 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4389 ramblock_dirty_bitmap_clear_discarded_pages(block);
4390
4391 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4392 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4393
4394 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4395
4396 /*
4397 * We succeeded to sync bitmap for current ramblock. Always kick the
4398 * migration thread to check whether all requested bitmaps are
4399 * reloaded. NOTE: it's racy to only kick when requested==0, because
4400 * we don't know whether the migration thread may still be increasing
4401 * it.
4402 */
4403 migration_rp_kick(s);
4404
4405 return true;
4406 }
4407
ram_resume_prepare(MigrationState * s,void * opaque)4408 static int ram_resume_prepare(MigrationState *s, void *opaque)
4409 {
4410 RAMState *rs = *(RAMState **)opaque;
4411 int ret;
4412
4413 ret = ram_dirty_bitmap_sync_all(s, rs);
4414 if (ret) {
4415 return ret;
4416 }
4417
4418 ram_state_resume_prepare(rs, s->to_dst_file);
4419
4420 return 0;
4421 }
4422
postcopy_preempt_shutdown_file(MigrationState * s)4423 void postcopy_preempt_shutdown_file(MigrationState *s)
4424 {
4425 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4426 qemu_fflush(s->postcopy_qemufile_src);
4427 }
4428
4429 static SaveVMHandlers savevm_ram_handlers = {
4430 .save_setup = ram_save_setup,
4431 .save_live_iterate = ram_save_iterate,
4432 .save_live_complete_postcopy = ram_save_complete,
4433 .save_live_complete_precopy = ram_save_complete,
4434 .has_postcopy = ram_has_postcopy,
4435 .state_pending_exact = ram_state_pending_exact,
4436 .state_pending_estimate = ram_state_pending_estimate,
4437 .load_state = ram_load,
4438 .save_cleanup = ram_save_cleanup,
4439 .load_setup = ram_load_setup,
4440 .load_cleanup = ram_load_cleanup,
4441 .resume_prepare = ram_resume_prepare,
4442 };
4443
ram_mig_ram_block_resized(RAMBlockNotifier * n,void * host,size_t old_size,size_t new_size)4444 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4445 size_t old_size, size_t new_size)
4446 {
4447 PostcopyState ps = postcopy_state_get();
4448 ram_addr_t offset;
4449 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4450 Error *err = NULL;
4451
4452 if (!rb) {
4453 error_report("RAM block not found");
4454 return;
4455 }
4456
4457 if (migrate_ram_is_ignored(rb)) {
4458 return;
4459 }
4460
4461 if (migration_is_running()) {
4462 /*
4463 * Precopy code on the source cannot deal with the size of RAM blocks
4464 * changing at random points in time - especially after sending the
4465 * RAM block sizes in the migration stream, they must no longer change.
4466 * Abort and indicate a proper reason.
4467 */
4468 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4469 migrate_set_error(migrate_get_current(), err);
4470 error_free(err);
4471
4472 migration_cancel();
4473 }
4474
4475 switch (ps) {
4476 case POSTCOPY_INCOMING_ADVISE:
4477 /*
4478 * Update what ram_postcopy_incoming_init()->init_range() does at the
4479 * time postcopy was advised. Syncing RAM blocks with the source will
4480 * result in RAM resizes.
4481 */
4482 if (old_size < new_size) {
4483 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4484 error_report("RAM block '%s' discard of resized RAM failed",
4485 rb->idstr);
4486 }
4487 }
4488 rb->postcopy_length = new_size;
4489 break;
4490 case POSTCOPY_INCOMING_NONE:
4491 case POSTCOPY_INCOMING_RUNNING:
4492 case POSTCOPY_INCOMING_END:
4493 /*
4494 * Once our guest is running, postcopy does no longer care about
4495 * resizes. When growing, the new memory was not available on the
4496 * source, no handler needed.
4497 */
4498 break;
4499 default:
4500 error_report("RAM block '%s' resized during postcopy state: %d",
4501 rb->idstr, ps);
4502 exit(-1);
4503 }
4504 }
4505
4506 static RAMBlockNotifier ram_mig_ram_notifier = {
4507 .ram_block_resized = ram_mig_ram_block_resized,
4508 };
4509
ram_mig_init(void)4510 void ram_mig_init(void)
4511 {
4512 qemu_mutex_init(&XBZRLE.lock);
4513 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4514 ram_block_notifier_add(&ram_mig_ram_notifier);
4515 }
4516