1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * inode.c
4 *
5 * PURPOSE
6 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1998 Dave Boynton
10 * (C) 1998-2004 Ben Fennema
11 * (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 * 10/04/98 dgb Added rudimentary directory functions
16 * 10/07/98 Fully working udf_block_map! It works!
17 * 11/25/98 bmap altered to better support extents
18 * 12/06/98 blf partition support in udf_iget, udf_block_map
19 * and udf_read_inode
20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
21 * block boundaries (which is not actually allowed)
22 * 12/20/98 added support for strategy 4096
23 * 03/07/99 rewrote udf_block_map (again)
24 * New funcs, inode_bmap, udf_next_aext
25 * 04/19/99 Support for writing device EA's for major/minor #
26 */
27
28 #include "udfdecl.h"
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/pagemap.h>
32 #include <linux/writeback.h>
33 #include <linux/slab.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38
39 #include "udf_i.h"
40 #include "udf_sb.h"
41
42 #define EXTENT_MERGE_SIZE 5
43
44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 FE_PERM_O_DELETE)
50
51 struct udf_map_rq;
52
53 static umode_t udf_convert_permissions(struct fileEntry *);
54 static int udf_update_inode(struct inode *, int);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58 static int udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 struct kernel_long_ad *, int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad *, int *);
64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 int, struct extent_position *);
67 static int udf_get_block_wb(struct inode *inode, sector_t block,
68 struct buffer_head *bh_result, int create);
69
__udf_clear_extent_cache(struct inode * inode)70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78 }
79
80 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89
90 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93 {
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110 }
111
112 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos)
115 {
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 iinfo->cached_extent.lstart = estart;
125 switch (iinfo->i_alloc_type) {
126 case ICBTAG_FLAG_AD_SHORT:
127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 break;
129 case ICBTAG_FLAG_AD_LONG:
130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 break;
132 }
133 spin_unlock(&iinfo->i_extent_cache_lock);
134 }
135
udf_evict_inode(struct inode * inode)136 void udf_evict_inode(struct inode *inode)
137 {
138 struct udf_inode_info *iinfo = UDF_I(inode);
139 int want_delete = 0;
140
141 if (!is_bad_inode(inode)) {
142 if (!inode->i_nlink) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 inode->i_size != iinfo->i_lenExtents) {
149 udf_warn(inode->i_sb,
150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 inode->i_ino, inode->i_mode,
152 (unsigned long long)inode->i_size,
153 (unsigned long long)iinfo->i_lenExtents);
154 }
155 }
156 truncate_inode_pages_final(&inode->i_data);
157 invalidate_inode_buffers(inode);
158 clear_inode(inode);
159 kfree(iinfo->i_data);
160 iinfo->i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165 }
166
udf_write_failed(struct address_space * mapping,loff_t to)167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182 }
183
udf_adinicb_writepage(struct folio * folio,struct writeback_control * wbc,void * data)184 static int udf_adinicb_writepage(struct folio *folio,
185 struct writeback_control *wbc, void *data)
186 {
187 struct inode *inode = folio->mapping->host;
188 struct udf_inode_info *iinfo = UDF_I(inode);
189
190 BUG_ON(!folio_test_locked(folio));
191 BUG_ON(folio->index != 0);
192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 i_size_read(inode));
194 folio_unlock(folio);
195 mark_inode_dirty(inode);
196
197 return 0;
198 }
199
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)200 static int udf_writepages(struct address_space *mapping,
201 struct writeback_control *wbc)
202 {
203 struct inode *inode = mapping->host;
204 struct udf_inode_info *iinfo = UDF_I(inode);
205
206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209 }
210
udf_adinicb_readpage(struct page * page)211 static void udf_adinicb_readpage(struct page *page)
212 {
213 struct inode *inode = page->mapping->host;
214 char *kaddr;
215 struct udf_inode_info *iinfo = UDF_I(inode);
216 loff_t isize = i_size_read(inode);
217
218 kaddr = kmap_local_page(page);
219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
220 memset(kaddr + isize, 0, PAGE_SIZE - isize);
221 flush_dcache_page(page);
222 SetPageUptodate(page);
223 kunmap_local(kaddr);
224 }
225
udf_read_folio(struct file * file,struct folio * folio)226 static int udf_read_folio(struct file *file, struct folio *folio)
227 {
228 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
229
230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
231 udf_adinicb_readpage(&folio->page);
232 folio_unlock(folio);
233 return 0;
234 }
235 return mpage_read_folio(folio, udf_get_block);
236 }
237
udf_readahead(struct readahead_control * rac)238 static void udf_readahead(struct readahead_control *rac)
239 {
240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
241
242 /*
243 * No readahead needed for in-ICB files and udf_get_block() would get
244 * confused for such file anyway.
245 */
246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
247 return;
248
249 mpage_readahead(rac, udf_get_block);
250 }
251
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)252 static int udf_write_begin(struct file *file, struct address_space *mapping,
253 loff_t pos, unsigned len,
254 struct page **pagep, void **fsdata)
255 {
256 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
257 struct page *page;
258 int ret;
259
260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
261 ret = block_write_begin(mapping, pos, len, pagep,
262 udf_get_block);
263 if (unlikely(ret))
264 udf_write_failed(mapping, pos + len);
265 return ret;
266 }
267 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
268 return -EIO;
269 page = grab_cache_page_write_begin(mapping, 0);
270 if (!page)
271 return -ENOMEM;
272 *pagep = page;
273 if (!PageUptodate(page))
274 udf_adinicb_readpage(page);
275 return 0;
276 }
277
udf_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)278 static int udf_write_end(struct file *file, struct address_space *mapping,
279 loff_t pos, unsigned len, unsigned copied,
280 struct page *page, void *fsdata)
281 {
282 struct inode *inode = file_inode(file);
283 loff_t last_pos;
284
285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
286 return generic_write_end(file, mapping, pos, len, copied, page,
287 fsdata);
288 last_pos = pos + copied;
289 if (last_pos > inode->i_size)
290 i_size_write(inode, last_pos);
291 set_page_dirty(page);
292 unlock_page(page);
293 put_page(page);
294
295 return copied;
296 }
297
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
299 {
300 struct file *file = iocb->ki_filp;
301 struct address_space *mapping = file->f_mapping;
302 struct inode *inode = mapping->host;
303 size_t count = iov_iter_count(iter);
304 ssize_t ret;
305
306 /* Fallback to buffered IO for in-ICB files */
307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
308 return 0;
309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
311 udf_write_failed(mapping, iocb->ki_pos + count);
312 return ret;
313 }
314
udf_bmap(struct address_space * mapping,sector_t block)315 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
316 {
317 struct udf_inode_info *iinfo = UDF_I(mapping->host);
318
319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
320 return -EINVAL;
321 return generic_block_bmap(mapping, block, udf_get_block);
322 }
323
324 const struct address_space_operations udf_aops = {
325 .dirty_folio = block_dirty_folio,
326 .invalidate_folio = block_invalidate_folio,
327 .read_folio = udf_read_folio,
328 .readahead = udf_readahead,
329 .writepages = udf_writepages,
330 .write_begin = udf_write_begin,
331 .write_end = udf_write_end,
332 .direct_IO = udf_direct_IO,
333 .bmap = udf_bmap,
334 .migrate_folio = buffer_migrate_folio,
335 };
336
337 /*
338 * Expand file stored in ICB to a normal one-block-file
339 *
340 * This function requires i_mutex held
341 */
udf_expand_file_adinicb(struct inode * inode)342 int udf_expand_file_adinicb(struct inode *inode)
343 {
344 struct folio *folio;
345 struct udf_inode_info *iinfo = UDF_I(inode);
346 int err;
347
348 WARN_ON_ONCE(!inode_is_locked(inode));
349 if (!iinfo->i_lenAlloc) {
350 down_write(&iinfo->i_data_sem);
351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
353 else
354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
355 up_write(&iinfo->i_data_sem);
356 mark_inode_dirty(inode);
357 return 0;
358 }
359
360 folio = __filemap_get_folio(inode->i_mapping, 0,
361 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
362 if (IS_ERR(folio))
363 return PTR_ERR(folio);
364
365 if (!folio_test_uptodate(folio))
366 udf_adinicb_readpage(&folio->page);
367 down_write(&iinfo->i_data_sem);
368 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
369 iinfo->i_lenAlloc);
370 iinfo->i_lenAlloc = 0;
371 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
373 else
374 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
375 folio_mark_dirty(folio);
376 folio_unlock(folio);
377 up_write(&iinfo->i_data_sem);
378 err = filemap_fdatawrite(inode->i_mapping);
379 if (err) {
380 /* Restore everything back so that we don't lose data... */
381 folio_lock(folio);
382 down_write(&iinfo->i_data_sem);
383 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
384 folio, 0, inode->i_size);
385 folio_unlock(folio);
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 iinfo->i_lenAlloc = inode->i_size;
388 up_write(&iinfo->i_data_sem);
389 }
390 folio_put(folio);
391 mark_inode_dirty(inode);
392
393 return err;
394 }
395
396 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
397 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
398
399 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
400 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
401
402 struct udf_map_rq {
403 sector_t lblk;
404 udf_pblk_t pblk;
405 int iflags; /* UDF_MAP_ flags determining behavior */
406 int oflags; /* UDF_BLK_ flags reporting results */
407 };
408
udf_map_block(struct inode * inode,struct udf_map_rq * map)409 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
410 {
411 int ret;
412 struct udf_inode_info *iinfo = UDF_I(inode);
413
414 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
415 return -EFSCORRUPTED;
416
417 map->oflags = 0;
418 if (!(map->iflags & UDF_MAP_CREATE)) {
419 struct kernel_lb_addr eloc;
420 uint32_t elen;
421 sector_t offset;
422 struct extent_position epos = {};
423 int8_t etype;
424
425 down_read(&iinfo->i_data_sem);
426 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
427 &etype);
428 if (ret < 0)
429 goto out_read;
430 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
431 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
432 offset);
433 map->oflags |= UDF_BLK_MAPPED;
434 ret = 0;
435 }
436 out_read:
437 up_read(&iinfo->i_data_sem);
438 brelse(epos.bh);
439
440 return ret;
441 }
442
443 down_write(&iinfo->i_data_sem);
444 /*
445 * Block beyond EOF and prealloc extents? Just discard preallocation
446 * as it is not useful and complicates things.
447 */
448 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
449 udf_discard_prealloc(inode);
450 udf_clear_extent_cache(inode);
451 ret = inode_getblk(inode, map);
452 up_write(&iinfo->i_data_sem);
453 return ret;
454 }
455
__udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int flags)456 static int __udf_get_block(struct inode *inode, sector_t block,
457 struct buffer_head *bh_result, int flags)
458 {
459 int err;
460 struct udf_map_rq map = {
461 .lblk = block,
462 .iflags = flags,
463 };
464
465 err = udf_map_block(inode, &map);
466 if (err < 0)
467 return err;
468 if (map.oflags & UDF_BLK_MAPPED) {
469 map_bh(bh_result, inode->i_sb, map.pblk);
470 if (map.oflags & UDF_BLK_NEW)
471 set_buffer_new(bh_result);
472 }
473 return 0;
474 }
475
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)476 int udf_get_block(struct inode *inode, sector_t block,
477 struct buffer_head *bh_result, int create)
478 {
479 int flags = create ? UDF_MAP_CREATE : 0;
480
481 /*
482 * We preallocate blocks only for regular files. It also makes sense
483 * for directories but there's a problem when to drop the
484 * preallocation. We might use some delayed work for that but I feel
485 * it's overengineering for a filesystem like UDF.
486 */
487 if (!S_ISREG(inode->i_mode))
488 flags |= UDF_MAP_NOPREALLOC;
489 return __udf_get_block(inode, block, bh_result, flags);
490 }
491
492 /*
493 * We shouldn't be allocating blocks on page writeback since we allocate them
494 * on page fault. We can spot dirty buffers without allocated blocks though
495 * when truncate expands file. These however don't have valid data so we can
496 * safely ignore them. So never allocate blocks from page writeback.
497 */
udf_get_block_wb(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)498 static int udf_get_block_wb(struct inode *inode, sector_t block,
499 struct buffer_head *bh_result, int create)
500 {
501 return __udf_get_block(inode, block, bh_result, 0);
502 }
503
504 /* Extend the file with new blocks totaling 'new_block_bytes',
505 * return the number of extents added
506 */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)507 static int udf_do_extend_file(struct inode *inode,
508 struct extent_position *last_pos,
509 struct kernel_long_ad *last_ext,
510 loff_t new_block_bytes)
511 {
512 uint32_t add;
513 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
514 struct super_block *sb = inode->i_sb;
515 struct udf_inode_info *iinfo;
516 int err;
517
518 /* The previous extent is fake and we should not extend by anything
519 * - there's nothing to do... */
520 if (!new_block_bytes && fake)
521 return 0;
522
523 iinfo = UDF_I(inode);
524 /* Round the last extent up to a multiple of block size */
525 if (last_ext->extLength & (sb->s_blocksize - 1)) {
526 last_ext->extLength =
527 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
528 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
529 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
530 iinfo->i_lenExtents =
531 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
532 ~(sb->s_blocksize - 1);
533 }
534
535 add = 0;
536 /* Can we merge with the previous extent? */
537 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
538 EXT_NOT_RECORDED_NOT_ALLOCATED) {
539 add = (1 << 30) - sb->s_blocksize -
540 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
541 if (add > new_block_bytes)
542 add = new_block_bytes;
543 new_block_bytes -= add;
544 last_ext->extLength += add;
545 }
546
547 if (fake) {
548 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
549 last_ext->extLength, 1);
550 if (err < 0)
551 goto out_err;
552 count++;
553 } else {
554 struct kernel_lb_addr tmploc;
555 uint32_t tmplen;
556 int8_t tmptype;
557
558 udf_write_aext(inode, last_pos, &last_ext->extLocation,
559 last_ext->extLength, 1);
560
561 /*
562 * We've rewritten the last extent. If we are going to add
563 * more extents, we may need to enter possible following
564 * empty indirect extent.
565 */
566 if (new_block_bytes) {
567 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
568 &tmptype, 0);
569 if (err < 0)
570 goto out_err;
571 }
572 }
573 iinfo->i_lenExtents += add;
574
575 /* Managed to do everything necessary? */
576 if (!new_block_bytes)
577 goto out;
578
579 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
580 last_ext->extLocation.logicalBlockNum = 0;
581 last_ext->extLocation.partitionReferenceNum = 0;
582 add = (1 << 30) - sb->s_blocksize;
583 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
584
585 /* Create enough extents to cover the whole hole */
586 while (new_block_bytes > add) {
587 new_block_bytes -= add;
588 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
589 last_ext->extLength, 1);
590 if (err)
591 goto out_err;
592 iinfo->i_lenExtents += add;
593 count++;
594 }
595 if (new_block_bytes) {
596 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
597 new_block_bytes;
598 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
599 last_ext->extLength, 1);
600 if (err)
601 goto out_err;
602 iinfo->i_lenExtents += new_block_bytes;
603 count++;
604 }
605
606 out:
607 /* last_pos should point to the last written extent... */
608 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
609 last_pos->offset -= sizeof(struct short_ad);
610 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
611 last_pos->offset -= sizeof(struct long_ad);
612 else
613 return -EIO;
614
615 return count;
616 out_err:
617 /* Remove extents we've created so far */
618 udf_clear_extent_cache(inode);
619 udf_truncate_extents(inode);
620 return err;
621 }
622
623 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)624 static void udf_do_extend_final_block(struct inode *inode,
625 struct extent_position *last_pos,
626 struct kernel_long_ad *last_ext,
627 uint32_t new_elen)
628 {
629 uint32_t added_bytes;
630
631 /*
632 * Extent already large enough? It may be already rounded up to block
633 * size...
634 */
635 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
636 return;
637 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
638 last_ext->extLength += added_bytes;
639 UDF_I(inode)->i_lenExtents += added_bytes;
640
641 udf_write_aext(inode, last_pos, &last_ext->extLocation,
642 last_ext->extLength, 1);
643 }
644
udf_extend_file(struct inode * inode,loff_t newsize)645 static int udf_extend_file(struct inode *inode, loff_t newsize)
646 {
647
648 struct extent_position epos;
649 struct kernel_lb_addr eloc;
650 uint32_t elen;
651 int8_t etype;
652 struct super_block *sb = inode->i_sb;
653 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
654 loff_t new_elen;
655 int adsize;
656 struct udf_inode_info *iinfo = UDF_I(inode);
657 struct kernel_long_ad extent;
658 int err = 0;
659 bool within_last_ext;
660
661 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
662 adsize = sizeof(struct short_ad);
663 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
664 adsize = sizeof(struct long_ad);
665 else
666 BUG();
667
668 down_write(&iinfo->i_data_sem);
669 /*
670 * When creating hole in file, just don't bother with preserving
671 * preallocation. It likely won't be very useful anyway.
672 */
673 udf_discard_prealloc(inode);
674
675 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
676 if (err < 0)
677 goto out;
678 within_last_ext = (err == 1);
679 /* We don't expect extents past EOF... */
680 WARN_ON_ONCE(within_last_ext &&
681 elen > ((loff_t)offset + 1) << inode->i_blkbits);
682
683 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
684 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
685 /* File has no extents at all or has empty last
686 * indirect extent! Create a fake extent... */
687 extent.extLocation.logicalBlockNum = 0;
688 extent.extLocation.partitionReferenceNum = 0;
689 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
690 } else {
691 epos.offset -= adsize;
692 err = udf_next_aext(inode, &epos, &extent.extLocation,
693 &extent.extLength, &etype, 0);
694 if (err <= 0)
695 goto out;
696 extent.extLength |= etype << 30;
697 }
698
699 new_elen = ((loff_t)offset << inode->i_blkbits) |
700 (newsize & (sb->s_blocksize - 1));
701
702 /* File has extent covering the new size (could happen when extending
703 * inside a block)?
704 */
705 if (within_last_ext) {
706 /* Extending file within the last file block */
707 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
708 } else {
709 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
710 }
711
712 if (err < 0)
713 goto out;
714 err = 0;
715 out:
716 brelse(epos.bh);
717 up_write(&iinfo->i_data_sem);
718 return err;
719 }
720
inode_getblk(struct inode * inode,struct udf_map_rq * map)721 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
722 {
723 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
724 struct extent_position prev_epos, cur_epos, next_epos;
725 int count = 0, startnum = 0, endnum = 0;
726 uint32_t elen = 0, tmpelen;
727 struct kernel_lb_addr eloc, tmpeloc;
728 int c = 1;
729 loff_t lbcount = 0, b_off = 0;
730 udf_pblk_t newblocknum;
731 sector_t offset = 0;
732 int8_t etype, tmpetype;
733 struct udf_inode_info *iinfo = UDF_I(inode);
734 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
735 int lastblock = 0;
736 bool isBeyondEOF = false;
737 int ret = 0;
738
739 prev_epos.offset = udf_file_entry_alloc_offset(inode);
740 prev_epos.block = iinfo->i_location;
741 prev_epos.bh = NULL;
742 cur_epos = next_epos = prev_epos;
743 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
744
745 /* find the extent which contains the block we are looking for.
746 alternate between laarr[0] and laarr[1] for locations of the
747 current extent, and the previous extent */
748 do {
749 if (prev_epos.bh != cur_epos.bh) {
750 brelse(prev_epos.bh);
751 get_bh(cur_epos.bh);
752 prev_epos.bh = cur_epos.bh;
753 }
754 if (cur_epos.bh != next_epos.bh) {
755 brelse(cur_epos.bh);
756 get_bh(next_epos.bh);
757 cur_epos.bh = next_epos.bh;
758 }
759
760 lbcount += elen;
761
762 prev_epos.block = cur_epos.block;
763 cur_epos.block = next_epos.block;
764
765 prev_epos.offset = cur_epos.offset;
766 cur_epos.offset = next_epos.offset;
767
768 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
769 if (ret < 0) {
770 goto out_free;
771 } else if (ret == 0) {
772 isBeyondEOF = true;
773 break;
774 }
775
776 c = !c;
777
778 laarr[c].extLength = (etype << 30) | elen;
779 laarr[c].extLocation = eloc;
780
781 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
782 pgoal = eloc.logicalBlockNum +
783 ((elen + inode->i_sb->s_blocksize - 1) >>
784 inode->i_sb->s_blocksize_bits);
785
786 count++;
787 } while (lbcount + elen <= b_off);
788
789 b_off -= lbcount;
790 offset = b_off >> inode->i_sb->s_blocksize_bits;
791 /*
792 * Move prev_epos and cur_epos into indirect extent if we are at
793 * the pointer to it
794 */
795 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
796 if (ret < 0)
797 goto out_free;
798 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
799 if (ret < 0)
800 goto out_free;
801
802 /* if the extent is allocated and recorded, return the block
803 if the extent is not a multiple of the blocksize, round up */
804
805 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
806 if (elen & (inode->i_sb->s_blocksize - 1)) {
807 elen = EXT_RECORDED_ALLOCATED |
808 ((elen + inode->i_sb->s_blocksize - 1) &
809 ~(inode->i_sb->s_blocksize - 1));
810 iinfo->i_lenExtents =
811 ALIGN(iinfo->i_lenExtents,
812 inode->i_sb->s_blocksize);
813 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
814 }
815 map->oflags = UDF_BLK_MAPPED;
816 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
817 ret = 0;
818 goto out_free;
819 }
820
821 /* Are we beyond EOF and preallocated extent? */
822 if (isBeyondEOF) {
823 loff_t hole_len;
824
825 if (count) {
826 if (c)
827 laarr[0] = laarr[1];
828 startnum = 1;
829 } else {
830 /* Create a fake extent when there's not one */
831 memset(&laarr[0].extLocation, 0x00,
832 sizeof(struct kernel_lb_addr));
833 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
834 /* Will udf_do_extend_file() create real extent from
835 a fake one? */
836 startnum = (offset > 0);
837 }
838 /* Create extents for the hole between EOF and offset */
839 hole_len = (loff_t)offset << inode->i_blkbits;
840 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
841 if (ret < 0)
842 goto out_free;
843 c = 0;
844 offset = 0;
845 count += ret;
846 /*
847 * Is there any real extent? - otherwise we overwrite the fake
848 * one...
849 */
850 if (count)
851 c = !c;
852 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
853 inode->i_sb->s_blocksize;
854 memset(&laarr[c].extLocation, 0x00,
855 sizeof(struct kernel_lb_addr));
856 count++;
857 endnum = c + 1;
858 lastblock = 1;
859 } else {
860 endnum = startnum = ((count > 2) ? 2 : count);
861
862 /* if the current extent is in position 0,
863 swap it with the previous */
864 if (!c && count != 1) {
865 laarr[2] = laarr[0];
866 laarr[0] = laarr[1];
867 laarr[1] = laarr[2];
868 c = 1;
869 }
870
871 /* if the current block is located in an extent,
872 read the next extent */
873 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
874 if (ret > 0) {
875 laarr[c + 1].extLength = (etype << 30) | elen;
876 laarr[c + 1].extLocation = eloc;
877 count++;
878 startnum++;
879 endnum++;
880 } else if (ret == 0)
881 lastblock = 1;
882 else
883 goto out_free;
884 }
885
886 /* if the current extent is not recorded but allocated, get the
887 * block in the extent corresponding to the requested block */
888 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
889 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
890 else { /* otherwise, allocate a new block */
891 if (iinfo->i_next_alloc_block == map->lblk)
892 goal = iinfo->i_next_alloc_goal;
893
894 if (!goal) {
895 if (!(goal = pgoal)) /* XXX: what was intended here? */
896 goal = iinfo->i_location.logicalBlockNum + 1;
897 }
898
899 newblocknum = udf_new_block(inode->i_sb, inode,
900 iinfo->i_location.partitionReferenceNum,
901 goal, &ret);
902 if (!newblocknum)
903 goto out_free;
904 if (isBeyondEOF)
905 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
906 }
907
908 /* if the extent the requsted block is located in contains multiple
909 * blocks, split the extent into at most three extents. blocks prior
910 * to requested block, requested block, and blocks after requested
911 * block */
912 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
913
914 if (!(map->iflags & UDF_MAP_NOPREALLOC))
915 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
916
917 /* merge any continuous blocks in laarr */
918 udf_merge_extents(inode, laarr, &endnum);
919
920 /* write back the new extents, inserting new extents if the new number
921 * of extents is greater than the old number, and deleting extents if
922 * the new number of extents is less than the old number */
923 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
924 if (ret < 0)
925 goto out_free;
926
927 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
928 iinfo->i_location.partitionReferenceNum, 0);
929 if (!map->pblk) {
930 ret = -EFSCORRUPTED;
931 goto out_free;
932 }
933 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
934 iinfo->i_next_alloc_block = map->lblk + 1;
935 iinfo->i_next_alloc_goal = newblocknum + 1;
936 inode_set_ctime_current(inode);
937
938 if (IS_SYNC(inode))
939 udf_sync_inode(inode);
940 else
941 mark_inode_dirty(inode);
942 ret = 0;
943 out_free:
944 brelse(prev_epos.bh);
945 brelse(cur_epos.bh);
946 brelse(next_epos.bh);
947 return ret;
948 }
949
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)950 static void udf_split_extents(struct inode *inode, int *c, int offset,
951 udf_pblk_t newblocknum,
952 struct kernel_long_ad *laarr, int *endnum)
953 {
954 unsigned long blocksize = inode->i_sb->s_blocksize;
955 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
956
957 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
958 (laarr[*c].extLength >> 30) ==
959 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
960 int curr = *c;
961 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
962 blocksize - 1) >> blocksize_bits;
963 int8_t etype = (laarr[curr].extLength >> 30);
964
965 if (blen == 1)
966 ;
967 else if (!offset || blen == offset + 1) {
968 laarr[curr + 2] = laarr[curr + 1];
969 laarr[curr + 1] = laarr[curr];
970 } else {
971 laarr[curr + 3] = laarr[curr + 1];
972 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
973 }
974
975 if (offset) {
976 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
977 udf_free_blocks(inode->i_sb, inode,
978 &laarr[curr].extLocation,
979 0, offset);
980 laarr[curr].extLength =
981 EXT_NOT_RECORDED_NOT_ALLOCATED |
982 (offset << blocksize_bits);
983 laarr[curr].extLocation.logicalBlockNum = 0;
984 laarr[curr].extLocation.
985 partitionReferenceNum = 0;
986 } else
987 laarr[curr].extLength = (etype << 30) |
988 (offset << blocksize_bits);
989 curr++;
990 (*c)++;
991 (*endnum)++;
992 }
993
994 laarr[curr].extLocation.logicalBlockNum = newblocknum;
995 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
996 laarr[curr].extLocation.partitionReferenceNum =
997 UDF_I(inode)->i_location.partitionReferenceNum;
998 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
999 blocksize;
1000 curr++;
1001
1002 if (blen != offset + 1) {
1003 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
1004 laarr[curr].extLocation.logicalBlockNum +=
1005 offset + 1;
1006 laarr[curr].extLength = (etype << 30) |
1007 ((blen - (offset + 1)) << blocksize_bits);
1008 curr++;
1009 (*endnum)++;
1010 }
1011 }
1012 }
1013
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)1014 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1015 struct kernel_long_ad *laarr,
1016 int *endnum)
1017 {
1018 int start, length = 0, currlength = 0, i;
1019
1020 if (*endnum >= (c + 1)) {
1021 if (!lastblock)
1022 return;
1023 else
1024 start = c;
1025 } else {
1026 if ((laarr[c + 1].extLength >> 30) ==
1027 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1028 start = c + 1;
1029 length = currlength =
1030 (((laarr[c + 1].extLength &
1031 UDF_EXTENT_LENGTH_MASK) +
1032 inode->i_sb->s_blocksize - 1) >>
1033 inode->i_sb->s_blocksize_bits);
1034 } else
1035 start = c;
1036 }
1037
1038 for (i = start + 1; i <= *endnum; i++) {
1039 if (i == *endnum) {
1040 if (lastblock)
1041 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1042 } else if ((laarr[i].extLength >> 30) ==
1043 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1044 length += (((laarr[i].extLength &
1045 UDF_EXTENT_LENGTH_MASK) +
1046 inode->i_sb->s_blocksize - 1) >>
1047 inode->i_sb->s_blocksize_bits);
1048 } else
1049 break;
1050 }
1051
1052 if (length) {
1053 int next = laarr[start].extLocation.logicalBlockNum +
1054 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1055 inode->i_sb->s_blocksize - 1) >>
1056 inode->i_sb->s_blocksize_bits);
1057 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1058 laarr[start].extLocation.partitionReferenceNum,
1059 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1060 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1061 currlength);
1062 if (numalloc) {
1063 if (start == (c + 1))
1064 laarr[start].extLength +=
1065 (numalloc <<
1066 inode->i_sb->s_blocksize_bits);
1067 else {
1068 memmove(&laarr[c + 2], &laarr[c + 1],
1069 sizeof(struct long_ad) * (*endnum - (c + 1)));
1070 (*endnum)++;
1071 laarr[c + 1].extLocation.logicalBlockNum = next;
1072 laarr[c + 1].extLocation.partitionReferenceNum =
1073 laarr[c].extLocation.
1074 partitionReferenceNum;
1075 laarr[c + 1].extLength =
1076 EXT_NOT_RECORDED_ALLOCATED |
1077 (numalloc <<
1078 inode->i_sb->s_blocksize_bits);
1079 start = c + 1;
1080 }
1081
1082 for (i = start + 1; numalloc && i < *endnum; i++) {
1083 int elen = ((laarr[i].extLength &
1084 UDF_EXTENT_LENGTH_MASK) +
1085 inode->i_sb->s_blocksize - 1) >>
1086 inode->i_sb->s_blocksize_bits;
1087
1088 if (elen > numalloc) {
1089 laarr[i].extLength -=
1090 (numalloc <<
1091 inode->i_sb->s_blocksize_bits);
1092 numalloc = 0;
1093 } else {
1094 numalloc -= elen;
1095 if (*endnum > (i + 1))
1096 memmove(&laarr[i],
1097 &laarr[i + 1],
1098 sizeof(struct long_ad) *
1099 (*endnum - (i + 1)));
1100 i--;
1101 (*endnum)--;
1102 }
1103 }
1104 UDF_I(inode)->i_lenExtents +=
1105 numalloc << inode->i_sb->s_blocksize_bits;
1106 }
1107 }
1108 }
1109
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1110 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1111 int *endnum)
1112 {
1113 int i;
1114 unsigned long blocksize = inode->i_sb->s_blocksize;
1115 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1116
1117 for (i = 0; i < (*endnum - 1); i++) {
1118 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1119 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1120
1121 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1122 (((li->extLength >> 30) ==
1123 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1124 ((lip1->extLocation.logicalBlockNum -
1125 li->extLocation.logicalBlockNum) ==
1126 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1127 blocksize - 1) >> blocksize_bits)))) {
1128
1129 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1130 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1131 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1132 li->extLength = lip1->extLength +
1133 (((li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) +
1135 blocksize - 1) & ~(blocksize - 1));
1136 if (*endnum > (i + 2))
1137 memmove(&laarr[i + 1], &laarr[i + 2],
1138 sizeof(struct long_ad) *
1139 (*endnum - (i + 2)));
1140 i--;
1141 (*endnum)--;
1142 }
1143 } else if (((li->extLength >> 30) ==
1144 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1145 ((lip1->extLength >> 30) ==
1146 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1147 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1148 ((li->extLength &
1149 UDF_EXTENT_LENGTH_MASK) +
1150 blocksize - 1) >> blocksize_bits);
1151 li->extLocation.logicalBlockNum = 0;
1152 li->extLocation.partitionReferenceNum = 0;
1153
1154 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1155 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1156 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1157 lip1->extLength = (lip1->extLength -
1158 (li->extLength &
1159 UDF_EXTENT_LENGTH_MASK) +
1160 UDF_EXTENT_LENGTH_MASK) &
1161 ~(blocksize - 1);
1162 li->extLength = (li->extLength &
1163 UDF_EXTENT_FLAG_MASK) +
1164 (UDF_EXTENT_LENGTH_MASK + 1) -
1165 blocksize;
1166 } else {
1167 li->extLength = lip1->extLength +
1168 (((li->extLength &
1169 UDF_EXTENT_LENGTH_MASK) +
1170 blocksize - 1) & ~(blocksize - 1));
1171 if (*endnum > (i + 2))
1172 memmove(&laarr[i + 1], &laarr[i + 2],
1173 sizeof(struct long_ad) *
1174 (*endnum - (i + 2)));
1175 i--;
1176 (*endnum)--;
1177 }
1178 } else if ((li->extLength >> 30) ==
1179 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1180 udf_free_blocks(inode->i_sb, inode,
1181 &li->extLocation, 0,
1182 ((li->extLength &
1183 UDF_EXTENT_LENGTH_MASK) +
1184 blocksize - 1) >> blocksize_bits);
1185 li->extLocation.logicalBlockNum = 0;
1186 li->extLocation.partitionReferenceNum = 0;
1187 li->extLength = (li->extLength &
1188 UDF_EXTENT_LENGTH_MASK) |
1189 EXT_NOT_RECORDED_NOT_ALLOCATED;
1190 }
1191 }
1192 }
1193
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1194 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1195 int startnum, int endnum,
1196 struct extent_position *epos)
1197 {
1198 int start = 0, i;
1199 struct kernel_lb_addr tmploc;
1200 uint32_t tmplen;
1201 int8_t tmpetype;
1202 int err;
1203
1204 if (startnum > endnum) {
1205 for (i = 0; i < (startnum - endnum); i++)
1206 udf_delete_aext(inode, *epos);
1207 } else if (startnum < endnum) {
1208 for (i = 0; i < (endnum - startnum); i++) {
1209 err = udf_insert_aext(inode, *epos,
1210 laarr[i].extLocation,
1211 laarr[i].extLength);
1212 /*
1213 * If we fail here, we are likely corrupting the extent
1214 * list and leaking blocks. At least stop early to
1215 * limit the damage.
1216 */
1217 if (err < 0)
1218 return err;
1219 err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1220 &laarr[i].extLength, &tmpetype, 1);
1221 if (err < 0)
1222 return err;
1223 start++;
1224 }
1225 }
1226
1227 for (i = start; i < endnum; i++) {
1228 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1229 if (err < 0)
1230 return err;
1231
1232 udf_write_aext(inode, epos, &laarr[i].extLocation,
1233 laarr[i].extLength, 1);
1234 }
1235 return 0;
1236 }
1237
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1238 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1239 int create, int *err)
1240 {
1241 struct buffer_head *bh = NULL;
1242 struct udf_map_rq map = {
1243 .lblk = block,
1244 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1245 };
1246
1247 *err = udf_map_block(inode, &map);
1248 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1249 return NULL;
1250
1251 bh = sb_getblk(inode->i_sb, map.pblk);
1252 if (!bh) {
1253 *err = -ENOMEM;
1254 return NULL;
1255 }
1256 if (map.oflags & UDF_BLK_NEW) {
1257 lock_buffer(bh);
1258 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1259 set_buffer_uptodate(bh);
1260 unlock_buffer(bh);
1261 mark_buffer_dirty_inode(bh, inode);
1262 return bh;
1263 }
1264
1265 if (bh_read(bh, 0) >= 0)
1266 return bh;
1267
1268 brelse(bh);
1269 *err = -EIO;
1270 return NULL;
1271 }
1272
udf_setsize(struct inode * inode,loff_t newsize)1273 int udf_setsize(struct inode *inode, loff_t newsize)
1274 {
1275 int err = 0;
1276 struct udf_inode_info *iinfo;
1277 unsigned int bsize = i_blocksize(inode);
1278
1279 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1280 S_ISLNK(inode->i_mode)))
1281 return -EINVAL;
1282 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1283 return -EPERM;
1284
1285 iinfo = UDF_I(inode);
1286 if (newsize > inode->i_size) {
1287 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1288 if (bsize >=
1289 (udf_file_entry_alloc_offset(inode) + newsize)) {
1290 down_write(&iinfo->i_data_sem);
1291 iinfo->i_lenAlloc = newsize;
1292 up_write(&iinfo->i_data_sem);
1293 goto set_size;
1294 }
1295 err = udf_expand_file_adinicb(inode);
1296 if (err)
1297 return err;
1298 }
1299 err = udf_extend_file(inode, newsize);
1300 if (err)
1301 return err;
1302 set_size:
1303 truncate_setsize(inode, newsize);
1304 } else {
1305 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1306 down_write(&iinfo->i_data_sem);
1307 udf_clear_extent_cache(inode);
1308 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1309 0x00, bsize - newsize -
1310 udf_file_entry_alloc_offset(inode));
1311 iinfo->i_lenAlloc = newsize;
1312 truncate_setsize(inode, newsize);
1313 up_write(&iinfo->i_data_sem);
1314 goto update_time;
1315 }
1316 err = block_truncate_page(inode->i_mapping, newsize,
1317 udf_get_block);
1318 if (err)
1319 return err;
1320 truncate_setsize(inode, newsize);
1321 down_write(&iinfo->i_data_sem);
1322 udf_clear_extent_cache(inode);
1323 err = udf_truncate_extents(inode);
1324 up_write(&iinfo->i_data_sem);
1325 if (err)
1326 return err;
1327 }
1328 update_time:
1329 inode->i_mtime = inode_set_ctime_current(inode);
1330 if (IS_SYNC(inode))
1331 udf_sync_inode(inode);
1332 else
1333 mark_inode_dirty(inode);
1334 return err;
1335 }
1336
1337 /*
1338 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1339 * arbitrary - just that we hopefully don't limit any real use of rewritten
1340 * inode on write-once media but avoid looping for too long on corrupted media.
1341 */
1342 #define UDF_MAX_ICB_NESTING 1024
1343
udf_read_inode(struct inode * inode,bool hidden_inode)1344 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1345 {
1346 struct buffer_head *bh = NULL;
1347 struct fileEntry *fe;
1348 struct extendedFileEntry *efe;
1349 uint16_t ident;
1350 struct udf_inode_info *iinfo = UDF_I(inode);
1351 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1352 struct kernel_lb_addr *iloc = &iinfo->i_location;
1353 unsigned int link_count;
1354 unsigned int indirections = 0;
1355 int bs = inode->i_sb->s_blocksize;
1356 int ret = -EIO;
1357 uint32_t uid, gid;
1358 struct timespec64 ctime;
1359
1360 reread:
1361 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1362 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1363 iloc->partitionReferenceNum, sbi->s_partitions);
1364 return -EIO;
1365 }
1366
1367 if (iloc->logicalBlockNum >=
1368 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1369 udf_debug("block=%u, partition=%u out of range\n",
1370 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1371 return -EIO;
1372 }
1373
1374 /*
1375 * Set defaults, but the inode is still incomplete!
1376 * Note: get_new_inode() sets the following on a new inode:
1377 * i_sb = sb
1378 * i_no = ino
1379 * i_flags = sb->s_flags
1380 * i_state = 0
1381 * clean_inode(): zero fills and sets
1382 * i_count = 1
1383 * i_nlink = 1
1384 * i_op = NULL;
1385 */
1386 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1387 if (!bh) {
1388 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1389 return -EIO;
1390 }
1391
1392 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1393 ident != TAG_IDENT_USE) {
1394 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1395 inode->i_ino, ident);
1396 goto out;
1397 }
1398
1399 fe = (struct fileEntry *)bh->b_data;
1400 efe = (struct extendedFileEntry *)bh->b_data;
1401
1402 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1403 struct buffer_head *ibh;
1404
1405 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1406 if (ident == TAG_IDENT_IE && ibh) {
1407 struct kernel_lb_addr loc;
1408 struct indirectEntry *ie;
1409
1410 ie = (struct indirectEntry *)ibh->b_data;
1411 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1412
1413 if (ie->indirectICB.extLength) {
1414 brelse(ibh);
1415 memcpy(&iinfo->i_location, &loc,
1416 sizeof(struct kernel_lb_addr));
1417 if (++indirections > UDF_MAX_ICB_NESTING) {
1418 udf_err(inode->i_sb,
1419 "too many ICBs in ICB hierarchy"
1420 " (max %d supported)\n",
1421 UDF_MAX_ICB_NESTING);
1422 goto out;
1423 }
1424 brelse(bh);
1425 goto reread;
1426 }
1427 }
1428 brelse(ibh);
1429 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1430 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1431 le16_to_cpu(fe->icbTag.strategyType));
1432 goto out;
1433 }
1434 if (fe->icbTag.strategyType == cpu_to_le16(4))
1435 iinfo->i_strat4096 = 0;
1436 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1437 iinfo->i_strat4096 = 1;
1438
1439 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1440 ICBTAG_FLAG_AD_MASK;
1441 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1442 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1443 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1444 ret = -EIO;
1445 goto out;
1446 }
1447 iinfo->i_hidden = hidden_inode;
1448 iinfo->i_unique = 0;
1449 iinfo->i_lenEAttr = 0;
1450 iinfo->i_lenExtents = 0;
1451 iinfo->i_lenAlloc = 0;
1452 iinfo->i_next_alloc_block = 0;
1453 iinfo->i_next_alloc_goal = 0;
1454 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1455 iinfo->i_efe = 1;
1456 iinfo->i_use = 0;
1457 ret = udf_alloc_i_data(inode, bs -
1458 sizeof(struct extendedFileEntry));
1459 if (ret)
1460 goto out;
1461 memcpy(iinfo->i_data,
1462 bh->b_data + sizeof(struct extendedFileEntry),
1463 bs - sizeof(struct extendedFileEntry));
1464 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1465 iinfo->i_efe = 0;
1466 iinfo->i_use = 0;
1467 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1468 if (ret)
1469 goto out;
1470 memcpy(iinfo->i_data,
1471 bh->b_data + sizeof(struct fileEntry),
1472 bs - sizeof(struct fileEntry));
1473 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1474 iinfo->i_efe = 0;
1475 iinfo->i_use = 1;
1476 iinfo->i_lenAlloc = le32_to_cpu(
1477 ((struct unallocSpaceEntry *)bh->b_data)->
1478 lengthAllocDescs);
1479 ret = udf_alloc_i_data(inode, bs -
1480 sizeof(struct unallocSpaceEntry));
1481 if (ret)
1482 goto out;
1483 memcpy(iinfo->i_data,
1484 bh->b_data + sizeof(struct unallocSpaceEntry),
1485 bs - sizeof(struct unallocSpaceEntry));
1486 return 0;
1487 }
1488
1489 ret = -EIO;
1490 read_lock(&sbi->s_cred_lock);
1491 uid = le32_to_cpu(fe->uid);
1492 if (uid == UDF_INVALID_ID ||
1493 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1494 inode->i_uid = sbi->s_uid;
1495 else
1496 i_uid_write(inode, uid);
1497
1498 gid = le32_to_cpu(fe->gid);
1499 if (gid == UDF_INVALID_ID ||
1500 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1501 inode->i_gid = sbi->s_gid;
1502 else
1503 i_gid_write(inode, gid);
1504
1505 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1506 sbi->s_fmode != UDF_INVALID_MODE)
1507 inode->i_mode = sbi->s_fmode;
1508 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1509 sbi->s_dmode != UDF_INVALID_MODE)
1510 inode->i_mode = sbi->s_dmode;
1511 else
1512 inode->i_mode = udf_convert_permissions(fe);
1513 inode->i_mode &= ~sbi->s_umask;
1514 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1515
1516 read_unlock(&sbi->s_cred_lock);
1517
1518 link_count = le16_to_cpu(fe->fileLinkCount);
1519 if (!link_count) {
1520 if (!hidden_inode) {
1521 ret = -ESTALE;
1522 goto out;
1523 }
1524 link_count = 1;
1525 }
1526 set_nlink(inode, link_count);
1527
1528 inode->i_size = le64_to_cpu(fe->informationLength);
1529 iinfo->i_lenExtents = inode->i_size;
1530
1531 if (iinfo->i_efe == 0) {
1532 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1533 (inode->i_sb->s_blocksize_bits - 9);
1534
1535 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1536 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1537 udf_disk_stamp_to_time(&ctime, fe->attrTime);
1538 inode_set_ctime_to_ts(inode, ctime);
1539
1540 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1541 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1542 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1543 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1544 iinfo->i_streamdir = 0;
1545 iinfo->i_lenStreams = 0;
1546 } else {
1547 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1548 (inode->i_sb->s_blocksize_bits - 9);
1549
1550 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1551 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1552 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1553 udf_disk_stamp_to_time(&ctime, efe->attrTime);
1554 inode_set_ctime_to_ts(inode, ctime);
1555
1556 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1557 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1558 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1559 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1560
1561 /* Named streams */
1562 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1563 iinfo->i_locStreamdir =
1564 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1565 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1566 if (iinfo->i_lenStreams >= inode->i_size)
1567 iinfo->i_lenStreams -= inode->i_size;
1568 else
1569 iinfo->i_lenStreams = 0;
1570 }
1571 inode->i_generation = iinfo->i_unique;
1572
1573 /*
1574 * Sanity check length of allocation descriptors and extended attrs to
1575 * avoid integer overflows
1576 */
1577 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1578 goto out;
1579 /* Now do exact checks */
1580 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1581 goto out;
1582 /* Sanity checks for files in ICB so that we don't get confused later */
1583 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1584 /*
1585 * For file in ICB data is stored in allocation descriptor
1586 * so sizes should match
1587 */
1588 if (iinfo->i_lenAlloc != inode->i_size)
1589 goto out;
1590 /* File in ICB has to fit in there... */
1591 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1592 goto out;
1593 }
1594
1595 switch (fe->icbTag.fileType) {
1596 case ICBTAG_FILE_TYPE_DIRECTORY:
1597 inode->i_op = &udf_dir_inode_operations;
1598 inode->i_fop = &udf_dir_operations;
1599 inode->i_mode |= S_IFDIR;
1600 inc_nlink(inode);
1601 break;
1602 case ICBTAG_FILE_TYPE_REALTIME:
1603 case ICBTAG_FILE_TYPE_REGULAR:
1604 case ICBTAG_FILE_TYPE_UNDEF:
1605 case ICBTAG_FILE_TYPE_VAT20:
1606 inode->i_data.a_ops = &udf_aops;
1607 inode->i_op = &udf_file_inode_operations;
1608 inode->i_fop = &udf_file_operations;
1609 inode->i_mode |= S_IFREG;
1610 break;
1611 case ICBTAG_FILE_TYPE_BLOCK:
1612 inode->i_mode |= S_IFBLK;
1613 break;
1614 case ICBTAG_FILE_TYPE_CHAR:
1615 inode->i_mode |= S_IFCHR;
1616 break;
1617 case ICBTAG_FILE_TYPE_FIFO:
1618 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1619 break;
1620 case ICBTAG_FILE_TYPE_SOCKET:
1621 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1622 break;
1623 case ICBTAG_FILE_TYPE_SYMLINK:
1624 inode->i_data.a_ops = &udf_symlink_aops;
1625 inode->i_op = &udf_symlink_inode_operations;
1626 inode_nohighmem(inode);
1627 inode->i_mode = S_IFLNK | 0777;
1628 break;
1629 case ICBTAG_FILE_TYPE_MAIN:
1630 udf_debug("METADATA FILE-----\n");
1631 break;
1632 case ICBTAG_FILE_TYPE_MIRROR:
1633 udf_debug("METADATA MIRROR FILE-----\n");
1634 break;
1635 case ICBTAG_FILE_TYPE_BITMAP:
1636 udf_debug("METADATA BITMAP FILE-----\n");
1637 break;
1638 default:
1639 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1640 inode->i_ino, fe->icbTag.fileType);
1641 goto out;
1642 }
1643 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1644 struct deviceSpec *dsea =
1645 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1646 if (dsea) {
1647 init_special_inode(inode, inode->i_mode,
1648 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1649 le32_to_cpu(dsea->minorDeviceIdent)));
1650 /* Developer ID ??? */
1651 } else
1652 goto out;
1653 }
1654 ret = 0;
1655 out:
1656 brelse(bh);
1657 return ret;
1658 }
1659
udf_alloc_i_data(struct inode * inode,size_t size)1660 static int udf_alloc_i_data(struct inode *inode, size_t size)
1661 {
1662 struct udf_inode_info *iinfo = UDF_I(inode);
1663 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1664 if (!iinfo->i_data)
1665 return -ENOMEM;
1666 return 0;
1667 }
1668
udf_convert_permissions(struct fileEntry * fe)1669 static umode_t udf_convert_permissions(struct fileEntry *fe)
1670 {
1671 umode_t mode;
1672 uint32_t permissions;
1673 uint32_t flags;
1674
1675 permissions = le32_to_cpu(fe->permissions);
1676 flags = le16_to_cpu(fe->icbTag.flags);
1677
1678 mode = ((permissions) & 0007) |
1679 ((permissions >> 2) & 0070) |
1680 ((permissions >> 4) & 0700) |
1681 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1682 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1683 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1684
1685 return mode;
1686 }
1687
udf_update_extra_perms(struct inode * inode,umode_t mode)1688 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1689 {
1690 struct udf_inode_info *iinfo = UDF_I(inode);
1691
1692 /*
1693 * UDF 2.01 sec. 3.3.3.3 Note 2:
1694 * In Unix, delete permission tracks write
1695 */
1696 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1697 if (mode & 0200)
1698 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1699 if (mode & 0020)
1700 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1701 if (mode & 0002)
1702 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1703 }
1704
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1705 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1706 {
1707 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1708 }
1709
udf_sync_inode(struct inode * inode)1710 static int udf_sync_inode(struct inode *inode)
1711 {
1712 return udf_update_inode(inode, 1);
1713 }
1714
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1715 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1716 {
1717 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1718 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1719 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1720 iinfo->i_crtime = time;
1721 }
1722
udf_update_inode(struct inode * inode,int do_sync)1723 static int udf_update_inode(struct inode *inode, int do_sync)
1724 {
1725 struct buffer_head *bh = NULL;
1726 struct fileEntry *fe;
1727 struct extendedFileEntry *efe;
1728 uint64_t lb_recorded;
1729 uint32_t udfperms;
1730 uint16_t icbflags;
1731 uint16_t crclen;
1732 int err = 0;
1733 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1734 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1735 struct udf_inode_info *iinfo = UDF_I(inode);
1736
1737 bh = sb_getblk(inode->i_sb,
1738 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1739 if (!bh) {
1740 udf_debug("getblk failure\n");
1741 return -EIO;
1742 }
1743
1744 lock_buffer(bh);
1745 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1746 fe = (struct fileEntry *)bh->b_data;
1747 efe = (struct extendedFileEntry *)bh->b_data;
1748
1749 if (iinfo->i_use) {
1750 struct unallocSpaceEntry *use =
1751 (struct unallocSpaceEntry *)bh->b_data;
1752
1753 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1754 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1755 iinfo->i_data, inode->i_sb->s_blocksize -
1756 sizeof(struct unallocSpaceEntry));
1757 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1758 crclen = sizeof(struct unallocSpaceEntry);
1759
1760 goto finish;
1761 }
1762
1763 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1764 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1765 else
1766 fe->uid = cpu_to_le32(i_uid_read(inode));
1767
1768 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1769 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1770 else
1771 fe->gid = cpu_to_le32(i_gid_read(inode));
1772
1773 udfperms = ((inode->i_mode & 0007)) |
1774 ((inode->i_mode & 0070) << 2) |
1775 ((inode->i_mode & 0700) << 4);
1776
1777 udfperms |= iinfo->i_extraPerms;
1778 fe->permissions = cpu_to_le32(udfperms);
1779
1780 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1781 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1782 else {
1783 if (iinfo->i_hidden)
1784 fe->fileLinkCount = cpu_to_le16(0);
1785 else
1786 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1787 }
1788
1789 fe->informationLength = cpu_to_le64(inode->i_size);
1790
1791 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1792 struct regid *eid;
1793 struct deviceSpec *dsea =
1794 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1795 if (!dsea) {
1796 dsea = (struct deviceSpec *)
1797 udf_add_extendedattr(inode,
1798 sizeof(struct deviceSpec) +
1799 sizeof(struct regid), 12, 0x3);
1800 dsea->attrType = cpu_to_le32(12);
1801 dsea->attrSubtype = 1;
1802 dsea->attrLength = cpu_to_le32(
1803 sizeof(struct deviceSpec) +
1804 sizeof(struct regid));
1805 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1806 }
1807 eid = (struct regid *)dsea->impUse;
1808 memset(eid, 0, sizeof(*eid));
1809 strcpy(eid->ident, UDF_ID_DEVELOPER);
1810 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1811 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1812 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1813 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1814 }
1815
1816 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1817 lb_recorded = 0; /* No extents => no blocks! */
1818 else
1819 lb_recorded =
1820 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1821 (blocksize_bits - 9);
1822
1823 if (iinfo->i_efe == 0) {
1824 memcpy(bh->b_data + sizeof(struct fileEntry),
1825 iinfo->i_data,
1826 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1827 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1828
1829 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1830 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1831 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1832 memset(&(fe->impIdent), 0, sizeof(struct regid));
1833 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1834 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1835 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1836 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1837 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1838 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1839 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1840 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1841 crclen = sizeof(struct fileEntry);
1842 } else {
1843 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1844 iinfo->i_data,
1845 inode->i_sb->s_blocksize -
1846 sizeof(struct extendedFileEntry));
1847 efe->objectSize =
1848 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1849 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1850
1851 if (iinfo->i_streamdir) {
1852 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1853
1854 icb_lad->extLocation =
1855 cpu_to_lelb(iinfo->i_locStreamdir);
1856 icb_lad->extLength =
1857 cpu_to_le32(inode->i_sb->s_blocksize);
1858 }
1859
1860 udf_adjust_time(iinfo, inode->i_atime);
1861 udf_adjust_time(iinfo, inode->i_mtime);
1862 udf_adjust_time(iinfo, inode_get_ctime(inode));
1863
1864 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1865 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1866 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1867 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1868
1869 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1870 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1871 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1872 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1873 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1874 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1875 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1876 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1877 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1878 crclen = sizeof(struct extendedFileEntry);
1879 }
1880
1881 finish:
1882 if (iinfo->i_strat4096) {
1883 fe->icbTag.strategyType = cpu_to_le16(4096);
1884 fe->icbTag.strategyParameter = cpu_to_le16(1);
1885 fe->icbTag.numEntries = cpu_to_le16(2);
1886 } else {
1887 fe->icbTag.strategyType = cpu_to_le16(4);
1888 fe->icbTag.numEntries = cpu_to_le16(1);
1889 }
1890
1891 if (iinfo->i_use)
1892 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1893 else if (S_ISDIR(inode->i_mode))
1894 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1895 else if (S_ISREG(inode->i_mode))
1896 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1897 else if (S_ISLNK(inode->i_mode))
1898 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1899 else if (S_ISBLK(inode->i_mode))
1900 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1901 else if (S_ISCHR(inode->i_mode))
1902 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1903 else if (S_ISFIFO(inode->i_mode))
1904 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1905 else if (S_ISSOCK(inode->i_mode))
1906 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1907
1908 icbflags = iinfo->i_alloc_type |
1909 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1910 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1911 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1912 (le16_to_cpu(fe->icbTag.flags) &
1913 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1914 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1915
1916 fe->icbTag.flags = cpu_to_le16(icbflags);
1917 if (sbi->s_udfrev >= 0x0200)
1918 fe->descTag.descVersion = cpu_to_le16(3);
1919 else
1920 fe->descTag.descVersion = cpu_to_le16(2);
1921 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1922 fe->descTag.tagLocation = cpu_to_le32(
1923 iinfo->i_location.logicalBlockNum);
1924 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1925 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1926 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1927 crclen));
1928 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1929
1930 set_buffer_uptodate(bh);
1931 unlock_buffer(bh);
1932
1933 /* write the data blocks */
1934 mark_buffer_dirty(bh);
1935 if (do_sync) {
1936 sync_dirty_buffer(bh);
1937 if (buffer_write_io_error(bh)) {
1938 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1939 inode->i_ino);
1940 err = -EIO;
1941 }
1942 }
1943 brelse(bh);
1944
1945 return err;
1946 }
1947
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1948 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1949 bool hidden_inode)
1950 {
1951 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1952 struct inode *inode = iget_locked(sb, block);
1953 int err;
1954
1955 if (!inode)
1956 return ERR_PTR(-ENOMEM);
1957
1958 if (!(inode->i_state & I_NEW)) {
1959 if (UDF_I(inode)->i_hidden != hidden_inode) {
1960 iput(inode);
1961 return ERR_PTR(-EFSCORRUPTED);
1962 }
1963 return inode;
1964 }
1965
1966 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1967 err = udf_read_inode(inode, hidden_inode);
1968 if (err < 0) {
1969 iget_failed(inode);
1970 return ERR_PTR(err);
1971 }
1972 unlock_new_inode(inode);
1973
1974 return inode;
1975 }
1976
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1977 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1978 struct extent_position *epos)
1979 {
1980 struct super_block *sb = inode->i_sb;
1981 struct buffer_head *bh;
1982 struct allocExtDesc *aed;
1983 struct extent_position nepos;
1984 struct kernel_lb_addr neloc;
1985 int ver, adsize;
1986 int err = 0;
1987
1988 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1989 adsize = sizeof(struct short_ad);
1990 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1991 adsize = sizeof(struct long_ad);
1992 else
1993 return -EIO;
1994
1995 neloc.logicalBlockNum = block;
1996 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1997
1998 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1999 if (!bh)
2000 return -EIO;
2001 lock_buffer(bh);
2002 memset(bh->b_data, 0x00, sb->s_blocksize);
2003 set_buffer_uptodate(bh);
2004 unlock_buffer(bh);
2005 mark_buffer_dirty_inode(bh, inode);
2006
2007 aed = (struct allocExtDesc *)(bh->b_data);
2008 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2009 aed->previousAllocExtLocation =
2010 cpu_to_le32(epos->block.logicalBlockNum);
2011 }
2012 aed->lengthAllocDescs = cpu_to_le32(0);
2013 if (UDF_SB(sb)->s_udfrev >= 0x0200)
2014 ver = 3;
2015 else
2016 ver = 2;
2017 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2018 sizeof(struct tag));
2019
2020 nepos.block = neloc;
2021 nepos.offset = sizeof(struct allocExtDesc);
2022 nepos.bh = bh;
2023
2024 /*
2025 * Do we have to copy current last extent to make space for indirect
2026 * one?
2027 */
2028 if (epos->offset + adsize > sb->s_blocksize) {
2029 struct kernel_lb_addr cp_loc;
2030 uint32_t cp_len;
2031 int8_t cp_type;
2032
2033 epos->offset -= adsize;
2034 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2035 if (err <= 0)
2036 goto err_out;
2037 cp_len |= ((uint32_t)cp_type) << 30;
2038
2039 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2040 udf_write_aext(inode, epos, &nepos.block,
2041 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2042 } else {
2043 __udf_add_aext(inode, epos, &nepos.block,
2044 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2045 }
2046
2047 brelse(epos->bh);
2048 *epos = nepos;
2049
2050 return 0;
2051 err_out:
2052 brelse(bh);
2053 return err;
2054 }
2055
2056 /*
2057 * Append extent at the given position - should be the first free one in inode
2058 * / indirect extent. This function assumes there is enough space in the inode
2059 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2060 */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2061 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2062 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2063 {
2064 struct udf_inode_info *iinfo = UDF_I(inode);
2065 struct allocExtDesc *aed;
2066 int adsize;
2067
2068 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2069 adsize = sizeof(struct short_ad);
2070 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2071 adsize = sizeof(struct long_ad);
2072 else
2073 return -EIO;
2074
2075 if (!epos->bh) {
2076 WARN_ON(iinfo->i_lenAlloc !=
2077 epos->offset - udf_file_entry_alloc_offset(inode));
2078 } else {
2079 aed = (struct allocExtDesc *)epos->bh->b_data;
2080 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2081 epos->offset - sizeof(struct allocExtDesc));
2082 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2083 }
2084
2085 udf_write_aext(inode, epos, eloc, elen, inc);
2086
2087 if (!epos->bh) {
2088 iinfo->i_lenAlloc += adsize;
2089 mark_inode_dirty(inode);
2090 } else {
2091 aed = (struct allocExtDesc *)epos->bh->b_data;
2092 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2093 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2094 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2095 udf_update_tag(epos->bh->b_data,
2096 epos->offset + (inc ? 0 : adsize));
2097 else
2098 udf_update_tag(epos->bh->b_data,
2099 sizeof(struct allocExtDesc));
2100 mark_buffer_dirty_inode(epos->bh, inode);
2101 }
2102
2103 return 0;
2104 }
2105
2106 /*
2107 * Append extent at given position - should be the first free one in inode
2108 * / indirect extent. Takes care of allocating and linking indirect blocks.
2109 */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2110 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2111 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2112 {
2113 int adsize;
2114 struct super_block *sb = inode->i_sb;
2115
2116 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2117 adsize = sizeof(struct short_ad);
2118 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2119 adsize = sizeof(struct long_ad);
2120 else
2121 return -EIO;
2122
2123 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2124 int err;
2125 udf_pblk_t new_block;
2126
2127 new_block = udf_new_block(sb, NULL,
2128 epos->block.partitionReferenceNum,
2129 epos->block.logicalBlockNum, &err);
2130 if (!new_block)
2131 return -ENOSPC;
2132
2133 err = udf_setup_indirect_aext(inode, new_block, epos);
2134 if (err)
2135 return err;
2136 }
2137
2138 return __udf_add_aext(inode, epos, eloc, elen, inc);
2139 }
2140
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2141 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2142 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2143 {
2144 int adsize;
2145 uint8_t *ptr;
2146 struct short_ad *sad;
2147 struct long_ad *lad;
2148 struct udf_inode_info *iinfo = UDF_I(inode);
2149
2150 if (!epos->bh)
2151 ptr = iinfo->i_data + epos->offset -
2152 udf_file_entry_alloc_offset(inode) +
2153 iinfo->i_lenEAttr;
2154 else
2155 ptr = epos->bh->b_data + epos->offset;
2156
2157 switch (iinfo->i_alloc_type) {
2158 case ICBTAG_FLAG_AD_SHORT:
2159 sad = (struct short_ad *)ptr;
2160 sad->extLength = cpu_to_le32(elen);
2161 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2162 adsize = sizeof(struct short_ad);
2163 break;
2164 case ICBTAG_FLAG_AD_LONG:
2165 lad = (struct long_ad *)ptr;
2166 lad->extLength = cpu_to_le32(elen);
2167 lad->extLocation = cpu_to_lelb(*eloc);
2168 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2169 adsize = sizeof(struct long_ad);
2170 break;
2171 default:
2172 return;
2173 }
2174
2175 if (epos->bh) {
2176 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2177 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2178 struct allocExtDesc *aed =
2179 (struct allocExtDesc *)epos->bh->b_data;
2180 udf_update_tag(epos->bh->b_data,
2181 le32_to_cpu(aed->lengthAllocDescs) +
2182 sizeof(struct allocExtDesc));
2183 }
2184 mark_buffer_dirty_inode(epos->bh, inode);
2185 } else {
2186 mark_inode_dirty(inode);
2187 }
2188
2189 if (inc)
2190 epos->offset += adsize;
2191 }
2192
2193 /*
2194 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2195 * someone does some weird stuff.
2196 */
2197 #define UDF_MAX_INDIR_EXTS 16
2198
2199 /*
2200 * Returns 1 on success, -errno on error, 0 on hit EOF.
2201 */
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int8_t * etype,int inc)2202 int udf_next_aext(struct inode *inode, struct extent_position *epos,
2203 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2204 int inc)
2205 {
2206 unsigned int indirections = 0;
2207 int ret = 0;
2208 udf_pblk_t block;
2209
2210 while (1) {
2211 ret = udf_current_aext(inode, epos, eloc, elen,
2212 etype, inc);
2213 if (ret <= 0)
2214 return ret;
2215 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2216 return ret;
2217
2218 if (++indirections > UDF_MAX_INDIR_EXTS) {
2219 udf_err(inode->i_sb,
2220 "too many indirect extents in inode %lu\n",
2221 inode->i_ino);
2222 return -EFSCORRUPTED;
2223 }
2224
2225 epos->block = *eloc;
2226 epos->offset = sizeof(struct allocExtDesc);
2227 brelse(epos->bh);
2228 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2229 epos->bh = sb_bread(inode->i_sb, block);
2230 if (!epos->bh) {
2231 udf_debug("reading block %u failed!\n", block);
2232 return -EIO;
2233 }
2234 }
2235 }
2236
2237 /*
2238 * Returns 1 on success, -errno on error, 0 on hit EOF.
2239 */
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int8_t * etype,int inc)2240 int udf_current_aext(struct inode *inode, struct extent_position *epos,
2241 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2242 int inc)
2243 {
2244 int alen;
2245 uint8_t *ptr;
2246 struct short_ad *sad;
2247 struct long_ad *lad;
2248 struct udf_inode_info *iinfo = UDF_I(inode);
2249
2250 if (!epos->bh) {
2251 if (!epos->offset)
2252 epos->offset = udf_file_entry_alloc_offset(inode);
2253 ptr = iinfo->i_data + epos->offset -
2254 udf_file_entry_alloc_offset(inode) +
2255 iinfo->i_lenEAttr;
2256 alen = udf_file_entry_alloc_offset(inode) +
2257 iinfo->i_lenAlloc;
2258 } else {
2259 struct allocExtDesc *header =
2260 (struct allocExtDesc *)epos->bh->b_data;
2261
2262 if (!epos->offset)
2263 epos->offset = sizeof(struct allocExtDesc);
2264 ptr = epos->bh->b_data + epos->offset;
2265 if (check_add_overflow(sizeof(struct allocExtDesc),
2266 le32_to_cpu(header->lengthAllocDescs), &alen))
2267 return -1;
2268 }
2269
2270 switch (iinfo->i_alloc_type) {
2271 case ICBTAG_FLAG_AD_SHORT:
2272 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2273 if (!sad)
2274 return 0;
2275 *etype = le32_to_cpu(sad->extLength) >> 30;
2276 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2277 eloc->partitionReferenceNum =
2278 iinfo->i_location.partitionReferenceNum;
2279 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2280 break;
2281 case ICBTAG_FLAG_AD_LONG:
2282 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2283 if (!lad)
2284 return 0;
2285 *etype = le32_to_cpu(lad->extLength) >> 30;
2286 *eloc = lelb_to_cpu(lad->extLocation);
2287 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2288 break;
2289 default:
2290 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2291 return -EINVAL;
2292 }
2293
2294 return 1;
2295 }
2296
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2297 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2298 struct kernel_lb_addr neloc, uint32_t nelen)
2299 {
2300 struct kernel_lb_addr oeloc;
2301 uint32_t oelen;
2302 int8_t etype;
2303 int ret;
2304
2305 if (epos.bh)
2306 get_bh(epos.bh);
2307
2308 while (1) {
2309 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2310 if (ret <= 0)
2311 break;
2312 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2313 neloc = oeloc;
2314 nelen = (etype << 30) | oelen;
2315 }
2316 if (ret == 0)
2317 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2318 brelse(epos.bh);
2319
2320 return ret;
2321 }
2322
udf_delete_aext(struct inode * inode,struct extent_position epos)2323 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2324 {
2325 struct extent_position oepos;
2326 int adsize;
2327 int8_t etype;
2328 struct allocExtDesc *aed;
2329 struct udf_inode_info *iinfo;
2330 struct kernel_lb_addr eloc;
2331 uint32_t elen;
2332 int ret;
2333
2334 if (epos.bh) {
2335 get_bh(epos.bh);
2336 get_bh(epos.bh);
2337 }
2338
2339 iinfo = UDF_I(inode);
2340 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2341 adsize = sizeof(struct short_ad);
2342 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2343 adsize = sizeof(struct long_ad);
2344 else
2345 adsize = 0;
2346
2347 oepos = epos;
2348 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2349 return -1;
2350
2351 while (1) {
2352 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2353 if (ret < 0) {
2354 brelse(epos.bh);
2355 brelse(oepos.bh);
2356 return -1;
2357 }
2358 if (ret == 0)
2359 break;
2360 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2361 if (oepos.bh != epos.bh) {
2362 oepos.block = epos.block;
2363 brelse(oepos.bh);
2364 get_bh(epos.bh);
2365 oepos.bh = epos.bh;
2366 oepos.offset = epos.offset - adsize;
2367 }
2368 }
2369 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2370 elen = 0;
2371
2372 if (epos.bh != oepos.bh) {
2373 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2374 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2375 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2376 if (!oepos.bh) {
2377 iinfo->i_lenAlloc -= (adsize * 2);
2378 mark_inode_dirty(inode);
2379 } else {
2380 aed = (struct allocExtDesc *)oepos.bh->b_data;
2381 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2382 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2383 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2384 udf_update_tag(oepos.bh->b_data,
2385 oepos.offset - (2 * adsize));
2386 else
2387 udf_update_tag(oepos.bh->b_data,
2388 sizeof(struct allocExtDesc));
2389 mark_buffer_dirty_inode(oepos.bh, inode);
2390 }
2391 } else {
2392 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2393 if (!oepos.bh) {
2394 iinfo->i_lenAlloc -= adsize;
2395 mark_inode_dirty(inode);
2396 } else {
2397 aed = (struct allocExtDesc *)oepos.bh->b_data;
2398 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2399 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2400 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2401 udf_update_tag(oepos.bh->b_data,
2402 epos.offset - adsize);
2403 else
2404 udf_update_tag(oepos.bh->b_data,
2405 sizeof(struct allocExtDesc));
2406 mark_buffer_dirty_inode(oepos.bh, inode);
2407 }
2408 }
2409
2410 brelse(epos.bh);
2411 brelse(oepos.bh);
2412
2413 return (elen >> 30);
2414 }
2415
2416 /*
2417 * Returns 1 on success, -errno on error, 0 on hit EOF.
2418 */
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset,int8_t * etype)2419 int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2420 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2421 int8_t *etype)
2422 {
2423 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2424 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2425 struct udf_inode_info *iinfo;
2426 int err = 0;
2427
2428 iinfo = UDF_I(inode);
2429 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2430 pos->offset = 0;
2431 pos->block = iinfo->i_location;
2432 pos->bh = NULL;
2433 }
2434 *elen = 0;
2435 do {
2436 err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2437 if (err <= 0) {
2438 if (err == 0) {
2439 *offset = (bcount - lbcount) >> blocksize_bits;
2440 iinfo->i_lenExtents = lbcount;
2441 }
2442 return err;
2443 }
2444 lbcount += *elen;
2445 } while (lbcount <= bcount);
2446 /* update extent cache */
2447 udf_update_extent_cache(inode, lbcount - *elen, pos);
2448 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2449
2450 return 1;
2451 }
2452