xref: /openbmc/linux/drivers/net/ethernet/engleder/tsnep_main.c (revision 6f6249a599e52e1a5f0b632f8edff733cfa76450)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/page_pool/helpers.h>
32 #include <net/xdp_sock_drv.h>
33 
34 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
35 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
36 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
37 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
38 /* XSK buffer shall store at least Q-in-Q frame */
39 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
40 				     ETH_FRAME_LEN + ETH_FCS_LEN + \
41 				     VLAN_HLEN * 2, 4))
42 
43 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
44 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
45 #else
46 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
47 #endif
48 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
49 
50 #define TSNEP_COALESCE_USECS_DEFAULT 64
51 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
52 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
53 
54 /* mapping type */
55 #define TSNEP_TX_TYPE_MAP		BIT(0)
56 #define TSNEP_TX_TYPE_MAP_PAGE		BIT(1)
57 #define TSNEP_TX_TYPE_INLINE		BIT(2)
58 /* buffer type */
59 #define TSNEP_TX_TYPE_SKB		BIT(8)
60 #define TSNEP_TX_TYPE_SKB_MAP		(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_MAP)
61 #define TSNEP_TX_TYPE_SKB_INLINE	(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_INLINE)
62 #define TSNEP_TX_TYPE_SKB_FRAG		BIT(9)
63 #define TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_MAP_PAGE)
64 #define TSNEP_TX_TYPE_SKB_FRAG_INLINE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_INLINE)
65 #define TSNEP_TX_TYPE_XDP_TX		BIT(10)
66 #define TSNEP_TX_TYPE_XDP_NDO		BIT(11)
67 #define TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE	(TSNEP_TX_TYPE_XDP_NDO | TSNEP_TX_TYPE_MAP_PAGE)
68 #define TSNEP_TX_TYPE_XDP		(TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
69 #define TSNEP_TX_TYPE_XSK		BIT(12)
70 #define TSNEP_TX_TYPE_TSTAMP		BIT(13)
71 #define TSNEP_TX_TYPE_SKB_TSTAMP	(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_TSTAMP)
72 
73 #define TSNEP_XDP_TX		BIT(0)
74 #define TSNEP_XDP_REDIRECT	BIT(1)
75 
tsnep_enable_irq(struct tsnep_adapter * adapter,u32 mask)76 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
77 {
78 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
79 }
80 
tsnep_disable_irq(struct tsnep_adapter * adapter,u32 mask)81 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
82 {
83 	mask |= ECM_INT_DISABLE;
84 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
85 }
86 
tsnep_irq(int irq,void * arg)87 static irqreturn_t tsnep_irq(int irq, void *arg)
88 {
89 	struct tsnep_adapter *adapter = arg;
90 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
91 
92 	/* acknowledge interrupt */
93 	if (active != 0)
94 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
95 
96 	/* handle link interrupt */
97 	if ((active & ECM_INT_LINK) != 0)
98 		phy_mac_interrupt(adapter->netdev->phydev);
99 
100 	/* handle TX/RX queue 0 interrupt */
101 	if ((active & adapter->queue[0].irq_mask) != 0) {
102 		if (napi_schedule_prep(&adapter->queue[0].napi)) {
103 			tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
104 			/* schedule after masking to avoid races */
105 			__napi_schedule(&adapter->queue[0].napi);
106 		}
107 	}
108 
109 	return IRQ_HANDLED;
110 }
111 
tsnep_irq_txrx(int irq,void * arg)112 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
113 {
114 	struct tsnep_queue *queue = arg;
115 
116 	/* handle TX/RX queue interrupt */
117 	if (napi_schedule_prep(&queue->napi)) {
118 		tsnep_disable_irq(queue->adapter, queue->irq_mask);
119 		/* schedule after masking to avoid races */
120 		__napi_schedule(&queue->napi);
121 	}
122 
123 	return IRQ_HANDLED;
124 }
125 
tsnep_set_irq_coalesce(struct tsnep_queue * queue,u32 usecs)126 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
127 {
128 	if (usecs > TSNEP_COALESCE_USECS_MAX)
129 		return -ERANGE;
130 
131 	usecs /= ECM_INT_DELAY_BASE_US;
132 	usecs <<= ECM_INT_DELAY_SHIFT;
133 	usecs &= ECM_INT_DELAY_MASK;
134 
135 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
136 	queue->irq_delay |= usecs;
137 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
138 
139 	return 0;
140 }
141 
tsnep_get_irq_coalesce(struct tsnep_queue * queue)142 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
143 {
144 	u32 usecs;
145 
146 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
147 	usecs >>= ECM_INT_DELAY_SHIFT;
148 	usecs *= ECM_INT_DELAY_BASE_US;
149 
150 	return usecs;
151 }
152 
tsnep_mdiobus_read(struct mii_bus * bus,int addr,int regnum)153 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
154 {
155 	struct tsnep_adapter *adapter = bus->priv;
156 	u32 md;
157 	int retval;
158 
159 	md = ECM_MD_READ;
160 	if (!adapter->suppress_preamble)
161 		md |= ECM_MD_PREAMBLE;
162 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
163 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
164 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
165 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
166 					   !(md & ECM_MD_BUSY), 16, 1000);
167 	if (retval != 0)
168 		return retval;
169 
170 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
171 }
172 
tsnep_mdiobus_write(struct mii_bus * bus,int addr,int regnum,u16 val)173 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
174 			       u16 val)
175 {
176 	struct tsnep_adapter *adapter = bus->priv;
177 	u32 md;
178 	int retval;
179 
180 	md = ECM_MD_WRITE;
181 	if (!adapter->suppress_preamble)
182 		md |= ECM_MD_PREAMBLE;
183 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
184 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
185 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
186 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
187 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
188 					   !(md & ECM_MD_BUSY), 16, 1000);
189 	if (retval != 0)
190 		return retval;
191 
192 	return 0;
193 }
194 
tsnep_set_link_mode(struct tsnep_adapter * adapter)195 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
196 {
197 	u32 mode;
198 
199 	switch (adapter->phydev->speed) {
200 	case SPEED_100:
201 		mode = ECM_LINK_MODE_100;
202 		break;
203 	case SPEED_1000:
204 		mode = ECM_LINK_MODE_1000;
205 		break;
206 	default:
207 		mode = ECM_LINK_MODE_OFF;
208 		break;
209 	}
210 	iowrite32(mode, adapter->addr + ECM_STATUS);
211 }
212 
tsnep_phy_link_status_change(struct net_device * netdev)213 static void tsnep_phy_link_status_change(struct net_device *netdev)
214 {
215 	struct tsnep_adapter *adapter = netdev_priv(netdev);
216 	struct phy_device *phydev = netdev->phydev;
217 
218 	if (phydev->link)
219 		tsnep_set_link_mode(adapter);
220 
221 	phy_print_status(netdev->phydev);
222 }
223 
tsnep_phy_loopback(struct tsnep_adapter * adapter,bool enable)224 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
225 {
226 	int retval;
227 
228 	retval = phy_loopback(adapter->phydev, enable);
229 
230 	/* PHY link state change is not signaled if loopback is enabled, it
231 	 * would delay a working loopback anyway, let's ensure that loopback
232 	 * is working immediately by setting link mode directly
233 	 */
234 	if (!retval && enable)
235 		tsnep_set_link_mode(adapter);
236 
237 	return retval;
238 }
239 
tsnep_phy_open(struct tsnep_adapter * adapter)240 static int tsnep_phy_open(struct tsnep_adapter *adapter)
241 {
242 	struct phy_device *phydev;
243 	struct ethtool_eee ethtool_eee;
244 	int retval;
245 
246 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
247 				    tsnep_phy_link_status_change,
248 				    adapter->phy_mode);
249 	if (retval)
250 		return retval;
251 	phydev = adapter->netdev->phydev;
252 
253 	/* MAC supports only 100Mbps|1000Mbps full duplex
254 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
255 	 */
256 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
257 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
258 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
259 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
260 
261 	/* disable EEE autoneg, EEE not supported by TSNEP */
262 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
263 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
264 
265 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
266 	phy_start(adapter->phydev);
267 
268 	return 0;
269 }
270 
tsnep_phy_close(struct tsnep_adapter * adapter)271 static void tsnep_phy_close(struct tsnep_adapter *adapter)
272 {
273 	phy_stop(adapter->netdev->phydev);
274 	phy_disconnect(adapter->netdev->phydev);
275 }
276 
tsnep_tx_ring_cleanup(struct tsnep_tx * tx)277 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
278 {
279 	struct device *dmadev = tx->adapter->dmadev;
280 	int i;
281 
282 	memset(tx->entry, 0, sizeof(tx->entry));
283 
284 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
285 		if (tx->page[i]) {
286 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
287 					  tx->page_dma[i]);
288 			tx->page[i] = NULL;
289 			tx->page_dma[i] = 0;
290 		}
291 	}
292 }
293 
tsnep_tx_ring_create(struct tsnep_tx * tx)294 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
295 {
296 	struct device *dmadev = tx->adapter->dmadev;
297 	struct tsnep_tx_entry *entry;
298 	struct tsnep_tx_entry *next_entry;
299 	int i, j;
300 	int retval;
301 
302 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
303 		tx->page[i] =
304 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
305 					   GFP_KERNEL);
306 		if (!tx->page[i]) {
307 			retval = -ENOMEM;
308 			goto alloc_failed;
309 		}
310 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
311 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
312 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
313 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
314 			entry->desc = (struct tsnep_tx_desc *)
315 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
316 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
317 			entry->owner_user_flag = false;
318 		}
319 	}
320 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
321 		entry = &tx->entry[i];
322 		next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
323 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
324 	}
325 
326 	return 0;
327 
328 alloc_failed:
329 	tsnep_tx_ring_cleanup(tx);
330 	return retval;
331 }
332 
tsnep_tx_init(struct tsnep_tx * tx)333 static void tsnep_tx_init(struct tsnep_tx *tx)
334 {
335 	dma_addr_t dma;
336 
337 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
338 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
339 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
340 	tx->write = 0;
341 	tx->read = 0;
342 	tx->owner_counter = 1;
343 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
344 }
345 
tsnep_tx_enable(struct tsnep_tx * tx)346 static void tsnep_tx_enable(struct tsnep_tx *tx)
347 {
348 	struct netdev_queue *nq;
349 
350 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
351 
352 	__netif_tx_lock_bh(nq);
353 	netif_tx_wake_queue(nq);
354 	__netif_tx_unlock_bh(nq);
355 }
356 
tsnep_tx_disable(struct tsnep_tx * tx,struct napi_struct * napi)357 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
358 {
359 	struct netdev_queue *nq;
360 	u32 val;
361 
362 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
363 
364 	__netif_tx_lock_bh(nq);
365 	netif_tx_stop_queue(nq);
366 	__netif_tx_unlock_bh(nq);
367 
368 	/* wait until TX is done in hardware */
369 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
370 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
371 			   1000000);
372 
373 	/* wait until TX is also done in software */
374 	while (READ_ONCE(tx->read) != tx->write) {
375 		napi_schedule(napi);
376 		napi_synchronize(napi);
377 	}
378 }
379 
tsnep_tx_activate(struct tsnep_tx * tx,int index,int length,bool last)380 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
381 			      bool last)
382 {
383 	struct tsnep_tx_entry *entry = &tx->entry[index];
384 
385 	entry->properties = 0;
386 	/* xdpf and zc are union with skb */
387 	if (entry->skb) {
388 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
389 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
390 		if ((entry->type & TSNEP_TX_TYPE_SKB_TSTAMP) == TSNEP_TX_TYPE_SKB_TSTAMP)
391 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
392 
393 		/* toggle user flag to prevent false acknowledge
394 		 *
395 		 * Only the first fragment is acknowledged. For all other
396 		 * fragments no acknowledge is done and the last written owner
397 		 * counter stays in the writeback descriptor. Therefore, it is
398 		 * possible that the last written owner counter is identical to
399 		 * the new incremented owner counter and a false acknowledge is
400 		 * detected before the real acknowledge has been done by
401 		 * hardware.
402 		 *
403 		 * The user flag is used to prevent this situation. The user
404 		 * flag is copied to the writeback descriptor by the hardware
405 		 * and is used as additional acknowledge data. By toggeling the
406 		 * user flag only for the first fragment (which is
407 		 * acknowledged), it is guaranteed that the last acknowledge
408 		 * done for this descriptor has used a different user flag and
409 		 * cannot be detected as false acknowledge.
410 		 */
411 		entry->owner_user_flag = !entry->owner_user_flag;
412 	}
413 	if (last)
414 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
415 	if (index == tx->increment_owner_counter) {
416 		tx->owner_counter++;
417 		if (tx->owner_counter == 4)
418 			tx->owner_counter = 1;
419 		tx->increment_owner_counter--;
420 		if (tx->increment_owner_counter < 0)
421 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
422 	}
423 	entry->properties |=
424 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
425 		TSNEP_DESC_OWNER_COUNTER_MASK;
426 	if (entry->owner_user_flag)
427 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
428 	entry->desc->more_properties =
429 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
430 	if (entry->type & TSNEP_TX_TYPE_INLINE)
431 		entry->properties |= TSNEP_TX_DESC_DATA_AFTER_DESC_FLAG;
432 
433 	/* descriptor properties shall be written last, because valid data is
434 	 * signaled there
435 	 */
436 	dma_wmb();
437 
438 	entry->desc->properties = __cpu_to_le32(entry->properties);
439 }
440 
tsnep_tx_desc_available(struct tsnep_tx * tx)441 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
442 {
443 	if (tx->read <= tx->write)
444 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
445 	else
446 		return tx->read - tx->write - 1;
447 }
448 
tsnep_tx_map_frag(skb_frag_t * frag,struct tsnep_tx_entry * entry,struct device * dmadev,dma_addr_t * dma)449 static int tsnep_tx_map_frag(skb_frag_t *frag, struct tsnep_tx_entry *entry,
450 			     struct device *dmadev, dma_addr_t *dma)
451 {
452 	unsigned int len;
453 	int mapped;
454 
455 	len = skb_frag_size(frag);
456 	if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
457 		*dma = skb_frag_dma_map(dmadev, frag, 0, len, DMA_TO_DEVICE);
458 		if (dma_mapping_error(dmadev, *dma))
459 			return -ENOMEM;
460 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE;
461 		mapped = 1;
462 	} else {
463 		void *fragdata = skb_frag_address_safe(frag);
464 
465 		if (likely(fragdata)) {
466 			memcpy(&entry->desc->tx, fragdata, len);
467 		} else {
468 			struct page *page = skb_frag_page(frag);
469 
470 			fragdata = kmap_local_page(page);
471 			memcpy(&entry->desc->tx, fragdata + skb_frag_off(frag),
472 			       len);
473 			kunmap_local(fragdata);
474 		}
475 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_INLINE;
476 		mapped = 0;
477 	}
478 
479 	return mapped;
480 }
481 
tsnep_tx_map(struct sk_buff * skb,struct tsnep_tx * tx,int count,bool do_tstamp)482 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count,
483 			bool do_tstamp)
484 {
485 	struct device *dmadev = tx->adapter->dmadev;
486 	struct tsnep_tx_entry *entry;
487 	unsigned int len;
488 	int map_len = 0;
489 	dma_addr_t dma;
490 	int i, mapped;
491 
492 	for (i = 0; i < count; i++) {
493 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
494 
495 		if (!i) {
496 			len = skb_headlen(skb);
497 			if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
498 				dma = dma_map_single(dmadev, skb->data, len,
499 						     DMA_TO_DEVICE);
500 				if (dma_mapping_error(dmadev, dma))
501 					return -ENOMEM;
502 				entry->type = TSNEP_TX_TYPE_SKB_MAP;
503 				mapped = 1;
504 			} else {
505 				memcpy(&entry->desc->tx, skb->data, len);
506 				entry->type = TSNEP_TX_TYPE_SKB_INLINE;
507 				mapped = 0;
508 			}
509 
510 			if (do_tstamp)
511 				entry->type |= TSNEP_TX_TYPE_TSTAMP;
512 		} else {
513 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
514 
515 			len = skb_frag_size(frag);
516 			mapped = tsnep_tx_map_frag(frag, entry, dmadev, &dma);
517 			if (mapped < 0)
518 				return mapped;
519 		}
520 
521 		entry->len = len;
522 		if (likely(mapped)) {
523 			dma_unmap_addr_set(entry, dma, dma);
524 			entry->desc->tx = __cpu_to_le64(dma);
525 		}
526 
527 		map_len += len;
528 	}
529 
530 	return map_len;
531 }
532 
tsnep_tx_unmap(struct tsnep_tx * tx,int index,int count)533 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
534 {
535 	struct device *dmadev = tx->adapter->dmadev;
536 	struct tsnep_tx_entry *entry;
537 	int map_len = 0;
538 	int i;
539 
540 	for (i = 0; i < count; i++) {
541 		entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
542 
543 		if (entry->len) {
544 			if (entry->type & TSNEP_TX_TYPE_MAP)
545 				dma_unmap_single(dmadev,
546 						 dma_unmap_addr(entry, dma),
547 						 dma_unmap_len(entry, len),
548 						 DMA_TO_DEVICE);
549 			else if (entry->type & TSNEP_TX_TYPE_MAP_PAGE)
550 				dma_unmap_page(dmadev,
551 					       dma_unmap_addr(entry, dma),
552 					       dma_unmap_len(entry, len),
553 					       DMA_TO_DEVICE);
554 			map_len += entry->len;
555 			entry->len = 0;
556 		}
557 	}
558 
559 	return map_len;
560 }
561 
tsnep_xmit_frame_ring(struct sk_buff * skb,struct tsnep_tx * tx)562 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
563 					 struct tsnep_tx *tx)
564 {
565 	struct tsnep_tx_entry *entry;
566 	bool do_tstamp = false;
567 	int count = 1;
568 	int length;
569 	int retval;
570 	int i;
571 
572 	if (skb_shinfo(skb)->nr_frags > 0)
573 		count += skb_shinfo(skb)->nr_frags;
574 
575 	if (tsnep_tx_desc_available(tx) < count) {
576 		/* ring full, shall not happen because queue is stopped if full
577 		 * below
578 		 */
579 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
580 
581 		return NETDEV_TX_BUSY;
582 	}
583 
584 	entry = &tx->entry[tx->write];
585 	entry->skb = skb;
586 
587 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
588 	    tx->adapter->hwtstamp_config.tx_type == HWTSTAMP_TX_ON) {
589 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
590 		do_tstamp = true;
591 	}
592 
593 	retval = tsnep_tx_map(skb, tx, count, do_tstamp);
594 	if (retval < 0) {
595 		tsnep_tx_unmap(tx, tx->write, count);
596 		dev_kfree_skb_any(entry->skb);
597 		entry->skb = NULL;
598 
599 		tx->dropped++;
600 
601 		return NETDEV_TX_OK;
602 	}
603 	length = retval;
604 
605 	for (i = 0; i < count; i++)
606 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
607 				  i == count - 1);
608 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
609 
610 	skb_tx_timestamp(skb);
611 
612 	/* descriptor properties shall be valid before hardware is notified */
613 	dma_wmb();
614 
615 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
616 
617 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
618 		/* ring can get full with next frame */
619 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
620 	}
621 
622 	return NETDEV_TX_OK;
623 }
624 
tsnep_xdp_tx_map(struct xdp_frame * xdpf,struct tsnep_tx * tx,struct skb_shared_info * shinfo,int count,u32 type)625 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
626 			    struct skb_shared_info *shinfo, int count, u32 type)
627 {
628 	struct device *dmadev = tx->adapter->dmadev;
629 	struct tsnep_tx_entry *entry;
630 	struct page *page;
631 	skb_frag_t *frag;
632 	unsigned int len;
633 	int map_len = 0;
634 	dma_addr_t dma;
635 	void *data;
636 	int i;
637 
638 	frag = NULL;
639 	len = xdpf->len;
640 	for (i = 0; i < count; i++) {
641 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
642 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
643 			data = unlikely(frag) ? skb_frag_address(frag) :
644 						xdpf->data;
645 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
646 			if (dma_mapping_error(dmadev, dma))
647 				return -ENOMEM;
648 
649 			entry->type = TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE;
650 		} else {
651 			page = unlikely(frag) ? skb_frag_page(frag) :
652 						virt_to_page(xdpf->data);
653 			dma = page_pool_get_dma_addr(page);
654 			if (unlikely(frag))
655 				dma += skb_frag_off(frag);
656 			else
657 				dma += sizeof(*xdpf) + xdpf->headroom;
658 			dma_sync_single_for_device(dmadev, dma, len,
659 						   DMA_BIDIRECTIONAL);
660 
661 			entry->type = TSNEP_TX_TYPE_XDP_TX;
662 		}
663 
664 		entry->len = len;
665 		dma_unmap_addr_set(entry, dma, dma);
666 
667 		entry->desc->tx = __cpu_to_le64(dma);
668 
669 		map_len += len;
670 
671 		if (i + 1 < count) {
672 			frag = &shinfo->frags[i];
673 			len = skb_frag_size(frag);
674 		}
675 	}
676 
677 	return map_len;
678 }
679 
680 /* This function requires __netif_tx_lock is held by the caller. */
tsnep_xdp_xmit_frame_ring(struct xdp_frame * xdpf,struct tsnep_tx * tx,u32 type)681 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
682 				      struct tsnep_tx *tx, u32 type)
683 {
684 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
685 	struct tsnep_tx_entry *entry;
686 	int count, length, retval, i;
687 
688 	count = 1;
689 	if (unlikely(xdp_frame_has_frags(xdpf)))
690 		count += shinfo->nr_frags;
691 
692 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
693 	 * will be available for normal TX path and queue is stopped there if
694 	 * necessary
695 	 */
696 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
697 		return false;
698 
699 	entry = &tx->entry[tx->write];
700 	entry->xdpf = xdpf;
701 
702 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
703 	if (retval < 0) {
704 		tsnep_tx_unmap(tx, tx->write, count);
705 		entry->xdpf = NULL;
706 
707 		tx->dropped++;
708 
709 		return false;
710 	}
711 	length = retval;
712 
713 	for (i = 0; i < count; i++)
714 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
715 				  i == count - 1);
716 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
717 
718 	/* descriptor properties shall be valid before hardware is notified */
719 	dma_wmb();
720 
721 	return true;
722 }
723 
tsnep_xdp_xmit_flush(struct tsnep_tx * tx)724 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
725 {
726 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
727 }
728 
tsnep_xdp_xmit_back(struct tsnep_adapter * adapter,struct xdp_buff * xdp,struct netdev_queue * tx_nq,struct tsnep_tx * tx,bool zc)729 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
730 				struct xdp_buff *xdp,
731 				struct netdev_queue *tx_nq, struct tsnep_tx *tx,
732 				bool zc)
733 {
734 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
735 	bool xmit;
736 	u32 type;
737 
738 	if (unlikely(!xdpf))
739 		return false;
740 
741 	/* no page pool for zero copy */
742 	if (zc)
743 		type = TSNEP_TX_TYPE_XDP_NDO;
744 	else
745 		type = TSNEP_TX_TYPE_XDP_TX;
746 
747 	__netif_tx_lock(tx_nq, smp_processor_id());
748 
749 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, type);
750 
751 	/* Avoid transmit queue timeout since we share it with the slow path */
752 	if (xmit)
753 		txq_trans_cond_update(tx_nq);
754 
755 	__netif_tx_unlock(tx_nq);
756 
757 	return xmit;
758 }
759 
tsnep_xdp_tx_map_zc(struct xdp_desc * xdpd,struct tsnep_tx * tx)760 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
761 {
762 	struct tsnep_tx_entry *entry;
763 	dma_addr_t dma;
764 
765 	entry = &tx->entry[tx->write];
766 	entry->zc = true;
767 
768 	dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
769 	xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
770 
771 	entry->type = TSNEP_TX_TYPE_XSK;
772 	entry->len = xdpd->len;
773 
774 	entry->desc->tx = __cpu_to_le64(dma);
775 
776 	return xdpd->len;
777 }
778 
tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc * xdpd,struct tsnep_tx * tx)779 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
780 					 struct tsnep_tx *tx)
781 {
782 	int length;
783 
784 	length = tsnep_xdp_tx_map_zc(xdpd, tx);
785 
786 	tsnep_tx_activate(tx, tx->write, length, true);
787 	tx->write = (tx->write + 1) & TSNEP_RING_MASK;
788 }
789 
tsnep_xdp_xmit_zc(struct tsnep_tx * tx)790 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
791 {
792 	int desc_available = tsnep_tx_desc_available(tx);
793 	struct xdp_desc *descs = tx->xsk_pool->tx_descs;
794 	int batch, i;
795 
796 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
797 	 * will be available for normal TX path and queue is stopped there if
798 	 * necessary
799 	 */
800 	if (desc_available <= (MAX_SKB_FRAGS + 1))
801 		return;
802 	desc_available -= MAX_SKB_FRAGS + 1;
803 
804 	batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
805 	for (i = 0; i < batch; i++)
806 		tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
807 
808 	if (batch) {
809 		/* descriptor properties shall be valid before hardware is
810 		 * notified
811 		 */
812 		dma_wmb();
813 
814 		tsnep_xdp_xmit_flush(tx);
815 	}
816 }
817 
tsnep_tx_poll(struct tsnep_tx * tx,int napi_budget)818 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
819 {
820 	struct tsnep_tx_entry *entry;
821 	struct netdev_queue *nq;
822 	int xsk_frames = 0;
823 	int budget = 128;
824 	int length;
825 	int count;
826 
827 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
828 	__netif_tx_lock(nq, smp_processor_id());
829 
830 	do {
831 		if (tx->read == tx->write)
832 			break;
833 
834 		entry = &tx->entry[tx->read];
835 		if ((__le32_to_cpu(entry->desc_wb->properties) &
836 		     TSNEP_TX_DESC_OWNER_MASK) !=
837 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
838 			break;
839 
840 		/* descriptor properties shall be read first, because valid data
841 		 * is signaled there
842 		 */
843 		dma_rmb();
844 
845 		count = 1;
846 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
847 		    skb_shinfo(entry->skb)->nr_frags > 0)
848 			count += skb_shinfo(entry->skb)->nr_frags;
849 		else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
850 			 xdp_frame_has_frags(entry->xdpf))
851 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
852 
853 		length = tsnep_tx_unmap(tx, tx->read, count);
854 
855 		if (((entry->type & TSNEP_TX_TYPE_SKB_TSTAMP) == TSNEP_TX_TYPE_SKB_TSTAMP) &&
856 		    (__le32_to_cpu(entry->desc_wb->properties) &
857 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
858 			struct skb_shared_hwtstamps hwtstamps;
859 			u64 timestamp;
860 
861 			if (skb_shinfo(entry->skb)->tx_flags &
862 			    SKBTX_HW_TSTAMP_USE_CYCLES)
863 				timestamp =
864 					__le64_to_cpu(entry->desc_wb->counter);
865 			else
866 				timestamp =
867 					__le64_to_cpu(entry->desc_wb->timestamp);
868 
869 			memset(&hwtstamps, 0, sizeof(hwtstamps));
870 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
871 
872 			skb_tstamp_tx(entry->skb, &hwtstamps);
873 		}
874 
875 		if (entry->type & TSNEP_TX_TYPE_SKB)
876 			napi_consume_skb(entry->skb, napi_budget);
877 		else if (entry->type & TSNEP_TX_TYPE_XDP)
878 			xdp_return_frame_rx_napi(entry->xdpf);
879 		else
880 			xsk_frames++;
881 		/* xdpf and zc are union with skb */
882 		entry->skb = NULL;
883 
884 		tx->read = (tx->read + count) & TSNEP_RING_MASK;
885 
886 		tx->packets++;
887 		tx->bytes += length + ETH_FCS_LEN;
888 
889 		budget--;
890 	} while (likely(budget));
891 
892 	if (tx->xsk_pool) {
893 		if (xsk_frames)
894 			xsk_tx_completed(tx->xsk_pool, xsk_frames);
895 		if (xsk_uses_need_wakeup(tx->xsk_pool))
896 			xsk_set_tx_need_wakeup(tx->xsk_pool);
897 		tsnep_xdp_xmit_zc(tx);
898 	}
899 
900 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
901 	    netif_tx_queue_stopped(nq)) {
902 		netif_tx_wake_queue(nq);
903 	}
904 
905 	__netif_tx_unlock(nq);
906 
907 	return budget != 0;
908 }
909 
tsnep_tx_pending(struct tsnep_tx * tx)910 static bool tsnep_tx_pending(struct tsnep_tx *tx)
911 {
912 	struct tsnep_tx_entry *entry;
913 	struct netdev_queue *nq;
914 	bool pending = false;
915 
916 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
917 	__netif_tx_lock(nq, smp_processor_id());
918 
919 	if (tx->read != tx->write) {
920 		entry = &tx->entry[tx->read];
921 		if ((__le32_to_cpu(entry->desc_wb->properties) &
922 		     TSNEP_TX_DESC_OWNER_MASK) ==
923 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
924 			pending = true;
925 	}
926 
927 	__netif_tx_unlock(nq);
928 
929 	return pending;
930 }
931 
tsnep_tx_open(struct tsnep_tx * tx)932 static int tsnep_tx_open(struct tsnep_tx *tx)
933 {
934 	int retval;
935 
936 	retval = tsnep_tx_ring_create(tx);
937 	if (retval)
938 		return retval;
939 
940 	tsnep_tx_init(tx);
941 
942 	return 0;
943 }
944 
tsnep_tx_close(struct tsnep_tx * tx)945 static void tsnep_tx_close(struct tsnep_tx *tx)
946 {
947 	tsnep_tx_ring_cleanup(tx);
948 }
949 
tsnep_rx_ring_cleanup(struct tsnep_rx * rx)950 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
951 {
952 	struct device *dmadev = rx->adapter->dmadev;
953 	struct tsnep_rx_entry *entry;
954 	int i;
955 
956 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
957 		entry = &rx->entry[i];
958 		if (!rx->xsk_pool && entry->page)
959 			page_pool_put_full_page(rx->page_pool, entry->page,
960 						false);
961 		if (rx->xsk_pool && entry->xdp)
962 			xsk_buff_free(entry->xdp);
963 		/* xdp is union with page */
964 		entry->page = NULL;
965 	}
966 
967 	if (rx->page_pool)
968 		page_pool_destroy(rx->page_pool);
969 
970 	memset(rx->entry, 0, sizeof(rx->entry));
971 
972 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
973 		if (rx->page[i]) {
974 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
975 					  rx->page_dma[i]);
976 			rx->page[i] = NULL;
977 			rx->page_dma[i] = 0;
978 		}
979 	}
980 }
981 
tsnep_rx_ring_create(struct tsnep_rx * rx)982 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
983 {
984 	struct device *dmadev = rx->adapter->dmadev;
985 	struct tsnep_rx_entry *entry;
986 	struct page_pool_params pp_params = { 0 };
987 	struct tsnep_rx_entry *next_entry;
988 	int i, j;
989 	int retval;
990 
991 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
992 		rx->page[i] =
993 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
994 					   GFP_KERNEL);
995 		if (!rx->page[i]) {
996 			retval = -ENOMEM;
997 			goto failed;
998 		}
999 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
1000 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
1001 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
1002 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
1003 			entry->desc = (struct tsnep_rx_desc *)
1004 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
1005 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
1006 		}
1007 	}
1008 
1009 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1010 	pp_params.order = 0;
1011 	pp_params.pool_size = TSNEP_RING_SIZE;
1012 	pp_params.nid = dev_to_node(dmadev);
1013 	pp_params.dev = dmadev;
1014 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
1015 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
1016 	pp_params.offset = TSNEP_RX_OFFSET;
1017 	rx->page_pool = page_pool_create(&pp_params);
1018 	if (IS_ERR(rx->page_pool)) {
1019 		retval = PTR_ERR(rx->page_pool);
1020 		rx->page_pool = NULL;
1021 		goto failed;
1022 	}
1023 
1024 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1025 		entry = &rx->entry[i];
1026 		next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
1027 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
1028 	}
1029 
1030 	return 0;
1031 
1032 failed:
1033 	tsnep_rx_ring_cleanup(rx);
1034 	return retval;
1035 }
1036 
tsnep_rx_init(struct tsnep_rx * rx)1037 static void tsnep_rx_init(struct tsnep_rx *rx)
1038 {
1039 	dma_addr_t dma;
1040 
1041 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
1042 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
1043 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
1044 	rx->write = 0;
1045 	rx->read = 0;
1046 	rx->owner_counter = 1;
1047 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1048 }
1049 
tsnep_rx_enable(struct tsnep_rx * rx)1050 static void tsnep_rx_enable(struct tsnep_rx *rx)
1051 {
1052 	/* descriptor properties shall be valid before hardware is notified */
1053 	dma_wmb();
1054 
1055 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
1056 }
1057 
tsnep_rx_disable(struct tsnep_rx * rx)1058 static void tsnep_rx_disable(struct tsnep_rx *rx)
1059 {
1060 	u32 val;
1061 
1062 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
1063 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
1064 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1065 			   1000000);
1066 }
1067 
tsnep_rx_desc_available(struct tsnep_rx * rx)1068 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
1069 {
1070 	if (rx->read <= rx->write)
1071 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
1072 	else
1073 		return rx->read - rx->write - 1;
1074 }
1075 
tsnep_rx_free_page_buffer(struct tsnep_rx * rx)1076 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1077 {
1078 	struct page **page;
1079 
1080 	/* last entry of page_buffer is always zero, because ring cannot be
1081 	 * filled completely
1082 	 */
1083 	page = rx->page_buffer;
1084 	while (*page) {
1085 		page_pool_put_full_page(rx->page_pool, *page, false);
1086 		*page = NULL;
1087 		page++;
1088 	}
1089 }
1090 
tsnep_rx_alloc_page_buffer(struct tsnep_rx * rx)1091 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1092 {
1093 	int i;
1094 
1095 	/* alloc for all ring entries except the last one, because ring cannot
1096 	 * be filled completely
1097 	 */
1098 	for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1099 		rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1100 		if (!rx->page_buffer[i]) {
1101 			tsnep_rx_free_page_buffer(rx);
1102 
1103 			return -ENOMEM;
1104 		}
1105 	}
1106 
1107 	return 0;
1108 }
1109 
tsnep_rx_set_page(struct tsnep_rx * rx,struct tsnep_rx_entry * entry,struct page * page)1110 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1111 			      struct page *page)
1112 {
1113 	entry->page = page;
1114 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
1115 	entry->dma = page_pool_get_dma_addr(entry->page);
1116 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1117 }
1118 
tsnep_rx_alloc_buffer(struct tsnep_rx * rx,int index)1119 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1120 {
1121 	struct tsnep_rx_entry *entry = &rx->entry[index];
1122 	struct page *page;
1123 
1124 	page = page_pool_dev_alloc_pages(rx->page_pool);
1125 	if (unlikely(!page))
1126 		return -ENOMEM;
1127 	tsnep_rx_set_page(rx, entry, page);
1128 
1129 	return 0;
1130 }
1131 
tsnep_rx_reuse_buffer(struct tsnep_rx * rx,int index)1132 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1133 {
1134 	struct tsnep_rx_entry *entry = &rx->entry[index];
1135 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1136 
1137 	tsnep_rx_set_page(rx, entry, read->page);
1138 	read->page = NULL;
1139 }
1140 
tsnep_rx_activate(struct tsnep_rx * rx,int index)1141 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1142 {
1143 	struct tsnep_rx_entry *entry = &rx->entry[index];
1144 
1145 	/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1146 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1147 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1148 	if (index == rx->increment_owner_counter) {
1149 		rx->owner_counter++;
1150 		if (rx->owner_counter == 4)
1151 			rx->owner_counter = 1;
1152 		rx->increment_owner_counter--;
1153 		if (rx->increment_owner_counter < 0)
1154 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1155 	}
1156 	entry->properties |=
1157 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1158 		TSNEP_DESC_OWNER_COUNTER_MASK;
1159 
1160 	/* descriptor properties shall be written last, because valid data is
1161 	 * signaled there
1162 	 */
1163 	dma_wmb();
1164 
1165 	entry->desc->properties = __cpu_to_le32(entry->properties);
1166 }
1167 
tsnep_rx_alloc(struct tsnep_rx * rx,int count,bool reuse)1168 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1169 {
1170 	bool alloc_failed = false;
1171 	int i, index;
1172 
1173 	for (i = 0; i < count && !alloc_failed; i++) {
1174 		index = (rx->write + i) & TSNEP_RING_MASK;
1175 
1176 		if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1177 			rx->alloc_failed++;
1178 			alloc_failed = true;
1179 
1180 			/* reuse only if no other allocation was successful */
1181 			if (i == 0 && reuse)
1182 				tsnep_rx_reuse_buffer(rx, index);
1183 			else
1184 				break;
1185 		}
1186 
1187 		tsnep_rx_activate(rx, index);
1188 	}
1189 
1190 	if (i)
1191 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1192 
1193 	return i;
1194 }
1195 
tsnep_rx_refill(struct tsnep_rx * rx,int count,bool reuse)1196 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1197 {
1198 	int desc_refilled;
1199 
1200 	desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1201 	if (desc_refilled)
1202 		tsnep_rx_enable(rx);
1203 
1204 	return desc_refilled;
1205 }
1206 
tsnep_rx_set_xdp(struct tsnep_rx * rx,struct tsnep_rx_entry * entry,struct xdp_buff * xdp)1207 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1208 			     struct xdp_buff *xdp)
1209 {
1210 	entry->xdp = xdp;
1211 	entry->len = TSNEP_XSK_RX_BUF_SIZE;
1212 	entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1213 	entry->desc->rx = __cpu_to_le64(entry->dma);
1214 }
1215 
tsnep_rx_reuse_buffer_zc(struct tsnep_rx * rx,int index)1216 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1217 {
1218 	struct tsnep_rx_entry *entry = &rx->entry[index];
1219 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1220 
1221 	tsnep_rx_set_xdp(rx, entry, read->xdp);
1222 	read->xdp = NULL;
1223 }
1224 
tsnep_rx_alloc_zc(struct tsnep_rx * rx,int count,bool reuse)1225 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1226 {
1227 	u32 allocated;
1228 	int i;
1229 
1230 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1231 	for (i = 0; i < allocated; i++) {
1232 		int index = (rx->write + i) & TSNEP_RING_MASK;
1233 		struct tsnep_rx_entry *entry = &rx->entry[index];
1234 
1235 		tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1236 		tsnep_rx_activate(rx, index);
1237 	}
1238 	if (i == 0) {
1239 		rx->alloc_failed++;
1240 
1241 		if (reuse) {
1242 			tsnep_rx_reuse_buffer_zc(rx, rx->write);
1243 			tsnep_rx_activate(rx, rx->write);
1244 		}
1245 	}
1246 
1247 	if (i)
1248 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1249 
1250 	return i;
1251 }
1252 
tsnep_rx_free_zc(struct tsnep_rx * rx)1253 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1254 {
1255 	int i;
1256 
1257 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1258 		struct tsnep_rx_entry *entry = &rx->entry[i];
1259 
1260 		if (entry->xdp)
1261 			xsk_buff_free(entry->xdp);
1262 		entry->xdp = NULL;
1263 	}
1264 }
1265 
tsnep_rx_refill_zc(struct tsnep_rx * rx,int count,bool reuse)1266 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1267 {
1268 	int desc_refilled;
1269 
1270 	desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1271 	if (desc_refilled)
1272 		tsnep_rx_enable(rx);
1273 
1274 	return desc_refilled;
1275 }
1276 
tsnep_xdp_run_prog(struct tsnep_rx * rx,struct bpf_prog * prog,struct xdp_buff * xdp,int * status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1277 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1278 			       struct xdp_buff *xdp, int *status,
1279 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1280 {
1281 	unsigned int length;
1282 	unsigned int sync;
1283 	u32 act;
1284 
1285 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1286 
1287 	act = bpf_prog_run_xdp(prog, xdp);
1288 	switch (act) {
1289 	case XDP_PASS:
1290 		return false;
1291 	case XDP_TX:
1292 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx, false))
1293 			goto out_failure;
1294 		*status |= TSNEP_XDP_TX;
1295 		return true;
1296 	case XDP_REDIRECT:
1297 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1298 			goto out_failure;
1299 		*status |= TSNEP_XDP_REDIRECT;
1300 		return true;
1301 	default:
1302 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1303 		fallthrough;
1304 	case XDP_ABORTED:
1305 out_failure:
1306 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1307 		fallthrough;
1308 	case XDP_DROP:
1309 		/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1310 		 * touch
1311 		 */
1312 		sync = xdp->data_end - xdp->data_hard_start -
1313 		       XDP_PACKET_HEADROOM;
1314 		sync = max(sync, length);
1315 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1316 				   sync, true);
1317 		return true;
1318 	}
1319 }
1320 
tsnep_xdp_run_prog_zc(struct tsnep_rx * rx,struct bpf_prog * prog,struct xdp_buff * xdp,int * status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1321 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1322 				  struct xdp_buff *xdp, int *status,
1323 				  struct netdev_queue *tx_nq,
1324 				  struct tsnep_tx *tx)
1325 {
1326 	u32 act;
1327 
1328 	act = bpf_prog_run_xdp(prog, xdp);
1329 
1330 	/* XDP_REDIRECT is the main action for zero-copy */
1331 	if (likely(act == XDP_REDIRECT)) {
1332 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1333 			goto out_failure;
1334 		*status |= TSNEP_XDP_REDIRECT;
1335 		return true;
1336 	}
1337 
1338 	switch (act) {
1339 	case XDP_PASS:
1340 		return false;
1341 	case XDP_TX:
1342 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx, true))
1343 			goto out_failure;
1344 		*status |= TSNEP_XDP_TX;
1345 		return true;
1346 	default:
1347 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1348 		fallthrough;
1349 	case XDP_ABORTED:
1350 out_failure:
1351 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1352 		fallthrough;
1353 	case XDP_DROP:
1354 		xsk_buff_free(xdp);
1355 		return true;
1356 	}
1357 }
1358 
tsnep_finalize_xdp(struct tsnep_adapter * adapter,int status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1359 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1360 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1361 {
1362 	if (status & TSNEP_XDP_TX) {
1363 		__netif_tx_lock(tx_nq, smp_processor_id());
1364 		tsnep_xdp_xmit_flush(tx);
1365 		__netif_tx_unlock(tx_nq);
1366 	}
1367 
1368 	if (status & TSNEP_XDP_REDIRECT)
1369 		xdp_do_flush();
1370 }
1371 
tsnep_build_skb(struct tsnep_rx * rx,struct page * page,int length)1372 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1373 				       int length)
1374 {
1375 	struct sk_buff *skb;
1376 
1377 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1378 	if (unlikely(!skb))
1379 		return NULL;
1380 
1381 	/* update pointers within the skb to store the data */
1382 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1383 	__skb_put(skb, length - ETH_FCS_LEN);
1384 
1385 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1386 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1387 		struct tsnep_rx_inline *rx_inline =
1388 			(struct tsnep_rx_inline *)(page_address(page) +
1389 						   TSNEP_RX_OFFSET);
1390 
1391 		skb_shinfo(skb)->tx_flags |=
1392 			SKBTX_HW_TSTAMP_NETDEV;
1393 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1394 		hwtstamps->netdev_data = rx_inline;
1395 	}
1396 
1397 	skb_record_rx_queue(skb, rx->queue_index);
1398 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1399 
1400 	return skb;
1401 }
1402 
tsnep_rx_page(struct tsnep_rx * rx,struct napi_struct * napi,struct page * page,int length)1403 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1404 			  struct page *page, int length)
1405 {
1406 	struct sk_buff *skb;
1407 
1408 	skb = tsnep_build_skb(rx, page, length);
1409 	if (skb) {
1410 		skb_mark_for_recycle(skb);
1411 
1412 		rx->packets++;
1413 		rx->bytes += length;
1414 		if (skb->pkt_type == PACKET_MULTICAST)
1415 			rx->multicast++;
1416 
1417 		napi_gro_receive(napi, skb);
1418 	} else {
1419 		page_pool_recycle_direct(rx->page_pool, page);
1420 
1421 		rx->dropped++;
1422 	}
1423 }
1424 
tsnep_rx_poll(struct tsnep_rx * rx,struct napi_struct * napi,int budget)1425 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1426 			 int budget)
1427 {
1428 	struct device *dmadev = rx->adapter->dmadev;
1429 	enum dma_data_direction dma_dir;
1430 	struct tsnep_rx_entry *entry;
1431 	struct netdev_queue *tx_nq;
1432 	struct bpf_prog *prog;
1433 	struct xdp_buff xdp;
1434 	struct tsnep_tx *tx;
1435 	int desc_available;
1436 	int xdp_status = 0;
1437 	int done = 0;
1438 	int length;
1439 
1440 	desc_available = tsnep_rx_desc_available(rx);
1441 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1442 	prog = READ_ONCE(rx->adapter->xdp_prog);
1443 	if (prog) {
1444 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1445 					    rx->tx_queue_index);
1446 		tx = &rx->adapter->tx[rx->tx_queue_index];
1447 
1448 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1449 	}
1450 
1451 	while (likely(done < budget) && (rx->read != rx->write)) {
1452 		entry = &rx->entry[rx->read];
1453 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1454 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1455 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1456 			break;
1457 		done++;
1458 
1459 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1460 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1461 
1462 			desc_available -= tsnep_rx_refill(rx, desc_available,
1463 							  reuse);
1464 			if (!entry->page) {
1465 				/* buffer has been reused for refill to prevent
1466 				 * empty RX ring, thus buffer cannot be used for
1467 				 * RX processing
1468 				 */
1469 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1470 				desc_available++;
1471 
1472 				rx->dropped++;
1473 
1474 				continue;
1475 			}
1476 		}
1477 
1478 		/* descriptor properties shall be read first, because valid data
1479 		 * is signaled there
1480 		 */
1481 		dma_rmb();
1482 
1483 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1484 		length = __le32_to_cpu(entry->desc_wb->properties) &
1485 			 TSNEP_DESC_LENGTH_MASK;
1486 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1487 					      TSNEP_RX_OFFSET, length, dma_dir);
1488 
1489 		/* RX metadata with timestamps is in front of actual data,
1490 		 * subtract metadata size to get length of actual data and
1491 		 * consider metadata size as offset of actual data during RX
1492 		 * processing
1493 		 */
1494 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1495 
1496 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1497 		desc_available++;
1498 
1499 		if (prog) {
1500 			bool consume;
1501 
1502 			xdp_prepare_buff(&xdp, page_address(entry->page),
1503 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1504 					 length - ETH_FCS_LEN, false);
1505 
1506 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1507 						     &xdp_status, tx_nq, tx);
1508 			if (consume) {
1509 				rx->packets++;
1510 				rx->bytes += length;
1511 
1512 				entry->page = NULL;
1513 
1514 				continue;
1515 			}
1516 		}
1517 
1518 		tsnep_rx_page(rx, napi, entry->page, length);
1519 		entry->page = NULL;
1520 	}
1521 
1522 	if (xdp_status)
1523 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1524 
1525 	if (desc_available)
1526 		tsnep_rx_refill(rx, desc_available, false);
1527 
1528 	return done;
1529 }
1530 
tsnep_rx_poll_zc(struct tsnep_rx * rx,struct napi_struct * napi,int budget)1531 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1532 			    int budget)
1533 {
1534 	struct tsnep_rx_entry *entry;
1535 	struct netdev_queue *tx_nq;
1536 	struct bpf_prog *prog;
1537 	struct tsnep_tx *tx;
1538 	int desc_available;
1539 	int xdp_status = 0;
1540 	struct page *page;
1541 	int done = 0;
1542 	int length;
1543 
1544 	desc_available = tsnep_rx_desc_available(rx);
1545 	prog = READ_ONCE(rx->adapter->xdp_prog);
1546 	if (prog) {
1547 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1548 					    rx->tx_queue_index);
1549 		tx = &rx->adapter->tx[rx->tx_queue_index];
1550 	}
1551 
1552 	while (likely(done < budget) && (rx->read != rx->write)) {
1553 		entry = &rx->entry[rx->read];
1554 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1555 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1556 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1557 			break;
1558 		done++;
1559 
1560 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1561 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1562 
1563 			desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1564 							     reuse);
1565 			if (!entry->xdp) {
1566 				/* buffer has been reused for refill to prevent
1567 				 * empty RX ring, thus buffer cannot be used for
1568 				 * RX processing
1569 				 */
1570 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1571 				desc_available++;
1572 
1573 				rx->dropped++;
1574 
1575 				continue;
1576 			}
1577 		}
1578 
1579 		/* descriptor properties shall be read first, because valid data
1580 		 * is signaled there
1581 		 */
1582 		dma_rmb();
1583 
1584 		prefetch(entry->xdp->data);
1585 		length = __le32_to_cpu(entry->desc_wb->properties) &
1586 			 TSNEP_DESC_LENGTH_MASK;
1587 		xsk_buff_set_size(entry->xdp, length - ETH_FCS_LEN);
1588 		xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
1589 
1590 		/* RX metadata with timestamps is in front of actual data,
1591 		 * subtract metadata size to get length of actual data and
1592 		 * consider metadata size as offset of actual data during RX
1593 		 * processing
1594 		 */
1595 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1596 
1597 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1598 		desc_available++;
1599 
1600 		if (prog) {
1601 			bool consume;
1602 
1603 			entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1604 			entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1605 
1606 			consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1607 							&xdp_status, tx_nq, tx);
1608 			if (consume) {
1609 				rx->packets++;
1610 				rx->bytes += length;
1611 
1612 				entry->xdp = NULL;
1613 
1614 				continue;
1615 			}
1616 		}
1617 
1618 		page = page_pool_dev_alloc_pages(rx->page_pool);
1619 		if (page) {
1620 			memcpy(page_address(page) + TSNEP_RX_OFFSET,
1621 			       entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1622 			       length + TSNEP_RX_INLINE_METADATA_SIZE);
1623 			tsnep_rx_page(rx, napi, page, length);
1624 		} else {
1625 			rx->dropped++;
1626 		}
1627 		xsk_buff_free(entry->xdp);
1628 		entry->xdp = NULL;
1629 	}
1630 
1631 	if (xdp_status)
1632 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1633 
1634 	if (desc_available)
1635 		desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1636 
1637 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1638 		if (desc_available)
1639 			xsk_set_rx_need_wakeup(rx->xsk_pool);
1640 		else
1641 			xsk_clear_rx_need_wakeup(rx->xsk_pool);
1642 
1643 		return done;
1644 	}
1645 
1646 	return desc_available ? budget : done;
1647 }
1648 
tsnep_rx_pending(struct tsnep_rx * rx)1649 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1650 {
1651 	struct tsnep_rx_entry *entry;
1652 
1653 	if (rx->read != rx->write) {
1654 		entry = &rx->entry[rx->read];
1655 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1656 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1657 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1658 			return true;
1659 	}
1660 
1661 	return false;
1662 }
1663 
tsnep_rx_open(struct tsnep_rx * rx)1664 static int tsnep_rx_open(struct tsnep_rx *rx)
1665 {
1666 	int desc_available;
1667 	int retval;
1668 
1669 	retval = tsnep_rx_ring_create(rx);
1670 	if (retval)
1671 		return retval;
1672 
1673 	tsnep_rx_init(rx);
1674 
1675 	desc_available = tsnep_rx_desc_available(rx);
1676 	if (rx->xsk_pool)
1677 		retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1678 	else
1679 		retval = tsnep_rx_alloc(rx, desc_available, false);
1680 	if (retval != desc_available) {
1681 		retval = -ENOMEM;
1682 
1683 		goto alloc_failed;
1684 	}
1685 
1686 	/* prealloc pages to prevent allocation failures when XSK pool is
1687 	 * disabled at runtime
1688 	 */
1689 	if (rx->xsk_pool) {
1690 		retval = tsnep_rx_alloc_page_buffer(rx);
1691 		if (retval)
1692 			goto alloc_failed;
1693 	}
1694 
1695 	return 0;
1696 
1697 alloc_failed:
1698 	tsnep_rx_ring_cleanup(rx);
1699 	return retval;
1700 }
1701 
tsnep_rx_close(struct tsnep_rx * rx)1702 static void tsnep_rx_close(struct tsnep_rx *rx)
1703 {
1704 	if (rx->xsk_pool)
1705 		tsnep_rx_free_page_buffer(rx);
1706 
1707 	tsnep_rx_ring_cleanup(rx);
1708 }
1709 
tsnep_rx_reopen(struct tsnep_rx * rx)1710 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1711 {
1712 	struct page **page = rx->page_buffer;
1713 	int i;
1714 
1715 	tsnep_rx_init(rx);
1716 
1717 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1718 		struct tsnep_rx_entry *entry = &rx->entry[i];
1719 
1720 		/* defined initial values for properties are required for
1721 		 * correct owner counter checking
1722 		 */
1723 		entry->desc->properties = 0;
1724 		entry->desc_wb->properties = 0;
1725 
1726 		/* prevent allocation failures by reusing kept pages */
1727 		if (*page) {
1728 			tsnep_rx_set_page(rx, entry, *page);
1729 			tsnep_rx_activate(rx, rx->write);
1730 			rx->write++;
1731 
1732 			*page = NULL;
1733 			page++;
1734 		}
1735 	}
1736 }
1737 
tsnep_rx_reopen_xsk(struct tsnep_rx * rx)1738 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1739 {
1740 	struct page **page = rx->page_buffer;
1741 	u32 allocated;
1742 	int i;
1743 
1744 	tsnep_rx_init(rx);
1745 
1746 	/* alloc all ring entries except the last one, because ring cannot be
1747 	 * filled completely, as many buffers as possible is enough as wakeup is
1748 	 * done if new buffers are available
1749 	 */
1750 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1751 					 TSNEP_RING_SIZE - 1);
1752 
1753 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1754 		struct tsnep_rx_entry *entry = &rx->entry[i];
1755 
1756 		/* keep pages to prevent allocation failures when xsk is
1757 		 * disabled
1758 		 */
1759 		if (entry->page) {
1760 			*page = entry->page;
1761 			entry->page = NULL;
1762 
1763 			page++;
1764 		}
1765 
1766 		/* defined initial values for properties are required for
1767 		 * correct owner counter checking
1768 		 */
1769 		entry->desc->properties = 0;
1770 		entry->desc_wb->properties = 0;
1771 
1772 		if (allocated) {
1773 			tsnep_rx_set_xdp(rx, entry,
1774 					 rx->xdp_batch[allocated - 1]);
1775 			tsnep_rx_activate(rx, rx->write);
1776 			rx->write++;
1777 
1778 			allocated--;
1779 		}
1780 	}
1781 
1782 	/* set need wakeup flag immediately if ring is not filled completely,
1783 	 * first polling would be too late as need wakeup signalisation would
1784 	 * be delayed for an indefinite time
1785 	 */
1786 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1787 		int desc_available = tsnep_rx_desc_available(rx);
1788 
1789 		if (desc_available)
1790 			xsk_set_rx_need_wakeup(rx->xsk_pool);
1791 		else
1792 			xsk_clear_rx_need_wakeup(rx->xsk_pool);
1793 	}
1794 }
1795 
tsnep_pending(struct tsnep_queue * queue)1796 static bool tsnep_pending(struct tsnep_queue *queue)
1797 {
1798 	if (queue->tx && tsnep_tx_pending(queue->tx))
1799 		return true;
1800 
1801 	if (queue->rx && tsnep_rx_pending(queue->rx))
1802 		return true;
1803 
1804 	return false;
1805 }
1806 
tsnep_poll(struct napi_struct * napi,int budget)1807 static int tsnep_poll(struct napi_struct *napi, int budget)
1808 {
1809 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1810 						 napi);
1811 	bool complete = true;
1812 	int done = 0;
1813 
1814 	if (queue->tx)
1815 		complete = tsnep_tx_poll(queue->tx, budget);
1816 
1817 	/* handle case where we are called by netpoll with a budget of 0 */
1818 	if (unlikely(budget <= 0))
1819 		return budget;
1820 
1821 	if (queue->rx) {
1822 		done = queue->rx->xsk_pool ?
1823 		       tsnep_rx_poll_zc(queue->rx, napi, budget) :
1824 		       tsnep_rx_poll(queue->rx, napi, budget);
1825 		if (done >= budget)
1826 			complete = false;
1827 	}
1828 
1829 	/* if all work not completed, return budget and keep polling */
1830 	if (!complete)
1831 		return budget;
1832 
1833 	if (likely(napi_complete_done(napi, done))) {
1834 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1835 
1836 		/* reschedule if work is already pending, prevent rotten packets
1837 		 * which are transmitted or received after polling but before
1838 		 * interrupt enable
1839 		 */
1840 		if (tsnep_pending(queue)) {
1841 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1842 			napi_schedule(napi);
1843 		}
1844 	}
1845 
1846 	return min(done, budget - 1);
1847 }
1848 
tsnep_request_irq(struct tsnep_queue * queue,bool first)1849 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1850 {
1851 	const char *name = netdev_name(queue->adapter->netdev);
1852 	irq_handler_t handler;
1853 	void *dev;
1854 	int retval;
1855 
1856 	if (first) {
1857 		sprintf(queue->name, "%s-mac", name);
1858 		handler = tsnep_irq;
1859 		dev = queue->adapter;
1860 	} else {
1861 		if (queue->tx && queue->rx)
1862 			snprintf(queue->name, sizeof(queue->name), "%s-txrx-%d",
1863 				 name, queue->rx->queue_index);
1864 		else if (queue->tx)
1865 			snprintf(queue->name, sizeof(queue->name), "%s-tx-%d",
1866 				 name, queue->tx->queue_index);
1867 		else
1868 			snprintf(queue->name, sizeof(queue->name), "%s-rx-%d",
1869 				 name, queue->rx->queue_index);
1870 		handler = tsnep_irq_txrx;
1871 		dev = queue;
1872 	}
1873 
1874 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1875 	if (retval) {
1876 		/* if name is empty, then interrupt won't be freed */
1877 		memset(queue->name, 0, sizeof(queue->name));
1878 	}
1879 
1880 	return retval;
1881 }
1882 
tsnep_free_irq(struct tsnep_queue * queue,bool first)1883 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1884 {
1885 	void *dev;
1886 
1887 	if (!strlen(queue->name))
1888 		return;
1889 
1890 	if (first)
1891 		dev = queue->adapter;
1892 	else
1893 		dev = queue;
1894 
1895 	free_irq(queue->irq, dev);
1896 	memset(queue->name, 0, sizeof(queue->name));
1897 }
1898 
tsnep_queue_close(struct tsnep_queue * queue,bool first)1899 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1900 {
1901 	struct tsnep_rx *rx = queue->rx;
1902 
1903 	tsnep_free_irq(queue, first);
1904 
1905 	if (rx) {
1906 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1907 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1908 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1909 			xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1910 	}
1911 
1912 	netif_napi_del(&queue->napi);
1913 }
1914 
tsnep_queue_open(struct tsnep_adapter * adapter,struct tsnep_queue * queue,bool first)1915 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1916 			    struct tsnep_queue *queue, bool first)
1917 {
1918 	struct tsnep_rx *rx = queue->rx;
1919 	struct tsnep_tx *tx = queue->tx;
1920 	int retval;
1921 
1922 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1923 
1924 	if (rx) {
1925 		/* choose TX queue for XDP_TX */
1926 		if (tx)
1927 			rx->tx_queue_index = tx->queue_index;
1928 		else if (rx->queue_index < adapter->num_tx_queues)
1929 			rx->tx_queue_index = rx->queue_index;
1930 		else
1931 			rx->tx_queue_index = 0;
1932 
1933 		/* prepare both memory models to eliminate possible registration
1934 		 * errors when memory model is switched between page pool and
1935 		 * XSK pool during runtime
1936 		 */
1937 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1938 					  rx->queue_index, queue->napi.napi_id);
1939 		if (retval)
1940 			goto failed;
1941 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1942 						    MEM_TYPE_PAGE_POOL,
1943 						    rx->page_pool);
1944 		if (retval)
1945 			goto failed;
1946 		retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1947 					  rx->queue_index, queue->napi.napi_id);
1948 		if (retval)
1949 			goto failed;
1950 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1951 						    MEM_TYPE_XSK_BUFF_POOL,
1952 						    NULL);
1953 		if (retval)
1954 			goto failed;
1955 		if (rx->xsk_pool)
1956 			xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1957 	}
1958 
1959 	retval = tsnep_request_irq(queue, first);
1960 	if (retval) {
1961 		netif_err(adapter, drv, adapter->netdev,
1962 			  "can't get assigned irq %d.\n", queue->irq);
1963 		goto failed;
1964 	}
1965 
1966 	return 0;
1967 
1968 failed:
1969 	tsnep_queue_close(queue, first);
1970 
1971 	return retval;
1972 }
1973 
tsnep_queue_enable(struct tsnep_queue * queue)1974 static void tsnep_queue_enable(struct tsnep_queue *queue)
1975 {
1976 	napi_enable(&queue->napi);
1977 	tsnep_enable_irq(queue->adapter, queue->irq_mask);
1978 
1979 	if (queue->tx)
1980 		tsnep_tx_enable(queue->tx);
1981 
1982 	if (queue->rx)
1983 		tsnep_rx_enable(queue->rx);
1984 }
1985 
tsnep_queue_disable(struct tsnep_queue * queue)1986 static void tsnep_queue_disable(struct tsnep_queue *queue)
1987 {
1988 	if (queue->tx)
1989 		tsnep_tx_disable(queue->tx, &queue->napi);
1990 
1991 	napi_disable(&queue->napi);
1992 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
1993 
1994 	/* disable RX after NAPI polling has been disabled, because RX can be
1995 	 * enabled during NAPI polling
1996 	 */
1997 	if (queue->rx)
1998 		tsnep_rx_disable(queue->rx);
1999 }
2000 
tsnep_netdev_open(struct net_device * netdev)2001 static int tsnep_netdev_open(struct net_device *netdev)
2002 {
2003 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2004 	int i, retval;
2005 
2006 	for (i = 0; i < adapter->num_queues; i++) {
2007 		if (adapter->queue[i].tx) {
2008 			retval = tsnep_tx_open(adapter->queue[i].tx);
2009 			if (retval)
2010 				goto failed;
2011 		}
2012 		if (adapter->queue[i].rx) {
2013 			retval = tsnep_rx_open(adapter->queue[i].rx);
2014 			if (retval)
2015 				goto failed;
2016 		}
2017 
2018 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
2019 		if (retval)
2020 			goto failed;
2021 	}
2022 
2023 	retval = netif_set_real_num_tx_queues(adapter->netdev,
2024 					      adapter->num_tx_queues);
2025 	if (retval)
2026 		goto failed;
2027 	retval = netif_set_real_num_rx_queues(adapter->netdev,
2028 					      adapter->num_rx_queues);
2029 	if (retval)
2030 		goto failed;
2031 
2032 	tsnep_enable_irq(adapter, ECM_INT_LINK);
2033 	retval = tsnep_phy_open(adapter);
2034 	if (retval)
2035 		goto phy_failed;
2036 
2037 	for (i = 0; i < adapter->num_queues; i++)
2038 		tsnep_queue_enable(&adapter->queue[i]);
2039 
2040 	return 0;
2041 
2042 phy_failed:
2043 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2044 failed:
2045 	for (i = 0; i < adapter->num_queues; i++) {
2046 		tsnep_queue_close(&adapter->queue[i], i == 0);
2047 
2048 		if (adapter->queue[i].rx)
2049 			tsnep_rx_close(adapter->queue[i].rx);
2050 		if (adapter->queue[i].tx)
2051 			tsnep_tx_close(adapter->queue[i].tx);
2052 	}
2053 	return retval;
2054 }
2055 
tsnep_netdev_close(struct net_device * netdev)2056 static int tsnep_netdev_close(struct net_device *netdev)
2057 {
2058 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2059 	int i;
2060 
2061 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2062 	tsnep_phy_close(adapter);
2063 
2064 	for (i = 0; i < adapter->num_queues; i++) {
2065 		tsnep_queue_disable(&adapter->queue[i]);
2066 
2067 		tsnep_queue_close(&adapter->queue[i], i == 0);
2068 
2069 		if (adapter->queue[i].rx)
2070 			tsnep_rx_close(adapter->queue[i].rx);
2071 		if (adapter->queue[i].tx)
2072 			tsnep_tx_close(adapter->queue[i].tx);
2073 	}
2074 
2075 	return 0;
2076 }
2077 
tsnep_enable_xsk(struct tsnep_queue * queue,struct xsk_buff_pool * pool)2078 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
2079 {
2080 	bool running = netif_running(queue->adapter->netdev);
2081 	u32 frame_size;
2082 
2083 	frame_size = xsk_pool_get_rx_frame_size(pool);
2084 	if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
2085 		return -EOPNOTSUPP;
2086 
2087 	queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
2088 					 sizeof(*queue->rx->page_buffer),
2089 					 GFP_KERNEL);
2090 	if (!queue->rx->page_buffer)
2091 		return -ENOMEM;
2092 	queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2093 				       sizeof(*queue->rx->xdp_batch),
2094 				       GFP_KERNEL);
2095 	if (!queue->rx->xdp_batch) {
2096 		kfree(queue->rx->page_buffer);
2097 		queue->rx->page_buffer = NULL;
2098 
2099 		return -ENOMEM;
2100 	}
2101 
2102 	xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2103 
2104 	if (running)
2105 		tsnep_queue_disable(queue);
2106 
2107 	queue->tx->xsk_pool = pool;
2108 	queue->rx->xsk_pool = pool;
2109 
2110 	if (running) {
2111 		tsnep_rx_reopen_xsk(queue->rx);
2112 		tsnep_queue_enable(queue);
2113 	}
2114 
2115 	return 0;
2116 }
2117 
tsnep_disable_xsk(struct tsnep_queue * queue)2118 void tsnep_disable_xsk(struct tsnep_queue *queue)
2119 {
2120 	bool running = netif_running(queue->adapter->netdev);
2121 
2122 	if (running)
2123 		tsnep_queue_disable(queue);
2124 
2125 	tsnep_rx_free_zc(queue->rx);
2126 
2127 	queue->rx->xsk_pool = NULL;
2128 	queue->tx->xsk_pool = NULL;
2129 
2130 	if (running) {
2131 		tsnep_rx_reopen(queue->rx);
2132 		tsnep_queue_enable(queue);
2133 	}
2134 
2135 	kfree(queue->rx->xdp_batch);
2136 	queue->rx->xdp_batch = NULL;
2137 	kfree(queue->rx->page_buffer);
2138 	queue->rx->page_buffer = NULL;
2139 }
2140 
tsnep_netdev_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2141 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2142 					   struct net_device *netdev)
2143 {
2144 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2145 	u16 queue_mapping = skb_get_queue_mapping(skb);
2146 
2147 	if (queue_mapping >= adapter->num_tx_queues)
2148 		queue_mapping = 0;
2149 
2150 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2151 }
2152 
tsnep_netdev_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2153 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2154 			      int cmd)
2155 {
2156 	if (!netif_running(netdev))
2157 		return -EINVAL;
2158 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2159 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
2160 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2161 }
2162 
tsnep_netdev_set_multicast(struct net_device * netdev)2163 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2164 {
2165 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2166 
2167 	u16 rx_filter = 0;
2168 
2169 	/* configured MAC address and broadcasts are never filtered */
2170 	if (netdev->flags & IFF_PROMISC) {
2171 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2172 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2173 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2174 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2175 	}
2176 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2177 }
2178 
tsnep_netdev_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2179 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2180 				     struct rtnl_link_stats64 *stats)
2181 {
2182 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2183 	u32 reg;
2184 	u32 val;
2185 	int i;
2186 
2187 	for (i = 0; i < adapter->num_tx_queues; i++) {
2188 		stats->tx_packets += adapter->tx[i].packets;
2189 		stats->tx_bytes += adapter->tx[i].bytes;
2190 		stats->tx_dropped += adapter->tx[i].dropped;
2191 	}
2192 	for (i = 0; i < adapter->num_rx_queues; i++) {
2193 		stats->rx_packets += adapter->rx[i].packets;
2194 		stats->rx_bytes += adapter->rx[i].bytes;
2195 		stats->rx_dropped += adapter->rx[i].dropped;
2196 		stats->multicast += adapter->rx[i].multicast;
2197 
2198 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2199 			       TSNEP_RX_STATISTIC);
2200 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2201 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2202 		stats->rx_dropped += val;
2203 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2204 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2205 		stats->rx_dropped += val;
2206 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2207 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2208 		stats->rx_errors += val;
2209 		stats->rx_fifo_errors += val;
2210 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2211 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2212 		stats->rx_errors += val;
2213 		stats->rx_frame_errors += val;
2214 	}
2215 
2216 	reg = ioread32(adapter->addr + ECM_STAT);
2217 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2218 	stats->rx_errors += val;
2219 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2220 	stats->rx_errors += val;
2221 	stats->rx_crc_errors += val;
2222 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2223 	stats->rx_errors += val;
2224 }
2225 
tsnep_mac_set_address(struct tsnep_adapter * adapter,u8 * addr)2226 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2227 {
2228 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2229 	iowrite16(*(u16 *)(addr + sizeof(u32)),
2230 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2231 
2232 	ether_addr_copy(adapter->mac_address, addr);
2233 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2234 		   addr);
2235 }
2236 
tsnep_netdev_set_mac_address(struct net_device * netdev,void * addr)2237 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2238 {
2239 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2240 	struct sockaddr *sock_addr = addr;
2241 	int retval;
2242 
2243 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2244 	if (retval)
2245 		return retval;
2246 	eth_hw_addr_set(netdev, sock_addr->sa_data);
2247 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
2248 
2249 	return 0;
2250 }
2251 
tsnep_netdev_set_features(struct net_device * netdev,netdev_features_t features)2252 static int tsnep_netdev_set_features(struct net_device *netdev,
2253 				     netdev_features_t features)
2254 {
2255 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2256 	netdev_features_t changed = netdev->features ^ features;
2257 	bool enable;
2258 	int retval = 0;
2259 
2260 	if (changed & NETIF_F_LOOPBACK) {
2261 		enable = !!(features & NETIF_F_LOOPBACK);
2262 		retval = tsnep_phy_loopback(adapter, enable);
2263 	}
2264 
2265 	return retval;
2266 }
2267 
tsnep_netdev_get_tstamp(struct net_device * netdev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)2268 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2269 				       const struct skb_shared_hwtstamps *hwtstamps,
2270 				       bool cycles)
2271 {
2272 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2273 	u64 timestamp;
2274 
2275 	if (cycles)
2276 		timestamp = __le64_to_cpu(rx_inline->counter);
2277 	else
2278 		timestamp = __le64_to_cpu(rx_inline->timestamp);
2279 
2280 	return ns_to_ktime(timestamp);
2281 }
2282 
tsnep_netdev_bpf(struct net_device * dev,struct netdev_bpf * bpf)2283 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2284 {
2285 	struct tsnep_adapter *adapter = netdev_priv(dev);
2286 
2287 	switch (bpf->command) {
2288 	case XDP_SETUP_PROG:
2289 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2290 	case XDP_SETUP_XSK_POOL:
2291 		return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2292 					    bpf->xsk.queue_id);
2293 	default:
2294 		return -EOPNOTSUPP;
2295 	}
2296 }
2297 
tsnep_xdp_get_tx(struct tsnep_adapter * adapter,u32 cpu)2298 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2299 {
2300 	if (cpu >= TSNEP_MAX_QUEUES)
2301 		cpu &= TSNEP_MAX_QUEUES - 1;
2302 
2303 	while (cpu >= adapter->num_tx_queues)
2304 		cpu -= adapter->num_tx_queues;
2305 
2306 	return &adapter->tx[cpu];
2307 }
2308 
tsnep_netdev_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdp,u32 flags)2309 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2310 				 struct xdp_frame **xdp, u32 flags)
2311 {
2312 	struct tsnep_adapter *adapter = netdev_priv(dev);
2313 	u32 cpu = smp_processor_id();
2314 	struct netdev_queue *nq;
2315 	struct tsnep_tx *tx;
2316 	int nxmit;
2317 	bool xmit;
2318 
2319 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2320 		return -EINVAL;
2321 
2322 	tx = tsnep_xdp_get_tx(adapter, cpu);
2323 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2324 
2325 	__netif_tx_lock(nq, cpu);
2326 
2327 	for (nxmit = 0; nxmit < n; nxmit++) {
2328 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2329 						 TSNEP_TX_TYPE_XDP_NDO);
2330 		if (!xmit)
2331 			break;
2332 
2333 		/* avoid transmit queue timeout since we share it with the slow
2334 		 * path
2335 		 */
2336 		txq_trans_cond_update(nq);
2337 	}
2338 
2339 	if (flags & XDP_XMIT_FLUSH)
2340 		tsnep_xdp_xmit_flush(tx);
2341 
2342 	__netif_tx_unlock(nq);
2343 
2344 	return nxmit;
2345 }
2346 
tsnep_netdev_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)2347 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2348 				   u32 flags)
2349 {
2350 	struct tsnep_adapter *adapter = netdev_priv(dev);
2351 	struct tsnep_queue *queue;
2352 
2353 	if (queue_id >= adapter->num_rx_queues ||
2354 	    queue_id >= adapter->num_tx_queues)
2355 		return -EINVAL;
2356 
2357 	queue = &adapter->queue[queue_id];
2358 
2359 	if (!napi_if_scheduled_mark_missed(&queue->napi))
2360 		napi_schedule(&queue->napi);
2361 
2362 	return 0;
2363 }
2364 
2365 static const struct net_device_ops tsnep_netdev_ops = {
2366 	.ndo_open = tsnep_netdev_open,
2367 	.ndo_stop = tsnep_netdev_close,
2368 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
2369 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
2370 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
2371 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
2372 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
2373 	.ndo_set_features = tsnep_netdev_set_features,
2374 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
2375 	.ndo_setup_tc = tsnep_tc_setup,
2376 	.ndo_bpf = tsnep_netdev_bpf,
2377 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2378 	.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2379 };
2380 
tsnep_mac_init(struct tsnep_adapter * adapter)2381 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2382 {
2383 	int retval;
2384 
2385 	/* initialize RX filtering, at least configured MAC address and
2386 	 * broadcast are not filtered
2387 	 */
2388 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2389 
2390 	/* try to get MAC address in the following order:
2391 	 * - device tree
2392 	 * - valid MAC address already set
2393 	 * - MAC address register if valid
2394 	 * - random MAC address
2395 	 */
2396 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
2397 				    adapter->mac_address);
2398 	if (retval == -EPROBE_DEFER)
2399 		return retval;
2400 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2401 		*(u32 *)adapter->mac_address =
2402 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2403 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
2404 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2405 		if (!is_valid_ether_addr(adapter->mac_address))
2406 			eth_random_addr(adapter->mac_address);
2407 	}
2408 
2409 	tsnep_mac_set_address(adapter, adapter->mac_address);
2410 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2411 
2412 	return 0;
2413 }
2414 
tsnep_mdio_init(struct tsnep_adapter * adapter)2415 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2416 {
2417 	struct device_node *np = adapter->pdev->dev.of_node;
2418 	int retval;
2419 
2420 	if (np) {
2421 		np = of_get_child_by_name(np, "mdio");
2422 		if (!np)
2423 			return 0;
2424 
2425 		adapter->suppress_preamble =
2426 			of_property_read_bool(np, "suppress-preamble");
2427 	}
2428 
2429 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2430 	if (!adapter->mdiobus) {
2431 		retval = -ENOMEM;
2432 
2433 		goto out;
2434 	}
2435 
2436 	adapter->mdiobus->priv = (void *)adapter;
2437 	adapter->mdiobus->parent = &adapter->pdev->dev;
2438 	adapter->mdiobus->read = tsnep_mdiobus_read;
2439 	adapter->mdiobus->write = tsnep_mdiobus_write;
2440 	adapter->mdiobus->name = TSNEP "-mdiobus";
2441 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2442 		 adapter->pdev->name);
2443 
2444 	/* do not scan broadcast address */
2445 	adapter->mdiobus->phy_mask = 0x0000001;
2446 
2447 	retval = of_mdiobus_register(adapter->mdiobus, np);
2448 
2449 out:
2450 	of_node_put(np);
2451 
2452 	return retval;
2453 }
2454 
tsnep_phy_init(struct tsnep_adapter * adapter)2455 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2456 {
2457 	struct device_node *phy_node;
2458 	int retval;
2459 
2460 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2461 				 &adapter->phy_mode);
2462 	if (retval)
2463 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2464 
2465 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2466 				    0);
2467 	adapter->phydev = of_phy_find_device(phy_node);
2468 	of_node_put(phy_node);
2469 	if (!adapter->phydev && adapter->mdiobus)
2470 		adapter->phydev = phy_find_first(adapter->mdiobus);
2471 	if (!adapter->phydev)
2472 		return -EIO;
2473 
2474 	return 0;
2475 }
2476 
tsnep_queue_init(struct tsnep_adapter * adapter,int queue_count)2477 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2478 {
2479 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2480 	char name[8];
2481 	int i;
2482 	int retval;
2483 
2484 	/* one TX/RX queue pair for netdev is mandatory */
2485 	if (platform_irq_count(adapter->pdev) == 1)
2486 		retval = platform_get_irq(adapter->pdev, 0);
2487 	else
2488 		retval = platform_get_irq_byname(adapter->pdev, "mac");
2489 	if (retval < 0)
2490 		return retval;
2491 	adapter->num_tx_queues = 1;
2492 	adapter->num_rx_queues = 1;
2493 	adapter->num_queues = 1;
2494 	adapter->queue[0].adapter = adapter;
2495 	adapter->queue[0].irq = retval;
2496 	adapter->queue[0].tx = &adapter->tx[0];
2497 	adapter->queue[0].tx->adapter = adapter;
2498 	adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2499 	adapter->queue[0].tx->queue_index = 0;
2500 	adapter->queue[0].rx = &adapter->rx[0];
2501 	adapter->queue[0].rx->adapter = adapter;
2502 	adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2503 	adapter->queue[0].rx->queue_index = 0;
2504 	adapter->queue[0].irq_mask = irq_mask;
2505 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2506 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2507 					TSNEP_COALESCE_USECS_DEFAULT);
2508 	if (retval < 0)
2509 		return retval;
2510 
2511 	adapter->netdev->irq = adapter->queue[0].irq;
2512 
2513 	/* add additional TX/RX queue pairs only if dedicated interrupt is
2514 	 * available
2515 	 */
2516 	for (i = 1; i < queue_count; i++) {
2517 		sprintf(name, "txrx-%d", i);
2518 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
2519 		if (retval < 0)
2520 			break;
2521 
2522 		adapter->num_tx_queues++;
2523 		adapter->num_rx_queues++;
2524 		adapter->num_queues++;
2525 		adapter->queue[i].adapter = adapter;
2526 		adapter->queue[i].irq = retval;
2527 		adapter->queue[i].tx = &adapter->tx[i];
2528 		adapter->queue[i].tx->adapter = adapter;
2529 		adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2530 		adapter->queue[i].tx->queue_index = i;
2531 		adapter->queue[i].rx = &adapter->rx[i];
2532 		adapter->queue[i].rx->adapter = adapter;
2533 		adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2534 		adapter->queue[i].rx->queue_index = i;
2535 		adapter->queue[i].irq_mask =
2536 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
2537 		adapter->queue[i].irq_delay_addr =
2538 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2539 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2540 						TSNEP_COALESCE_USECS_DEFAULT);
2541 		if (retval < 0)
2542 			return retval;
2543 	}
2544 
2545 	return 0;
2546 }
2547 
tsnep_probe(struct platform_device * pdev)2548 static int tsnep_probe(struct platform_device *pdev)
2549 {
2550 	struct tsnep_adapter *adapter;
2551 	struct net_device *netdev;
2552 	struct resource *io;
2553 	u32 type;
2554 	int revision;
2555 	int version;
2556 	int queue_count;
2557 	int retval;
2558 
2559 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2560 					 sizeof(struct tsnep_adapter),
2561 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2562 	if (!netdev)
2563 		return -ENODEV;
2564 	SET_NETDEV_DEV(netdev, &pdev->dev);
2565 	adapter = netdev_priv(netdev);
2566 	platform_set_drvdata(pdev, adapter);
2567 	adapter->pdev = pdev;
2568 	adapter->dmadev = &pdev->dev;
2569 	adapter->netdev = netdev;
2570 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2571 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
2572 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2573 
2574 	netdev->min_mtu = ETH_MIN_MTU;
2575 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2576 
2577 	mutex_init(&adapter->gate_control_lock);
2578 	mutex_init(&adapter->rxnfc_lock);
2579 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
2580 
2581 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2582 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
2583 	if (IS_ERR(adapter->addr))
2584 		return PTR_ERR(adapter->addr);
2585 	netdev->mem_start = io->start;
2586 	netdev->mem_end = io->end;
2587 
2588 	type = ioread32(adapter->addr + ECM_TYPE);
2589 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2590 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2591 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2592 	adapter->gate_control = type & ECM_GATE_CONTROL;
2593 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2594 
2595 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2596 
2597 	retval = tsnep_queue_init(adapter, queue_count);
2598 	if (retval)
2599 		return retval;
2600 
2601 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2602 					   DMA_BIT_MASK(64));
2603 	if (retval) {
2604 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2605 		return retval;
2606 	}
2607 
2608 	retval = tsnep_mac_init(adapter);
2609 	if (retval)
2610 		return retval;
2611 
2612 	retval = tsnep_mdio_init(adapter);
2613 	if (retval)
2614 		goto mdio_init_failed;
2615 
2616 	retval = tsnep_phy_init(adapter);
2617 	if (retval)
2618 		goto phy_init_failed;
2619 
2620 	retval = tsnep_ptp_init(adapter);
2621 	if (retval)
2622 		goto ptp_init_failed;
2623 
2624 	retval = tsnep_tc_init(adapter);
2625 	if (retval)
2626 		goto tc_init_failed;
2627 
2628 	retval = tsnep_rxnfc_init(adapter);
2629 	if (retval)
2630 		goto rxnfc_init_failed;
2631 
2632 	netdev->netdev_ops = &tsnep_netdev_ops;
2633 	netdev->ethtool_ops = &tsnep_ethtool_ops;
2634 	netdev->features = NETIF_F_SG;
2635 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2636 
2637 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2638 			       NETDEV_XDP_ACT_NDO_XMIT |
2639 			       NETDEV_XDP_ACT_NDO_XMIT_SG |
2640 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
2641 
2642 	/* carrier off reporting is important to ethtool even BEFORE open */
2643 	netif_carrier_off(netdev);
2644 
2645 	retval = register_netdev(netdev);
2646 	if (retval)
2647 		goto register_failed;
2648 
2649 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2650 		 revision);
2651 	if (adapter->gate_control)
2652 		dev_info(&adapter->pdev->dev, "gate control detected\n");
2653 
2654 	return 0;
2655 
2656 register_failed:
2657 	tsnep_rxnfc_cleanup(adapter);
2658 rxnfc_init_failed:
2659 	tsnep_tc_cleanup(adapter);
2660 tc_init_failed:
2661 	tsnep_ptp_cleanup(adapter);
2662 ptp_init_failed:
2663 phy_init_failed:
2664 	if (adapter->mdiobus)
2665 		mdiobus_unregister(adapter->mdiobus);
2666 mdio_init_failed:
2667 	return retval;
2668 }
2669 
tsnep_remove(struct platform_device * pdev)2670 static int tsnep_remove(struct platform_device *pdev)
2671 {
2672 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2673 
2674 	unregister_netdev(adapter->netdev);
2675 
2676 	tsnep_rxnfc_cleanup(adapter);
2677 
2678 	tsnep_tc_cleanup(adapter);
2679 
2680 	tsnep_ptp_cleanup(adapter);
2681 
2682 	if (adapter->mdiobus)
2683 		mdiobus_unregister(adapter->mdiobus);
2684 
2685 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2686 
2687 	return 0;
2688 }
2689 
2690 static const struct of_device_id tsnep_of_match[] = {
2691 	{ .compatible = "engleder,tsnep", },
2692 { },
2693 };
2694 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2695 
2696 static struct platform_driver tsnep_driver = {
2697 	.driver = {
2698 		.name = TSNEP,
2699 		.of_match_table = tsnep_of_match,
2700 	},
2701 	.probe = tsnep_probe,
2702 	.remove = tsnep_remove,
2703 };
2704 module_platform_driver(tsnep_driver);
2705 
2706 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2707 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2708 MODULE_LICENSE("GPL");
2709