xref: /openbmc/linux/fs/namespace.c (revision 44ad3baf1cca483e418b6aadf2d3994f69e0f16a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 	struct mnt_idmap *mnt_idmap;
86 };
87 
88 /* /sys/fs */
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91 
92 /*
93  * vfsmount lock may be taken for read to prevent changes to the
94  * vfsmount hash, ie. during mountpoint lookups or walking back
95  * up the tree.
96  *
97  * It should be taken for write in all cases where the vfsmount
98  * tree or hash is modified or when a vfsmount structure is modified.
99  */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 
lock_mount_hash(void)102 static inline void lock_mount_hash(void)
103 {
104 	write_seqlock(&mount_lock);
105 }
106 
unlock_mount_hash(void)107 static inline void unlock_mount_hash(void)
108 {
109 	write_sequnlock(&mount_lock);
110 }
111 
m_hash(struct vfsmount * mnt,struct dentry * dentry)112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 	tmp = tmp + (tmp >> m_hash_shift);
117 	return &mount_hashtable[tmp & m_hash_mask];
118 }
119 
mp_hash(struct dentry * dentry)120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 	tmp = tmp + (tmp >> mp_hash_shift);
124 	return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126 
mnt_alloc_id(struct mount * mnt)127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130 
131 	if (res < 0)
132 		return res;
133 	mnt->mnt_id = res;
134 	return 0;
135 }
136 
mnt_free_id(struct mount * mnt)137 static void mnt_free_id(struct mount *mnt)
138 {
139 	ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141 
142 /*
143  * Allocate a new peer group ID
144  */
mnt_alloc_group_id(struct mount * mnt)145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148 
149 	if (res < 0)
150 		return res;
151 	mnt->mnt_group_id = res;
152 	return 0;
153 }
154 
155 /*
156  * Release a peer group ID
157  */
mnt_release_group_id(struct mount * mnt)158 void mnt_release_group_id(struct mount *mnt)
159 {
160 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 	mnt->mnt_group_id = 0;
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
mnt_add_count(struct mount * mnt,int n)167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 	preempt_disable();
173 	mnt->mnt_count += n;
174 	preempt_enable();
175 #endif
176 }
177 
178 /*
179  * vfsmount lock must be held for write
180  */
mnt_get_count(struct mount * mnt)181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 	int count = 0;
185 	int cpu;
186 
187 	for_each_possible_cpu(cpu) {
188 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 	}
190 
191 	return count;
192 #else
193 	return mnt->mnt_count;
194 #endif
195 }
196 
alloc_vfsmnt(const char * name)197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 	if (mnt) {
201 		int err;
202 
203 		err = mnt_alloc_id(mnt);
204 		if (err)
205 			goto out_free_cache;
206 
207 		if (name) {
208 			mnt->mnt_devname = kstrdup_const(name,
209 							 GFP_KERNEL_ACCOUNT);
210 			if (!mnt->mnt_devname)
211 				goto out_free_id;
212 		}
213 
214 #ifdef CONFIG_SMP
215 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 		if (!mnt->mnt_pcp)
217 			goto out_free_devname;
218 
219 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 		mnt->mnt_count = 1;
222 		mnt->mnt_writers = 0;
223 #endif
224 
225 		INIT_HLIST_NODE(&mnt->mnt_hash);
226 		INIT_LIST_HEAD(&mnt->mnt_child);
227 		INIT_LIST_HEAD(&mnt->mnt_mounts);
228 		INIT_LIST_HEAD(&mnt->mnt_list);
229 		INIT_LIST_HEAD(&mnt->mnt_expire);
230 		INIT_LIST_HEAD(&mnt->mnt_share);
231 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 		INIT_LIST_HEAD(&mnt->mnt_slave);
233 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 		INIT_LIST_HEAD(&mnt->mnt_umounting);
235 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
__mnt_is_readonly(struct vfsmount * mnt)270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 
mnt_inc_writers(struct mount * mnt)276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 	mnt->mnt_writers++;
282 #endif
283 }
284 
mnt_dec_writers(struct mount * mnt)285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 	mnt->mnt_writers--;
291 #endif
292 }
293 
mnt_get_writers(struct mount * mnt)294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 	unsigned int count = 0;
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 	}
303 
304 	return count;
305 #else
306 	return mnt->mnt_writers;
307 #endif
308 }
309 
mnt_is_readonly(struct vfsmount * mnt)310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
313 		return 1;
314 	/*
315 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
316 	 * making sure if we don't see s_readonly_remount set yet, we also will
317 	 * not see any superblock / mount flag changes done by remount.
318 	 * It also pairs with the barrier in sb_end_ro_state_change()
319 	 * assuring that if we see s_readonly_remount already cleared, we will
320 	 * see the values of superblock / mount flags updated by remount.
321 	 */
322 	smp_rmb();
323 	return __mnt_is_readonly(mnt);
324 }
325 
326 /*
327  * Most r/o & frozen checks on a fs are for operations that take discrete
328  * amounts of time, like a write() or unlink().  We must keep track of when
329  * those operations start (for permission checks) and when they end, so that we
330  * can determine when writes are able to occur to a filesystem.
331  */
332 /**
333  * __mnt_want_write - get write access to a mount without freeze protection
334  * @m: the mount on which to take a write
335  *
336  * This tells the low-level filesystem that a write is about to be performed to
337  * it, and makes sure that writes are allowed (mnt it read-write) before
338  * returning success. This operation does not protect against filesystem being
339  * frozen. When the write operation is finished, __mnt_drop_write() must be
340  * called. This is effectively a refcount.
341  */
__mnt_want_write(struct vfsmount * m)342 int __mnt_want_write(struct vfsmount *m)
343 {
344 	struct mount *mnt = real_mount(m);
345 	int ret = 0;
346 
347 	preempt_disable();
348 	mnt_inc_writers(mnt);
349 	/*
350 	 * The store to mnt_inc_writers must be visible before we pass
351 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 	 * incremented count after it has set MNT_WRITE_HOLD.
353 	 */
354 	smp_mb();
355 	might_lock(&mount_lock.lock);
356 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
357 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
358 			cpu_relax();
359 		} else {
360 			/*
361 			 * This prevents priority inversion, if the task
362 			 * setting MNT_WRITE_HOLD got preempted on a remote
363 			 * CPU, and it prevents life lock if the task setting
364 			 * MNT_WRITE_HOLD has a lower priority and is bound to
365 			 * the same CPU as the task that is spinning here.
366 			 */
367 			preempt_enable();
368 			lock_mount_hash();
369 			unlock_mount_hash();
370 			preempt_disable();
371 		}
372 	}
373 	/*
374 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
375 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
376 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
377 	 * mnt_is_readonly() and bail in case we are racing with remount
378 	 * read-only.
379 	 */
380 	smp_rmb();
381 	if (mnt_is_readonly(m)) {
382 		mnt_dec_writers(mnt);
383 		ret = -EROFS;
384 	}
385 	preempt_enable();
386 
387 	return ret;
388 }
389 
390 /**
391  * mnt_want_write - get write access to a mount
392  * @m: the mount on which to take a write
393  *
394  * This tells the low-level filesystem that a write is about to be performed to
395  * it, and makes sure that writes are allowed (mount is read-write, filesystem
396  * is not frozen) before returning success.  When the write operation is
397  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
398  */
mnt_want_write(struct vfsmount * m)399 int mnt_want_write(struct vfsmount *m)
400 {
401 	int ret;
402 
403 	sb_start_write(m->mnt_sb);
404 	ret = __mnt_want_write(m);
405 	if (ret)
406 		sb_end_write(m->mnt_sb);
407 	return ret;
408 }
409 EXPORT_SYMBOL_GPL(mnt_want_write);
410 
411 /**
412  * __mnt_want_write_file - get write access to a file's mount
413  * @file: the file who's mount on which to take a write
414  *
415  * This is like __mnt_want_write, but if the file is already open for writing it
416  * skips incrementing mnt_writers (since the open file already has a reference)
417  * and instead only does the check for emergency r/o remounts.  This must be
418  * paired with __mnt_drop_write_file.
419  */
__mnt_want_write_file(struct file * file)420 int __mnt_want_write_file(struct file *file)
421 {
422 	if (file->f_mode & FMODE_WRITER) {
423 		/*
424 		 * Superblock may have become readonly while there are still
425 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
426 		 */
427 		if (__mnt_is_readonly(file->f_path.mnt))
428 			return -EROFS;
429 		return 0;
430 	}
431 	return __mnt_want_write(file->f_path.mnt);
432 }
433 
434 /**
435  * mnt_want_write_file - get write access to a file's mount
436  * @file: the file who's mount on which to take a write
437  *
438  * This is like mnt_want_write, but if the file is already open for writing it
439  * skips incrementing mnt_writers (since the open file already has a reference)
440  * and instead only does the freeze protection and the check for emergency r/o
441  * remounts.  This must be paired with mnt_drop_write_file.
442  */
mnt_want_write_file(struct file * file)443 int mnt_want_write_file(struct file *file)
444 {
445 	int ret;
446 
447 	sb_start_write(file_inode(file)->i_sb);
448 	ret = __mnt_want_write_file(file);
449 	if (ret)
450 		sb_end_write(file_inode(file)->i_sb);
451 	return ret;
452 }
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
454 
455 /**
456  * __mnt_drop_write - give up write access to a mount
457  * @mnt: the mount on which to give up write access
458  *
459  * Tells the low-level filesystem that we are done
460  * performing writes to it.  Must be matched with
461  * __mnt_want_write() call above.
462  */
__mnt_drop_write(struct vfsmount * mnt)463 void __mnt_drop_write(struct vfsmount *mnt)
464 {
465 	preempt_disable();
466 	mnt_dec_writers(real_mount(mnt));
467 	preempt_enable();
468 }
469 
470 /**
471  * mnt_drop_write - give up write access to a mount
472  * @mnt: the mount on which to give up write access
473  *
474  * Tells the low-level filesystem that we are done performing writes to it and
475  * also allows filesystem to be frozen again.  Must be matched with
476  * mnt_want_write() call above.
477  */
mnt_drop_write(struct vfsmount * mnt)478 void mnt_drop_write(struct vfsmount *mnt)
479 {
480 	__mnt_drop_write(mnt);
481 	sb_end_write(mnt->mnt_sb);
482 }
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
484 
__mnt_drop_write_file(struct file * file)485 void __mnt_drop_write_file(struct file *file)
486 {
487 	if (!(file->f_mode & FMODE_WRITER))
488 		__mnt_drop_write(file->f_path.mnt);
489 }
490 
mnt_drop_write_file(struct file * file)491 void mnt_drop_write_file(struct file *file)
492 {
493 	__mnt_drop_write_file(file);
494 	sb_end_write(file_inode(file)->i_sb);
495 }
496 EXPORT_SYMBOL(mnt_drop_write_file);
497 
498 /**
499  * mnt_hold_writers - prevent write access to the given mount
500  * @mnt: mnt to prevent write access to
501  *
502  * Prevents write access to @mnt if there are no active writers for @mnt.
503  * This function needs to be called and return successfully before changing
504  * properties of @mnt that need to remain stable for callers with write access
505  * to @mnt.
506  *
507  * After this functions has been called successfully callers must pair it with
508  * a call to mnt_unhold_writers() in order to stop preventing write access to
509  * @mnt.
510  *
511  * Context: This function expects lock_mount_hash() to be held serializing
512  *          setting MNT_WRITE_HOLD.
513  * Return: On success 0 is returned.
514  *	   On error, -EBUSY is returned.
515  */
mnt_hold_writers(struct mount * mnt)516 static inline int mnt_hold_writers(struct mount *mnt)
517 {
518 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 	/*
520 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
521 	 * should be visible before we do.
522 	 */
523 	smp_mb();
524 
525 	/*
526 	 * With writers on hold, if this value is zero, then there are
527 	 * definitely no active writers (although held writers may subsequently
528 	 * increment the count, they'll have to wait, and decrement it after
529 	 * seeing MNT_READONLY).
530 	 *
531 	 * It is OK to have counter incremented on one CPU and decremented on
532 	 * another: the sum will add up correctly. The danger would be when we
533 	 * sum up each counter, if we read a counter before it is incremented,
534 	 * but then read another CPU's count which it has been subsequently
535 	 * decremented from -- we would see more decrements than we should.
536 	 * MNT_WRITE_HOLD protects against this scenario, because
537 	 * mnt_want_write first increments count, then smp_mb, then spins on
538 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
539 	 * we're counting up here.
540 	 */
541 	if (mnt_get_writers(mnt) > 0)
542 		return -EBUSY;
543 
544 	return 0;
545 }
546 
547 /**
548  * mnt_unhold_writers - stop preventing write access to the given mount
549  * @mnt: mnt to stop preventing write access to
550  *
551  * Stop preventing write access to @mnt allowing callers to gain write access
552  * to @mnt again.
553  *
554  * This function can only be called after a successful call to
555  * mnt_hold_writers().
556  *
557  * Context: This function expects lock_mount_hash() to be held.
558  */
mnt_unhold_writers(struct mount * mnt)559 static inline void mnt_unhold_writers(struct mount *mnt)
560 {
561 	/*
562 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
563 	 * that become unheld will see MNT_READONLY.
564 	 */
565 	smp_wmb();
566 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
567 }
568 
mnt_make_readonly(struct mount * mnt)569 static int mnt_make_readonly(struct mount *mnt)
570 {
571 	int ret;
572 
573 	ret = mnt_hold_writers(mnt);
574 	if (!ret)
575 		mnt->mnt.mnt_flags |= MNT_READONLY;
576 	mnt_unhold_writers(mnt);
577 	return ret;
578 }
579 
sb_prepare_remount_readonly(struct super_block * sb)580 int sb_prepare_remount_readonly(struct super_block *sb)
581 {
582 	struct mount *mnt;
583 	int err = 0;
584 
585 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
586 	if (atomic_long_read(&sb->s_remove_count))
587 		return -EBUSY;
588 
589 	lock_mount_hash();
590 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
591 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
592 			err = mnt_hold_writers(mnt);
593 			if (err)
594 				break;
595 		}
596 	}
597 	if (!err && atomic_long_read(&sb->s_remove_count))
598 		err = -EBUSY;
599 
600 	if (!err)
601 		sb_start_ro_state_change(sb);
602 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
603 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
604 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
605 	}
606 	unlock_mount_hash();
607 
608 	return err;
609 }
610 
free_vfsmnt(struct mount * mnt)611 static void free_vfsmnt(struct mount *mnt)
612 {
613 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
614 	kfree_const(mnt->mnt_devname);
615 #ifdef CONFIG_SMP
616 	free_percpu(mnt->mnt_pcp);
617 #endif
618 	kmem_cache_free(mnt_cache, mnt);
619 }
620 
delayed_free_vfsmnt(struct rcu_head * head)621 static void delayed_free_vfsmnt(struct rcu_head *head)
622 {
623 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
624 }
625 
626 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)627 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
628 {
629 	struct mount *mnt;
630 	if (read_seqretry(&mount_lock, seq))
631 		return 1;
632 	if (bastard == NULL)
633 		return 0;
634 	mnt = real_mount(bastard);
635 	mnt_add_count(mnt, 1);
636 	smp_mb();		// see mntput_no_expire() and do_umount()
637 	if (likely(!read_seqretry(&mount_lock, seq)))
638 		return 0;
639 	lock_mount_hash();
640 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
641 		mnt_add_count(mnt, -1);
642 		unlock_mount_hash();
643 		return 1;
644 	}
645 	unlock_mount_hash();
646 	/* caller will mntput() */
647 	return -1;
648 }
649 
650 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)651 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
652 {
653 	int res = __legitimize_mnt(bastard, seq);
654 	if (likely(!res))
655 		return true;
656 	if (unlikely(res < 0)) {
657 		rcu_read_unlock();
658 		mntput(bastard);
659 		rcu_read_lock();
660 	}
661 	return false;
662 }
663 
664 /**
665  * __lookup_mnt - find first child mount
666  * @mnt:	parent mount
667  * @dentry:	mountpoint
668  *
669  * If @mnt has a child mount @c mounted @dentry find and return it.
670  *
671  * Note that the child mount @c need not be unique. There are cases
672  * where shadow mounts are created. For example, during mount
673  * propagation when a source mount @mnt whose root got overmounted by a
674  * mount @o after path lookup but before @namespace_sem could be
675  * acquired gets copied and propagated. So @mnt gets copied including
676  * @o. When @mnt is propagated to a destination mount @d that already
677  * has another mount @n mounted at the same mountpoint then the source
678  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
679  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
680  * on @dentry.
681  *
682  * Return: The first child of @mnt mounted @dentry or NULL.
683  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)684 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
685 {
686 	struct hlist_head *head = m_hash(mnt, dentry);
687 	struct mount *p;
688 
689 	hlist_for_each_entry_rcu(p, head, mnt_hash)
690 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
691 			return p;
692 	return NULL;
693 }
694 
695 /*
696  * lookup_mnt - Return the first child mount mounted at path
697  *
698  * "First" means first mounted chronologically.  If you create the
699  * following mounts:
700  *
701  * mount /dev/sda1 /mnt
702  * mount /dev/sda2 /mnt
703  * mount /dev/sda3 /mnt
704  *
705  * Then lookup_mnt() on the base /mnt dentry in the root mount will
706  * return successively the root dentry and vfsmount of /dev/sda1, then
707  * /dev/sda2, then /dev/sda3, then NULL.
708  *
709  * lookup_mnt takes a reference to the found vfsmount.
710  */
lookup_mnt(const struct path * path)711 struct vfsmount *lookup_mnt(const struct path *path)
712 {
713 	struct mount *child_mnt;
714 	struct vfsmount *m;
715 	unsigned seq;
716 
717 	rcu_read_lock();
718 	do {
719 		seq = read_seqbegin(&mount_lock);
720 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
721 		m = child_mnt ? &child_mnt->mnt : NULL;
722 	} while (!legitimize_mnt(m, seq));
723 	rcu_read_unlock();
724 	return m;
725 }
726 
lock_ns_list(struct mnt_namespace * ns)727 static inline void lock_ns_list(struct mnt_namespace *ns)
728 {
729 	spin_lock(&ns->ns_lock);
730 }
731 
unlock_ns_list(struct mnt_namespace * ns)732 static inline void unlock_ns_list(struct mnt_namespace *ns)
733 {
734 	spin_unlock(&ns->ns_lock);
735 }
736 
mnt_is_cursor(struct mount * mnt)737 static inline bool mnt_is_cursor(struct mount *mnt)
738 {
739 	return mnt->mnt.mnt_flags & MNT_CURSOR;
740 }
741 
742 /*
743  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
744  *                         current mount namespace.
745  *
746  * The common case is dentries are not mountpoints at all and that
747  * test is handled inline.  For the slow case when we are actually
748  * dealing with a mountpoint of some kind, walk through all of the
749  * mounts in the current mount namespace and test to see if the dentry
750  * is a mountpoint.
751  *
752  * The mount_hashtable is not usable in the context because we
753  * need to identify all mounts that may be in the current mount
754  * namespace not just a mount that happens to have some specified
755  * parent mount.
756  */
__is_local_mountpoint(struct dentry * dentry)757 bool __is_local_mountpoint(struct dentry *dentry)
758 {
759 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
760 	struct mount *mnt;
761 	bool is_covered = false;
762 
763 	down_read(&namespace_sem);
764 	lock_ns_list(ns);
765 	list_for_each_entry(mnt, &ns->list, mnt_list) {
766 		if (mnt_is_cursor(mnt))
767 			continue;
768 		is_covered = (mnt->mnt_mountpoint == dentry);
769 		if (is_covered)
770 			break;
771 	}
772 	unlock_ns_list(ns);
773 	up_read(&namespace_sem);
774 
775 	return is_covered;
776 }
777 
lookup_mountpoint(struct dentry * dentry)778 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
779 {
780 	struct hlist_head *chain = mp_hash(dentry);
781 	struct mountpoint *mp;
782 
783 	hlist_for_each_entry(mp, chain, m_hash) {
784 		if (mp->m_dentry == dentry) {
785 			mp->m_count++;
786 			return mp;
787 		}
788 	}
789 	return NULL;
790 }
791 
get_mountpoint(struct dentry * dentry)792 static struct mountpoint *get_mountpoint(struct dentry *dentry)
793 {
794 	struct mountpoint *mp, *new = NULL;
795 	int ret;
796 
797 	if (d_mountpoint(dentry)) {
798 		/* might be worth a WARN_ON() */
799 		if (d_unlinked(dentry))
800 			return ERR_PTR(-ENOENT);
801 mountpoint:
802 		read_seqlock_excl(&mount_lock);
803 		mp = lookup_mountpoint(dentry);
804 		read_sequnlock_excl(&mount_lock);
805 		if (mp)
806 			goto done;
807 	}
808 
809 	if (!new)
810 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
811 	if (!new)
812 		return ERR_PTR(-ENOMEM);
813 
814 
815 	/* Exactly one processes may set d_mounted */
816 	ret = d_set_mounted(dentry);
817 
818 	/* Someone else set d_mounted? */
819 	if (ret == -EBUSY)
820 		goto mountpoint;
821 
822 	/* The dentry is not available as a mountpoint? */
823 	mp = ERR_PTR(ret);
824 	if (ret)
825 		goto done;
826 
827 	/* Add the new mountpoint to the hash table */
828 	read_seqlock_excl(&mount_lock);
829 	new->m_dentry = dget(dentry);
830 	new->m_count = 1;
831 	hlist_add_head(&new->m_hash, mp_hash(dentry));
832 	INIT_HLIST_HEAD(&new->m_list);
833 	read_sequnlock_excl(&mount_lock);
834 
835 	mp = new;
836 	new = NULL;
837 done:
838 	kfree(new);
839 	return mp;
840 }
841 
842 /*
843  * vfsmount lock must be held.  Additionally, the caller is responsible
844  * for serializing calls for given disposal list.
845  */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)846 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
847 {
848 	if (!--mp->m_count) {
849 		struct dentry *dentry = mp->m_dentry;
850 		BUG_ON(!hlist_empty(&mp->m_list));
851 		spin_lock(&dentry->d_lock);
852 		dentry->d_flags &= ~DCACHE_MOUNTED;
853 		spin_unlock(&dentry->d_lock);
854 		dput_to_list(dentry, list);
855 		hlist_del(&mp->m_hash);
856 		kfree(mp);
857 	}
858 }
859 
860 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)861 static void put_mountpoint(struct mountpoint *mp)
862 {
863 	__put_mountpoint(mp, &ex_mountpoints);
864 }
865 
check_mnt(struct mount * mnt)866 static inline int check_mnt(struct mount *mnt)
867 {
868 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
869 }
870 
871 /*
872  * vfsmount lock must be held for write
873  */
touch_mnt_namespace(struct mnt_namespace * ns)874 static void touch_mnt_namespace(struct mnt_namespace *ns)
875 {
876 	if (ns) {
877 		ns->event = ++event;
878 		wake_up_interruptible(&ns->poll);
879 	}
880 }
881 
882 /*
883  * vfsmount lock must be held for write
884  */
__touch_mnt_namespace(struct mnt_namespace * ns)885 static void __touch_mnt_namespace(struct mnt_namespace *ns)
886 {
887 	if (ns && ns->event != event) {
888 		ns->event = event;
889 		wake_up_interruptible(&ns->poll);
890 	}
891 }
892 
893 /*
894  * vfsmount lock must be held for write
895  */
unhash_mnt(struct mount * mnt)896 static struct mountpoint *unhash_mnt(struct mount *mnt)
897 {
898 	struct mountpoint *mp;
899 	mnt->mnt_parent = mnt;
900 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
901 	list_del_init(&mnt->mnt_child);
902 	hlist_del_init_rcu(&mnt->mnt_hash);
903 	hlist_del_init(&mnt->mnt_mp_list);
904 	mp = mnt->mnt_mp;
905 	mnt->mnt_mp = NULL;
906 	return mp;
907 }
908 
909 /*
910  * vfsmount lock must be held for write
911  */
umount_mnt(struct mount * mnt)912 static void umount_mnt(struct mount *mnt)
913 {
914 	put_mountpoint(unhash_mnt(mnt));
915 }
916 
917 /*
918  * vfsmount lock must be held for write
919  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)920 void mnt_set_mountpoint(struct mount *mnt,
921 			struct mountpoint *mp,
922 			struct mount *child_mnt)
923 {
924 	mp->m_count++;
925 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
926 	child_mnt->mnt_mountpoint = mp->m_dentry;
927 	child_mnt->mnt_parent = mnt;
928 	child_mnt->mnt_mp = mp;
929 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
930 }
931 
932 /**
933  * mnt_set_mountpoint_beneath - mount a mount beneath another one
934  *
935  * @new_parent: the source mount
936  * @top_mnt:    the mount beneath which @new_parent is mounted
937  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
938  *
939  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
940  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
941  * @new_mp. And mount @new_parent on the old parent and old
942  * mountpoint of @top_mnt.
943  *
944  * Context: This function expects namespace_lock() and lock_mount_hash()
945  *          to have been acquired in that order.
946  */
mnt_set_mountpoint_beneath(struct mount * new_parent,struct mount * top_mnt,struct mountpoint * new_mp)947 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
948 				       struct mount *top_mnt,
949 				       struct mountpoint *new_mp)
950 {
951 	struct mount *old_top_parent = top_mnt->mnt_parent;
952 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
953 
954 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
955 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
956 }
957 
958 
__attach_mnt(struct mount * mnt,struct mount * parent)959 static void __attach_mnt(struct mount *mnt, struct mount *parent)
960 {
961 	hlist_add_head_rcu(&mnt->mnt_hash,
962 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
963 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
964 }
965 
966 /**
967  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
968  *              list of child mounts
969  * @parent:  the parent
970  * @mnt:     the new mount
971  * @mp:      the new mountpoint
972  * @beneath: whether to mount @mnt beneath or on top of @parent
973  *
974  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
975  * to @parent's child mount list and to @mount_hashtable.
976  *
977  * If @beneath is true, remove @mnt from its current parent and
978  * mountpoint and mount it on @mp on @parent, and mount @parent on the
979  * old parent and old mountpoint of @mnt. Finally, attach @parent to
980  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
981  *
982  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
983  * to the correct parent.
984  *
985  * Context: This function expects namespace_lock() and lock_mount_hash()
986  *          to have been acquired in that order.
987  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp,bool beneath)988 static void attach_mnt(struct mount *mnt, struct mount *parent,
989 		       struct mountpoint *mp, bool beneath)
990 {
991 	if (beneath)
992 		mnt_set_mountpoint_beneath(mnt, parent, mp);
993 	else
994 		mnt_set_mountpoint(parent, mp, mnt);
995 	/*
996 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
997 	 * beneath @parent then @mnt will need to be attached to
998 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
999 	 * isn't the same mount as @parent.
1000 	 */
1001 	__attach_mnt(mnt, mnt->mnt_parent);
1002 }
1003 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1004 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1005 {
1006 	struct mountpoint *old_mp = mnt->mnt_mp;
1007 	struct mount *old_parent = mnt->mnt_parent;
1008 
1009 	list_del_init(&mnt->mnt_child);
1010 	hlist_del_init(&mnt->mnt_mp_list);
1011 	hlist_del_init_rcu(&mnt->mnt_hash);
1012 
1013 	attach_mnt(mnt, parent, mp, false);
1014 
1015 	put_mountpoint(old_mp);
1016 	mnt_add_count(old_parent, -1);
1017 }
1018 
1019 /*
1020  * vfsmount lock must be held for write
1021  */
commit_tree(struct mount * mnt)1022 static void commit_tree(struct mount *mnt)
1023 {
1024 	struct mount *parent = mnt->mnt_parent;
1025 	struct mount *m;
1026 	LIST_HEAD(head);
1027 	struct mnt_namespace *n = parent->mnt_ns;
1028 
1029 	BUG_ON(parent == mnt);
1030 
1031 	list_add_tail(&head, &mnt->mnt_list);
1032 	list_for_each_entry(m, &head, mnt_list)
1033 		m->mnt_ns = n;
1034 
1035 	list_splice(&head, n->list.prev);
1036 
1037 	n->mounts += n->pending_mounts;
1038 	n->pending_mounts = 0;
1039 
1040 	__attach_mnt(mnt, parent);
1041 	touch_mnt_namespace(n);
1042 }
1043 
next_mnt(struct mount * p,struct mount * root)1044 static struct mount *next_mnt(struct mount *p, struct mount *root)
1045 {
1046 	struct list_head *next = p->mnt_mounts.next;
1047 	if (next == &p->mnt_mounts) {
1048 		while (1) {
1049 			if (p == root)
1050 				return NULL;
1051 			next = p->mnt_child.next;
1052 			if (next != &p->mnt_parent->mnt_mounts)
1053 				break;
1054 			p = p->mnt_parent;
1055 		}
1056 	}
1057 	return list_entry(next, struct mount, mnt_child);
1058 }
1059 
skip_mnt_tree(struct mount * p)1060 static struct mount *skip_mnt_tree(struct mount *p)
1061 {
1062 	struct list_head *prev = p->mnt_mounts.prev;
1063 	while (prev != &p->mnt_mounts) {
1064 		p = list_entry(prev, struct mount, mnt_child);
1065 		prev = p->mnt_mounts.prev;
1066 	}
1067 	return p;
1068 }
1069 
1070 /**
1071  * vfs_create_mount - Create a mount for a configured superblock
1072  * @fc: The configuration context with the superblock attached
1073  *
1074  * Create a mount to an already configured superblock.  If necessary, the
1075  * caller should invoke vfs_get_tree() before calling this.
1076  *
1077  * Note that this does not attach the mount to anything.
1078  */
vfs_create_mount(struct fs_context * fc)1079 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1080 {
1081 	struct mount *mnt;
1082 
1083 	if (!fc->root)
1084 		return ERR_PTR(-EINVAL);
1085 
1086 	mnt = alloc_vfsmnt(fc->source ?: "none");
1087 	if (!mnt)
1088 		return ERR_PTR(-ENOMEM);
1089 
1090 	if (fc->sb_flags & SB_KERNMOUNT)
1091 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1092 
1093 	atomic_inc(&fc->root->d_sb->s_active);
1094 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1095 	mnt->mnt.mnt_root	= dget(fc->root);
1096 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1097 	mnt->mnt_parent		= mnt;
1098 
1099 	lock_mount_hash();
1100 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1101 	unlock_mount_hash();
1102 	return &mnt->mnt;
1103 }
1104 EXPORT_SYMBOL(vfs_create_mount);
1105 
fc_mount(struct fs_context * fc)1106 struct vfsmount *fc_mount(struct fs_context *fc)
1107 {
1108 	int err = vfs_get_tree(fc);
1109 	if (!err) {
1110 		up_write(&fc->root->d_sb->s_umount);
1111 		return vfs_create_mount(fc);
1112 	}
1113 	return ERR_PTR(err);
1114 }
1115 EXPORT_SYMBOL(fc_mount);
1116 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1117 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1118 				int flags, const char *name,
1119 				void *data)
1120 {
1121 	struct fs_context *fc;
1122 	struct vfsmount *mnt;
1123 	int ret = 0;
1124 
1125 	if (!type)
1126 		return ERR_PTR(-EINVAL);
1127 
1128 	fc = fs_context_for_mount(type, flags);
1129 	if (IS_ERR(fc))
1130 		return ERR_CAST(fc);
1131 
1132 	if (name)
1133 		ret = vfs_parse_fs_string(fc, "source",
1134 					  name, strlen(name));
1135 	if (!ret)
1136 		ret = parse_monolithic_mount_data(fc, data);
1137 	if (!ret)
1138 		mnt = fc_mount(fc);
1139 	else
1140 		mnt = ERR_PTR(ret);
1141 
1142 	put_fs_context(fc);
1143 	return mnt;
1144 }
1145 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1146 
1147 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1148 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1149 	     const char *name, void *data)
1150 {
1151 	/* Until it is worked out how to pass the user namespace
1152 	 * through from the parent mount to the submount don't support
1153 	 * unprivileged mounts with submounts.
1154 	 */
1155 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1156 		return ERR_PTR(-EPERM);
1157 
1158 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1159 }
1160 EXPORT_SYMBOL_GPL(vfs_submount);
1161 
clone_mnt(struct mount * old,struct dentry * root,int flag)1162 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1163 					int flag)
1164 {
1165 	struct super_block *sb = old->mnt.mnt_sb;
1166 	struct mount *mnt;
1167 	int err;
1168 
1169 	mnt = alloc_vfsmnt(old->mnt_devname);
1170 	if (!mnt)
1171 		return ERR_PTR(-ENOMEM);
1172 
1173 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1174 		mnt->mnt_group_id = 0; /* not a peer of original */
1175 	else
1176 		mnt->mnt_group_id = old->mnt_group_id;
1177 
1178 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1179 		err = mnt_alloc_group_id(mnt);
1180 		if (err)
1181 			goto out_free;
1182 	}
1183 
1184 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1185 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1186 
1187 	atomic_inc(&sb->s_active);
1188 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1189 
1190 	mnt->mnt.mnt_sb = sb;
1191 	mnt->mnt.mnt_root = dget(root);
1192 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1193 	mnt->mnt_parent = mnt;
1194 	lock_mount_hash();
1195 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1196 	unlock_mount_hash();
1197 
1198 	if ((flag & CL_SLAVE) ||
1199 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1200 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1201 		mnt->mnt_master = old;
1202 		CLEAR_MNT_SHARED(mnt);
1203 	} else if (!(flag & CL_PRIVATE)) {
1204 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1205 			list_add(&mnt->mnt_share, &old->mnt_share);
1206 		if (IS_MNT_SLAVE(old))
1207 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1208 		mnt->mnt_master = old->mnt_master;
1209 	} else {
1210 		CLEAR_MNT_SHARED(mnt);
1211 	}
1212 	if (flag & CL_MAKE_SHARED)
1213 		set_mnt_shared(mnt);
1214 
1215 	/* stick the duplicate mount on the same expiry list
1216 	 * as the original if that was on one */
1217 	if (flag & CL_EXPIRE) {
1218 		if (!list_empty(&old->mnt_expire))
1219 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1220 	}
1221 
1222 	return mnt;
1223 
1224  out_free:
1225 	mnt_free_id(mnt);
1226 	free_vfsmnt(mnt);
1227 	return ERR_PTR(err);
1228 }
1229 
cleanup_mnt(struct mount * mnt)1230 static void cleanup_mnt(struct mount *mnt)
1231 {
1232 	struct hlist_node *p;
1233 	struct mount *m;
1234 	/*
1235 	 * The warning here probably indicates that somebody messed
1236 	 * up a mnt_want/drop_write() pair.  If this happens, the
1237 	 * filesystem was probably unable to make r/w->r/o transitions.
1238 	 * The locking used to deal with mnt_count decrement provides barriers,
1239 	 * so mnt_get_writers() below is safe.
1240 	 */
1241 	WARN_ON(mnt_get_writers(mnt));
1242 	if (unlikely(mnt->mnt_pins.first))
1243 		mnt_pin_kill(mnt);
1244 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1245 		hlist_del(&m->mnt_umount);
1246 		mntput(&m->mnt);
1247 	}
1248 	fsnotify_vfsmount_delete(&mnt->mnt);
1249 	dput(mnt->mnt.mnt_root);
1250 	deactivate_super(mnt->mnt.mnt_sb);
1251 	mnt_free_id(mnt);
1252 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1253 }
1254 
__cleanup_mnt(struct rcu_head * head)1255 static void __cleanup_mnt(struct rcu_head *head)
1256 {
1257 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1258 }
1259 
1260 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1261 static void delayed_mntput(struct work_struct *unused)
1262 {
1263 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1264 	struct mount *m, *t;
1265 
1266 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1267 		cleanup_mnt(m);
1268 }
1269 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1270 
mntput_no_expire(struct mount * mnt)1271 static void mntput_no_expire(struct mount *mnt)
1272 {
1273 	LIST_HEAD(list);
1274 	int count;
1275 
1276 	rcu_read_lock();
1277 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1278 		/*
1279 		 * Since we don't do lock_mount_hash() here,
1280 		 * ->mnt_ns can change under us.  However, if it's
1281 		 * non-NULL, then there's a reference that won't
1282 		 * be dropped until after an RCU delay done after
1283 		 * turning ->mnt_ns NULL.  So if we observe it
1284 		 * non-NULL under rcu_read_lock(), the reference
1285 		 * we are dropping is not the final one.
1286 		 */
1287 		mnt_add_count(mnt, -1);
1288 		rcu_read_unlock();
1289 		return;
1290 	}
1291 	lock_mount_hash();
1292 	/*
1293 	 * make sure that if __legitimize_mnt() has not seen us grab
1294 	 * mount_lock, we'll see their refcount increment here.
1295 	 */
1296 	smp_mb();
1297 	mnt_add_count(mnt, -1);
1298 	count = mnt_get_count(mnt);
1299 	if (count != 0) {
1300 		WARN_ON(count < 0);
1301 		rcu_read_unlock();
1302 		unlock_mount_hash();
1303 		return;
1304 	}
1305 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1306 		rcu_read_unlock();
1307 		unlock_mount_hash();
1308 		return;
1309 	}
1310 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1311 	rcu_read_unlock();
1312 
1313 	list_del(&mnt->mnt_instance);
1314 
1315 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1316 		struct mount *p, *tmp;
1317 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1318 			__put_mountpoint(unhash_mnt(p), &list);
1319 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1320 		}
1321 	}
1322 	unlock_mount_hash();
1323 	shrink_dentry_list(&list);
1324 
1325 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1326 		struct task_struct *task = current;
1327 		if (likely(!(task->flags & PF_KTHREAD))) {
1328 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1329 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1330 				return;
1331 		}
1332 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1333 			schedule_delayed_work(&delayed_mntput_work, 1);
1334 		return;
1335 	}
1336 	cleanup_mnt(mnt);
1337 }
1338 
mntput(struct vfsmount * mnt)1339 void mntput(struct vfsmount *mnt)
1340 {
1341 	if (mnt) {
1342 		struct mount *m = real_mount(mnt);
1343 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1344 		if (unlikely(m->mnt_expiry_mark))
1345 			m->mnt_expiry_mark = 0;
1346 		mntput_no_expire(m);
1347 	}
1348 }
1349 EXPORT_SYMBOL(mntput);
1350 
mntget(struct vfsmount * mnt)1351 struct vfsmount *mntget(struct vfsmount *mnt)
1352 {
1353 	if (mnt)
1354 		mnt_add_count(real_mount(mnt), 1);
1355 	return mnt;
1356 }
1357 EXPORT_SYMBOL(mntget);
1358 
1359 /*
1360  * Make a mount point inaccessible to new lookups.
1361  * Because there may still be current users, the caller MUST WAIT
1362  * for an RCU grace period before destroying the mount point.
1363  */
mnt_make_shortterm(struct vfsmount * mnt)1364 void mnt_make_shortterm(struct vfsmount *mnt)
1365 {
1366 	if (mnt)
1367 		real_mount(mnt)->mnt_ns = NULL;
1368 }
1369 
1370 /**
1371  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1372  * @path: path to check
1373  *
1374  *  d_mountpoint() can only be used reliably to establish if a dentry is
1375  *  not mounted in any namespace and that common case is handled inline.
1376  *  d_mountpoint() isn't aware of the possibility there may be multiple
1377  *  mounts using a given dentry in a different namespace. This function
1378  *  checks if the passed in path is a mountpoint rather than the dentry
1379  *  alone.
1380  */
path_is_mountpoint(const struct path * path)1381 bool path_is_mountpoint(const struct path *path)
1382 {
1383 	unsigned seq;
1384 	bool res;
1385 
1386 	if (!d_mountpoint(path->dentry))
1387 		return false;
1388 
1389 	rcu_read_lock();
1390 	do {
1391 		seq = read_seqbegin(&mount_lock);
1392 		res = __path_is_mountpoint(path);
1393 	} while (read_seqretry(&mount_lock, seq));
1394 	rcu_read_unlock();
1395 
1396 	return res;
1397 }
1398 EXPORT_SYMBOL(path_is_mountpoint);
1399 
mnt_clone_internal(const struct path * path)1400 struct vfsmount *mnt_clone_internal(const struct path *path)
1401 {
1402 	struct mount *p;
1403 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1404 	if (IS_ERR(p))
1405 		return ERR_CAST(p);
1406 	p->mnt.mnt_flags |= MNT_INTERNAL;
1407 	return &p->mnt;
1408 }
1409 
1410 #ifdef CONFIG_PROC_FS
mnt_list_next(struct mnt_namespace * ns,struct list_head * p)1411 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1412 				   struct list_head *p)
1413 {
1414 	struct mount *mnt, *ret = NULL;
1415 
1416 	lock_ns_list(ns);
1417 	list_for_each_continue(p, &ns->list) {
1418 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1419 		if (!mnt_is_cursor(mnt)) {
1420 			ret = mnt;
1421 			break;
1422 		}
1423 	}
1424 	unlock_ns_list(ns);
1425 
1426 	return ret;
1427 }
1428 
1429 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1430 static void *m_start(struct seq_file *m, loff_t *pos)
1431 {
1432 	struct proc_mounts *p = m->private;
1433 	struct list_head *prev;
1434 
1435 	down_read(&namespace_sem);
1436 	if (!*pos) {
1437 		prev = &p->ns->list;
1438 	} else {
1439 		prev = &p->cursor.mnt_list;
1440 
1441 		/* Read after we'd reached the end? */
1442 		if (list_empty(prev))
1443 			return NULL;
1444 	}
1445 
1446 	return mnt_list_next(p->ns, prev);
1447 }
1448 
m_next(struct seq_file * m,void * v,loff_t * pos)1449 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1450 {
1451 	struct proc_mounts *p = m->private;
1452 	struct mount *mnt = v;
1453 
1454 	++*pos;
1455 	return mnt_list_next(p->ns, &mnt->mnt_list);
1456 }
1457 
m_stop(struct seq_file * m,void * v)1458 static void m_stop(struct seq_file *m, void *v)
1459 {
1460 	struct proc_mounts *p = m->private;
1461 	struct mount *mnt = v;
1462 
1463 	lock_ns_list(p->ns);
1464 	if (mnt)
1465 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1466 	else
1467 		list_del_init(&p->cursor.mnt_list);
1468 	unlock_ns_list(p->ns);
1469 	up_read(&namespace_sem);
1470 }
1471 
m_show(struct seq_file * m,void * v)1472 static int m_show(struct seq_file *m, void *v)
1473 {
1474 	struct proc_mounts *p = m->private;
1475 	struct mount *r = v;
1476 	return p->show(m, &r->mnt);
1477 }
1478 
1479 const struct seq_operations mounts_op = {
1480 	.start	= m_start,
1481 	.next	= m_next,
1482 	.stop	= m_stop,
1483 	.show	= m_show,
1484 };
1485 
mnt_cursor_del(struct mnt_namespace * ns,struct mount * cursor)1486 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1487 {
1488 	down_read(&namespace_sem);
1489 	lock_ns_list(ns);
1490 	list_del(&cursor->mnt_list);
1491 	unlock_ns_list(ns);
1492 	up_read(&namespace_sem);
1493 }
1494 #endif  /* CONFIG_PROC_FS */
1495 
1496 /**
1497  * may_umount_tree - check if a mount tree is busy
1498  * @m: root of mount tree
1499  *
1500  * This is called to check if a tree of mounts has any
1501  * open files, pwds, chroots or sub mounts that are
1502  * busy.
1503  */
may_umount_tree(struct vfsmount * m)1504 int may_umount_tree(struct vfsmount *m)
1505 {
1506 	struct mount *mnt = real_mount(m);
1507 	int actual_refs = 0;
1508 	int minimum_refs = 0;
1509 	struct mount *p;
1510 	BUG_ON(!m);
1511 
1512 	/* write lock needed for mnt_get_count */
1513 	lock_mount_hash();
1514 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1515 		actual_refs += mnt_get_count(p);
1516 		minimum_refs += 2;
1517 	}
1518 	unlock_mount_hash();
1519 
1520 	if (actual_refs > minimum_refs)
1521 		return 0;
1522 
1523 	return 1;
1524 }
1525 
1526 EXPORT_SYMBOL(may_umount_tree);
1527 
1528 /**
1529  * may_umount - check if a mount point is busy
1530  * @mnt: root of mount
1531  *
1532  * This is called to check if a mount point has any
1533  * open files, pwds, chroots or sub mounts. If the
1534  * mount has sub mounts this will return busy
1535  * regardless of whether the sub mounts are busy.
1536  *
1537  * Doesn't take quota and stuff into account. IOW, in some cases it will
1538  * give false negatives. The main reason why it's here is that we need
1539  * a non-destructive way to look for easily umountable filesystems.
1540  */
may_umount(struct vfsmount * mnt)1541 int may_umount(struct vfsmount *mnt)
1542 {
1543 	int ret = 1;
1544 	down_read(&namespace_sem);
1545 	lock_mount_hash();
1546 	if (propagate_mount_busy(real_mount(mnt), 2))
1547 		ret = 0;
1548 	unlock_mount_hash();
1549 	up_read(&namespace_sem);
1550 	return ret;
1551 }
1552 
1553 EXPORT_SYMBOL(may_umount);
1554 
namespace_unlock(void)1555 static void namespace_unlock(void)
1556 {
1557 	struct hlist_head head;
1558 	struct hlist_node *p;
1559 	struct mount *m;
1560 	LIST_HEAD(list);
1561 
1562 	hlist_move_list(&unmounted, &head);
1563 	list_splice_init(&ex_mountpoints, &list);
1564 
1565 	up_write(&namespace_sem);
1566 
1567 	shrink_dentry_list(&list);
1568 
1569 	if (likely(hlist_empty(&head)))
1570 		return;
1571 
1572 	synchronize_rcu_expedited();
1573 
1574 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1575 		hlist_del(&m->mnt_umount);
1576 		mntput(&m->mnt);
1577 	}
1578 }
1579 
namespace_lock(void)1580 static inline void namespace_lock(void)
1581 {
1582 	down_write(&namespace_sem);
1583 }
1584 
1585 enum umount_tree_flags {
1586 	UMOUNT_SYNC = 1,
1587 	UMOUNT_PROPAGATE = 2,
1588 	UMOUNT_CONNECTED = 4,
1589 };
1590 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1591 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1592 {
1593 	/* Leaving mounts connected is only valid for lazy umounts */
1594 	if (how & UMOUNT_SYNC)
1595 		return true;
1596 
1597 	/* A mount without a parent has nothing to be connected to */
1598 	if (!mnt_has_parent(mnt))
1599 		return true;
1600 
1601 	/* Because the reference counting rules change when mounts are
1602 	 * unmounted and connected, umounted mounts may not be
1603 	 * connected to mounted mounts.
1604 	 */
1605 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1606 		return true;
1607 
1608 	/* Has it been requested that the mount remain connected? */
1609 	if (how & UMOUNT_CONNECTED)
1610 		return false;
1611 
1612 	/* Is the mount locked such that it needs to remain connected? */
1613 	if (IS_MNT_LOCKED(mnt))
1614 		return false;
1615 
1616 	/* By default disconnect the mount */
1617 	return true;
1618 }
1619 
1620 /*
1621  * mount_lock must be held
1622  * namespace_sem must be held for write
1623  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1624 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1625 {
1626 	LIST_HEAD(tmp_list);
1627 	struct mount *p;
1628 
1629 	if (how & UMOUNT_PROPAGATE)
1630 		propagate_mount_unlock(mnt);
1631 
1632 	/* Gather the mounts to umount */
1633 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1634 		p->mnt.mnt_flags |= MNT_UMOUNT;
1635 		list_move(&p->mnt_list, &tmp_list);
1636 	}
1637 
1638 	/* Hide the mounts from mnt_mounts */
1639 	list_for_each_entry(p, &tmp_list, mnt_list) {
1640 		list_del_init(&p->mnt_child);
1641 	}
1642 
1643 	/* Add propogated mounts to the tmp_list */
1644 	if (how & UMOUNT_PROPAGATE)
1645 		propagate_umount(&tmp_list);
1646 
1647 	while (!list_empty(&tmp_list)) {
1648 		struct mnt_namespace *ns;
1649 		bool disconnect;
1650 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1651 		list_del_init(&p->mnt_expire);
1652 		list_del_init(&p->mnt_list);
1653 		ns = p->mnt_ns;
1654 		if (ns) {
1655 			ns->mounts--;
1656 			__touch_mnt_namespace(ns);
1657 		}
1658 		p->mnt_ns = NULL;
1659 		if (how & UMOUNT_SYNC)
1660 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1661 
1662 		disconnect = disconnect_mount(p, how);
1663 		if (mnt_has_parent(p)) {
1664 			mnt_add_count(p->mnt_parent, -1);
1665 			if (!disconnect) {
1666 				/* Don't forget about p */
1667 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1668 			} else {
1669 				umount_mnt(p);
1670 			}
1671 		}
1672 		change_mnt_propagation(p, MS_PRIVATE);
1673 		if (disconnect)
1674 			hlist_add_head(&p->mnt_umount, &unmounted);
1675 	}
1676 }
1677 
1678 static void shrink_submounts(struct mount *mnt);
1679 
do_umount_root(struct super_block * sb)1680 static int do_umount_root(struct super_block *sb)
1681 {
1682 	int ret = 0;
1683 
1684 	down_write(&sb->s_umount);
1685 	if (!sb_rdonly(sb)) {
1686 		struct fs_context *fc;
1687 
1688 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1689 						SB_RDONLY);
1690 		if (IS_ERR(fc)) {
1691 			ret = PTR_ERR(fc);
1692 		} else {
1693 			ret = parse_monolithic_mount_data(fc, NULL);
1694 			if (!ret)
1695 				ret = reconfigure_super(fc);
1696 			put_fs_context(fc);
1697 		}
1698 	}
1699 	up_write(&sb->s_umount);
1700 	return ret;
1701 }
1702 
do_umount(struct mount * mnt,int flags)1703 static int do_umount(struct mount *mnt, int flags)
1704 {
1705 	struct super_block *sb = mnt->mnt.mnt_sb;
1706 	int retval;
1707 
1708 	retval = security_sb_umount(&mnt->mnt, flags);
1709 	if (retval)
1710 		return retval;
1711 
1712 	/*
1713 	 * Allow userspace to request a mountpoint be expired rather than
1714 	 * unmounting unconditionally. Unmount only happens if:
1715 	 *  (1) the mark is already set (the mark is cleared by mntput())
1716 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1717 	 */
1718 	if (flags & MNT_EXPIRE) {
1719 		if (&mnt->mnt == current->fs->root.mnt ||
1720 		    flags & (MNT_FORCE | MNT_DETACH))
1721 			return -EINVAL;
1722 
1723 		/*
1724 		 * probably don't strictly need the lock here if we examined
1725 		 * all race cases, but it's a slowpath.
1726 		 */
1727 		lock_mount_hash();
1728 		if (mnt_get_count(mnt) != 2) {
1729 			unlock_mount_hash();
1730 			return -EBUSY;
1731 		}
1732 		unlock_mount_hash();
1733 
1734 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1735 			return -EAGAIN;
1736 	}
1737 
1738 	/*
1739 	 * If we may have to abort operations to get out of this
1740 	 * mount, and they will themselves hold resources we must
1741 	 * allow the fs to do things. In the Unix tradition of
1742 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1743 	 * might fail to complete on the first run through as other tasks
1744 	 * must return, and the like. Thats for the mount program to worry
1745 	 * about for the moment.
1746 	 */
1747 
1748 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1749 		sb->s_op->umount_begin(sb);
1750 	}
1751 
1752 	/*
1753 	 * No sense to grab the lock for this test, but test itself looks
1754 	 * somewhat bogus. Suggestions for better replacement?
1755 	 * Ho-hum... In principle, we might treat that as umount + switch
1756 	 * to rootfs. GC would eventually take care of the old vfsmount.
1757 	 * Actually it makes sense, especially if rootfs would contain a
1758 	 * /reboot - static binary that would close all descriptors and
1759 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1760 	 */
1761 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1762 		/*
1763 		 * Special case for "unmounting" root ...
1764 		 * we just try to remount it readonly.
1765 		 */
1766 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1767 			return -EPERM;
1768 		return do_umount_root(sb);
1769 	}
1770 
1771 	namespace_lock();
1772 	lock_mount_hash();
1773 
1774 	/* Recheck MNT_LOCKED with the locks held */
1775 	retval = -EINVAL;
1776 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1777 		goto out;
1778 
1779 	event++;
1780 	if (flags & MNT_DETACH) {
1781 		if (!list_empty(&mnt->mnt_list))
1782 			umount_tree(mnt, UMOUNT_PROPAGATE);
1783 		retval = 0;
1784 	} else {
1785 		smp_mb(); // paired with __legitimize_mnt()
1786 		shrink_submounts(mnt);
1787 		retval = -EBUSY;
1788 		if (!propagate_mount_busy(mnt, 2)) {
1789 			if (!list_empty(&mnt->mnt_list))
1790 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1791 			retval = 0;
1792 		}
1793 	}
1794 out:
1795 	unlock_mount_hash();
1796 	namespace_unlock();
1797 	return retval;
1798 }
1799 
1800 /*
1801  * __detach_mounts - lazily unmount all mounts on the specified dentry
1802  *
1803  * During unlink, rmdir, and d_drop it is possible to loose the path
1804  * to an existing mountpoint, and wind up leaking the mount.
1805  * detach_mounts allows lazily unmounting those mounts instead of
1806  * leaking them.
1807  *
1808  * The caller may hold dentry->d_inode->i_mutex.
1809  */
__detach_mounts(struct dentry * dentry)1810 void __detach_mounts(struct dentry *dentry)
1811 {
1812 	struct mountpoint *mp;
1813 	struct mount *mnt;
1814 
1815 	namespace_lock();
1816 	lock_mount_hash();
1817 	mp = lookup_mountpoint(dentry);
1818 	if (!mp)
1819 		goto out_unlock;
1820 
1821 	event++;
1822 	while (!hlist_empty(&mp->m_list)) {
1823 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1824 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1825 			umount_mnt(mnt);
1826 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1827 		}
1828 		else umount_tree(mnt, UMOUNT_CONNECTED);
1829 	}
1830 	put_mountpoint(mp);
1831 out_unlock:
1832 	unlock_mount_hash();
1833 	namespace_unlock();
1834 }
1835 
1836 /*
1837  * Is the caller allowed to modify his namespace?
1838  */
may_mount(void)1839 bool may_mount(void)
1840 {
1841 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1842 }
1843 
1844 /**
1845  * path_mounted - check whether path is mounted
1846  * @path: path to check
1847  *
1848  * Determine whether @path refers to the root of a mount.
1849  *
1850  * Return: true if @path is the root of a mount, false if not.
1851  */
path_mounted(const struct path * path)1852 static inline bool path_mounted(const struct path *path)
1853 {
1854 	return path->mnt->mnt_root == path->dentry;
1855 }
1856 
warn_mandlock(void)1857 static void warn_mandlock(void)
1858 {
1859 	pr_warn_once("=======================================================\n"
1860 		     "WARNING: The mand mount option has been deprecated and\n"
1861 		     "         and is ignored by this kernel. Remove the mand\n"
1862 		     "         option from the mount to silence this warning.\n"
1863 		     "=======================================================\n");
1864 }
1865 
can_umount(const struct path * path,int flags)1866 static int can_umount(const struct path *path, int flags)
1867 {
1868 	struct mount *mnt = real_mount(path->mnt);
1869 	struct super_block *sb = path->dentry->d_sb;
1870 
1871 	if (!may_mount())
1872 		return -EPERM;
1873 	if (!path_mounted(path))
1874 		return -EINVAL;
1875 	if (!check_mnt(mnt))
1876 		return -EINVAL;
1877 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1878 		return -EINVAL;
1879 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1880 		return -EPERM;
1881 	return 0;
1882 }
1883 
1884 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)1885 int path_umount(struct path *path, int flags)
1886 {
1887 	struct mount *mnt = real_mount(path->mnt);
1888 	int ret;
1889 
1890 	ret = can_umount(path, flags);
1891 	if (!ret)
1892 		ret = do_umount(mnt, flags);
1893 
1894 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1895 	dput(path->dentry);
1896 	mntput_no_expire(mnt);
1897 	return ret;
1898 }
1899 
ksys_umount(char __user * name,int flags)1900 static int ksys_umount(char __user *name, int flags)
1901 {
1902 	int lookup_flags = LOOKUP_MOUNTPOINT;
1903 	struct path path;
1904 	int ret;
1905 
1906 	// basic validity checks done first
1907 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1908 		return -EINVAL;
1909 
1910 	if (!(flags & UMOUNT_NOFOLLOW))
1911 		lookup_flags |= LOOKUP_FOLLOW;
1912 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1913 	if (ret)
1914 		return ret;
1915 	return path_umount(&path, flags);
1916 }
1917 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1918 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1919 {
1920 	return ksys_umount(name, flags);
1921 }
1922 
1923 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1924 
1925 /*
1926  *	The 2.0 compatible umount. No flags.
1927  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1928 SYSCALL_DEFINE1(oldumount, char __user *, name)
1929 {
1930 	return ksys_umount(name, 0);
1931 }
1932 
1933 #endif
1934 
is_mnt_ns_file(struct dentry * dentry)1935 static bool is_mnt_ns_file(struct dentry *dentry)
1936 {
1937 	/* Is this a proxy for a mount namespace? */
1938 	return dentry->d_op == &ns_dentry_operations &&
1939 	       dentry->d_fsdata == &mntns_operations;
1940 }
1941 
to_mnt_ns(struct ns_common * ns)1942 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1943 {
1944 	return container_of(ns, struct mnt_namespace, ns);
1945 }
1946 
from_mnt_ns(struct mnt_namespace * mnt)1947 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1948 {
1949 	return &mnt->ns;
1950 }
1951 
mnt_ns_loop(struct dentry * dentry)1952 static bool mnt_ns_loop(struct dentry *dentry)
1953 {
1954 	/* Could bind mounting the mount namespace inode cause a
1955 	 * mount namespace loop?
1956 	 */
1957 	struct mnt_namespace *mnt_ns;
1958 	if (!is_mnt_ns_file(dentry))
1959 		return false;
1960 
1961 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1962 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1963 }
1964 
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1965 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1966 					int flag)
1967 {
1968 	struct mount *res, *p, *q, *r, *parent;
1969 
1970 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1971 		return ERR_PTR(-EINVAL);
1972 
1973 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1974 		return ERR_PTR(-EINVAL);
1975 
1976 	res = q = clone_mnt(mnt, dentry, flag);
1977 	if (IS_ERR(q))
1978 		return q;
1979 
1980 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1981 
1982 	p = mnt;
1983 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1984 		struct mount *s;
1985 		if (!is_subdir(r->mnt_mountpoint, dentry))
1986 			continue;
1987 
1988 		for (s = r; s; s = next_mnt(s, r)) {
1989 			if (!(flag & CL_COPY_UNBINDABLE) &&
1990 			    IS_MNT_UNBINDABLE(s)) {
1991 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1992 					/* Both unbindable and locked. */
1993 					q = ERR_PTR(-EPERM);
1994 					goto out;
1995 				} else {
1996 					s = skip_mnt_tree(s);
1997 					continue;
1998 				}
1999 			}
2000 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2001 			    is_mnt_ns_file(s->mnt.mnt_root)) {
2002 				s = skip_mnt_tree(s);
2003 				continue;
2004 			}
2005 			while (p != s->mnt_parent) {
2006 				p = p->mnt_parent;
2007 				q = q->mnt_parent;
2008 			}
2009 			p = s;
2010 			parent = q;
2011 			q = clone_mnt(p, p->mnt.mnt_root, flag);
2012 			if (IS_ERR(q))
2013 				goto out;
2014 			lock_mount_hash();
2015 			list_add_tail(&q->mnt_list, &res->mnt_list);
2016 			attach_mnt(q, parent, p->mnt_mp, false);
2017 			unlock_mount_hash();
2018 		}
2019 	}
2020 	return res;
2021 out:
2022 	if (res) {
2023 		lock_mount_hash();
2024 		umount_tree(res, UMOUNT_SYNC);
2025 		unlock_mount_hash();
2026 	}
2027 	return q;
2028 }
2029 
2030 /* Caller should check returned pointer for errors */
2031 
collect_mounts(const struct path * path)2032 struct vfsmount *collect_mounts(const struct path *path)
2033 {
2034 	struct mount *tree;
2035 	namespace_lock();
2036 	if (!check_mnt(real_mount(path->mnt)))
2037 		tree = ERR_PTR(-EINVAL);
2038 	else
2039 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2040 				 CL_COPY_ALL | CL_PRIVATE);
2041 	namespace_unlock();
2042 	if (IS_ERR(tree))
2043 		return ERR_CAST(tree);
2044 	return &tree->mnt;
2045 }
2046 
2047 static void free_mnt_ns(struct mnt_namespace *);
2048 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2049 
dissolve_on_fput(struct vfsmount * mnt)2050 void dissolve_on_fput(struct vfsmount *mnt)
2051 {
2052 	struct mnt_namespace *ns;
2053 	namespace_lock();
2054 	lock_mount_hash();
2055 	ns = real_mount(mnt)->mnt_ns;
2056 	if (ns) {
2057 		if (is_anon_ns(ns))
2058 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2059 		else
2060 			ns = NULL;
2061 	}
2062 	unlock_mount_hash();
2063 	namespace_unlock();
2064 	if (ns)
2065 		free_mnt_ns(ns);
2066 }
2067 
drop_collected_mounts(struct vfsmount * mnt)2068 void drop_collected_mounts(struct vfsmount *mnt)
2069 {
2070 	namespace_lock();
2071 	lock_mount_hash();
2072 	umount_tree(real_mount(mnt), 0);
2073 	unlock_mount_hash();
2074 	namespace_unlock();
2075 }
2076 
has_locked_children(struct mount * mnt,struct dentry * dentry)2077 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2078 {
2079 	struct mount *child;
2080 
2081 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2082 		if (!is_subdir(child->mnt_mountpoint, dentry))
2083 			continue;
2084 
2085 		if (child->mnt.mnt_flags & MNT_LOCKED)
2086 			return true;
2087 	}
2088 	return false;
2089 }
2090 
2091 /**
2092  * clone_private_mount - create a private clone of a path
2093  * @path: path to clone
2094  *
2095  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2096  * will not be attached anywhere in the namespace and will be private (i.e.
2097  * changes to the originating mount won't be propagated into this).
2098  *
2099  * Release with mntput().
2100  */
clone_private_mount(const struct path * path)2101 struct vfsmount *clone_private_mount(const struct path *path)
2102 {
2103 	struct mount *old_mnt = real_mount(path->mnt);
2104 	struct mount *new_mnt;
2105 
2106 	down_read(&namespace_sem);
2107 	if (IS_MNT_UNBINDABLE(old_mnt))
2108 		goto invalid;
2109 
2110 	if (!check_mnt(old_mnt))
2111 		goto invalid;
2112 
2113 	if (has_locked_children(old_mnt, path->dentry))
2114 		goto invalid;
2115 
2116 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2117 	up_read(&namespace_sem);
2118 
2119 	if (IS_ERR(new_mnt))
2120 		return ERR_CAST(new_mnt);
2121 
2122 	/* Longterm mount to be removed by kern_unmount*() */
2123 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2124 
2125 	return &new_mnt->mnt;
2126 
2127 invalid:
2128 	up_read(&namespace_sem);
2129 	return ERR_PTR(-EINVAL);
2130 }
2131 EXPORT_SYMBOL_GPL(clone_private_mount);
2132 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2133 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2134 		   struct vfsmount *root)
2135 {
2136 	struct mount *mnt;
2137 	int res = f(root, arg);
2138 	if (res)
2139 		return res;
2140 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2141 		res = f(&mnt->mnt, arg);
2142 		if (res)
2143 			return res;
2144 	}
2145 	return 0;
2146 }
2147 
lock_mnt_tree(struct mount * mnt)2148 static void lock_mnt_tree(struct mount *mnt)
2149 {
2150 	struct mount *p;
2151 
2152 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2153 		int flags = p->mnt.mnt_flags;
2154 		/* Don't allow unprivileged users to change mount flags */
2155 		flags |= MNT_LOCK_ATIME;
2156 
2157 		if (flags & MNT_READONLY)
2158 			flags |= MNT_LOCK_READONLY;
2159 
2160 		if (flags & MNT_NODEV)
2161 			flags |= MNT_LOCK_NODEV;
2162 
2163 		if (flags & MNT_NOSUID)
2164 			flags |= MNT_LOCK_NOSUID;
2165 
2166 		if (flags & MNT_NOEXEC)
2167 			flags |= MNT_LOCK_NOEXEC;
2168 		/* Don't allow unprivileged users to reveal what is under a mount */
2169 		if (list_empty(&p->mnt_expire))
2170 			flags |= MNT_LOCKED;
2171 		p->mnt.mnt_flags = flags;
2172 	}
2173 }
2174 
cleanup_group_ids(struct mount * mnt,struct mount * end)2175 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2176 {
2177 	struct mount *p;
2178 
2179 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2180 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2181 			mnt_release_group_id(p);
2182 	}
2183 }
2184 
invent_group_ids(struct mount * mnt,bool recurse)2185 static int invent_group_ids(struct mount *mnt, bool recurse)
2186 {
2187 	struct mount *p;
2188 
2189 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2190 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2191 			int err = mnt_alloc_group_id(p);
2192 			if (err) {
2193 				cleanup_group_ids(mnt, p);
2194 				return err;
2195 			}
2196 		}
2197 	}
2198 
2199 	return 0;
2200 }
2201 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2202 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2203 {
2204 	unsigned int max = READ_ONCE(sysctl_mount_max);
2205 	unsigned int mounts = 0;
2206 	struct mount *p;
2207 
2208 	if (ns->mounts >= max)
2209 		return -ENOSPC;
2210 	max -= ns->mounts;
2211 	if (ns->pending_mounts >= max)
2212 		return -ENOSPC;
2213 	max -= ns->pending_mounts;
2214 
2215 	for (p = mnt; p; p = next_mnt(p, mnt))
2216 		mounts++;
2217 
2218 	if (mounts > max)
2219 		return -ENOSPC;
2220 
2221 	ns->pending_mounts += mounts;
2222 	return 0;
2223 }
2224 
2225 enum mnt_tree_flags_t {
2226 	MNT_TREE_MOVE = BIT(0),
2227 	MNT_TREE_BENEATH = BIT(1),
2228 };
2229 
2230 /**
2231  * attach_recursive_mnt - attach a source mount tree
2232  * @source_mnt: mount tree to be attached
2233  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2234  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2235  * @flags:      modify how @source_mnt is supposed to be attached
2236  *
2237  *  NOTE: in the table below explains the semantics when a source mount
2238  *  of a given type is attached to a destination mount of a given type.
2239  * ---------------------------------------------------------------------------
2240  * |         BIND MOUNT OPERATION                                            |
2241  * |**************************************************************************
2242  * | source-->| shared        |       private  |       slave    | unbindable |
2243  * | dest     |               |                |                |            |
2244  * |   |      |               |                |                |            |
2245  * |   v      |               |                |                |            |
2246  * |**************************************************************************
2247  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2248  * |          |               |                |                |            |
2249  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2250  * ***************************************************************************
2251  * A bind operation clones the source mount and mounts the clone on the
2252  * destination mount.
2253  *
2254  * (++)  the cloned mount is propagated to all the mounts in the propagation
2255  * 	 tree of the destination mount and the cloned mount is added to
2256  * 	 the peer group of the source mount.
2257  * (+)   the cloned mount is created under the destination mount and is marked
2258  *       as shared. The cloned mount is added to the peer group of the source
2259  *       mount.
2260  * (+++) the mount is propagated to all the mounts in the propagation tree
2261  *       of the destination mount and the cloned mount is made slave
2262  *       of the same master as that of the source mount. The cloned mount
2263  *       is marked as 'shared and slave'.
2264  * (*)   the cloned mount is made a slave of the same master as that of the
2265  * 	 source mount.
2266  *
2267  * ---------------------------------------------------------------------------
2268  * |         		MOVE MOUNT OPERATION                                 |
2269  * |**************************************************************************
2270  * | source-->| shared        |       private  |       slave    | unbindable |
2271  * | dest     |               |                |                |            |
2272  * |   |      |               |                |                |            |
2273  * |   v      |               |                |                |            |
2274  * |**************************************************************************
2275  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2276  * |          |               |                |                |            |
2277  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2278  * ***************************************************************************
2279  *
2280  * (+)  the mount is moved to the destination. And is then propagated to
2281  * 	all the mounts in the propagation tree of the destination mount.
2282  * (+*)  the mount is moved to the destination.
2283  * (+++)  the mount is moved to the destination and is then propagated to
2284  * 	all the mounts belonging to the destination mount's propagation tree.
2285  * 	the mount is marked as 'shared and slave'.
2286  * (*)	the mount continues to be a slave at the new location.
2287  *
2288  * if the source mount is a tree, the operations explained above is
2289  * applied to each mount in the tree.
2290  * Must be called without spinlocks held, since this function can sleep
2291  * in allocations.
2292  *
2293  * Context: The function expects namespace_lock() to be held.
2294  * Return: If @source_mnt was successfully attached 0 is returned.
2295  *         Otherwise a negative error code is returned.
2296  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * top_mnt,struct mountpoint * dest_mp,enum mnt_tree_flags_t flags)2297 static int attach_recursive_mnt(struct mount *source_mnt,
2298 				struct mount *top_mnt,
2299 				struct mountpoint *dest_mp,
2300 				enum mnt_tree_flags_t flags)
2301 {
2302 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2303 	HLIST_HEAD(tree_list);
2304 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2305 	struct mountpoint *smp;
2306 	struct mount *child, *dest_mnt, *p;
2307 	struct hlist_node *n;
2308 	int err = 0;
2309 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2310 
2311 	/*
2312 	 * Preallocate a mountpoint in case the new mounts need to be
2313 	 * mounted beneath mounts on the same mountpoint.
2314 	 */
2315 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2316 	if (IS_ERR(smp))
2317 		return PTR_ERR(smp);
2318 
2319 	/* Is there space to add these mounts to the mount namespace? */
2320 	if (!moving) {
2321 		err = count_mounts(ns, source_mnt);
2322 		if (err)
2323 			goto out;
2324 	}
2325 
2326 	if (beneath)
2327 		dest_mnt = top_mnt->mnt_parent;
2328 	else
2329 		dest_mnt = top_mnt;
2330 
2331 	if (IS_MNT_SHARED(dest_mnt)) {
2332 		err = invent_group_ids(source_mnt, true);
2333 		if (err)
2334 			goto out;
2335 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2336 	}
2337 	lock_mount_hash();
2338 	if (err)
2339 		goto out_cleanup_ids;
2340 
2341 	if (IS_MNT_SHARED(dest_mnt)) {
2342 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2343 			set_mnt_shared(p);
2344 	}
2345 
2346 	if (moving) {
2347 		if (beneath)
2348 			dest_mp = smp;
2349 		unhash_mnt(source_mnt);
2350 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2351 		touch_mnt_namespace(source_mnt->mnt_ns);
2352 	} else {
2353 		if (source_mnt->mnt_ns) {
2354 			/* move from anon - the caller will destroy */
2355 			list_del_init(&source_mnt->mnt_ns->list);
2356 		}
2357 		if (beneath)
2358 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2359 		else
2360 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2361 		commit_tree(source_mnt);
2362 	}
2363 
2364 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2365 		struct mount *q;
2366 		hlist_del_init(&child->mnt_hash);
2367 		q = __lookup_mnt(&child->mnt_parent->mnt,
2368 				 child->mnt_mountpoint);
2369 		if (q)
2370 			mnt_change_mountpoint(child, smp, q);
2371 		/* Notice when we are propagating across user namespaces */
2372 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2373 			lock_mnt_tree(child);
2374 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2375 		commit_tree(child);
2376 	}
2377 	put_mountpoint(smp);
2378 	unlock_mount_hash();
2379 
2380 	return 0;
2381 
2382  out_cleanup_ids:
2383 	while (!hlist_empty(&tree_list)) {
2384 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2385 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2386 		umount_tree(child, UMOUNT_SYNC);
2387 	}
2388 	unlock_mount_hash();
2389 	cleanup_group_ids(source_mnt, NULL);
2390  out:
2391 	ns->pending_mounts = 0;
2392 
2393 	read_seqlock_excl(&mount_lock);
2394 	put_mountpoint(smp);
2395 	read_sequnlock_excl(&mount_lock);
2396 
2397 	return err;
2398 }
2399 
2400 /**
2401  * do_lock_mount - lock mount and mountpoint
2402  * @path:    target path
2403  * @beneath: whether the intention is to mount beneath @path
2404  *
2405  * Follow the mount stack on @path until the top mount @mnt is found. If
2406  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2407  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2408  * until nothing is stacked on top of it anymore.
2409  *
2410  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2411  * against concurrent removal of the new mountpoint from another mount
2412  * namespace.
2413  *
2414  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2415  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2416  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2417  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2418  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2419  * on top of it for @beneath.
2420  *
2421  * In addition, @beneath needs to make sure that @mnt hasn't been
2422  * unmounted or moved from its current mountpoint in between dropping
2423  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2424  * being unmounted would be detected later by e.g., calling
2425  * check_mnt(mnt) in the function it's called from. For the @beneath
2426  * case however, it's useful to detect it directly in do_lock_mount().
2427  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2428  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2429  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2430  *
2431  * Return: Either the target mountpoint on the top mount or the top
2432  *         mount's mountpoint.
2433  */
do_lock_mount(struct path * path,bool beneath)2434 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2435 {
2436 	struct vfsmount *mnt = path->mnt;
2437 	struct dentry *dentry;
2438 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2439 	struct path under = {};
2440 
2441 	for (;;) {
2442 		struct mount *m = real_mount(mnt);
2443 
2444 		if (beneath) {
2445 			path_put(&under);
2446 			read_seqlock_excl(&mount_lock);
2447 			under.mnt = mntget(&m->mnt_parent->mnt);
2448 			under.dentry = dget(m->mnt_mountpoint);
2449 			read_sequnlock_excl(&mount_lock);
2450 			dentry = under.dentry;
2451 		} else {
2452 			dentry = path->dentry;
2453 		}
2454 
2455 		inode_lock(dentry->d_inode);
2456 		namespace_lock();
2457 
2458 		if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2459 			break;		// not to be mounted on
2460 
2461 		if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2462 				        &m->mnt_parent->mnt != under.mnt)) {
2463 			namespace_unlock();
2464 			inode_unlock(dentry->d_inode);
2465 			continue;	// got moved
2466 		}
2467 
2468 		mnt = lookup_mnt(path);
2469 		if (unlikely(mnt)) {
2470 			namespace_unlock();
2471 			inode_unlock(dentry->d_inode);
2472 			path_put(path);
2473 			path->mnt = mnt;
2474 			path->dentry = dget(mnt->mnt_root);
2475 			continue;	// got overmounted
2476 		}
2477 		mp = get_mountpoint(dentry);
2478 		if (IS_ERR(mp))
2479 			break;
2480 		if (beneath) {
2481 			/*
2482 			 * @under duplicates the references that will stay
2483 			 * at least until namespace_unlock(), so the path_put()
2484 			 * below is safe (and OK to do under namespace_lock -
2485 			 * we are not dropping the final references here).
2486 			 */
2487 			path_put(&under);
2488 		}
2489 		return mp;
2490 	}
2491 	namespace_unlock();
2492 	inode_unlock(dentry->d_inode);
2493 	if (beneath)
2494 		path_put(&under);
2495 	return mp;
2496 }
2497 
lock_mount(struct path * path)2498 static inline struct mountpoint *lock_mount(struct path *path)
2499 {
2500 	return do_lock_mount(path, false);
2501 }
2502 
unlock_mount(struct mountpoint * where)2503 static void unlock_mount(struct mountpoint *where)
2504 {
2505 	inode_unlock(where->m_dentry->d_inode);
2506 	read_seqlock_excl(&mount_lock);
2507 	put_mountpoint(where);
2508 	read_sequnlock_excl(&mount_lock);
2509 	namespace_unlock();
2510 }
2511 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2512 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2513 {
2514 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2515 		return -EINVAL;
2516 
2517 	if (d_is_dir(mp->m_dentry) !=
2518 	      d_is_dir(mnt->mnt.mnt_root))
2519 		return -ENOTDIR;
2520 
2521 	return attach_recursive_mnt(mnt, p, mp, 0);
2522 }
2523 
2524 /*
2525  * Sanity check the flags to change_mnt_propagation.
2526  */
2527 
flags_to_propagation_type(int ms_flags)2528 static int flags_to_propagation_type(int ms_flags)
2529 {
2530 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2531 
2532 	/* Fail if any non-propagation flags are set */
2533 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2534 		return 0;
2535 	/* Only one propagation flag should be set */
2536 	if (!is_power_of_2(type))
2537 		return 0;
2538 	return type;
2539 }
2540 
2541 /*
2542  * recursively change the type of the mountpoint.
2543  */
do_change_type(struct path * path,int ms_flags)2544 static int do_change_type(struct path *path, int ms_flags)
2545 {
2546 	struct mount *m;
2547 	struct mount *mnt = real_mount(path->mnt);
2548 	int recurse = ms_flags & MS_REC;
2549 	int type;
2550 	int err = 0;
2551 
2552 	if (!path_mounted(path))
2553 		return -EINVAL;
2554 
2555 	type = flags_to_propagation_type(ms_flags);
2556 	if (!type)
2557 		return -EINVAL;
2558 
2559 	namespace_lock();
2560 	if (!check_mnt(mnt)) {
2561 		err = -EINVAL;
2562 		goto out_unlock;
2563 	}
2564 	if (type == MS_SHARED) {
2565 		err = invent_group_ids(mnt, recurse);
2566 		if (err)
2567 			goto out_unlock;
2568 	}
2569 
2570 	lock_mount_hash();
2571 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2572 		change_mnt_propagation(m, type);
2573 	unlock_mount_hash();
2574 
2575  out_unlock:
2576 	namespace_unlock();
2577 	return err;
2578 }
2579 
__do_loopback(struct path * old_path,int recurse)2580 static struct mount *__do_loopback(struct path *old_path, int recurse)
2581 {
2582 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2583 
2584 	if (IS_MNT_UNBINDABLE(old))
2585 		return mnt;
2586 
2587 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2588 		return mnt;
2589 
2590 	if (!recurse && has_locked_children(old, old_path->dentry))
2591 		return mnt;
2592 
2593 	if (recurse)
2594 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2595 	else
2596 		mnt = clone_mnt(old, old_path->dentry, 0);
2597 
2598 	if (!IS_ERR(mnt))
2599 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2600 
2601 	return mnt;
2602 }
2603 
2604 /*
2605  * do loopback mount.
2606  */
do_loopback(struct path * path,const char * old_name,int recurse)2607 static int do_loopback(struct path *path, const char *old_name,
2608 				int recurse)
2609 {
2610 	struct path old_path;
2611 	struct mount *mnt = NULL, *parent;
2612 	struct mountpoint *mp;
2613 	int err;
2614 	if (!old_name || !*old_name)
2615 		return -EINVAL;
2616 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2617 	if (err)
2618 		return err;
2619 
2620 	err = -EINVAL;
2621 	if (mnt_ns_loop(old_path.dentry))
2622 		goto out;
2623 
2624 	mp = lock_mount(path);
2625 	if (IS_ERR(mp)) {
2626 		err = PTR_ERR(mp);
2627 		goto out;
2628 	}
2629 
2630 	parent = real_mount(path->mnt);
2631 	if (!check_mnt(parent))
2632 		goto out2;
2633 
2634 	mnt = __do_loopback(&old_path, recurse);
2635 	if (IS_ERR(mnt)) {
2636 		err = PTR_ERR(mnt);
2637 		goto out2;
2638 	}
2639 
2640 	err = graft_tree(mnt, parent, mp);
2641 	if (err) {
2642 		lock_mount_hash();
2643 		umount_tree(mnt, UMOUNT_SYNC);
2644 		unlock_mount_hash();
2645 	}
2646 out2:
2647 	unlock_mount(mp);
2648 out:
2649 	path_put(&old_path);
2650 	return err;
2651 }
2652 
open_detached_copy(struct path * path,bool recursive)2653 static struct file *open_detached_copy(struct path *path, bool recursive)
2654 {
2655 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2656 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2657 	struct mount *mnt, *p;
2658 	struct file *file;
2659 
2660 	if (IS_ERR(ns))
2661 		return ERR_CAST(ns);
2662 
2663 	namespace_lock();
2664 	mnt = __do_loopback(path, recursive);
2665 	if (IS_ERR(mnt)) {
2666 		namespace_unlock();
2667 		free_mnt_ns(ns);
2668 		return ERR_CAST(mnt);
2669 	}
2670 
2671 	lock_mount_hash();
2672 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2673 		p->mnt_ns = ns;
2674 		ns->mounts++;
2675 	}
2676 	ns->root = mnt;
2677 	list_add_tail(&ns->list, &mnt->mnt_list);
2678 	mntget(&mnt->mnt);
2679 	unlock_mount_hash();
2680 	namespace_unlock();
2681 
2682 	mntput(path->mnt);
2683 	path->mnt = &mnt->mnt;
2684 	file = dentry_open(path, O_PATH, current_cred());
2685 	if (IS_ERR(file))
2686 		dissolve_on_fput(path->mnt);
2687 	else
2688 		file->f_mode |= FMODE_NEED_UNMOUNT;
2689 	return file;
2690 }
2691 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2692 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2693 {
2694 	struct file *file;
2695 	struct path path;
2696 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2697 	bool detached = flags & OPEN_TREE_CLONE;
2698 	int error;
2699 	int fd;
2700 
2701 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2702 
2703 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2704 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2705 		      OPEN_TREE_CLOEXEC))
2706 		return -EINVAL;
2707 
2708 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2709 		return -EINVAL;
2710 
2711 	if (flags & AT_NO_AUTOMOUNT)
2712 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2713 	if (flags & AT_SYMLINK_NOFOLLOW)
2714 		lookup_flags &= ~LOOKUP_FOLLOW;
2715 	if (flags & AT_EMPTY_PATH)
2716 		lookup_flags |= LOOKUP_EMPTY;
2717 
2718 	if (detached && !may_mount())
2719 		return -EPERM;
2720 
2721 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2722 	if (fd < 0)
2723 		return fd;
2724 
2725 	error = user_path_at(dfd, filename, lookup_flags, &path);
2726 	if (unlikely(error)) {
2727 		file = ERR_PTR(error);
2728 	} else {
2729 		if (detached)
2730 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2731 		else
2732 			file = dentry_open(&path, O_PATH, current_cred());
2733 		path_put(&path);
2734 	}
2735 	if (IS_ERR(file)) {
2736 		put_unused_fd(fd);
2737 		return PTR_ERR(file);
2738 	}
2739 	fd_install(fd, file);
2740 	return fd;
2741 }
2742 
2743 /*
2744  * Don't allow locked mount flags to be cleared.
2745  *
2746  * No locks need to be held here while testing the various MNT_LOCK
2747  * flags because those flags can never be cleared once they are set.
2748  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2749 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2750 {
2751 	unsigned int fl = mnt->mnt.mnt_flags;
2752 
2753 	if ((fl & MNT_LOCK_READONLY) &&
2754 	    !(mnt_flags & MNT_READONLY))
2755 		return false;
2756 
2757 	if ((fl & MNT_LOCK_NODEV) &&
2758 	    !(mnt_flags & MNT_NODEV))
2759 		return false;
2760 
2761 	if ((fl & MNT_LOCK_NOSUID) &&
2762 	    !(mnt_flags & MNT_NOSUID))
2763 		return false;
2764 
2765 	if ((fl & MNT_LOCK_NOEXEC) &&
2766 	    !(mnt_flags & MNT_NOEXEC))
2767 		return false;
2768 
2769 	if ((fl & MNT_LOCK_ATIME) &&
2770 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2771 		return false;
2772 
2773 	return true;
2774 }
2775 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2776 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2777 {
2778 	bool readonly_request = (mnt_flags & MNT_READONLY);
2779 
2780 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2781 		return 0;
2782 
2783 	if (readonly_request)
2784 		return mnt_make_readonly(mnt);
2785 
2786 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2787 	return 0;
2788 }
2789 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2790 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2791 {
2792 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2793 	mnt->mnt.mnt_flags = mnt_flags;
2794 	touch_mnt_namespace(mnt->mnt_ns);
2795 }
2796 
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2797 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2798 {
2799 	struct super_block *sb = mnt->mnt_sb;
2800 
2801 	if (!__mnt_is_readonly(mnt) &&
2802 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2803 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2804 		char *buf, *mntpath;
2805 
2806 		buf = (char *)__get_free_page(GFP_KERNEL);
2807 		if (buf)
2808 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2809 		else
2810 			mntpath = ERR_PTR(-ENOMEM);
2811 		if (IS_ERR(mntpath))
2812 			mntpath = "(unknown)";
2813 
2814 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2815 			sb->s_type->name,
2816 			is_mounted(mnt) ? "remounted" : "mounted",
2817 			mntpath, &sb->s_time_max,
2818 			(unsigned long long)sb->s_time_max);
2819 
2820 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2821 		if (buf)
2822 			free_page((unsigned long)buf);
2823 	}
2824 }
2825 
2826 /*
2827  * Handle reconfiguration of the mountpoint only without alteration of the
2828  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2829  * to mount(2).
2830  */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2831 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2832 {
2833 	struct super_block *sb = path->mnt->mnt_sb;
2834 	struct mount *mnt = real_mount(path->mnt);
2835 	int ret;
2836 
2837 	if (!check_mnt(mnt))
2838 		return -EINVAL;
2839 
2840 	if (!path_mounted(path))
2841 		return -EINVAL;
2842 
2843 	if (!can_change_locked_flags(mnt, mnt_flags))
2844 		return -EPERM;
2845 
2846 	/*
2847 	 * We're only checking whether the superblock is read-only not
2848 	 * changing it, so only take down_read(&sb->s_umount).
2849 	 */
2850 	down_read(&sb->s_umount);
2851 	lock_mount_hash();
2852 	ret = change_mount_ro_state(mnt, mnt_flags);
2853 	if (ret == 0)
2854 		set_mount_attributes(mnt, mnt_flags);
2855 	unlock_mount_hash();
2856 	up_read(&sb->s_umount);
2857 
2858 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2859 
2860 	return ret;
2861 }
2862 
2863 /*
2864  * change filesystem flags. dir should be a physical root of filesystem.
2865  * If you've mounted a non-root directory somewhere and want to do remount
2866  * on it - tough luck.
2867  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2868 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2869 		      int mnt_flags, void *data)
2870 {
2871 	int err;
2872 	struct super_block *sb = path->mnt->mnt_sb;
2873 	struct mount *mnt = real_mount(path->mnt);
2874 	struct fs_context *fc;
2875 
2876 	if (!check_mnt(mnt))
2877 		return -EINVAL;
2878 
2879 	if (!path_mounted(path))
2880 		return -EINVAL;
2881 
2882 	if (!can_change_locked_flags(mnt, mnt_flags))
2883 		return -EPERM;
2884 
2885 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2886 	if (IS_ERR(fc))
2887 		return PTR_ERR(fc);
2888 
2889 	/*
2890 	 * Indicate to the filesystem that the remount request is coming
2891 	 * from the legacy mount system call.
2892 	 */
2893 	fc->oldapi = true;
2894 
2895 	err = parse_monolithic_mount_data(fc, data);
2896 	if (!err) {
2897 		down_write(&sb->s_umount);
2898 		err = -EPERM;
2899 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2900 			err = reconfigure_super(fc);
2901 			if (!err) {
2902 				lock_mount_hash();
2903 				set_mount_attributes(mnt, mnt_flags);
2904 				unlock_mount_hash();
2905 			}
2906 		}
2907 		up_write(&sb->s_umount);
2908 	}
2909 
2910 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2911 
2912 	put_fs_context(fc);
2913 	return err;
2914 }
2915 
tree_contains_unbindable(struct mount * mnt)2916 static inline int tree_contains_unbindable(struct mount *mnt)
2917 {
2918 	struct mount *p;
2919 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2920 		if (IS_MNT_UNBINDABLE(p))
2921 			return 1;
2922 	}
2923 	return 0;
2924 }
2925 
2926 /*
2927  * Check that there aren't references to earlier/same mount namespaces in the
2928  * specified subtree.  Such references can act as pins for mount namespaces
2929  * that aren't checked by the mount-cycle checking code, thereby allowing
2930  * cycles to be made.
2931  */
check_for_nsfs_mounts(struct mount * subtree)2932 static bool check_for_nsfs_mounts(struct mount *subtree)
2933 {
2934 	struct mount *p;
2935 	bool ret = false;
2936 
2937 	lock_mount_hash();
2938 	for (p = subtree; p; p = next_mnt(p, subtree))
2939 		if (mnt_ns_loop(p->mnt.mnt_root))
2940 			goto out;
2941 
2942 	ret = true;
2943 out:
2944 	unlock_mount_hash();
2945 	return ret;
2946 }
2947 
do_set_group(struct path * from_path,struct path * to_path)2948 static int do_set_group(struct path *from_path, struct path *to_path)
2949 {
2950 	struct mount *from, *to;
2951 	int err;
2952 
2953 	from = real_mount(from_path->mnt);
2954 	to = real_mount(to_path->mnt);
2955 
2956 	namespace_lock();
2957 
2958 	err = -EINVAL;
2959 	/* To and From must be mounted */
2960 	if (!is_mounted(&from->mnt))
2961 		goto out;
2962 	if (!is_mounted(&to->mnt))
2963 		goto out;
2964 
2965 	err = -EPERM;
2966 	/* We should be allowed to modify mount namespaces of both mounts */
2967 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2968 		goto out;
2969 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2970 		goto out;
2971 
2972 	err = -EINVAL;
2973 	/* To and From paths should be mount roots */
2974 	if (!path_mounted(from_path))
2975 		goto out;
2976 	if (!path_mounted(to_path))
2977 		goto out;
2978 
2979 	/* Setting sharing groups is only allowed across same superblock */
2980 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2981 		goto out;
2982 
2983 	/* From mount root should be wider than To mount root */
2984 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2985 		goto out;
2986 
2987 	/* From mount should not have locked children in place of To's root */
2988 	if (has_locked_children(from, to->mnt.mnt_root))
2989 		goto out;
2990 
2991 	/* Setting sharing groups is only allowed on private mounts */
2992 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2993 		goto out;
2994 
2995 	/* From should not be private */
2996 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2997 		goto out;
2998 
2999 	if (IS_MNT_SLAVE(from)) {
3000 		struct mount *m = from->mnt_master;
3001 
3002 		list_add(&to->mnt_slave, &from->mnt_slave);
3003 		to->mnt_master = m;
3004 	}
3005 
3006 	if (IS_MNT_SHARED(from)) {
3007 		to->mnt_group_id = from->mnt_group_id;
3008 		list_add(&to->mnt_share, &from->mnt_share);
3009 		lock_mount_hash();
3010 		set_mnt_shared(to);
3011 		unlock_mount_hash();
3012 	}
3013 
3014 	err = 0;
3015 out:
3016 	namespace_unlock();
3017 	return err;
3018 }
3019 
3020 /**
3021  * path_overmounted - check if path is overmounted
3022  * @path: path to check
3023  *
3024  * Check if path is overmounted, i.e., if there's a mount on top of
3025  * @path->mnt with @path->dentry as mountpoint.
3026  *
3027  * Context: namespace_sem must be held at least shared.
3028  * MUST NOT be called under lock_mount_hash() (there one should just
3029  * call __lookup_mnt() and check if it returns NULL).
3030  * Return: If path is overmounted true is returned, false if not.
3031  */
path_overmounted(const struct path * path)3032 static inline bool path_overmounted(const struct path *path)
3033 {
3034 	unsigned seq = read_seqbegin(&mount_lock);
3035 	bool no_child;
3036 
3037 	rcu_read_lock();
3038 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3039 	rcu_read_unlock();
3040 	if (need_seqretry(&mount_lock, seq)) {
3041 		read_seqlock_excl(&mount_lock);
3042 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3043 		read_sequnlock_excl(&mount_lock);
3044 	}
3045 	return unlikely(!no_child);
3046 }
3047 
3048 /**
3049  * can_move_mount_beneath - check that we can mount beneath the top mount
3050  * @from: mount to mount beneath
3051  * @to:   mount under which to mount
3052  *
3053  * - Make sure that @to->dentry is actually the root of a mount under
3054  *   which we can mount another mount.
3055  * - Make sure that nothing can be mounted beneath the caller's current
3056  *   root or the rootfs of the namespace.
3057  * - Make sure that the caller can unmount the topmost mount ensuring
3058  *   that the caller could reveal the underlying mountpoint.
3059  * - Ensure that nothing has been mounted on top of @from before we
3060  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3061  * - Prevent mounting beneath a mount if the propagation relationship
3062  *   between the source mount, parent mount, and top mount would lead to
3063  *   nonsensical mount trees.
3064  *
3065  * Context: This function expects namespace_lock() to be held.
3066  * Return: On success 0, and on error a negative error code is returned.
3067  */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3068 static int can_move_mount_beneath(const struct path *from,
3069 				  const struct path *to,
3070 				  const struct mountpoint *mp)
3071 {
3072 	struct mount *mnt_from = real_mount(from->mnt),
3073 		     *mnt_to = real_mount(to->mnt),
3074 		     *parent_mnt_to = mnt_to->mnt_parent;
3075 
3076 	if (!mnt_has_parent(mnt_to))
3077 		return -EINVAL;
3078 
3079 	if (!path_mounted(to))
3080 		return -EINVAL;
3081 
3082 	if (IS_MNT_LOCKED(mnt_to))
3083 		return -EINVAL;
3084 
3085 	/* Avoid creating shadow mounts during mount propagation. */
3086 	if (path_overmounted(from))
3087 		return -EINVAL;
3088 
3089 	/*
3090 	 * Mounting beneath the rootfs only makes sense when the
3091 	 * semantics of pivot_root(".", ".") are used.
3092 	 */
3093 	if (&mnt_to->mnt == current->fs->root.mnt)
3094 		return -EINVAL;
3095 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3096 		return -EINVAL;
3097 
3098 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3099 		if (p == mnt_to)
3100 			return -EINVAL;
3101 
3102 	/*
3103 	 * If the parent mount propagates to the child mount this would
3104 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3105 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3106 	 * defeats the whole purpose of mounting beneath another mount.
3107 	 */
3108 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3109 		return -EINVAL;
3110 
3111 	/*
3112 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3113 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3114 	 * Afterwards @mnt_from would be mounted on top of
3115 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3116 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3117 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3118 	 * remounted on top of @c. Afterwards, @mnt_from would be
3119 	 * covered by a copy @c of @mnt_from and @c would be covered by
3120 	 * @mnt_from itself. This defeats the whole purpose of mounting
3121 	 * @mnt_from beneath @mnt_to.
3122 	 */
3123 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3124 		return -EINVAL;
3125 
3126 	return 0;
3127 }
3128 
do_move_mount(struct path * old_path,struct path * new_path,bool beneath)3129 static int do_move_mount(struct path *old_path, struct path *new_path,
3130 			 bool beneath)
3131 {
3132 	struct mnt_namespace *ns;
3133 	struct mount *p;
3134 	struct mount *old;
3135 	struct mount *parent;
3136 	struct mountpoint *mp, *old_mp;
3137 	int err;
3138 	bool attached;
3139 	enum mnt_tree_flags_t flags = 0;
3140 
3141 	mp = do_lock_mount(new_path, beneath);
3142 	if (IS_ERR(mp))
3143 		return PTR_ERR(mp);
3144 
3145 	old = real_mount(old_path->mnt);
3146 	p = real_mount(new_path->mnt);
3147 	parent = old->mnt_parent;
3148 	attached = mnt_has_parent(old);
3149 	if (attached)
3150 		flags |= MNT_TREE_MOVE;
3151 	old_mp = old->mnt_mp;
3152 	ns = old->mnt_ns;
3153 
3154 	err = -EINVAL;
3155 	/* The mountpoint must be in our namespace. */
3156 	if (!check_mnt(p))
3157 		goto out;
3158 
3159 	/* The thing moved must be mounted... */
3160 	if (!is_mounted(&old->mnt))
3161 		goto out;
3162 
3163 	/* ... and either ours or the root of anon namespace */
3164 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3165 		goto out;
3166 
3167 	if (old->mnt.mnt_flags & MNT_LOCKED)
3168 		goto out;
3169 
3170 	if (!path_mounted(old_path))
3171 		goto out;
3172 
3173 	if (d_is_dir(new_path->dentry) !=
3174 	    d_is_dir(old_path->dentry))
3175 		goto out;
3176 	/*
3177 	 * Don't move a mount residing in a shared parent.
3178 	 */
3179 	if (attached && IS_MNT_SHARED(parent))
3180 		goto out;
3181 
3182 	if (beneath) {
3183 		err = can_move_mount_beneath(old_path, new_path, mp);
3184 		if (err)
3185 			goto out;
3186 
3187 		err = -EINVAL;
3188 		p = p->mnt_parent;
3189 		flags |= MNT_TREE_BENEATH;
3190 	}
3191 
3192 	/*
3193 	 * Don't move a mount tree containing unbindable mounts to a destination
3194 	 * mount which is shared.
3195 	 */
3196 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3197 		goto out;
3198 	err = -ELOOP;
3199 	if (!check_for_nsfs_mounts(old))
3200 		goto out;
3201 	for (; mnt_has_parent(p); p = p->mnt_parent)
3202 		if (p == old)
3203 			goto out;
3204 
3205 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3206 	if (err)
3207 		goto out;
3208 
3209 	/* if the mount is moved, it should no longer be expire
3210 	 * automatically */
3211 	list_del_init(&old->mnt_expire);
3212 	if (attached)
3213 		put_mountpoint(old_mp);
3214 out:
3215 	unlock_mount(mp);
3216 	if (!err) {
3217 		if (attached)
3218 			mntput_no_expire(parent);
3219 		else
3220 			free_mnt_ns(ns);
3221 	}
3222 	return err;
3223 }
3224 
do_move_mount_old(struct path * path,const char * old_name)3225 static int do_move_mount_old(struct path *path, const char *old_name)
3226 {
3227 	struct path old_path;
3228 	int err;
3229 
3230 	if (!old_name || !*old_name)
3231 		return -EINVAL;
3232 
3233 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3234 	if (err)
3235 		return err;
3236 
3237 	err = do_move_mount(&old_path, path, false);
3238 	path_put(&old_path);
3239 	return err;
3240 }
3241 
3242 /*
3243  * add a mount into a namespace's mount tree
3244  */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3245 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3246 			const struct path *path, int mnt_flags)
3247 {
3248 	struct mount *parent = real_mount(path->mnt);
3249 
3250 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3251 
3252 	if (unlikely(!check_mnt(parent))) {
3253 		/* that's acceptable only for automounts done in private ns */
3254 		if (!(mnt_flags & MNT_SHRINKABLE))
3255 			return -EINVAL;
3256 		/* ... and for those we'd better have mountpoint still alive */
3257 		if (!parent->mnt_ns)
3258 			return -EINVAL;
3259 	}
3260 
3261 	/* Refuse the same filesystem on the same mount point */
3262 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3263 		return -EBUSY;
3264 
3265 	if (d_is_symlink(newmnt->mnt.mnt_root))
3266 		return -EINVAL;
3267 
3268 	newmnt->mnt.mnt_flags = mnt_flags;
3269 	return graft_tree(newmnt, parent, mp);
3270 }
3271 
3272 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3273 
3274 /*
3275  * Create a new mount using a superblock configuration and request it
3276  * be added to the namespace tree.
3277  */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3278 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3279 			   unsigned int mnt_flags)
3280 {
3281 	struct vfsmount *mnt;
3282 	struct mountpoint *mp;
3283 	struct super_block *sb = fc->root->d_sb;
3284 	int error;
3285 
3286 	error = security_sb_kern_mount(sb);
3287 	if (!error && mount_too_revealing(sb, &mnt_flags))
3288 		error = -EPERM;
3289 
3290 	if (unlikely(error)) {
3291 		fc_drop_locked(fc);
3292 		return error;
3293 	}
3294 
3295 	up_write(&sb->s_umount);
3296 
3297 	mnt = vfs_create_mount(fc);
3298 	if (IS_ERR(mnt))
3299 		return PTR_ERR(mnt);
3300 
3301 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3302 
3303 	mp = lock_mount(mountpoint);
3304 	if (IS_ERR(mp)) {
3305 		mntput(mnt);
3306 		return PTR_ERR(mp);
3307 	}
3308 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3309 	unlock_mount(mp);
3310 	if (error < 0)
3311 		mntput(mnt);
3312 	return error;
3313 }
3314 
3315 /*
3316  * create a new mount for userspace and request it to be added into the
3317  * namespace's tree
3318  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3319 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3320 			int mnt_flags, const char *name, void *data)
3321 {
3322 	struct file_system_type *type;
3323 	struct fs_context *fc;
3324 	const char *subtype = NULL;
3325 	int err = 0;
3326 
3327 	if (!fstype)
3328 		return -EINVAL;
3329 
3330 	type = get_fs_type(fstype);
3331 	if (!type)
3332 		return -ENODEV;
3333 
3334 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3335 		subtype = strchr(fstype, '.');
3336 		if (subtype) {
3337 			subtype++;
3338 			if (!*subtype) {
3339 				put_filesystem(type);
3340 				return -EINVAL;
3341 			}
3342 		}
3343 	}
3344 
3345 	fc = fs_context_for_mount(type, sb_flags);
3346 	put_filesystem(type);
3347 	if (IS_ERR(fc))
3348 		return PTR_ERR(fc);
3349 
3350 	/*
3351 	 * Indicate to the filesystem that the mount request is coming
3352 	 * from the legacy mount system call.
3353 	 */
3354 	fc->oldapi = true;
3355 
3356 	if (subtype)
3357 		err = vfs_parse_fs_string(fc, "subtype",
3358 					  subtype, strlen(subtype));
3359 	if (!err && name)
3360 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3361 	if (!err)
3362 		err = parse_monolithic_mount_data(fc, data);
3363 	if (!err && !mount_capable(fc))
3364 		err = -EPERM;
3365 	if (!err)
3366 		err = vfs_get_tree(fc);
3367 	if (!err)
3368 		err = do_new_mount_fc(fc, path, mnt_flags);
3369 
3370 	put_fs_context(fc);
3371 	return err;
3372 }
3373 
finish_automount(struct vfsmount * m,const struct path * path)3374 int finish_automount(struct vfsmount *m, const struct path *path)
3375 {
3376 	struct dentry *dentry = path->dentry;
3377 	struct mountpoint *mp;
3378 	struct mount *mnt;
3379 	int err;
3380 
3381 	if (!m)
3382 		return 0;
3383 	if (IS_ERR(m))
3384 		return PTR_ERR(m);
3385 
3386 	mnt = real_mount(m);
3387 	/* The new mount record should have at least 2 refs to prevent it being
3388 	 * expired before we get a chance to add it
3389 	 */
3390 	BUG_ON(mnt_get_count(mnt) < 2);
3391 
3392 	if (m->mnt_sb == path->mnt->mnt_sb &&
3393 	    m->mnt_root == dentry) {
3394 		err = -ELOOP;
3395 		goto discard;
3396 	}
3397 
3398 	/*
3399 	 * we don't want to use lock_mount() - in this case finding something
3400 	 * that overmounts our mountpoint to be means "quitely drop what we've
3401 	 * got", not "try to mount it on top".
3402 	 */
3403 	inode_lock(dentry->d_inode);
3404 	namespace_lock();
3405 	if (unlikely(cant_mount(dentry))) {
3406 		err = -ENOENT;
3407 		goto discard_locked;
3408 	}
3409 	if (path_overmounted(path)) {
3410 		err = 0;
3411 		goto discard_locked;
3412 	}
3413 	mp = get_mountpoint(dentry);
3414 	if (IS_ERR(mp)) {
3415 		err = PTR_ERR(mp);
3416 		goto discard_locked;
3417 	}
3418 
3419 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3420 	unlock_mount(mp);
3421 	if (unlikely(err))
3422 		goto discard;
3423 	mntput(m);
3424 	return 0;
3425 
3426 discard_locked:
3427 	namespace_unlock();
3428 	inode_unlock(dentry->d_inode);
3429 discard:
3430 	/* remove m from any expiration list it may be on */
3431 	if (!list_empty(&mnt->mnt_expire)) {
3432 		namespace_lock();
3433 		list_del_init(&mnt->mnt_expire);
3434 		namespace_unlock();
3435 	}
3436 	mntput(m);
3437 	mntput(m);
3438 	return err;
3439 }
3440 
3441 /**
3442  * mnt_set_expiry - Put a mount on an expiration list
3443  * @mnt: The mount to list.
3444  * @expiry_list: The list to add the mount to.
3445  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3446 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3447 {
3448 	namespace_lock();
3449 
3450 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3451 
3452 	namespace_unlock();
3453 }
3454 EXPORT_SYMBOL(mnt_set_expiry);
3455 
3456 /*
3457  * process a list of expirable mountpoints with the intent of discarding any
3458  * mountpoints that aren't in use and haven't been touched since last we came
3459  * here
3460  */
mark_mounts_for_expiry(struct list_head * mounts)3461 void mark_mounts_for_expiry(struct list_head *mounts)
3462 {
3463 	struct mount *mnt, *next;
3464 	LIST_HEAD(graveyard);
3465 
3466 	if (list_empty(mounts))
3467 		return;
3468 
3469 	namespace_lock();
3470 	lock_mount_hash();
3471 
3472 	/* extract from the expiration list every vfsmount that matches the
3473 	 * following criteria:
3474 	 * - only referenced by its parent vfsmount
3475 	 * - still marked for expiry (marked on the last call here; marks are
3476 	 *   cleared by mntput())
3477 	 */
3478 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3479 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3480 			propagate_mount_busy(mnt, 1))
3481 			continue;
3482 		list_move(&mnt->mnt_expire, &graveyard);
3483 	}
3484 	while (!list_empty(&graveyard)) {
3485 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3486 		touch_mnt_namespace(mnt->mnt_ns);
3487 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3488 	}
3489 	unlock_mount_hash();
3490 	namespace_unlock();
3491 }
3492 
3493 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3494 
3495 /*
3496  * Ripoff of 'select_parent()'
3497  *
3498  * search the list of submounts for a given mountpoint, and move any
3499  * shrinkable submounts to the 'graveyard' list.
3500  */
select_submounts(struct mount * parent,struct list_head * graveyard)3501 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3502 {
3503 	struct mount *this_parent = parent;
3504 	struct list_head *next;
3505 	int found = 0;
3506 
3507 repeat:
3508 	next = this_parent->mnt_mounts.next;
3509 resume:
3510 	while (next != &this_parent->mnt_mounts) {
3511 		struct list_head *tmp = next;
3512 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3513 
3514 		next = tmp->next;
3515 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3516 			continue;
3517 		/*
3518 		 * Descend a level if the d_mounts list is non-empty.
3519 		 */
3520 		if (!list_empty(&mnt->mnt_mounts)) {
3521 			this_parent = mnt;
3522 			goto repeat;
3523 		}
3524 
3525 		if (!propagate_mount_busy(mnt, 1)) {
3526 			list_move_tail(&mnt->mnt_expire, graveyard);
3527 			found++;
3528 		}
3529 	}
3530 	/*
3531 	 * All done at this level ... ascend and resume the search
3532 	 */
3533 	if (this_parent != parent) {
3534 		next = this_parent->mnt_child.next;
3535 		this_parent = this_parent->mnt_parent;
3536 		goto resume;
3537 	}
3538 	return found;
3539 }
3540 
3541 /*
3542  * process a list of expirable mountpoints with the intent of discarding any
3543  * submounts of a specific parent mountpoint
3544  *
3545  * mount_lock must be held for write
3546  */
shrink_submounts(struct mount * mnt)3547 static void shrink_submounts(struct mount *mnt)
3548 {
3549 	LIST_HEAD(graveyard);
3550 	struct mount *m;
3551 
3552 	/* extract submounts of 'mountpoint' from the expiration list */
3553 	while (select_submounts(mnt, &graveyard)) {
3554 		while (!list_empty(&graveyard)) {
3555 			m = list_first_entry(&graveyard, struct mount,
3556 						mnt_expire);
3557 			touch_mnt_namespace(m->mnt_ns);
3558 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3559 		}
3560 	}
3561 }
3562 
copy_mount_options(const void __user * data)3563 static void *copy_mount_options(const void __user * data)
3564 {
3565 	char *copy;
3566 	unsigned left, offset;
3567 
3568 	if (!data)
3569 		return NULL;
3570 
3571 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3572 	if (!copy)
3573 		return ERR_PTR(-ENOMEM);
3574 
3575 	left = copy_from_user(copy, data, PAGE_SIZE);
3576 
3577 	/*
3578 	 * Not all architectures have an exact copy_from_user(). Resort to
3579 	 * byte at a time.
3580 	 */
3581 	offset = PAGE_SIZE - left;
3582 	while (left) {
3583 		char c;
3584 		if (get_user(c, (const char __user *)data + offset))
3585 			break;
3586 		copy[offset] = c;
3587 		left--;
3588 		offset++;
3589 	}
3590 
3591 	if (left == PAGE_SIZE) {
3592 		kfree(copy);
3593 		return ERR_PTR(-EFAULT);
3594 	}
3595 
3596 	return copy;
3597 }
3598 
copy_mount_string(const void __user * data)3599 static char *copy_mount_string(const void __user *data)
3600 {
3601 	return data ? strndup_user(data, PATH_MAX) : NULL;
3602 }
3603 
3604 /*
3605  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3606  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3607  *
3608  * data is a (void *) that can point to any structure up to
3609  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3610  * information (or be NULL).
3611  *
3612  * Pre-0.97 versions of mount() didn't have a flags word.
3613  * When the flags word was introduced its top half was required
3614  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3615  * Therefore, if this magic number is present, it carries no information
3616  * and must be discarded.
3617  */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3618 int path_mount(const char *dev_name, struct path *path,
3619 		const char *type_page, unsigned long flags, void *data_page)
3620 {
3621 	unsigned int mnt_flags = 0, sb_flags;
3622 	int ret;
3623 
3624 	/* Discard magic */
3625 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3626 		flags &= ~MS_MGC_MSK;
3627 
3628 	/* Basic sanity checks */
3629 	if (data_page)
3630 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3631 
3632 	if (flags & MS_NOUSER)
3633 		return -EINVAL;
3634 
3635 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3636 	if (ret)
3637 		return ret;
3638 	if (!may_mount())
3639 		return -EPERM;
3640 	if (flags & SB_MANDLOCK)
3641 		warn_mandlock();
3642 
3643 	/* Default to relatime unless overriden */
3644 	if (!(flags & MS_NOATIME))
3645 		mnt_flags |= MNT_RELATIME;
3646 
3647 	/* Separate the per-mountpoint flags */
3648 	if (flags & MS_NOSUID)
3649 		mnt_flags |= MNT_NOSUID;
3650 	if (flags & MS_NODEV)
3651 		mnt_flags |= MNT_NODEV;
3652 	if (flags & MS_NOEXEC)
3653 		mnt_flags |= MNT_NOEXEC;
3654 	if (flags & MS_NOATIME)
3655 		mnt_flags |= MNT_NOATIME;
3656 	if (flags & MS_NODIRATIME)
3657 		mnt_flags |= MNT_NODIRATIME;
3658 	if (flags & MS_STRICTATIME)
3659 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3660 	if (flags & MS_RDONLY)
3661 		mnt_flags |= MNT_READONLY;
3662 	if (flags & MS_NOSYMFOLLOW)
3663 		mnt_flags |= MNT_NOSYMFOLLOW;
3664 
3665 	/* The default atime for remount is preservation */
3666 	if ((flags & MS_REMOUNT) &&
3667 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3668 		       MS_STRICTATIME)) == 0)) {
3669 		mnt_flags &= ~MNT_ATIME_MASK;
3670 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3671 	}
3672 
3673 	sb_flags = flags & (SB_RDONLY |
3674 			    SB_SYNCHRONOUS |
3675 			    SB_MANDLOCK |
3676 			    SB_DIRSYNC |
3677 			    SB_SILENT |
3678 			    SB_POSIXACL |
3679 			    SB_LAZYTIME |
3680 			    SB_I_VERSION);
3681 
3682 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3683 		return do_reconfigure_mnt(path, mnt_flags);
3684 	if (flags & MS_REMOUNT)
3685 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3686 	if (flags & MS_BIND)
3687 		return do_loopback(path, dev_name, flags & MS_REC);
3688 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3689 		return do_change_type(path, flags);
3690 	if (flags & MS_MOVE)
3691 		return do_move_mount_old(path, dev_name);
3692 
3693 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3694 			    data_page);
3695 }
3696 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3697 long do_mount(const char *dev_name, const char __user *dir_name,
3698 		const char *type_page, unsigned long flags, void *data_page)
3699 {
3700 	struct path path;
3701 	int ret;
3702 
3703 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3704 	if (ret)
3705 		return ret;
3706 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3707 	path_put(&path);
3708 	return ret;
3709 }
3710 
inc_mnt_namespaces(struct user_namespace * ns)3711 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3712 {
3713 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3714 }
3715 
dec_mnt_namespaces(struct ucounts * ucounts)3716 static void dec_mnt_namespaces(struct ucounts *ucounts)
3717 {
3718 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3719 }
3720 
free_mnt_ns(struct mnt_namespace * ns)3721 static void free_mnt_ns(struct mnt_namespace *ns)
3722 {
3723 	if (!is_anon_ns(ns))
3724 		ns_free_inum(&ns->ns);
3725 	dec_mnt_namespaces(ns->ucounts);
3726 	put_user_ns(ns->user_ns);
3727 	kfree(ns);
3728 }
3729 
3730 /*
3731  * Assign a sequence number so we can detect when we attempt to bind
3732  * mount a reference to an older mount namespace into the current
3733  * mount namespace, preventing reference counting loops.  A 64bit
3734  * number incrementing at 10Ghz will take 12,427 years to wrap which
3735  * is effectively never, so we can ignore the possibility.
3736  */
3737 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3738 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3739 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3740 {
3741 	struct mnt_namespace *new_ns;
3742 	struct ucounts *ucounts;
3743 	int ret;
3744 
3745 	ucounts = inc_mnt_namespaces(user_ns);
3746 	if (!ucounts)
3747 		return ERR_PTR(-ENOSPC);
3748 
3749 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3750 	if (!new_ns) {
3751 		dec_mnt_namespaces(ucounts);
3752 		return ERR_PTR(-ENOMEM);
3753 	}
3754 	if (!anon) {
3755 		ret = ns_alloc_inum(&new_ns->ns);
3756 		if (ret) {
3757 			kfree(new_ns);
3758 			dec_mnt_namespaces(ucounts);
3759 			return ERR_PTR(ret);
3760 		}
3761 	}
3762 	new_ns->ns.ops = &mntns_operations;
3763 	if (!anon)
3764 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3765 	refcount_set(&new_ns->ns.count, 1);
3766 	INIT_LIST_HEAD(&new_ns->list);
3767 	init_waitqueue_head(&new_ns->poll);
3768 	spin_lock_init(&new_ns->ns_lock);
3769 	new_ns->user_ns = get_user_ns(user_ns);
3770 	new_ns->ucounts = ucounts;
3771 	return new_ns;
3772 }
3773 
3774 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3775 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3776 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3777 {
3778 	struct mnt_namespace *new_ns;
3779 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3780 	struct mount *p, *q;
3781 	struct mount *old;
3782 	struct mount *new;
3783 	int copy_flags;
3784 
3785 	BUG_ON(!ns);
3786 
3787 	if (likely(!(flags & CLONE_NEWNS))) {
3788 		get_mnt_ns(ns);
3789 		return ns;
3790 	}
3791 
3792 	old = ns->root;
3793 
3794 	new_ns = alloc_mnt_ns(user_ns, false);
3795 	if (IS_ERR(new_ns))
3796 		return new_ns;
3797 
3798 	namespace_lock();
3799 	/* First pass: copy the tree topology */
3800 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3801 	if (user_ns != ns->user_ns)
3802 		copy_flags |= CL_SHARED_TO_SLAVE;
3803 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3804 	if (IS_ERR(new)) {
3805 		namespace_unlock();
3806 		free_mnt_ns(new_ns);
3807 		return ERR_CAST(new);
3808 	}
3809 	if (user_ns != ns->user_ns) {
3810 		lock_mount_hash();
3811 		lock_mnt_tree(new);
3812 		unlock_mount_hash();
3813 	}
3814 	new_ns->root = new;
3815 	list_add_tail(&new_ns->list, &new->mnt_list);
3816 
3817 	/*
3818 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3819 	 * as belonging to new namespace.  We have already acquired a private
3820 	 * fs_struct, so tsk->fs->lock is not needed.
3821 	 */
3822 	p = old;
3823 	q = new;
3824 	while (p) {
3825 		q->mnt_ns = new_ns;
3826 		new_ns->mounts++;
3827 		if (new_fs) {
3828 			if (&p->mnt == new_fs->root.mnt) {
3829 				new_fs->root.mnt = mntget(&q->mnt);
3830 				rootmnt = &p->mnt;
3831 			}
3832 			if (&p->mnt == new_fs->pwd.mnt) {
3833 				new_fs->pwd.mnt = mntget(&q->mnt);
3834 				pwdmnt = &p->mnt;
3835 			}
3836 		}
3837 		p = next_mnt(p, old);
3838 		q = next_mnt(q, new);
3839 		if (!q)
3840 			break;
3841 		// an mntns binding we'd skipped?
3842 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3843 			p = next_mnt(skip_mnt_tree(p), old);
3844 	}
3845 	namespace_unlock();
3846 
3847 	if (rootmnt)
3848 		mntput(rootmnt);
3849 	if (pwdmnt)
3850 		mntput(pwdmnt);
3851 
3852 	return new_ns;
3853 }
3854 
mount_subtree(struct vfsmount * m,const char * name)3855 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3856 {
3857 	struct mount *mnt = real_mount(m);
3858 	struct mnt_namespace *ns;
3859 	struct super_block *s;
3860 	struct path path;
3861 	int err;
3862 
3863 	ns = alloc_mnt_ns(&init_user_ns, true);
3864 	if (IS_ERR(ns)) {
3865 		mntput(m);
3866 		return ERR_CAST(ns);
3867 	}
3868 	mnt->mnt_ns = ns;
3869 	ns->root = mnt;
3870 	ns->mounts++;
3871 	list_add(&mnt->mnt_list, &ns->list);
3872 
3873 	err = vfs_path_lookup(m->mnt_root, m,
3874 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3875 
3876 	put_mnt_ns(ns);
3877 
3878 	if (err)
3879 		return ERR_PTR(err);
3880 
3881 	/* trade a vfsmount reference for active sb one */
3882 	s = path.mnt->mnt_sb;
3883 	atomic_inc(&s->s_active);
3884 	mntput(path.mnt);
3885 	/* lock the sucker */
3886 	down_write(&s->s_umount);
3887 	/* ... and return the root of (sub)tree on it */
3888 	return path.dentry;
3889 }
3890 EXPORT_SYMBOL(mount_subtree);
3891 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3892 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3893 		char __user *, type, unsigned long, flags, void __user *, data)
3894 {
3895 	int ret;
3896 	char *kernel_type;
3897 	char *kernel_dev;
3898 	void *options;
3899 
3900 	kernel_type = copy_mount_string(type);
3901 	ret = PTR_ERR(kernel_type);
3902 	if (IS_ERR(kernel_type))
3903 		goto out_type;
3904 
3905 	kernel_dev = copy_mount_string(dev_name);
3906 	ret = PTR_ERR(kernel_dev);
3907 	if (IS_ERR(kernel_dev))
3908 		goto out_dev;
3909 
3910 	options = copy_mount_options(data);
3911 	ret = PTR_ERR(options);
3912 	if (IS_ERR(options))
3913 		goto out_data;
3914 
3915 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3916 
3917 	kfree(options);
3918 out_data:
3919 	kfree(kernel_dev);
3920 out_dev:
3921 	kfree(kernel_type);
3922 out_type:
3923 	return ret;
3924 }
3925 
3926 #define FSMOUNT_VALID_FLAGS                                                    \
3927 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3928 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3929 	 MOUNT_ATTR_NOSYMFOLLOW)
3930 
3931 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3932 
3933 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3934 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3935 
attr_flags_to_mnt_flags(u64 attr_flags)3936 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3937 {
3938 	unsigned int mnt_flags = 0;
3939 
3940 	if (attr_flags & MOUNT_ATTR_RDONLY)
3941 		mnt_flags |= MNT_READONLY;
3942 	if (attr_flags & MOUNT_ATTR_NOSUID)
3943 		mnt_flags |= MNT_NOSUID;
3944 	if (attr_flags & MOUNT_ATTR_NODEV)
3945 		mnt_flags |= MNT_NODEV;
3946 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3947 		mnt_flags |= MNT_NOEXEC;
3948 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3949 		mnt_flags |= MNT_NODIRATIME;
3950 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3951 		mnt_flags |= MNT_NOSYMFOLLOW;
3952 
3953 	return mnt_flags;
3954 }
3955 
3956 /*
3957  * Create a kernel mount representation for a new, prepared superblock
3958  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3959  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3960 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3961 		unsigned int, attr_flags)
3962 {
3963 	struct mnt_namespace *ns;
3964 	struct fs_context *fc;
3965 	struct file *file;
3966 	struct path newmount;
3967 	struct mount *mnt;
3968 	struct fd f;
3969 	unsigned int mnt_flags = 0;
3970 	long ret;
3971 
3972 	if (!may_mount())
3973 		return -EPERM;
3974 
3975 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3976 		return -EINVAL;
3977 
3978 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3979 		return -EINVAL;
3980 
3981 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3982 
3983 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3984 	case MOUNT_ATTR_STRICTATIME:
3985 		break;
3986 	case MOUNT_ATTR_NOATIME:
3987 		mnt_flags |= MNT_NOATIME;
3988 		break;
3989 	case MOUNT_ATTR_RELATIME:
3990 		mnt_flags |= MNT_RELATIME;
3991 		break;
3992 	default:
3993 		return -EINVAL;
3994 	}
3995 
3996 	f = fdget(fs_fd);
3997 	if (!f.file)
3998 		return -EBADF;
3999 
4000 	ret = -EINVAL;
4001 	if (f.file->f_op != &fscontext_fops)
4002 		goto err_fsfd;
4003 
4004 	fc = f.file->private_data;
4005 
4006 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4007 	if (ret < 0)
4008 		goto err_fsfd;
4009 
4010 	/* There must be a valid superblock or we can't mount it */
4011 	ret = -EINVAL;
4012 	if (!fc->root)
4013 		goto err_unlock;
4014 
4015 	ret = -EPERM;
4016 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4017 		pr_warn("VFS: Mount too revealing\n");
4018 		goto err_unlock;
4019 	}
4020 
4021 	ret = -EBUSY;
4022 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4023 		goto err_unlock;
4024 
4025 	if (fc->sb_flags & SB_MANDLOCK)
4026 		warn_mandlock();
4027 
4028 	newmount.mnt = vfs_create_mount(fc);
4029 	if (IS_ERR(newmount.mnt)) {
4030 		ret = PTR_ERR(newmount.mnt);
4031 		goto err_unlock;
4032 	}
4033 	newmount.dentry = dget(fc->root);
4034 	newmount.mnt->mnt_flags = mnt_flags;
4035 
4036 	/* We've done the mount bit - now move the file context into more or
4037 	 * less the same state as if we'd done an fspick().  We don't want to
4038 	 * do any memory allocation or anything like that at this point as we
4039 	 * don't want to have to handle any errors incurred.
4040 	 */
4041 	vfs_clean_context(fc);
4042 
4043 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4044 	if (IS_ERR(ns)) {
4045 		ret = PTR_ERR(ns);
4046 		goto err_path;
4047 	}
4048 	mnt = real_mount(newmount.mnt);
4049 	mnt->mnt_ns = ns;
4050 	ns->root = mnt;
4051 	ns->mounts = 1;
4052 	list_add(&mnt->mnt_list, &ns->list);
4053 	mntget(newmount.mnt);
4054 
4055 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4056 	 * it, not just simply put it.
4057 	 */
4058 	file = dentry_open(&newmount, O_PATH, fc->cred);
4059 	if (IS_ERR(file)) {
4060 		dissolve_on_fput(newmount.mnt);
4061 		ret = PTR_ERR(file);
4062 		goto err_path;
4063 	}
4064 	file->f_mode |= FMODE_NEED_UNMOUNT;
4065 
4066 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4067 	if (ret >= 0)
4068 		fd_install(ret, file);
4069 	else
4070 		fput(file);
4071 
4072 err_path:
4073 	path_put(&newmount);
4074 err_unlock:
4075 	mutex_unlock(&fc->uapi_mutex);
4076 err_fsfd:
4077 	fdput(f);
4078 	return ret;
4079 }
4080 
4081 /*
4082  * Move a mount from one place to another.  In combination with
4083  * fsopen()/fsmount() this is used to install a new mount and in combination
4084  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4085  * a mount subtree.
4086  *
4087  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4088  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4089 SYSCALL_DEFINE5(move_mount,
4090 		int, from_dfd, const char __user *, from_pathname,
4091 		int, to_dfd, const char __user *, to_pathname,
4092 		unsigned int, flags)
4093 {
4094 	struct path from_path, to_path;
4095 	unsigned int lflags;
4096 	int ret = 0;
4097 
4098 	if (!may_mount())
4099 		return -EPERM;
4100 
4101 	if (flags & ~MOVE_MOUNT__MASK)
4102 		return -EINVAL;
4103 
4104 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4105 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4106 		return -EINVAL;
4107 
4108 	/* If someone gives a pathname, they aren't permitted to move
4109 	 * from an fd that requires unmount as we can't get at the flag
4110 	 * to clear it afterwards.
4111 	 */
4112 	lflags = 0;
4113 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4114 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4115 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4116 
4117 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4118 	if (ret < 0)
4119 		return ret;
4120 
4121 	lflags = 0;
4122 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4123 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4124 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4125 
4126 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4127 	if (ret < 0)
4128 		goto out_from;
4129 
4130 	ret = security_move_mount(&from_path, &to_path);
4131 	if (ret < 0)
4132 		goto out_to;
4133 
4134 	if (flags & MOVE_MOUNT_SET_GROUP)
4135 		ret = do_set_group(&from_path, &to_path);
4136 	else
4137 		ret = do_move_mount(&from_path, &to_path,
4138 				    (flags & MOVE_MOUNT_BENEATH));
4139 
4140 out_to:
4141 	path_put(&to_path);
4142 out_from:
4143 	path_put(&from_path);
4144 	return ret;
4145 }
4146 
4147 /*
4148  * Return true if path is reachable from root
4149  *
4150  * namespace_sem or mount_lock is held
4151  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4152 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4153 			 const struct path *root)
4154 {
4155 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4156 		dentry = mnt->mnt_mountpoint;
4157 		mnt = mnt->mnt_parent;
4158 	}
4159 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4160 }
4161 
path_is_under(const struct path * path1,const struct path * path2)4162 bool path_is_under(const struct path *path1, const struct path *path2)
4163 {
4164 	bool res;
4165 	read_seqlock_excl(&mount_lock);
4166 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4167 	read_sequnlock_excl(&mount_lock);
4168 	return res;
4169 }
4170 EXPORT_SYMBOL(path_is_under);
4171 
4172 /*
4173  * pivot_root Semantics:
4174  * Moves the root file system of the current process to the directory put_old,
4175  * makes new_root as the new root file system of the current process, and sets
4176  * root/cwd of all processes which had them on the current root to new_root.
4177  *
4178  * Restrictions:
4179  * The new_root and put_old must be directories, and  must not be on the
4180  * same file  system as the current process root. The put_old  must  be
4181  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4182  * pointed to by put_old must yield the same directory as new_root. No other
4183  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4184  *
4185  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4186  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4187  * in this situation.
4188  *
4189  * Notes:
4190  *  - we don't move root/cwd if they are not at the root (reason: if something
4191  *    cared enough to change them, it's probably wrong to force them elsewhere)
4192  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4193  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4194  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4195  *    first.
4196  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4197 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4198 		const char __user *, put_old)
4199 {
4200 	struct path new, old, root;
4201 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4202 	struct mountpoint *old_mp, *root_mp;
4203 	int error;
4204 
4205 	if (!may_mount())
4206 		return -EPERM;
4207 
4208 	error = user_path_at(AT_FDCWD, new_root,
4209 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4210 	if (error)
4211 		goto out0;
4212 
4213 	error = user_path_at(AT_FDCWD, put_old,
4214 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4215 	if (error)
4216 		goto out1;
4217 
4218 	error = security_sb_pivotroot(&old, &new);
4219 	if (error)
4220 		goto out2;
4221 
4222 	get_fs_root(current->fs, &root);
4223 	old_mp = lock_mount(&old);
4224 	error = PTR_ERR(old_mp);
4225 	if (IS_ERR(old_mp))
4226 		goto out3;
4227 
4228 	error = -EINVAL;
4229 	new_mnt = real_mount(new.mnt);
4230 	root_mnt = real_mount(root.mnt);
4231 	old_mnt = real_mount(old.mnt);
4232 	ex_parent = new_mnt->mnt_parent;
4233 	root_parent = root_mnt->mnt_parent;
4234 	if (IS_MNT_SHARED(old_mnt) ||
4235 		IS_MNT_SHARED(ex_parent) ||
4236 		IS_MNT_SHARED(root_parent))
4237 		goto out4;
4238 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4239 		goto out4;
4240 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4241 		goto out4;
4242 	error = -ENOENT;
4243 	if (d_unlinked(new.dentry))
4244 		goto out4;
4245 	error = -EBUSY;
4246 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4247 		goto out4; /* loop, on the same file system  */
4248 	error = -EINVAL;
4249 	if (!path_mounted(&root))
4250 		goto out4; /* not a mountpoint */
4251 	if (!mnt_has_parent(root_mnt))
4252 		goto out4; /* not attached */
4253 	if (!path_mounted(&new))
4254 		goto out4; /* not a mountpoint */
4255 	if (!mnt_has_parent(new_mnt))
4256 		goto out4; /* not attached */
4257 	/* make sure we can reach put_old from new_root */
4258 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4259 		goto out4;
4260 	/* make certain new is below the root */
4261 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4262 		goto out4;
4263 	lock_mount_hash();
4264 	umount_mnt(new_mnt);
4265 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4266 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4267 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4268 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4269 	}
4270 	/* mount old root on put_old */
4271 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4272 	/* mount new_root on / */
4273 	attach_mnt(new_mnt, root_parent, root_mp, false);
4274 	mnt_add_count(root_parent, -1);
4275 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4276 	/* A moved mount should not expire automatically */
4277 	list_del_init(&new_mnt->mnt_expire);
4278 	put_mountpoint(root_mp);
4279 	unlock_mount_hash();
4280 	chroot_fs_refs(&root, &new);
4281 	error = 0;
4282 out4:
4283 	unlock_mount(old_mp);
4284 	if (!error)
4285 		mntput_no_expire(ex_parent);
4286 out3:
4287 	path_put(&root);
4288 out2:
4289 	path_put(&old);
4290 out1:
4291 	path_put(&new);
4292 out0:
4293 	return error;
4294 }
4295 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4296 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4297 {
4298 	unsigned int flags = mnt->mnt.mnt_flags;
4299 
4300 	/*  flags to clear */
4301 	flags &= ~kattr->attr_clr;
4302 	/* flags to raise */
4303 	flags |= kattr->attr_set;
4304 
4305 	return flags;
4306 }
4307 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4308 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4309 {
4310 	struct vfsmount *m = &mnt->mnt;
4311 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4312 
4313 	if (!kattr->mnt_idmap)
4314 		return 0;
4315 
4316 	/*
4317 	 * Creating an idmapped mount with the filesystem wide idmapping
4318 	 * doesn't make sense so block that. We don't allow mushy semantics.
4319 	 */
4320 	if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
4321 		return -EINVAL;
4322 
4323 	/*
4324 	 * Once a mount has been idmapped we don't allow it to change its
4325 	 * mapping. It makes things simpler and callers can just create
4326 	 * another bind-mount they can idmap if they want to.
4327 	 */
4328 	if (is_idmapped_mnt(m))
4329 		return -EPERM;
4330 
4331 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4332 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4333 		return -EINVAL;
4334 
4335 	/* We're not controlling the superblock. */
4336 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4337 		return -EPERM;
4338 
4339 	/* Mount has already been visible in the filesystem hierarchy. */
4340 	if (!is_anon_ns(mnt->mnt_ns))
4341 		return -EINVAL;
4342 
4343 	return 0;
4344 }
4345 
4346 /**
4347  * mnt_allow_writers() - check whether the attribute change allows writers
4348  * @kattr: the new mount attributes
4349  * @mnt: the mount to which @kattr will be applied
4350  *
4351  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4352  *
4353  * Return: true if writers need to be held, false if not
4354  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4355 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4356 				     const struct mount *mnt)
4357 {
4358 	return (!(kattr->attr_set & MNT_READONLY) ||
4359 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4360 	       !kattr->mnt_idmap;
4361 }
4362 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4363 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4364 {
4365 	struct mount *m;
4366 	int err;
4367 
4368 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4369 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4370 			err = -EPERM;
4371 			break;
4372 		}
4373 
4374 		err = can_idmap_mount(kattr, m);
4375 		if (err)
4376 			break;
4377 
4378 		if (!mnt_allow_writers(kattr, m)) {
4379 			err = mnt_hold_writers(m);
4380 			if (err)
4381 				break;
4382 		}
4383 
4384 		if (!kattr->recurse)
4385 			return 0;
4386 	}
4387 
4388 	if (err) {
4389 		struct mount *p;
4390 
4391 		/*
4392 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4393 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4394 		 * mounts and needs to take care to include the first mount.
4395 		 */
4396 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4397 			/* If we had to hold writers unblock them. */
4398 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4399 				mnt_unhold_writers(p);
4400 
4401 			/*
4402 			 * We're done once the first mount we changed got
4403 			 * MNT_WRITE_HOLD unset.
4404 			 */
4405 			if (p == m)
4406 				break;
4407 		}
4408 	}
4409 	return err;
4410 }
4411 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4412 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4413 {
4414 	if (!kattr->mnt_idmap)
4415 		return;
4416 
4417 	/*
4418 	 * Pairs with smp_load_acquire() in mnt_idmap().
4419 	 *
4420 	 * Since we only allow a mount to change the idmapping once and
4421 	 * verified this in can_idmap_mount() we know that the mount has
4422 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4423 	 * references.
4424 	 */
4425 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4426 }
4427 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4428 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4429 {
4430 	struct mount *m;
4431 
4432 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4433 		unsigned int flags;
4434 
4435 		do_idmap_mount(kattr, m);
4436 		flags = recalc_flags(kattr, m);
4437 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4438 
4439 		/* If we had to hold writers unblock them. */
4440 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4441 			mnt_unhold_writers(m);
4442 
4443 		if (kattr->propagation)
4444 			change_mnt_propagation(m, kattr->propagation);
4445 		if (!kattr->recurse)
4446 			break;
4447 	}
4448 	touch_mnt_namespace(mnt->mnt_ns);
4449 }
4450 
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4451 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4452 {
4453 	struct mount *mnt = real_mount(path->mnt);
4454 	int err = 0;
4455 
4456 	if (!path_mounted(path))
4457 		return -EINVAL;
4458 
4459 	if (kattr->mnt_userns) {
4460 		struct mnt_idmap *mnt_idmap;
4461 
4462 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4463 		if (IS_ERR(mnt_idmap))
4464 			return PTR_ERR(mnt_idmap);
4465 		kattr->mnt_idmap = mnt_idmap;
4466 	}
4467 
4468 	if (kattr->propagation) {
4469 		/*
4470 		 * Only take namespace_lock() if we're actually changing
4471 		 * propagation.
4472 		 */
4473 		namespace_lock();
4474 		if (kattr->propagation == MS_SHARED) {
4475 			err = invent_group_ids(mnt, kattr->recurse);
4476 			if (err) {
4477 				namespace_unlock();
4478 				return err;
4479 			}
4480 		}
4481 	}
4482 
4483 	err = -EINVAL;
4484 	lock_mount_hash();
4485 
4486 	/* Ensure that this isn't anything purely vfs internal. */
4487 	if (!is_mounted(&mnt->mnt))
4488 		goto out;
4489 
4490 	/*
4491 	 * If this is an attached mount make sure it's located in the callers
4492 	 * mount namespace. If it's not don't let the caller interact with it.
4493 	 *
4494 	 * If this mount doesn't have a parent it's most often simply a
4495 	 * detached mount with an anonymous mount namespace. IOW, something
4496 	 * that's simply not attached yet. But there are apparently also users
4497 	 * that do change mount properties on the rootfs itself. That obviously
4498 	 * neither has a parent nor is it a detached mount so we cannot
4499 	 * unconditionally check for detached mounts.
4500 	 */
4501 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4502 		goto out;
4503 
4504 	/*
4505 	 * First, we get the mount tree in a shape where we can change mount
4506 	 * properties without failure. If we succeeded to do so we commit all
4507 	 * changes and if we failed we clean up.
4508 	 */
4509 	err = mount_setattr_prepare(kattr, mnt);
4510 	if (!err)
4511 		mount_setattr_commit(kattr, mnt);
4512 
4513 out:
4514 	unlock_mount_hash();
4515 
4516 	if (kattr->propagation) {
4517 		if (err)
4518 			cleanup_group_ids(mnt, NULL);
4519 		namespace_unlock();
4520 	}
4521 
4522 	return err;
4523 }
4524 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4525 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4526 				struct mount_kattr *kattr, unsigned int flags)
4527 {
4528 	int err = 0;
4529 	struct ns_common *ns;
4530 	struct user_namespace *mnt_userns;
4531 	struct fd f;
4532 
4533 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4534 		return 0;
4535 
4536 	/*
4537 	 * We currently do not support clearing an idmapped mount. If this ever
4538 	 * is a use-case we can revisit this but for now let's keep it simple
4539 	 * and not allow it.
4540 	 */
4541 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4542 		return -EINVAL;
4543 
4544 	if (attr->userns_fd > INT_MAX)
4545 		return -EINVAL;
4546 
4547 	f = fdget(attr->userns_fd);
4548 	if (!f.file)
4549 		return -EBADF;
4550 
4551 	if (!proc_ns_file(f.file)) {
4552 		err = -EINVAL;
4553 		goto out_fput;
4554 	}
4555 
4556 	ns = get_proc_ns(file_inode(f.file));
4557 	if (ns->ops->type != CLONE_NEWUSER) {
4558 		err = -EINVAL;
4559 		goto out_fput;
4560 	}
4561 
4562 	/*
4563 	 * The initial idmapping cannot be used to create an idmapped
4564 	 * mount. We use the initial idmapping as an indicator of a mount
4565 	 * that is not idmapped. It can simply be passed into helpers that
4566 	 * are aware of idmapped mounts as a convenient shortcut. A user
4567 	 * can just create a dedicated identity mapping to achieve the same
4568 	 * result.
4569 	 */
4570 	mnt_userns = container_of(ns, struct user_namespace, ns);
4571 	if (mnt_userns == &init_user_ns) {
4572 		err = -EPERM;
4573 		goto out_fput;
4574 	}
4575 
4576 	/* We're not controlling the target namespace. */
4577 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4578 		err = -EPERM;
4579 		goto out_fput;
4580 	}
4581 
4582 	kattr->mnt_userns = get_user_ns(mnt_userns);
4583 
4584 out_fput:
4585 	fdput(f);
4586 	return err;
4587 }
4588 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4589 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4590 			     struct mount_kattr *kattr, unsigned int flags)
4591 {
4592 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4593 
4594 	if (flags & AT_NO_AUTOMOUNT)
4595 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4596 	if (flags & AT_SYMLINK_NOFOLLOW)
4597 		lookup_flags &= ~LOOKUP_FOLLOW;
4598 	if (flags & AT_EMPTY_PATH)
4599 		lookup_flags |= LOOKUP_EMPTY;
4600 
4601 	*kattr = (struct mount_kattr) {
4602 		.lookup_flags	= lookup_flags,
4603 		.recurse	= !!(flags & AT_RECURSIVE),
4604 	};
4605 
4606 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4607 		return -EINVAL;
4608 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4609 		return -EINVAL;
4610 	kattr->propagation = attr->propagation;
4611 
4612 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4613 		return -EINVAL;
4614 
4615 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4616 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4617 
4618 	/*
4619 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4620 	 * users wanting to transition to a different atime setting cannot
4621 	 * simply specify the atime setting in @attr_set, but must also
4622 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4623 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4624 	 * @attr_clr and that @attr_set can't have any atime bits set if
4625 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4626 	 */
4627 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4628 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4629 			return -EINVAL;
4630 
4631 		/*
4632 		 * Clear all previous time settings as they are mutually
4633 		 * exclusive.
4634 		 */
4635 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4636 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4637 		case MOUNT_ATTR_RELATIME:
4638 			kattr->attr_set |= MNT_RELATIME;
4639 			break;
4640 		case MOUNT_ATTR_NOATIME:
4641 			kattr->attr_set |= MNT_NOATIME;
4642 			break;
4643 		case MOUNT_ATTR_STRICTATIME:
4644 			break;
4645 		default:
4646 			return -EINVAL;
4647 		}
4648 	} else {
4649 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4650 			return -EINVAL;
4651 	}
4652 
4653 	return build_mount_idmapped(attr, usize, kattr, flags);
4654 }
4655 
finish_mount_kattr(struct mount_kattr * kattr)4656 static void finish_mount_kattr(struct mount_kattr *kattr)
4657 {
4658 	put_user_ns(kattr->mnt_userns);
4659 	kattr->mnt_userns = NULL;
4660 
4661 	if (kattr->mnt_idmap)
4662 		mnt_idmap_put(kattr->mnt_idmap);
4663 }
4664 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4665 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4666 		unsigned int, flags, struct mount_attr __user *, uattr,
4667 		size_t, usize)
4668 {
4669 	int err;
4670 	struct path target;
4671 	struct mount_attr attr;
4672 	struct mount_kattr kattr;
4673 
4674 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4675 
4676 	if (flags & ~(AT_EMPTY_PATH |
4677 		      AT_RECURSIVE |
4678 		      AT_SYMLINK_NOFOLLOW |
4679 		      AT_NO_AUTOMOUNT))
4680 		return -EINVAL;
4681 
4682 	if (unlikely(usize > PAGE_SIZE))
4683 		return -E2BIG;
4684 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4685 		return -EINVAL;
4686 
4687 	if (!may_mount())
4688 		return -EPERM;
4689 
4690 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4691 	if (err)
4692 		return err;
4693 
4694 	/* Don't bother walking through the mounts if this is a nop. */
4695 	if (attr.attr_set == 0 &&
4696 	    attr.attr_clr == 0 &&
4697 	    attr.propagation == 0)
4698 		return 0;
4699 
4700 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4701 	if (err)
4702 		return err;
4703 
4704 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4705 	if (!err) {
4706 		err = do_mount_setattr(&target, &kattr);
4707 		path_put(&target);
4708 	}
4709 	finish_mount_kattr(&kattr);
4710 	return err;
4711 }
4712 
init_mount_tree(void)4713 static void __init init_mount_tree(void)
4714 {
4715 	struct vfsmount *mnt;
4716 	struct mount *m;
4717 	struct mnt_namespace *ns;
4718 	struct path root;
4719 
4720 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4721 	if (IS_ERR(mnt))
4722 		panic("Can't create rootfs");
4723 
4724 	ns = alloc_mnt_ns(&init_user_ns, false);
4725 	if (IS_ERR(ns))
4726 		panic("Can't allocate initial namespace");
4727 	m = real_mount(mnt);
4728 	m->mnt_ns = ns;
4729 	ns->root = m;
4730 	ns->mounts = 1;
4731 	list_add(&m->mnt_list, &ns->list);
4732 	init_task.nsproxy->mnt_ns = ns;
4733 	get_mnt_ns(ns);
4734 
4735 	root.mnt = mnt;
4736 	root.dentry = mnt->mnt_root;
4737 	mnt->mnt_flags |= MNT_LOCKED;
4738 
4739 	set_fs_pwd(current->fs, &root);
4740 	set_fs_root(current->fs, &root);
4741 }
4742 
mnt_init(void)4743 void __init mnt_init(void)
4744 {
4745 	int err;
4746 
4747 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4748 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4749 
4750 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4751 				sizeof(struct hlist_head),
4752 				mhash_entries, 19,
4753 				HASH_ZERO,
4754 				&m_hash_shift, &m_hash_mask, 0, 0);
4755 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4756 				sizeof(struct hlist_head),
4757 				mphash_entries, 19,
4758 				HASH_ZERO,
4759 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4760 
4761 	if (!mount_hashtable || !mountpoint_hashtable)
4762 		panic("Failed to allocate mount hash table\n");
4763 
4764 	kernfs_init();
4765 
4766 	err = sysfs_init();
4767 	if (err)
4768 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4769 			__func__, err);
4770 	fs_kobj = kobject_create_and_add("fs", NULL);
4771 	if (!fs_kobj)
4772 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4773 	shmem_init();
4774 	init_rootfs();
4775 	init_mount_tree();
4776 }
4777 
put_mnt_ns(struct mnt_namespace * ns)4778 void put_mnt_ns(struct mnt_namespace *ns)
4779 {
4780 	if (!refcount_dec_and_test(&ns->ns.count))
4781 		return;
4782 	drop_collected_mounts(&ns->root->mnt);
4783 	free_mnt_ns(ns);
4784 }
4785 
kern_mount(struct file_system_type * type)4786 struct vfsmount *kern_mount(struct file_system_type *type)
4787 {
4788 	struct vfsmount *mnt;
4789 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4790 	if (!IS_ERR(mnt)) {
4791 		/*
4792 		 * it is a longterm mount, don't release mnt until
4793 		 * we unmount before file sys is unregistered
4794 		*/
4795 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4796 	}
4797 	return mnt;
4798 }
4799 EXPORT_SYMBOL_GPL(kern_mount);
4800 
kern_unmount(struct vfsmount * mnt)4801 void kern_unmount(struct vfsmount *mnt)
4802 {
4803 	/* release long term mount so mount point can be released */
4804 	if (!IS_ERR(mnt)) {
4805 		mnt_make_shortterm(mnt);
4806 		synchronize_rcu();	/* yecchhh... */
4807 		mntput(mnt);
4808 	}
4809 }
4810 EXPORT_SYMBOL(kern_unmount);
4811 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)4812 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4813 {
4814 	unsigned int i;
4815 
4816 	for (i = 0; i < num; i++)
4817 		mnt_make_shortterm(mnt[i]);
4818 	synchronize_rcu_expedited();
4819 	for (i = 0; i < num; i++)
4820 		mntput(mnt[i]);
4821 }
4822 EXPORT_SYMBOL(kern_unmount_array);
4823 
our_mnt(struct vfsmount * mnt)4824 bool our_mnt(struct vfsmount *mnt)
4825 {
4826 	return check_mnt(real_mount(mnt));
4827 }
4828 
current_chrooted(void)4829 bool current_chrooted(void)
4830 {
4831 	/* Does the current process have a non-standard root */
4832 	struct path ns_root;
4833 	struct path fs_root;
4834 	bool chrooted;
4835 
4836 	/* Find the namespace root */
4837 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4838 	ns_root.dentry = ns_root.mnt->mnt_root;
4839 	path_get(&ns_root);
4840 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4841 		;
4842 
4843 	get_fs_root(current->fs, &fs_root);
4844 
4845 	chrooted = !path_equal(&fs_root, &ns_root);
4846 
4847 	path_put(&fs_root);
4848 	path_put(&ns_root);
4849 
4850 	return chrooted;
4851 }
4852 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)4853 static bool mnt_already_visible(struct mnt_namespace *ns,
4854 				const struct super_block *sb,
4855 				int *new_mnt_flags)
4856 {
4857 	int new_flags = *new_mnt_flags;
4858 	struct mount *mnt;
4859 	bool visible = false;
4860 
4861 	down_read(&namespace_sem);
4862 	lock_ns_list(ns);
4863 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4864 		struct mount *child;
4865 		int mnt_flags;
4866 
4867 		if (mnt_is_cursor(mnt))
4868 			continue;
4869 
4870 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4871 			continue;
4872 
4873 		/* This mount is not fully visible if it's root directory
4874 		 * is not the root directory of the filesystem.
4875 		 */
4876 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4877 			continue;
4878 
4879 		/* A local view of the mount flags */
4880 		mnt_flags = mnt->mnt.mnt_flags;
4881 
4882 		/* Don't miss readonly hidden in the superblock flags */
4883 		if (sb_rdonly(mnt->mnt.mnt_sb))
4884 			mnt_flags |= MNT_LOCK_READONLY;
4885 
4886 		/* Verify the mount flags are equal to or more permissive
4887 		 * than the proposed new mount.
4888 		 */
4889 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4890 		    !(new_flags & MNT_READONLY))
4891 			continue;
4892 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4893 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4894 			continue;
4895 
4896 		/* This mount is not fully visible if there are any
4897 		 * locked child mounts that cover anything except for
4898 		 * empty directories.
4899 		 */
4900 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4901 			struct inode *inode = child->mnt_mountpoint->d_inode;
4902 			/* Only worry about locked mounts */
4903 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4904 				continue;
4905 			/* Is the directory permanetly empty? */
4906 			if (!is_empty_dir_inode(inode))
4907 				goto next;
4908 		}
4909 		/* Preserve the locked attributes */
4910 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4911 					       MNT_LOCK_ATIME);
4912 		visible = true;
4913 		goto found;
4914 	next:	;
4915 	}
4916 found:
4917 	unlock_ns_list(ns);
4918 	up_read(&namespace_sem);
4919 	return visible;
4920 }
4921 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)4922 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4923 {
4924 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4925 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4926 	unsigned long s_iflags;
4927 
4928 	if (ns->user_ns == &init_user_ns)
4929 		return false;
4930 
4931 	/* Can this filesystem be too revealing? */
4932 	s_iflags = sb->s_iflags;
4933 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4934 		return false;
4935 
4936 	if ((s_iflags & required_iflags) != required_iflags) {
4937 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4938 			  required_iflags);
4939 		return true;
4940 	}
4941 
4942 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4943 }
4944 
mnt_may_suid(struct vfsmount * mnt)4945 bool mnt_may_suid(struct vfsmount *mnt)
4946 {
4947 	/*
4948 	 * Foreign mounts (accessed via fchdir or through /proc
4949 	 * symlinks) are always treated as if they are nosuid.  This
4950 	 * prevents namespaces from trusting potentially unsafe
4951 	 * suid/sgid bits, file caps, or security labels that originate
4952 	 * in other namespaces.
4953 	 */
4954 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4955 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4956 }
4957 
mntns_get(struct task_struct * task)4958 static struct ns_common *mntns_get(struct task_struct *task)
4959 {
4960 	struct ns_common *ns = NULL;
4961 	struct nsproxy *nsproxy;
4962 
4963 	task_lock(task);
4964 	nsproxy = task->nsproxy;
4965 	if (nsproxy) {
4966 		ns = &nsproxy->mnt_ns->ns;
4967 		get_mnt_ns(to_mnt_ns(ns));
4968 	}
4969 	task_unlock(task);
4970 
4971 	return ns;
4972 }
4973 
mntns_put(struct ns_common * ns)4974 static void mntns_put(struct ns_common *ns)
4975 {
4976 	put_mnt_ns(to_mnt_ns(ns));
4977 }
4978 
mntns_install(struct nsset * nsset,struct ns_common * ns)4979 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4980 {
4981 	struct nsproxy *nsproxy = nsset->nsproxy;
4982 	struct fs_struct *fs = nsset->fs;
4983 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4984 	struct user_namespace *user_ns = nsset->cred->user_ns;
4985 	struct path root;
4986 	int err;
4987 
4988 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4989 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4990 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4991 		return -EPERM;
4992 
4993 	if (is_anon_ns(mnt_ns))
4994 		return -EINVAL;
4995 
4996 	if (fs->users != 1)
4997 		return -EINVAL;
4998 
4999 	get_mnt_ns(mnt_ns);
5000 	old_mnt_ns = nsproxy->mnt_ns;
5001 	nsproxy->mnt_ns = mnt_ns;
5002 
5003 	/* Find the root */
5004 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5005 				"/", LOOKUP_DOWN, &root);
5006 	if (err) {
5007 		/* revert to old namespace */
5008 		nsproxy->mnt_ns = old_mnt_ns;
5009 		put_mnt_ns(mnt_ns);
5010 		return err;
5011 	}
5012 
5013 	put_mnt_ns(old_mnt_ns);
5014 
5015 	/* Update the pwd and root */
5016 	set_fs_pwd(fs, &root);
5017 	set_fs_root(fs, &root);
5018 
5019 	path_put(&root);
5020 	return 0;
5021 }
5022 
mntns_owner(struct ns_common * ns)5023 static struct user_namespace *mntns_owner(struct ns_common *ns)
5024 {
5025 	return to_mnt_ns(ns)->user_ns;
5026 }
5027 
5028 const struct proc_ns_operations mntns_operations = {
5029 	.name		= "mnt",
5030 	.type		= CLONE_NEWNS,
5031 	.get		= mntns_get,
5032 	.put		= mntns_put,
5033 	.install	= mntns_install,
5034 	.owner		= mntns_owner,
5035 };
5036 
5037 #ifdef CONFIG_SYSCTL
5038 static struct ctl_table fs_namespace_sysctls[] = {
5039 	{
5040 		.procname	= "mount-max",
5041 		.data		= &sysctl_mount_max,
5042 		.maxlen		= sizeof(unsigned int),
5043 		.mode		= 0644,
5044 		.proc_handler	= proc_dointvec_minmax,
5045 		.extra1		= SYSCTL_ONE,
5046 	},
5047 	{ }
5048 };
5049 
init_fs_namespace_sysctls(void)5050 static int __init init_fs_namespace_sysctls(void)
5051 {
5052 	register_sysctl_init("fs", fs_namespace_sysctls);
5053 	return 0;
5054 }
5055 fs_initcall(init_fs_namespace_sysctls);
5056 
5057 #endif /* CONFIG_SYSCTL */
5058