xref: /openbmc/linux/drivers/gpu/drm/bridge/ti-sn65dsi86.c (revision 7df45f35313c1ae083dac72c066b3aebfc7fc0cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include <asm/unaligned.h>
25 
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_panel.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_probe_helper.h>
38 
39 #define SN_DEVICE_REV_REG			0x08
40 #define SN_DPPLL_SRC_REG			0x0A
41 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
42 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)				((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
45 #define SN_PLL_ENABLE_REG			0x0D
46 #define SN_DSI_LANES_REG			0x10
47 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)			((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG			0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
54 #define  CHA_HSYNC_POLARITY			BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
57 #define  CHA_VSYNC_POLARITY			BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
62 #define SN_LN_ASSIGN_REG			0x59
63 #define  LN_ASSIGN_WIDTH			2
64 #define SN_ENH_FRAME_REG			0x5A
65 #define  VSTREAM_ENABLE				BIT(3)
66 #define  LN_POLRS_OFFSET			4
67 #define  LN_POLRS_MASK				0xf0
68 #define SN_DATA_FORMAT_REG			0x5B
69 #define  BPP_18_RGB				BIT(0)
70 #define SN_HPD_DISABLE_REG			0x5C
71 #define  HPD_DISABLE				BIT(0)
72 #define  HPD_DEBOUNCED_STATE			BIT(4)
73 #define SN_GPIO_IO_REG				0x5E
74 #define  SN_GPIO_INPUT_SHIFT			4
75 #define  SN_GPIO_OUTPUT_SHIFT			0
76 #define SN_GPIO_CTRL_REG			0x5F
77 #define  SN_GPIO_MUX_INPUT			0
78 #define  SN_GPIO_MUX_OUTPUT			1
79 #define  SN_GPIO_MUX_SPECIAL			2
80 #define  SN_GPIO_MUX_MASK			0x3
81 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG			0x74
83 #define SN_AUX_ADDR_15_8_REG			0x75
84 #define SN_AUX_ADDR_7_0_REG			0x76
85 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG			0x77
87 #define SN_AUX_CMD_REG				0x78
88 #define  AUX_CMD_SEND				BIT(0)
89 #define  AUX_CMD_REQ(x)				((x) << 4)
90 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
91 #define SN_SSC_CONFIG_REG			0x93
92 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)			((x) << 4)
94 #define SN_DATARATE_CONFIG_REG			0x94
95 #define  DP_DATARATE_MASK			GENMASK(7, 5)
96 #define  DP_DATARATE(x)				((x) << 5)
97 #define SN_TRAINING_SETTING_REG			0x95
98 #define  SCRAMBLE_DISABLE			BIT(4)
99 #define SN_ML_TX_MODE_REG			0x96
100 #define  ML_TX_MAIN_LINK_OFF			0
101 #define  ML_TX_NORMAL_MODE			BIT(0)
102 #define SN_PWM_PRE_DIV_REG			0xA0
103 #define SN_BACKLIGHT_SCALE_REG			0xA1
104 #define  BACKLIGHT_SCALE_MAX			0xFFFF
105 #define SN_BACKLIGHT_REG			0xA3
106 #define SN_PWM_EN_INV_REG			0xA5
107 #define  SN_PWM_INV_MASK			BIT(0)
108 #define  SN_PWM_EN_MASK				BIT(1)
109 #define SN_AUX_CMD_STATUS_REG			0xF4
110 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
111 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
112 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
113 
114 #define MIN_DSI_CLK_FREQ_MHZ	40
115 
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM	10
118 #define DP_CLK_FUDGE_DEN	8
119 
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES	16
122 
123 #define SN_REGULATOR_SUPPLY_NUM		4
124 
125 #define SN_MAX_DP_LANES			4
126 #define SN_NUM_GPIOS			4
127 #define SN_GPIO_PHYSICAL_OFFSET		1
128 
129 #define SN_LINK_TRAINING_TRIES		10
130 
131 #define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
132 
133 /**
134  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139  *
140  * @dev:          Pointer to the top level (i2c) device.
141  * @regmap:       Regmap for accessing i2c.
142  * @aux:          Our aux channel.
143  * @bridge:       Our bridge.
144  * @connector:    Our connector.
145  * @host_node:    Remote DSI node.
146  * @dsi:          Our MIPI DSI source.
147  * @refclk:       Our reference clock.
148  * @next_bridge:  The bridge on the eDP side.
149  * @enable_gpio:  The GPIO we toggle to enable the bridge.
150  * @supplies:     Data for bulk enabling/disabling our regulators.
151  * @dp_lanes:     Count of dp_lanes we're using.
152  * @ln_assign:    Value to program to the LN_ASSIGN register.
153  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154  * @comms_enabled: If true then communication over the aux channel is enabled.
155  * @comms_mutex:   Protects modification of comms_enabled.
156  *
157  * @gchip:        If we expose our GPIOs, this is used.
158  * @gchip_output: A cache of whether we've set GPIOs to output.  This
159  *                serves double-duty of keeping track of the direction and
160  *                also keeping track of whether we've incremented the
161  *                pm_runtime reference count for this pin, which we do
162  *                whenever a pin is configured as an output.  This is a
163  *                bitmap so we can do atomic ops on it without an extra
164  *                lock so concurrent users of our 4 GPIOs don't stomp on
165  *                each other's read-modify-write.
166  *
167  * @pchip:        pwm_chip if the PWM is exposed.
168  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171  */
172 struct ti_sn65dsi86 {
173 	struct auxiliary_device		*bridge_aux;
174 	struct auxiliary_device		*gpio_aux;
175 	struct auxiliary_device		*aux_aux;
176 	struct auxiliary_device		*pwm_aux;
177 
178 	struct device			*dev;
179 	struct regmap			*regmap;
180 	struct drm_dp_aux		aux;
181 	struct drm_bridge		bridge;
182 	struct drm_connector		*connector;
183 	struct device_node		*host_node;
184 	struct mipi_dsi_device		*dsi;
185 	struct clk			*refclk;
186 	struct drm_bridge		*next_bridge;
187 	struct gpio_desc		*enable_gpio;
188 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
189 	int				dp_lanes;
190 	u8				ln_assign;
191 	u8				ln_polrs;
192 	bool				comms_enabled;
193 	struct mutex			comms_mutex;
194 
195 #if defined(CONFIG_OF_GPIO)
196 	struct gpio_chip		gchip;
197 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if defined(CONFIG_PWM)
200 	struct pwm_chip			pchip;
201 	bool				pwm_enabled;
202 	atomic_t			pwm_pin_busy;
203 #endif
204 	unsigned int			pwm_refclk_freq;
205 };
206 
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208 	{ .range_min = 0, .range_max = 0xFF },
209 };
210 
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
213 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215 
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217 	.reg_bits = 8,
218 	.val_bits = 8,
219 	.volatile_table = &ti_sn_bridge_volatile_table,
220 	.cache_type = REGCACHE_NONE,
221 	.max_register = 0xFF,
222 };
223 
ti_sn65dsi86_read_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 * val)224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225 						unsigned int reg, u16 *val)
226 {
227 	u8 buf[2];
228 	int ret;
229 
230 	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231 	if (ret)
232 		return ret;
233 
234 	*val = buf[0] | (buf[1] << 8);
235 
236 	return 0;
237 }
238 
ti_sn65dsi86_write_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 val)239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240 				   unsigned int reg, u16 val)
241 {
242 	u8 buf[2] = { val & 0xff, val >> 8 };
243 
244 	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246 
ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 * pdata)247 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
248 {
249 	u32 bit_rate_khz, clk_freq_khz;
250 	struct drm_display_mode *mode =
251 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
252 
253 	bit_rate_khz = mode->clock *
254 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
255 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
256 
257 	return clk_freq_khz;
258 }
259 
260 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
261 static const u32 ti_sn_bridge_refclk_lut[] = {
262 	12000000,
263 	19200000,
264 	26000000,
265 	27000000,
266 	38400000,
267 };
268 
269 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
270 static const u32 ti_sn_bridge_dsiclk_lut[] = {
271 	468000000,
272 	384000000,
273 	416000000,
274 	486000000,
275 	460800000,
276 };
277 
ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 * pdata)278 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
279 {
280 	int i;
281 	u32 refclk_rate;
282 	const u32 *refclk_lut;
283 	size_t refclk_lut_size;
284 
285 	if (pdata->refclk) {
286 		refclk_rate = clk_get_rate(pdata->refclk);
287 		refclk_lut = ti_sn_bridge_refclk_lut;
288 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
289 		clk_prepare_enable(pdata->refclk);
290 	} else {
291 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
292 		refclk_lut = ti_sn_bridge_dsiclk_lut;
293 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
294 	}
295 
296 	/* for i equals to refclk_lut_size means default frequency */
297 	for (i = 0; i < refclk_lut_size; i++)
298 		if (refclk_lut[i] == refclk_rate)
299 			break;
300 
301 	/* avoid buffer overflow and "1" is the default rate in the datasheet. */
302 	if (i >= refclk_lut_size)
303 		i = 1;
304 
305 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
306 			   REFCLK_FREQ(i));
307 
308 	/*
309 	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
310 	 * regardless of its actual sourcing.
311 	 */
312 	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
313 }
314 
ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 * pdata)315 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
316 {
317 	mutex_lock(&pdata->comms_mutex);
318 
319 	/* configure bridge ref_clk */
320 	ti_sn_bridge_set_refclk_freq(pdata);
321 
322 	/*
323 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
324 	 * so the HPD is an internal signal that's only there to signal that
325 	 * the panel is done powering up.  ...but the bridge chip debounces
326 	 * this signal by between 100 ms and 400 ms (depending on process,
327 	 * voltage, and temperate--I measured it at about 200 ms).  One
328 	 * particular panel asserted HPD 84 ms after it was powered on meaning
329 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
330 	 * that instead of looking at HPD you could just hardcode a delay of
331 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
332 	 * delay in its prepare and always disable HPD.
333 	 *
334 	 * For DisplayPort bridge type, we need HPD. So we use the bridge type
335 	 * to conditionally disable HPD.
336 	 * NOTE: The bridge type is set in ti_sn_bridge_probe() but enable_comms()
337 	 * can be called before. So for DisplayPort, HPD will be enabled once
338 	 * bridge type is set. We are using bridge type instead of "no-hpd"
339 	 * property because it is not used properly in devicetree description
340 	 * and hence is unreliable.
341 	 */
342 
343 	if (pdata->bridge.type != DRM_MODE_CONNECTOR_DisplayPort)
344 		regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
345 				   HPD_DISABLE);
346 
347 	pdata->comms_enabled = true;
348 
349 	mutex_unlock(&pdata->comms_mutex);
350 }
351 
ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 * pdata)352 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
353 {
354 	mutex_lock(&pdata->comms_mutex);
355 
356 	pdata->comms_enabled = false;
357 	clk_disable_unprepare(pdata->refclk);
358 
359 	mutex_unlock(&pdata->comms_mutex);
360 }
361 
ti_sn65dsi86_resume(struct device * dev)362 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
363 {
364 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
365 	int ret;
366 
367 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
368 	if (ret) {
369 		DRM_ERROR("failed to enable supplies %d\n", ret);
370 		return ret;
371 	}
372 
373 	/* td2: min 100 us after regulators before enabling the GPIO */
374 	usleep_range(100, 110);
375 
376 	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
377 
378 	/*
379 	 * If we have a reference clock we can enable communication w/ the
380 	 * panel (including the aux channel) w/out any need for an input clock
381 	 * so we can do it in resume which lets us read the EDID before
382 	 * pre_enable(). Without a reference clock we need the MIPI reference
383 	 * clock so reading early doesn't work.
384 	 */
385 	if (pdata->refclk)
386 		ti_sn65dsi86_enable_comms(pdata);
387 
388 	return ret;
389 }
390 
ti_sn65dsi86_suspend(struct device * dev)391 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
392 {
393 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
394 	int ret;
395 
396 	if (pdata->refclk)
397 		ti_sn65dsi86_disable_comms(pdata);
398 
399 	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
400 
401 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
402 	if (ret)
403 		DRM_ERROR("failed to disable supplies %d\n", ret);
404 
405 	return ret;
406 }
407 
408 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
409 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
410 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
411 				pm_runtime_force_resume)
412 };
413 
status_show(struct seq_file * s,void * data)414 static int status_show(struct seq_file *s, void *data)
415 {
416 	struct ti_sn65dsi86 *pdata = s->private;
417 	unsigned int reg, val;
418 
419 	seq_puts(s, "STATUS REGISTERS:\n");
420 
421 	pm_runtime_get_sync(pdata->dev);
422 
423 	/* IRQ Status Registers, see Table 31 in datasheet */
424 	for (reg = 0xf0; reg <= 0xf8; reg++) {
425 		regmap_read(pdata->regmap, reg, &val);
426 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
427 	}
428 
429 	pm_runtime_put_autosuspend(pdata->dev);
430 
431 	return 0;
432 }
433 DEFINE_SHOW_ATTRIBUTE(status);
434 
435 /* -----------------------------------------------------------------------------
436  * Auxiliary Devices (*not* AUX)
437  */
438 
ti_sn65dsi86_uninit_aux(void * data)439 static void ti_sn65dsi86_uninit_aux(void *data)
440 {
441 	auxiliary_device_uninit(data);
442 }
443 
ti_sn65dsi86_delete_aux(void * data)444 static void ti_sn65dsi86_delete_aux(void *data)
445 {
446 	auxiliary_device_delete(data);
447 }
448 
ti_sn65dsi86_aux_device_release(struct device * dev)449 static void ti_sn65dsi86_aux_device_release(struct device *dev)
450 {
451 	struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev);
452 
453 	kfree(aux);
454 }
455 
ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 * pdata,struct auxiliary_device ** aux_out,const char * name)456 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
457 				       struct auxiliary_device **aux_out,
458 				       const char *name)
459 {
460 	struct device *dev = pdata->dev;
461 	const struct i2c_client *client = to_i2c_client(dev);
462 	struct auxiliary_device *aux;
463 	int ret;
464 
465 	aux = kzalloc(sizeof(*aux), GFP_KERNEL);
466 	if (!aux)
467 		return -ENOMEM;
468 
469 	aux->name = name;
470 	aux->id = (client->adapter->nr << 10) | client->addr;
471 	aux->dev.parent = dev;
472 	aux->dev.release = ti_sn65dsi86_aux_device_release;
473 	device_set_of_node_from_dev(&aux->dev, dev);
474 	ret = auxiliary_device_init(aux);
475 	if (ret) {
476 		kfree(aux);
477 		return ret;
478 	}
479 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
480 	if (ret)
481 		return ret;
482 
483 	ret = auxiliary_device_add(aux);
484 	if (ret)
485 		return ret;
486 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
487 	if (!ret)
488 		*aux_out = aux;
489 
490 	return ret;
491 }
492 
493 /* -----------------------------------------------------------------------------
494  * AUX Adapter
495  */
496 
aux_to_ti_sn65dsi86(struct drm_dp_aux * aux)497 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
498 {
499 	return container_of(aux, struct ti_sn65dsi86, aux);
500 }
501 
ti_sn_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)502 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
503 				  struct drm_dp_aux_msg *msg)
504 {
505 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
506 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
507 	u32 request_val = AUX_CMD_REQ(msg->request);
508 	u8 *buf = msg->buffer;
509 	unsigned int len = msg->size;
510 	unsigned int short_len;
511 	unsigned int val;
512 	int ret;
513 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
514 
515 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
516 		return -EINVAL;
517 
518 	pm_runtime_get_sync(pdata->dev);
519 	mutex_lock(&pdata->comms_mutex);
520 
521 	/*
522 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
523 	 * on a device without a dedicated reference clock then we just can't
524 	 * do it. Fail right away. This prevents non-refclk users from reading
525 	 * the EDID before enabling the panel but such is life.
526 	 */
527 	if (!pdata->comms_enabled) {
528 		ret = -EIO;
529 		goto exit;
530 	}
531 
532 	switch (request) {
533 	case DP_AUX_NATIVE_WRITE:
534 	case DP_AUX_I2C_WRITE:
535 	case DP_AUX_NATIVE_READ:
536 	case DP_AUX_I2C_READ:
537 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
538 		/* Assume it's good */
539 		msg->reply = 0;
540 		break;
541 	default:
542 		ret = -EINVAL;
543 		goto exit;
544 	}
545 
546 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
547 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
548 			   addr_len);
549 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
550 			  ARRAY_SIZE(addr_len));
551 
552 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
553 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
554 
555 	/* Clear old status bits before start so we don't get confused */
556 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
557 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
558 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
559 		     AUX_IRQ_STATUS_AUX_SHORT);
560 
561 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
562 
563 	/* Zero delay loop because i2c transactions are slow already */
564 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
565 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
566 	if (ret)
567 		goto exit;
568 
569 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
570 	if (ret)
571 		goto exit;
572 
573 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
574 		/*
575 		 * The hardware tried the message seven times per the DP spec
576 		 * but it hit a timeout. We ignore defers here because they're
577 		 * handled in hardware.
578 		 */
579 		ret = -ETIMEDOUT;
580 		goto exit;
581 	}
582 
583 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
584 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
585 		len = min(len, short_len);
586 		if (ret)
587 			goto exit;
588 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
589 		switch (request) {
590 		case DP_AUX_I2C_WRITE:
591 		case DP_AUX_I2C_READ:
592 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
593 			break;
594 		case DP_AUX_NATIVE_READ:
595 		case DP_AUX_NATIVE_WRITE:
596 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
597 			break;
598 		}
599 		len = 0;
600 		goto exit;
601 	}
602 
603 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
604 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
605 
606 exit:
607 	mutex_unlock(&pdata->comms_mutex);
608 	pm_runtime_mark_last_busy(pdata->dev);
609 	pm_runtime_put_autosuspend(pdata->dev);
610 
611 	if (ret)
612 		return ret;
613 	return len;
614 }
615 
ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux * aux,unsigned long wait_us)616 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
617 {
618 	/*
619 	 * The HPD in this chip is a bit useless (See comment in
620 	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
621 	 * for HPD, we just assume it's asserted after the wait_us delay.
622 	 *
623 	 * In case we are asked to wait forever (wait_us=0) take conservative
624 	 * 500ms delay.
625 	 */
626 	if (wait_us == 0)
627 		wait_us = 500000;
628 
629 	usleep_range(wait_us, wait_us + 1000);
630 
631 	return 0;
632 }
633 
ti_sn_aux_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)634 static int ti_sn_aux_probe(struct auxiliary_device *adev,
635 			   const struct auxiliary_device_id *id)
636 {
637 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
638 	int ret;
639 
640 	pdata->aux.name = "ti-sn65dsi86-aux";
641 	pdata->aux.dev = &adev->dev;
642 	pdata->aux.transfer = ti_sn_aux_transfer;
643 	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
644 	drm_dp_aux_init(&pdata->aux);
645 
646 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
647 	if (ret)
648 		return ret;
649 
650 	/*
651 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
652 	 * setup so we don't add it in the main driver probe, we add it now.
653 	 */
654 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
655 }
656 
657 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
658 	{ .name = "ti_sn65dsi86.aux", },
659 	{},
660 };
661 
662 static struct auxiliary_driver ti_sn_aux_driver = {
663 	.name = "aux",
664 	.probe = ti_sn_aux_probe,
665 	.id_table = ti_sn_aux_id_table,
666 };
667 
668 /*------------------------------------------------------------------------------
669  * DRM Bridge
670  */
671 
bridge_to_ti_sn65dsi86(struct drm_bridge * bridge)672 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
673 {
674 	return container_of(bridge, struct ti_sn65dsi86, bridge);
675 }
676 
ti_sn_attach_host(struct auxiliary_device * adev,struct ti_sn65dsi86 * pdata)677 static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata)
678 {
679 	int val;
680 	struct mipi_dsi_host *host;
681 	struct mipi_dsi_device *dsi;
682 	struct device *dev = pdata->dev;
683 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
684 						   .channel = 0,
685 						   .node = NULL,
686 	};
687 
688 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
689 	if (!host)
690 		return -EPROBE_DEFER;
691 
692 	dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info);
693 	if (IS_ERR(dsi))
694 		return PTR_ERR(dsi);
695 
696 	/* TODO: setting to 4 MIPI lanes always for now */
697 	dsi->lanes = 4;
698 	dsi->format = MIPI_DSI_FMT_RGB888;
699 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
700 
701 	/* check if continuous dsi clock is required or not */
702 	pm_runtime_get_sync(dev);
703 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
704 	pm_runtime_put_autosuspend(dev);
705 	if (!(val & DPPLL_CLK_SRC_DSICLK))
706 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
707 
708 	pdata->dsi = dsi;
709 
710 	return devm_mipi_dsi_attach(&adev->dev, dsi);
711 }
712 
ti_sn_bridge_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)713 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
714 			       enum drm_bridge_attach_flags flags)
715 {
716 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
717 	int ret;
718 
719 	pdata->aux.drm_dev = bridge->dev;
720 	ret = drm_dp_aux_register(&pdata->aux);
721 	if (ret < 0) {
722 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
723 		return ret;
724 	}
725 
726 	/*
727 	 * Attach the next bridge.
728 	 * We never want the next bridge to *also* create a connector.
729 	 */
730 	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
731 				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
732 	if (ret < 0)
733 		goto err_initted_aux;
734 
735 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
736 		return 0;
737 
738 	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
739 						     pdata->bridge.encoder);
740 	if (IS_ERR(pdata->connector)) {
741 		ret = PTR_ERR(pdata->connector);
742 		goto err_initted_aux;
743 	}
744 
745 	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
746 
747 	return 0;
748 
749 err_initted_aux:
750 	drm_dp_aux_unregister(&pdata->aux);
751 	return ret;
752 }
753 
ti_sn_bridge_detach(struct drm_bridge * bridge)754 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
755 {
756 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
757 }
758 
759 static enum drm_mode_status
ti_sn_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)760 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
761 			const struct drm_display_info *info,
762 			const struct drm_display_mode *mode)
763 {
764 	/* maximum supported resolution is 4K at 60 fps */
765 	if (mode->clock > 594000)
766 		return MODE_CLOCK_HIGH;
767 
768 	/*
769 	 * The front and back porch registers are 8 bits, and pulse width
770 	 * registers are 15 bits, so reject any modes with larger periods.
771 	 */
772 
773 	if ((mode->hsync_start - mode->hdisplay) > 0xff)
774 		return MODE_HBLANK_WIDE;
775 
776 	if ((mode->vsync_start - mode->vdisplay) > 0xff)
777 		return MODE_VBLANK_WIDE;
778 
779 	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
780 		return MODE_HSYNC_WIDE;
781 
782 	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
783 		return MODE_VSYNC_WIDE;
784 
785 	if ((mode->htotal - mode->hsync_end) > 0xff)
786 		return MODE_HBLANK_WIDE;
787 
788 	if ((mode->vtotal - mode->vsync_end) > 0xff)
789 		return MODE_VBLANK_WIDE;
790 
791 	return MODE_OK;
792 }
793 
ti_sn_bridge_atomic_disable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)794 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
795 					struct drm_bridge_state *old_bridge_state)
796 {
797 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
798 
799 	/* disable video stream */
800 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
801 }
802 
ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 * pdata)803 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
804 {
805 	unsigned int bit_rate_mhz, clk_freq_mhz;
806 	unsigned int val;
807 	struct drm_display_mode *mode =
808 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
809 
810 	/* set DSIA clk frequency */
811 	bit_rate_mhz = (mode->clock / 1000) *
812 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
813 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
814 
815 	/* for each increment in val, frequency increases by 5MHz */
816 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
817 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
818 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
819 }
820 
ti_sn_bridge_get_bpp(struct drm_connector * connector)821 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
822 {
823 	if (connector->display_info.bpc <= 6)
824 		return 18;
825 	else
826 		return 24;
827 }
828 
829 /*
830  * LUT index corresponds to register value and
831  * LUT values corresponds to dp data rate supported
832  * by the bridge in Mbps unit.
833  */
834 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
835 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
836 };
837 
ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 * pdata,unsigned int bpp)838 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
839 {
840 	unsigned int bit_rate_khz, dp_rate_mhz;
841 	unsigned int i;
842 	struct drm_display_mode *mode =
843 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
844 
845 	/* Calculate minimum bit rate based on our pixel clock. */
846 	bit_rate_khz = mode->clock * bpp;
847 
848 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
849 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
850 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
851 
852 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
853 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
854 			break;
855 
856 	return i;
857 }
858 
ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 * pdata)859 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
860 {
861 	unsigned int valid_rates = 0;
862 	unsigned int rate_per_200khz;
863 	unsigned int rate_mhz;
864 	u8 dpcd_val;
865 	int ret;
866 	int i, j;
867 
868 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
869 	if (ret != 1) {
870 		DRM_DEV_ERROR(pdata->dev,
871 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
872 		dpcd_val = DP_EDP_11;
873 	}
874 
875 	if (dpcd_val >= DP_EDP_14) {
876 		/* eDP 1.4 devices must provide a custom table */
877 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
878 
879 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
880 				       sink_rates, sizeof(sink_rates));
881 
882 		if (ret != sizeof(sink_rates)) {
883 			DRM_DEV_ERROR(pdata->dev,
884 				"Can't read supported rate table (%d)\n", ret);
885 
886 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
887 			memset(sink_rates, 0, sizeof(sink_rates));
888 		}
889 
890 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
891 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
892 
893 			if (!rate_per_200khz)
894 				break;
895 
896 			rate_mhz = rate_per_200khz * 200 / 1000;
897 			for (j = 0;
898 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
899 			     j++) {
900 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
901 					valid_rates |= BIT(j);
902 			}
903 		}
904 
905 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
906 			if (valid_rates & BIT(i))
907 				return valid_rates;
908 		}
909 		DRM_DEV_ERROR(pdata->dev,
910 			      "No matching eDP rates in table; falling back\n");
911 	}
912 
913 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
914 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
915 	if (ret != 1) {
916 		DRM_DEV_ERROR(pdata->dev,
917 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
918 			      ret);
919 		dpcd_val = DP_LINK_BW_5_4;
920 	}
921 
922 	switch (dpcd_val) {
923 	default:
924 		DRM_DEV_ERROR(pdata->dev,
925 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
926 			      (int)dpcd_val);
927 		fallthrough;
928 	case DP_LINK_BW_5_4:
929 		valid_rates |= BIT(7);
930 		fallthrough;
931 	case DP_LINK_BW_2_7:
932 		valid_rates |= BIT(4);
933 		fallthrough;
934 	case DP_LINK_BW_1_62:
935 		valid_rates |= BIT(1);
936 		break;
937 	}
938 
939 	return valid_rates;
940 }
941 
ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 * pdata)942 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
943 {
944 	struct drm_display_mode *mode =
945 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
946 	u8 hsync_polarity = 0, vsync_polarity = 0;
947 
948 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
949 		hsync_polarity = CHA_HSYNC_POLARITY;
950 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
951 		vsync_polarity = CHA_VSYNC_POLARITY;
952 
953 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
954 			       mode->hdisplay);
955 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
956 			       mode->vdisplay);
957 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
958 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
959 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
960 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
961 		     hsync_polarity);
962 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
963 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
964 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
965 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
966 		     vsync_polarity);
967 
968 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
969 		     (mode->htotal - mode->hsync_end) & 0xFF);
970 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
971 		     (mode->vtotal - mode->vsync_end) & 0xFF);
972 
973 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
974 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
975 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
976 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
977 
978 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
979 }
980 
ti_sn_get_max_lanes(struct ti_sn65dsi86 * pdata)981 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
982 {
983 	u8 data;
984 	int ret;
985 
986 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
987 	if (ret != 1) {
988 		DRM_DEV_ERROR(pdata->dev,
989 			      "Can't read lane count (%d); assuming 4\n", ret);
990 		return 4;
991 	}
992 
993 	return data & DP_LANE_COUNT_MASK;
994 }
995 
ti_sn_link_training(struct ti_sn65dsi86 * pdata,int dp_rate_idx,const char ** last_err_str)996 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
997 			       const char **last_err_str)
998 {
999 	unsigned int val;
1000 	int ret;
1001 	int i;
1002 
1003 	/* set dp clk frequency value */
1004 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
1005 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
1006 
1007 	/* enable DP PLL */
1008 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
1009 
1010 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
1011 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
1012 				       50 * 1000);
1013 	if (ret) {
1014 		*last_err_str = "DP_PLL_LOCK polling failed";
1015 		goto exit;
1016 	}
1017 
1018 	/*
1019 	 * We'll try to link train several times.  As part of link training
1020 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1021 	 * the panel isn't ready quite it might respond NAK here which means
1022 	 * we need to try again.
1023 	 */
1024 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1025 		/* Semi auto link training mode */
1026 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1027 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1028 					       val == ML_TX_MAIN_LINK_OFF ||
1029 					       val == ML_TX_NORMAL_MODE, 1000,
1030 					       500 * 1000);
1031 		if (ret) {
1032 			*last_err_str = "Training complete polling failed";
1033 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1034 			*last_err_str = "Link training failed, link is off";
1035 			ret = -EIO;
1036 			continue;
1037 		}
1038 
1039 		break;
1040 	}
1041 
1042 	/* If we saw quite a few retries, add a note about it */
1043 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1044 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1045 
1046 exit:
1047 	/* Disable the PLL if we failed */
1048 	if (ret)
1049 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1050 
1051 	return ret;
1052 }
1053 
ti_sn_bridge_atomic_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1054 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1055 				       struct drm_bridge_state *old_bridge_state)
1056 {
1057 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1058 	struct drm_connector *connector;
1059 	const char *last_err_str = "No supported DP rate";
1060 	unsigned int valid_rates;
1061 	int dp_rate_idx;
1062 	unsigned int val;
1063 	int ret = -EINVAL;
1064 	int max_dp_lanes;
1065 	unsigned int bpp;
1066 
1067 	connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1068 							     bridge->encoder);
1069 	if (!connector) {
1070 		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1071 		return;
1072 	}
1073 
1074 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1075 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1076 
1077 	/* DSI_A lane config */
1078 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1079 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1080 			   CHA_DSI_LANES_MASK, val);
1081 
1082 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1083 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1084 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1085 
1086 	/* set dsi clk frequency value */
1087 	ti_sn_bridge_set_dsi_rate(pdata);
1088 
1089 	/*
1090 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1091 	 * this method is enabled for eDP panels. An eDP panel must support this
1092 	 * authentication method. We need to enable this method in the eDP panel
1093 	 * at DisplayPort address 0x0010A prior to link training.
1094 	 *
1095 	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1096 	 * we need to disable the scrambler.
1097 	 */
1098 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1099 		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1100 				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1101 
1102 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1103 				   SCRAMBLE_DISABLE, 0);
1104 	} else {
1105 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1106 				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1107 	}
1108 
1109 	bpp = ti_sn_bridge_get_bpp(connector);
1110 	/* Set the DP output format (18 bpp or 24 bpp) */
1111 	val = bpp == 18 ? BPP_18_RGB : 0;
1112 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1113 
1114 	/* DP lane config */
1115 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1116 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1117 			   val);
1118 
1119 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1120 
1121 	/* Train until we run out of rates */
1122 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1123 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1124 	     dp_rate_idx++) {
1125 		if (!(valid_rates & BIT(dp_rate_idx)))
1126 			continue;
1127 
1128 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1129 		if (!ret)
1130 			break;
1131 	}
1132 	if (ret) {
1133 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1134 		return;
1135 	}
1136 
1137 	/* config video parameters */
1138 	ti_sn_bridge_set_video_timings(pdata);
1139 
1140 	/* enable video stream */
1141 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1142 			   VSTREAM_ENABLE);
1143 }
1144 
ti_sn_bridge_atomic_pre_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1145 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1146 					   struct drm_bridge_state *old_bridge_state)
1147 {
1148 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1149 
1150 	pm_runtime_get_sync(pdata->dev);
1151 
1152 	if (!pdata->refclk)
1153 		ti_sn65dsi86_enable_comms(pdata);
1154 
1155 	/* td7: min 100 us after enable before DSI data */
1156 	usleep_range(100, 110);
1157 }
1158 
ti_sn_bridge_atomic_post_disable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1159 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1160 					     struct drm_bridge_state *old_bridge_state)
1161 {
1162 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1163 
1164 	/* semi auto link training mode OFF */
1165 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1166 	/* Num lanes to 0 as per power sequencing in data sheet */
1167 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1168 	/* disable DP PLL */
1169 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1170 
1171 	if (!pdata->refclk)
1172 		ti_sn65dsi86_disable_comms(pdata);
1173 
1174 	pm_runtime_put_sync(pdata->dev);
1175 }
1176 
ti_sn_bridge_detect(struct drm_bridge * bridge)1177 static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1178 {
1179 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1180 	int val = 0;
1181 
1182 	/*
1183 	 * Runtime reference is grabbed in ti_sn_bridge_hpd_enable()
1184 	 * as the chip won't report HPD just after being powered on.
1185 	 * HPD_DEBOUNCED_STATE reflects correct state only after the
1186 	 * debounce time (~100-400 ms).
1187 	 */
1188 
1189 	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1190 
1191 	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1192 					 : connector_status_disconnected;
1193 }
1194 
ti_sn_bridge_get_edid(struct drm_bridge * bridge,struct drm_connector * connector)1195 static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
1196 					  struct drm_connector *connector)
1197 {
1198 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1199 
1200 	return drm_get_edid(connector, &pdata->aux.ddc);
1201 }
1202 
ti_sn65dsi86_debugfs_init(struct drm_bridge * bridge,struct dentry * root)1203 static void ti_sn65dsi86_debugfs_init(struct drm_bridge *bridge, struct dentry *root)
1204 {
1205 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1206 	struct dentry *debugfs;
1207 
1208 	debugfs = debugfs_create_dir(dev_name(pdata->dev), root);
1209 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
1210 }
1211 
ti_sn_bridge_hpd_enable(struct drm_bridge * bridge)1212 static void ti_sn_bridge_hpd_enable(struct drm_bridge *bridge)
1213 {
1214 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1215 
1216 	/*
1217 	 * Device needs to be powered on before reading the HPD state
1218 	 * for reliable hpd detection in ti_sn_bridge_detect() due to
1219 	 * the high debounce time.
1220 	 */
1221 
1222 	pm_runtime_get_sync(pdata->dev);
1223 }
1224 
ti_sn_bridge_hpd_disable(struct drm_bridge * bridge)1225 static void ti_sn_bridge_hpd_disable(struct drm_bridge *bridge)
1226 {
1227 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1228 
1229 	pm_runtime_put_autosuspend(pdata->dev);
1230 }
1231 
1232 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1233 	.attach = ti_sn_bridge_attach,
1234 	.detach = ti_sn_bridge_detach,
1235 	.mode_valid = ti_sn_bridge_mode_valid,
1236 	.get_edid = ti_sn_bridge_get_edid,
1237 	.detect = ti_sn_bridge_detect,
1238 	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1239 	.atomic_enable = ti_sn_bridge_atomic_enable,
1240 	.atomic_disable = ti_sn_bridge_atomic_disable,
1241 	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1242 	.atomic_reset = drm_atomic_helper_bridge_reset,
1243 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1244 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1245 	.debugfs_init = ti_sn65dsi86_debugfs_init,
1246 	.hpd_enable = ti_sn_bridge_hpd_enable,
1247 	.hpd_disable = ti_sn_bridge_hpd_disable,
1248 };
1249 
ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 * pdata,struct device_node * np)1250 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1251 				     struct device_node *np)
1252 {
1253 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1254 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1255 	struct device_node *endpoint;
1256 	u8 ln_assign = 0;
1257 	u8 ln_polrs = 0;
1258 	int dp_lanes;
1259 	int i;
1260 
1261 	/*
1262 	 * Read config from the device tree about lane remapping and lane
1263 	 * polarities.  These are optional and we assume identity map and
1264 	 * normal polarity if nothing is specified.  It's OK to specify just
1265 	 * data-lanes but not lane-polarities but not vice versa.
1266 	 *
1267 	 * Error checking is light (we just make sure we don't crash or
1268 	 * buffer overrun) and we assume dts is well formed and specifying
1269 	 * mappings that the hardware supports.
1270 	 */
1271 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1272 	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1273 	if (dp_lanes > 0) {
1274 		of_property_read_u32_array(endpoint, "data-lanes",
1275 					   lane_assignments, dp_lanes);
1276 		of_property_read_u32_array(endpoint, "lane-polarities",
1277 					   lane_polarities, dp_lanes);
1278 	} else {
1279 		dp_lanes = SN_MAX_DP_LANES;
1280 	}
1281 	of_node_put(endpoint);
1282 
1283 	/*
1284 	 * Convert into register format.  Loop over all lanes even if
1285 	 * data-lanes had fewer elements so that we nicely initialize
1286 	 * the LN_ASSIGN register.
1287 	 */
1288 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1289 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1290 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1291 	}
1292 
1293 	/* Stash in our struct for when we power on */
1294 	pdata->dp_lanes = dp_lanes;
1295 	pdata->ln_assign = ln_assign;
1296 	pdata->ln_polrs = ln_polrs;
1297 }
1298 
ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 * pdata)1299 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1300 {
1301 	struct device_node *np = pdata->dev->of_node;
1302 
1303 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1304 
1305 	if (!pdata->host_node) {
1306 		DRM_ERROR("remote dsi host node not found\n");
1307 		return -ENODEV;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
ti_sn_bridge_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1313 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1314 			      const struct auxiliary_device_id *id)
1315 {
1316 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1317 	struct device_node *np = pdata->dev->of_node;
1318 	int ret;
1319 
1320 	pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0);
1321 	if (IS_ERR(pdata->next_bridge))
1322 		return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge),
1323 				     "failed to create panel bridge\n");
1324 
1325 	ti_sn_bridge_parse_lanes(pdata, np);
1326 
1327 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1328 	if (ret)
1329 		return ret;
1330 
1331 	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1332 	pdata->bridge.of_node = np;
1333 	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1334 			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1335 
1336 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) {
1337 		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT |
1338 				    DRM_BRIDGE_OP_HPD;
1339 		/*
1340 		 * If comms were already enabled they would have been enabled
1341 		 * with the wrong value of HPD_DISABLE. Update it now. Comms
1342 		 * could be enabled if anyone is holding a pm_runtime reference
1343 		 * (like if a GPIO is in use). Note that in most cases nobody
1344 		 * is doing AUX channel xfers before the bridge is added so
1345 		 * HPD doesn't _really_ matter then. The only exception is in
1346 		 * the eDP case where the panel wants to read the EDID before
1347 		 * the bridge is added. We always consistently have HPD disabled
1348 		 * for eDP.
1349 		 */
1350 		mutex_lock(&pdata->comms_mutex);
1351 		if (pdata->comms_enabled)
1352 			regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG,
1353 					   HPD_DISABLE, 0);
1354 		mutex_unlock(&pdata->comms_mutex);
1355 	};
1356 
1357 	drm_bridge_add(&pdata->bridge);
1358 
1359 	ret = ti_sn_attach_host(adev, pdata);
1360 	if (ret) {
1361 		dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n");
1362 		goto err_remove_bridge;
1363 	}
1364 
1365 	return 0;
1366 
1367 err_remove_bridge:
1368 	drm_bridge_remove(&pdata->bridge);
1369 	return ret;
1370 }
1371 
ti_sn_bridge_remove(struct auxiliary_device * adev)1372 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1373 {
1374 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1375 
1376 	if (!pdata)
1377 		return;
1378 
1379 	drm_bridge_remove(&pdata->bridge);
1380 
1381 	of_node_put(pdata->host_node);
1382 }
1383 
1384 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1385 	{ .name = "ti_sn65dsi86.bridge", },
1386 	{},
1387 };
1388 
1389 static struct auxiliary_driver ti_sn_bridge_driver = {
1390 	.name = "bridge",
1391 	.probe = ti_sn_bridge_probe,
1392 	.remove = ti_sn_bridge_remove,
1393 	.id_table = ti_sn_bridge_id_table,
1394 };
1395 
1396 /* -----------------------------------------------------------------------------
1397  * PWM Controller
1398  */
1399 #if defined(CONFIG_PWM)
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1400 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1401 {
1402 	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1403 }
1404 
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1405 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1406 {
1407 	atomic_set(&pdata->pwm_pin_busy, 0);
1408 }
1409 
pwm_chip_to_ti_sn_bridge(struct pwm_chip * chip)1410 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1411 {
1412 	return container_of(chip, struct ti_sn65dsi86, pchip);
1413 }
1414 
ti_sn_pwm_request(struct pwm_chip * chip,struct pwm_device * pwm)1415 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1416 {
1417 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1418 
1419 	return ti_sn_pwm_pin_request(pdata);
1420 }
1421 
ti_sn_pwm_free(struct pwm_chip * chip,struct pwm_device * pwm)1422 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1423 {
1424 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1425 
1426 	ti_sn_pwm_pin_release(pdata);
1427 }
1428 
1429 /*
1430  * Limitations:
1431  * - The PWM signal is not driven when the chip is powered down, or in its
1432  *   reset state and the driver does not implement the "suspend state"
1433  *   described in the documentation. In order to save power, state->enabled is
1434  *   interpreted as denoting if the signal is expected to be valid, and is used
1435  *   to determine if the chip needs to be kept powered.
1436  * - Changing both period and duty_cycle is not done atomically, neither is the
1437  *   multi-byte register updates, so the output might briefly be undefined
1438  *   during update.
1439  */
ti_sn_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)1440 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1441 			   const struct pwm_state *state)
1442 {
1443 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1444 	unsigned int pwm_en_inv;
1445 	unsigned int backlight;
1446 	unsigned int pre_div;
1447 	unsigned int scale;
1448 	u64 period_max;
1449 	u64 period;
1450 	int ret;
1451 
1452 	if (!pdata->pwm_enabled) {
1453 		ret = pm_runtime_get_sync(pdata->dev);
1454 		if (ret < 0) {
1455 			pm_runtime_put_sync(pdata->dev);
1456 			return ret;
1457 		}
1458 	}
1459 
1460 	if (state->enabled) {
1461 		if (!pdata->pwm_enabled) {
1462 			/*
1463 			 * The chip might have been powered down while we
1464 			 * didn't hold a PM runtime reference, so mux in the
1465 			 * PWM function on the GPIO pin again.
1466 			 */
1467 			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1468 						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1469 						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1470 			if (ret) {
1471 				dev_err(pdata->dev, "failed to mux in PWM function\n");
1472 				goto out;
1473 			}
1474 		}
1475 
1476 		/*
1477 		 * Per the datasheet the PWM frequency is given by:
1478 		 *
1479 		 *                          REFCLK_FREQ
1480 		 *   PWM_FREQ = -----------------------------------
1481 		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1482 		 *
1483 		 * However, after careful review the author is convinced that
1484 		 * the documentation has lost some parenthesis around
1485 		 * "BACKLIGHT_SCALE + 1".
1486 		 *
1487 		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1488 		 *
1489 		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1490 		 *
1491 		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1492 		 * PWM_PRE_DIV must be:
1493 		 *
1494 		 *                     T_pwm * REFCLK_FREQ
1495 		 *   PWM_PRE_DIV >= -------------------------
1496 		 *                   BACKLIGHT_SCALE_MAX + 1
1497 		 *
1498 		 * To simplify the search and to favour higher resolution of
1499 		 * the duty cycle over accuracy of the period, the lowest
1500 		 * possible PWM_PRE_DIV is used. Finally the scale is
1501 		 * calculated as:
1502 		 *
1503 		 *                      T_pwm * REFCLK_FREQ
1504 		 *   BACKLIGHT_SCALE = ---------------------- - 1
1505 		 *                          PWM_PRE_DIV
1506 		 *
1507 		 * Here T_pwm is represented in seconds, so appropriate scaling
1508 		 * to nanoseconds is necessary.
1509 		 */
1510 
1511 		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1512 		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1513 			ret = -EINVAL;
1514 			goto out;
1515 		}
1516 
1517 		/*
1518 		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1519 		 * Limit period to this to avoid overflows
1520 		 */
1521 		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1522 				     pdata->pwm_refclk_freq);
1523 		period = min(state->period, period_max);
1524 
1525 		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1526 					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1527 		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1528 
1529 		/*
1530 		 * The documentation has the duty ratio given as:
1531 		 *
1532 		 *     duty          BACKLIGHT
1533 		 *   ------- = ---------------------
1534 		 *    period    BACKLIGHT_SCALE + 1
1535 		 *
1536 		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1537 		 * to definition above and adjusting for nanosecond
1538 		 * representation of duty cycle gives us:
1539 		 */
1540 		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1541 				      (u64)NSEC_PER_SEC * pre_div);
1542 		if (backlight > scale)
1543 			backlight = scale;
1544 
1545 		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1546 		if (ret) {
1547 			dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1548 			goto out;
1549 		}
1550 
1551 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1552 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1553 	}
1554 
1555 	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1556 		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1557 	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1558 	if (ret) {
1559 		dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1560 		goto out;
1561 	}
1562 
1563 	pdata->pwm_enabled = state->enabled;
1564 out:
1565 
1566 	if (!pdata->pwm_enabled)
1567 		pm_runtime_put_sync(pdata->dev);
1568 
1569 	return ret;
1570 }
1571 
ti_sn_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)1572 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1573 			       struct pwm_state *state)
1574 {
1575 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1576 	unsigned int pwm_en_inv;
1577 	unsigned int pre_div;
1578 	u16 backlight;
1579 	u16 scale;
1580 	int ret;
1581 
1582 	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1583 	if (ret)
1584 		return ret;
1585 
1586 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1587 	if (ret)
1588 		return ret;
1589 
1590 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1591 	if (ret)
1592 		return ret;
1593 
1594 	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1595 	if (ret)
1596 		return ret;
1597 
1598 	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1599 	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1600 		state->polarity = PWM_POLARITY_INVERSED;
1601 	else
1602 		state->polarity = PWM_POLARITY_NORMAL;
1603 
1604 	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1605 					 pdata->pwm_refclk_freq);
1606 	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1607 					     pdata->pwm_refclk_freq);
1608 
1609 	if (state->duty_cycle > state->period)
1610 		state->duty_cycle = state->period;
1611 
1612 	return 0;
1613 }
1614 
1615 static const struct pwm_ops ti_sn_pwm_ops = {
1616 	.request = ti_sn_pwm_request,
1617 	.free = ti_sn_pwm_free,
1618 	.apply = ti_sn_pwm_apply,
1619 	.get_state = ti_sn_pwm_get_state,
1620 	.owner = THIS_MODULE,
1621 };
1622 
ti_sn_pwm_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1623 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1624 			   const struct auxiliary_device_id *id)
1625 {
1626 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1627 
1628 	pdata->pchip.dev = pdata->dev;
1629 	pdata->pchip.ops = &ti_sn_pwm_ops;
1630 	pdata->pchip.npwm = 1;
1631 	pdata->pchip.of_xlate = of_pwm_single_xlate;
1632 	pdata->pchip.of_pwm_n_cells = 1;
1633 
1634 	return pwmchip_add(&pdata->pchip);
1635 }
1636 
ti_sn_pwm_remove(struct auxiliary_device * adev)1637 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1638 {
1639 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1640 
1641 	pwmchip_remove(&pdata->pchip);
1642 
1643 	if (pdata->pwm_enabled)
1644 		pm_runtime_put_sync(pdata->dev);
1645 }
1646 
1647 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1648 	{ .name = "ti_sn65dsi86.pwm", },
1649 	{},
1650 };
1651 
1652 static struct auxiliary_driver ti_sn_pwm_driver = {
1653 	.name = "pwm",
1654 	.probe = ti_sn_pwm_probe,
1655 	.remove = ti_sn_pwm_remove,
1656 	.id_table = ti_sn_pwm_id_table,
1657 };
1658 
ti_sn_pwm_register(void)1659 static int __init ti_sn_pwm_register(void)
1660 {
1661 	return auxiliary_driver_register(&ti_sn_pwm_driver);
1662 }
1663 
ti_sn_pwm_unregister(void)1664 static void ti_sn_pwm_unregister(void)
1665 {
1666 	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1667 }
1668 
1669 #else
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1670 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1671 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1672 
ti_sn_pwm_register(void)1673 static inline int ti_sn_pwm_register(void) { return 0; }
ti_sn_pwm_unregister(void)1674 static inline void ti_sn_pwm_unregister(void) {}
1675 #endif
1676 
1677 /* -----------------------------------------------------------------------------
1678  * GPIO Controller
1679  */
1680 #if defined(CONFIG_OF_GPIO)
1681 
tn_sn_bridge_of_xlate(struct gpio_chip * chip,const struct of_phandle_args * gpiospec,u32 * flags)1682 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1683 				 const struct of_phandle_args *gpiospec,
1684 				 u32 *flags)
1685 {
1686 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1687 		return -EINVAL;
1688 
1689 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1690 		return -EINVAL;
1691 
1692 	if (flags)
1693 		*flags = gpiospec->args[1];
1694 
1695 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1696 }
1697 
ti_sn_bridge_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)1698 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1699 					   unsigned int offset)
1700 {
1701 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1702 
1703 	/*
1704 	 * We already have to keep track of the direction because we use
1705 	 * that to figure out whether we've powered the device.  We can
1706 	 * just return that rather than (maybe) powering up the device
1707 	 * to ask its direction.
1708 	 */
1709 	return test_bit(offset, pdata->gchip_output) ?
1710 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1711 }
1712 
ti_sn_bridge_gpio_get(struct gpio_chip * chip,unsigned int offset)1713 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1714 {
1715 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1716 	unsigned int val;
1717 	int ret;
1718 
1719 	/*
1720 	 * When the pin is an input we don't forcibly keep the bridge
1721 	 * powered--we just power it on to read the pin.  NOTE: part of
1722 	 * the reason this works is that the bridge defaults (when
1723 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1724 	 * Also note that if something else is keeping the chip powered the
1725 	 * pm_runtime functions are lightweight increments of a refcount.
1726 	 */
1727 	pm_runtime_get_sync(pdata->dev);
1728 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1729 	pm_runtime_put_autosuspend(pdata->dev);
1730 
1731 	if (ret)
1732 		return ret;
1733 
1734 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1735 }
1736 
ti_sn_bridge_gpio_set(struct gpio_chip * chip,unsigned int offset,int val)1737 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1738 				  int val)
1739 {
1740 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1741 	int ret;
1742 
1743 	if (!test_bit(offset, pdata->gchip_output)) {
1744 		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1745 		return;
1746 	}
1747 
1748 	val &= 1;
1749 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1750 				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1751 				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1752 	if (ret)
1753 		dev_warn(pdata->dev,
1754 			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1755 }
1756 
ti_sn_bridge_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)1757 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1758 					     unsigned int offset)
1759 {
1760 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1761 	int shift = offset * 2;
1762 	int ret;
1763 
1764 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1765 		return 0;
1766 
1767 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1768 				 SN_GPIO_MUX_MASK << shift,
1769 				 SN_GPIO_MUX_INPUT << shift);
1770 	if (ret) {
1771 		set_bit(offset, pdata->gchip_output);
1772 		return ret;
1773 	}
1774 
1775 	/*
1776 	 * NOTE: if nobody else is powering the device this may fully power
1777 	 * it off and when it comes back it will have lost all state, but
1778 	 * that's OK because the default is input and we're now an input.
1779 	 */
1780 	pm_runtime_put_autosuspend(pdata->dev);
1781 
1782 	return 0;
1783 }
1784 
ti_sn_bridge_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int val)1785 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1786 					      unsigned int offset, int val)
1787 {
1788 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1789 	int shift = offset * 2;
1790 	int ret;
1791 
1792 	if (test_and_set_bit(offset, pdata->gchip_output))
1793 		return 0;
1794 
1795 	pm_runtime_get_sync(pdata->dev);
1796 
1797 	/* Set value first to avoid glitching */
1798 	ti_sn_bridge_gpio_set(chip, offset, val);
1799 
1800 	/* Set direction */
1801 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1802 				 SN_GPIO_MUX_MASK << shift,
1803 				 SN_GPIO_MUX_OUTPUT << shift);
1804 	if (ret) {
1805 		clear_bit(offset, pdata->gchip_output);
1806 		pm_runtime_put_autosuspend(pdata->dev);
1807 	}
1808 
1809 	return ret;
1810 }
1811 
ti_sn_bridge_gpio_request(struct gpio_chip * chip,unsigned int offset)1812 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1813 {
1814 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1815 
1816 	if (offset == SN_PWM_GPIO_IDX)
1817 		return ti_sn_pwm_pin_request(pdata);
1818 
1819 	return 0;
1820 }
1821 
ti_sn_bridge_gpio_free(struct gpio_chip * chip,unsigned int offset)1822 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1823 {
1824 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1825 
1826 	/* We won't keep pm_runtime if we're input, so switch there on free */
1827 	ti_sn_bridge_gpio_direction_input(chip, offset);
1828 
1829 	if (offset == SN_PWM_GPIO_IDX)
1830 		ti_sn_pwm_pin_release(pdata);
1831 }
1832 
1833 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1834 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1835 };
1836 
ti_sn_gpio_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1837 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1838 			    const struct auxiliary_device_id *id)
1839 {
1840 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1841 	int ret;
1842 
1843 	/* Only init if someone is going to use us as a GPIO controller */
1844 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1845 		return 0;
1846 
1847 	pdata->gchip.label = dev_name(pdata->dev);
1848 	pdata->gchip.parent = pdata->dev;
1849 	pdata->gchip.owner = THIS_MODULE;
1850 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1851 	pdata->gchip.of_gpio_n_cells = 2;
1852 	pdata->gchip.request = ti_sn_bridge_gpio_request;
1853 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1854 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1855 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1856 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1857 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1858 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1859 	pdata->gchip.can_sleep = true;
1860 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1861 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1862 	pdata->gchip.base = -1;
1863 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1864 	if (ret)
1865 		dev_err(pdata->dev, "can't add gpio chip\n");
1866 
1867 	return ret;
1868 }
1869 
1870 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1871 	{ .name = "ti_sn65dsi86.gpio", },
1872 	{},
1873 };
1874 
1875 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1876 
1877 static struct auxiliary_driver ti_sn_gpio_driver = {
1878 	.name = "gpio",
1879 	.probe = ti_sn_gpio_probe,
1880 	.id_table = ti_sn_gpio_id_table,
1881 };
1882 
ti_sn_gpio_register(void)1883 static int __init ti_sn_gpio_register(void)
1884 {
1885 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1886 }
1887 
ti_sn_gpio_unregister(void)1888 static void ti_sn_gpio_unregister(void)
1889 {
1890 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1891 }
1892 
1893 #else
1894 
ti_sn_gpio_register(void)1895 static inline int ti_sn_gpio_register(void) { return 0; }
ti_sn_gpio_unregister(void)1896 static inline void ti_sn_gpio_unregister(void) {}
1897 
1898 #endif
1899 
1900 /* -----------------------------------------------------------------------------
1901  * Probe & Remove
1902  */
1903 
ti_sn65dsi86_runtime_disable(void * data)1904 static void ti_sn65dsi86_runtime_disable(void *data)
1905 {
1906 	pm_runtime_dont_use_autosuspend(data);
1907 	pm_runtime_disable(data);
1908 }
1909 
ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 * pdata)1910 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1911 {
1912 	unsigned int i;
1913 	const char * const ti_sn_bridge_supply_names[] = {
1914 		"vcca", "vcc", "vccio", "vpll",
1915 	};
1916 
1917 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1918 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1919 
1920 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1921 				       pdata->supplies);
1922 }
1923 
ti_sn65dsi86_probe(struct i2c_client * client)1924 static int ti_sn65dsi86_probe(struct i2c_client *client)
1925 {
1926 	struct device *dev = &client->dev;
1927 	struct ti_sn65dsi86 *pdata;
1928 	int ret;
1929 
1930 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1931 		DRM_ERROR("device doesn't support I2C\n");
1932 		return -ENODEV;
1933 	}
1934 
1935 	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1936 	if (!pdata)
1937 		return -ENOMEM;
1938 	dev_set_drvdata(dev, pdata);
1939 	pdata->dev = dev;
1940 
1941 	mutex_init(&pdata->comms_mutex);
1942 
1943 	pdata->regmap = devm_regmap_init_i2c(client,
1944 					     &ti_sn65dsi86_regmap_config);
1945 	if (IS_ERR(pdata->regmap))
1946 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1947 				     "regmap i2c init failed\n");
1948 
1949 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1950 						     GPIOD_OUT_LOW);
1951 	if (IS_ERR(pdata->enable_gpio))
1952 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1953 				     "failed to get enable gpio from DT\n");
1954 
1955 	ret = ti_sn65dsi86_parse_regulators(pdata);
1956 	if (ret)
1957 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1958 
1959 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1960 	if (IS_ERR(pdata->refclk))
1961 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1962 				     "failed to get reference clock\n");
1963 
1964 	pm_runtime_enable(dev);
1965 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1966 	pm_runtime_use_autosuspend(pdata->dev);
1967 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1968 	if (ret)
1969 		return ret;
1970 
1971 	/*
1972 	 * Break ourselves up into a collection of aux devices. The only real
1973 	 * motiviation here is to solve the chicken-and-egg problem of probe
1974 	 * ordering. The bridge wants the panel to be there when it probes.
1975 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1976 	 * when it probes. The panel and maybe backlight might want the DDC
1977 	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1978 	 * to finish probing even if others return -EPROBE_DEFER and gets us
1979 	 * around the problems.
1980 	 */
1981 
1982 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1983 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1984 		if (ret)
1985 			return ret;
1986 	}
1987 
1988 	if (IS_ENABLED(CONFIG_PWM)) {
1989 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1990 		if (ret)
1991 			return ret;
1992 	}
1993 
1994 	/*
1995 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1996 	 * for the bridge. This is because the bridge can't be used until the
1997 	 * AUX channel is there and this is a very simple solution to the
1998 	 * dependency problem.
1999 	 */
2000 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
2001 }
2002 
2003 static struct i2c_device_id ti_sn65dsi86_id[] = {
2004 	{ "ti,sn65dsi86", 0},
2005 	{},
2006 };
2007 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
2008 
2009 static const struct of_device_id ti_sn65dsi86_match_table[] = {
2010 	{.compatible = "ti,sn65dsi86"},
2011 	{},
2012 };
2013 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
2014 
2015 static struct i2c_driver ti_sn65dsi86_driver = {
2016 	.driver = {
2017 		.name = "ti_sn65dsi86",
2018 		.of_match_table = ti_sn65dsi86_match_table,
2019 		.pm = &ti_sn65dsi86_pm_ops,
2020 	},
2021 	.probe = ti_sn65dsi86_probe,
2022 	.id_table = ti_sn65dsi86_id,
2023 };
2024 
ti_sn65dsi86_init(void)2025 static int __init ti_sn65dsi86_init(void)
2026 {
2027 	int ret;
2028 
2029 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
2030 	if (ret)
2031 		return ret;
2032 
2033 	ret = ti_sn_gpio_register();
2034 	if (ret)
2035 		goto err_main_was_registered;
2036 
2037 	ret = ti_sn_pwm_register();
2038 	if (ret)
2039 		goto err_gpio_was_registered;
2040 
2041 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
2042 	if (ret)
2043 		goto err_pwm_was_registered;
2044 
2045 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
2046 	if (ret)
2047 		goto err_aux_was_registered;
2048 
2049 	return 0;
2050 
2051 err_aux_was_registered:
2052 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2053 err_pwm_was_registered:
2054 	ti_sn_pwm_unregister();
2055 err_gpio_was_registered:
2056 	ti_sn_gpio_unregister();
2057 err_main_was_registered:
2058 	i2c_del_driver(&ti_sn65dsi86_driver);
2059 
2060 	return ret;
2061 }
2062 module_init(ti_sn65dsi86_init);
2063 
ti_sn65dsi86_exit(void)2064 static void __exit ti_sn65dsi86_exit(void)
2065 {
2066 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2067 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2068 	ti_sn_pwm_unregister();
2069 	ti_sn_gpio_unregister();
2070 	i2c_del_driver(&ti_sn65dsi86_driver);
2071 }
2072 module_exit(ti_sn65dsi86_exit);
2073 
2074 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2075 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2076 MODULE_LICENSE("GPL v2");
2077