xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 4ebdac060e5e24a89a7b3ec33ec46a41621e57fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 #include "fs.h"
25 #include "accessors.h"
26 #include "extent-tree.h"
27 #include "root-tree.h"
28 #include "dir-item.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "orphan.h"
32 #include "tree-checker.h"
33 
34 #define MAX_CONFLICT_INODES 10
35 
36 /* magic values for the inode_only field in btrfs_log_inode:
37  *
38  * LOG_INODE_ALL means to log everything
39  * LOG_INODE_EXISTS means to log just enough to recreate the inode
40  * during log replay
41  */
42 enum {
43 	LOG_INODE_ALL,
44 	LOG_INODE_EXISTS,
45 };
46 
47 /*
48  * directory trouble cases
49  *
50  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51  * log, we must force a full commit before doing an fsync of the directory
52  * where the unlink was done.
53  * ---> record transid of last unlink/rename per directory
54  *
55  * mkdir foo/some_dir
56  * normal commit
57  * rename foo/some_dir foo2/some_dir
58  * mkdir foo/some_dir
59  * fsync foo/some_dir/some_file
60  *
61  * The fsync above will unlink the original some_dir without recording
62  * it in its new location (foo2).  After a crash, some_dir will be gone
63  * unless the fsync of some_file forces a full commit
64  *
65  * 2) we must log any new names for any file or dir that is in the fsync
66  * log. ---> check inode while renaming/linking.
67  *
68  * 2a) we must log any new names for any file or dir during rename
69  * when the directory they are being removed from was logged.
70  * ---> check inode and old parent dir during rename
71  *
72  *  2a is actually the more important variant.  With the extra logging
73  *  a crash might unlink the old name without recreating the new one
74  *
75  * 3) after a crash, we must go through any directories with a link count
76  * of zero and redo the rm -rf
77  *
78  * mkdir f1/foo
79  * normal commit
80  * rm -rf f1/foo
81  * fsync(f1)
82  *
83  * The directory f1 was fully removed from the FS, but fsync was never
84  * called on f1, only its parent dir.  After a crash the rm -rf must
85  * be replayed.  This must be able to recurse down the entire
86  * directory tree.  The inode link count fixup code takes care of the
87  * ugly details.
88  */
89 
90 /*
91  * stages for the tree walking.  The first
92  * stage (0) is to only pin down the blocks we find
93  * the second stage (1) is to make sure that all the inodes
94  * we find in the log are created in the subvolume.
95  *
96  * The last stage is to deal with directories and links and extents
97  * and all the other fun semantics
98  */
99 enum {
100 	LOG_WALK_PIN_ONLY,
101 	LOG_WALK_REPLAY_INODES,
102 	LOG_WALK_REPLAY_DIR_INDEX,
103 	LOG_WALK_REPLAY_ALL,
104 };
105 
106 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 			   struct btrfs_inode *inode,
108 			   int inode_only,
109 			   struct btrfs_log_ctx *ctx);
110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 			     struct btrfs_root *root,
112 			     struct btrfs_path *path, u64 objectid);
113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 				       struct btrfs_root *root,
115 				       struct btrfs_root *log,
116 				       struct btrfs_path *path,
117 				       u64 dirid, int del_all);
118 static void wait_log_commit(struct btrfs_root *root, int transid);
119 
120 /*
121  * tree logging is a special write ahead log used to make sure that
122  * fsyncs and O_SYNCs can happen without doing full tree commits.
123  *
124  * Full tree commits are expensive because they require commonly
125  * modified blocks to be recowed, creating many dirty pages in the
126  * extent tree an 4x-6x higher write load than ext3.
127  *
128  * Instead of doing a tree commit on every fsync, we use the
129  * key ranges and transaction ids to find items for a given file or directory
130  * that have changed in this transaction.  Those items are copied into
131  * a special tree (one per subvolume root), that tree is written to disk
132  * and then the fsync is considered complete.
133  *
134  * After a crash, items are copied out of the log-tree back into the
135  * subvolume tree.  Any file data extents found are recorded in the extent
136  * allocation tree, and the log-tree freed.
137  *
138  * The log tree is read three times, once to pin down all the extents it is
139  * using in ram and once, once to create all the inodes logged in the tree
140  * and once to do all the other items.
141  */
142 
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)143 static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
144 {
145 	unsigned int nofs_flag;
146 	struct inode *inode;
147 
148 	/*
149 	 * We're holding a transaction handle whether we are logging or
150 	 * replaying a log tree, so we must make sure NOFS semantics apply
151 	 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
152 	 * to allocate an inode, which can recurse back into the filesystem and
153 	 * attempt a transaction commit, resulting in a deadlock.
154 	 */
155 	nofs_flag = memalloc_nofs_save();
156 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
157 	memalloc_nofs_restore(nofs_flag);
158 
159 	return inode;
160 }
161 
162 /*
163  * start a sub transaction and setup the log tree
164  * this increments the log tree writer count to make the people
165  * syncing the tree wait for us to finish
166  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)167 static int start_log_trans(struct btrfs_trans_handle *trans,
168 			   struct btrfs_root *root,
169 			   struct btrfs_log_ctx *ctx)
170 {
171 	struct btrfs_fs_info *fs_info = root->fs_info;
172 	struct btrfs_root *tree_root = fs_info->tree_root;
173 	const bool zoned = btrfs_is_zoned(fs_info);
174 	int ret = 0;
175 	bool created = false;
176 
177 	/*
178 	 * First check if the log root tree was already created. If not, create
179 	 * it before locking the root's log_mutex, just to keep lockdep happy.
180 	 */
181 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
182 		mutex_lock(&tree_root->log_mutex);
183 		if (!fs_info->log_root_tree) {
184 			ret = btrfs_init_log_root_tree(trans, fs_info);
185 			if (!ret) {
186 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
187 				created = true;
188 			}
189 		}
190 		mutex_unlock(&tree_root->log_mutex);
191 		if (ret)
192 			return ret;
193 	}
194 
195 	mutex_lock(&root->log_mutex);
196 
197 again:
198 	if (root->log_root) {
199 		int index = (root->log_transid + 1) % 2;
200 
201 		if (btrfs_need_log_full_commit(trans)) {
202 			ret = BTRFS_LOG_FORCE_COMMIT;
203 			goto out;
204 		}
205 
206 		if (zoned && atomic_read(&root->log_commit[index])) {
207 			wait_log_commit(root, root->log_transid - 1);
208 			goto again;
209 		}
210 
211 		if (!root->log_start_pid) {
212 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
213 			root->log_start_pid = current->pid;
214 		} else if (root->log_start_pid != current->pid) {
215 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 		}
217 	} else {
218 		/*
219 		 * This means fs_info->log_root_tree was already created
220 		 * for some other FS trees. Do the full commit not to mix
221 		 * nodes from multiple log transactions to do sequential
222 		 * writing.
223 		 */
224 		if (zoned && !created) {
225 			ret = BTRFS_LOG_FORCE_COMMIT;
226 			goto out;
227 		}
228 
229 		ret = btrfs_add_log_tree(trans, root);
230 		if (ret)
231 			goto out;
232 
233 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
234 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
235 		root->log_start_pid = current->pid;
236 	}
237 
238 	atomic_inc(&root->log_writers);
239 	if (!ctx->logging_new_name) {
240 		int index = root->log_transid % 2;
241 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
242 		ctx->log_transid = root->log_transid;
243 	}
244 
245 out:
246 	mutex_unlock(&root->log_mutex);
247 	return ret;
248 }
249 
250 /*
251  * returns 0 if there was a log transaction running and we were able
252  * to join, or returns -ENOENT if there were not transactions
253  * in progress
254  */
join_running_log_trans(struct btrfs_root * root)255 static int join_running_log_trans(struct btrfs_root *root)
256 {
257 	const bool zoned = btrfs_is_zoned(root->fs_info);
258 	int ret = -ENOENT;
259 
260 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
261 		return ret;
262 
263 	mutex_lock(&root->log_mutex);
264 again:
265 	if (root->log_root) {
266 		int index = (root->log_transid + 1) % 2;
267 
268 		ret = 0;
269 		if (zoned && atomic_read(&root->log_commit[index])) {
270 			wait_log_commit(root, root->log_transid - 1);
271 			goto again;
272 		}
273 		atomic_inc(&root->log_writers);
274 	}
275 	mutex_unlock(&root->log_mutex);
276 	return ret;
277 }
278 
279 /*
280  * This either makes the current running log transaction wait
281  * until you call btrfs_end_log_trans() or it makes any future
282  * log transactions wait until you call btrfs_end_log_trans()
283  */
btrfs_pin_log_trans(struct btrfs_root * root)284 void btrfs_pin_log_trans(struct btrfs_root *root)
285 {
286 	atomic_inc(&root->log_writers);
287 }
288 
289 /*
290  * indicate we're done making changes to the log tree
291  * and wake up anyone waiting to do a sync
292  */
btrfs_end_log_trans(struct btrfs_root * root)293 void btrfs_end_log_trans(struct btrfs_root *root)
294 {
295 	if (atomic_dec_and_test(&root->log_writers)) {
296 		/* atomic_dec_and_test implies a barrier */
297 		cond_wake_up_nomb(&root->log_writer_wait);
298 	}
299 }
300 
301 /*
302  * the walk control struct is used to pass state down the chain when
303  * processing the log tree.  The stage field tells us which part
304  * of the log tree processing we are currently doing.  The others
305  * are state fields used for that specific part
306  */
307 struct walk_control {
308 	/* should we free the extent on disk when done?  This is used
309 	 * at transaction commit time while freeing a log tree
310 	 */
311 	int free;
312 
313 	/* pin only walk, we record which extents on disk belong to the
314 	 * log trees
315 	 */
316 	int pin;
317 
318 	/* what stage of the replay code we're currently in */
319 	int stage;
320 
321 	/*
322 	 * Ignore any items from the inode currently being processed. Needs
323 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
324 	 * the LOG_WALK_REPLAY_INODES stage.
325 	 */
326 	bool ignore_cur_inode;
327 
328 	/* the root we are currently replaying */
329 	struct btrfs_root *replay_dest;
330 
331 	/* the trans handle for the current replay */
332 	struct btrfs_trans_handle *trans;
333 
334 	/* the function that gets used to process blocks we find in the
335 	 * tree.  Note the extent_buffer might not be up to date when it is
336 	 * passed in, and it must be checked or read if you need the data
337 	 * inside it
338 	 */
339 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
340 			    struct walk_control *wc, u64 gen, int level);
341 };
342 
343 /*
344  * process_func used to pin down extents, write them or wait on them
345  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)346 static int process_one_buffer(struct btrfs_root *log,
347 			      struct extent_buffer *eb,
348 			      struct walk_control *wc, u64 gen, int level)
349 {
350 	struct btrfs_fs_info *fs_info = log->fs_info;
351 	int ret = 0;
352 
353 	/*
354 	 * If this fs is mixed then we need to be able to process the leaves to
355 	 * pin down any logged extents, so we have to read the block.
356 	 */
357 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
358 		struct btrfs_tree_parent_check check = {
359 			.level = level,
360 			.transid = gen
361 		};
362 
363 		ret = btrfs_read_extent_buffer(eb, &check);
364 		if (ret)
365 			return ret;
366 	}
367 
368 	if (wc->pin) {
369 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
370 						      eb->len);
371 		if (ret)
372 			return ret;
373 
374 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
375 		    btrfs_header_level(eb) == 0)
376 			ret = btrfs_exclude_logged_extents(eb);
377 	}
378 	return ret;
379 }
380 
381 /*
382  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
383  * to the src data we are copying out.
384  *
385  * root is the tree we are copying into, and path is a scratch
386  * path for use in this function (it should be released on entry and
387  * will be released on exit).
388  *
389  * If the key is already in the destination tree the existing item is
390  * overwritten.  If the existing item isn't big enough, it is extended.
391  * If it is too large, it is truncated.
392  *
393  * If the key isn't in the destination yet, a new item is inserted.
394  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)395 static int overwrite_item(struct btrfs_trans_handle *trans,
396 			  struct btrfs_root *root,
397 			  struct btrfs_path *path,
398 			  struct extent_buffer *eb, int slot,
399 			  struct btrfs_key *key)
400 {
401 	int ret;
402 	u32 item_size;
403 	u64 saved_i_size = 0;
404 	int save_old_i_size = 0;
405 	unsigned long src_ptr;
406 	unsigned long dst_ptr;
407 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
408 
409 	/*
410 	 * This is only used during log replay, so the root is always from a
411 	 * fs/subvolume tree. In case we ever need to support a log root, then
412 	 * we'll have to clone the leaf in the path, release the path and use
413 	 * the leaf before writing into the log tree. See the comments at
414 	 * copy_items() for more details.
415 	 */
416 	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
417 
418 	item_size = btrfs_item_size(eb, slot);
419 	src_ptr = btrfs_item_ptr_offset(eb, slot);
420 
421 	/* Look for the key in the destination tree. */
422 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
423 	if (ret < 0)
424 		return ret;
425 
426 	if (ret == 0) {
427 		char *src_copy;
428 		char *dst_copy;
429 		u32 dst_size = btrfs_item_size(path->nodes[0],
430 						  path->slots[0]);
431 		if (dst_size != item_size)
432 			goto insert;
433 
434 		if (item_size == 0) {
435 			btrfs_release_path(path);
436 			return 0;
437 		}
438 		dst_copy = kmalloc(item_size, GFP_NOFS);
439 		src_copy = kmalloc(item_size, GFP_NOFS);
440 		if (!dst_copy || !src_copy) {
441 			btrfs_release_path(path);
442 			kfree(dst_copy);
443 			kfree(src_copy);
444 			return -ENOMEM;
445 		}
446 
447 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
448 
449 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
450 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
451 				   item_size);
452 		ret = memcmp(dst_copy, src_copy, item_size);
453 
454 		kfree(dst_copy);
455 		kfree(src_copy);
456 		/*
457 		 * they have the same contents, just return, this saves
458 		 * us from cowing blocks in the destination tree and doing
459 		 * extra writes that may not have been done by a previous
460 		 * sync
461 		 */
462 		if (ret == 0) {
463 			btrfs_release_path(path);
464 			return 0;
465 		}
466 
467 		/*
468 		 * We need to load the old nbytes into the inode so when we
469 		 * replay the extents we've logged we get the right nbytes.
470 		 */
471 		if (inode_item) {
472 			struct btrfs_inode_item *item;
473 			u64 nbytes;
474 			u32 mode;
475 
476 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
477 					      struct btrfs_inode_item);
478 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
479 			item = btrfs_item_ptr(eb, slot,
480 					      struct btrfs_inode_item);
481 			btrfs_set_inode_nbytes(eb, item, nbytes);
482 
483 			/*
484 			 * If this is a directory we need to reset the i_size to
485 			 * 0 so that we can set it up properly when replaying
486 			 * the rest of the items in this log.
487 			 */
488 			mode = btrfs_inode_mode(eb, item);
489 			if (S_ISDIR(mode))
490 				btrfs_set_inode_size(eb, item, 0);
491 		}
492 	} else if (inode_item) {
493 		struct btrfs_inode_item *item;
494 		u32 mode;
495 
496 		/*
497 		 * New inode, set nbytes to 0 so that the nbytes comes out
498 		 * properly when we replay the extents.
499 		 */
500 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
501 		btrfs_set_inode_nbytes(eb, item, 0);
502 
503 		/*
504 		 * If this is a directory we need to reset the i_size to 0 so
505 		 * that we can set it up properly when replaying the rest of
506 		 * the items in this log.
507 		 */
508 		mode = btrfs_inode_mode(eb, item);
509 		if (S_ISDIR(mode))
510 			btrfs_set_inode_size(eb, item, 0);
511 	}
512 insert:
513 	btrfs_release_path(path);
514 	/* try to insert the key into the destination tree */
515 	path->skip_release_on_error = 1;
516 	ret = btrfs_insert_empty_item(trans, root, path,
517 				      key, item_size);
518 	path->skip_release_on_error = 0;
519 
520 	/* make sure any existing item is the correct size */
521 	if (ret == -EEXIST || ret == -EOVERFLOW) {
522 		u32 found_size;
523 		found_size = btrfs_item_size(path->nodes[0],
524 						path->slots[0]);
525 		if (found_size > item_size)
526 			btrfs_truncate_item(trans, path, item_size, 1);
527 		else if (found_size < item_size)
528 			btrfs_extend_item(trans, path, item_size - found_size);
529 	} else if (ret) {
530 		return ret;
531 	}
532 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
533 					path->slots[0]);
534 
535 	/* don't overwrite an existing inode if the generation number
536 	 * was logged as zero.  This is done when the tree logging code
537 	 * is just logging an inode to make sure it exists after recovery.
538 	 *
539 	 * Also, don't overwrite i_size on directories during replay.
540 	 * log replay inserts and removes directory items based on the
541 	 * state of the tree found in the subvolume, and i_size is modified
542 	 * as it goes
543 	 */
544 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
545 		struct btrfs_inode_item *src_item;
546 		struct btrfs_inode_item *dst_item;
547 
548 		src_item = (struct btrfs_inode_item *)src_ptr;
549 		dst_item = (struct btrfs_inode_item *)dst_ptr;
550 
551 		if (btrfs_inode_generation(eb, src_item) == 0) {
552 			struct extent_buffer *dst_eb = path->nodes[0];
553 			const u64 ino_size = btrfs_inode_size(eb, src_item);
554 
555 			/*
556 			 * For regular files an ino_size == 0 is used only when
557 			 * logging that an inode exists, as part of a directory
558 			 * fsync, and the inode wasn't fsynced before. In this
559 			 * case don't set the size of the inode in the fs/subvol
560 			 * tree, otherwise we would be throwing valid data away.
561 			 */
562 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
563 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
564 			    ino_size != 0)
565 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
566 			goto no_copy;
567 		}
568 
569 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
570 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
571 			save_old_i_size = 1;
572 			saved_i_size = btrfs_inode_size(path->nodes[0],
573 							dst_item);
574 		}
575 	}
576 
577 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
578 			   src_ptr, item_size);
579 
580 	if (save_old_i_size) {
581 		struct btrfs_inode_item *dst_item;
582 		dst_item = (struct btrfs_inode_item *)dst_ptr;
583 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
584 	}
585 
586 	/* make sure the generation is filled in */
587 	if (key->type == BTRFS_INODE_ITEM_KEY) {
588 		struct btrfs_inode_item *dst_item;
589 		dst_item = (struct btrfs_inode_item *)dst_ptr;
590 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
591 			btrfs_set_inode_generation(path->nodes[0], dst_item,
592 						   trans->transid);
593 		}
594 	}
595 no_copy:
596 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
597 	btrfs_release_path(path);
598 	return 0;
599 }
600 
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)601 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
602 			       struct fscrypt_str *name)
603 {
604 	char *buf;
605 
606 	buf = kmalloc(len, GFP_NOFS);
607 	if (!buf)
608 		return -ENOMEM;
609 
610 	read_extent_buffer(eb, buf, (unsigned long)start, len);
611 	name->name = buf;
612 	name->len = len;
613 	return 0;
614 }
615 
616 /*
617  * simple helper to read an inode off the disk from a given root
618  * This can only be called for subvolume roots and not for the log
619  */
read_one_inode(struct btrfs_root * root,u64 objectid)620 static noinline struct inode *read_one_inode(struct btrfs_root *root,
621 					     u64 objectid)
622 {
623 	struct inode *inode;
624 
625 	inode = btrfs_iget_logging(objectid, root);
626 	if (IS_ERR(inode))
627 		inode = NULL;
628 	return inode;
629 }
630 
631 /* replays a single extent in 'eb' at 'slot' with 'key' into the
632  * subvolume 'root'.  path is released on entry and should be released
633  * on exit.
634  *
635  * extents in the log tree have not been allocated out of the extent
636  * tree yet.  So, this completes the allocation, taking a reference
637  * as required if the extent already exists or creating a new extent
638  * if it isn't in the extent allocation tree yet.
639  *
640  * The extent is inserted into the file, dropping any existing extents
641  * from the file that overlap the new one.
642  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)643 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
644 				      struct btrfs_root *root,
645 				      struct btrfs_path *path,
646 				      struct extent_buffer *eb, int slot,
647 				      struct btrfs_key *key)
648 {
649 	struct btrfs_drop_extents_args drop_args = { 0 };
650 	struct btrfs_fs_info *fs_info = root->fs_info;
651 	int found_type;
652 	u64 extent_end;
653 	u64 start = key->offset;
654 	u64 nbytes = 0;
655 	struct btrfs_file_extent_item *item;
656 	struct inode *inode = NULL;
657 	unsigned long size;
658 	int ret = 0;
659 
660 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
661 	found_type = btrfs_file_extent_type(eb, item);
662 
663 	if (found_type == BTRFS_FILE_EXTENT_REG ||
664 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 		nbytes = btrfs_file_extent_num_bytes(eb, item);
666 		extent_end = start + nbytes;
667 
668 		/*
669 		 * We don't add to the inodes nbytes if we are prealloc or a
670 		 * hole.
671 		 */
672 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
673 			nbytes = 0;
674 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
675 		size = btrfs_file_extent_ram_bytes(eb, item);
676 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
677 		extent_end = ALIGN(start + size,
678 				   fs_info->sectorsize);
679 	} else {
680 		ret = 0;
681 		goto out;
682 	}
683 
684 	inode = read_one_inode(root, key->objectid);
685 	if (!inode) {
686 		ret = -EIO;
687 		goto out;
688 	}
689 
690 	/*
691 	 * first check to see if we already have this extent in the
692 	 * file.  This must be done before the btrfs_drop_extents run
693 	 * so we don't try to drop this extent.
694 	 */
695 	ret = btrfs_lookup_file_extent(trans, root, path,
696 			btrfs_ino(BTRFS_I(inode)), start, 0);
697 
698 	if (ret == 0 &&
699 	    (found_type == BTRFS_FILE_EXTENT_REG ||
700 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
701 		struct btrfs_file_extent_item cmp1;
702 		struct btrfs_file_extent_item cmp2;
703 		struct btrfs_file_extent_item *existing;
704 		struct extent_buffer *leaf;
705 
706 		leaf = path->nodes[0];
707 		existing = btrfs_item_ptr(leaf, path->slots[0],
708 					  struct btrfs_file_extent_item);
709 
710 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
711 				   sizeof(cmp1));
712 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
713 				   sizeof(cmp2));
714 
715 		/*
716 		 * we already have a pointer to this exact extent,
717 		 * we don't have to do anything
718 		 */
719 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
720 			btrfs_release_path(path);
721 			goto out;
722 		}
723 	}
724 	btrfs_release_path(path);
725 
726 	/* drop any overlapping extents */
727 	drop_args.start = start;
728 	drop_args.end = extent_end;
729 	drop_args.drop_cache = true;
730 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
731 	if (ret)
732 		goto out;
733 
734 	if (found_type == BTRFS_FILE_EXTENT_REG ||
735 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
736 		u64 offset;
737 		unsigned long dest_offset;
738 		struct btrfs_key ins;
739 
740 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
741 		    btrfs_fs_incompat(fs_info, NO_HOLES))
742 			goto update_inode;
743 
744 		ret = btrfs_insert_empty_item(trans, root, path, key,
745 					      sizeof(*item));
746 		if (ret)
747 			goto out;
748 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
749 						    path->slots[0]);
750 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
751 				(unsigned long)item,  sizeof(*item));
752 
753 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
754 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
755 		ins.type = BTRFS_EXTENT_ITEM_KEY;
756 		offset = key->offset - btrfs_file_extent_offset(eb, item);
757 
758 		/*
759 		 * Manually record dirty extent, as here we did a shallow
760 		 * file extent item copy and skip normal backref update,
761 		 * but modifying extent tree all by ourselves.
762 		 * So need to manually record dirty extent for qgroup,
763 		 * as the owner of the file extent changed from log tree
764 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
765 		 */
766 		ret = btrfs_qgroup_trace_extent(trans,
767 				btrfs_file_extent_disk_bytenr(eb, item),
768 				btrfs_file_extent_disk_num_bytes(eb, item));
769 		if (ret < 0)
770 			goto out;
771 
772 		if (ins.objectid > 0) {
773 			struct btrfs_ref ref = { 0 };
774 			u64 csum_start;
775 			u64 csum_end;
776 			LIST_HEAD(ordered_sums);
777 
778 			/*
779 			 * is this extent already allocated in the extent
780 			 * allocation tree?  If so, just add a reference
781 			 */
782 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
783 						ins.offset);
784 			if (ret < 0) {
785 				goto out;
786 			} else if (ret == 0) {
787 				btrfs_init_generic_ref(&ref,
788 						BTRFS_ADD_DELAYED_REF,
789 						ins.objectid, ins.offset, 0);
790 				btrfs_init_data_ref(&ref,
791 						root->root_key.objectid,
792 						key->objectid, offset, 0, false);
793 				ret = btrfs_inc_extent_ref(trans, &ref);
794 				if (ret)
795 					goto out;
796 			} else {
797 				/*
798 				 * insert the extent pointer in the extent
799 				 * allocation tree
800 				 */
801 				ret = btrfs_alloc_logged_file_extent(trans,
802 						root->root_key.objectid,
803 						key->objectid, offset, &ins);
804 				if (ret)
805 					goto out;
806 			}
807 			btrfs_release_path(path);
808 
809 			if (btrfs_file_extent_compression(eb, item)) {
810 				csum_start = ins.objectid;
811 				csum_end = csum_start + ins.offset;
812 			} else {
813 				csum_start = ins.objectid +
814 					btrfs_file_extent_offset(eb, item);
815 				csum_end = csum_start +
816 					btrfs_file_extent_num_bytes(eb, item);
817 			}
818 
819 			ret = btrfs_lookup_csums_list(root->log_root,
820 						csum_start, csum_end - 1,
821 						&ordered_sums, 0, false);
822 			if (ret)
823 				goto out;
824 			/*
825 			 * Now delete all existing cums in the csum root that
826 			 * cover our range. We do this because we can have an
827 			 * extent that is completely referenced by one file
828 			 * extent item and partially referenced by another
829 			 * file extent item (like after using the clone or
830 			 * extent_same ioctls). In this case if we end up doing
831 			 * the replay of the one that partially references the
832 			 * extent first, and we do not do the csum deletion
833 			 * below, we can get 2 csum items in the csum tree that
834 			 * overlap each other. For example, imagine our log has
835 			 * the two following file extent items:
836 			 *
837 			 * key (257 EXTENT_DATA 409600)
838 			 *     extent data disk byte 12845056 nr 102400
839 			 *     extent data offset 20480 nr 20480 ram 102400
840 			 *
841 			 * key (257 EXTENT_DATA 819200)
842 			 *     extent data disk byte 12845056 nr 102400
843 			 *     extent data offset 0 nr 102400 ram 102400
844 			 *
845 			 * Where the second one fully references the 100K extent
846 			 * that starts at disk byte 12845056, and the log tree
847 			 * has a single csum item that covers the entire range
848 			 * of the extent:
849 			 *
850 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 			 *
852 			 * After the first file extent item is replayed, the
853 			 * csum tree gets the following csum item:
854 			 *
855 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
856 			 *
857 			 * Which covers the 20K sub-range starting at offset 20K
858 			 * of our extent. Now when we replay the second file
859 			 * extent item, if we do not delete existing csum items
860 			 * that cover any of its blocks, we end up getting two
861 			 * csum items in our csum tree that overlap each other:
862 			 *
863 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
865 			 *
866 			 * Which is a problem, because after this anyone trying
867 			 * to lookup up for the checksum of any block of our
868 			 * extent starting at an offset of 40K or higher, will
869 			 * end up looking at the second csum item only, which
870 			 * does not contain the checksum for any block starting
871 			 * at offset 40K or higher of our extent.
872 			 */
873 			while (!list_empty(&ordered_sums)) {
874 				struct btrfs_ordered_sum *sums;
875 				struct btrfs_root *csum_root;
876 
877 				sums = list_entry(ordered_sums.next,
878 						struct btrfs_ordered_sum,
879 						list);
880 				csum_root = btrfs_csum_root(fs_info,
881 							    sums->logical);
882 				if (!ret)
883 					ret = btrfs_del_csums(trans, csum_root,
884 							      sums->logical,
885 							      sums->len);
886 				if (!ret)
887 					ret = btrfs_csum_file_blocks(trans,
888 								     csum_root,
889 								     sums);
890 				list_del(&sums->list);
891 				kfree(sums);
892 			}
893 			if (ret)
894 				goto out;
895 		} else {
896 			btrfs_release_path(path);
897 		}
898 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
899 		/* inline extents are easy, we just overwrite them */
900 		ret = overwrite_item(trans, root, path, eb, slot, key);
901 		if (ret)
902 			goto out;
903 	}
904 
905 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
906 						extent_end - start);
907 	if (ret)
908 		goto out;
909 
910 update_inode:
911 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
912 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
913 out:
914 	iput(inode);
915 	return ret;
916 }
917 
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)918 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
919 				       struct btrfs_inode *dir,
920 				       struct btrfs_inode *inode,
921 				       const struct fscrypt_str *name)
922 {
923 	int ret;
924 
925 	ret = btrfs_unlink_inode(trans, dir, inode, name);
926 	if (ret)
927 		return ret;
928 	/*
929 	 * Whenever we need to check if a name exists or not, we check the
930 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
931 	 * that future checks for a name during log replay see that the name
932 	 * does not exists anymore.
933 	 */
934 	return btrfs_run_delayed_items(trans);
935 }
936 
937 /*
938  * when cleaning up conflicts between the directory names in the
939  * subvolume, directory names in the log and directory names in the
940  * inode back references, we may have to unlink inodes from directories.
941  *
942  * This is a helper function to do the unlink of a specific directory
943  * item
944  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)945 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
946 				      struct btrfs_path *path,
947 				      struct btrfs_inode *dir,
948 				      struct btrfs_dir_item *di)
949 {
950 	struct btrfs_root *root = dir->root;
951 	struct inode *inode;
952 	struct fscrypt_str name;
953 	struct extent_buffer *leaf;
954 	struct btrfs_key location;
955 	int ret;
956 
957 	leaf = path->nodes[0];
958 
959 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
960 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
961 	if (ret)
962 		return -ENOMEM;
963 
964 	btrfs_release_path(path);
965 
966 	inode = read_one_inode(root, location.objectid);
967 	if (!inode) {
968 		ret = -EIO;
969 		goto out;
970 	}
971 
972 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
973 	if (ret)
974 		goto out;
975 
976 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
977 out:
978 	kfree(name.name);
979 	iput(inode);
980 	return ret;
981 }
982 
983 /*
984  * See if a given name and sequence number found in an inode back reference are
985  * already in a directory and correctly point to this inode.
986  *
987  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
988  * exists.
989  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)990 static noinline int inode_in_dir(struct btrfs_root *root,
991 				 struct btrfs_path *path,
992 				 u64 dirid, u64 objectid, u64 index,
993 				 struct fscrypt_str *name)
994 {
995 	struct btrfs_dir_item *di;
996 	struct btrfs_key location;
997 	int ret = 0;
998 
999 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1000 					 index, name, 0);
1001 	if (IS_ERR(di)) {
1002 		ret = PTR_ERR(di);
1003 		goto out;
1004 	} else if (di) {
1005 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 		if (location.objectid != objectid)
1007 			goto out;
1008 	} else {
1009 		goto out;
1010 	}
1011 
1012 	btrfs_release_path(path);
1013 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1014 	if (IS_ERR(di)) {
1015 		ret = PTR_ERR(di);
1016 		goto out;
1017 	} else if (di) {
1018 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1019 		if (location.objectid == objectid)
1020 			ret = 1;
1021 	}
1022 out:
1023 	btrfs_release_path(path);
1024 	return ret;
1025 }
1026 
1027 /*
1028  * helper function to check a log tree for a named back reference in
1029  * an inode.  This is used to decide if a back reference that is
1030  * found in the subvolume conflicts with what we find in the log.
1031  *
1032  * inode backreferences may have multiple refs in a single item,
1033  * during replay we process one reference at a time, and we don't
1034  * want to delete valid links to a file from the subvolume if that
1035  * link is also in the log.
1036  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1037 static noinline int backref_in_log(struct btrfs_root *log,
1038 				   struct btrfs_key *key,
1039 				   u64 ref_objectid,
1040 				   const struct fscrypt_str *name)
1041 {
1042 	struct btrfs_path *path;
1043 	int ret;
1044 
1045 	path = btrfs_alloc_path();
1046 	if (!path)
1047 		return -ENOMEM;
1048 
1049 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1050 	if (ret < 0) {
1051 		goto out;
1052 	} else if (ret == 1) {
1053 		ret = 0;
1054 		goto out;
1055 	}
1056 
1057 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1058 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1059 						       path->slots[0],
1060 						       ref_objectid, name);
1061 	else
1062 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1063 						   path->slots[0], name);
1064 out:
1065 	btrfs_free_path(path);
1066 	return ret;
1067 }
1068 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1069 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1070 				  struct btrfs_root *root,
1071 				  struct btrfs_path *path,
1072 				  struct btrfs_root *log_root,
1073 				  struct btrfs_inode *dir,
1074 				  struct btrfs_inode *inode,
1075 				  u64 inode_objectid, u64 parent_objectid,
1076 				  u64 ref_index, struct fscrypt_str *name)
1077 {
1078 	int ret;
1079 	struct extent_buffer *leaf;
1080 	struct btrfs_dir_item *di;
1081 	struct btrfs_key search_key;
1082 	struct btrfs_inode_extref *extref;
1083 
1084 again:
1085 	/* Search old style refs */
1086 	search_key.objectid = inode_objectid;
1087 	search_key.type = BTRFS_INODE_REF_KEY;
1088 	search_key.offset = parent_objectid;
1089 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1090 	if (ret < 0) {
1091 		return ret;
1092 	} else if (ret == 0) {
1093 		struct btrfs_inode_ref *victim_ref;
1094 		unsigned long ptr;
1095 		unsigned long ptr_end;
1096 
1097 		leaf = path->nodes[0];
1098 
1099 		/* are we trying to overwrite a back ref for the root directory
1100 		 * if so, just jump out, we're done
1101 		 */
1102 		if (search_key.objectid == search_key.offset)
1103 			return 1;
1104 
1105 		/* check all the names in this back reference to see
1106 		 * if they are in the log.  if so, we allow them to stay
1107 		 * otherwise they must be unlinked as a conflict
1108 		 */
1109 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1110 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1111 		while (ptr < ptr_end) {
1112 			struct fscrypt_str victim_name;
1113 
1114 			victim_ref = (struct btrfs_inode_ref *)ptr;
1115 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1116 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1117 				 &victim_name);
1118 			if (ret)
1119 				return ret;
1120 
1121 			ret = backref_in_log(log_root, &search_key,
1122 					     parent_objectid, &victim_name);
1123 			if (ret < 0) {
1124 				kfree(victim_name.name);
1125 				return ret;
1126 			} else if (!ret) {
1127 				inc_nlink(&inode->vfs_inode);
1128 				btrfs_release_path(path);
1129 
1130 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1131 						&victim_name);
1132 				kfree(victim_name.name);
1133 				if (ret)
1134 					return ret;
1135 				goto again;
1136 			}
1137 			kfree(victim_name.name);
1138 
1139 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1140 		}
1141 	}
1142 	btrfs_release_path(path);
1143 
1144 	/* Same search but for extended refs */
1145 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1146 					   inode_objectid, parent_objectid, 0,
1147 					   0);
1148 	if (IS_ERR(extref)) {
1149 		return PTR_ERR(extref);
1150 	} else if (extref) {
1151 		u32 item_size;
1152 		u32 cur_offset = 0;
1153 		unsigned long base;
1154 		struct inode *victim_parent;
1155 
1156 		leaf = path->nodes[0];
1157 
1158 		item_size = btrfs_item_size(leaf, path->slots[0]);
1159 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1160 
1161 		while (cur_offset < item_size) {
1162 			struct fscrypt_str victim_name;
1163 
1164 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1165 			victim_name.len = btrfs_inode_extref_name_len(leaf, extref);
1166 
1167 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1168 				goto next;
1169 
1170 			ret = read_alloc_one_name(leaf, &extref->name,
1171 						  victim_name.len, &victim_name);
1172 			if (ret)
1173 				return ret;
1174 
1175 			search_key.objectid = inode_objectid;
1176 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1177 			search_key.offset = btrfs_extref_hash(parent_objectid,
1178 							      victim_name.name,
1179 							      victim_name.len);
1180 			ret = backref_in_log(log_root, &search_key,
1181 					     parent_objectid, &victim_name);
1182 			if (ret < 0) {
1183 				kfree(victim_name.name);
1184 				return ret;
1185 			} else if (!ret) {
1186 				ret = -ENOENT;
1187 				victim_parent = read_one_inode(root,
1188 						parent_objectid);
1189 				if (victim_parent) {
1190 					inc_nlink(&inode->vfs_inode);
1191 					btrfs_release_path(path);
1192 
1193 					ret = unlink_inode_for_log_replay(trans,
1194 							BTRFS_I(victim_parent),
1195 							inode, &victim_name);
1196 				}
1197 				iput(victim_parent);
1198 				kfree(victim_name.name);
1199 				if (ret)
1200 					return ret;
1201 				goto again;
1202 			}
1203 			kfree(victim_name.name);
1204 next:
1205 			cur_offset += victim_name.len + sizeof(*extref);
1206 		}
1207 	}
1208 	btrfs_release_path(path);
1209 
1210 	/* look for a conflicting sequence number */
1211 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1212 					 ref_index, name, 0);
1213 	if (IS_ERR(di)) {
1214 		return PTR_ERR(di);
1215 	} else if (di) {
1216 		ret = drop_one_dir_item(trans, path, dir, di);
1217 		if (ret)
1218 			return ret;
1219 	}
1220 	btrfs_release_path(path);
1221 
1222 	/* look for a conflicting name */
1223 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1224 	if (IS_ERR(di)) {
1225 		return PTR_ERR(di);
1226 	} else if (di) {
1227 		ret = drop_one_dir_item(trans, path, dir, di);
1228 		if (ret)
1229 			return ret;
1230 	}
1231 	btrfs_release_path(path);
1232 
1233 	return 0;
1234 }
1235 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1236 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1237 			     struct fscrypt_str *name, u64 *index,
1238 			     u64 *parent_objectid)
1239 {
1240 	struct btrfs_inode_extref *extref;
1241 	int ret;
1242 
1243 	extref = (struct btrfs_inode_extref *)ref_ptr;
1244 
1245 	ret = read_alloc_one_name(eb, &extref->name,
1246 				  btrfs_inode_extref_name_len(eb, extref), name);
1247 	if (ret)
1248 		return ret;
1249 
1250 	if (index)
1251 		*index = btrfs_inode_extref_index(eb, extref);
1252 	if (parent_objectid)
1253 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1254 
1255 	return 0;
1256 }
1257 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1258 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1259 			  struct fscrypt_str *name, u64 *index)
1260 {
1261 	struct btrfs_inode_ref *ref;
1262 	int ret;
1263 
1264 	ref = (struct btrfs_inode_ref *)ref_ptr;
1265 
1266 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1267 				  name);
1268 	if (ret)
1269 		return ret;
1270 
1271 	if (index)
1272 		*index = btrfs_inode_ref_index(eb, ref);
1273 
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Take an inode reference item from the log tree and iterate all names from the
1279  * inode reference item in the subvolume tree with the same key (if it exists).
1280  * For any name that is not in the inode reference item from the log tree, do a
1281  * proper unlink of that name (that is, remove its entry from the inode
1282  * reference item and both dir index keys).
1283  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1284 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1285 				 struct btrfs_root *root,
1286 				 struct btrfs_path *path,
1287 				 struct btrfs_inode *inode,
1288 				 struct extent_buffer *log_eb,
1289 				 int log_slot,
1290 				 struct btrfs_key *key)
1291 {
1292 	int ret;
1293 	unsigned long ref_ptr;
1294 	unsigned long ref_end;
1295 	struct extent_buffer *eb;
1296 
1297 again:
1298 	btrfs_release_path(path);
1299 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1300 	if (ret > 0) {
1301 		ret = 0;
1302 		goto out;
1303 	}
1304 	if (ret < 0)
1305 		goto out;
1306 
1307 	eb = path->nodes[0];
1308 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1309 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1310 	while (ref_ptr < ref_end) {
1311 		struct fscrypt_str name;
1312 		u64 parent_id;
1313 
1314 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1315 			ret = extref_get_fields(eb, ref_ptr, &name,
1316 						NULL, &parent_id);
1317 		} else {
1318 			parent_id = key->offset;
1319 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1320 		}
1321 		if (ret)
1322 			goto out;
1323 
1324 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1325 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1326 							       parent_id, &name);
1327 		else
1328 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1329 
1330 		if (!ret) {
1331 			struct inode *dir;
1332 
1333 			btrfs_release_path(path);
1334 			dir = read_one_inode(root, parent_id);
1335 			if (!dir) {
1336 				ret = -ENOENT;
1337 				kfree(name.name);
1338 				goto out;
1339 			}
1340 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1341 						 inode, &name);
1342 			kfree(name.name);
1343 			iput(dir);
1344 			if (ret)
1345 				goto out;
1346 			goto again;
1347 		}
1348 
1349 		kfree(name.name);
1350 		ref_ptr += name.len;
1351 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1352 			ref_ptr += sizeof(struct btrfs_inode_extref);
1353 		else
1354 			ref_ptr += sizeof(struct btrfs_inode_ref);
1355 	}
1356 	ret = 0;
1357  out:
1358 	btrfs_release_path(path);
1359 	return ret;
1360 }
1361 
1362 /*
1363  * replay one inode back reference item found in the log tree.
1364  * eb, slot and key refer to the buffer and key found in the log tree.
1365  * root is the destination we are replaying into, and path is for temp
1366  * use by this function.  (it should be released on return).
1367  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1368 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1369 				  struct btrfs_root *root,
1370 				  struct btrfs_root *log,
1371 				  struct btrfs_path *path,
1372 				  struct extent_buffer *eb, int slot,
1373 				  struct btrfs_key *key)
1374 {
1375 	struct inode *dir = NULL;
1376 	struct inode *inode = NULL;
1377 	unsigned long ref_ptr;
1378 	unsigned long ref_end;
1379 	struct fscrypt_str name = { 0 };
1380 	int ret;
1381 	int log_ref_ver = 0;
1382 	u64 parent_objectid;
1383 	u64 inode_objectid;
1384 	u64 ref_index = 0;
1385 	int ref_struct_size;
1386 
1387 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1388 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1389 
1390 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1391 		struct btrfs_inode_extref *r;
1392 
1393 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1394 		log_ref_ver = 1;
1395 		r = (struct btrfs_inode_extref *)ref_ptr;
1396 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1397 	} else {
1398 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1399 		parent_objectid = key->offset;
1400 	}
1401 	inode_objectid = key->objectid;
1402 
1403 	/*
1404 	 * it is possible that we didn't log all the parent directories
1405 	 * for a given inode.  If we don't find the dir, just don't
1406 	 * copy the back ref in.  The link count fixup code will take
1407 	 * care of the rest
1408 	 */
1409 	dir = read_one_inode(root, parent_objectid);
1410 	if (!dir) {
1411 		ret = -ENOENT;
1412 		goto out;
1413 	}
1414 
1415 	inode = read_one_inode(root, inode_objectid);
1416 	if (!inode) {
1417 		ret = -EIO;
1418 		goto out;
1419 	}
1420 
1421 	while (ref_ptr < ref_end) {
1422 		if (log_ref_ver) {
1423 			ret = extref_get_fields(eb, ref_ptr, &name,
1424 						&ref_index, &parent_objectid);
1425 			/*
1426 			 * parent object can change from one array
1427 			 * item to another.
1428 			 */
1429 			if (!dir)
1430 				dir = read_one_inode(root, parent_objectid);
1431 			if (!dir) {
1432 				ret = -ENOENT;
1433 				goto out;
1434 			}
1435 		} else {
1436 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1437 		}
1438 		if (ret)
1439 			goto out;
1440 
1441 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1442 				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1443 		if (ret < 0) {
1444 			goto out;
1445 		} else if (ret == 0) {
1446 			/*
1447 			 * look for a conflicting back reference in the
1448 			 * metadata. if we find one we have to unlink that name
1449 			 * of the file before we add our new link.  Later on, we
1450 			 * overwrite any existing back reference, and we don't
1451 			 * want to create dangling pointers in the directory.
1452 			 */
1453 			ret = __add_inode_ref(trans, root, path, log,
1454 					      BTRFS_I(dir), BTRFS_I(inode),
1455 					      inode_objectid, parent_objectid,
1456 					      ref_index, &name);
1457 			if (ret) {
1458 				if (ret == 1)
1459 					ret = 0;
1460 				goto out;
1461 			}
1462 
1463 			/* insert our name */
1464 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1465 					     &name, 0, ref_index);
1466 			if (ret)
1467 				goto out;
1468 
1469 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1470 			if (ret)
1471 				goto out;
1472 		}
1473 		/* Else, ret == 1, we already have a perfect match, we're done. */
1474 
1475 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1476 		kfree(name.name);
1477 		name.name = NULL;
1478 		if (log_ref_ver) {
1479 			iput(dir);
1480 			dir = NULL;
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * Before we overwrite the inode reference item in the subvolume tree
1486 	 * with the item from the log tree, we must unlink all names from the
1487 	 * parent directory that are in the subvolume's tree inode reference
1488 	 * item, otherwise we end up with an inconsistent subvolume tree where
1489 	 * dir index entries exist for a name but there is no inode reference
1490 	 * item with the same name.
1491 	 */
1492 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1493 				    key);
1494 	if (ret)
1495 		goto out;
1496 
1497 	/* finally write the back reference in the inode */
1498 	ret = overwrite_item(trans, root, path, eb, slot, key);
1499 out:
1500 	btrfs_release_path(path);
1501 	kfree(name.name);
1502 	iput(dir);
1503 	iput(inode);
1504 	return ret;
1505 }
1506 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1507 static int count_inode_extrefs(struct btrfs_root *root,
1508 		struct btrfs_inode *inode, struct btrfs_path *path)
1509 {
1510 	int ret = 0;
1511 	int name_len;
1512 	unsigned int nlink = 0;
1513 	u32 item_size;
1514 	u32 cur_offset = 0;
1515 	u64 inode_objectid = btrfs_ino(inode);
1516 	u64 offset = 0;
1517 	unsigned long ptr;
1518 	struct btrfs_inode_extref *extref;
1519 	struct extent_buffer *leaf;
1520 
1521 	while (1) {
1522 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1523 					    &extref, &offset);
1524 		if (ret)
1525 			break;
1526 
1527 		leaf = path->nodes[0];
1528 		item_size = btrfs_item_size(leaf, path->slots[0]);
1529 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1530 		cur_offset = 0;
1531 
1532 		while (cur_offset < item_size) {
1533 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1534 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1535 
1536 			nlink++;
1537 
1538 			cur_offset += name_len + sizeof(*extref);
1539 		}
1540 
1541 		offset++;
1542 		btrfs_release_path(path);
1543 	}
1544 	btrfs_release_path(path);
1545 
1546 	if (ret < 0 && ret != -ENOENT)
1547 		return ret;
1548 	return nlink;
1549 }
1550 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1551 static int count_inode_refs(struct btrfs_root *root,
1552 			struct btrfs_inode *inode, struct btrfs_path *path)
1553 {
1554 	int ret;
1555 	struct btrfs_key key;
1556 	unsigned int nlink = 0;
1557 	unsigned long ptr;
1558 	unsigned long ptr_end;
1559 	int name_len;
1560 	u64 ino = btrfs_ino(inode);
1561 
1562 	key.objectid = ino;
1563 	key.type = BTRFS_INODE_REF_KEY;
1564 	key.offset = (u64)-1;
1565 
1566 	while (1) {
1567 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1568 		if (ret < 0)
1569 			break;
1570 		if (ret > 0) {
1571 			if (path->slots[0] == 0)
1572 				break;
1573 			path->slots[0]--;
1574 		}
1575 process_slot:
1576 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1577 				      path->slots[0]);
1578 		if (key.objectid != ino ||
1579 		    key.type != BTRFS_INODE_REF_KEY)
1580 			break;
1581 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1582 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1583 						   path->slots[0]);
1584 		while (ptr < ptr_end) {
1585 			struct btrfs_inode_ref *ref;
1586 
1587 			ref = (struct btrfs_inode_ref *)ptr;
1588 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1589 							    ref);
1590 			ptr = (unsigned long)(ref + 1) + name_len;
1591 			nlink++;
1592 		}
1593 
1594 		if (key.offset == 0)
1595 			break;
1596 		if (path->slots[0] > 0) {
1597 			path->slots[0]--;
1598 			goto process_slot;
1599 		}
1600 		key.offset--;
1601 		btrfs_release_path(path);
1602 	}
1603 	btrfs_release_path(path);
1604 
1605 	return nlink;
1606 }
1607 
1608 /*
1609  * There are a few corners where the link count of the file can't
1610  * be properly maintained during replay.  So, instead of adding
1611  * lots of complexity to the log code, we just scan the backrefs
1612  * for any file that has been through replay.
1613  *
1614  * The scan will update the link count on the inode to reflect the
1615  * number of back refs found.  If it goes down to zero, the iput
1616  * will free the inode.
1617  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1618 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1619 					   struct btrfs_root *root,
1620 					   struct inode *inode)
1621 {
1622 	struct btrfs_path *path;
1623 	int ret;
1624 	u64 nlink = 0;
1625 	u64 ino = btrfs_ino(BTRFS_I(inode));
1626 
1627 	path = btrfs_alloc_path();
1628 	if (!path)
1629 		return -ENOMEM;
1630 
1631 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1632 	if (ret < 0)
1633 		goto out;
1634 
1635 	nlink = ret;
1636 
1637 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1638 	if (ret < 0)
1639 		goto out;
1640 
1641 	nlink += ret;
1642 
1643 	ret = 0;
1644 
1645 	if (nlink != inode->i_nlink) {
1646 		set_nlink(inode, nlink);
1647 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1648 		if (ret)
1649 			goto out;
1650 	}
1651 	BTRFS_I(inode)->index_cnt = (u64)-1;
1652 
1653 	if (inode->i_nlink == 0) {
1654 		if (S_ISDIR(inode->i_mode)) {
1655 			ret = replay_dir_deletes(trans, root, NULL, path,
1656 						 ino, 1);
1657 			if (ret)
1658 				goto out;
1659 		}
1660 		ret = btrfs_insert_orphan_item(trans, root, ino);
1661 		if (ret == -EEXIST)
1662 			ret = 0;
1663 	}
1664 
1665 out:
1666 	btrfs_free_path(path);
1667 	return ret;
1668 }
1669 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1670 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1671 					    struct btrfs_root *root,
1672 					    struct btrfs_path *path)
1673 {
1674 	int ret;
1675 	struct btrfs_key key;
1676 	struct inode *inode;
1677 
1678 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1679 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1680 	key.offset = (u64)-1;
1681 	while (1) {
1682 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1683 		if (ret < 0)
1684 			break;
1685 
1686 		if (ret == 1) {
1687 			ret = 0;
1688 			if (path->slots[0] == 0)
1689 				break;
1690 			path->slots[0]--;
1691 		}
1692 
1693 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1694 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1695 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1696 			break;
1697 
1698 		ret = btrfs_del_item(trans, root, path);
1699 		if (ret)
1700 			break;
1701 
1702 		btrfs_release_path(path);
1703 		inode = read_one_inode(root, key.offset);
1704 		if (!inode) {
1705 			ret = -EIO;
1706 			break;
1707 		}
1708 
1709 		ret = fixup_inode_link_count(trans, root, inode);
1710 		iput(inode);
1711 		if (ret)
1712 			break;
1713 
1714 		/*
1715 		 * fixup on a directory may create new entries,
1716 		 * make sure we always look for the highset possible
1717 		 * offset
1718 		 */
1719 		key.offset = (u64)-1;
1720 	}
1721 	btrfs_release_path(path);
1722 	return ret;
1723 }
1724 
1725 
1726 /*
1727  * record a given inode in the fixup dir so we can check its link
1728  * count when replay is done.  The link count is incremented here
1729  * so the inode won't go away until we check it
1730  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1731 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1732 				      struct btrfs_root *root,
1733 				      struct btrfs_path *path,
1734 				      u64 objectid)
1735 {
1736 	struct btrfs_key key;
1737 	int ret = 0;
1738 	struct inode *inode;
1739 
1740 	inode = read_one_inode(root, objectid);
1741 	if (!inode)
1742 		return -EIO;
1743 
1744 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1745 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1746 	key.offset = objectid;
1747 
1748 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1749 
1750 	btrfs_release_path(path);
1751 	if (ret == 0) {
1752 		if (!inode->i_nlink)
1753 			set_nlink(inode, 1);
1754 		else
1755 			inc_nlink(inode);
1756 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1757 	} else if (ret == -EEXIST) {
1758 		ret = 0;
1759 	}
1760 	iput(inode);
1761 
1762 	return ret;
1763 }
1764 
1765 /*
1766  * when replaying the log for a directory, we only insert names
1767  * for inodes that actually exist.  This means an fsync on a directory
1768  * does not implicitly fsync all the new files in it
1769  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1770 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1771 				    struct btrfs_root *root,
1772 				    u64 dirid, u64 index,
1773 				    const struct fscrypt_str *name,
1774 				    struct btrfs_key *location)
1775 {
1776 	struct inode *inode;
1777 	struct inode *dir;
1778 	int ret;
1779 
1780 	inode = read_one_inode(root, location->objectid);
1781 	if (!inode)
1782 		return -ENOENT;
1783 
1784 	dir = read_one_inode(root, dirid);
1785 	if (!dir) {
1786 		iput(inode);
1787 		return -EIO;
1788 	}
1789 
1790 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1791 			     1, index);
1792 
1793 	/* FIXME, put inode into FIXUP list */
1794 
1795 	iput(inode);
1796 	iput(dir);
1797 	return ret;
1798 }
1799 
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1800 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1801 					struct btrfs_inode *dir,
1802 					struct btrfs_path *path,
1803 					struct btrfs_dir_item *dst_di,
1804 					const struct btrfs_key *log_key,
1805 					u8 log_flags,
1806 					bool exists)
1807 {
1808 	struct btrfs_key found_key;
1809 
1810 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1811 	/* The existing dentry points to the same inode, don't delete it. */
1812 	if (found_key.objectid == log_key->objectid &&
1813 	    found_key.type == log_key->type &&
1814 	    found_key.offset == log_key->offset &&
1815 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1816 		return 1;
1817 
1818 	/*
1819 	 * Don't drop the conflicting directory entry if the inode for the new
1820 	 * entry doesn't exist.
1821 	 */
1822 	if (!exists)
1823 		return 0;
1824 
1825 	return drop_one_dir_item(trans, path, dir, dst_di);
1826 }
1827 
1828 /*
1829  * take a single entry in a log directory item and replay it into
1830  * the subvolume.
1831  *
1832  * if a conflicting item exists in the subdirectory already,
1833  * the inode it points to is unlinked and put into the link count
1834  * fix up tree.
1835  *
1836  * If a name from the log points to a file or directory that does
1837  * not exist in the FS, it is skipped.  fsyncs on directories
1838  * do not force down inodes inside that directory, just changes to the
1839  * names or unlinks in a directory.
1840  *
1841  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1842  * non-existing inode) and 1 if the name was replayed.
1843  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1844 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1845 				    struct btrfs_root *root,
1846 				    struct btrfs_path *path,
1847 				    struct extent_buffer *eb,
1848 				    struct btrfs_dir_item *di,
1849 				    struct btrfs_key *key)
1850 {
1851 	struct fscrypt_str name = { 0 };
1852 	struct btrfs_dir_item *dir_dst_di;
1853 	struct btrfs_dir_item *index_dst_di;
1854 	bool dir_dst_matches = false;
1855 	bool index_dst_matches = false;
1856 	struct btrfs_key log_key;
1857 	struct btrfs_key search_key;
1858 	struct inode *dir;
1859 	u8 log_flags;
1860 	bool exists;
1861 	int ret;
1862 	bool update_size = true;
1863 	bool name_added = false;
1864 
1865 	dir = read_one_inode(root, key->objectid);
1866 	if (!dir)
1867 		return -EIO;
1868 
1869 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1870 	if (ret)
1871 		goto out;
1872 
1873 	log_flags = btrfs_dir_flags(eb, di);
1874 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1875 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1876 	btrfs_release_path(path);
1877 	if (ret < 0)
1878 		goto out;
1879 	exists = (ret == 0);
1880 	ret = 0;
1881 
1882 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1883 					   &name, 1);
1884 	if (IS_ERR(dir_dst_di)) {
1885 		ret = PTR_ERR(dir_dst_di);
1886 		goto out;
1887 	} else if (dir_dst_di) {
1888 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1889 						   dir_dst_di, &log_key,
1890 						   log_flags, exists);
1891 		if (ret < 0)
1892 			goto out;
1893 		dir_dst_matches = (ret == 1);
1894 	}
1895 
1896 	btrfs_release_path(path);
1897 
1898 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1899 						   key->objectid, key->offset,
1900 						   &name, 1);
1901 	if (IS_ERR(index_dst_di)) {
1902 		ret = PTR_ERR(index_dst_di);
1903 		goto out;
1904 	} else if (index_dst_di) {
1905 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1906 						   index_dst_di, &log_key,
1907 						   log_flags, exists);
1908 		if (ret < 0)
1909 			goto out;
1910 		index_dst_matches = (ret == 1);
1911 	}
1912 
1913 	btrfs_release_path(path);
1914 
1915 	if (dir_dst_matches && index_dst_matches) {
1916 		ret = 0;
1917 		update_size = false;
1918 		goto out;
1919 	}
1920 
1921 	/*
1922 	 * Check if the inode reference exists in the log for the given name,
1923 	 * inode and parent inode
1924 	 */
1925 	search_key.objectid = log_key.objectid;
1926 	search_key.type = BTRFS_INODE_REF_KEY;
1927 	search_key.offset = key->objectid;
1928 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1929 	if (ret < 0) {
1930 	        goto out;
1931 	} else if (ret) {
1932 	        /* The dentry will be added later. */
1933 	        ret = 0;
1934 	        update_size = false;
1935 	        goto out;
1936 	}
1937 
1938 	search_key.objectid = log_key.objectid;
1939 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1940 	search_key.offset = key->objectid;
1941 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1942 	if (ret < 0) {
1943 		goto out;
1944 	} else if (ret) {
1945 		/* The dentry will be added later. */
1946 		ret = 0;
1947 		update_size = false;
1948 		goto out;
1949 	}
1950 	btrfs_release_path(path);
1951 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1952 			      &name, &log_key);
1953 	if (ret && ret != -ENOENT && ret != -EEXIST)
1954 		goto out;
1955 	if (!ret)
1956 		name_added = true;
1957 	update_size = false;
1958 	ret = 0;
1959 
1960 out:
1961 	if (!ret && update_size) {
1962 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1963 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1964 	}
1965 	kfree(name.name);
1966 	iput(dir);
1967 	if (!ret && name_added)
1968 		ret = 1;
1969 	return ret;
1970 }
1971 
1972 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1973 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1974 					struct btrfs_root *root,
1975 					struct btrfs_path *path,
1976 					struct extent_buffer *eb, int slot,
1977 					struct btrfs_key *key)
1978 {
1979 	int ret;
1980 	struct btrfs_dir_item *di;
1981 
1982 	/* We only log dir index keys, which only contain a single dir item. */
1983 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1984 
1985 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1986 	ret = replay_one_name(trans, root, path, eb, di, key);
1987 	if (ret < 0)
1988 		return ret;
1989 
1990 	/*
1991 	 * If this entry refers to a non-directory (directories can not have a
1992 	 * link count > 1) and it was added in the transaction that was not
1993 	 * committed, make sure we fixup the link count of the inode the entry
1994 	 * points to. Otherwise something like the following would result in a
1995 	 * directory pointing to an inode with a wrong link that does not account
1996 	 * for this dir entry:
1997 	 *
1998 	 * mkdir testdir
1999 	 * touch testdir/foo
2000 	 * touch testdir/bar
2001 	 * sync
2002 	 *
2003 	 * ln testdir/bar testdir/bar_link
2004 	 * ln testdir/foo testdir/foo_link
2005 	 * xfs_io -c "fsync" testdir/bar
2006 	 *
2007 	 * <power failure>
2008 	 *
2009 	 * mount fs, log replay happens
2010 	 *
2011 	 * File foo would remain with a link count of 1 when it has two entries
2012 	 * pointing to it in the directory testdir. This would make it impossible
2013 	 * to ever delete the parent directory has it would result in stale
2014 	 * dentries that can never be deleted.
2015 	 */
2016 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2017 		struct btrfs_path *fixup_path;
2018 		struct btrfs_key di_key;
2019 
2020 		fixup_path = btrfs_alloc_path();
2021 		if (!fixup_path)
2022 			return -ENOMEM;
2023 
2024 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2025 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2026 		btrfs_free_path(fixup_path);
2027 	}
2028 
2029 	return ret;
2030 }
2031 
2032 /*
2033  * directory replay has two parts.  There are the standard directory
2034  * items in the log copied from the subvolume, and range items
2035  * created in the log while the subvolume was logged.
2036  *
2037  * The range items tell us which parts of the key space the log
2038  * is authoritative for.  During replay, if a key in the subvolume
2039  * directory is in a logged range item, but not actually in the log
2040  * that means it was deleted from the directory before the fsync
2041  * and should be removed.
2042  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2043 static noinline int find_dir_range(struct btrfs_root *root,
2044 				   struct btrfs_path *path,
2045 				   u64 dirid,
2046 				   u64 *start_ret, u64 *end_ret)
2047 {
2048 	struct btrfs_key key;
2049 	u64 found_end;
2050 	struct btrfs_dir_log_item *item;
2051 	int ret;
2052 	int nritems;
2053 
2054 	if (*start_ret == (u64)-1)
2055 		return 1;
2056 
2057 	key.objectid = dirid;
2058 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2059 	key.offset = *start_ret;
2060 
2061 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2062 	if (ret < 0)
2063 		goto out;
2064 	if (ret > 0) {
2065 		if (path->slots[0] == 0)
2066 			goto out;
2067 		path->slots[0]--;
2068 	}
2069 	if (ret != 0)
2070 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2071 
2072 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2073 		ret = 1;
2074 		goto next;
2075 	}
2076 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2077 			      struct btrfs_dir_log_item);
2078 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2079 
2080 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2081 		ret = 0;
2082 		*start_ret = key.offset;
2083 		*end_ret = found_end;
2084 		goto out;
2085 	}
2086 	ret = 1;
2087 next:
2088 	/* check the next slot in the tree to see if it is a valid item */
2089 	nritems = btrfs_header_nritems(path->nodes[0]);
2090 	path->slots[0]++;
2091 	if (path->slots[0] >= nritems) {
2092 		ret = btrfs_next_leaf(root, path);
2093 		if (ret)
2094 			goto out;
2095 	}
2096 
2097 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2098 
2099 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2100 		ret = 1;
2101 		goto out;
2102 	}
2103 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2104 			      struct btrfs_dir_log_item);
2105 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2106 	*start_ret = key.offset;
2107 	*end_ret = found_end;
2108 	ret = 0;
2109 out:
2110 	btrfs_release_path(path);
2111 	return ret;
2112 }
2113 
2114 /*
2115  * this looks for a given directory item in the log.  If the directory
2116  * item is not in the log, the item is removed and the inode it points
2117  * to is unlinked
2118  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2119 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2120 				      struct btrfs_root *log,
2121 				      struct btrfs_path *path,
2122 				      struct btrfs_path *log_path,
2123 				      struct inode *dir,
2124 				      struct btrfs_key *dir_key)
2125 {
2126 	struct btrfs_root *root = BTRFS_I(dir)->root;
2127 	int ret;
2128 	struct extent_buffer *eb;
2129 	int slot;
2130 	struct btrfs_dir_item *di;
2131 	struct fscrypt_str name = { 0 };
2132 	struct inode *inode = NULL;
2133 	struct btrfs_key location;
2134 
2135 	/*
2136 	 * Currently we only log dir index keys. Even if we replay a log created
2137 	 * by an older kernel that logged both dir index and dir item keys, all
2138 	 * we need to do is process the dir index keys, we (and our caller) can
2139 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2140 	 */
2141 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2142 
2143 	eb = path->nodes[0];
2144 	slot = path->slots[0];
2145 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2146 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2147 	if (ret)
2148 		goto out;
2149 
2150 	if (log) {
2151 		struct btrfs_dir_item *log_di;
2152 
2153 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2154 						     dir_key->objectid,
2155 						     dir_key->offset, &name, 0);
2156 		if (IS_ERR(log_di)) {
2157 			ret = PTR_ERR(log_di);
2158 			goto out;
2159 		} else if (log_di) {
2160 			/* The dentry exists in the log, we have nothing to do. */
2161 			ret = 0;
2162 			goto out;
2163 		}
2164 	}
2165 
2166 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2167 	btrfs_release_path(path);
2168 	btrfs_release_path(log_path);
2169 	inode = read_one_inode(root, location.objectid);
2170 	if (!inode) {
2171 		ret = -EIO;
2172 		goto out;
2173 	}
2174 
2175 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2176 	if (ret)
2177 		goto out;
2178 
2179 	inc_nlink(inode);
2180 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2181 					  &name);
2182 	/*
2183 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2184 	 * them, as there are no key collisions since each key has a unique offset
2185 	 * (an index number), so we're done.
2186 	 */
2187 out:
2188 	btrfs_release_path(path);
2189 	btrfs_release_path(log_path);
2190 	kfree(name.name);
2191 	iput(inode);
2192 	return ret;
2193 }
2194 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2195 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2196 			      struct btrfs_root *root,
2197 			      struct btrfs_root *log,
2198 			      struct btrfs_path *path,
2199 			      const u64 ino)
2200 {
2201 	struct btrfs_key search_key;
2202 	struct btrfs_path *log_path;
2203 	int i;
2204 	int nritems;
2205 	int ret;
2206 
2207 	log_path = btrfs_alloc_path();
2208 	if (!log_path)
2209 		return -ENOMEM;
2210 
2211 	search_key.objectid = ino;
2212 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2213 	search_key.offset = 0;
2214 again:
2215 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2216 	if (ret < 0)
2217 		goto out;
2218 process_leaf:
2219 	nritems = btrfs_header_nritems(path->nodes[0]);
2220 	for (i = path->slots[0]; i < nritems; i++) {
2221 		struct btrfs_key key;
2222 		struct btrfs_dir_item *di;
2223 		struct btrfs_dir_item *log_di;
2224 		u32 total_size;
2225 		u32 cur;
2226 
2227 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2228 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2229 			ret = 0;
2230 			goto out;
2231 		}
2232 
2233 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2234 		total_size = btrfs_item_size(path->nodes[0], i);
2235 		cur = 0;
2236 		while (cur < total_size) {
2237 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2238 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2239 			u32 this_len = sizeof(*di) + name_len + data_len;
2240 			char *name;
2241 
2242 			name = kmalloc(name_len, GFP_NOFS);
2243 			if (!name) {
2244 				ret = -ENOMEM;
2245 				goto out;
2246 			}
2247 			read_extent_buffer(path->nodes[0], name,
2248 					   (unsigned long)(di + 1), name_len);
2249 
2250 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2251 						    name, name_len, 0);
2252 			btrfs_release_path(log_path);
2253 			if (!log_di) {
2254 				/* Doesn't exist in log tree, so delete it. */
2255 				btrfs_release_path(path);
2256 				di = btrfs_lookup_xattr(trans, root, path, ino,
2257 							name, name_len, -1);
2258 				kfree(name);
2259 				if (IS_ERR(di)) {
2260 					ret = PTR_ERR(di);
2261 					goto out;
2262 				}
2263 				ASSERT(di);
2264 				ret = btrfs_delete_one_dir_name(trans, root,
2265 								path, di);
2266 				if (ret)
2267 					goto out;
2268 				btrfs_release_path(path);
2269 				search_key = key;
2270 				goto again;
2271 			}
2272 			kfree(name);
2273 			if (IS_ERR(log_di)) {
2274 				ret = PTR_ERR(log_di);
2275 				goto out;
2276 			}
2277 			cur += this_len;
2278 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2279 		}
2280 	}
2281 	ret = btrfs_next_leaf(root, path);
2282 	if (ret > 0)
2283 		ret = 0;
2284 	else if (ret == 0)
2285 		goto process_leaf;
2286 out:
2287 	btrfs_free_path(log_path);
2288 	btrfs_release_path(path);
2289 	return ret;
2290 }
2291 
2292 
2293 /*
2294  * deletion replay happens before we copy any new directory items
2295  * out of the log or out of backreferences from inodes.  It
2296  * scans the log to find ranges of keys that log is authoritative for,
2297  * and then scans the directory to find items in those ranges that are
2298  * not present in the log.
2299  *
2300  * Anything we don't find in the log is unlinked and removed from the
2301  * directory.
2302  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2303 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2304 				       struct btrfs_root *root,
2305 				       struct btrfs_root *log,
2306 				       struct btrfs_path *path,
2307 				       u64 dirid, int del_all)
2308 {
2309 	u64 range_start;
2310 	u64 range_end;
2311 	int ret = 0;
2312 	struct btrfs_key dir_key;
2313 	struct btrfs_key found_key;
2314 	struct btrfs_path *log_path;
2315 	struct inode *dir;
2316 
2317 	dir_key.objectid = dirid;
2318 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2319 	log_path = btrfs_alloc_path();
2320 	if (!log_path)
2321 		return -ENOMEM;
2322 
2323 	dir = read_one_inode(root, dirid);
2324 	/* it isn't an error if the inode isn't there, that can happen
2325 	 * because we replay the deletes before we copy in the inode item
2326 	 * from the log
2327 	 */
2328 	if (!dir) {
2329 		btrfs_free_path(log_path);
2330 		return 0;
2331 	}
2332 
2333 	range_start = 0;
2334 	range_end = 0;
2335 	while (1) {
2336 		if (del_all)
2337 			range_end = (u64)-1;
2338 		else {
2339 			ret = find_dir_range(log, path, dirid,
2340 					     &range_start, &range_end);
2341 			if (ret < 0)
2342 				goto out;
2343 			else if (ret > 0)
2344 				break;
2345 		}
2346 
2347 		dir_key.offset = range_start;
2348 		while (1) {
2349 			int nritems;
2350 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2351 						0, 0);
2352 			if (ret < 0)
2353 				goto out;
2354 
2355 			nritems = btrfs_header_nritems(path->nodes[0]);
2356 			if (path->slots[0] >= nritems) {
2357 				ret = btrfs_next_leaf(root, path);
2358 				if (ret == 1)
2359 					break;
2360 				else if (ret < 0)
2361 					goto out;
2362 			}
2363 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2364 					      path->slots[0]);
2365 			if (found_key.objectid != dirid ||
2366 			    found_key.type != dir_key.type) {
2367 				ret = 0;
2368 				goto out;
2369 			}
2370 
2371 			if (found_key.offset > range_end)
2372 				break;
2373 
2374 			ret = check_item_in_log(trans, log, path,
2375 						log_path, dir,
2376 						&found_key);
2377 			if (ret)
2378 				goto out;
2379 			if (found_key.offset == (u64)-1)
2380 				break;
2381 			dir_key.offset = found_key.offset + 1;
2382 		}
2383 		btrfs_release_path(path);
2384 		if (range_end == (u64)-1)
2385 			break;
2386 		range_start = range_end + 1;
2387 	}
2388 	ret = 0;
2389 out:
2390 	btrfs_release_path(path);
2391 	btrfs_free_path(log_path);
2392 	iput(dir);
2393 	return ret;
2394 }
2395 
2396 /*
2397  * the process_func used to replay items from the log tree.  This
2398  * gets called in two different stages.  The first stage just looks
2399  * for inodes and makes sure they are all copied into the subvolume.
2400  *
2401  * The second stage copies all the other item types from the log into
2402  * the subvolume.  The two stage approach is slower, but gets rid of
2403  * lots of complexity around inodes referencing other inodes that exist
2404  * only in the log (references come from either directory items or inode
2405  * back refs).
2406  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2407 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2408 			     struct walk_control *wc, u64 gen, int level)
2409 {
2410 	int nritems;
2411 	struct btrfs_tree_parent_check check = {
2412 		.transid = gen,
2413 		.level = level
2414 	};
2415 	struct btrfs_path *path;
2416 	struct btrfs_root *root = wc->replay_dest;
2417 	struct btrfs_key key;
2418 	int i;
2419 	int ret;
2420 
2421 	ret = btrfs_read_extent_buffer(eb, &check);
2422 	if (ret)
2423 		return ret;
2424 
2425 	level = btrfs_header_level(eb);
2426 
2427 	if (level != 0)
2428 		return 0;
2429 
2430 	path = btrfs_alloc_path();
2431 	if (!path)
2432 		return -ENOMEM;
2433 
2434 	nritems = btrfs_header_nritems(eb);
2435 	for (i = 0; i < nritems; i++) {
2436 		btrfs_item_key_to_cpu(eb, &key, i);
2437 
2438 		/* inode keys are done during the first stage */
2439 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2440 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2441 			struct btrfs_inode_item *inode_item;
2442 			u32 mode;
2443 
2444 			inode_item = btrfs_item_ptr(eb, i,
2445 					    struct btrfs_inode_item);
2446 			/*
2447 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2448 			 * and never got linked before the fsync, skip it, as
2449 			 * replaying it is pointless since it would be deleted
2450 			 * later. We skip logging tmpfiles, but it's always
2451 			 * possible we are replaying a log created with a kernel
2452 			 * that used to log tmpfiles.
2453 			 */
2454 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2455 				wc->ignore_cur_inode = true;
2456 				continue;
2457 			} else {
2458 				wc->ignore_cur_inode = false;
2459 			}
2460 			ret = replay_xattr_deletes(wc->trans, root, log,
2461 						   path, key.objectid);
2462 			if (ret)
2463 				break;
2464 			mode = btrfs_inode_mode(eb, inode_item);
2465 			if (S_ISDIR(mode)) {
2466 				ret = replay_dir_deletes(wc->trans,
2467 					 root, log, path, key.objectid, 0);
2468 				if (ret)
2469 					break;
2470 			}
2471 			ret = overwrite_item(wc->trans, root, path,
2472 					     eb, i, &key);
2473 			if (ret)
2474 				break;
2475 
2476 			/*
2477 			 * Before replaying extents, truncate the inode to its
2478 			 * size. We need to do it now and not after log replay
2479 			 * because before an fsync we can have prealloc extents
2480 			 * added beyond the inode's i_size. If we did it after,
2481 			 * through orphan cleanup for example, we would drop
2482 			 * those prealloc extents just after replaying them.
2483 			 */
2484 			if (S_ISREG(mode)) {
2485 				struct btrfs_drop_extents_args drop_args = { 0 };
2486 				struct inode *inode;
2487 				u64 from;
2488 
2489 				inode = read_one_inode(root, key.objectid);
2490 				if (!inode) {
2491 					ret = -EIO;
2492 					break;
2493 				}
2494 				from = ALIGN(i_size_read(inode),
2495 					     root->fs_info->sectorsize);
2496 				drop_args.start = from;
2497 				drop_args.end = (u64)-1;
2498 				drop_args.drop_cache = true;
2499 				ret = btrfs_drop_extents(wc->trans, root,
2500 							 BTRFS_I(inode),
2501 							 &drop_args);
2502 				if (!ret) {
2503 					inode_sub_bytes(inode,
2504 							drop_args.bytes_found);
2505 					/* Update the inode's nbytes. */
2506 					ret = btrfs_update_inode(wc->trans,
2507 							root, BTRFS_I(inode));
2508 				}
2509 				iput(inode);
2510 				if (ret)
2511 					break;
2512 			}
2513 
2514 			ret = link_to_fixup_dir(wc->trans, root,
2515 						path, key.objectid);
2516 			if (ret)
2517 				break;
2518 		}
2519 
2520 		if (wc->ignore_cur_inode)
2521 			continue;
2522 
2523 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2524 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2525 			ret = replay_one_dir_item(wc->trans, root, path,
2526 						  eb, i, &key);
2527 			if (ret)
2528 				break;
2529 		}
2530 
2531 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2532 			continue;
2533 
2534 		/* these keys are simply copied */
2535 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2536 			ret = overwrite_item(wc->trans, root, path,
2537 					     eb, i, &key);
2538 			if (ret)
2539 				break;
2540 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2541 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2542 			ret = add_inode_ref(wc->trans, root, log, path,
2543 					    eb, i, &key);
2544 			if (ret && ret != -ENOENT)
2545 				break;
2546 			ret = 0;
2547 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2548 			ret = replay_one_extent(wc->trans, root, path,
2549 						eb, i, &key);
2550 			if (ret)
2551 				break;
2552 		}
2553 		/*
2554 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2555 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2556 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2557 		 * older kernel with such keys, ignore them.
2558 		 */
2559 	}
2560 	btrfs_free_path(path);
2561 	return ret;
2562 }
2563 
2564 /*
2565  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2566  */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2567 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2568 {
2569 	struct btrfs_block_group *cache;
2570 
2571 	cache = btrfs_lookup_block_group(fs_info, start);
2572 	if (!cache) {
2573 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2574 		return;
2575 	}
2576 
2577 	spin_lock(&cache->space_info->lock);
2578 	spin_lock(&cache->lock);
2579 	cache->reserved -= fs_info->nodesize;
2580 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2581 	spin_unlock(&cache->lock);
2582 	spin_unlock(&cache->space_info->lock);
2583 
2584 	btrfs_put_block_group(cache);
2585 }
2586 
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2587 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2588 			    struct extent_buffer *eb)
2589 {
2590 	int ret;
2591 
2592 	btrfs_tree_lock(eb);
2593 	btrfs_clear_buffer_dirty(trans, eb);
2594 	wait_on_extent_buffer_writeback(eb);
2595 	btrfs_tree_unlock(eb);
2596 
2597 	if (trans) {
2598 		ret = btrfs_pin_reserved_extent(trans, eb->start, eb->len);
2599 		if (ret)
2600 			return ret;
2601 		btrfs_redirty_list_add(trans->transaction, eb);
2602 	} else {
2603 		unaccount_log_buffer(eb->fs_info, eb->start);
2604 	}
2605 
2606 	return 0;
2607 }
2608 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2609 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2610 				   struct btrfs_root *root,
2611 				   struct btrfs_path *path, int *level,
2612 				   struct walk_control *wc)
2613 {
2614 	struct btrfs_fs_info *fs_info = root->fs_info;
2615 	u64 bytenr;
2616 	u64 ptr_gen;
2617 	struct extent_buffer *next;
2618 	struct extent_buffer *cur;
2619 	int ret = 0;
2620 
2621 	while (*level > 0) {
2622 		struct btrfs_tree_parent_check check = { 0 };
2623 
2624 		cur = path->nodes[*level];
2625 
2626 		WARN_ON(btrfs_header_level(cur) != *level);
2627 
2628 		if (path->slots[*level] >=
2629 		    btrfs_header_nritems(cur))
2630 			break;
2631 
2632 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2633 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2634 		check.transid = ptr_gen;
2635 		check.level = *level - 1;
2636 		check.has_first_key = true;
2637 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2638 
2639 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2640 						    btrfs_header_owner(cur),
2641 						    *level - 1);
2642 		if (IS_ERR(next))
2643 			return PTR_ERR(next);
2644 
2645 		if (*level == 1) {
2646 			ret = wc->process_func(root, next, wc, ptr_gen,
2647 					       *level - 1);
2648 			if (ret) {
2649 				free_extent_buffer(next);
2650 				return ret;
2651 			}
2652 
2653 			path->slots[*level]++;
2654 			if (wc->free) {
2655 				ret = btrfs_read_extent_buffer(next, &check);
2656 				if (ret) {
2657 					free_extent_buffer(next);
2658 					return ret;
2659 				}
2660 
2661 				ret = clean_log_buffer(trans, next);
2662 				if (ret) {
2663 					free_extent_buffer(next);
2664 					return ret;
2665 				}
2666 			}
2667 			free_extent_buffer(next);
2668 			continue;
2669 		}
2670 		ret = btrfs_read_extent_buffer(next, &check);
2671 		if (ret) {
2672 			free_extent_buffer(next);
2673 			return ret;
2674 		}
2675 
2676 		if (path->nodes[*level-1])
2677 			free_extent_buffer(path->nodes[*level-1]);
2678 		path->nodes[*level-1] = next;
2679 		*level = btrfs_header_level(next);
2680 		path->slots[*level] = 0;
2681 		cond_resched();
2682 	}
2683 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2684 
2685 	cond_resched();
2686 	return 0;
2687 }
2688 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2689 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2690 				 struct btrfs_root *root,
2691 				 struct btrfs_path *path, int *level,
2692 				 struct walk_control *wc)
2693 {
2694 	int i;
2695 	int slot;
2696 	int ret;
2697 
2698 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2699 		slot = path->slots[i];
2700 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2701 			path->slots[i]++;
2702 			*level = i;
2703 			WARN_ON(*level == 0);
2704 			return 0;
2705 		} else {
2706 			ret = wc->process_func(root, path->nodes[*level], wc,
2707 				 btrfs_header_generation(path->nodes[*level]),
2708 				 *level);
2709 			if (ret)
2710 				return ret;
2711 
2712 			if (wc->free) {
2713 				ret = clean_log_buffer(trans, path->nodes[*level]);
2714 				if (ret)
2715 					return ret;
2716 			}
2717 			free_extent_buffer(path->nodes[*level]);
2718 			path->nodes[*level] = NULL;
2719 			*level = i + 1;
2720 		}
2721 	}
2722 	return 1;
2723 }
2724 
2725 /*
2726  * drop the reference count on the tree rooted at 'snap'.  This traverses
2727  * the tree freeing any blocks that have a ref count of zero after being
2728  * decremented.
2729  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2730 static int walk_log_tree(struct btrfs_trans_handle *trans,
2731 			 struct btrfs_root *log, struct walk_control *wc)
2732 {
2733 	int ret = 0;
2734 	int wret;
2735 	int level;
2736 	struct btrfs_path *path;
2737 	int orig_level;
2738 
2739 	path = btrfs_alloc_path();
2740 	if (!path)
2741 		return -ENOMEM;
2742 
2743 	level = btrfs_header_level(log->node);
2744 	orig_level = level;
2745 	path->nodes[level] = log->node;
2746 	atomic_inc(&log->node->refs);
2747 	path->slots[level] = 0;
2748 
2749 	while (1) {
2750 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2751 		if (wret > 0)
2752 			break;
2753 		if (wret < 0) {
2754 			ret = wret;
2755 			goto out;
2756 		}
2757 
2758 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2759 		if (wret > 0)
2760 			break;
2761 		if (wret < 0) {
2762 			ret = wret;
2763 			goto out;
2764 		}
2765 	}
2766 
2767 	/* was the root node processed? if not, catch it here */
2768 	if (path->nodes[orig_level]) {
2769 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2770 			 btrfs_header_generation(path->nodes[orig_level]),
2771 			 orig_level);
2772 		if (ret)
2773 			goto out;
2774 		if (wc->free)
2775 			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2776 	}
2777 
2778 out:
2779 	btrfs_free_path(path);
2780 	return ret;
2781 }
2782 
2783 /*
2784  * helper function to update the item for a given subvolumes log root
2785  * in the tree of log roots
2786  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2787 static int update_log_root(struct btrfs_trans_handle *trans,
2788 			   struct btrfs_root *log,
2789 			   struct btrfs_root_item *root_item)
2790 {
2791 	struct btrfs_fs_info *fs_info = log->fs_info;
2792 	int ret;
2793 
2794 	if (log->log_transid == 1) {
2795 		/* insert root item on the first sync */
2796 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2797 				&log->root_key, root_item);
2798 	} else {
2799 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2800 				&log->root_key, root_item);
2801 	}
2802 	return ret;
2803 }
2804 
wait_log_commit(struct btrfs_root * root,int transid)2805 static void wait_log_commit(struct btrfs_root *root, int transid)
2806 {
2807 	DEFINE_WAIT(wait);
2808 	int index = transid % 2;
2809 
2810 	/*
2811 	 * we only allow two pending log transactions at a time,
2812 	 * so we know that if ours is more than 2 older than the
2813 	 * current transaction, we're done
2814 	 */
2815 	for (;;) {
2816 		prepare_to_wait(&root->log_commit_wait[index],
2817 				&wait, TASK_UNINTERRUPTIBLE);
2818 
2819 		if (!(root->log_transid_committed < transid &&
2820 		      atomic_read(&root->log_commit[index])))
2821 			break;
2822 
2823 		mutex_unlock(&root->log_mutex);
2824 		schedule();
2825 		mutex_lock(&root->log_mutex);
2826 	}
2827 	finish_wait(&root->log_commit_wait[index], &wait);
2828 }
2829 
wait_for_writer(struct btrfs_root * root)2830 static void wait_for_writer(struct btrfs_root *root)
2831 {
2832 	DEFINE_WAIT(wait);
2833 
2834 	for (;;) {
2835 		prepare_to_wait(&root->log_writer_wait, &wait,
2836 				TASK_UNINTERRUPTIBLE);
2837 		if (!atomic_read(&root->log_writers))
2838 			break;
2839 
2840 		mutex_unlock(&root->log_mutex);
2841 		schedule();
2842 		mutex_lock(&root->log_mutex);
2843 	}
2844 	finish_wait(&root->log_writer_wait, &wait);
2845 }
2846 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2847 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2848 					struct btrfs_log_ctx *ctx)
2849 {
2850 	mutex_lock(&root->log_mutex);
2851 	list_del_init(&ctx->list);
2852 	mutex_unlock(&root->log_mutex);
2853 }
2854 
2855 /*
2856  * Invoked in log mutex context, or be sure there is no other task which
2857  * can access the list.
2858  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2859 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2860 					     int index, int error)
2861 {
2862 	struct btrfs_log_ctx *ctx;
2863 	struct btrfs_log_ctx *safe;
2864 
2865 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2866 		list_del_init(&ctx->list);
2867 		ctx->log_ret = error;
2868 	}
2869 }
2870 
2871 /*
2872  * btrfs_sync_log does sends a given tree log down to the disk and
2873  * updates the super blocks to record it.  When this call is done,
2874  * you know that any inodes previously logged are safely on disk only
2875  * if it returns 0.
2876  *
2877  * Any other return value means you need to call btrfs_commit_transaction.
2878  * Some of the edge cases for fsyncing directories that have had unlinks
2879  * or renames done in the past mean that sometimes the only safe
2880  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2881  * that has happened.
2882  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2883 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2884 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2885 {
2886 	int index1;
2887 	int index2;
2888 	int mark;
2889 	int ret;
2890 	struct btrfs_fs_info *fs_info = root->fs_info;
2891 	struct btrfs_root *log = root->log_root;
2892 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2893 	struct btrfs_root_item new_root_item;
2894 	int log_transid = 0;
2895 	struct btrfs_log_ctx root_log_ctx;
2896 	struct blk_plug plug;
2897 	u64 log_root_start;
2898 	u64 log_root_level;
2899 
2900 	mutex_lock(&root->log_mutex);
2901 	log_transid = ctx->log_transid;
2902 	if (root->log_transid_committed >= log_transid) {
2903 		mutex_unlock(&root->log_mutex);
2904 		return ctx->log_ret;
2905 	}
2906 
2907 	index1 = log_transid % 2;
2908 	if (atomic_read(&root->log_commit[index1])) {
2909 		wait_log_commit(root, log_transid);
2910 		mutex_unlock(&root->log_mutex);
2911 		return ctx->log_ret;
2912 	}
2913 	ASSERT(log_transid == root->log_transid);
2914 	atomic_set(&root->log_commit[index1], 1);
2915 
2916 	/* wait for previous tree log sync to complete */
2917 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2918 		wait_log_commit(root, log_transid - 1);
2919 
2920 	while (1) {
2921 		int batch = atomic_read(&root->log_batch);
2922 		/* when we're on an ssd, just kick the log commit out */
2923 		if (!btrfs_test_opt(fs_info, SSD) &&
2924 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2925 			mutex_unlock(&root->log_mutex);
2926 			schedule_timeout_uninterruptible(1);
2927 			mutex_lock(&root->log_mutex);
2928 		}
2929 		wait_for_writer(root);
2930 		if (batch == atomic_read(&root->log_batch))
2931 			break;
2932 	}
2933 
2934 	/* bail out if we need to do a full commit */
2935 	if (btrfs_need_log_full_commit(trans)) {
2936 		ret = BTRFS_LOG_FORCE_COMMIT;
2937 		mutex_unlock(&root->log_mutex);
2938 		goto out;
2939 	}
2940 
2941 	if (log_transid % 2 == 0)
2942 		mark = EXTENT_DIRTY;
2943 	else
2944 		mark = EXTENT_NEW;
2945 
2946 	/* we start IO on  all the marked extents here, but we don't actually
2947 	 * wait for them until later.
2948 	 */
2949 	blk_start_plug(&plug);
2950 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2951 	/*
2952 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2953 	 *  commit, writes a dirty extent in this tree-log commit. This
2954 	 *  concurrent write will create a hole writing out the extents,
2955 	 *  and we cannot proceed on a zoned filesystem, requiring
2956 	 *  sequential writing. While we can bail out to a full commit
2957 	 *  here, but we can continue hoping the concurrent writing fills
2958 	 *  the hole.
2959 	 */
2960 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2961 		ret = 0;
2962 	if (ret) {
2963 		blk_finish_plug(&plug);
2964 		btrfs_set_log_full_commit(trans);
2965 		mutex_unlock(&root->log_mutex);
2966 		goto out;
2967 	}
2968 
2969 	/*
2970 	 * We _must_ update under the root->log_mutex in order to make sure we
2971 	 * have a consistent view of the log root we are trying to commit at
2972 	 * this moment.
2973 	 *
2974 	 * We _must_ copy this into a local copy, because we are not holding the
2975 	 * log_root_tree->log_mutex yet.  This is important because when we
2976 	 * commit the log_root_tree we must have a consistent view of the
2977 	 * log_root_tree when we update the super block to point at the
2978 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2979 	 * with the commit and possibly point at the new block which we may not
2980 	 * have written out.
2981 	 */
2982 	btrfs_set_root_node(&log->root_item, log->node);
2983 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
2984 
2985 	root->log_transid++;
2986 	log->log_transid = root->log_transid;
2987 	root->log_start_pid = 0;
2988 	/*
2989 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2990 	 * in their headers. new modifications of the log will be written to
2991 	 * new positions. so it's safe to allow log writers to go in.
2992 	 */
2993 	mutex_unlock(&root->log_mutex);
2994 
2995 	if (btrfs_is_zoned(fs_info)) {
2996 		mutex_lock(&fs_info->tree_root->log_mutex);
2997 		if (!log_root_tree->node) {
2998 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
2999 			if (ret) {
3000 				mutex_unlock(&fs_info->tree_root->log_mutex);
3001 				blk_finish_plug(&plug);
3002 				goto out;
3003 			}
3004 		}
3005 		mutex_unlock(&fs_info->tree_root->log_mutex);
3006 	}
3007 
3008 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3009 
3010 	mutex_lock(&log_root_tree->log_mutex);
3011 
3012 	index2 = log_root_tree->log_transid % 2;
3013 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3014 	root_log_ctx.log_transid = log_root_tree->log_transid;
3015 
3016 	/*
3017 	 * Now we are safe to update the log_root_tree because we're under the
3018 	 * log_mutex, and we're a current writer so we're holding the commit
3019 	 * open until we drop the log_mutex.
3020 	 */
3021 	ret = update_log_root(trans, log, &new_root_item);
3022 	if (ret) {
3023 		if (!list_empty(&root_log_ctx.list))
3024 			list_del_init(&root_log_ctx.list);
3025 
3026 		blk_finish_plug(&plug);
3027 		btrfs_set_log_full_commit(trans);
3028 		if (ret != -ENOSPC)
3029 			btrfs_err(fs_info,
3030 				  "failed to update log for root %llu ret %d",
3031 				  root->root_key.objectid, ret);
3032 		btrfs_wait_tree_log_extents(log, mark);
3033 		mutex_unlock(&log_root_tree->log_mutex);
3034 		goto out;
3035 	}
3036 
3037 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3038 		blk_finish_plug(&plug);
3039 		list_del_init(&root_log_ctx.list);
3040 		mutex_unlock(&log_root_tree->log_mutex);
3041 		ret = root_log_ctx.log_ret;
3042 		goto out;
3043 	}
3044 
3045 	index2 = root_log_ctx.log_transid % 2;
3046 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3047 		blk_finish_plug(&plug);
3048 		ret = btrfs_wait_tree_log_extents(log, mark);
3049 		wait_log_commit(log_root_tree,
3050 				root_log_ctx.log_transid);
3051 		mutex_unlock(&log_root_tree->log_mutex);
3052 		if (!ret)
3053 			ret = root_log_ctx.log_ret;
3054 		goto out;
3055 	}
3056 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3057 	atomic_set(&log_root_tree->log_commit[index2], 1);
3058 
3059 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3060 		wait_log_commit(log_root_tree,
3061 				root_log_ctx.log_transid - 1);
3062 	}
3063 
3064 	/*
3065 	 * now that we've moved on to the tree of log tree roots,
3066 	 * check the full commit flag again
3067 	 */
3068 	if (btrfs_need_log_full_commit(trans)) {
3069 		blk_finish_plug(&plug);
3070 		btrfs_wait_tree_log_extents(log, mark);
3071 		mutex_unlock(&log_root_tree->log_mutex);
3072 		ret = BTRFS_LOG_FORCE_COMMIT;
3073 		goto out_wake_log_root;
3074 	}
3075 
3076 	ret = btrfs_write_marked_extents(fs_info,
3077 					 &log_root_tree->dirty_log_pages,
3078 					 EXTENT_DIRTY | EXTENT_NEW);
3079 	blk_finish_plug(&plug);
3080 	/*
3081 	 * As described above, -EAGAIN indicates a hole in the extents. We
3082 	 * cannot wait for these write outs since the waiting cause a
3083 	 * deadlock. Bail out to the full commit instead.
3084 	 */
3085 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3086 		btrfs_set_log_full_commit(trans);
3087 		btrfs_wait_tree_log_extents(log, mark);
3088 		mutex_unlock(&log_root_tree->log_mutex);
3089 		goto out_wake_log_root;
3090 	} else if (ret) {
3091 		btrfs_set_log_full_commit(trans);
3092 		mutex_unlock(&log_root_tree->log_mutex);
3093 		goto out_wake_log_root;
3094 	}
3095 	ret = btrfs_wait_tree_log_extents(log, mark);
3096 	if (!ret)
3097 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3098 						  EXTENT_NEW | EXTENT_DIRTY);
3099 	if (ret) {
3100 		btrfs_set_log_full_commit(trans);
3101 		mutex_unlock(&log_root_tree->log_mutex);
3102 		goto out_wake_log_root;
3103 	}
3104 
3105 	log_root_start = log_root_tree->node->start;
3106 	log_root_level = btrfs_header_level(log_root_tree->node);
3107 	log_root_tree->log_transid++;
3108 	mutex_unlock(&log_root_tree->log_mutex);
3109 
3110 	/*
3111 	 * Here we are guaranteed that nobody is going to write the superblock
3112 	 * for the current transaction before us and that neither we do write
3113 	 * our superblock before the previous transaction finishes its commit
3114 	 * and writes its superblock, because:
3115 	 *
3116 	 * 1) We are holding a handle on the current transaction, so no body
3117 	 *    can commit it until we release the handle;
3118 	 *
3119 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3120 	 *    if the previous transaction is still committing, and hasn't yet
3121 	 *    written its superblock, we wait for it to do it, because a
3122 	 *    transaction commit acquires the tree_log_mutex when the commit
3123 	 *    begins and releases it only after writing its superblock.
3124 	 */
3125 	mutex_lock(&fs_info->tree_log_mutex);
3126 
3127 	/*
3128 	 * The previous transaction writeout phase could have failed, and thus
3129 	 * marked the fs in an error state.  We must not commit here, as we
3130 	 * could have updated our generation in the super_for_commit and
3131 	 * writing the super here would result in transid mismatches.  If there
3132 	 * is an error here just bail.
3133 	 */
3134 	if (BTRFS_FS_ERROR(fs_info)) {
3135 		ret = -EIO;
3136 		btrfs_set_log_full_commit(trans);
3137 		btrfs_abort_transaction(trans, ret);
3138 		mutex_unlock(&fs_info->tree_log_mutex);
3139 		goto out_wake_log_root;
3140 	}
3141 
3142 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3143 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3144 	ret = write_all_supers(fs_info, 1);
3145 	mutex_unlock(&fs_info->tree_log_mutex);
3146 	if (ret) {
3147 		btrfs_set_log_full_commit(trans);
3148 		btrfs_abort_transaction(trans, ret);
3149 		goto out_wake_log_root;
3150 	}
3151 
3152 	/*
3153 	 * We know there can only be one task here, since we have not yet set
3154 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3155 	 * log must wait for the previous log transaction to commit if it's
3156 	 * still in progress or wait for the current log transaction commit if
3157 	 * someone else already started it. We use <= and not < because the
3158 	 * first log transaction has an ID of 0.
3159 	 */
3160 	ASSERT(root->last_log_commit <= log_transid);
3161 	root->last_log_commit = log_transid;
3162 
3163 out_wake_log_root:
3164 	mutex_lock(&log_root_tree->log_mutex);
3165 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3166 
3167 	log_root_tree->log_transid_committed++;
3168 	atomic_set(&log_root_tree->log_commit[index2], 0);
3169 	mutex_unlock(&log_root_tree->log_mutex);
3170 
3171 	/*
3172 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3173 	 * all the updates above are seen by the woken threads. It might not be
3174 	 * necessary, but proving that seems to be hard.
3175 	 */
3176 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3177 out:
3178 	mutex_lock(&root->log_mutex);
3179 	btrfs_remove_all_log_ctxs(root, index1, ret);
3180 	root->log_transid_committed++;
3181 	atomic_set(&root->log_commit[index1], 0);
3182 	mutex_unlock(&root->log_mutex);
3183 
3184 	/*
3185 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3186 	 * all the updates above are seen by the woken threads. It might not be
3187 	 * necessary, but proving that seems to be hard.
3188 	 */
3189 	cond_wake_up(&root->log_commit_wait[index1]);
3190 	return ret;
3191 }
3192 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3193 static void free_log_tree(struct btrfs_trans_handle *trans,
3194 			  struct btrfs_root *log)
3195 {
3196 	int ret;
3197 	struct walk_control wc = {
3198 		.free = 1,
3199 		.process_func = process_one_buffer
3200 	};
3201 
3202 	if (log->node) {
3203 		ret = walk_log_tree(trans, log, &wc);
3204 		if (ret) {
3205 			/*
3206 			 * We weren't able to traverse the entire log tree, the
3207 			 * typical scenario is getting an -EIO when reading an
3208 			 * extent buffer of the tree, due to a previous writeback
3209 			 * failure of it.
3210 			 */
3211 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3212 				&log->fs_info->fs_state);
3213 
3214 			/*
3215 			 * Some extent buffers of the log tree may still be dirty
3216 			 * and not yet written back to storage, because we may
3217 			 * have updates to a log tree without syncing a log tree,
3218 			 * such as during rename and link operations. So flush
3219 			 * them out and wait for their writeback to complete, so
3220 			 * that we properly cleanup their state and pages.
3221 			 */
3222 			btrfs_write_marked_extents(log->fs_info,
3223 						   &log->dirty_log_pages,
3224 						   EXTENT_DIRTY | EXTENT_NEW);
3225 			btrfs_wait_tree_log_extents(log,
3226 						    EXTENT_DIRTY | EXTENT_NEW);
3227 
3228 			if (trans)
3229 				btrfs_abort_transaction(trans, ret);
3230 			else
3231 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3232 		}
3233 	}
3234 
3235 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3236 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3237 	extent_io_tree_release(&log->log_csum_range);
3238 
3239 	btrfs_put_root(log);
3240 }
3241 
3242 /*
3243  * free all the extents used by the tree log.  This should be called
3244  * at commit time of the full transaction
3245  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3246 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3247 {
3248 	if (root->log_root) {
3249 		free_log_tree(trans, root->log_root);
3250 		root->log_root = NULL;
3251 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3252 	}
3253 	return 0;
3254 }
3255 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3256 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3257 			     struct btrfs_fs_info *fs_info)
3258 {
3259 	if (fs_info->log_root_tree) {
3260 		free_log_tree(trans, fs_info->log_root_tree);
3261 		fs_info->log_root_tree = NULL;
3262 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3263 	}
3264 	return 0;
3265 }
3266 
3267 /*
3268  * Check if an inode was logged in the current transaction. This correctly deals
3269  * with the case where the inode was logged but has a logged_trans of 0, which
3270  * happens if the inode is evicted and loaded again, as logged_trans is an in
3271  * memory only field (not persisted).
3272  *
3273  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3274  * and < 0 on error.
3275  */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3276 static int inode_logged(const struct btrfs_trans_handle *trans,
3277 			struct btrfs_inode *inode,
3278 			struct btrfs_path *path_in)
3279 {
3280 	struct btrfs_path *path = path_in;
3281 	struct btrfs_key key;
3282 	int ret;
3283 
3284 	if (inode->logged_trans == trans->transid)
3285 		return 1;
3286 
3287 	/*
3288 	 * If logged_trans is not 0, then we know the inode logged was not logged
3289 	 * in this transaction, so we can return false right away.
3290 	 */
3291 	if (inode->logged_trans > 0)
3292 		return 0;
3293 
3294 	/*
3295 	 * If no log tree was created for this root in this transaction, then
3296 	 * the inode can not have been logged in this transaction. In that case
3297 	 * set logged_trans to anything greater than 0 and less than the current
3298 	 * transaction's ID, to avoid the search below in a future call in case
3299 	 * a log tree gets created after this.
3300 	 */
3301 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3302 		inode->logged_trans = trans->transid - 1;
3303 		return 0;
3304 	}
3305 
3306 	/*
3307 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3308 	 * for sure if the inode was logged before in this transaction by looking
3309 	 * only at logged_trans. We could be pessimistic and assume it was, but
3310 	 * that can lead to unnecessarily logging an inode during rename and link
3311 	 * operations, and then further updating the log in followup rename and
3312 	 * link operations, specially if it's a directory, which adds latency
3313 	 * visible to applications doing a series of rename or link operations.
3314 	 *
3315 	 * A logged_trans of 0 here can mean several things:
3316 	 *
3317 	 * 1) The inode was never logged since the filesystem was mounted, and may
3318 	 *    or may have not been evicted and loaded again;
3319 	 *
3320 	 * 2) The inode was logged in a previous transaction, then evicted and
3321 	 *    then loaded again;
3322 	 *
3323 	 * 3) The inode was logged in the current transaction, then evicted and
3324 	 *    then loaded again.
3325 	 *
3326 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3327 	 * case 3) and return true. So we do a search in the log root for the inode
3328 	 * item.
3329 	 */
3330 	key.objectid = btrfs_ino(inode);
3331 	key.type = BTRFS_INODE_ITEM_KEY;
3332 	key.offset = 0;
3333 
3334 	if (!path) {
3335 		path = btrfs_alloc_path();
3336 		if (!path)
3337 			return -ENOMEM;
3338 	}
3339 
3340 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3341 
3342 	if (path_in)
3343 		btrfs_release_path(path);
3344 	else
3345 		btrfs_free_path(path);
3346 
3347 	/*
3348 	 * Logging an inode always results in logging its inode item. So if we
3349 	 * did not find the item we know the inode was not logged for sure.
3350 	 */
3351 	if (ret < 0) {
3352 		return ret;
3353 	} else if (ret > 0) {
3354 		/*
3355 		 * Set logged_trans to a value greater than 0 and less then the
3356 		 * current transaction to avoid doing the search in future calls.
3357 		 */
3358 		inode->logged_trans = trans->transid - 1;
3359 		return 0;
3360 	}
3361 
3362 	/*
3363 	 * The inode was previously logged and then evicted, set logged_trans to
3364 	 * the current transacion's ID, to avoid future tree searches as long as
3365 	 * the inode is not evicted again.
3366 	 */
3367 	inode->logged_trans = trans->transid;
3368 
3369 	/*
3370 	 * If it's a directory, then we must set last_dir_index_offset to the
3371 	 * maximum possible value, so that the next attempt to log the inode does
3372 	 * not skip checking if dir index keys found in modified subvolume tree
3373 	 * leaves have been logged before, otherwise it would result in attempts
3374 	 * to insert duplicate dir index keys in the log tree. This must be done
3375 	 * because last_dir_index_offset is an in-memory only field, not persisted
3376 	 * in the inode item or any other on-disk structure, so its value is lost
3377 	 * once the inode is evicted.
3378 	 */
3379 	if (S_ISDIR(inode->vfs_inode.i_mode))
3380 		inode->last_dir_index_offset = (u64)-1;
3381 
3382 	return 1;
3383 }
3384 
3385 /*
3386  * Delete a directory entry from the log if it exists.
3387  *
3388  * Returns < 0 on error
3389  *           1 if the entry does not exists
3390  *           0 if the entry existed and was successfully deleted
3391  */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3392 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3393 			     struct btrfs_root *log,
3394 			     struct btrfs_path *path,
3395 			     u64 dir_ino,
3396 			     const struct fscrypt_str *name,
3397 			     u64 index)
3398 {
3399 	struct btrfs_dir_item *di;
3400 
3401 	/*
3402 	 * We only log dir index items of a directory, so we don't need to look
3403 	 * for dir item keys.
3404 	 */
3405 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3406 					 index, name, -1);
3407 	if (IS_ERR(di))
3408 		return PTR_ERR(di);
3409 	else if (!di)
3410 		return 1;
3411 
3412 	/*
3413 	 * We do not need to update the size field of the directory's
3414 	 * inode item because on log replay we update the field to reflect
3415 	 * all existing entries in the directory (see overwrite_item()).
3416 	 */
3417 	return btrfs_delete_one_dir_name(trans, log, path, di);
3418 }
3419 
3420 /*
3421  * If both a file and directory are logged, and unlinks or renames are
3422  * mixed in, we have a few interesting corners:
3423  *
3424  * create file X in dir Y
3425  * link file X to X.link in dir Y
3426  * fsync file X
3427  * unlink file X but leave X.link
3428  * fsync dir Y
3429  *
3430  * After a crash we would expect only X.link to exist.  But file X
3431  * didn't get fsync'd again so the log has back refs for X and X.link.
3432  *
3433  * We solve this by removing directory entries and inode backrefs from the
3434  * log when a file that was logged in the current transaction is
3435  * unlinked.  Any later fsync will include the updated log entries, and
3436  * we'll be able to reconstruct the proper directory items from backrefs.
3437  *
3438  * This optimizations allows us to avoid relogging the entire inode
3439  * or the entire directory.
3440  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3441 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3442 				  struct btrfs_root *root,
3443 				  const struct fscrypt_str *name,
3444 				  struct btrfs_inode *dir, u64 index)
3445 {
3446 	struct btrfs_path *path;
3447 	int ret;
3448 
3449 	ret = inode_logged(trans, dir, NULL);
3450 	if (ret == 0)
3451 		return;
3452 	else if (ret < 0) {
3453 		btrfs_set_log_full_commit(trans);
3454 		return;
3455 	}
3456 
3457 	ret = join_running_log_trans(root);
3458 	if (ret)
3459 		return;
3460 
3461 	mutex_lock(&dir->log_mutex);
3462 
3463 	path = btrfs_alloc_path();
3464 	if (!path) {
3465 		ret = -ENOMEM;
3466 		goto out_unlock;
3467 	}
3468 
3469 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3470 				name, index);
3471 	btrfs_free_path(path);
3472 out_unlock:
3473 	mutex_unlock(&dir->log_mutex);
3474 	if (ret < 0)
3475 		btrfs_set_log_full_commit(trans);
3476 	btrfs_end_log_trans(root);
3477 }
3478 
3479 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3480 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3481 				struct btrfs_root *root,
3482 				const struct fscrypt_str *name,
3483 				struct btrfs_inode *inode, u64 dirid)
3484 {
3485 	struct btrfs_root *log;
3486 	u64 index;
3487 	int ret;
3488 
3489 	ret = inode_logged(trans, inode, NULL);
3490 	if (ret == 0)
3491 		return;
3492 	else if (ret < 0) {
3493 		btrfs_set_log_full_commit(trans);
3494 		return;
3495 	}
3496 
3497 	ret = join_running_log_trans(root);
3498 	if (ret)
3499 		return;
3500 	log = root->log_root;
3501 	mutex_lock(&inode->log_mutex);
3502 
3503 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3504 				  dirid, &index);
3505 	mutex_unlock(&inode->log_mutex);
3506 	if (ret < 0 && ret != -ENOENT)
3507 		btrfs_set_log_full_commit(trans);
3508 	btrfs_end_log_trans(root);
3509 }
3510 
3511 /*
3512  * creates a range item in the log for 'dirid'.  first_offset and
3513  * last_offset tell us which parts of the key space the log should
3514  * be considered authoritative for.
3515  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3516 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3517 				       struct btrfs_root *log,
3518 				       struct btrfs_path *path,
3519 				       u64 dirid,
3520 				       u64 first_offset, u64 last_offset)
3521 {
3522 	int ret;
3523 	struct btrfs_key key;
3524 	struct btrfs_dir_log_item *item;
3525 
3526 	key.objectid = dirid;
3527 	key.offset = first_offset;
3528 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3529 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3530 	/*
3531 	 * -EEXIST is fine and can happen sporadically when we are logging a
3532 	 * directory and have concurrent insertions in the subvolume's tree for
3533 	 * items from other inodes and that result in pushing off some dir items
3534 	 * from one leaf to another in order to accommodate for the new items.
3535 	 * This results in logging the same dir index range key.
3536 	 */
3537 	if (ret && ret != -EEXIST)
3538 		return ret;
3539 
3540 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3541 			      struct btrfs_dir_log_item);
3542 	if (ret == -EEXIST) {
3543 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3544 
3545 		/*
3546 		 * btrfs_del_dir_entries_in_log() might have been called during
3547 		 * an unlink between the initial insertion of this key and the
3548 		 * current update, or we might be logging a single entry deletion
3549 		 * during a rename, so set the new last_offset to the max value.
3550 		 */
3551 		last_offset = max(last_offset, curr_end);
3552 	}
3553 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3554 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3555 	btrfs_release_path(path);
3556 	return 0;
3557 }
3558 
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3559 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3560 				 struct btrfs_inode *inode,
3561 				 struct extent_buffer *src,
3562 				 struct btrfs_path *dst_path,
3563 				 int start_slot,
3564 				 int count)
3565 {
3566 	struct btrfs_root *log = inode->root->log_root;
3567 	char *ins_data = NULL;
3568 	struct btrfs_item_batch batch;
3569 	struct extent_buffer *dst;
3570 	unsigned long src_offset;
3571 	unsigned long dst_offset;
3572 	u64 last_index;
3573 	struct btrfs_key key;
3574 	u32 item_size;
3575 	int ret;
3576 	int i;
3577 
3578 	ASSERT(count > 0);
3579 	batch.nr = count;
3580 
3581 	if (count == 1) {
3582 		btrfs_item_key_to_cpu(src, &key, start_slot);
3583 		item_size = btrfs_item_size(src, start_slot);
3584 		batch.keys = &key;
3585 		batch.data_sizes = &item_size;
3586 		batch.total_data_size = item_size;
3587 	} else {
3588 		struct btrfs_key *ins_keys;
3589 		u32 *ins_sizes;
3590 
3591 		ins_data = kmalloc(count * sizeof(u32) +
3592 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3593 		if (!ins_data)
3594 			return -ENOMEM;
3595 
3596 		ins_sizes = (u32 *)ins_data;
3597 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3598 		batch.keys = ins_keys;
3599 		batch.data_sizes = ins_sizes;
3600 		batch.total_data_size = 0;
3601 
3602 		for (i = 0; i < count; i++) {
3603 			const int slot = start_slot + i;
3604 
3605 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3606 			ins_sizes[i] = btrfs_item_size(src, slot);
3607 			batch.total_data_size += ins_sizes[i];
3608 		}
3609 	}
3610 
3611 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3612 	if (ret)
3613 		goto out;
3614 
3615 	dst = dst_path->nodes[0];
3616 	/*
3617 	 * Copy all the items in bulk, in a single copy operation. Item data is
3618 	 * organized such that it's placed at the end of a leaf and from right
3619 	 * to left. For example, the data for the second item ends at an offset
3620 	 * that matches the offset where the data for the first item starts, the
3621 	 * data for the third item ends at an offset that matches the offset
3622 	 * where the data of the second items starts, and so on.
3623 	 * Therefore our source and destination start offsets for copy match the
3624 	 * offsets of the last items (highest slots).
3625 	 */
3626 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3627 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3628 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3629 	btrfs_release_path(dst_path);
3630 
3631 	last_index = batch.keys[count - 1].offset;
3632 	ASSERT(last_index > inode->last_dir_index_offset);
3633 
3634 	/*
3635 	 * If for some unexpected reason the last item's index is not greater
3636 	 * than the last index we logged, warn and force a transaction commit.
3637 	 */
3638 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3639 		ret = BTRFS_LOG_FORCE_COMMIT;
3640 	else
3641 		inode->last_dir_index_offset = last_index;
3642 
3643 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3644 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3645 out:
3646 	kfree(ins_data);
3647 
3648 	return ret;
3649 }
3650 
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3651 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3652 				  struct btrfs_inode *inode,
3653 				  struct btrfs_path *path,
3654 				  struct btrfs_path *dst_path,
3655 				  struct btrfs_log_ctx *ctx,
3656 				  u64 *last_old_dentry_offset)
3657 {
3658 	struct btrfs_root *log = inode->root->log_root;
3659 	struct extent_buffer *src;
3660 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3661 	const u64 ino = btrfs_ino(inode);
3662 	bool last_found = false;
3663 	int batch_start = 0;
3664 	int batch_size = 0;
3665 	int i;
3666 
3667 	/*
3668 	 * We need to clone the leaf, release the read lock on it, and use the
3669 	 * clone before modifying the log tree. See the comment at copy_items()
3670 	 * about why we need to do this.
3671 	 */
3672 	src = btrfs_clone_extent_buffer(path->nodes[0]);
3673 	if (!src)
3674 		return -ENOMEM;
3675 
3676 	i = path->slots[0];
3677 	btrfs_release_path(path);
3678 	path->nodes[0] = src;
3679 	path->slots[0] = i;
3680 
3681 	for (; i < nritems; i++) {
3682 		struct btrfs_dir_item *di;
3683 		struct btrfs_key key;
3684 		int ret;
3685 
3686 		btrfs_item_key_to_cpu(src, &key, i);
3687 
3688 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3689 			last_found = true;
3690 			break;
3691 		}
3692 
3693 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3694 
3695 		/*
3696 		 * Skip ranges of items that consist only of dir item keys created
3697 		 * in past transactions. However if we find a gap, we must log a
3698 		 * dir index range item for that gap, so that index keys in that
3699 		 * gap are deleted during log replay.
3700 		 */
3701 		if (btrfs_dir_transid(src, di) < trans->transid) {
3702 			if (key.offset > *last_old_dentry_offset + 1) {
3703 				ret = insert_dir_log_key(trans, log, dst_path,
3704 						 ino, *last_old_dentry_offset + 1,
3705 						 key.offset - 1);
3706 				if (ret < 0)
3707 					return ret;
3708 			}
3709 
3710 			*last_old_dentry_offset = key.offset;
3711 			continue;
3712 		}
3713 
3714 		/* If we logged this dir index item before, we can skip it. */
3715 		if (key.offset <= inode->last_dir_index_offset)
3716 			continue;
3717 
3718 		/*
3719 		 * We must make sure that when we log a directory entry, the
3720 		 * corresponding inode, after log replay, has a matching link
3721 		 * count. For example:
3722 		 *
3723 		 * touch foo
3724 		 * mkdir mydir
3725 		 * sync
3726 		 * ln foo mydir/bar
3727 		 * xfs_io -c "fsync" mydir
3728 		 * <crash>
3729 		 * <mount fs and log replay>
3730 		 *
3731 		 * Would result in a fsync log that when replayed, our file inode
3732 		 * would have a link count of 1, but we get two directory entries
3733 		 * pointing to the same inode. After removing one of the names,
3734 		 * it would not be possible to remove the other name, which
3735 		 * resulted always in stale file handle errors, and would not be
3736 		 * possible to rmdir the parent directory, since its i_size could
3737 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3738 		 * resulting in -ENOTEMPTY errors.
3739 		 */
3740 		if (!ctx->log_new_dentries) {
3741 			struct btrfs_key di_key;
3742 
3743 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3744 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3745 				ctx->log_new_dentries = true;
3746 		}
3747 
3748 		if (batch_size == 0)
3749 			batch_start = i;
3750 		batch_size++;
3751 	}
3752 
3753 	if (batch_size > 0) {
3754 		int ret;
3755 
3756 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3757 					    batch_start, batch_size);
3758 		if (ret < 0)
3759 			return ret;
3760 	}
3761 
3762 	return last_found ? 1 : 0;
3763 }
3764 
3765 /*
3766  * log all the items included in the current transaction for a given
3767  * directory.  This also creates the range items in the log tree required
3768  * to replay anything deleted before the fsync
3769  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3770 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3771 			  struct btrfs_inode *inode,
3772 			  struct btrfs_path *path,
3773 			  struct btrfs_path *dst_path,
3774 			  struct btrfs_log_ctx *ctx,
3775 			  u64 min_offset, u64 *last_offset_ret)
3776 {
3777 	struct btrfs_key min_key;
3778 	struct btrfs_root *root = inode->root;
3779 	struct btrfs_root *log = root->log_root;
3780 	int ret;
3781 	u64 last_old_dentry_offset = min_offset - 1;
3782 	u64 last_offset = (u64)-1;
3783 	u64 ino = btrfs_ino(inode);
3784 
3785 	min_key.objectid = ino;
3786 	min_key.type = BTRFS_DIR_INDEX_KEY;
3787 	min_key.offset = min_offset;
3788 
3789 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3790 
3791 	/*
3792 	 * we didn't find anything from this transaction, see if there
3793 	 * is anything at all
3794 	 */
3795 	if (ret != 0 || min_key.objectid != ino ||
3796 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3797 		min_key.objectid = ino;
3798 		min_key.type = BTRFS_DIR_INDEX_KEY;
3799 		min_key.offset = (u64)-1;
3800 		btrfs_release_path(path);
3801 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3802 		if (ret < 0) {
3803 			btrfs_release_path(path);
3804 			return ret;
3805 		}
3806 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3807 
3808 		/* if ret == 0 there are items for this type,
3809 		 * create a range to tell us the last key of this type.
3810 		 * otherwise, there are no items in this directory after
3811 		 * *min_offset, and we create a range to indicate that.
3812 		 */
3813 		if (ret == 0) {
3814 			struct btrfs_key tmp;
3815 
3816 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3817 					      path->slots[0]);
3818 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3819 				last_old_dentry_offset = tmp.offset;
3820 		} else if (ret > 0) {
3821 			ret = 0;
3822 		}
3823 
3824 		goto done;
3825 	}
3826 
3827 	/* go backward to find any previous key */
3828 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3829 	if (ret == 0) {
3830 		struct btrfs_key tmp;
3831 
3832 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3833 		/*
3834 		 * The dir index key before the first one we found that needs to
3835 		 * be logged might be in a previous leaf, and there might be a
3836 		 * gap between these keys, meaning that we had deletions that
3837 		 * happened. So the key range item we log (key type
3838 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3839 		 * previous key's offset plus 1, so that those deletes are replayed.
3840 		 */
3841 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3842 			last_old_dentry_offset = tmp.offset;
3843 	} else if (ret < 0) {
3844 		goto done;
3845 	}
3846 
3847 	btrfs_release_path(path);
3848 
3849 	/*
3850 	 * Find the first key from this transaction again or the one we were at
3851 	 * in the loop below in case we had to reschedule. We may be logging the
3852 	 * directory without holding its VFS lock, which happen when logging new
3853 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3854 	 * need to log the parent directory of an inode. This means a dir index
3855 	 * key might be deleted from the inode's root, and therefore we may not
3856 	 * find it anymore. If we can't find it, just move to the next key. We
3857 	 * can not bail out and ignore, because if we do that we will simply
3858 	 * not log dir index keys that come after the one that was just deleted
3859 	 * and we can end up logging a dir index range that ends at (u64)-1
3860 	 * (@last_offset is initialized to that), resulting in removing dir
3861 	 * entries we should not remove at log replay time.
3862 	 */
3863 search:
3864 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3865 	if (ret > 0) {
3866 		ret = btrfs_next_item(root, path);
3867 		if (ret > 0) {
3868 			/* There are no more keys in the inode's root. */
3869 			ret = 0;
3870 			goto done;
3871 		}
3872 	}
3873 	if (ret < 0)
3874 		goto done;
3875 
3876 	/*
3877 	 * we have a block from this transaction, log every item in it
3878 	 * from our directory
3879 	 */
3880 	while (1) {
3881 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3882 					     &last_old_dentry_offset);
3883 		if (ret != 0) {
3884 			if (ret > 0)
3885 				ret = 0;
3886 			goto done;
3887 		}
3888 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3889 
3890 		/*
3891 		 * look ahead to the next item and see if it is also
3892 		 * from this directory and from this transaction
3893 		 */
3894 		ret = btrfs_next_leaf(root, path);
3895 		if (ret) {
3896 			if (ret == 1) {
3897 				last_offset = (u64)-1;
3898 				ret = 0;
3899 			}
3900 			goto done;
3901 		}
3902 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3903 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3904 			last_offset = (u64)-1;
3905 			goto done;
3906 		}
3907 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3908 			/*
3909 			 * The next leaf was not changed in the current transaction
3910 			 * and has at least one dir index key.
3911 			 * We check for the next key because there might have been
3912 			 * one or more deletions between the last key we logged and
3913 			 * that next key. So the key range item we log (key type
3914 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3915 			 * offset minus 1, so that those deletes are replayed.
3916 			 */
3917 			last_offset = min_key.offset - 1;
3918 			goto done;
3919 		}
3920 		if (need_resched()) {
3921 			btrfs_release_path(path);
3922 			cond_resched();
3923 			goto search;
3924 		}
3925 	}
3926 done:
3927 	btrfs_release_path(path);
3928 	btrfs_release_path(dst_path);
3929 
3930 	if (ret == 0) {
3931 		*last_offset_ret = last_offset;
3932 		/*
3933 		 * In case the leaf was changed in the current transaction but
3934 		 * all its dir items are from a past transaction, the last item
3935 		 * in the leaf is a dir item and there's no gap between that last
3936 		 * dir item and the first one on the next leaf (which did not
3937 		 * change in the current transaction), then we don't need to log
3938 		 * a range, last_old_dentry_offset is == to last_offset.
3939 		 */
3940 		ASSERT(last_old_dentry_offset <= last_offset);
3941 		if (last_old_dentry_offset < last_offset)
3942 			ret = insert_dir_log_key(trans, log, path, ino,
3943 						 last_old_dentry_offset + 1,
3944 						 last_offset);
3945 	}
3946 
3947 	return ret;
3948 }
3949 
3950 /*
3951  * If the inode was logged before and it was evicted, then its
3952  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3953  * key offset. If that's the case, search for it and update the inode. This
3954  * is to avoid lookups in the log tree every time we try to insert a dir index
3955  * key from a leaf changed in the current transaction, and to allow us to always
3956  * do batch insertions of dir index keys.
3957  */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)3958 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3959 					struct btrfs_path *path,
3960 					const struct btrfs_log_ctx *ctx)
3961 {
3962 	const u64 ino = btrfs_ino(inode);
3963 	struct btrfs_key key;
3964 	int ret;
3965 
3966 	lockdep_assert_held(&inode->log_mutex);
3967 
3968 	if (inode->last_dir_index_offset != (u64)-1)
3969 		return 0;
3970 
3971 	if (!ctx->logged_before) {
3972 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3973 		return 0;
3974 	}
3975 
3976 	key.objectid = ino;
3977 	key.type = BTRFS_DIR_INDEX_KEY;
3978 	key.offset = (u64)-1;
3979 
3980 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3981 	/*
3982 	 * An error happened or we actually have an index key with an offset
3983 	 * value of (u64)-1. Bail out, we're done.
3984 	 */
3985 	if (ret <= 0)
3986 		goto out;
3987 
3988 	ret = 0;
3989 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3990 
3991 	/*
3992 	 * No dir index items, bail out and leave last_dir_index_offset with
3993 	 * the value right before the first valid index value.
3994 	 */
3995 	if (path->slots[0] == 0)
3996 		goto out;
3997 
3998 	/*
3999 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4000 	 * index key, or beyond the last key of the directory that is not an
4001 	 * index key. If we have an index key before, set last_dir_index_offset
4002 	 * to its offset value, otherwise leave it with a value right before the
4003 	 * first valid index value, as it means we have an empty directory.
4004 	 */
4005 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4006 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4007 		inode->last_dir_index_offset = key.offset;
4008 
4009 out:
4010 	btrfs_release_path(path);
4011 
4012 	return ret;
4013 }
4014 
4015 /*
4016  * logging directories is very similar to logging inodes, We find all the items
4017  * from the current transaction and write them to the log.
4018  *
4019  * The recovery code scans the directory in the subvolume, and if it finds a
4020  * key in the range logged that is not present in the log tree, then it means
4021  * that dir entry was unlinked during the transaction.
4022  *
4023  * In order for that scan to work, we must include one key smaller than
4024  * the smallest logged by this transaction and one key larger than the largest
4025  * key logged by this transaction.
4026  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4027 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4028 			  struct btrfs_inode *inode,
4029 			  struct btrfs_path *path,
4030 			  struct btrfs_path *dst_path,
4031 			  struct btrfs_log_ctx *ctx)
4032 {
4033 	u64 min_key;
4034 	u64 max_key;
4035 	int ret;
4036 
4037 	ret = update_last_dir_index_offset(inode, path, ctx);
4038 	if (ret)
4039 		return ret;
4040 
4041 	min_key = BTRFS_DIR_START_INDEX;
4042 	max_key = 0;
4043 
4044 	while (1) {
4045 		ret = log_dir_items(trans, inode, path, dst_path,
4046 				ctx, min_key, &max_key);
4047 		if (ret)
4048 			return ret;
4049 		if (max_key == (u64)-1)
4050 			break;
4051 		min_key = max_key + 1;
4052 	}
4053 
4054 	return 0;
4055 }
4056 
4057 /*
4058  * a helper function to drop items from the log before we relog an
4059  * inode.  max_key_type indicates the highest item type to remove.
4060  * This cannot be run for file data extents because it does not
4061  * free the extents they point to.
4062  */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4063 static int drop_inode_items(struct btrfs_trans_handle *trans,
4064 				  struct btrfs_root *log,
4065 				  struct btrfs_path *path,
4066 				  struct btrfs_inode *inode,
4067 				  int max_key_type)
4068 {
4069 	int ret;
4070 	struct btrfs_key key;
4071 	struct btrfs_key found_key;
4072 	int start_slot;
4073 
4074 	key.objectid = btrfs_ino(inode);
4075 	key.type = max_key_type;
4076 	key.offset = (u64)-1;
4077 
4078 	while (1) {
4079 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4080 		if (ret < 0) {
4081 			break;
4082 		} else if (ret > 0) {
4083 			if (path->slots[0] == 0)
4084 				break;
4085 			path->slots[0]--;
4086 		}
4087 
4088 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4089 				      path->slots[0]);
4090 
4091 		if (found_key.objectid != key.objectid)
4092 			break;
4093 
4094 		found_key.offset = 0;
4095 		found_key.type = 0;
4096 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4097 		if (ret < 0)
4098 			break;
4099 
4100 		ret = btrfs_del_items(trans, log, path, start_slot,
4101 				      path->slots[0] - start_slot + 1);
4102 		/*
4103 		 * If start slot isn't 0 then we don't need to re-search, we've
4104 		 * found the last guy with the objectid in this tree.
4105 		 */
4106 		if (ret || start_slot != 0)
4107 			break;
4108 		btrfs_release_path(path);
4109 	}
4110 	btrfs_release_path(path);
4111 	if (ret > 0)
4112 		ret = 0;
4113 	return ret;
4114 }
4115 
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4116 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4117 				struct btrfs_root *log_root,
4118 				struct btrfs_inode *inode,
4119 				u64 new_size, u32 min_type)
4120 {
4121 	struct btrfs_truncate_control control = {
4122 		.new_size = new_size,
4123 		.ino = btrfs_ino(inode),
4124 		.min_type = min_type,
4125 		.skip_ref_updates = true,
4126 	};
4127 
4128 	return btrfs_truncate_inode_items(trans, log_root, &control);
4129 }
4130 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4131 static void fill_inode_item(struct btrfs_trans_handle *trans,
4132 			    struct extent_buffer *leaf,
4133 			    struct btrfs_inode_item *item,
4134 			    struct inode *inode, int log_inode_only,
4135 			    u64 logged_isize)
4136 {
4137 	struct btrfs_map_token token;
4138 	u64 flags;
4139 
4140 	btrfs_init_map_token(&token, leaf);
4141 
4142 	if (log_inode_only) {
4143 		/* set the generation to zero so the recover code
4144 		 * can tell the difference between an logging
4145 		 * just to say 'this inode exists' and a logging
4146 		 * to say 'update this inode with these values'
4147 		 */
4148 		btrfs_set_token_inode_generation(&token, item, 0);
4149 		btrfs_set_token_inode_size(&token, item, logged_isize);
4150 	} else {
4151 		btrfs_set_token_inode_generation(&token, item,
4152 						 BTRFS_I(inode)->generation);
4153 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4154 	}
4155 
4156 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4157 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4158 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4159 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4160 
4161 	btrfs_set_token_timespec_sec(&token, &item->atime,
4162 				     inode->i_atime.tv_sec);
4163 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4164 				      inode->i_atime.tv_nsec);
4165 
4166 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4167 				     inode->i_mtime.tv_sec);
4168 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4169 				      inode->i_mtime.tv_nsec);
4170 
4171 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4172 				     inode_get_ctime(inode).tv_sec);
4173 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4174 				      inode_get_ctime(inode).tv_nsec);
4175 
4176 	/*
4177 	 * We do not need to set the nbytes field, in fact during a fast fsync
4178 	 * its value may not even be correct, since a fast fsync does not wait
4179 	 * for ordered extent completion, which is where we update nbytes, it
4180 	 * only waits for writeback to complete. During log replay as we find
4181 	 * file extent items and replay them, we adjust the nbytes field of the
4182 	 * inode item in subvolume tree as needed (see overwrite_item()).
4183 	 */
4184 
4185 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4186 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4187 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4188 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4189 					  BTRFS_I(inode)->ro_flags);
4190 	btrfs_set_token_inode_flags(&token, item, flags);
4191 	btrfs_set_token_inode_block_group(&token, item, 0);
4192 }
4193 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4194 static int log_inode_item(struct btrfs_trans_handle *trans,
4195 			  struct btrfs_root *log, struct btrfs_path *path,
4196 			  struct btrfs_inode *inode, bool inode_item_dropped)
4197 {
4198 	struct btrfs_inode_item *inode_item;
4199 	int ret;
4200 
4201 	/*
4202 	 * If we are doing a fast fsync and the inode was logged before in the
4203 	 * current transaction, then we know the inode was previously logged and
4204 	 * it exists in the log tree. For performance reasons, in this case use
4205 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4206 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4207 	 * contention in case there are concurrent fsyncs for other inodes of the
4208 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4209 	 * already exists can also result in unnecessarily splitting a leaf.
4210 	 */
4211 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4212 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4213 		ASSERT(ret <= 0);
4214 		if (ret > 0)
4215 			ret = -ENOENT;
4216 	} else {
4217 		/*
4218 		 * This means it is the first fsync in the current transaction,
4219 		 * so the inode item is not in the log and we need to insert it.
4220 		 * We can never get -EEXIST because we are only called for a fast
4221 		 * fsync and in case an inode eviction happens after the inode was
4222 		 * logged before in the current transaction, when we load again
4223 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4224 		 * flags and set ->logged_trans to 0.
4225 		 */
4226 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4227 					      sizeof(*inode_item));
4228 		ASSERT(ret != -EEXIST);
4229 	}
4230 	if (ret)
4231 		return ret;
4232 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4233 				    struct btrfs_inode_item);
4234 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4235 			0, 0);
4236 	btrfs_release_path(path);
4237 	return 0;
4238 }
4239 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4240 static int log_csums(struct btrfs_trans_handle *trans,
4241 		     struct btrfs_inode *inode,
4242 		     struct btrfs_root *log_root,
4243 		     struct btrfs_ordered_sum *sums)
4244 {
4245 	const u64 lock_end = sums->logical + sums->len - 1;
4246 	struct extent_state *cached_state = NULL;
4247 	int ret;
4248 
4249 	/*
4250 	 * If this inode was not used for reflink operations in the current
4251 	 * transaction with new extents, then do the fast path, no need to
4252 	 * worry about logging checksum items with overlapping ranges.
4253 	 */
4254 	if (inode->last_reflink_trans < trans->transid)
4255 		return btrfs_csum_file_blocks(trans, log_root, sums);
4256 
4257 	/*
4258 	 * Serialize logging for checksums. This is to avoid racing with the
4259 	 * same checksum being logged by another task that is logging another
4260 	 * file which happens to refer to the same extent as well. Such races
4261 	 * can leave checksum items in the log with overlapping ranges.
4262 	 */
4263 	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4264 			  &cached_state);
4265 	if (ret)
4266 		return ret;
4267 	/*
4268 	 * Due to extent cloning, we might have logged a csum item that covers a
4269 	 * subrange of a cloned extent, and later we can end up logging a csum
4270 	 * item for a larger subrange of the same extent or the entire range.
4271 	 * This would leave csum items in the log tree that cover the same range
4272 	 * and break the searches for checksums in the log tree, resulting in
4273 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4274 	 * trim and adjust) any existing csum items in the log for this range.
4275 	 */
4276 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4277 	if (!ret)
4278 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4279 
4280 	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4281 		      &cached_state);
4282 
4283 	return ret;
4284 }
4285 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)4286 static noinline int copy_items(struct btrfs_trans_handle *trans,
4287 			       struct btrfs_inode *inode,
4288 			       struct btrfs_path *dst_path,
4289 			       struct btrfs_path *src_path,
4290 			       int start_slot, int nr, int inode_only,
4291 			       u64 logged_isize)
4292 {
4293 	struct btrfs_root *log = inode->root->log_root;
4294 	struct btrfs_file_extent_item *extent;
4295 	struct extent_buffer *src;
4296 	int ret = 0;
4297 	struct btrfs_key *ins_keys;
4298 	u32 *ins_sizes;
4299 	struct btrfs_item_batch batch;
4300 	char *ins_data;
4301 	int i;
4302 	int dst_index;
4303 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4304 	const u64 i_size = i_size_read(&inode->vfs_inode);
4305 
4306 	/*
4307 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4308 	 * use the clone. This is because otherwise we would be changing the log
4309 	 * tree, to insert items from the subvolume tree or insert csum items,
4310 	 * while holding a read lock on a leaf from the subvolume tree, which
4311 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4312 	 *
4313 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4314 	 *    holding a write lock on a parent extent buffer from the log tree.
4315 	 *    Allocating the pages for an extent buffer, or the extent buffer
4316 	 *    struct, can trigger inode eviction and finally the inode eviction
4317 	 *    will trigger a release/remove of a delayed node, which requires
4318 	 *    taking the delayed node's mutex;
4319 	 *
4320 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4321 	 *    reclaim thread and make us wait for it to release enough space and
4322 	 *    unblock our reservation ticket. The reclaim thread can start
4323 	 *    flushing delayed items, and that in turn results in the need to
4324 	 *    lock delayed node mutexes and in the need to write lock extent
4325 	 *    buffers of a subvolume tree - all this while holding a write lock
4326 	 *    on the parent extent buffer in the log tree.
4327 	 *
4328 	 * So one task in scenario 1) running in parallel with another task in
4329 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4330 	 * node mutex while having a read lock on a leaf from the subvolume,
4331 	 * while the other is holding the delayed node's mutex and wants to
4332 	 * write lock the same subvolume leaf for flushing delayed items.
4333 	 */
4334 	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4335 	if (!src)
4336 		return -ENOMEM;
4337 
4338 	i = src_path->slots[0];
4339 	btrfs_release_path(src_path);
4340 	src_path->nodes[0] = src;
4341 	src_path->slots[0] = i;
4342 
4343 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4344 			   nr * sizeof(u32), GFP_NOFS);
4345 	if (!ins_data)
4346 		return -ENOMEM;
4347 
4348 	ins_sizes = (u32 *)ins_data;
4349 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4350 	batch.keys = ins_keys;
4351 	batch.data_sizes = ins_sizes;
4352 	batch.total_data_size = 0;
4353 	batch.nr = 0;
4354 
4355 	dst_index = 0;
4356 	for (i = 0; i < nr; i++) {
4357 		const int src_slot = start_slot + i;
4358 		struct btrfs_root *csum_root;
4359 		struct btrfs_ordered_sum *sums;
4360 		struct btrfs_ordered_sum *sums_next;
4361 		LIST_HEAD(ordered_sums);
4362 		u64 disk_bytenr;
4363 		u64 disk_num_bytes;
4364 		u64 extent_offset;
4365 		u64 extent_num_bytes;
4366 		bool is_old_extent;
4367 
4368 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4369 
4370 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4371 			goto add_to_batch;
4372 
4373 		extent = btrfs_item_ptr(src, src_slot,
4374 					struct btrfs_file_extent_item);
4375 
4376 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4377 				 trans->transid);
4378 
4379 		/*
4380 		 * Don't copy extents from past generations. That would make us
4381 		 * log a lot more metadata for common cases like doing only a
4382 		 * few random writes into a file and then fsync it for the first
4383 		 * time or after the full sync flag is set on the inode. We can
4384 		 * get leaves full of extent items, most of which are from past
4385 		 * generations, so we can skip them - as long as the inode has
4386 		 * not been the target of a reflink operation in this transaction,
4387 		 * as in that case it might have had file extent items with old
4388 		 * generations copied into it. We also must always log prealloc
4389 		 * extents that start at or beyond eof, otherwise we would lose
4390 		 * them on log replay.
4391 		 */
4392 		if (is_old_extent &&
4393 		    ins_keys[dst_index].offset < i_size &&
4394 		    inode->last_reflink_trans < trans->transid)
4395 			continue;
4396 
4397 		if (skip_csum)
4398 			goto add_to_batch;
4399 
4400 		/* Only regular extents have checksums. */
4401 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4402 			goto add_to_batch;
4403 
4404 		/*
4405 		 * If it's an extent created in a past transaction, then its
4406 		 * checksums are already accessible from the committed csum tree,
4407 		 * no need to log them.
4408 		 */
4409 		if (is_old_extent)
4410 			goto add_to_batch;
4411 
4412 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4413 		/* If it's an explicit hole, there are no checksums. */
4414 		if (disk_bytenr == 0)
4415 			goto add_to_batch;
4416 
4417 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4418 
4419 		if (btrfs_file_extent_compression(src, extent)) {
4420 			extent_offset = 0;
4421 			extent_num_bytes = disk_num_bytes;
4422 		} else {
4423 			extent_offset = btrfs_file_extent_offset(src, extent);
4424 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4425 		}
4426 
4427 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4428 		disk_bytenr += extent_offset;
4429 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4430 					      disk_bytenr + extent_num_bytes - 1,
4431 					      &ordered_sums, 0, false);
4432 		if (ret)
4433 			goto out;
4434 
4435 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4436 			if (!ret)
4437 				ret = log_csums(trans, inode, log, sums);
4438 			list_del(&sums->list);
4439 			kfree(sums);
4440 		}
4441 		if (ret)
4442 			goto out;
4443 
4444 add_to_batch:
4445 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4446 		batch.total_data_size += ins_sizes[dst_index];
4447 		batch.nr++;
4448 		dst_index++;
4449 	}
4450 
4451 	/*
4452 	 * We have a leaf full of old extent items that don't need to be logged,
4453 	 * so we don't need to do anything.
4454 	 */
4455 	if (batch.nr == 0)
4456 		goto out;
4457 
4458 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4459 	if (ret)
4460 		goto out;
4461 
4462 	dst_index = 0;
4463 	for (i = 0; i < nr; i++) {
4464 		const int src_slot = start_slot + i;
4465 		const int dst_slot = dst_path->slots[0] + dst_index;
4466 		struct btrfs_key key;
4467 		unsigned long src_offset;
4468 		unsigned long dst_offset;
4469 
4470 		/*
4471 		 * We're done, all the remaining items in the source leaf
4472 		 * correspond to old file extent items.
4473 		 */
4474 		if (dst_index >= batch.nr)
4475 			break;
4476 
4477 		btrfs_item_key_to_cpu(src, &key, src_slot);
4478 
4479 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4480 			goto copy_item;
4481 
4482 		extent = btrfs_item_ptr(src, src_slot,
4483 					struct btrfs_file_extent_item);
4484 
4485 		/* See the comment in the previous loop, same logic. */
4486 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4487 		    key.offset < i_size &&
4488 		    inode->last_reflink_trans < trans->transid)
4489 			continue;
4490 
4491 copy_item:
4492 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4493 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4494 
4495 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4496 			struct btrfs_inode_item *inode_item;
4497 
4498 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4499 						    struct btrfs_inode_item);
4500 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4501 					&inode->vfs_inode,
4502 					inode_only == LOG_INODE_EXISTS,
4503 					logged_isize);
4504 		} else {
4505 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4506 					   src_offset, ins_sizes[dst_index]);
4507 		}
4508 
4509 		dst_index++;
4510 	}
4511 
4512 	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4513 	btrfs_release_path(dst_path);
4514 out:
4515 	kfree(ins_data);
4516 
4517 	return ret;
4518 }
4519 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4520 static int extent_cmp(void *priv, const struct list_head *a,
4521 		      const struct list_head *b)
4522 {
4523 	const struct extent_map *em1, *em2;
4524 
4525 	em1 = list_entry(a, struct extent_map, list);
4526 	em2 = list_entry(b, struct extent_map, list);
4527 
4528 	if (em1->start < em2->start)
4529 		return -1;
4530 	else if (em1->start > em2->start)
4531 		return 1;
4532 	return 0;
4533 }
4534 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4535 static int log_extent_csums(struct btrfs_trans_handle *trans,
4536 			    struct btrfs_inode *inode,
4537 			    struct btrfs_root *log_root,
4538 			    const struct extent_map *em,
4539 			    struct btrfs_log_ctx *ctx)
4540 {
4541 	struct btrfs_ordered_extent *ordered;
4542 	struct btrfs_root *csum_root;
4543 	u64 csum_offset;
4544 	u64 csum_len;
4545 	u64 mod_start = em->mod_start;
4546 	u64 mod_len = em->mod_len;
4547 	LIST_HEAD(ordered_sums);
4548 	int ret = 0;
4549 
4550 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4551 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4552 	    em->block_start == EXTENT_MAP_HOLE)
4553 		return 0;
4554 
4555 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4556 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4557 		const u64 mod_end = mod_start + mod_len;
4558 		struct btrfs_ordered_sum *sums;
4559 
4560 		if (mod_len == 0)
4561 			break;
4562 
4563 		if (ordered_end <= mod_start)
4564 			continue;
4565 		if (mod_end <= ordered->file_offset)
4566 			break;
4567 
4568 		/*
4569 		 * We are going to copy all the csums on this ordered extent, so
4570 		 * go ahead and adjust mod_start and mod_len in case this ordered
4571 		 * extent has already been logged.
4572 		 */
4573 		if (ordered->file_offset > mod_start) {
4574 			if (ordered_end >= mod_end)
4575 				mod_len = ordered->file_offset - mod_start;
4576 			/*
4577 			 * If we have this case
4578 			 *
4579 			 * |--------- logged extent ---------|
4580 			 *       |----- ordered extent ----|
4581 			 *
4582 			 * Just don't mess with mod_start and mod_len, we'll
4583 			 * just end up logging more csums than we need and it
4584 			 * will be ok.
4585 			 */
4586 		} else {
4587 			if (ordered_end < mod_end) {
4588 				mod_len = mod_end - ordered_end;
4589 				mod_start = ordered_end;
4590 			} else {
4591 				mod_len = 0;
4592 			}
4593 		}
4594 
4595 		/*
4596 		 * To keep us from looping for the above case of an ordered
4597 		 * extent that falls inside of the logged extent.
4598 		 */
4599 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4600 			continue;
4601 
4602 		list_for_each_entry(sums, &ordered->list, list) {
4603 			ret = log_csums(trans, inode, log_root, sums);
4604 			if (ret)
4605 				return ret;
4606 		}
4607 	}
4608 
4609 	/* We're done, found all csums in the ordered extents. */
4610 	if (mod_len == 0)
4611 		return 0;
4612 
4613 	/* If we're compressed we have to save the entire range of csums. */
4614 	if (em->compress_type) {
4615 		csum_offset = 0;
4616 		csum_len = max(em->block_len, em->orig_block_len);
4617 	} else {
4618 		csum_offset = mod_start - em->start;
4619 		csum_len = mod_len;
4620 	}
4621 
4622 	/* block start is already adjusted for the file extent offset. */
4623 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4624 	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4625 				      em->block_start + csum_offset +
4626 				      csum_len - 1, &ordered_sums, 0, false);
4627 	if (ret)
4628 		return ret;
4629 
4630 	while (!list_empty(&ordered_sums)) {
4631 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4632 						   struct btrfs_ordered_sum,
4633 						   list);
4634 		if (!ret)
4635 			ret = log_csums(trans, inode, log_root, sums);
4636 		list_del(&sums->list);
4637 		kfree(sums);
4638 	}
4639 
4640 	return ret;
4641 }
4642 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4643 static int log_one_extent(struct btrfs_trans_handle *trans,
4644 			  struct btrfs_inode *inode,
4645 			  const struct extent_map *em,
4646 			  struct btrfs_path *path,
4647 			  struct btrfs_log_ctx *ctx)
4648 {
4649 	struct btrfs_drop_extents_args drop_args = { 0 };
4650 	struct btrfs_root *log = inode->root->log_root;
4651 	struct btrfs_file_extent_item fi = { 0 };
4652 	struct extent_buffer *leaf;
4653 	struct btrfs_key key;
4654 	u64 extent_offset = em->start - em->orig_start;
4655 	u64 block_len;
4656 	int ret;
4657 
4658 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4659 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4660 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4661 	else
4662 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4663 
4664 	block_len = max(em->block_len, em->orig_block_len);
4665 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4666 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4667 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4668 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4669 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4670 							extent_offset);
4671 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4672 	}
4673 
4674 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4675 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4676 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4677 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4678 
4679 	ret = log_extent_csums(trans, inode, log, em, ctx);
4680 	if (ret)
4681 		return ret;
4682 
4683 	/*
4684 	 * If this is the first time we are logging the inode in the current
4685 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4686 	 * because it does a deletion search, which always acquires write locks
4687 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4688 	 * but also adds significant contention in a log tree, since log trees
4689 	 * are small, with a root at level 2 or 3 at most, due to their short
4690 	 * life span.
4691 	 */
4692 	if (ctx->logged_before) {
4693 		drop_args.path = path;
4694 		drop_args.start = em->start;
4695 		drop_args.end = em->start + em->len;
4696 		drop_args.replace_extent = true;
4697 		drop_args.extent_item_size = sizeof(fi);
4698 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4699 		if (ret)
4700 			return ret;
4701 	}
4702 
4703 	if (!drop_args.extent_inserted) {
4704 		key.objectid = btrfs_ino(inode);
4705 		key.type = BTRFS_EXTENT_DATA_KEY;
4706 		key.offset = em->start;
4707 
4708 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4709 					      sizeof(fi));
4710 		if (ret)
4711 			return ret;
4712 	}
4713 	leaf = path->nodes[0];
4714 	write_extent_buffer(leaf, &fi,
4715 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4716 			    sizeof(fi));
4717 	btrfs_mark_buffer_dirty(trans, leaf);
4718 
4719 	btrfs_release_path(path);
4720 
4721 	return ret;
4722 }
4723 
4724 /*
4725  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4726  * lose them after doing a full/fast fsync and replaying the log. We scan the
4727  * subvolume's root instead of iterating the inode's extent map tree because
4728  * otherwise we can log incorrect extent items based on extent map conversion.
4729  * That can happen due to the fact that extent maps are merged when they
4730  * are not in the extent map tree's list of modified extents.
4731  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4732 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4733 				      struct btrfs_inode *inode,
4734 				      struct btrfs_path *path)
4735 {
4736 	struct btrfs_root *root = inode->root;
4737 	struct btrfs_key key;
4738 	const u64 i_size = i_size_read(&inode->vfs_inode);
4739 	const u64 ino = btrfs_ino(inode);
4740 	struct btrfs_path *dst_path = NULL;
4741 	bool dropped_extents = false;
4742 	u64 truncate_offset = i_size;
4743 	struct extent_buffer *leaf;
4744 	int slot;
4745 	int ins_nr = 0;
4746 	int start_slot = 0;
4747 	int ret;
4748 
4749 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4750 		return 0;
4751 
4752 	key.objectid = ino;
4753 	key.type = BTRFS_EXTENT_DATA_KEY;
4754 	key.offset = i_size;
4755 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4756 	if (ret < 0)
4757 		goto out;
4758 
4759 	/*
4760 	 * We must check if there is a prealloc extent that starts before the
4761 	 * i_size and crosses the i_size boundary. This is to ensure later we
4762 	 * truncate down to the end of that extent and not to the i_size, as
4763 	 * otherwise we end up losing part of the prealloc extent after a log
4764 	 * replay and with an implicit hole if there is another prealloc extent
4765 	 * that starts at an offset beyond i_size.
4766 	 */
4767 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4768 	if (ret < 0)
4769 		goto out;
4770 
4771 	if (ret == 0) {
4772 		struct btrfs_file_extent_item *ei;
4773 
4774 		leaf = path->nodes[0];
4775 		slot = path->slots[0];
4776 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4777 
4778 		if (btrfs_file_extent_type(leaf, ei) ==
4779 		    BTRFS_FILE_EXTENT_PREALLOC) {
4780 			u64 extent_end;
4781 
4782 			btrfs_item_key_to_cpu(leaf, &key, slot);
4783 			extent_end = key.offset +
4784 				btrfs_file_extent_num_bytes(leaf, ei);
4785 
4786 			if (extent_end > i_size)
4787 				truncate_offset = extent_end;
4788 		}
4789 	} else {
4790 		ret = 0;
4791 	}
4792 
4793 	while (true) {
4794 		leaf = path->nodes[0];
4795 		slot = path->slots[0];
4796 
4797 		if (slot >= btrfs_header_nritems(leaf)) {
4798 			if (ins_nr > 0) {
4799 				ret = copy_items(trans, inode, dst_path, path,
4800 						 start_slot, ins_nr, 1, 0);
4801 				if (ret < 0)
4802 					goto out;
4803 				ins_nr = 0;
4804 			}
4805 			ret = btrfs_next_leaf(root, path);
4806 			if (ret < 0)
4807 				goto out;
4808 			if (ret > 0) {
4809 				ret = 0;
4810 				break;
4811 			}
4812 			continue;
4813 		}
4814 
4815 		btrfs_item_key_to_cpu(leaf, &key, slot);
4816 		if (key.objectid > ino)
4817 			break;
4818 		if (WARN_ON_ONCE(key.objectid < ino) ||
4819 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4820 		    key.offset < i_size) {
4821 			path->slots[0]++;
4822 			continue;
4823 		}
4824 		/*
4825 		 * Avoid overlapping items in the log tree. The first time we
4826 		 * get here, get rid of everything from a past fsync. After
4827 		 * that, if the current extent starts before the end of the last
4828 		 * extent we copied, truncate the last one. This can happen if
4829 		 * an ordered extent completion modifies the subvolume tree
4830 		 * while btrfs_next_leaf() has the tree unlocked.
4831 		 */
4832 		if (!dropped_extents || key.offset < truncate_offset) {
4833 			ret = truncate_inode_items(trans, root->log_root, inode,
4834 						   min(key.offset, truncate_offset),
4835 						   BTRFS_EXTENT_DATA_KEY);
4836 			if (ret)
4837 				goto out;
4838 			dropped_extents = true;
4839 		}
4840 		truncate_offset = btrfs_file_extent_end(path);
4841 		if (ins_nr == 0)
4842 			start_slot = slot;
4843 		ins_nr++;
4844 		path->slots[0]++;
4845 		if (!dst_path) {
4846 			dst_path = btrfs_alloc_path();
4847 			if (!dst_path) {
4848 				ret = -ENOMEM;
4849 				goto out;
4850 			}
4851 		}
4852 	}
4853 	if (ins_nr > 0)
4854 		ret = copy_items(trans, inode, dst_path, path,
4855 				 start_slot, ins_nr, 1, 0);
4856 out:
4857 	btrfs_release_path(path);
4858 	btrfs_free_path(dst_path);
4859 	return ret;
4860 }
4861 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4862 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4863 				     struct btrfs_inode *inode,
4864 				     struct btrfs_path *path,
4865 				     struct btrfs_log_ctx *ctx)
4866 {
4867 	struct btrfs_ordered_extent *ordered;
4868 	struct btrfs_ordered_extent *tmp;
4869 	struct extent_map *em, *n;
4870 	LIST_HEAD(extents);
4871 	struct extent_map_tree *tree = &inode->extent_tree;
4872 	int ret = 0;
4873 	int num = 0;
4874 
4875 	write_lock(&tree->lock);
4876 
4877 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4878 		list_del_init(&em->list);
4879 		/*
4880 		 * Just an arbitrary number, this can be really CPU intensive
4881 		 * once we start getting a lot of extents, and really once we
4882 		 * have a bunch of extents we just want to commit since it will
4883 		 * be faster.
4884 		 */
4885 		if (++num > 32768) {
4886 			list_del_init(&tree->modified_extents);
4887 			ret = -EFBIG;
4888 			goto process;
4889 		}
4890 
4891 		if (em->generation < trans->transid)
4892 			continue;
4893 
4894 		/* We log prealloc extents beyond eof later. */
4895 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4896 		    em->start >= i_size_read(&inode->vfs_inode))
4897 			continue;
4898 
4899 		/* Need a ref to keep it from getting evicted from cache */
4900 		refcount_inc(&em->refs);
4901 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4902 		list_add_tail(&em->list, &extents);
4903 		num++;
4904 	}
4905 
4906 	list_sort(NULL, &extents, extent_cmp);
4907 process:
4908 	while (!list_empty(&extents)) {
4909 		em = list_entry(extents.next, struct extent_map, list);
4910 
4911 		list_del_init(&em->list);
4912 
4913 		/*
4914 		 * If we had an error we just need to delete everybody from our
4915 		 * private list.
4916 		 */
4917 		if (ret) {
4918 			clear_em_logging(tree, em);
4919 			free_extent_map(em);
4920 			continue;
4921 		}
4922 
4923 		write_unlock(&tree->lock);
4924 
4925 		ret = log_one_extent(trans, inode, em, path, ctx);
4926 		write_lock(&tree->lock);
4927 		clear_em_logging(tree, em);
4928 		free_extent_map(em);
4929 	}
4930 	WARN_ON(!list_empty(&extents));
4931 	write_unlock(&tree->lock);
4932 
4933 	if (!ret)
4934 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4935 	if (ret)
4936 		return ret;
4937 
4938 	/*
4939 	 * We have logged all extents successfully, now make sure the commit of
4940 	 * the current transaction waits for the ordered extents to complete
4941 	 * before it commits and wipes out the log trees, otherwise we would
4942 	 * lose data if an ordered extents completes after the transaction
4943 	 * commits and a power failure happens after the transaction commit.
4944 	 */
4945 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4946 		list_del_init(&ordered->log_list);
4947 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4948 
4949 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4950 			spin_lock_irq(&inode->ordered_tree.lock);
4951 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4952 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4953 				atomic_inc(&trans->transaction->pending_ordered);
4954 			}
4955 			spin_unlock_irq(&inode->ordered_tree.lock);
4956 		}
4957 		btrfs_put_ordered_extent(ordered);
4958 	}
4959 
4960 	return 0;
4961 }
4962 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4963 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4964 			     struct btrfs_path *path, u64 *size_ret)
4965 {
4966 	struct btrfs_key key;
4967 	int ret;
4968 
4969 	key.objectid = btrfs_ino(inode);
4970 	key.type = BTRFS_INODE_ITEM_KEY;
4971 	key.offset = 0;
4972 
4973 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4974 	if (ret < 0) {
4975 		return ret;
4976 	} else if (ret > 0) {
4977 		*size_ret = 0;
4978 	} else {
4979 		struct btrfs_inode_item *item;
4980 
4981 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4982 				      struct btrfs_inode_item);
4983 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4984 		/*
4985 		 * If the in-memory inode's i_size is smaller then the inode
4986 		 * size stored in the btree, return the inode's i_size, so
4987 		 * that we get a correct inode size after replaying the log
4988 		 * when before a power failure we had a shrinking truncate
4989 		 * followed by addition of a new name (rename / new hard link).
4990 		 * Otherwise return the inode size from the btree, to avoid
4991 		 * data loss when replaying a log due to previously doing a
4992 		 * write that expands the inode's size and logging a new name
4993 		 * immediately after.
4994 		 */
4995 		if (*size_ret > inode->vfs_inode.i_size)
4996 			*size_ret = inode->vfs_inode.i_size;
4997 	}
4998 
4999 	btrfs_release_path(path);
5000 	return 0;
5001 }
5002 
5003 /*
5004  * At the moment we always log all xattrs. This is to figure out at log replay
5005  * time which xattrs must have their deletion replayed. If a xattr is missing
5006  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5007  * because if a xattr is deleted, the inode is fsynced and a power failure
5008  * happens, causing the log to be replayed the next time the fs is mounted,
5009  * we want the xattr to not exist anymore (same behaviour as other filesystems
5010  * with a journal, ext3/4, xfs, f2fs, etc).
5011  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)5012 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5013 				struct btrfs_inode *inode,
5014 				struct btrfs_path *path,
5015 				struct btrfs_path *dst_path)
5016 {
5017 	struct btrfs_root *root = inode->root;
5018 	int ret;
5019 	struct btrfs_key key;
5020 	const u64 ino = btrfs_ino(inode);
5021 	int ins_nr = 0;
5022 	int start_slot = 0;
5023 	bool found_xattrs = false;
5024 
5025 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5026 		return 0;
5027 
5028 	key.objectid = ino;
5029 	key.type = BTRFS_XATTR_ITEM_KEY;
5030 	key.offset = 0;
5031 
5032 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5033 	if (ret < 0)
5034 		return ret;
5035 
5036 	while (true) {
5037 		int slot = path->slots[0];
5038 		struct extent_buffer *leaf = path->nodes[0];
5039 		int nritems = btrfs_header_nritems(leaf);
5040 
5041 		if (slot >= nritems) {
5042 			if (ins_nr > 0) {
5043 				ret = copy_items(trans, inode, dst_path, path,
5044 						 start_slot, ins_nr, 1, 0);
5045 				if (ret < 0)
5046 					return ret;
5047 				ins_nr = 0;
5048 			}
5049 			ret = btrfs_next_leaf(root, path);
5050 			if (ret < 0)
5051 				return ret;
5052 			else if (ret > 0)
5053 				break;
5054 			continue;
5055 		}
5056 
5057 		btrfs_item_key_to_cpu(leaf, &key, slot);
5058 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5059 			break;
5060 
5061 		if (ins_nr == 0)
5062 			start_slot = slot;
5063 		ins_nr++;
5064 		path->slots[0]++;
5065 		found_xattrs = true;
5066 		cond_resched();
5067 	}
5068 	if (ins_nr > 0) {
5069 		ret = copy_items(trans, inode, dst_path, path,
5070 				 start_slot, ins_nr, 1, 0);
5071 		if (ret < 0)
5072 			return ret;
5073 	}
5074 
5075 	if (!found_xattrs)
5076 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5077 
5078 	return 0;
5079 }
5080 
5081 /*
5082  * When using the NO_HOLES feature if we punched a hole that causes the
5083  * deletion of entire leafs or all the extent items of the first leaf (the one
5084  * that contains the inode item and references) we may end up not processing
5085  * any extents, because there are no leafs with a generation matching the
5086  * current transaction that have extent items for our inode. So we need to find
5087  * if any holes exist and then log them. We also need to log holes after any
5088  * truncate operation that changes the inode's size.
5089  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5090 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5091 			   struct btrfs_inode *inode,
5092 			   struct btrfs_path *path)
5093 {
5094 	struct btrfs_root *root = inode->root;
5095 	struct btrfs_fs_info *fs_info = root->fs_info;
5096 	struct btrfs_key key;
5097 	const u64 ino = btrfs_ino(inode);
5098 	const u64 i_size = i_size_read(&inode->vfs_inode);
5099 	u64 prev_extent_end = 0;
5100 	int ret;
5101 
5102 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5103 		return 0;
5104 
5105 	key.objectid = ino;
5106 	key.type = BTRFS_EXTENT_DATA_KEY;
5107 	key.offset = 0;
5108 
5109 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5110 	if (ret < 0)
5111 		return ret;
5112 
5113 	while (true) {
5114 		struct extent_buffer *leaf = path->nodes[0];
5115 
5116 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5117 			ret = btrfs_next_leaf(root, path);
5118 			if (ret < 0)
5119 				return ret;
5120 			if (ret > 0) {
5121 				ret = 0;
5122 				break;
5123 			}
5124 			leaf = path->nodes[0];
5125 		}
5126 
5127 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5128 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5129 			break;
5130 
5131 		/* We have a hole, log it. */
5132 		if (prev_extent_end < key.offset) {
5133 			const u64 hole_len = key.offset - prev_extent_end;
5134 
5135 			/*
5136 			 * Release the path to avoid deadlocks with other code
5137 			 * paths that search the root while holding locks on
5138 			 * leafs from the log root.
5139 			 */
5140 			btrfs_release_path(path);
5141 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5142 						       ino, prev_extent_end,
5143 						       hole_len);
5144 			if (ret < 0)
5145 				return ret;
5146 
5147 			/*
5148 			 * Search for the same key again in the root. Since it's
5149 			 * an extent item and we are holding the inode lock, the
5150 			 * key must still exist. If it doesn't just emit warning
5151 			 * and return an error to fall back to a transaction
5152 			 * commit.
5153 			 */
5154 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5155 			if (ret < 0)
5156 				return ret;
5157 			if (WARN_ON(ret > 0))
5158 				return -ENOENT;
5159 			leaf = path->nodes[0];
5160 		}
5161 
5162 		prev_extent_end = btrfs_file_extent_end(path);
5163 		path->slots[0]++;
5164 		cond_resched();
5165 	}
5166 
5167 	if (prev_extent_end < i_size) {
5168 		u64 hole_len;
5169 
5170 		btrfs_release_path(path);
5171 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5172 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5173 					       prev_extent_end, hole_len);
5174 		if (ret < 0)
5175 			return ret;
5176 	}
5177 
5178 	return 0;
5179 }
5180 
5181 /*
5182  * When we are logging a new inode X, check if it doesn't have a reference that
5183  * matches the reference from some other inode Y created in a past transaction
5184  * and that was renamed in the current transaction. If we don't do this, then at
5185  * log replay time we can lose inode Y (and all its files if it's a directory):
5186  *
5187  * mkdir /mnt/x
5188  * echo "hello world" > /mnt/x/foobar
5189  * sync
5190  * mv /mnt/x /mnt/y
5191  * mkdir /mnt/x                 # or touch /mnt/x
5192  * xfs_io -c fsync /mnt/x
5193  * <power fail>
5194  * mount fs, trigger log replay
5195  *
5196  * After the log replay procedure, we would lose the first directory and all its
5197  * files (file foobar).
5198  * For the case where inode Y is not a directory we simply end up losing it:
5199  *
5200  * echo "123" > /mnt/foo
5201  * sync
5202  * mv /mnt/foo /mnt/bar
5203  * echo "abc" > /mnt/foo
5204  * xfs_io -c fsync /mnt/foo
5205  * <power fail>
5206  *
5207  * We also need this for cases where a snapshot entry is replaced by some other
5208  * entry (file or directory) otherwise we end up with an unreplayable log due to
5209  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5210  * if it were a regular entry:
5211  *
5212  * mkdir /mnt/x
5213  * btrfs subvolume snapshot /mnt /mnt/x/snap
5214  * btrfs subvolume delete /mnt/x/snap
5215  * rmdir /mnt/x
5216  * mkdir /mnt/x
5217  * fsync /mnt/x or fsync some new file inside it
5218  * <power fail>
5219  *
5220  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5221  * the same transaction.
5222  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5223 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5224 					 const int slot,
5225 					 const struct btrfs_key *key,
5226 					 struct btrfs_inode *inode,
5227 					 u64 *other_ino, u64 *other_parent)
5228 {
5229 	int ret;
5230 	struct btrfs_path *search_path;
5231 	char *name = NULL;
5232 	u32 name_len = 0;
5233 	u32 item_size = btrfs_item_size(eb, slot);
5234 	u32 cur_offset = 0;
5235 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5236 
5237 	search_path = btrfs_alloc_path();
5238 	if (!search_path)
5239 		return -ENOMEM;
5240 	search_path->search_commit_root = 1;
5241 	search_path->skip_locking = 1;
5242 
5243 	while (cur_offset < item_size) {
5244 		u64 parent;
5245 		u32 this_name_len;
5246 		u32 this_len;
5247 		unsigned long name_ptr;
5248 		struct btrfs_dir_item *di;
5249 		struct fscrypt_str name_str;
5250 
5251 		if (key->type == BTRFS_INODE_REF_KEY) {
5252 			struct btrfs_inode_ref *iref;
5253 
5254 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5255 			parent = key->offset;
5256 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5257 			name_ptr = (unsigned long)(iref + 1);
5258 			this_len = sizeof(*iref) + this_name_len;
5259 		} else {
5260 			struct btrfs_inode_extref *extref;
5261 
5262 			extref = (struct btrfs_inode_extref *)(ptr +
5263 							       cur_offset);
5264 			parent = btrfs_inode_extref_parent(eb, extref);
5265 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5266 			name_ptr = (unsigned long)&extref->name;
5267 			this_len = sizeof(*extref) + this_name_len;
5268 		}
5269 
5270 		if (this_name_len > name_len) {
5271 			char *new_name;
5272 
5273 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5274 			if (!new_name) {
5275 				ret = -ENOMEM;
5276 				goto out;
5277 			}
5278 			name_len = this_name_len;
5279 			name = new_name;
5280 		}
5281 
5282 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5283 
5284 		name_str.name = name;
5285 		name_str.len = this_name_len;
5286 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5287 				parent, &name_str, 0);
5288 		if (di && !IS_ERR(di)) {
5289 			struct btrfs_key di_key;
5290 
5291 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5292 						  di, &di_key);
5293 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5294 				if (di_key.objectid != key->objectid) {
5295 					ret = 1;
5296 					*other_ino = di_key.objectid;
5297 					*other_parent = parent;
5298 				} else {
5299 					ret = 0;
5300 				}
5301 			} else {
5302 				ret = -EAGAIN;
5303 			}
5304 			goto out;
5305 		} else if (IS_ERR(di)) {
5306 			ret = PTR_ERR(di);
5307 			goto out;
5308 		}
5309 		btrfs_release_path(search_path);
5310 
5311 		cur_offset += this_len;
5312 	}
5313 	ret = 0;
5314 out:
5315 	btrfs_free_path(search_path);
5316 	kfree(name);
5317 	return ret;
5318 }
5319 
5320 /*
5321  * Check if we need to log an inode. This is used in contexts where while
5322  * logging an inode we need to log another inode (either that it exists or in
5323  * full mode). This is used instead of btrfs_inode_in_log() because the later
5324  * requires the inode to be in the log and have the log transaction committed,
5325  * while here we do not care if the log transaction was already committed - our
5326  * caller will commit the log later - and we want to avoid logging an inode
5327  * multiple times when multiple tasks have joined the same log transaction.
5328  */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5329 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5330 			   struct btrfs_inode *inode)
5331 {
5332 	/*
5333 	 * If a directory was not modified, no dentries added or removed, we can
5334 	 * and should avoid logging it.
5335 	 */
5336 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5337 		return false;
5338 
5339 	/*
5340 	 * If this inode does not have new/updated/deleted xattrs since the last
5341 	 * time it was logged and is flagged as logged in the current transaction,
5342 	 * we can skip logging it. As for new/deleted names, those are updated in
5343 	 * the log by link/unlink/rename operations.
5344 	 * In case the inode was logged and then evicted and reloaded, its
5345 	 * logged_trans will be 0, in which case we have to fully log it since
5346 	 * logged_trans is a transient field, not persisted.
5347 	 */
5348 	if (inode_logged(trans, inode, NULL) == 1 &&
5349 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5350 		return false;
5351 
5352 	return true;
5353 }
5354 
5355 struct btrfs_dir_list {
5356 	u64 ino;
5357 	struct list_head list;
5358 };
5359 
5360 /*
5361  * Log the inodes of the new dentries of a directory.
5362  * See process_dir_items_leaf() for details about why it is needed.
5363  * This is a recursive operation - if an existing dentry corresponds to a
5364  * directory, that directory's new entries are logged too (same behaviour as
5365  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5366  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5367  * complains about the following circular lock dependency / possible deadlock:
5368  *
5369  *        CPU0                                        CPU1
5370  *        ----                                        ----
5371  * lock(&type->i_mutex_dir_key#3/2);
5372  *                                            lock(sb_internal#2);
5373  *                                            lock(&type->i_mutex_dir_key#3/2);
5374  * lock(&sb->s_type->i_mutex_key#14);
5375  *
5376  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5377  * sb_start_intwrite() in btrfs_start_transaction().
5378  * Not acquiring the VFS lock of the inodes is still safe because:
5379  *
5380  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5381  *    that while logging the inode new references (names) are added or removed
5382  *    from the inode, leaving the logged inode item with a link count that does
5383  *    not match the number of logged inode reference items. This is fine because
5384  *    at log replay time we compute the real number of links and correct the
5385  *    link count in the inode item (see replay_one_buffer() and
5386  *    link_to_fixup_dir());
5387  *
5388  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5389  *    while logging the inode's items new index items (key type
5390  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5391  *    has a size that doesn't match the sum of the lengths of all the logged
5392  *    names - this is ok, not a problem, because at log replay time we set the
5393  *    directory's i_size to the correct value (see replay_one_name() and
5394  *    overwrite_item()).
5395  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5396 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5397 				struct btrfs_inode *start_inode,
5398 				struct btrfs_log_ctx *ctx)
5399 {
5400 	struct btrfs_root *root = start_inode->root;
5401 	struct btrfs_path *path;
5402 	LIST_HEAD(dir_list);
5403 	struct btrfs_dir_list *dir_elem;
5404 	u64 ino = btrfs_ino(start_inode);
5405 	struct btrfs_inode *curr_inode = start_inode;
5406 	int ret = 0;
5407 
5408 	/*
5409 	 * If we are logging a new name, as part of a link or rename operation,
5410 	 * don't bother logging new dentries, as we just want to log the names
5411 	 * of an inode and that any new parents exist.
5412 	 */
5413 	if (ctx->logging_new_name)
5414 		return 0;
5415 
5416 	path = btrfs_alloc_path();
5417 	if (!path)
5418 		return -ENOMEM;
5419 
5420 	/* Pairs with btrfs_add_delayed_iput below. */
5421 	ihold(&curr_inode->vfs_inode);
5422 
5423 	while (true) {
5424 		struct inode *vfs_inode;
5425 		struct btrfs_key key;
5426 		struct btrfs_key found_key;
5427 		u64 next_index;
5428 		bool continue_curr_inode = true;
5429 		int iter_ret;
5430 
5431 		key.objectid = ino;
5432 		key.type = BTRFS_DIR_INDEX_KEY;
5433 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5434 		next_index = key.offset;
5435 again:
5436 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5437 			struct extent_buffer *leaf = path->nodes[0];
5438 			struct btrfs_dir_item *di;
5439 			struct btrfs_key di_key;
5440 			struct inode *di_inode;
5441 			int log_mode = LOG_INODE_EXISTS;
5442 			int type;
5443 
5444 			if (found_key.objectid != ino ||
5445 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5446 				continue_curr_inode = false;
5447 				break;
5448 			}
5449 
5450 			next_index = found_key.offset + 1;
5451 
5452 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5453 			type = btrfs_dir_ftype(leaf, di);
5454 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5455 				continue;
5456 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5457 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5458 				continue;
5459 
5460 			btrfs_release_path(path);
5461 			di_inode = btrfs_iget_logging(di_key.objectid, root);
5462 			if (IS_ERR(di_inode)) {
5463 				ret = PTR_ERR(di_inode);
5464 				goto out;
5465 			}
5466 
5467 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5468 				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5469 				break;
5470 			}
5471 
5472 			ctx->log_new_dentries = false;
5473 			if (type == BTRFS_FT_DIR)
5474 				log_mode = LOG_INODE_ALL;
5475 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5476 					      log_mode, ctx);
5477 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5478 			if (ret)
5479 				goto out;
5480 			if (ctx->log_new_dentries) {
5481 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5482 				if (!dir_elem) {
5483 					ret = -ENOMEM;
5484 					goto out;
5485 				}
5486 				dir_elem->ino = di_key.objectid;
5487 				list_add_tail(&dir_elem->list, &dir_list);
5488 			}
5489 			break;
5490 		}
5491 
5492 		btrfs_release_path(path);
5493 
5494 		if (iter_ret < 0) {
5495 			ret = iter_ret;
5496 			goto out;
5497 		} else if (iter_ret > 0) {
5498 			continue_curr_inode = false;
5499 		} else {
5500 			key = found_key;
5501 		}
5502 
5503 		if (continue_curr_inode && key.offset < (u64)-1) {
5504 			key.offset++;
5505 			goto again;
5506 		}
5507 
5508 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5509 
5510 		if (list_empty(&dir_list))
5511 			break;
5512 
5513 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5514 		ino = dir_elem->ino;
5515 		list_del(&dir_elem->list);
5516 		kfree(dir_elem);
5517 
5518 		btrfs_add_delayed_iput(curr_inode);
5519 		curr_inode = NULL;
5520 
5521 		vfs_inode = btrfs_iget_logging(ino, root);
5522 		if (IS_ERR(vfs_inode)) {
5523 			ret = PTR_ERR(vfs_inode);
5524 			break;
5525 		}
5526 		curr_inode = BTRFS_I(vfs_inode);
5527 	}
5528 out:
5529 	btrfs_free_path(path);
5530 	if (curr_inode)
5531 		btrfs_add_delayed_iput(curr_inode);
5532 
5533 	if (ret) {
5534 		struct btrfs_dir_list *next;
5535 
5536 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5537 			kfree(dir_elem);
5538 	}
5539 
5540 	return ret;
5541 }
5542 
5543 struct btrfs_ino_list {
5544 	u64 ino;
5545 	u64 parent;
5546 	struct list_head list;
5547 };
5548 
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5549 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5550 {
5551 	struct btrfs_ino_list *curr;
5552 	struct btrfs_ino_list *next;
5553 
5554 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5555 		list_del(&curr->list);
5556 		kfree(curr);
5557 	}
5558 }
5559 
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5560 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5561 				    struct btrfs_path *path)
5562 {
5563 	struct btrfs_key key;
5564 	int ret;
5565 
5566 	key.objectid = ino;
5567 	key.type = BTRFS_INODE_ITEM_KEY;
5568 	key.offset = 0;
5569 
5570 	path->search_commit_root = 1;
5571 	path->skip_locking = 1;
5572 
5573 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5574 	if (WARN_ON_ONCE(ret > 0)) {
5575 		/*
5576 		 * We have previously found the inode through the commit root
5577 		 * so this should not happen. If it does, just error out and
5578 		 * fallback to a transaction commit.
5579 		 */
5580 		ret = -ENOENT;
5581 	} else if (ret == 0) {
5582 		struct btrfs_inode_item *item;
5583 
5584 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5585 				      struct btrfs_inode_item);
5586 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5587 			ret = 1;
5588 	}
5589 
5590 	btrfs_release_path(path);
5591 	path->search_commit_root = 0;
5592 	path->skip_locking = 0;
5593 
5594 	return ret;
5595 }
5596 
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5597 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5598 				 struct btrfs_root *root,
5599 				 struct btrfs_path *path,
5600 				 u64 ino, u64 parent,
5601 				 struct btrfs_log_ctx *ctx)
5602 {
5603 	struct btrfs_ino_list *ino_elem;
5604 	struct inode *inode;
5605 
5606 	/*
5607 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5608 	 * common to have more than 1 or 2. We don't want to collect too many,
5609 	 * as we could end up logging too many inodes (even if only in
5610 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5611 	 * commits.
5612 	 */
5613 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5614 		return BTRFS_LOG_FORCE_COMMIT;
5615 
5616 	inode = btrfs_iget_logging(ino, root);
5617 	/*
5618 	 * If the other inode that had a conflicting dir entry was deleted in
5619 	 * the current transaction then we either:
5620 	 *
5621 	 * 1) Log the parent directory (later after adding it to the list) if
5622 	 *    the inode is a directory. This is because it may be a deleted
5623 	 *    subvolume/snapshot or it may be a regular directory that had
5624 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5625 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5626 	 *    during log replay. So we just log the parent, which will result in
5627 	 *    a fallback to a transaction commit if we are dealing with those
5628 	 *    cases (last_unlink_trans will match the current transaction);
5629 	 *
5630 	 * 2) Do nothing if it's not a directory. During log replay we simply
5631 	 *    unlink the conflicting dentry from the parent directory and then
5632 	 *    add the dentry for our inode. Like this we can avoid logging the
5633 	 *    parent directory (and maybe fallback to a transaction commit in
5634 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5635 	 *    some inode from it to some other directory).
5636 	 */
5637 	if (IS_ERR(inode)) {
5638 		int ret = PTR_ERR(inode);
5639 
5640 		if (ret != -ENOENT)
5641 			return ret;
5642 
5643 		ret = conflicting_inode_is_dir(root, ino, path);
5644 		/* Not a directory or we got an error. */
5645 		if (ret <= 0)
5646 			return ret;
5647 
5648 		/* Conflicting inode is a directory, so we'll log its parent. */
5649 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5650 		if (!ino_elem)
5651 			return -ENOMEM;
5652 		ino_elem->ino = ino;
5653 		ino_elem->parent = parent;
5654 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5655 		ctx->num_conflict_inodes++;
5656 
5657 		return 0;
5658 	}
5659 
5660 	/*
5661 	 * If the inode was already logged skip it - otherwise we can hit an
5662 	 * infinite loop. Example:
5663 	 *
5664 	 * From the commit root (previous transaction) we have the following
5665 	 * inodes:
5666 	 *
5667 	 * inode 257 a directory
5668 	 * inode 258 with references "zz" and "zz_link" on inode 257
5669 	 * inode 259 with reference "a" on inode 257
5670 	 *
5671 	 * And in the current (uncommitted) transaction we have:
5672 	 *
5673 	 * inode 257 a directory, unchanged
5674 	 * inode 258 with references "a" and "a2" on inode 257
5675 	 * inode 259 with reference "zz_link" on inode 257
5676 	 * inode 261 with reference "zz" on inode 257
5677 	 *
5678 	 * When logging inode 261 the following infinite loop could
5679 	 * happen if we don't skip already logged inodes:
5680 	 *
5681 	 * - we detect inode 258 as a conflicting inode, with inode 261
5682 	 *   on reference "zz", and log it;
5683 	 *
5684 	 * - we detect inode 259 as a conflicting inode, with inode 258
5685 	 *   on reference "a", and log it;
5686 	 *
5687 	 * - we detect inode 258 as a conflicting inode, with inode 259
5688 	 *   on reference "zz_link", and log it - again! After this we
5689 	 *   repeat the above steps forever.
5690 	 *
5691 	 * Here we can use need_log_inode() because we only need to log the
5692 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5693 	 * so that the log ends up with the new name and without the old name.
5694 	 */
5695 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5696 		btrfs_add_delayed_iput(BTRFS_I(inode));
5697 		return 0;
5698 	}
5699 
5700 	btrfs_add_delayed_iput(BTRFS_I(inode));
5701 
5702 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5703 	if (!ino_elem)
5704 		return -ENOMEM;
5705 	ino_elem->ino = ino;
5706 	ino_elem->parent = parent;
5707 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5708 	ctx->num_conflict_inodes++;
5709 
5710 	return 0;
5711 }
5712 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5713 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5714 				  struct btrfs_root *root,
5715 				  struct btrfs_log_ctx *ctx)
5716 {
5717 	int ret = 0;
5718 
5719 	/*
5720 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5721 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5722 	 * calls. This check guarantees we can have only 1 level of recursion.
5723 	 */
5724 	if (ctx->logging_conflict_inodes)
5725 		return 0;
5726 
5727 	ctx->logging_conflict_inodes = true;
5728 
5729 	/*
5730 	 * New conflicting inodes may be found and added to the list while we
5731 	 * are logging a conflicting inode, so keep iterating while the list is
5732 	 * not empty.
5733 	 */
5734 	while (!list_empty(&ctx->conflict_inodes)) {
5735 		struct btrfs_ino_list *curr;
5736 		struct inode *inode;
5737 		u64 ino;
5738 		u64 parent;
5739 
5740 		curr = list_first_entry(&ctx->conflict_inodes,
5741 					struct btrfs_ino_list, list);
5742 		ino = curr->ino;
5743 		parent = curr->parent;
5744 		list_del(&curr->list);
5745 		kfree(curr);
5746 
5747 		inode = btrfs_iget_logging(ino, root);
5748 		/*
5749 		 * If the other inode that had a conflicting dir entry was
5750 		 * deleted in the current transaction, we need to log its parent
5751 		 * directory. See the comment at add_conflicting_inode().
5752 		 */
5753 		if (IS_ERR(inode)) {
5754 			ret = PTR_ERR(inode);
5755 			if (ret != -ENOENT)
5756 				break;
5757 
5758 			inode = btrfs_iget_logging(parent, root);
5759 			if (IS_ERR(inode)) {
5760 				ret = PTR_ERR(inode);
5761 				break;
5762 			}
5763 
5764 			/*
5765 			 * Always log the directory, we cannot make this
5766 			 * conditional on need_log_inode() because the directory
5767 			 * might have been logged in LOG_INODE_EXISTS mode or
5768 			 * the dir index of the conflicting inode is not in a
5769 			 * dir index key range logged for the directory. So we
5770 			 * must make sure the deletion is recorded.
5771 			 */
5772 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5773 					      LOG_INODE_ALL, ctx);
5774 			btrfs_add_delayed_iput(BTRFS_I(inode));
5775 			if (ret)
5776 				break;
5777 			continue;
5778 		}
5779 
5780 		/*
5781 		 * Here we can use need_log_inode() because we only need to log
5782 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5783 		 * update the log, so that the log ends up with the new name and
5784 		 * without the old name.
5785 		 *
5786 		 * We did this check at add_conflicting_inode(), but here we do
5787 		 * it again because if some other task logged the inode after
5788 		 * that, we can avoid doing it again.
5789 		 */
5790 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5791 			btrfs_add_delayed_iput(BTRFS_I(inode));
5792 			continue;
5793 		}
5794 
5795 		/*
5796 		 * We are safe logging the other inode without acquiring its
5797 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5798 		 * are safe against concurrent renames of the other inode as
5799 		 * well because during a rename we pin the log and update the
5800 		 * log with the new name before we unpin it.
5801 		 */
5802 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5803 		btrfs_add_delayed_iput(BTRFS_I(inode));
5804 		if (ret)
5805 			break;
5806 	}
5807 
5808 	ctx->logging_conflict_inodes = false;
5809 	if (ret)
5810 		free_conflicting_inodes(ctx);
5811 
5812 	return ret;
5813 }
5814 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5815 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5816 				   struct btrfs_inode *inode,
5817 				   struct btrfs_key *min_key,
5818 				   const struct btrfs_key *max_key,
5819 				   struct btrfs_path *path,
5820 				   struct btrfs_path *dst_path,
5821 				   const u64 logged_isize,
5822 				   const int inode_only,
5823 				   struct btrfs_log_ctx *ctx,
5824 				   bool *need_log_inode_item)
5825 {
5826 	const u64 i_size = i_size_read(&inode->vfs_inode);
5827 	struct btrfs_root *root = inode->root;
5828 	int ins_start_slot = 0;
5829 	int ins_nr = 0;
5830 	int ret;
5831 
5832 	while (1) {
5833 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5834 		if (ret < 0)
5835 			return ret;
5836 		if (ret > 0) {
5837 			ret = 0;
5838 			break;
5839 		}
5840 again:
5841 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5842 		if (min_key->objectid != max_key->objectid)
5843 			break;
5844 		if (min_key->type > max_key->type)
5845 			break;
5846 
5847 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5848 			*need_log_inode_item = false;
5849 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5850 			   min_key->offset >= i_size) {
5851 			/*
5852 			 * Extents at and beyond eof are logged with
5853 			 * btrfs_log_prealloc_extents().
5854 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5855 			 * and no keys greater than that, so bail out.
5856 			 */
5857 			break;
5858 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5859 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5860 			   (inode->generation == trans->transid ||
5861 			    ctx->logging_conflict_inodes)) {
5862 			u64 other_ino = 0;
5863 			u64 other_parent = 0;
5864 
5865 			ret = btrfs_check_ref_name_override(path->nodes[0],
5866 					path->slots[0], min_key, inode,
5867 					&other_ino, &other_parent);
5868 			if (ret < 0) {
5869 				return ret;
5870 			} else if (ret > 0 &&
5871 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5872 				if (ins_nr > 0) {
5873 					ins_nr++;
5874 				} else {
5875 					ins_nr = 1;
5876 					ins_start_slot = path->slots[0];
5877 				}
5878 				ret = copy_items(trans, inode, dst_path, path,
5879 						 ins_start_slot, ins_nr,
5880 						 inode_only, logged_isize);
5881 				if (ret < 0)
5882 					return ret;
5883 				ins_nr = 0;
5884 
5885 				btrfs_release_path(path);
5886 				ret = add_conflicting_inode(trans, root, path,
5887 							    other_ino,
5888 							    other_parent, ctx);
5889 				if (ret)
5890 					return ret;
5891 				goto next_key;
5892 			}
5893 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5894 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5895 			if (ins_nr == 0)
5896 				goto next_slot;
5897 			ret = copy_items(trans, inode, dst_path, path,
5898 					 ins_start_slot,
5899 					 ins_nr, inode_only, logged_isize);
5900 			if (ret < 0)
5901 				return ret;
5902 			ins_nr = 0;
5903 			goto next_slot;
5904 		}
5905 
5906 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5907 			ins_nr++;
5908 			goto next_slot;
5909 		} else if (!ins_nr) {
5910 			ins_start_slot = path->slots[0];
5911 			ins_nr = 1;
5912 			goto next_slot;
5913 		}
5914 
5915 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5916 				 ins_nr, inode_only, logged_isize);
5917 		if (ret < 0)
5918 			return ret;
5919 		ins_nr = 1;
5920 		ins_start_slot = path->slots[0];
5921 next_slot:
5922 		path->slots[0]++;
5923 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5924 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5925 					      path->slots[0]);
5926 			goto again;
5927 		}
5928 		if (ins_nr) {
5929 			ret = copy_items(trans, inode, dst_path, path,
5930 					 ins_start_slot, ins_nr, inode_only,
5931 					 logged_isize);
5932 			if (ret < 0)
5933 				return ret;
5934 			ins_nr = 0;
5935 		}
5936 		btrfs_release_path(path);
5937 next_key:
5938 		if (min_key->offset < (u64)-1) {
5939 			min_key->offset++;
5940 		} else if (min_key->type < max_key->type) {
5941 			min_key->type++;
5942 			min_key->offset = 0;
5943 		} else {
5944 			break;
5945 		}
5946 
5947 		/*
5948 		 * We may process many leaves full of items for our inode, so
5949 		 * avoid monopolizing a cpu for too long by rescheduling while
5950 		 * not holding locks on any tree.
5951 		 */
5952 		cond_resched();
5953 	}
5954 	if (ins_nr) {
5955 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5956 				 ins_nr, inode_only, logged_isize);
5957 		if (ret)
5958 			return ret;
5959 	}
5960 
5961 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5962 		/*
5963 		 * Release the path because otherwise we might attempt to double
5964 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5965 		 */
5966 		btrfs_release_path(path);
5967 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5968 	}
5969 
5970 	return ret;
5971 }
5972 
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)5973 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5974 				      struct btrfs_root *log,
5975 				      struct btrfs_path *path,
5976 				      const struct btrfs_item_batch *batch,
5977 				      const struct btrfs_delayed_item *first_item)
5978 {
5979 	const struct btrfs_delayed_item *curr = first_item;
5980 	int ret;
5981 
5982 	ret = btrfs_insert_empty_items(trans, log, path, batch);
5983 	if (ret)
5984 		return ret;
5985 
5986 	for (int i = 0; i < batch->nr; i++) {
5987 		char *data_ptr;
5988 
5989 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5990 		write_extent_buffer(path->nodes[0], &curr->data,
5991 				    (unsigned long)data_ptr, curr->data_len);
5992 		curr = list_next_entry(curr, log_list);
5993 		path->slots[0]++;
5994 	}
5995 
5996 	btrfs_release_path(path);
5997 
5998 	return 0;
5999 }
6000 
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6001 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6002 				       struct btrfs_inode *inode,
6003 				       struct btrfs_path *path,
6004 				       const struct list_head *delayed_ins_list,
6005 				       struct btrfs_log_ctx *ctx)
6006 {
6007 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6008 	const int max_batch_size = 195;
6009 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6010 	const u64 ino = btrfs_ino(inode);
6011 	struct btrfs_root *log = inode->root->log_root;
6012 	struct btrfs_item_batch batch = {
6013 		.nr = 0,
6014 		.total_data_size = 0,
6015 	};
6016 	const struct btrfs_delayed_item *first = NULL;
6017 	const struct btrfs_delayed_item *curr;
6018 	char *ins_data;
6019 	struct btrfs_key *ins_keys;
6020 	u32 *ins_sizes;
6021 	u64 curr_batch_size = 0;
6022 	int batch_idx = 0;
6023 	int ret;
6024 
6025 	/* We are adding dir index items to the log tree. */
6026 	lockdep_assert_held(&inode->log_mutex);
6027 
6028 	/*
6029 	 * We collect delayed items before copying index keys from the subvolume
6030 	 * to the log tree. However just after we collected them, they may have
6031 	 * been flushed (all of them or just some of them), and therefore we
6032 	 * could have copied them from the subvolume tree to the log tree.
6033 	 * So find the first delayed item that was not yet logged (they are
6034 	 * sorted by index number).
6035 	 */
6036 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6037 		if (curr->index > inode->last_dir_index_offset) {
6038 			first = curr;
6039 			break;
6040 		}
6041 	}
6042 
6043 	/* Empty list or all delayed items were already logged. */
6044 	if (!first)
6045 		return 0;
6046 
6047 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6048 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6049 	if (!ins_data)
6050 		return -ENOMEM;
6051 	ins_sizes = (u32 *)ins_data;
6052 	batch.data_sizes = ins_sizes;
6053 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6054 	batch.keys = ins_keys;
6055 
6056 	curr = first;
6057 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6058 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6059 
6060 		if (curr_batch_size + curr_size > leaf_data_size ||
6061 		    batch.nr == max_batch_size) {
6062 			ret = insert_delayed_items_batch(trans, log, path,
6063 							 &batch, first);
6064 			if (ret)
6065 				goto out;
6066 			batch_idx = 0;
6067 			batch.nr = 0;
6068 			batch.total_data_size = 0;
6069 			curr_batch_size = 0;
6070 			first = curr;
6071 		}
6072 
6073 		ins_sizes[batch_idx] = curr->data_len;
6074 		ins_keys[batch_idx].objectid = ino;
6075 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6076 		ins_keys[batch_idx].offset = curr->index;
6077 		curr_batch_size += curr_size;
6078 		batch.total_data_size += curr->data_len;
6079 		batch.nr++;
6080 		batch_idx++;
6081 		curr = list_next_entry(curr, log_list);
6082 	}
6083 
6084 	ASSERT(batch.nr >= 1);
6085 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6086 
6087 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6088 			       log_list);
6089 	inode->last_dir_index_offset = curr->index;
6090 out:
6091 	kfree(ins_data);
6092 
6093 	return ret;
6094 }
6095 
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6096 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6097 				      struct btrfs_inode *inode,
6098 				      struct btrfs_path *path,
6099 				      const struct list_head *delayed_del_list,
6100 				      struct btrfs_log_ctx *ctx)
6101 {
6102 	const u64 ino = btrfs_ino(inode);
6103 	const struct btrfs_delayed_item *curr;
6104 
6105 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6106 				log_list);
6107 
6108 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6109 		u64 first_dir_index = curr->index;
6110 		u64 last_dir_index;
6111 		const struct btrfs_delayed_item *next;
6112 		int ret;
6113 
6114 		/*
6115 		 * Find a range of consecutive dir index items to delete. Like
6116 		 * this we log a single dir range item spanning several contiguous
6117 		 * dir items instead of logging one range item per dir index item.
6118 		 */
6119 		next = list_next_entry(curr, log_list);
6120 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6121 			if (next->index != curr->index + 1)
6122 				break;
6123 			curr = next;
6124 			next = list_next_entry(next, log_list);
6125 		}
6126 
6127 		last_dir_index = curr->index;
6128 		ASSERT(last_dir_index >= first_dir_index);
6129 
6130 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6131 					 ino, first_dir_index, last_dir_index);
6132 		if (ret)
6133 			return ret;
6134 		curr = list_next_entry(curr, log_list);
6135 	}
6136 
6137 	return 0;
6138 }
6139 
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6140 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6141 					struct btrfs_inode *inode,
6142 					struct btrfs_path *path,
6143 					struct btrfs_log_ctx *ctx,
6144 					const struct list_head *delayed_del_list,
6145 					const struct btrfs_delayed_item *first,
6146 					const struct btrfs_delayed_item **last_ret)
6147 {
6148 	const struct btrfs_delayed_item *next;
6149 	struct extent_buffer *leaf = path->nodes[0];
6150 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6151 	int slot = path->slots[0] + 1;
6152 	const u64 ino = btrfs_ino(inode);
6153 
6154 	next = list_next_entry(first, log_list);
6155 
6156 	while (slot < last_slot &&
6157 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6158 		struct btrfs_key key;
6159 
6160 		btrfs_item_key_to_cpu(leaf, &key, slot);
6161 		if (key.objectid != ino ||
6162 		    key.type != BTRFS_DIR_INDEX_KEY ||
6163 		    key.offset != next->index)
6164 			break;
6165 
6166 		slot++;
6167 		*last_ret = next;
6168 		next = list_next_entry(next, log_list);
6169 	}
6170 
6171 	return btrfs_del_items(trans, inode->root->log_root, path,
6172 			       path->slots[0], slot - path->slots[0]);
6173 }
6174 
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6175 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6176 					     struct btrfs_inode *inode,
6177 					     struct btrfs_path *path,
6178 					     const struct list_head *delayed_del_list,
6179 					     struct btrfs_log_ctx *ctx)
6180 {
6181 	struct btrfs_root *log = inode->root->log_root;
6182 	const struct btrfs_delayed_item *curr;
6183 	u64 last_range_start = 0;
6184 	u64 last_range_end = 0;
6185 	struct btrfs_key key;
6186 
6187 	key.objectid = btrfs_ino(inode);
6188 	key.type = BTRFS_DIR_INDEX_KEY;
6189 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6190 				log_list);
6191 
6192 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6193 		const struct btrfs_delayed_item *last = curr;
6194 		u64 first_dir_index = curr->index;
6195 		u64 last_dir_index;
6196 		bool deleted_items = false;
6197 		int ret;
6198 
6199 		key.offset = curr->index;
6200 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6201 		if (ret < 0) {
6202 			return ret;
6203 		} else if (ret == 0) {
6204 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6205 							   delayed_del_list, curr,
6206 							   &last);
6207 			if (ret)
6208 				return ret;
6209 			deleted_items = true;
6210 		}
6211 
6212 		btrfs_release_path(path);
6213 
6214 		/*
6215 		 * If we deleted items from the leaf, it means we have a range
6216 		 * item logging their range, so no need to add one or update an
6217 		 * existing one. Otherwise we have to log a dir range item.
6218 		 */
6219 		if (deleted_items)
6220 			goto next_batch;
6221 
6222 		last_dir_index = last->index;
6223 		ASSERT(last_dir_index >= first_dir_index);
6224 		/*
6225 		 * If this range starts right after where the previous one ends,
6226 		 * then we want to reuse the previous range item and change its
6227 		 * end offset to the end of this range. This is just to minimize
6228 		 * leaf space usage, by avoiding adding a new range item.
6229 		 */
6230 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6231 			first_dir_index = last_range_start;
6232 
6233 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6234 					 first_dir_index, last_dir_index);
6235 		if (ret)
6236 			return ret;
6237 
6238 		last_range_start = first_dir_index;
6239 		last_range_end = last_dir_index;
6240 next_batch:
6241 		curr = list_next_entry(last, log_list);
6242 	}
6243 
6244 	return 0;
6245 }
6246 
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6247 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6248 				      struct btrfs_inode *inode,
6249 				      struct btrfs_path *path,
6250 				      const struct list_head *delayed_del_list,
6251 				      struct btrfs_log_ctx *ctx)
6252 {
6253 	/*
6254 	 * We are deleting dir index items from the log tree or adding range
6255 	 * items to it.
6256 	 */
6257 	lockdep_assert_held(&inode->log_mutex);
6258 
6259 	if (list_empty(delayed_del_list))
6260 		return 0;
6261 
6262 	if (ctx->logged_before)
6263 		return log_delayed_deletions_incremental(trans, inode, path,
6264 							 delayed_del_list, ctx);
6265 
6266 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6267 					  ctx);
6268 }
6269 
6270 /*
6271  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6272  * items instead of the subvolume tree.
6273  */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6274 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6275 				    struct btrfs_inode *inode,
6276 				    const struct list_head *delayed_ins_list,
6277 				    struct btrfs_log_ctx *ctx)
6278 {
6279 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6280 	struct btrfs_delayed_item *item;
6281 	int ret = 0;
6282 
6283 	/*
6284 	 * No need for the log mutex, plus to avoid potential deadlocks or
6285 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6286 	 * mutexes.
6287 	 */
6288 	lockdep_assert_not_held(&inode->log_mutex);
6289 
6290 	ASSERT(!ctx->logging_new_delayed_dentries);
6291 	ctx->logging_new_delayed_dentries = true;
6292 
6293 	list_for_each_entry(item, delayed_ins_list, log_list) {
6294 		struct btrfs_dir_item *dir_item;
6295 		struct inode *di_inode;
6296 		struct btrfs_key key;
6297 		int log_mode = LOG_INODE_EXISTS;
6298 
6299 		dir_item = (struct btrfs_dir_item *)item->data;
6300 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6301 
6302 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6303 			continue;
6304 
6305 		di_inode = btrfs_iget_logging(key.objectid, inode->root);
6306 		if (IS_ERR(di_inode)) {
6307 			ret = PTR_ERR(di_inode);
6308 			break;
6309 		}
6310 
6311 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6312 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6313 			continue;
6314 		}
6315 
6316 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6317 			log_mode = LOG_INODE_ALL;
6318 
6319 		ctx->log_new_dentries = false;
6320 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6321 
6322 		if (!ret && ctx->log_new_dentries)
6323 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6324 
6325 		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6326 
6327 		if (ret)
6328 			break;
6329 	}
6330 
6331 	ctx->log_new_dentries = orig_log_new_dentries;
6332 	ctx->logging_new_delayed_dentries = false;
6333 
6334 	return ret;
6335 }
6336 
6337 /* log a single inode in the tree log.
6338  * At least one parent directory for this inode must exist in the tree
6339  * or be logged already.
6340  *
6341  * Any items from this inode changed by the current transaction are copied
6342  * to the log tree.  An extra reference is taken on any extents in this
6343  * file, allowing us to avoid a whole pile of corner cases around logging
6344  * blocks that have been removed from the tree.
6345  *
6346  * See LOG_INODE_ALL and related defines for a description of what inode_only
6347  * does.
6348  *
6349  * This handles both files and directories.
6350  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6351 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6352 			   struct btrfs_inode *inode,
6353 			   int inode_only,
6354 			   struct btrfs_log_ctx *ctx)
6355 {
6356 	struct btrfs_path *path;
6357 	struct btrfs_path *dst_path;
6358 	struct btrfs_key min_key;
6359 	struct btrfs_key max_key;
6360 	struct btrfs_root *log = inode->root->log_root;
6361 	int ret;
6362 	bool fast_search = false;
6363 	u64 ino = btrfs_ino(inode);
6364 	struct extent_map_tree *em_tree = &inode->extent_tree;
6365 	u64 logged_isize = 0;
6366 	bool need_log_inode_item = true;
6367 	bool xattrs_logged = false;
6368 	bool inode_item_dropped = true;
6369 	bool full_dir_logging = false;
6370 	LIST_HEAD(delayed_ins_list);
6371 	LIST_HEAD(delayed_del_list);
6372 
6373 	path = btrfs_alloc_path();
6374 	if (!path)
6375 		return -ENOMEM;
6376 	dst_path = btrfs_alloc_path();
6377 	if (!dst_path) {
6378 		btrfs_free_path(path);
6379 		return -ENOMEM;
6380 	}
6381 
6382 	min_key.objectid = ino;
6383 	min_key.type = BTRFS_INODE_ITEM_KEY;
6384 	min_key.offset = 0;
6385 
6386 	max_key.objectid = ino;
6387 
6388 
6389 	/* today the code can only do partial logging of directories */
6390 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6391 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6392 		       &inode->runtime_flags) &&
6393 	     inode_only >= LOG_INODE_EXISTS))
6394 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6395 	else
6396 		max_key.type = (u8)-1;
6397 	max_key.offset = (u64)-1;
6398 
6399 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6400 		full_dir_logging = true;
6401 
6402 	/*
6403 	 * If we are logging a directory while we are logging dentries of the
6404 	 * delayed items of some other inode, then we need to flush the delayed
6405 	 * items of this directory and not log the delayed items directly. This
6406 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6407 	 * by having something like this:
6408 	 *
6409 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6410 	 *     $ xfs_io -c "fsync" a
6411 	 *
6412 	 * Where all directories in the path did not exist before and are
6413 	 * created in the current transaction.
6414 	 * So in such a case we directly log the delayed items of the main
6415 	 * directory ("a") without flushing them first, while for each of its
6416 	 * subdirectories we flush their delayed items before logging them.
6417 	 * This prevents a potential unbounded recursion like this:
6418 	 *
6419 	 * btrfs_log_inode()
6420 	 *   log_new_delayed_dentries()
6421 	 *      btrfs_log_inode()
6422 	 *        log_new_delayed_dentries()
6423 	 *          btrfs_log_inode()
6424 	 *            log_new_delayed_dentries()
6425 	 *              (...)
6426 	 *
6427 	 * We have thresholds for the maximum number of delayed items to have in
6428 	 * memory, and once they are hit, the items are flushed asynchronously.
6429 	 * However the limit is quite high, so lets prevent deep levels of
6430 	 * recursion to happen by limiting the maximum depth to be 1.
6431 	 */
6432 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6433 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6434 		if (ret)
6435 			goto out;
6436 	}
6437 
6438 	mutex_lock(&inode->log_mutex);
6439 
6440 	/*
6441 	 * For symlinks, we must always log their content, which is stored in an
6442 	 * inline extent, otherwise we could end up with an empty symlink after
6443 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6444 	 * one attempts to create an empty symlink).
6445 	 * We don't need to worry about flushing delalloc, because when we create
6446 	 * the inline extent when the symlink is created (we never have delalloc
6447 	 * for symlinks).
6448 	 */
6449 	if (S_ISLNK(inode->vfs_inode.i_mode))
6450 		inode_only = LOG_INODE_ALL;
6451 
6452 	/*
6453 	 * Before logging the inode item, cache the value returned by
6454 	 * inode_logged(), because after that we have the need to figure out if
6455 	 * the inode was previously logged in this transaction.
6456 	 */
6457 	ret = inode_logged(trans, inode, path);
6458 	if (ret < 0)
6459 		goto out_unlock;
6460 	ctx->logged_before = (ret == 1);
6461 	ret = 0;
6462 
6463 	/*
6464 	 * This is for cases where logging a directory could result in losing a
6465 	 * a file after replaying the log. For example, if we move a file from a
6466 	 * directory A to a directory B, then fsync directory A, we have no way
6467 	 * to known the file was moved from A to B, so logging just A would
6468 	 * result in losing the file after a log replay.
6469 	 */
6470 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6471 		ret = BTRFS_LOG_FORCE_COMMIT;
6472 		goto out_unlock;
6473 	}
6474 
6475 	/*
6476 	 * a brute force approach to making sure we get the most uptodate
6477 	 * copies of everything.
6478 	 */
6479 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6480 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6481 		if (ctx->logged_before)
6482 			ret = drop_inode_items(trans, log, path, inode,
6483 					       BTRFS_XATTR_ITEM_KEY);
6484 	} else {
6485 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6486 			/*
6487 			 * Make sure the new inode item we write to the log has
6488 			 * the same isize as the current one (if it exists).
6489 			 * This is necessary to prevent data loss after log
6490 			 * replay, and also to prevent doing a wrong expanding
6491 			 * truncate - for e.g. create file, write 4K into offset
6492 			 * 0, fsync, write 4K into offset 4096, add hard link,
6493 			 * fsync some other file (to sync log), power fail - if
6494 			 * we use the inode's current i_size, after log replay
6495 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6496 			 * (zeroes), as if an expanding truncate happened,
6497 			 * instead of getting a file of 4Kb only.
6498 			 */
6499 			ret = logged_inode_size(log, inode, path, &logged_isize);
6500 			if (ret)
6501 				goto out_unlock;
6502 		}
6503 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6504 			     &inode->runtime_flags)) {
6505 			if (inode_only == LOG_INODE_EXISTS) {
6506 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6507 				if (ctx->logged_before)
6508 					ret = drop_inode_items(trans, log, path,
6509 							       inode, max_key.type);
6510 			} else {
6511 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6512 					  &inode->runtime_flags);
6513 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6514 					  &inode->runtime_flags);
6515 				if (ctx->logged_before)
6516 					ret = truncate_inode_items(trans, log,
6517 								   inode, 0, 0);
6518 			}
6519 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6520 					      &inode->runtime_flags) ||
6521 			   inode_only == LOG_INODE_EXISTS) {
6522 			if (inode_only == LOG_INODE_ALL)
6523 				fast_search = true;
6524 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6525 			if (ctx->logged_before)
6526 				ret = drop_inode_items(trans, log, path, inode,
6527 						       max_key.type);
6528 		} else {
6529 			if (inode_only == LOG_INODE_ALL)
6530 				fast_search = true;
6531 			inode_item_dropped = false;
6532 			goto log_extents;
6533 		}
6534 
6535 	}
6536 	if (ret)
6537 		goto out_unlock;
6538 
6539 	/*
6540 	 * If we are logging a directory in full mode, collect the delayed items
6541 	 * before iterating the subvolume tree, so that we don't miss any new
6542 	 * dir index items in case they get flushed while or right after we are
6543 	 * iterating the subvolume tree.
6544 	 */
6545 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6546 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6547 					    &delayed_del_list);
6548 
6549 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6550 				      path, dst_path, logged_isize,
6551 				      inode_only, ctx,
6552 				      &need_log_inode_item);
6553 	if (ret)
6554 		goto out_unlock;
6555 
6556 	btrfs_release_path(path);
6557 	btrfs_release_path(dst_path);
6558 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6559 	if (ret)
6560 		goto out_unlock;
6561 	xattrs_logged = true;
6562 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6563 		btrfs_release_path(path);
6564 		btrfs_release_path(dst_path);
6565 		ret = btrfs_log_holes(trans, inode, path);
6566 		if (ret)
6567 			goto out_unlock;
6568 	}
6569 log_extents:
6570 	btrfs_release_path(path);
6571 	btrfs_release_path(dst_path);
6572 	if (need_log_inode_item) {
6573 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6574 		if (ret)
6575 			goto out_unlock;
6576 		/*
6577 		 * If we are doing a fast fsync and the inode was logged before
6578 		 * in this transaction, we don't need to log the xattrs because
6579 		 * they were logged before. If xattrs were added, changed or
6580 		 * deleted since the last time we logged the inode, then we have
6581 		 * already logged them because the inode had the runtime flag
6582 		 * BTRFS_INODE_COPY_EVERYTHING set.
6583 		 */
6584 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6585 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6586 			if (ret)
6587 				goto out_unlock;
6588 			btrfs_release_path(path);
6589 		}
6590 	}
6591 	if (fast_search) {
6592 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6593 		if (ret)
6594 			goto out_unlock;
6595 	} else if (inode_only == LOG_INODE_ALL) {
6596 		struct extent_map *em, *n;
6597 
6598 		write_lock(&em_tree->lock);
6599 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6600 			list_del_init(&em->list);
6601 		write_unlock(&em_tree->lock);
6602 	}
6603 
6604 	if (full_dir_logging) {
6605 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6606 		if (ret)
6607 			goto out_unlock;
6608 		ret = log_delayed_insertion_items(trans, inode, path,
6609 						  &delayed_ins_list, ctx);
6610 		if (ret)
6611 			goto out_unlock;
6612 		ret = log_delayed_deletion_items(trans, inode, path,
6613 						 &delayed_del_list, ctx);
6614 		if (ret)
6615 			goto out_unlock;
6616 	}
6617 
6618 	spin_lock(&inode->lock);
6619 	inode->logged_trans = trans->transid;
6620 	/*
6621 	 * Don't update last_log_commit if we logged that an inode exists.
6622 	 * We do this for three reasons:
6623 	 *
6624 	 * 1) We might have had buffered writes to this inode that were
6625 	 *    flushed and had their ordered extents completed in this
6626 	 *    transaction, but we did not previously log the inode with
6627 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6628 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6629 	 *    happened. We must make sure that if an explicit fsync against
6630 	 *    the inode is performed later, it logs the new extents, an
6631 	 *    updated inode item, etc, and syncs the log. The same logic
6632 	 *    applies to direct IO writes instead of buffered writes.
6633 	 *
6634 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6635 	 *    is logged with an i_size of 0 or whatever value was logged
6636 	 *    before. If later the i_size of the inode is increased by a
6637 	 *    truncate operation, the log is synced through an fsync of
6638 	 *    some other inode and then finally an explicit fsync against
6639 	 *    this inode is made, we must make sure this fsync logs the
6640 	 *    inode with the new i_size, the hole between old i_size and
6641 	 *    the new i_size, and syncs the log.
6642 	 *
6643 	 * 3) If we are logging that an ancestor inode exists as part of
6644 	 *    logging a new name from a link or rename operation, don't update
6645 	 *    its last_log_commit - otherwise if an explicit fsync is made
6646 	 *    against an ancestor, the fsync considers the inode in the log
6647 	 *    and doesn't sync the log, resulting in the ancestor missing after
6648 	 *    a power failure unless the log was synced as part of an fsync
6649 	 *    against any other unrelated inode.
6650 	 */
6651 	if (inode_only != LOG_INODE_EXISTS)
6652 		inode->last_log_commit = inode->last_sub_trans;
6653 	spin_unlock(&inode->lock);
6654 
6655 	/*
6656 	 * Reset the last_reflink_trans so that the next fsync does not need to
6657 	 * go through the slower path when logging extents and their checksums.
6658 	 */
6659 	if (inode_only == LOG_INODE_ALL)
6660 		inode->last_reflink_trans = 0;
6661 
6662 out_unlock:
6663 	mutex_unlock(&inode->log_mutex);
6664 out:
6665 	btrfs_free_path(path);
6666 	btrfs_free_path(dst_path);
6667 
6668 	if (ret)
6669 		free_conflicting_inodes(ctx);
6670 	else
6671 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6672 
6673 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6674 		if (!ret)
6675 			ret = log_new_delayed_dentries(trans, inode,
6676 						       &delayed_ins_list, ctx);
6677 
6678 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6679 					    &delayed_del_list);
6680 	}
6681 
6682 	return ret;
6683 }
6684 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6685 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6686 				 struct btrfs_inode *inode,
6687 				 struct btrfs_log_ctx *ctx)
6688 {
6689 	int ret;
6690 	struct btrfs_path *path;
6691 	struct btrfs_key key;
6692 	struct btrfs_root *root = inode->root;
6693 	const u64 ino = btrfs_ino(inode);
6694 
6695 	path = btrfs_alloc_path();
6696 	if (!path)
6697 		return -ENOMEM;
6698 	path->skip_locking = 1;
6699 	path->search_commit_root = 1;
6700 
6701 	key.objectid = ino;
6702 	key.type = BTRFS_INODE_REF_KEY;
6703 	key.offset = 0;
6704 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6705 	if (ret < 0)
6706 		goto out;
6707 
6708 	while (true) {
6709 		struct extent_buffer *leaf = path->nodes[0];
6710 		int slot = path->slots[0];
6711 		u32 cur_offset = 0;
6712 		u32 item_size;
6713 		unsigned long ptr;
6714 
6715 		if (slot >= btrfs_header_nritems(leaf)) {
6716 			ret = btrfs_next_leaf(root, path);
6717 			if (ret < 0)
6718 				goto out;
6719 			else if (ret > 0)
6720 				break;
6721 			continue;
6722 		}
6723 
6724 		btrfs_item_key_to_cpu(leaf, &key, slot);
6725 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6726 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6727 			break;
6728 
6729 		item_size = btrfs_item_size(leaf, slot);
6730 		ptr = btrfs_item_ptr_offset(leaf, slot);
6731 		while (cur_offset < item_size) {
6732 			struct btrfs_key inode_key;
6733 			struct inode *dir_inode;
6734 
6735 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6736 			inode_key.offset = 0;
6737 
6738 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6739 				struct btrfs_inode_extref *extref;
6740 
6741 				extref = (struct btrfs_inode_extref *)
6742 					(ptr + cur_offset);
6743 				inode_key.objectid = btrfs_inode_extref_parent(
6744 					leaf, extref);
6745 				cur_offset += sizeof(*extref);
6746 				cur_offset += btrfs_inode_extref_name_len(leaf,
6747 					extref);
6748 			} else {
6749 				inode_key.objectid = key.offset;
6750 				cur_offset = item_size;
6751 			}
6752 
6753 			dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6754 			/*
6755 			 * If the parent inode was deleted, return an error to
6756 			 * fallback to a transaction commit. This is to prevent
6757 			 * getting an inode that was moved from one parent A to
6758 			 * a parent B, got its former parent A deleted and then
6759 			 * it got fsync'ed, from existing at both parents after
6760 			 * a log replay (and the old parent still existing).
6761 			 * Example:
6762 			 *
6763 			 * mkdir /mnt/A
6764 			 * mkdir /mnt/B
6765 			 * touch /mnt/B/bar
6766 			 * sync
6767 			 * mv /mnt/B/bar /mnt/A/bar
6768 			 * mv -T /mnt/A /mnt/B
6769 			 * fsync /mnt/B/bar
6770 			 * <power fail>
6771 			 *
6772 			 * If we ignore the old parent B which got deleted,
6773 			 * after a log replay we would have file bar linked
6774 			 * at both parents and the old parent B would still
6775 			 * exist.
6776 			 */
6777 			if (IS_ERR(dir_inode)) {
6778 				ret = PTR_ERR(dir_inode);
6779 				goto out;
6780 			}
6781 
6782 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6783 				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6784 				continue;
6785 			}
6786 
6787 			ctx->log_new_dentries = false;
6788 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6789 					      LOG_INODE_ALL, ctx);
6790 			if (!ret && ctx->log_new_dentries)
6791 				ret = log_new_dir_dentries(trans,
6792 						   BTRFS_I(dir_inode), ctx);
6793 			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6794 			if (ret)
6795 				goto out;
6796 		}
6797 		path->slots[0]++;
6798 	}
6799 	ret = 0;
6800 out:
6801 	btrfs_free_path(path);
6802 	return ret;
6803 }
6804 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6805 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6806 			     struct btrfs_root *root,
6807 			     struct btrfs_path *path,
6808 			     struct btrfs_log_ctx *ctx)
6809 {
6810 	struct btrfs_key found_key;
6811 
6812 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6813 
6814 	while (true) {
6815 		struct extent_buffer *leaf;
6816 		int slot;
6817 		struct btrfs_key search_key;
6818 		struct inode *inode;
6819 		u64 ino;
6820 		int ret = 0;
6821 
6822 		btrfs_release_path(path);
6823 
6824 		ino = found_key.offset;
6825 
6826 		search_key.objectid = found_key.offset;
6827 		search_key.type = BTRFS_INODE_ITEM_KEY;
6828 		search_key.offset = 0;
6829 		inode = btrfs_iget_logging(ino, root);
6830 		if (IS_ERR(inode))
6831 			return PTR_ERR(inode);
6832 
6833 		if (BTRFS_I(inode)->generation >= trans->transid &&
6834 		    need_log_inode(trans, BTRFS_I(inode)))
6835 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6836 					      LOG_INODE_EXISTS, ctx);
6837 		btrfs_add_delayed_iput(BTRFS_I(inode));
6838 		if (ret)
6839 			return ret;
6840 
6841 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6842 			break;
6843 
6844 		search_key.type = BTRFS_INODE_REF_KEY;
6845 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6846 		if (ret < 0)
6847 			return ret;
6848 
6849 		leaf = path->nodes[0];
6850 		slot = path->slots[0];
6851 		if (slot >= btrfs_header_nritems(leaf)) {
6852 			ret = btrfs_next_leaf(root, path);
6853 			if (ret < 0)
6854 				return ret;
6855 			else if (ret > 0)
6856 				return -ENOENT;
6857 			leaf = path->nodes[0];
6858 			slot = path->slots[0];
6859 		}
6860 
6861 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6862 		if (found_key.objectid != search_key.objectid ||
6863 		    found_key.type != BTRFS_INODE_REF_KEY)
6864 			return -ENOENT;
6865 	}
6866 	return 0;
6867 }
6868 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6869 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6870 				  struct btrfs_inode *inode,
6871 				  struct dentry *parent,
6872 				  struct btrfs_log_ctx *ctx)
6873 {
6874 	struct btrfs_root *root = inode->root;
6875 	struct dentry *old_parent = NULL;
6876 	struct super_block *sb = inode->vfs_inode.i_sb;
6877 	int ret = 0;
6878 
6879 	while (true) {
6880 		if (!parent || d_really_is_negative(parent) ||
6881 		    sb != parent->d_sb)
6882 			break;
6883 
6884 		inode = BTRFS_I(d_inode(parent));
6885 		if (root != inode->root)
6886 			break;
6887 
6888 		if (inode->generation >= trans->transid &&
6889 		    need_log_inode(trans, inode)) {
6890 			ret = btrfs_log_inode(trans, inode,
6891 					      LOG_INODE_EXISTS, ctx);
6892 			if (ret)
6893 				break;
6894 		}
6895 		if (IS_ROOT(parent))
6896 			break;
6897 
6898 		parent = dget_parent(parent);
6899 		dput(old_parent);
6900 		old_parent = parent;
6901 	}
6902 	dput(old_parent);
6903 
6904 	return ret;
6905 }
6906 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6907 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6908 				 struct btrfs_inode *inode,
6909 				 struct dentry *parent,
6910 				 struct btrfs_log_ctx *ctx)
6911 {
6912 	struct btrfs_root *root = inode->root;
6913 	const u64 ino = btrfs_ino(inode);
6914 	struct btrfs_path *path;
6915 	struct btrfs_key search_key;
6916 	int ret;
6917 
6918 	/*
6919 	 * For a single hard link case, go through a fast path that does not
6920 	 * need to iterate the fs/subvolume tree.
6921 	 */
6922 	if (inode->vfs_inode.i_nlink < 2)
6923 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6924 
6925 	path = btrfs_alloc_path();
6926 	if (!path)
6927 		return -ENOMEM;
6928 
6929 	search_key.objectid = ino;
6930 	search_key.type = BTRFS_INODE_REF_KEY;
6931 	search_key.offset = 0;
6932 again:
6933 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6934 	if (ret < 0)
6935 		goto out;
6936 	if (ret == 0)
6937 		path->slots[0]++;
6938 
6939 	while (true) {
6940 		struct extent_buffer *leaf = path->nodes[0];
6941 		int slot = path->slots[0];
6942 		struct btrfs_key found_key;
6943 
6944 		if (slot >= btrfs_header_nritems(leaf)) {
6945 			ret = btrfs_next_leaf(root, path);
6946 			if (ret < 0)
6947 				goto out;
6948 			else if (ret > 0)
6949 				break;
6950 			continue;
6951 		}
6952 
6953 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6954 		if (found_key.objectid != ino ||
6955 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6956 			break;
6957 
6958 		/*
6959 		 * Don't deal with extended references because they are rare
6960 		 * cases and too complex to deal with (we would need to keep
6961 		 * track of which subitem we are processing for each item in
6962 		 * this loop, etc). So just return some error to fallback to
6963 		 * a transaction commit.
6964 		 */
6965 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6966 			ret = -EMLINK;
6967 			goto out;
6968 		}
6969 
6970 		/*
6971 		 * Logging ancestors needs to do more searches on the fs/subvol
6972 		 * tree, so it releases the path as needed to avoid deadlocks.
6973 		 * Keep track of the last inode ref key and resume from that key
6974 		 * after logging all new ancestors for the current hard link.
6975 		 */
6976 		memcpy(&search_key, &found_key, sizeof(search_key));
6977 
6978 		ret = log_new_ancestors(trans, root, path, ctx);
6979 		if (ret)
6980 			goto out;
6981 		btrfs_release_path(path);
6982 		goto again;
6983 	}
6984 	ret = 0;
6985 out:
6986 	btrfs_free_path(path);
6987 	return ret;
6988 }
6989 
6990 /*
6991  * helper function around btrfs_log_inode to make sure newly created
6992  * parent directories also end up in the log.  A minimal inode and backref
6993  * only logging is done of any parent directories that are older than
6994  * the last committed transaction
6995  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)6996 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6997 				  struct btrfs_inode *inode,
6998 				  struct dentry *parent,
6999 				  int inode_only,
7000 				  struct btrfs_log_ctx *ctx)
7001 {
7002 	struct btrfs_root *root = inode->root;
7003 	struct btrfs_fs_info *fs_info = root->fs_info;
7004 	int ret = 0;
7005 	bool log_dentries = false;
7006 
7007 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7008 		ret = BTRFS_LOG_FORCE_COMMIT;
7009 		goto end_no_trans;
7010 	}
7011 
7012 	if (btrfs_root_refs(&root->root_item) == 0) {
7013 		ret = BTRFS_LOG_FORCE_COMMIT;
7014 		goto end_no_trans;
7015 	}
7016 
7017 	/*
7018 	 * Skip already logged inodes or inodes corresponding to tmpfiles
7019 	 * (since logging them is pointless, a link count of 0 means they
7020 	 * will never be accessible).
7021 	 */
7022 	if ((btrfs_inode_in_log(inode, trans->transid) &&
7023 	     list_empty(&ctx->ordered_extents)) ||
7024 	    inode->vfs_inode.i_nlink == 0) {
7025 		ret = BTRFS_NO_LOG_SYNC;
7026 		goto end_no_trans;
7027 	}
7028 
7029 	ret = start_log_trans(trans, root, ctx);
7030 	if (ret)
7031 		goto end_no_trans;
7032 
7033 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7034 	if (ret)
7035 		goto end_trans;
7036 
7037 	/*
7038 	 * for regular files, if its inode is already on disk, we don't
7039 	 * have to worry about the parents at all.  This is because
7040 	 * we can use the last_unlink_trans field to record renames
7041 	 * and other fun in this file.
7042 	 */
7043 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7044 	    inode->generation < trans->transid &&
7045 	    inode->last_unlink_trans < trans->transid) {
7046 		ret = 0;
7047 		goto end_trans;
7048 	}
7049 
7050 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7051 		log_dentries = true;
7052 
7053 	/*
7054 	 * On unlink we must make sure all our current and old parent directory
7055 	 * inodes are fully logged. This is to prevent leaving dangling
7056 	 * directory index entries in directories that were our parents but are
7057 	 * not anymore. Not doing this results in old parent directory being
7058 	 * impossible to delete after log replay (rmdir will always fail with
7059 	 * error -ENOTEMPTY).
7060 	 *
7061 	 * Example 1:
7062 	 *
7063 	 * mkdir testdir
7064 	 * touch testdir/foo
7065 	 * ln testdir/foo testdir/bar
7066 	 * sync
7067 	 * unlink testdir/bar
7068 	 * xfs_io -c fsync testdir/foo
7069 	 * <power failure>
7070 	 * mount fs, triggers log replay
7071 	 *
7072 	 * If we don't log the parent directory (testdir), after log replay the
7073 	 * directory still has an entry pointing to the file inode using the bar
7074 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7075 	 * the file inode has a link count of 1.
7076 	 *
7077 	 * Example 2:
7078 	 *
7079 	 * mkdir testdir
7080 	 * touch foo
7081 	 * ln foo testdir/foo2
7082 	 * ln foo testdir/foo3
7083 	 * sync
7084 	 * unlink testdir/foo3
7085 	 * xfs_io -c fsync foo
7086 	 * <power failure>
7087 	 * mount fs, triggers log replay
7088 	 *
7089 	 * Similar as the first example, after log replay the parent directory
7090 	 * testdir still has an entry pointing to the inode file with name foo3
7091 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7092 	 * and has a link count of 2.
7093 	 */
7094 	if (inode->last_unlink_trans >= trans->transid) {
7095 		ret = btrfs_log_all_parents(trans, inode, ctx);
7096 		if (ret)
7097 			goto end_trans;
7098 	}
7099 
7100 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7101 	if (ret)
7102 		goto end_trans;
7103 
7104 	if (log_dentries)
7105 		ret = log_new_dir_dentries(trans, inode, ctx);
7106 	else
7107 		ret = 0;
7108 end_trans:
7109 	if (ret < 0) {
7110 		btrfs_set_log_full_commit(trans);
7111 		ret = BTRFS_LOG_FORCE_COMMIT;
7112 	}
7113 
7114 	if (ret)
7115 		btrfs_remove_log_ctx(root, ctx);
7116 	btrfs_end_log_trans(root);
7117 end_no_trans:
7118 	return ret;
7119 }
7120 
7121 /*
7122  * it is not safe to log dentry if the chunk root has added new
7123  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7124  * If this returns 1, you must commit the transaction to safely get your
7125  * data on disk.
7126  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7127 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7128 			  struct dentry *dentry,
7129 			  struct btrfs_log_ctx *ctx)
7130 {
7131 	struct dentry *parent = dget_parent(dentry);
7132 	int ret;
7133 
7134 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7135 				     LOG_INODE_ALL, ctx);
7136 	dput(parent);
7137 
7138 	return ret;
7139 }
7140 
7141 /*
7142  * should be called during mount to recover any replay any log trees
7143  * from the FS
7144  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7145 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7146 {
7147 	int ret;
7148 	struct btrfs_path *path;
7149 	struct btrfs_trans_handle *trans;
7150 	struct btrfs_key key;
7151 	struct btrfs_key found_key;
7152 	struct btrfs_root *log;
7153 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7154 	struct walk_control wc = {
7155 		.process_func = process_one_buffer,
7156 		.stage = LOG_WALK_PIN_ONLY,
7157 	};
7158 
7159 	path = btrfs_alloc_path();
7160 	if (!path)
7161 		return -ENOMEM;
7162 
7163 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7164 
7165 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7166 	if (IS_ERR(trans)) {
7167 		ret = PTR_ERR(trans);
7168 		goto error;
7169 	}
7170 
7171 	wc.trans = trans;
7172 	wc.pin = 1;
7173 
7174 	ret = walk_log_tree(trans, log_root_tree, &wc);
7175 	if (ret) {
7176 		btrfs_abort_transaction(trans, ret);
7177 		goto error;
7178 	}
7179 
7180 again:
7181 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7182 	key.offset = (u64)-1;
7183 	key.type = BTRFS_ROOT_ITEM_KEY;
7184 
7185 	while (1) {
7186 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7187 
7188 		if (ret < 0) {
7189 			btrfs_abort_transaction(trans, ret);
7190 			goto error;
7191 		}
7192 		if (ret > 0) {
7193 			if (path->slots[0] == 0)
7194 				break;
7195 			path->slots[0]--;
7196 		}
7197 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7198 				      path->slots[0]);
7199 		btrfs_release_path(path);
7200 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7201 			break;
7202 
7203 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7204 		if (IS_ERR(log)) {
7205 			ret = PTR_ERR(log);
7206 			btrfs_abort_transaction(trans, ret);
7207 			goto error;
7208 		}
7209 
7210 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7211 						   true);
7212 		if (IS_ERR(wc.replay_dest)) {
7213 			ret = PTR_ERR(wc.replay_dest);
7214 
7215 			/*
7216 			 * We didn't find the subvol, likely because it was
7217 			 * deleted.  This is ok, simply skip this log and go to
7218 			 * the next one.
7219 			 *
7220 			 * We need to exclude the root because we can't have
7221 			 * other log replays overwriting this log as we'll read
7222 			 * it back in a few more times.  This will keep our
7223 			 * block from being modified, and we'll just bail for
7224 			 * each subsequent pass.
7225 			 */
7226 			if (ret == -ENOENT)
7227 				ret = btrfs_pin_extent_for_log_replay(trans,
7228 							log->node->start,
7229 							log->node->len);
7230 			btrfs_put_root(log);
7231 
7232 			if (!ret)
7233 				goto next;
7234 			btrfs_abort_transaction(trans, ret);
7235 			goto error;
7236 		}
7237 
7238 		wc.replay_dest->log_root = log;
7239 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7240 		if (ret)
7241 			/* The loop needs to continue due to the root refs */
7242 			btrfs_abort_transaction(trans, ret);
7243 		else
7244 			ret = walk_log_tree(trans, log, &wc);
7245 
7246 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7247 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7248 						      path);
7249 			if (ret)
7250 				btrfs_abort_transaction(trans, ret);
7251 		}
7252 
7253 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7254 			struct btrfs_root *root = wc.replay_dest;
7255 
7256 			btrfs_release_path(path);
7257 
7258 			/*
7259 			 * We have just replayed everything, and the highest
7260 			 * objectid of fs roots probably has changed in case
7261 			 * some inode_item's got replayed.
7262 			 *
7263 			 * root->objectid_mutex is not acquired as log replay
7264 			 * could only happen during mount.
7265 			 */
7266 			ret = btrfs_init_root_free_objectid(root);
7267 			if (ret)
7268 				btrfs_abort_transaction(trans, ret);
7269 		}
7270 
7271 		wc.replay_dest->log_root = NULL;
7272 		btrfs_put_root(wc.replay_dest);
7273 		btrfs_put_root(log);
7274 
7275 		if (ret)
7276 			goto error;
7277 next:
7278 		if (found_key.offset == 0)
7279 			break;
7280 		key.offset = found_key.offset - 1;
7281 	}
7282 	btrfs_release_path(path);
7283 
7284 	/* step one is to pin it all, step two is to replay just inodes */
7285 	if (wc.pin) {
7286 		wc.pin = 0;
7287 		wc.process_func = replay_one_buffer;
7288 		wc.stage = LOG_WALK_REPLAY_INODES;
7289 		goto again;
7290 	}
7291 	/* step three is to replay everything */
7292 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7293 		wc.stage++;
7294 		goto again;
7295 	}
7296 
7297 	btrfs_free_path(path);
7298 
7299 	/* step 4: commit the transaction, which also unpins the blocks */
7300 	ret = btrfs_commit_transaction(trans);
7301 	if (ret)
7302 		return ret;
7303 
7304 	log_root_tree->log_root = NULL;
7305 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7306 	btrfs_put_root(log_root_tree);
7307 
7308 	return 0;
7309 error:
7310 	if (wc.trans)
7311 		btrfs_end_transaction(wc.trans);
7312 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7313 	btrfs_free_path(path);
7314 	return ret;
7315 }
7316 
7317 /*
7318  * there are some corner cases where we want to force a full
7319  * commit instead of allowing a directory to be logged.
7320  *
7321  * They revolve around files there were unlinked from the directory, and
7322  * this function updates the parent directory so that a full commit is
7323  * properly done if it is fsync'd later after the unlinks are done.
7324  *
7325  * Must be called before the unlink operations (updates to the subvolume tree,
7326  * inodes, etc) are done.
7327  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7328 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7329 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7330 			     bool for_rename)
7331 {
7332 	/*
7333 	 * when we're logging a file, if it hasn't been renamed
7334 	 * or unlinked, and its inode is fully committed on disk,
7335 	 * we don't have to worry about walking up the directory chain
7336 	 * to log its parents.
7337 	 *
7338 	 * So, we use the last_unlink_trans field to put this transid
7339 	 * into the file.  When the file is logged we check it and
7340 	 * don't log the parents if the file is fully on disk.
7341 	 */
7342 	mutex_lock(&inode->log_mutex);
7343 	inode->last_unlink_trans = trans->transid;
7344 	mutex_unlock(&inode->log_mutex);
7345 
7346 	if (!for_rename)
7347 		return;
7348 
7349 	/*
7350 	 * If this directory was already logged, any new names will be logged
7351 	 * with btrfs_log_new_name() and old names will be deleted from the log
7352 	 * tree with btrfs_del_dir_entries_in_log() or with
7353 	 * btrfs_del_inode_ref_in_log().
7354 	 */
7355 	if (inode_logged(trans, dir, NULL) == 1)
7356 		return;
7357 
7358 	/*
7359 	 * If the inode we're about to unlink was logged before, the log will be
7360 	 * properly updated with the new name with btrfs_log_new_name() and the
7361 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7362 	 * btrfs_del_inode_ref_in_log().
7363 	 */
7364 	if (inode_logged(trans, inode, NULL) == 1)
7365 		return;
7366 
7367 	/*
7368 	 * when renaming files across directories, if the directory
7369 	 * there we're unlinking from gets fsync'd later on, there's
7370 	 * no way to find the destination directory later and fsync it
7371 	 * properly.  So, we have to be conservative and force commits
7372 	 * so the new name gets discovered.
7373 	 */
7374 	mutex_lock(&dir->log_mutex);
7375 	dir->last_unlink_trans = trans->transid;
7376 	mutex_unlock(&dir->log_mutex);
7377 }
7378 
7379 /*
7380  * Make sure that if someone attempts to fsync the parent directory of a deleted
7381  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7382  * that after replaying the log tree of the parent directory's root we will not
7383  * see the snapshot anymore and at log replay time we will not see any log tree
7384  * corresponding to the deleted snapshot's root, which could lead to replaying
7385  * it after replaying the log tree of the parent directory (which would replay
7386  * the snapshot delete operation).
7387  *
7388  * Must be called before the actual snapshot destroy operation (updates to the
7389  * parent root and tree of tree roots trees, etc) are done.
7390  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7391 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7392 				   struct btrfs_inode *dir)
7393 {
7394 	mutex_lock(&dir->log_mutex);
7395 	dir->last_unlink_trans = trans->transid;
7396 	mutex_unlock(&dir->log_mutex);
7397 }
7398 
7399 /*
7400  * Update the log after adding a new name for an inode.
7401  *
7402  * @trans:              Transaction handle.
7403  * @old_dentry:         The dentry associated with the old name and the old
7404  *                      parent directory.
7405  * @old_dir:            The inode of the previous parent directory for the case
7406  *                      of a rename. For a link operation, it must be NULL.
7407  * @old_dir_index:      The index number associated with the old name, meaningful
7408  *                      only for rename operations (when @old_dir is not NULL).
7409  *                      Ignored for link operations.
7410  * @parent:             The dentry associated with the directory under which the
7411  *                      new name is located.
7412  *
7413  * Call this after adding a new name for an inode, as a result of a link or
7414  * rename operation, and it will properly update the log to reflect the new name.
7415  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7416 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7417 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7418 			u64 old_dir_index, struct dentry *parent)
7419 {
7420 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7421 	struct btrfs_root *root = inode->root;
7422 	struct btrfs_log_ctx ctx;
7423 	bool log_pinned = false;
7424 	int ret;
7425 
7426 	/*
7427 	 * this will force the logging code to walk the dentry chain
7428 	 * up for the file
7429 	 */
7430 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7431 		inode->last_unlink_trans = trans->transid;
7432 
7433 	/*
7434 	 * if this inode hasn't been logged and directory we're renaming it
7435 	 * from hasn't been logged, we don't need to log it
7436 	 */
7437 	ret = inode_logged(trans, inode, NULL);
7438 	if (ret < 0) {
7439 		goto out;
7440 	} else if (ret == 0) {
7441 		if (!old_dir)
7442 			return;
7443 		/*
7444 		 * If the inode was not logged and we are doing a rename (old_dir is not
7445 		 * NULL), check if old_dir was logged - if it was not we can return and
7446 		 * do nothing.
7447 		 */
7448 		ret = inode_logged(trans, old_dir, NULL);
7449 		if (ret < 0)
7450 			goto out;
7451 		else if (ret == 0)
7452 			return;
7453 	}
7454 	ret = 0;
7455 
7456 	/*
7457 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7458 	 * was previously logged, make sure that on log replay we get the old
7459 	 * dir entry deleted. This is needed because we will also log the new
7460 	 * name of the renamed inode, so we need to make sure that after log
7461 	 * replay we don't end up with both the new and old dir entries existing.
7462 	 */
7463 	if (old_dir && old_dir->logged_trans == trans->transid) {
7464 		struct btrfs_root *log = old_dir->root->log_root;
7465 		struct btrfs_path *path;
7466 		struct fscrypt_name fname;
7467 
7468 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7469 
7470 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7471 					     &old_dentry->d_name, 0, &fname);
7472 		if (ret)
7473 			goto out;
7474 		/*
7475 		 * We have two inodes to update in the log, the old directory and
7476 		 * the inode that got renamed, so we must pin the log to prevent
7477 		 * anyone from syncing the log until we have updated both inodes
7478 		 * in the log.
7479 		 */
7480 		ret = join_running_log_trans(root);
7481 		/*
7482 		 * At least one of the inodes was logged before, so this should
7483 		 * not fail, but if it does, it's not serious, just bail out and
7484 		 * mark the log for a full commit.
7485 		 */
7486 		if (WARN_ON_ONCE(ret < 0)) {
7487 			fscrypt_free_filename(&fname);
7488 			goto out;
7489 		}
7490 
7491 		log_pinned = true;
7492 
7493 		path = btrfs_alloc_path();
7494 		if (!path) {
7495 			ret = -ENOMEM;
7496 			fscrypt_free_filename(&fname);
7497 			goto out;
7498 		}
7499 
7500 		/*
7501 		 * Other concurrent task might be logging the old directory,
7502 		 * as it can be triggered when logging other inode that had or
7503 		 * still has a dentry in the old directory. We lock the old
7504 		 * directory's log_mutex to ensure the deletion of the old
7505 		 * name is persisted, because during directory logging we
7506 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7507 		 * the old name's dir index item is in the delayed items, so
7508 		 * it could be missed by an in progress directory logging.
7509 		 */
7510 		mutex_lock(&old_dir->log_mutex);
7511 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7512 					&fname.disk_name, old_dir_index);
7513 		if (ret > 0) {
7514 			/*
7515 			 * The dentry does not exist in the log, so record its
7516 			 * deletion.
7517 			 */
7518 			btrfs_release_path(path);
7519 			ret = insert_dir_log_key(trans, log, path,
7520 						 btrfs_ino(old_dir),
7521 						 old_dir_index, old_dir_index);
7522 		}
7523 		mutex_unlock(&old_dir->log_mutex);
7524 
7525 		btrfs_free_path(path);
7526 		fscrypt_free_filename(&fname);
7527 		if (ret < 0)
7528 			goto out;
7529 	}
7530 
7531 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7532 	ctx.logging_new_name = true;
7533 	/*
7534 	 * We don't care about the return value. If we fail to log the new name
7535 	 * then we know the next attempt to sync the log will fallback to a full
7536 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7537 	 * we don't need to worry about getting a log committed that has an
7538 	 * inconsistent state after a rename operation.
7539 	 */
7540 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7541 	ASSERT(list_empty(&ctx.conflict_inodes));
7542 out:
7543 	/*
7544 	 * If an error happened mark the log for a full commit because it's not
7545 	 * consistent and up to date or we couldn't find out if one of the
7546 	 * inodes was logged before in this transaction. Do it before unpinning
7547 	 * the log, to avoid any races with someone else trying to commit it.
7548 	 */
7549 	if (ret < 0)
7550 		btrfs_set_log_full_commit(trans);
7551 	if (log_pinned)
7552 		btrfs_end_log_trans(root);
7553 }
7554 
7555