xref: /openbmc/linux/drivers/pwm/pwm-tegra.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/pwm/pwm-tegra.c
4  *
5  * Tegra pulse-width-modulation controller driver
6  *
7  * Copyright (c) 2010-2020, NVIDIA Corporation.
8  * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
9  *
10  * Overview of Tegra Pulse Width Modulator Register:
11  * 1. 13-bit: Frequency division (SCALE)
12  * 2. 8-bit : Pulse division (DUTY)
13  * 3. 1-bit : Enable bit
14  *
15  * The PWM clock frequency is divided by 256 before subdividing it based
16  * on the programmable frequency division value to generate the required
17  * frequency for PWM output. The maximum output frequency that can be
18  * achieved is (max rate of source clock) / 256.
19  * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20  * 408 MHz/256 = 1.6 MHz.
21  * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
22  *
23  * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24  * To achieve 100% duty cycle, program Bit [24] of this register to
25  * 1’b1. In which case the other bits [23:16] are set to don't care.
26  *
27  * Limitations:
28  * -	When PWM is disabled, the output is driven to inactive.
29  * -	It does not allow the current PWM period to complete and
30  *	stops abruptly.
31  *
32  * -	If the register is reconfigured while PWM is running,
33  *	it does not complete the currently running period.
34  *
35  * -	If the user input duty is beyond acceptible limits,
36  *	-EINVAL is returned.
37  */
38 
39 #include <linux/clk.h>
40 #include <linux/err.h>
41 #include <linux/io.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/pm_opp.h>
45 #include <linux/pwm.h>
46 #include <linux/platform_device.h>
47 #include <linux/pinctrl/consumer.h>
48 #include <linux/pm_runtime.h>
49 #include <linux/slab.h>
50 #include <linux/reset.h>
51 
52 #include <soc/tegra/common.h>
53 
54 #define PWM_ENABLE	(1 << 31)
55 #define PWM_DUTY_WIDTH	8
56 #define PWM_DUTY_SHIFT	16
57 #define PWM_SCALE_WIDTH	13
58 #define PWM_SCALE_SHIFT	0
59 
60 struct tegra_pwm_soc {
61 	unsigned int num_channels;
62 
63 	/* Maximum IP frequency for given SoCs */
64 	unsigned long max_frequency;
65 };
66 
67 struct tegra_pwm_chip {
68 	struct pwm_chip chip;
69 	struct device *dev;
70 
71 	struct clk *clk;
72 	struct reset_control*rst;
73 
74 	unsigned long clk_rate;
75 	unsigned long min_period_ns;
76 
77 	void __iomem *regs;
78 
79 	const struct tegra_pwm_soc *soc;
80 };
81 
to_tegra_pwm_chip(struct pwm_chip * chip)82 static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
83 {
84 	return container_of(chip, struct tegra_pwm_chip, chip);
85 }
86 
pwm_readl(struct tegra_pwm_chip * pc,unsigned int offset)87 static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
88 {
89 	return readl(pc->regs + (offset << 4));
90 }
91 
pwm_writel(struct tegra_pwm_chip * pc,unsigned int offset,u32 value)92 static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
93 {
94 	writel(value, pc->regs + (offset << 4));
95 }
96 
tegra_pwm_config(struct pwm_chip * chip,struct pwm_device * pwm,int duty_ns,int period_ns)97 static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
98 			    int duty_ns, int period_ns)
99 {
100 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
101 	unsigned long long c = duty_ns;
102 	unsigned long rate, required_clk_rate;
103 	u32 val = 0;
104 	int err;
105 
106 	/*
107 	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
108 	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
109 	 * nearest integer during division.
110 	 */
111 	c *= (1 << PWM_DUTY_WIDTH);
112 	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
113 
114 	val = (u32)c << PWM_DUTY_SHIFT;
115 
116 	/*
117 	 *  min period = max clock limit >> PWM_DUTY_WIDTH
118 	 */
119 	if (period_ns < pc->min_period_ns)
120 		return -EINVAL;
121 
122 	/*
123 	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
124 	 * cycles at the PWM clock rate will take period_ns nanoseconds.
125 	 *
126 	 * num_channels: If single instance of PWM controller has multiple
127 	 * channels (e.g. Tegra210 or older) then it is not possible to
128 	 * configure separate clock rates to each of the channels, in such
129 	 * case the value stored during probe will be referred.
130 	 *
131 	 * If every PWM controller instance has one channel respectively, i.e.
132 	 * nums_channels == 1 then only the clock rate can be modified
133 	 * dynamically (e.g. Tegra186 or Tegra194).
134 	 */
135 	if (pc->soc->num_channels == 1) {
136 		/*
137 		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
138 		 * with the maximum possible rate that the controller can
139 		 * provide. Any further lower value can be derived by setting
140 		 * PFM bits[0:12].
141 		 *
142 		 * required_clk_rate is a reference rate for source clock and
143 		 * it is derived based on user requested period. By setting the
144 		 * source clock rate as required_clk_rate, PWM controller will
145 		 * be able to configure the requested period.
146 		 */
147 		required_clk_rate = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC << PWM_DUTY_WIDTH,
148 						     period_ns);
149 
150 		if (required_clk_rate > clk_round_rate(pc->clk, required_clk_rate))
151 			/*
152 			 * required_clk_rate is a lower bound for the input
153 			 * rate; for lower rates there is no value for PWM_SCALE
154 			 * that yields a period less than or equal to the
155 			 * requested period. Hence, for lower rates, double the
156 			 * required_clk_rate to get a clock rate that can meet
157 			 * the requested period.
158 			 */
159 			required_clk_rate *= 2;
160 
161 		err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
162 		if (err < 0)
163 			return -EINVAL;
164 
165 		/* Store the new rate for further references */
166 		pc->clk_rate = clk_get_rate(pc->clk);
167 	}
168 
169 	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
170 	rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns,
171 				   (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH);
172 
173 	/*
174 	 * Since the actual PWM divider is the register's frequency divider
175 	 * field plus 1, we need to decrement to get the correct value to
176 	 * write to the register.
177 	 */
178 	if (rate > 0)
179 		rate--;
180 	else
181 		return -EINVAL;
182 
183 	/*
184 	 * Make sure that the rate will fit in the register's frequency
185 	 * divider field.
186 	 */
187 	if (rate >> PWM_SCALE_WIDTH)
188 		return -EINVAL;
189 
190 	val |= rate << PWM_SCALE_SHIFT;
191 
192 	/*
193 	 * If the PWM channel is disabled, make sure to turn on the clock
194 	 * before writing the register. Otherwise, keep it enabled.
195 	 */
196 	if (!pwm_is_enabled(pwm)) {
197 		err = pm_runtime_resume_and_get(pc->dev);
198 		if (err)
199 			return err;
200 	} else
201 		val |= PWM_ENABLE;
202 
203 	pwm_writel(pc, pwm->hwpwm, val);
204 
205 	/*
206 	 * If the PWM is not enabled, turn the clock off again to save power.
207 	 */
208 	if (!pwm_is_enabled(pwm))
209 		pm_runtime_put(pc->dev);
210 
211 	return 0;
212 }
213 
tegra_pwm_enable(struct pwm_chip * chip,struct pwm_device * pwm)214 static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
215 {
216 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
217 	int rc = 0;
218 	u32 val;
219 
220 	rc = pm_runtime_resume_and_get(pc->dev);
221 	if (rc)
222 		return rc;
223 
224 	val = pwm_readl(pc, pwm->hwpwm);
225 	val |= PWM_ENABLE;
226 	pwm_writel(pc, pwm->hwpwm, val);
227 
228 	return 0;
229 }
230 
tegra_pwm_disable(struct pwm_chip * chip,struct pwm_device * pwm)231 static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
232 {
233 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
234 	u32 val;
235 
236 	val = pwm_readl(pc, pwm->hwpwm);
237 	val &= ~PWM_ENABLE;
238 	pwm_writel(pc, pwm->hwpwm, val);
239 
240 	pm_runtime_put_sync(pc->dev);
241 }
242 
tegra_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)243 static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
244 			   const struct pwm_state *state)
245 {
246 	int err;
247 	bool enabled = pwm->state.enabled;
248 
249 	if (state->polarity != PWM_POLARITY_NORMAL)
250 		return -EINVAL;
251 
252 	if (!state->enabled) {
253 		if (enabled)
254 			tegra_pwm_disable(chip, pwm);
255 
256 		return 0;
257 	}
258 
259 	err = tegra_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period);
260 	if (err)
261 		return err;
262 
263 	if (!enabled)
264 		err = tegra_pwm_enable(chip, pwm);
265 
266 	return err;
267 }
268 
269 static const struct pwm_ops tegra_pwm_ops = {
270 	.apply = tegra_pwm_apply,
271 	.owner = THIS_MODULE,
272 };
273 
tegra_pwm_probe(struct platform_device * pdev)274 static int tegra_pwm_probe(struct platform_device *pdev)
275 {
276 	struct tegra_pwm_chip *pc;
277 	int ret;
278 
279 	pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL);
280 	if (!pc)
281 		return -ENOMEM;
282 
283 	pc->soc = of_device_get_match_data(&pdev->dev);
284 	pc->dev = &pdev->dev;
285 
286 	pc->regs = devm_platform_ioremap_resource(pdev, 0);
287 	if (IS_ERR(pc->regs))
288 		return PTR_ERR(pc->regs);
289 
290 	platform_set_drvdata(pdev, pc);
291 
292 	pc->clk = devm_clk_get(&pdev->dev, NULL);
293 	if (IS_ERR(pc->clk))
294 		return PTR_ERR(pc->clk);
295 
296 	ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
297 	if (ret)
298 		return ret;
299 
300 	pm_runtime_enable(&pdev->dev);
301 	ret = pm_runtime_resume_and_get(&pdev->dev);
302 	if (ret)
303 		return ret;
304 
305 	/* Set maximum frequency of the IP */
306 	ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency);
307 	if (ret < 0) {
308 		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
309 		goto put_pm;
310 	}
311 
312 	/*
313 	 * The requested and configured frequency may differ due to
314 	 * clock register resolutions. Get the configured frequency
315 	 * so that PWM period can be calculated more accurately.
316 	 */
317 	pc->clk_rate = clk_get_rate(pc->clk);
318 
319 	/* Set minimum limit of PWM period for the IP */
320 	pc->min_period_ns =
321 	    (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
322 
323 	pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
324 	if (IS_ERR(pc->rst)) {
325 		ret = PTR_ERR(pc->rst);
326 		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
327 		goto put_pm;
328 	}
329 
330 	reset_control_deassert(pc->rst);
331 
332 	pc->chip.dev = &pdev->dev;
333 	pc->chip.ops = &tegra_pwm_ops;
334 	pc->chip.npwm = pc->soc->num_channels;
335 
336 	ret = pwmchip_add(&pc->chip);
337 	if (ret < 0) {
338 		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
339 		reset_control_assert(pc->rst);
340 		goto put_pm;
341 	}
342 
343 	pm_runtime_put(&pdev->dev);
344 
345 	return 0;
346 put_pm:
347 	pm_runtime_put_sync_suspend(&pdev->dev);
348 	pm_runtime_force_suspend(&pdev->dev);
349 	return ret;
350 }
351 
tegra_pwm_remove(struct platform_device * pdev)352 static void tegra_pwm_remove(struct platform_device *pdev)
353 {
354 	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
355 
356 	pwmchip_remove(&pc->chip);
357 
358 	reset_control_assert(pc->rst);
359 
360 	pm_runtime_force_suspend(&pdev->dev);
361 }
362 
tegra_pwm_runtime_suspend(struct device * dev)363 static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
364 {
365 	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
366 	int err;
367 
368 	clk_disable_unprepare(pc->clk);
369 
370 	err = pinctrl_pm_select_sleep_state(dev);
371 	if (err) {
372 		clk_prepare_enable(pc->clk);
373 		return err;
374 	}
375 
376 	return 0;
377 }
378 
tegra_pwm_runtime_resume(struct device * dev)379 static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
380 {
381 	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
382 	int err;
383 
384 	err = pinctrl_pm_select_default_state(dev);
385 	if (err)
386 		return err;
387 
388 	err = clk_prepare_enable(pc->clk);
389 	if (err) {
390 		pinctrl_pm_select_sleep_state(dev);
391 		return err;
392 	}
393 
394 	return 0;
395 }
396 
397 static const struct tegra_pwm_soc tegra20_pwm_soc = {
398 	.num_channels = 4,
399 	.max_frequency = 48000000UL,
400 };
401 
402 static const struct tegra_pwm_soc tegra186_pwm_soc = {
403 	.num_channels = 1,
404 	.max_frequency = 102000000UL,
405 };
406 
407 static const struct tegra_pwm_soc tegra194_pwm_soc = {
408 	.num_channels = 1,
409 	.max_frequency = 408000000UL,
410 };
411 
412 static const struct of_device_id tegra_pwm_of_match[] = {
413 	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
414 	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
415 	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
416 	{ }
417 };
418 MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
419 
420 static const struct dev_pm_ops tegra_pwm_pm_ops = {
421 	SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
422 			   NULL)
423 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
424 				pm_runtime_force_resume)
425 };
426 
427 static struct platform_driver tegra_pwm_driver = {
428 	.driver = {
429 		.name = "tegra-pwm",
430 		.of_match_table = tegra_pwm_of_match,
431 		.pm = &tegra_pwm_pm_ops,
432 	},
433 	.probe = tegra_pwm_probe,
434 	.remove_new = tegra_pwm_remove,
435 };
436 
437 module_platform_driver(tegra_pwm_driver);
438 
439 MODULE_LICENSE("GPL");
440 MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
441 MODULE_DESCRIPTION("Tegra PWM controller driver");
442 MODULE_ALIAS("platform:tegra-pwm");
443