1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 /* Note: divides are still a bit expensive.
241 * For the moment, only adjust scaling_ratio
242 * when we update icsk_ack.rcv_mss.
243 */
244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247
248 do_div(val, skb->truesize);
249 tcp_sk(sk)->scaling_ratio = val ? val : 1;
250
251 if (old_ratio != tcp_sk(sk)->scaling_ratio)
252 WRITE_ONCE(tcp_sk(sk)->window_clamp,
253 tcp_win_from_space(sk, sk->sk_rcvbuf));
254 }
255 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
256 tcp_sk(sk)->advmss);
257 /* Account for possibly-removed options */
258 if (unlikely(len > icsk->icsk_ack.rcv_mss +
259 MAX_TCP_OPTION_SPACE))
260 tcp_gro_dev_warn(sk, skb, len);
261 /* If the skb has a len of exactly 1*MSS and has the PSH bit
262 * set then it is likely the end of an application write. So
263 * more data may not be arriving soon, and yet the data sender
264 * may be waiting for an ACK if cwnd-bound or using TX zero
265 * copy. So we set ICSK_ACK_PUSHED here so that
266 * tcp_cleanup_rbuf() will send an ACK immediately if the app
267 * reads all of the data and is not ping-pong. If len > MSS
268 * then this logic does not matter (and does not hurt) because
269 * tcp_cleanup_rbuf() will always ACK immediately if the app
270 * reads data and there is more than an MSS of unACKed data.
271 */
272 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 } else {
275 /* Otherwise, we make more careful check taking into account,
276 * that SACKs block is variable.
277 *
278 * "len" is invariant segment length, including TCP header.
279 */
280 len += skb->data - skb_transport_header(skb);
281 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
282 /* If PSH is not set, packet should be
283 * full sized, provided peer TCP is not badly broken.
284 * This observation (if it is correct 8)) allows
285 * to handle super-low mtu links fairly.
286 */
287 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
288 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
289 /* Subtract also invariant (if peer is RFC compliant),
290 * tcp header plus fixed timestamp option length.
291 * Resulting "len" is MSS free of SACK jitter.
292 */
293 len -= tcp_sk(sk)->tcp_header_len;
294 icsk->icsk_ack.last_seg_size = len;
295 if (len == lss) {
296 icsk->icsk_ack.rcv_mss = len;
297 return;
298 }
299 }
300 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
301 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
302 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
303 }
304 }
305
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)306 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
307 {
308 struct inet_connection_sock *icsk = inet_csk(sk);
309 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
310
311 if (quickacks == 0)
312 quickacks = 2;
313 quickacks = min(quickacks, max_quickacks);
314 if (quickacks > icsk->icsk_ack.quick)
315 icsk->icsk_ack.quick = quickacks;
316 }
317
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)318 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
319 {
320 struct inet_connection_sock *icsk = inet_csk(sk);
321
322 tcp_incr_quickack(sk, max_quickacks);
323 inet_csk_exit_pingpong_mode(sk);
324 icsk->icsk_ack.ato = TCP_ATO_MIN;
325 }
326
327 /* Send ACKs quickly, if "quick" count is not exhausted
328 * and the session is not interactive.
329 */
330
tcp_in_quickack_mode(struct sock * sk)331 static bool tcp_in_quickack_mode(struct sock *sk)
332 {
333 const struct inet_connection_sock *icsk = inet_csk(sk);
334 const struct dst_entry *dst = __sk_dst_get(sk);
335
336 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
337 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
338 }
339
tcp_ecn_queue_cwr(struct tcp_sock * tp)340 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
341 {
342 if (tp->ecn_flags & TCP_ECN_OK)
343 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
344 }
345
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)346 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
347 {
348 if (tcp_hdr(skb)->cwr) {
349 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
350
351 /* If the sender is telling us it has entered CWR, then its
352 * cwnd may be very low (even just 1 packet), so we should ACK
353 * immediately.
354 */
355 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
356 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
357 }
358 }
359
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)360 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
361 {
362 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
363 }
364
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)365 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
366 {
367 struct tcp_sock *tp = tcp_sk(sk);
368
369 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
370 case INET_ECN_NOT_ECT:
371 /* Funny extension: if ECT is not set on a segment,
372 * and we already seen ECT on a previous segment,
373 * it is probably a retransmit.
374 */
375 if (tp->ecn_flags & TCP_ECN_SEEN)
376 tcp_enter_quickack_mode(sk, 2);
377 break;
378 case INET_ECN_CE:
379 if (tcp_ca_needs_ecn(sk))
380 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
381
382 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
383 /* Better not delay acks, sender can have a very low cwnd */
384 tcp_enter_quickack_mode(sk, 2);
385 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
386 }
387 tp->ecn_flags |= TCP_ECN_SEEN;
388 break;
389 default:
390 if (tcp_ca_needs_ecn(sk))
391 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
392 tp->ecn_flags |= TCP_ECN_SEEN;
393 break;
394 }
395 }
396
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)397 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
398 {
399 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
400 __tcp_ecn_check_ce(sk, skb);
401 }
402
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)403 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
404 {
405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
406 tp->ecn_flags &= ~TCP_ECN_OK;
407 }
408
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
412 tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)415 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
418 return true;
419 return false;
420 }
421
422 /* Buffer size and advertised window tuning.
423 *
424 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
425 */
426
tcp_sndbuf_expand(struct sock * sk)427 static void tcp_sndbuf_expand(struct sock *sk)
428 {
429 const struct tcp_sock *tp = tcp_sk(sk);
430 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
431 int sndmem, per_mss;
432 u32 nr_segs;
433
434 /* Worst case is non GSO/TSO : each frame consumes one skb
435 * and skb->head is kmalloced using power of two area of memory
436 */
437 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
438 MAX_TCP_HEADER +
439 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
440
441 per_mss = roundup_pow_of_two(per_mss) +
442 SKB_DATA_ALIGN(sizeof(struct sk_buff));
443
444 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
445 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
446
447 /* Fast Recovery (RFC 5681 3.2) :
448 * Cubic needs 1.7 factor, rounded to 2 to include
449 * extra cushion (application might react slowly to EPOLLOUT)
450 */
451 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
452 sndmem *= nr_segs * per_mss;
453
454 if (sk->sk_sndbuf < sndmem)
455 WRITE_ONCE(sk->sk_sndbuf,
456 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
457 }
458
459 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
460 *
461 * All tcp_full_space() is split to two parts: "network" buffer, allocated
462 * forward and advertised in receiver window (tp->rcv_wnd) and
463 * "application buffer", required to isolate scheduling/application
464 * latencies from network.
465 * window_clamp is maximal advertised window. It can be less than
466 * tcp_full_space(), in this case tcp_full_space() - window_clamp
467 * is reserved for "application" buffer. The less window_clamp is
468 * the smoother our behaviour from viewpoint of network, but the lower
469 * throughput and the higher sensitivity of the connection to losses. 8)
470 *
471 * rcv_ssthresh is more strict window_clamp used at "slow start"
472 * phase to predict further behaviour of this connection.
473 * It is used for two goals:
474 * - to enforce header prediction at sender, even when application
475 * requires some significant "application buffer". It is check #1.
476 * - to prevent pruning of receive queue because of misprediction
477 * of receiver window. Check #2.
478 *
479 * The scheme does not work when sender sends good segments opening
480 * window and then starts to feed us spaghetti. But it should work
481 * in common situations. Otherwise, we have to rely on queue collapsing.
482 */
483
484 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)485 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
486 unsigned int skbtruesize)
487 {
488 const struct tcp_sock *tp = tcp_sk(sk);
489 /* Optimize this! */
490 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
491 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
492
493 while (tp->rcv_ssthresh <= window) {
494 if (truesize <= skb->len)
495 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
496
497 truesize >>= 1;
498 window >>= 1;
499 }
500 return 0;
501 }
502
503 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
504 * can play nice with us, as sk_buff and skb->head might be either
505 * freed or shared with up to MAX_SKB_FRAGS segments.
506 * Only give a boost to drivers using page frag(s) to hold the frame(s),
507 * and if no payload was pulled in skb->head before reaching us.
508 */
truesize_adjust(bool adjust,const struct sk_buff * skb)509 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
510 {
511 u32 truesize = skb->truesize;
512
513 if (adjust && !skb_headlen(skb)) {
514 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
515 /* paranoid check, some drivers might be buggy */
516 if (unlikely((int)truesize < (int)skb->len))
517 truesize = skb->truesize;
518 }
519 return truesize;
520 }
521
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)522 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
523 bool adjust)
524 {
525 struct tcp_sock *tp = tcp_sk(sk);
526 int room;
527
528 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
529
530 if (room <= 0)
531 return;
532
533 /* Check #1 */
534 if (!tcp_under_memory_pressure(sk)) {
535 unsigned int truesize = truesize_adjust(adjust, skb);
536 int incr;
537
538 /* Check #2. Increase window, if skb with such overhead
539 * will fit to rcvbuf in future.
540 */
541 if (tcp_win_from_space(sk, truesize) <= skb->len)
542 incr = 2 * tp->advmss;
543 else
544 incr = __tcp_grow_window(sk, skb, truesize);
545
546 if (incr) {
547 incr = max_t(int, incr, 2 * skb->len);
548 tp->rcv_ssthresh += min(room, incr);
549 inet_csk(sk)->icsk_ack.quick |= 1;
550 }
551 } else {
552 /* Under pressure:
553 * Adjust rcv_ssthresh according to reserved mem
554 */
555 tcp_adjust_rcv_ssthresh(sk);
556 }
557 }
558
559 /* 3. Try to fixup all. It is made immediately after connection enters
560 * established state.
561 */
tcp_init_buffer_space(struct sock * sk)562 static void tcp_init_buffer_space(struct sock *sk)
563 {
564 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
565 struct tcp_sock *tp = tcp_sk(sk);
566 int maxwin;
567
568 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
569 tcp_sndbuf_expand(sk);
570
571 tcp_mstamp_refresh(tp);
572 tp->rcvq_space.time = tp->tcp_mstamp;
573 tp->rcvq_space.seq = tp->copied_seq;
574
575 maxwin = tcp_full_space(sk);
576
577 if (tp->window_clamp >= maxwin) {
578 WRITE_ONCE(tp->window_clamp, maxwin);
579
580 if (tcp_app_win && maxwin > 4 * tp->advmss)
581 WRITE_ONCE(tp->window_clamp,
582 max(maxwin - (maxwin >> tcp_app_win),
583 4 * tp->advmss));
584 }
585
586 /* Force reservation of one segment. */
587 if (tcp_app_win &&
588 tp->window_clamp > 2 * tp->advmss &&
589 tp->window_clamp + tp->advmss > maxwin)
590 WRITE_ONCE(tp->window_clamp,
591 max(2 * tp->advmss, maxwin - tp->advmss));
592
593 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
594 tp->snd_cwnd_stamp = tcp_jiffies32;
595 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
596 (u32)TCP_INIT_CWND * tp->advmss);
597 }
598
599 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)600 static void tcp_clamp_window(struct sock *sk)
601 {
602 struct tcp_sock *tp = tcp_sk(sk);
603 struct inet_connection_sock *icsk = inet_csk(sk);
604 struct net *net = sock_net(sk);
605 int rmem2;
606
607 icsk->icsk_ack.quick = 0;
608 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
609
610 if (sk->sk_rcvbuf < rmem2 &&
611 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
612 !tcp_under_memory_pressure(sk) &&
613 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
614 WRITE_ONCE(sk->sk_rcvbuf,
615 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
616 }
617 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
618 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
619 }
620
621 /* Initialize RCV_MSS value.
622 * RCV_MSS is an our guess about MSS used by the peer.
623 * We haven't any direct information about the MSS.
624 * It's better to underestimate the RCV_MSS rather than overestimate.
625 * Overestimations make us ACKing less frequently than needed.
626 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
627 */
tcp_initialize_rcv_mss(struct sock * sk)628 void tcp_initialize_rcv_mss(struct sock *sk)
629 {
630 const struct tcp_sock *tp = tcp_sk(sk);
631 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
632
633 hint = min(hint, tp->rcv_wnd / 2);
634 hint = min(hint, TCP_MSS_DEFAULT);
635 hint = max(hint, TCP_MIN_MSS);
636
637 inet_csk(sk)->icsk_ack.rcv_mss = hint;
638 }
639 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
640
641 /* Receiver "autotuning" code.
642 *
643 * The algorithm for RTT estimation w/o timestamps is based on
644 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
645 * <https://public.lanl.gov/radiant/pubs.html#DRS>
646 *
647 * More detail on this code can be found at
648 * <http://staff.psc.edu/jheffner/>,
649 * though this reference is out of date. A new paper
650 * is pending.
651 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)652 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
653 {
654 u32 new_sample = tp->rcv_rtt_est.rtt_us;
655 long m = sample;
656
657 if (new_sample != 0) {
658 /* If we sample in larger samples in the non-timestamp
659 * case, we could grossly overestimate the RTT especially
660 * with chatty applications or bulk transfer apps which
661 * are stalled on filesystem I/O.
662 *
663 * Also, since we are only going for a minimum in the
664 * non-timestamp case, we do not smooth things out
665 * else with timestamps disabled convergence takes too
666 * long.
667 */
668 if (!win_dep) {
669 m -= (new_sample >> 3);
670 new_sample += m;
671 } else {
672 m <<= 3;
673 if (m < new_sample)
674 new_sample = m;
675 }
676 } else {
677 /* No previous measure. */
678 new_sample = m << 3;
679 }
680
681 tp->rcv_rtt_est.rtt_us = new_sample;
682 }
683
tcp_rcv_rtt_measure(struct tcp_sock * tp)684 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
685 {
686 u32 delta_us;
687
688 if (tp->rcv_rtt_est.time == 0)
689 goto new_measure;
690 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
691 return;
692 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
693 if (!delta_us)
694 delta_us = 1;
695 tcp_rcv_rtt_update(tp, delta_us, 1);
696
697 new_measure:
698 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
699 tp->rcv_rtt_est.time = tp->tcp_mstamp;
700 }
701
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)702 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
703 const struct sk_buff *skb)
704 {
705 struct tcp_sock *tp = tcp_sk(sk);
706
707 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
708 return;
709 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
710
711 if (TCP_SKB_CB(skb)->end_seq -
712 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
713 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
714 u32 delta_us;
715
716 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
717 if (!delta)
718 delta = 1;
719 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
720 tcp_rcv_rtt_update(tp, delta_us, 0);
721 }
722 }
723 }
724
725 /*
726 * This function should be called every time data is copied to user space.
727 * It calculates the appropriate TCP receive buffer space.
728 */
tcp_rcv_space_adjust(struct sock * sk)729 void tcp_rcv_space_adjust(struct sock *sk)
730 {
731 struct tcp_sock *tp = tcp_sk(sk);
732 u32 copied;
733 int time;
734
735 trace_tcp_rcv_space_adjust(sk);
736
737 tcp_mstamp_refresh(tp);
738 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
739 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
740 return;
741
742 /* Number of bytes copied to user in last RTT */
743 copied = tp->copied_seq - tp->rcvq_space.seq;
744 if (copied <= tp->rcvq_space.space)
745 goto new_measure;
746
747 /* A bit of theory :
748 * copied = bytes received in previous RTT, our base window
749 * To cope with packet losses, we need a 2x factor
750 * To cope with slow start, and sender growing its cwin by 100 %
751 * every RTT, we need a 4x factor, because the ACK we are sending
752 * now is for the next RTT, not the current one :
753 * <prev RTT . ><current RTT .. ><next RTT .... >
754 */
755
756 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
757 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
758 u64 rcvwin, grow;
759 int rcvbuf;
760
761 /* minimal window to cope with packet losses, assuming
762 * steady state. Add some cushion because of small variations.
763 */
764 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
765
766 /* Accommodate for sender rate increase (eg. slow start) */
767 grow = rcvwin * (copied - tp->rcvq_space.space);
768 do_div(grow, tp->rcvq_space.space);
769 rcvwin += (grow << 1);
770
771 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
772 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
773 if (rcvbuf > sk->sk_rcvbuf) {
774 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
775
776 /* Make the window clamp follow along. */
777 WRITE_ONCE(tp->window_clamp,
778 tcp_win_from_space(sk, rcvbuf));
779 }
780 }
781 tp->rcvq_space.space = copied;
782
783 new_measure:
784 tp->rcvq_space.seq = tp->copied_seq;
785 tp->rcvq_space.time = tp->tcp_mstamp;
786 }
787
788 /* There is something which you must keep in mind when you analyze the
789 * behavior of the tp->ato delayed ack timeout interval. When a
790 * connection starts up, we want to ack as quickly as possible. The
791 * problem is that "good" TCP's do slow start at the beginning of data
792 * transmission. The means that until we send the first few ACK's the
793 * sender will sit on his end and only queue most of his data, because
794 * he can only send snd_cwnd unacked packets at any given time. For
795 * each ACK we send, he increments snd_cwnd and transmits more of his
796 * queue. -DaveM
797 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)798 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
799 {
800 struct tcp_sock *tp = tcp_sk(sk);
801 struct inet_connection_sock *icsk = inet_csk(sk);
802 u32 now;
803
804 inet_csk_schedule_ack(sk);
805
806 tcp_measure_rcv_mss(sk, skb);
807
808 tcp_rcv_rtt_measure(tp);
809
810 now = tcp_jiffies32;
811
812 if (!icsk->icsk_ack.ato) {
813 /* The _first_ data packet received, initialize
814 * delayed ACK engine.
815 */
816 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
817 icsk->icsk_ack.ato = TCP_ATO_MIN;
818 } else {
819 int m = now - icsk->icsk_ack.lrcvtime;
820
821 if (m <= TCP_ATO_MIN / 2) {
822 /* The fastest case is the first. */
823 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
824 } else if (m < icsk->icsk_ack.ato) {
825 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
826 if (icsk->icsk_ack.ato > icsk->icsk_rto)
827 icsk->icsk_ack.ato = icsk->icsk_rto;
828 } else if (m > icsk->icsk_rto) {
829 /* Too long gap. Apparently sender failed to
830 * restart window, so that we send ACKs quickly.
831 */
832 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
833 }
834 }
835 icsk->icsk_ack.lrcvtime = now;
836
837 tcp_ecn_check_ce(sk, skb);
838
839 if (skb->len >= 128)
840 tcp_grow_window(sk, skb, true);
841 }
842
843 /* Called to compute a smoothed rtt estimate. The data fed to this
844 * routine either comes from timestamps, or from segments that were
845 * known _not_ to have been retransmitted [see Karn/Partridge
846 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
847 * piece by Van Jacobson.
848 * NOTE: the next three routines used to be one big routine.
849 * To save cycles in the RFC 1323 implementation it was better to break
850 * it up into three procedures. -- erics
851 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)852 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
853 {
854 struct tcp_sock *tp = tcp_sk(sk);
855 long m = mrtt_us; /* RTT */
856 u32 srtt = tp->srtt_us;
857
858 /* The following amusing code comes from Jacobson's
859 * article in SIGCOMM '88. Note that rtt and mdev
860 * are scaled versions of rtt and mean deviation.
861 * This is designed to be as fast as possible
862 * m stands for "measurement".
863 *
864 * On a 1990 paper the rto value is changed to:
865 * RTO = rtt + 4 * mdev
866 *
867 * Funny. This algorithm seems to be very broken.
868 * These formulae increase RTO, when it should be decreased, increase
869 * too slowly, when it should be increased quickly, decrease too quickly
870 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
871 * does not matter how to _calculate_ it. Seems, it was trap
872 * that VJ failed to avoid. 8)
873 */
874 if (srtt != 0) {
875 m -= (srtt >> 3); /* m is now error in rtt est */
876 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
877 if (m < 0) {
878 m = -m; /* m is now abs(error) */
879 m -= (tp->mdev_us >> 2); /* similar update on mdev */
880 /* This is similar to one of Eifel findings.
881 * Eifel blocks mdev updates when rtt decreases.
882 * This solution is a bit different: we use finer gain
883 * for mdev in this case (alpha*beta).
884 * Like Eifel it also prevents growth of rto,
885 * but also it limits too fast rto decreases,
886 * happening in pure Eifel.
887 */
888 if (m > 0)
889 m >>= 3;
890 } else {
891 m -= (tp->mdev_us >> 2); /* similar update on mdev */
892 }
893 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
894 if (tp->mdev_us > tp->mdev_max_us) {
895 tp->mdev_max_us = tp->mdev_us;
896 if (tp->mdev_max_us > tp->rttvar_us)
897 tp->rttvar_us = tp->mdev_max_us;
898 }
899 if (after(tp->snd_una, tp->rtt_seq)) {
900 if (tp->mdev_max_us < tp->rttvar_us)
901 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
902 tp->rtt_seq = tp->snd_nxt;
903 tp->mdev_max_us = tcp_rto_min_us(sk);
904
905 tcp_bpf_rtt(sk);
906 }
907 } else {
908 /* no previous measure. */
909 srtt = m << 3; /* take the measured time to be rtt */
910 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
911 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
912 tp->mdev_max_us = tp->rttvar_us;
913 tp->rtt_seq = tp->snd_nxt;
914
915 tcp_bpf_rtt(sk);
916 }
917 tp->srtt_us = max(1U, srtt);
918 }
919
tcp_update_pacing_rate(struct sock * sk)920 static void tcp_update_pacing_rate(struct sock *sk)
921 {
922 const struct tcp_sock *tp = tcp_sk(sk);
923 u64 rate;
924
925 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
926 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
927
928 /* current rate is (cwnd * mss) / srtt
929 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
930 * In Congestion Avoidance phase, set it to 120 % the current rate.
931 *
932 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
933 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
934 * end of slow start and should slow down.
935 */
936 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
937 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
938 else
939 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
940
941 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
942
943 if (likely(tp->srtt_us))
944 do_div(rate, tp->srtt_us);
945
946 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
947 * without any lock. We want to make sure compiler wont store
948 * intermediate values in this location.
949 */
950 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
951 sk->sk_max_pacing_rate));
952 }
953
954 /* Calculate rto without backoff. This is the second half of Van Jacobson's
955 * routine referred to above.
956 */
tcp_set_rto(struct sock * sk)957 static void tcp_set_rto(struct sock *sk)
958 {
959 const struct tcp_sock *tp = tcp_sk(sk);
960 /* Old crap is replaced with new one. 8)
961 *
962 * More seriously:
963 * 1. If rtt variance happened to be less 50msec, it is hallucination.
964 * It cannot be less due to utterly erratic ACK generation made
965 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
966 * to do with delayed acks, because at cwnd>2 true delack timeout
967 * is invisible. Actually, Linux-2.4 also generates erratic
968 * ACKs in some circumstances.
969 */
970 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
971
972 /* 2. Fixups made earlier cannot be right.
973 * If we do not estimate RTO correctly without them,
974 * all the algo is pure shit and should be replaced
975 * with correct one. It is exactly, which we pretend to do.
976 */
977
978 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
979 * guarantees that rto is higher.
980 */
981 tcp_bound_rto(sk);
982 }
983
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)984 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
985 {
986 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
987
988 if (!cwnd)
989 cwnd = TCP_INIT_CWND;
990 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
991 }
992
993 struct tcp_sacktag_state {
994 /* Timestamps for earliest and latest never-retransmitted segment
995 * that was SACKed. RTO needs the earliest RTT to stay conservative,
996 * but congestion control should still get an accurate delay signal.
997 */
998 u64 first_sackt;
999 u64 last_sackt;
1000 u32 reord;
1001 u32 sack_delivered;
1002 int flag;
1003 unsigned int mss_now;
1004 struct rate_sample *rate;
1005 };
1006
1007 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1008 * and spurious retransmission information if this DSACK is unlikely caused by
1009 * sender's action:
1010 * - DSACKed sequence range is larger than maximum receiver's window.
1011 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1012 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1013 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1014 u32 end_seq, struct tcp_sacktag_state *state)
1015 {
1016 u32 seq_len, dup_segs = 1;
1017
1018 if (!before(start_seq, end_seq))
1019 return 0;
1020
1021 seq_len = end_seq - start_seq;
1022 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1023 if (seq_len > tp->max_window)
1024 return 0;
1025 if (seq_len > tp->mss_cache)
1026 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1027 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1028 state->flag |= FLAG_DSACK_TLP;
1029
1030 tp->dsack_dups += dup_segs;
1031 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1032 if (tp->dsack_dups > tp->total_retrans)
1033 return 0;
1034
1035 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1036 /* We increase the RACK ordering window in rounds where we receive
1037 * DSACKs that may have been due to reordering causing RACK to trigger
1038 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1039 * without having seen reordering, or that match TLP probes (TLP
1040 * is timer-driven, not triggered by RACK).
1041 */
1042 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1043 tp->rack.dsack_seen = 1;
1044
1045 state->flag |= FLAG_DSACKING_ACK;
1046 /* A spurious retransmission is delivered */
1047 state->sack_delivered += dup_segs;
1048
1049 return dup_segs;
1050 }
1051
1052 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1053 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1054 * distance is approximated in full-mss packet distance ("reordering").
1055 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1056 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1057 const int ts)
1058 {
1059 struct tcp_sock *tp = tcp_sk(sk);
1060 const u32 mss = tp->mss_cache;
1061 u32 fack, metric;
1062
1063 fack = tcp_highest_sack_seq(tp);
1064 if (!before(low_seq, fack))
1065 return;
1066
1067 metric = fack - low_seq;
1068 if ((metric > tp->reordering * mss) && mss) {
1069 #if FASTRETRANS_DEBUG > 1
1070 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1071 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1072 tp->reordering,
1073 0,
1074 tp->sacked_out,
1075 tp->undo_marker ? tp->undo_retrans : 0);
1076 #endif
1077 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1078 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1079 }
1080
1081 /* This exciting event is worth to be remembered. 8) */
1082 tp->reord_seen++;
1083 NET_INC_STATS(sock_net(sk),
1084 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1085 }
1086
1087 /* This must be called before lost_out or retrans_out are updated
1088 * on a new loss, because we want to know if all skbs previously
1089 * known to be lost have already been retransmitted, indicating
1090 * that this newly lost skb is our next skb to retransmit.
1091 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1092 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1093 {
1094 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1095 (tp->retransmit_skb_hint &&
1096 before(TCP_SKB_CB(skb)->seq,
1097 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1098 tp->retransmit_skb_hint = skb;
1099 }
1100
1101 /* Sum the number of packets on the wire we have marked as lost, and
1102 * notify the congestion control module that the given skb was marked lost.
1103 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1104 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1105 {
1106 tp->lost += tcp_skb_pcount(skb);
1107 }
1108
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1109 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1110 {
1111 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1112 struct tcp_sock *tp = tcp_sk(sk);
1113
1114 if (sacked & TCPCB_SACKED_ACKED)
1115 return;
1116
1117 tcp_verify_retransmit_hint(tp, skb);
1118 if (sacked & TCPCB_LOST) {
1119 if (sacked & TCPCB_SACKED_RETRANS) {
1120 /* Account for retransmits that are lost again */
1121 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1122 tp->retrans_out -= tcp_skb_pcount(skb);
1123 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1124 tcp_skb_pcount(skb));
1125 tcp_notify_skb_loss_event(tp, skb);
1126 }
1127 } else {
1128 tp->lost_out += tcp_skb_pcount(skb);
1129 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1130 tcp_notify_skb_loss_event(tp, skb);
1131 }
1132 }
1133
1134 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1135 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1136 bool ece_ack)
1137 {
1138 tp->delivered += delivered;
1139 if (ece_ack)
1140 tp->delivered_ce += delivered;
1141 }
1142
1143 /* This procedure tags the retransmission queue when SACKs arrive.
1144 *
1145 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1146 * Packets in queue with these bits set are counted in variables
1147 * sacked_out, retrans_out and lost_out, correspondingly.
1148 *
1149 * Valid combinations are:
1150 * Tag InFlight Description
1151 * 0 1 - orig segment is in flight.
1152 * S 0 - nothing flies, orig reached receiver.
1153 * L 0 - nothing flies, orig lost by net.
1154 * R 2 - both orig and retransmit are in flight.
1155 * L|R 1 - orig is lost, retransmit is in flight.
1156 * S|R 1 - orig reached receiver, retrans is still in flight.
1157 * (L|S|R is logically valid, it could occur when L|R is sacked,
1158 * but it is equivalent to plain S and code short-curcuits it to S.
1159 * L|S is logically invalid, it would mean -1 packet in flight 8))
1160 *
1161 * These 6 states form finite state machine, controlled by the following events:
1162 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1163 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1164 * 3. Loss detection event of two flavors:
1165 * A. Scoreboard estimator decided the packet is lost.
1166 * A'. Reno "three dupacks" marks head of queue lost.
1167 * B. SACK arrives sacking SND.NXT at the moment, when the
1168 * segment was retransmitted.
1169 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1170 *
1171 * It is pleasant to note, that state diagram turns out to be commutative,
1172 * so that we are allowed not to be bothered by order of our actions,
1173 * when multiple events arrive simultaneously. (see the function below).
1174 *
1175 * Reordering detection.
1176 * --------------------
1177 * Reordering metric is maximal distance, which a packet can be displaced
1178 * in packet stream. With SACKs we can estimate it:
1179 *
1180 * 1. SACK fills old hole and the corresponding segment was not
1181 * ever retransmitted -> reordering. Alas, we cannot use it
1182 * when segment was retransmitted.
1183 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1184 * for retransmitted and already SACKed segment -> reordering..
1185 * Both of these heuristics are not used in Loss state, when we cannot
1186 * account for retransmits accurately.
1187 *
1188 * SACK block validation.
1189 * ----------------------
1190 *
1191 * SACK block range validation checks that the received SACK block fits to
1192 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1193 * Note that SND.UNA is not included to the range though being valid because
1194 * it means that the receiver is rather inconsistent with itself reporting
1195 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1196 * perfectly valid, however, in light of RFC2018 which explicitly states
1197 * that "SACK block MUST reflect the newest segment. Even if the newest
1198 * segment is going to be discarded ...", not that it looks very clever
1199 * in case of head skb. Due to potentional receiver driven attacks, we
1200 * choose to avoid immediate execution of a walk in write queue due to
1201 * reneging and defer head skb's loss recovery to standard loss recovery
1202 * procedure that will eventually trigger (nothing forbids us doing this).
1203 *
1204 * Implements also blockage to start_seq wrap-around. Problem lies in the
1205 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1206 * there's no guarantee that it will be before snd_nxt (n). The problem
1207 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1208 * wrap (s_w):
1209 *
1210 * <- outs wnd -> <- wrapzone ->
1211 * u e n u_w e_w s n_w
1212 * | | | | | | |
1213 * |<------------+------+----- TCP seqno space --------------+---------->|
1214 * ...-- <2^31 ->| |<--------...
1215 * ...---- >2^31 ------>| |<--------...
1216 *
1217 * Current code wouldn't be vulnerable but it's better still to discard such
1218 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1219 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1220 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1221 * equal to the ideal case (infinite seqno space without wrap caused issues).
1222 *
1223 * With D-SACK the lower bound is extended to cover sequence space below
1224 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1225 * again, D-SACK block must not to go across snd_una (for the same reason as
1226 * for the normal SACK blocks, explained above). But there all simplicity
1227 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1228 * fully below undo_marker they do not affect behavior in anyway and can
1229 * therefore be safely ignored. In rare cases (which are more or less
1230 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1231 * fragmentation and packet reordering past skb's retransmission. To consider
1232 * them correctly, the acceptable range must be extended even more though
1233 * the exact amount is rather hard to quantify. However, tp->max_window can
1234 * be used as an exaggerated estimate.
1235 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1236 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1237 u32 start_seq, u32 end_seq)
1238 {
1239 /* Too far in future, or reversed (interpretation is ambiguous) */
1240 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1241 return false;
1242
1243 /* Nasty start_seq wrap-around check (see comments above) */
1244 if (!before(start_seq, tp->snd_nxt))
1245 return false;
1246
1247 /* In outstanding window? ...This is valid exit for D-SACKs too.
1248 * start_seq == snd_una is non-sensical (see comments above)
1249 */
1250 if (after(start_seq, tp->snd_una))
1251 return true;
1252
1253 if (!is_dsack || !tp->undo_marker)
1254 return false;
1255
1256 /* ...Then it's D-SACK, and must reside below snd_una completely */
1257 if (after(end_seq, tp->snd_una))
1258 return false;
1259
1260 if (!before(start_seq, tp->undo_marker))
1261 return true;
1262
1263 /* Too old */
1264 if (!after(end_seq, tp->undo_marker))
1265 return false;
1266
1267 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1268 * start_seq < undo_marker and end_seq >= undo_marker.
1269 */
1270 return !before(start_seq, end_seq - tp->max_window);
1271 }
1272
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1273 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1274 struct tcp_sack_block_wire *sp, int num_sacks,
1275 u32 prior_snd_una, struct tcp_sacktag_state *state)
1276 {
1277 struct tcp_sock *tp = tcp_sk(sk);
1278 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1279 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1280 u32 dup_segs;
1281
1282 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1283 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1284 } else if (num_sacks > 1) {
1285 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1286 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1287
1288 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1289 return false;
1290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1291 } else {
1292 return false;
1293 }
1294
1295 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1296 if (!dup_segs) { /* Skip dubious DSACK */
1297 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1298 return false;
1299 }
1300
1301 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1302
1303 /* D-SACK for already forgotten data... Do dumb counting. */
1304 if (tp->undo_marker && tp->undo_retrans > 0 &&
1305 !after(end_seq_0, prior_snd_una) &&
1306 after(end_seq_0, tp->undo_marker))
1307 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1308
1309 return true;
1310 }
1311
1312 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1313 * the incoming SACK may not exactly match but we can find smaller MSS
1314 * aligned portion of it that matches. Therefore we might need to fragment
1315 * which may fail and creates some hassle (caller must handle error case
1316 * returns).
1317 *
1318 * FIXME: this could be merged to shift decision code
1319 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1320 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1321 u32 start_seq, u32 end_seq)
1322 {
1323 int err;
1324 bool in_sack;
1325 unsigned int pkt_len;
1326 unsigned int mss;
1327
1328 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1329 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1330
1331 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1332 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1333 mss = tcp_skb_mss(skb);
1334 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1335
1336 if (!in_sack) {
1337 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1338 if (pkt_len < mss)
1339 pkt_len = mss;
1340 } else {
1341 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1342 if (pkt_len < mss)
1343 return -EINVAL;
1344 }
1345
1346 /* Round if necessary so that SACKs cover only full MSSes
1347 * and/or the remaining small portion (if present)
1348 */
1349 if (pkt_len > mss) {
1350 unsigned int new_len = (pkt_len / mss) * mss;
1351 if (!in_sack && new_len < pkt_len)
1352 new_len += mss;
1353 pkt_len = new_len;
1354 }
1355
1356 if (pkt_len >= skb->len && !in_sack)
1357 return 0;
1358
1359 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1360 pkt_len, mss, GFP_ATOMIC);
1361 if (err < 0)
1362 return err;
1363 }
1364
1365 return in_sack;
1366 }
1367
1368 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1369 static u8 tcp_sacktag_one(struct sock *sk,
1370 struct tcp_sacktag_state *state, u8 sacked,
1371 u32 start_seq, u32 end_seq,
1372 int dup_sack, int pcount,
1373 u64 xmit_time)
1374 {
1375 struct tcp_sock *tp = tcp_sk(sk);
1376
1377 /* Account D-SACK for retransmitted packet. */
1378 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1379 if (tp->undo_marker && tp->undo_retrans > 0 &&
1380 after(end_seq, tp->undo_marker))
1381 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1382 if ((sacked & TCPCB_SACKED_ACKED) &&
1383 before(start_seq, state->reord))
1384 state->reord = start_seq;
1385 }
1386
1387 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1388 if (!after(end_seq, tp->snd_una))
1389 return sacked;
1390
1391 if (!(sacked & TCPCB_SACKED_ACKED)) {
1392 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1393
1394 if (sacked & TCPCB_SACKED_RETRANS) {
1395 /* If the segment is not tagged as lost,
1396 * we do not clear RETRANS, believing
1397 * that retransmission is still in flight.
1398 */
1399 if (sacked & TCPCB_LOST) {
1400 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1401 tp->lost_out -= pcount;
1402 tp->retrans_out -= pcount;
1403 }
1404 } else {
1405 if (!(sacked & TCPCB_RETRANS)) {
1406 /* New sack for not retransmitted frame,
1407 * which was in hole. It is reordering.
1408 */
1409 if (before(start_seq,
1410 tcp_highest_sack_seq(tp)) &&
1411 before(start_seq, state->reord))
1412 state->reord = start_seq;
1413
1414 if (!after(end_seq, tp->high_seq))
1415 state->flag |= FLAG_ORIG_SACK_ACKED;
1416 if (state->first_sackt == 0)
1417 state->first_sackt = xmit_time;
1418 state->last_sackt = xmit_time;
1419 }
1420
1421 if (sacked & TCPCB_LOST) {
1422 sacked &= ~TCPCB_LOST;
1423 tp->lost_out -= pcount;
1424 }
1425 }
1426
1427 sacked |= TCPCB_SACKED_ACKED;
1428 state->flag |= FLAG_DATA_SACKED;
1429 tp->sacked_out += pcount;
1430 /* Out-of-order packets delivered */
1431 state->sack_delivered += pcount;
1432
1433 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1434 if (tp->lost_skb_hint &&
1435 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1436 tp->lost_cnt_hint += pcount;
1437 }
1438
1439 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1440 * frames and clear it. undo_retrans is decreased above, L|R frames
1441 * are accounted above as well.
1442 */
1443 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1444 sacked &= ~TCPCB_SACKED_RETRANS;
1445 tp->retrans_out -= pcount;
1446 }
1447
1448 return sacked;
1449 }
1450
1451 /* Shift newly-SACKed bytes from this skb to the immediately previous
1452 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1453 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1454 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1455 struct sk_buff *skb,
1456 struct tcp_sacktag_state *state,
1457 unsigned int pcount, int shifted, int mss,
1458 bool dup_sack)
1459 {
1460 struct tcp_sock *tp = tcp_sk(sk);
1461 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1462 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1463
1464 BUG_ON(!pcount);
1465
1466 /* Adjust counters and hints for the newly sacked sequence
1467 * range but discard the return value since prev is already
1468 * marked. We must tag the range first because the seq
1469 * advancement below implicitly advances
1470 * tcp_highest_sack_seq() when skb is highest_sack.
1471 */
1472 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1473 start_seq, end_seq, dup_sack, pcount,
1474 tcp_skb_timestamp_us(skb));
1475 tcp_rate_skb_delivered(sk, skb, state->rate);
1476
1477 if (skb == tp->lost_skb_hint)
1478 tp->lost_cnt_hint += pcount;
1479
1480 TCP_SKB_CB(prev)->end_seq += shifted;
1481 TCP_SKB_CB(skb)->seq += shifted;
1482
1483 tcp_skb_pcount_add(prev, pcount);
1484 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1485 tcp_skb_pcount_add(skb, -pcount);
1486
1487 /* When we're adding to gso_segs == 1, gso_size will be zero,
1488 * in theory this shouldn't be necessary but as long as DSACK
1489 * code can come after this skb later on it's better to keep
1490 * setting gso_size to something.
1491 */
1492 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1493 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1494
1495 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1496 if (tcp_skb_pcount(skb) <= 1)
1497 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1498
1499 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1500 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1501
1502 if (skb->len > 0) {
1503 BUG_ON(!tcp_skb_pcount(skb));
1504 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1505 return false;
1506 }
1507
1508 /* Whole SKB was eaten :-) */
1509
1510 if (skb == tp->retransmit_skb_hint)
1511 tp->retransmit_skb_hint = prev;
1512 if (skb == tp->lost_skb_hint) {
1513 tp->lost_skb_hint = prev;
1514 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1515 }
1516
1517 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1518 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1519 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1520 TCP_SKB_CB(prev)->end_seq++;
1521
1522 if (skb == tcp_highest_sack(sk))
1523 tcp_advance_highest_sack(sk, skb);
1524
1525 tcp_skb_collapse_tstamp(prev, skb);
1526 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1527 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1528
1529 tcp_rtx_queue_unlink_and_free(skb, sk);
1530
1531 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1532
1533 return true;
1534 }
1535
1536 /* I wish gso_size would have a bit more sane initialization than
1537 * something-or-zero which complicates things
1538 */
tcp_skb_seglen(const struct sk_buff * skb)1539 static int tcp_skb_seglen(const struct sk_buff *skb)
1540 {
1541 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1542 }
1543
1544 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1545 static int skb_can_shift(const struct sk_buff *skb)
1546 {
1547 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1548 }
1549
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1550 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1551 int pcount, int shiftlen)
1552 {
1553 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1554 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1555 * to make sure not storing more than 65535 * 8 bytes per skb,
1556 * even if current MSS is bigger.
1557 */
1558 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1559 return 0;
1560 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1561 return 0;
1562 return skb_shift(to, from, shiftlen);
1563 }
1564
1565 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1566 * skb.
1567 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1568 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1569 struct tcp_sacktag_state *state,
1570 u32 start_seq, u32 end_seq,
1571 bool dup_sack)
1572 {
1573 struct tcp_sock *tp = tcp_sk(sk);
1574 struct sk_buff *prev;
1575 int mss;
1576 int pcount = 0;
1577 int len;
1578 int in_sack;
1579
1580 /* Normally R but no L won't result in plain S */
1581 if (!dup_sack &&
1582 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1583 goto fallback;
1584 if (!skb_can_shift(skb))
1585 goto fallback;
1586 /* This frame is about to be dropped (was ACKed). */
1587 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1588 goto fallback;
1589
1590 /* Can only happen with delayed DSACK + discard craziness */
1591 prev = skb_rb_prev(skb);
1592 if (!prev)
1593 goto fallback;
1594
1595 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1596 goto fallback;
1597
1598 if (!tcp_skb_can_collapse(prev, skb))
1599 goto fallback;
1600
1601 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1602 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1603
1604 if (in_sack) {
1605 len = skb->len;
1606 pcount = tcp_skb_pcount(skb);
1607 mss = tcp_skb_seglen(skb);
1608
1609 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1610 * drop this restriction as unnecessary
1611 */
1612 if (mss != tcp_skb_seglen(prev))
1613 goto fallback;
1614 } else {
1615 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1616 goto noop;
1617 /* CHECKME: This is non-MSS split case only?, this will
1618 * cause skipped skbs due to advancing loop btw, original
1619 * has that feature too
1620 */
1621 if (tcp_skb_pcount(skb) <= 1)
1622 goto noop;
1623
1624 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1625 if (!in_sack) {
1626 /* TODO: head merge to next could be attempted here
1627 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1628 * though it might not be worth of the additional hassle
1629 *
1630 * ...we can probably just fallback to what was done
1631 * previously. We could try merging non-SACKed ones
1632 * as well but it probably isn't going to buy off
1633 * because later SACKs might again split them, and
1634 * it would make skb timestamp tracking considerably
1635 * harder problem.
1636 */
1637 goto fallback;
1638 }
1639
1640 len = end_seq - TCP_SKB_CB(skb)->seq;
1641 BUG_ON(len < 0);
1642 BUG_ON(len > skb->len);
1643
1644 /* MSS boundaries should be honoured or else pcount will
1645 * severely break even though it makes things bit trickier.
1646 * Optimize common case to avoid most of the divides
1647 */
1648 mss = tcp_skb_mss(skb);
1649
1650 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1651 * drop this restriction as unnecessary
1652 */
1653 if (mss != tcp_skb_seglen(prev))
1654 goto fallback;
1655
1656 if (len == mss) {
1657 pcount = 1;
1658 } else if (len < mss) {
1659 goto noop;
1660 } else {
1661 pcount = len / mss;
1662 len = pcount * mss;
1663 }
1664 }
1665
1666 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1667 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1668 goto fallback;
1669
1670 if (!tcp_skb_shift(prev, skb, pcount, len))
1671 goto fallback;
1672 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1673 goto out;
1674
1675 /* Hole filled allows collapsing with the next as well, this is very
1676 * useful when hole on every nth skb pattern happens
1677 */
1678 skb = skb_rb_next(prev);
1679 if (!skb)
1680 goto out;
1681
1682 if (!skb_can_shift(skb) ||
1683 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1684 (mss != tcp_skb_seglen(skb)))
1685 goto out;
1686
1687 if (!tcp_skb_can_collapse(prev, skb))
1688 goto out;
1689 len = skb->len;
1690 pcount = tcp_skb_pcount(skb);
1691 if (tcp_skb_shift(prev, skb, pcount, len))
1692 tcp_shifted_skb(sk, prev, skb, state, pcount,
1693 len, mss, 0);
1694
1695 out:
1696 return prev;
1697
1698 noop:
1699 return skb;
1700
1701 fallback:
1702 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1703 return NULL;
1704 }
1705
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1706 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1707 struct tcp_sack_block *next_dup,
1708 struct tcp_sacktag_state *state,
1709 u32 start_seq, u32 end_seq,
1710 bool dup_sack_in)
1711 {
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 struct sk_buff *tmp;
1714
1715 skb_rbtree_walk_from(skb) {
1716 int in_sack = 0;
1717 bool dup_sack = dup_sack_in;
1718
1719 /* queue is in-order => we can short-circuit the walk early */
1720 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1721 break;
1722
1723 if (next_dup &&
1724 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1725 in_sack = tcp_match_skb_to_sack(sk, skb,
1726 next_dup->start_seq,
1727 next_dup->end_seq);
1728 if (in_sack > 0)
1729 dup_sack = true;
1730 }
1731
1732 /* skb reference here is a bit tricky to get right, since
1733 * shifting can eat and free both this skb and the next,
1734 * so not even _safe variant of the loop is enough.
1735 */
1736 if (in_sack <= 0) {
1737 tmp = tcp_shift_skb_data(sk, skb, state,
1738 start_seq, end_seq, dup_sack);
1739 if (tmp) {
1740 if (tmp != skb) {
1741 skb = tmp;
1742 continue;
1743 }
1744
1745 in_sack = 0;
1746 } else {
1747 in_sack = tcp_match_skb_to_sack(sk, skb,
1748 start_seq,
1749 end_seq);
1750 }
1751 }
1752
1753 if (unlikely(in_sack < 0))
1754 break;
1755
1756 if (in_sack) {
1757 TCP_SKB_CB(skb)->sacked =
1758 tcp_sacktag_one(sk,
1759 state,
1760 TCP_SKB_CB(skb)->sacked,
1761 TCP_SKB_CB(skb)->seq,
1762 TCP_SKB_CB(skb)->end_seq,
1763 dup_sack,
1764 tcp_skb_pcount(skb),
1765 tcp_skb_timestamp_us(skb));
1766 tcp_rate_skb_delivered(sk, skb, state->rate);
1767 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1768 list_del_init(&skb->tcp_tsorted_anchor);
1769
1770 if (!before(TCP_SKB_CB(skb)->seq,
1771 tcp_highest_sack_seq(tp)))
1772 tcp_advance_highest_sack(sk, skb);
1773 }
1774 }
1775 return skb;
1776 }
1777
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1778 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1779 {
1780 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1781 struct sk_buff *skb;
1782
1783 while (*p) {
1784 parent = *p;
1785 skb = rb_to_skb(parent);
1786 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1787 p = &parent->rb_left;
1788 continue;
1789 }
1790 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1791 p = &parent->rb_right;
1792 continue;
1793 }
1794 return skb;
1795 }
1796 return NULL;
1797 }
1798
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1799 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1800 u32 skip_to_seq)
1801 {
1802 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1803 return skb;
1804
1805 return tcp_sacktag_bsearch(sk, skip_to_seq);
1806 }
1807
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1808 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1809 struct sock *sk,
1810 struct tcp_sack_block *next_dup,
1811 struct tcp_sacktag_state *state,
1812 u32 skip_to_seq)
1813 {
1814 if (!next_dup)
1815 return skb;
1816
1817 if (before(next_dup->start_seq, skip_to_seq)) {
1818 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1819 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1820 next_dup->start_seq, next_dup->end_seq,
1821 1);
1822 }
1823
1824 return skb;
1825 }
1826
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1827 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1828 {
1829 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1830 }
1831
1832 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1833 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1834 u32 prior_snd_una, struct tcp_sacktag_state *state)
1835 {
1836 struct tcp_sock *tp = tcp_sk(sk);
1837 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1838 TCP_SKB_CB(ack_skb)->sacked);
1839 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1840 struct tcp_sack_block sp[TCP_NUM_SACKS];
1841 struct tcp_sack_block *cache;
1842 struct sk_buff *skb;
1843 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1844 int used_sacks;
1845 bool found_dup_sack = false;
1846 int i, j;
1847 int first_sack_index;
1848
1849 state->flag = 0;
1850 state->reord = tp->snd_nxt;
1851
1852 if (!tp->sacked_out)
1853 tcp_highest_sack_reset(sk);
1854
1855 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1856 num_sacks, prior_snd_una, state);
1857
1858 /* Eliminate too old ACKs, but take into
1859 * account more or less fresh ones, they can
1860 * contain valid SACK info.
1861 */
1862 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1863 return 0;
1864
1865 if (!tp->packets_out)
1866 goto out;
1867
1868 used_sacks = 0;
1869 first_sack_index = 0;
1870 for (i = 0; i < num_sacks; i++) {
1871 bool dup_sack = !i && found_dup_sack;
1872
1873 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1874 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1875
1876 if (!tcp_is_sackblock_valid(tp, dup_sack,
1877 sp[used_sacks].start_seq,
1878 sp[used_sacks].end_seq)) {
1879 int mib_idx;
1880
1881 if (dup_sack) {
1882 if (!tp->undo_marker)
1883 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1884 else
1885 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1886 } else {
1887 /* Don't count olds caused by ACK reordering */
1888 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1889 !after(sp[used_sacks].end_seq, tp->snd_una))
1890 continue;
1891 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1892 }
1893
1894 NET_INC_STATS(sock_net(sk), mib_idx);
1895 if (i == 0)
1896 first_sack_index = -1;
1897 continue;
1898 }
1899
1900 /* Ignore very old stuff early */
1901 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1902 if (i == 0)
1903 first_sack_index = -1;
1904 continue;
1905 }
1906
1907 used_sacks++;
1908 }
1909
1910 /* order SACK blocks to allow in order walk of the retrans queue */
1911 for (i = used_sacks - 1; i > 0; i--) {
1912 for (j = 0; j < i; j++) {
1913 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1914 swap(sp[j], sp[j + 1]);
1915
1916 /* Track where the first SACK block goes to */
1917 if (j == first_sack_index)
1918 first_sack_index = j + 1;
1919 }
1920 }
1921 }
1922
1923 state->mss_now = tcp_current_mss(sk);
1924 skb = NULL;
1925 i = 0;
1926
1927 if (!tp->sacked_out) {
1928 /* It's already past, so skip checking against it */
1929 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1930 } else {
1931 cache = tp->recv_sack_cache;
1932 /* Skip empty blocks in at head of the cache */
1933 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1934 !cache->end_seq)
1935 cache++;
1936 }
1937
1938 while (i < used_sacks) {
1939 u32 start_seq = sp[i].start_seq;
1940 u32 end_seq = sp[i].end_seq;
1941 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1942 struct tcp_sack_block *next_dup = NULL;
1943
1944 if (found_dup_sack && ((i + 1) == first_sack_index))
1945 next_dup = &sp[i + 1];
1946
1947 /* Skip too early cached blocks */
1948 while (tcp_sack_cache_ok(tp, cache) &&
1949 !before(start_seq, cache->end_seq))
1950 cache++;
1951
1952 /* Can skip some work by looking recv_sack_cache? */
1953 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1954 after(end_seq, cache->start_seq)) {
1955
1956 /* Head todo? */
1957 if (before(start_seq, cache->start_seq)) {
1958 skb = tcp_sacktag_skip(skb, sk, start_seq);
1959 skb = tcp_sacktag_walk(skb, sk, next_dup,
1960 state,
1961 start_seq,
1962 cache->start_seq,
1963 dup_sack);
1964 }
1965
1966 /* Rest of the block already fully processed? */
1967 if (!after(end_seq, cache->end_seq))
1968 goto advance_sp;
1969
1970 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1971 state,
1972 cache->end_seq);
1973
1974 /* ...tail remains todo... */
1975 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1976 /* ...but better entrypoint exists! */
1977 skb = tcp_highest_sack(sk);
1978 if (!skb)
1979 break;
1980 cache++;
1981 goto walk;
1982 }
1983
1984 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1985 /* Check overlap against next cached too (past this one already) */
1986 cache++;
1987 continue;
1988 }
1989
1990 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1991 skb = tcp_highest_sack(sk);
1992 if (!skb)
1993 break;
1994 }
1995 skb = tcp_sacktag_skip(skb, sk, start_seq);
1996
1997 walk:
1998 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1999 start_seq, end_seq, dup_sack);
2000
2001 advance_sp:
2002 i++;
2003 }
2004
2005 /* Clear the head of the cache sack blocks so we can skip it next time */
2006 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2007 tp->recv_sack_cache[i].start_seq = 0;
2008 tp->recv_sack_cache[i].end_seq = 0;
2009 }
2010 for (j = 0; j < used_sacks; j++)
2011 tp->recv_sack_cache[i++] = sp[j];
2012
2013 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2014 tcp_check_sack_reordering(sk, state->reord, 0);
2015
2016 tcp_verify_left_out(tp);
2017 out:
2018
2019 #if FASTRETRANS_DEBUG > 0
2020 WARN_ON((int)tp->sacked_out < 0);
2021 WARN_ON((int)tp->lost_out < 0);
2022 WARN_ON((int)tp->retrans_out < 0);
2023 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2024 #endif
2025 return state->flag;
2026 }
2027
2028 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2029 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2030 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2031 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2032 {
2033 u32 holes;
2034
2035 holes = max(tp->lost_out, 1U);
2036 holes = min(holes, tp->packets_out);
2037
2038 if ((tp->sacked_out + holes) > tp->packets_out) {
2039 tp->sacked_out = tp->packets_out - holes;
2040 return true;
2041 }
2042 return false;
2043 }
2044
2045 /* If we receive more dupacks than we expected counting segments
2046 * in assumption of absent reordering, interpret this as reordering.
2047 * The only another reason could be bug in receiver TCP.
2048 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2049 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2050 {
2051 struct tcp_sock *tp = tcp_sk(sk);
2052
2053 if (!tcp_limit_reno_sacked(tp))
2054 return;
2055
2056 tp->reordering = min_t(u32, tp->packets_out + addend,
2057 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2058 tp->reord_seen++;
2059 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2060 }
2061
2062 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2063
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2064 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2065 {
2066 if (num_dupack) {
2067 struct tcp_sock *tp = tcp_sk(sk);
2068 u32 prior_sacked = tp->sacked_out;
2069 s32 delivered;
2070
2071 tp->sacked_out += num_dupack;
2072 tcp_check_reno_reordering(sk, 0);
2073 delivered = tp->sacked_out - prior_sacked;
2074 if (delivered > 0)
2075 tcp_count_delivered(tp, delivered, ece_ack);
2076 tcp_verify_left_out(tp);
2077 }
2078 }
2079
2080 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2081
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2082 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2083 {
2084 struct tcp_sock *tp = tcp_sk(sk);
2085
2086 if (acked > 0) {
2087 /* One ACK acked hole. The rest eat duplicate ACKs. */
2088 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2089 ece_ack);
2090 if (acked - 1 >= tp->sacked_out)
2091 tp->sacked_out = 0;
2092 else
2093 tp->sacked_out -= acked - 1;
2094 }
2095 tcp_check_reno_reordering(sk, acked);
2096 tcp_verify_left_out(tp);
2097 }
2098
tcp_reset_reno_sack(struct tcp_sock * tp)2099 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2100 {
2101 tp->sacked_out = 0;
2102 }
2103
tcp_clear_retrans(struct tcp_sock * tp)2104 void tcp_clear_retrans(struct tcp_sock *tp)
2105 {
2106 tp->retrans_out = 0;
2107 tp->lost_out = 0;
2108 tp->undo_marker = 0;
2109 tp->undo_retrans = -1;
2110 tp->sacked_out = 0;
2111 tp->rto_stamp = 0;
2112 tp->total_rto = 0;
2113 tp->total_rto_recoveries = 0;
2114 tp->total_rto_time = 0;
2115 }
2116
tcp_init_undo(struct tcp_sock * tp)2117 static inline void tcp_init_undo(struct tcp_sock *tp)
2118 {
2119 tp->undo_marker = tp->snd_una;
2120
2121 /* Retransmission still in flight may cause DSACKs later. */
2122 /* First, account for regular retransmits in flight: */
2123 tp->undo_retrans = tp->retrans_out;
2124 /* Next, account for TLP retransmits in flight: */
2125 if (tp->tlp_high_seq && tp->tlp_retrans)
2126 tp->undo_retrans++;
2127 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2128 if (!tp->undo_retrans)
2129 tp->undo_retrans = -1;
2130 }
2131
tcp_is_rack(const struct sock * sk)2132 static bool tcp_is_rack(const struct sock *sk)
2133 {
2134 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2135 TCP_RACK_LOSS_DETECTION;
2136 }
2137
2138 /* If we detect SACK reneging, forget all SACK information
2139 * and reset tags completely, otherwise preserve SACKs. If receiver
2140 * dropped its ofo queue, we will know this due to reneging detection.
2141 */
tcp_timeout_mark_lost(struct sock * sk)2142 static void tcp_timeout_mark_lost(struct sock *sk)
2143 {
2144 struct tcp_sock *tp = tcp_sk(sk);
2145 struct sk_buff *skb, *head;
2146 bool is_reneg; /* is receiver reneging on SACKs? */
2147
2148 head = tcp_rtx_queue_head(sk);
2149 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2150 if (is_reneg) {
2151 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2152 tp->sacked_out = 0;
2153 /* Mark SACK reneging until we recover from this loss event. */
2154 tp->is_sack_reneg = 1;
2155 } else if (tcp_is_reno(tp)) {
2156 tcp_reset_reno_sack(tp);
2157 }
2158
2159 skb = head;
2160 skb_rbtree_walk_from(skb) {
2161 if (is_reneg)
2162 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2163 else if (tcp_is_rack(sk) && skb != head &&
2164 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2165 continue; /* Don't mark recently sent ones lost yet */
2166 tcp_mark_skb_lost(sk, skb);
2167 }
2168 tcp_verify_left_out(tp);
2169 tcp_clear_all_retrans_hints(tp);
2170 }
2171
2172 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2173 void tcp_enter_loss(struct sock *sk)
2174 {
2175 const struct inet_connection_sock *icsk = inet_csk(sk);
2176 struct tcp_sock *tp = tcp_sk(sk);
2177 struct net *net = sock_net(sk);
2178 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2179 u8 reordering;
2180
2181 tcp_timeout_mark_lost(sk);
2182
2183 /* Reduce ssthresh if it has not yet been made inside this window. */
2184 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2185 !after(tp->high_seq, tp->snd_una) ||
2186 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2187 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2188 tp->prior_cwnd = tcp_snd_cwnd(tp);
2189 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2190 tcp_ca_event(sk, CA_EVENT_LOSS);
2191 tcp_init_undo(tp);
2192 }
2193 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2194 tp->snd_cwnd_cnt = 0;
2195 tp->snd_cwnd_stamp = tcp_jiffies32;
2196
2197 /* Timeout in disordered state after receiving substantial DUPACKs
2198 * suggests that the degree of reordering is over-estimated.
2199 */
2200 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2201 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2202 tp->sacked_out >= reordering)
2203 tp->reordering = min_t(unsigned int, tp->reordering,
2204 reordering);
2205
2206 tcp_set_ca_state(sk, TCP_CA_Loss);
2207 tp->high_seq = tp->snd_nxt;
2208 tp->tlp_high_seq = 0;
2209 tcp_ecn_queue_cwr(tp);
2210
2211 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2212 * loss recovery is underway except recurring timeout(s) on
2213 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2214 */
2215 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2216 (new_recovery || icsk->icsk_retransmits) &&
2217 !inet_csk(sk)->icsk_mtup.probe_size;
2218 }
2219
2220 /* If ACK arrived pointing to a remembered SACK, it means that our
2221 * remembered SACKs do not reflect real state of receiver i.e.
2222 * receiver _host_ is heavily congested (or buggy).
2223 *
2224 * To avoid big spurious retransmission bursts due to transient SACK
2225 * scoreboard oddities that look like reneging, we give the receiver a
2226 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2227 * restore sanity to the SACK scoreboard. If the apparent reneging
2228 * persists until this RTO then we'll clear the SACK scoreboard.
2229 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2230 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2231 {
2232 if (*ack_flag & FLAG_SACK_RENEGING &&
2233 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2234 struct tcp_sock *tp = tcp_sk(sk);
2235 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2236 msecs_to_jiffies(10));
2237
2238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2239 delay, TCP_RTO_MAX);
2240 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2241 return true;
2242 }
2243 return false;
2244 }
2245
2246 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2247 * counter when SACK is enabled (without SACK, sacked_out is used for
2248 * that purpose).
2249 *
2250 * With reordering, holes may still be in flight, so RFC3517 recovery
2251 * uses pure sacked_out (total number of SACKed segments) even though
2252 * it violates the RFC that uses duplicate ACKs, often these are equal
2253 * but when e.g. out-of-window ACKs or packet duplication occurs,
2254 * they differ. Since neither occurs due to loss, TCP should really
2255 * ignore them.
2256 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2257 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2258 {
2259 return tp->sacked_out + 1;
2260 }
2261
2262 /* Linux NewReno/SACK/ECN state machine.
2263 * --------------------------------------
2264 *
2265 * "Open" Normal state, no dubious events, fast path.
2266 * "Disorder" In all the respects it is "Open",
2267 * but requires a bit more attention. It is entered when
2268 * we see some SACKs or dupacks. It is split of "Open"
2269 * mainly to move some processing from fast path to slow one.
2270 * "CWR" CWND was reduced due to some Congestion Notification event.
2271 * It can be ECN, ICMP source quench, local device congestion.
2272 * "Recovery" CWND was reduced, we are fast-retransmitting.
2273 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2274 *
2275 * tcp_fastretrans_alert() is entered:
2276 * - each incoming ACK, if state is not "Open"
2277 * - when arrived ACK is unusual, namely:
2278 * * SACK
2279 * * Duplicate ACK.
2280 * * ECN ECE.
2281 *
2282 * Counting packets in flight is pretty simple.
2283 *
2284 * in_flight = packets_out - left_out + retrans_out
2285 *
2286 * packets_out is SND.NXT-SND.UNA counted in packets.
2287 *
2288 * retrans_out is number of retransmitted segments.
2289 *
2290 * left_out is number of segments left network, but not ACKed yet.
2291 *
2292 * left_out = sacked_out + lost_out
2293 *
2294 * sacked_out: Packets, which arrived to receiver out of order
2295 * and hence not ACKed. With SACKs this number is simply
2296 * amount of SACKed data. Even without SACKs
2297 * it is easy to give pretty reliable estimate of this number,
2298 * counting duplicate ACKs.
2299 *
2300 * lost_out: Packets lost by network. TCP has no explicit
2301 * "loss notification" feedback from network (for now).
2302 * It means that this number can be only _guessed_.
2303 * Actually, it is the heuristics to predict lossage that
2304 * distinguishes different algorithms.
2305 *
2306 * F.e. after RTO, when all the queue is considered as lost,
2307 * lost_out = packets_out and in_flight = retrans_out.
2308 *
2309 * Essentially, we have now a few algorithms detecting
2310 * lost packets.
2311 *
2312 * If the receiver supports SACK:
2313 *
2314 * RFC6675/3517: It is the conventional algorithm. A packet is
2315 * considered lost if the number of higher sequence packets
2316 * SACKed is greater than or equal the DUPACK thoreshold
2317 * (reordering). This is implemented in tcp_mark_head_lost and
2318 * tcp_update_scoreboard.
2319 *
2320 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2321 * (2017-) that checks timing instead of counting DUPACKs.
2322 * Essentially a packet is considered lost if it's not S/ACKed
2323 * after RTT + reordering_window, where both metrics are
2324 * dynamically measured and adjusted. This is implemented in
2325 * tcp_rack_mark_lost.
2326 *
2327 * If the receiver does not support SACK:
2328 *
2329 * NewReno (RFC6582): in Recovery we assume that one segment
2330 * is lost (classic Reno). While we are in Recovery and
2331 * a partial ACK arrives, we assume that one more packet
2332 * is lost (NewReno). This heuristics are the same in NewReno
2333 * and SACK.
2334 *
2335 * Really tricky (and requiring careful tuning) part of algorithm
2336 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2337 * The first determines the moment _when_ we should reduce CWND and,
2338 * hence, slow down forward transmission. In fact, it determines the moment
2339 * when we decide that hole is caused by loss, rather than by a reorder.
2340 *
2341 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2342 * holes, caused by lost packets.
2343 *
2344 * And the most logically complicated part of algorithm is undo
2345 * heuristics. We detect false retransmits due to both too early
2346 * fast retransmit (reordering) and underestimated RTO, analyzing
2347 * timestamps and D-SACKs. When we detect that some segments were
2348 * retransmitted by mistake and CWND reduction was wrong, we undo
2349 * window reduction and abort recovery phase. This logic is hidden
2350 * inside several functions named tcp_try_undo_<something>.
2351 */
2352
2353 /* This function decides, when we should leave Disordered state
2354 * and enter Recovery phase, reducing congestion window.
2355 *
2356 * Main question: may we further continue forward transmission
2357 * with the same cwnd?
2358 */
tcp_time_to_recover(struct sock * sk,int flag)2359 static bool tcp_time_to_recover(struct sock *sk, int flag)
2360 {
2361 struct tcp_sock *tp = tcp_sk(sk);
2362
2363 /* Trick#1: The loss is proven. */
2364 if (tp->lost_out)
2365 return true;
2366
2367 /* Not-A-Trick#2 : Classic rule... */
2368 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2369 return true;
2370
2371 return false;
2372 }
2373
2374 /* Detect loss in event "A" above by marking head of queue up as lost.
2375 * For RFC3517 SACK, a segment is considered lost if it
2376 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2377 * the maximum SACKed segments to pass before reaching this limit.
2378 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2379 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2380 {
2381 struct tcp_sock *tp = tcp_sk(sk);
2382 struct sk_buff *skb;
2383 int cnt;
2384 /* Use SACK to deduce losses of new sequences sent during recovery */
2385 const u32 loss_high = tp->snd_nxt;
2386
2387 WARN_ON(packets > tp->packets_out);
2388 skb = tp->lost_skb_hint;
2389 if (skb) {
2390 /* Head already handled? */
2391 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2392 return;
2393 cnt = tp->lost_cnt_hint;
2394 } else {
2395 skb = tcp_rtx_queue_head(sk);
2396 cnt = 0;
2397 }
2398
2399 skb_rbtree_walk_from(skb) {
2400 /* TODO: do this better */
2401 /* this is not the most efficient way to do this... */
2402 tp->lost_skb_hint = skb;
2403 tp->lost_cnt_hint = cnt;
2404
2405 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2406 break;
2407
2408 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2409 cnt += tcp_skb_pcount(skb);
2410
2411 if (cnt > packets)
2412 break;
2413
2414 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2415 tcp_mark_skb_lost(sk, skb);
2416
2417 if (mark_head)
2418 break;
2419 }
2420 tcp_verify_left_out(tp);
2421 }
2422
2423 /* Account newly detected lost packet(s) */
2424
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2425 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2426 {
2427 struct tcp_sock *tp = tcp_sk(sk);
2428
2429 if (tcp_is_sack(tp)) {
2430 int sacked_upto = tp->sacked_out - tp->reordering;
2431 if (sacked_upto >= 0)
2432 tcp_mark_head_lost(sk, sacked_upto, 0);
2433 else if (fast_rexmit)
2434 tcp_mark_head_lost(sk, 1, 1);
2435 }
2436 }
2437
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2438 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2439 {
2440 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2441 before(tp->rx_opt.rcv_tsecr, when);
2442 }
2443
2444 /* skb is spurious retransmitted if the returned timestamp echo
2445 * reply is prior to the skb transmission time
2446 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2447 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2448 const struct sk_buff *skb)
2449 {
2450 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2451 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2452 }
2453
2454 /* Nothing was retransmitted or returned timestamp is less
2455 * than timestamp of the first retransmission.
2456 */
tcp_packet_delayed(const struct tcp_sock * tp)2457 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2458 {
2459 const struct sock *sk = (const struct sock *)tp;
2460
2461 if (tp->retrans_stamp &&
2462 tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2463 return true; /* got echoed TS before first retransmission */
2464
2465 /* Check if nothing was retransmitted (retrans_stamp==0), which may
2466 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2467 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2468 * retrans_stamp even if we had retransmitted the SYN.
2469 */
2470 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */
2471 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */
2472 return true; /* nothing was retransmitted */
2473
2474 return false;
2475 }
2476
2477 /* Undo procedures. */
2478
2479 /* We can clear retrans_stamp when there are no retransmissions in the
2480 * window. It would seem that it is trivially available for us in
2481 * tp->retrans_out, however, that kind of assumptions doesn't consider
2482 * what will happen if errors occur when sending retransmission for the
2483 * second time. ...It could the that such segment has only
2484 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2485 * the head skb is enough except for some reneging corner cases that
2486 * are not worth the effort.
2487 *
2488 * Main reason for all this complexity is the fact that connection dying
2489 * time now depends on the validity of the retrans_stamp, in particular,
2490 * that successive retransmissions of a segment must not advance
2491 * retrans_stamp under any conditions.
2492 */
tcp_any_retrans_done(const struct sock * sk)2493 static bool tcp_any_retrans_done(const struct sock *sk)
2494 {
2495 const struct tcp_sock *tp = tcp_sk(sk);
2496 struct sk_buff *skb;
2497
2498 if (tp->retrans_out)
2499 return true;
2500
2501 skb = tcp_rtx_queue_head(sk);
2502 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2503 return true;
2504
2505 return false;
2506 }
2507
2508 /* If loss recovery is finished and there are no retransmits out in the
2509 * network, then we clear retrans_stamp so that upon the next loss recovery
2510 * retransmits_timed_out() and timestamp-undo are using the correct value.
2511 */
tcp_retrans_stamp_cleanup(struct sock * sk)2512 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2513 {
2514 if (!tcp_any_retrans_done(sk))
2515 tcp_sk(sk)->retrans_stamp = 0;
2516 }
2517
DBGUNDO(struct sock * sk,const char * msg)2518 static void DBGUNDO(struct sock *sk, const char *msg)
2519 {
2520 #if FASTRETRANS_DEBUG > 1
2521 struct tcp_sock *tp = tcp_sk(sk);
2522 struct inet_sock *inet = inet_sk(sk);
2523
2524 if (sk->sk_family == AF_INET) {
2525 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2526 msg,
2527 &inet->inet_daddr, ntohs(inet->inet_dport),
2528 tcp_snd_cwnd(tp), tcp_left_out(tp),
2529 tp->snd_ssthresh, tp->prior_ssthresh,
2530 tp->packets_out);
2531 }
2532 #if IS_ENABLED(CONFIG_IPV6)
2533 else if (sk->sk_family == AF_INET6) {
2534 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2535 msg,
2536 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2537 tcp_snd_cwnd(tp), tcp_left_out(tp),
2538 tp->snd_ssthresh, tp->prior_ssthresh,
2539 tp->packets_out);
2540 }
2541 #endif
2542 #endif
2543 }
2544
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2545 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2546 {
2547 struct tcp_sock *tp = tcp_sk(sk);
2548
2549 if (unmark_loss) {
2550 struct sk_buff *skb;
2551
2552 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2553 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2554 }
2555 tp->lost_out = 0;
2556 tcp_clear_all_retrans_hints(tp);
2557 }
2558
2559 if (tp->prior_ssthresh) {
2560 const struct inet_connection_sock *icsk = inet_csk(sk);
2561
2562 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2563
2564 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2565 tp->snd_ssthresh = tp->prior_ssthresh;
2566 tcp_ecn_withdraw_cwr(tp);
2567 }
2568 }
2569 tp->snd_cwnd_stamp = tcp_jiffies32;
2570 tp->undo_marker = 0;
2571 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2572 }
2573
tcp_may_undo(const struct tcp_sock * tp)2574 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2575 {
2576 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2577 }
2578
tcp_is_non_sack_preventing_reopen(struct sock * sk)2579 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2580 {
2581 struct tcp_sock *tp = tcp_sk(sk);
2582
2583 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2584 /* Hold old state until something *above* high_seq
2585 * is ACKed. For Reno it is MUST to prevent false
2586 * fast retransmits (RFC2582). SACK TCP is safe. */
2587 if (!tcp_any_retrans_done(sk))
2588 tp->retrans_stamp = 0;
2589 return true;
2590 }
2591 return false;
2592 }
2593
2594 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2595 static bool tcp_try_undo_recovery(struct sock *sk)
2596 {
2597 struct tcp_sock *tp = tcp_sk(sk);
2598
2599 if (tcp_may_undo(tp)) {
2600 int mib_idx;
2601
2602 /* Happy end! We did not retransmit anything
2603 * or our original transmission succeeded.
2604 */
2605 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2606 tcp_undo_cwnd_reduction(sk, false);
2607 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2608 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2609 else
2610 mib_idx = LINUX_MIB_TCPFULLUNDO;
2611
2612 NET_INC_STATS(sock_net(sk), mib_idx);
2613 } else if (tp->rack.reo_wnd_persist) {
2614 tp->rack.reo_wnd_persist--;
2615 }
2616 if (tcp_is_non_sack_preventing_reopen(sk))
2617 return true;
2618 tcp_set_ca_state(sk, TCP_CA_Open);
2619 tp->is_sack_reneg = 0;
2620 return false;
2621 }
2622
2623 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2624 static bool tcp_try_undo_dsack(struct sock *sk)
2625 {
2626 struct tcp_sock *tp = tcp_sk(sk);
2627
2628 if (tp->undo_marker && !tp->undo_retrans) {
2629 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2630 tp->rack.reo_wnd_persist + 1);
2631 DBGUNDO(sk, "D-SACK");
2632 tcp_undo_cwnd_reduction(sk, false);
2633 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2634 return true;
2635 }
2636 return false;
2637 }
2638
2639 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2640 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2641 {
2642 struct tcp_sock *tp = tcp_sk(sk);
2643
2644 if (frto_undo || tcp_may_undo(tp)) {
2645 tcp_undo_cwnd_reduction(sk, true);
2646
2647 DBGUNDO(sk, "partial loss");
2648 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2649 if (frto_undo)
2650 NET_INC_STATS(sock_net(sk),
2651 LINUX_MIB_TCPSPURIOUSRTOS);
2652 inet_csk(sk)->icsk_retransmits = 0;
2653 if (tcp_is_non_sack_preventing_reopen(sk))
2654 return true;
2655 if (frto_undo || tcp_is_sack(tp)) {
2656 tcp_set_ca_state(sk, TCP_CA_Open);
2657 tp->is_sack_reneg = 0;
2658 }
2659 return true;
2660 }
2661 return false;
2662 }
2663
2664 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2665 * It computes the number of packets to send (sndcnt) based on packets newly
2666 * delivered:
2667 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2668 * cwnd reductions across a full RTT.
2669 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2670 * But when SND_UNA is acked without further losses,
2671 * slow starts cwnd up to ssthresh to speed up the recovery.
2672 */
tcp_init_cwnd_reduction(struct sock * sk)2673 static void tcp_init_cwnd_reduction(struct sock *sk)
2674 {
2675 struct tcp_sock *tp = tcp_sk(sk);
2676
2677 tp->high_seq = tp->snd_nxt;
2678 tp->tlp_high_seq = 0;
2679 tp->snd_cwnd_cnt = 0;
2680 tp->prior_cwnd = tcp_snd_cwnd(tp);
2681 tp->prr_delivered = 0;
2682 tp->prr_out = 0;
2683 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2684 tcp_ecn_queue_cwr(tp);
2685 }
2686
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2687 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2688 {
2689 struct tcp_sock *tp = tcp_sk(sk);
2690 int sndcnt = 0;
2691 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2692
2693 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2694 return;
2695
2696 tp->prr_delivered += newly_acked_sacked;
2697 if (delta < 0) {
2698 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2699 tp->prior_cwnd - 1;
2700 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2701 } else {
2702 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2703 newly_acked_sacked);
2704 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2705 sndcnt++;
2706 sndcnt = min(delta, sndcnt);
2707 }
2708 /* Force a fast retransmit upon entering fast recovery */
2709 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2710 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2711 }
2712
tcp_end_cwnd_reduction(struct sock * sk)2713 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2714 {
2715 struct tcp_sock *tp = tcp_sk(sk);
2716
2717 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2718 return;
2719
2720 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2721 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2722 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2723 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2724 tp->snd_cwnd_stamp = tcp_jiffies32;
2725 }
2726 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2727 }
2728
2729 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2730 void tcp_enter_cwr(struct sock *sk)
2731 {
2732 struct tcp_sock *tp = tcp_sk(sk);
2733
2734 tp->prior_ssthresh = 0;
2735 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2736 tp->undo_marker = 0;
2737 tcp_init_cwnd_reduction(sk);
2738 tcp_set_ca_state(sk, TCP_CA_CWR);
2739 }
2740 }
2741 EXPORT_SYMBOL(tcp_enter_cwr);
2742
tcp_try_keep_open(struct sock * sk)2743 static void tcp_try_keep_open(struct sock *sk)
2744 {
2745 struct tcp_sock *tp = tcp_sk(sk);
2746 int state = TCP_CA_Open;
2747
2748 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2749 state = TCP_CA_Disorder;
2750
2751 if (inet_csk(sk)->icsk_ca_state != state) {
2752 tcp_set_ca_state(sk, state);
2753 tp->high_seq = tp->snd_nxt;
2754 }
2755 }
2756
tcp_try_to_open(struct sock * sk,int flag)2757 static void tcp_try_to_open(struct sock *sk, int flag)
2758 {
2759 struct tcp_sock *tp = tcp_sk(sk);
2760
2761 tcp_verify_left_out(tp);
2762
2763 if (!tcp_any_retrans_done(sk))
2764 tp->retrans_stamp = 0;
2765
2766 if (flag & FLAG_ECE)
2767 tcp_enter_cwr(sk);
2768
2769 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2770 tcp_try_keep_open(sk);
2771 }
2772 }
2773
tcp_mtup_probe_failed(struct sock * sk)2774 static void tcp_mtup_probe_failed(struct sock *sk)
2775 {
2776 struct inet_connection_sock *icsk = inet_csk(sk);
2777
2778 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2779 icsk->icsk_mtup.probe_size = 0;
2780 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2781 }
2782
tcp_mtup_probe_success(struct sock * sk)2783 static void tcp_mtup_probe_success(struct sock *sk)
2784 {
2785 struct tcp_sock *tp = tcp_sk(sk);
2786 struct inet_connection_sock *icsk = inet_csk(sk);
2787 u64 val;
2788
2789 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2790
2791 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2792 do_div(val, icsk->icsk_mtup.probe_size);
2793 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2794 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2795
2796 tp->snd_cwnd_cnt = 0;
2797 tp->snd_cwnd_stamp = tcp_jiffies32;
2798 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2799
2800 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2801 icsk->icsk_mtup.probe_size = 0;
2802 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2804 }
2805
2806 /* Sometimes we deduce that packets have been dropped due to reasons other than
2807 * congestion, like path MTU reductions or failed client TFO attempts. In these
2808 * cases we call this function to retransmit as many packets as cwnd allows,
2809 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2810 * non-zero value (and may do so in a later calling context due to TSQ), we
2811 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2812 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2813 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2814 * prematurely).
2815 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2816 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2817 {
2818 const struct inet_connection_sock *icsk = inet_csk(sk);
2819 struct tcp_sock *tp = tcp_sk(sk);
2820
2821 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2822 tp->high_seq = tp->snd_nxt;
2823 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2824 tp->prior_ssthresh = 0;
2825 tp->undo_marker = 0;
2826 tcp_set_ca_state(sk, TCP_CA_Loss);
2827 }
2828 tcp_xmit_retransmit_queue(sk);
2829 }
2830
2831 /* Do a simple retransmit without using the backoff mechanisms in
2832 * tcp_timer. This is used for path mtu discovery.
2833 * The socket is already locked here.
2834 */
tcp_simple_retransmit(struct sock * sk)2835 void tcp_simple_retransmit(struct sock *sk)
2836 {
2837 struct tcp_sock *tp = tcp_sk(sk);
2838 struct sk_buff *skb;
2839 int mss;
2840
2841 /* A fastopen SYN request is stored as two separate packets within
2842 * the retransmit queue, this is done by tcp_send_syn_data().
2843 * As a result simply checking the MSS of the frames in the queue
2844 * will not work for the SYN packet.
2845 *
2846 * Us being here is an indication of a path MTU issue so we can
2847 * assume that the fastopen SYN was lost and just mark all the
2848 * frames in the retransmit queue as lost. We will use an MSS of
2849 * -1 to mark all frames as lost, otherwise compute the current MSS.
2850 */
2851 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2852 mss = -1;
2853 else
2854 mss = tcp_current_mss(sk);
2855
2856 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2857 if (tcp_skb_seglen(skb) > mss)
2858 tcp_mark_skb_lost(sk, skb);
2859 }
2860
2861 tcp_clear_retrans_hints_partial(tp);
2862
2863 if (!tp->lost_out)
2864 return;
2865
2866 if (tcp_is_reno(tp))
2867 tcp_limit_reno_sacked(tp);
2868
2869 tcp_verify_left_out(tp);
2870
2871 /* Don't muck with the congestion window here.
2872 * Reason is that we do not increase amount of _data_
2873 * in network, but units changed and effective
2874 * cwnd/ssthresh really reduced now.
2875 */
2876 tcp_non_congestion_loss_retransmit(sk);
2877 }
2878 EXPORT_SYMBOL(tcp_simple_retransmit);
2879
tcp_enter_recovery(struct sock * sk,bool ece_ack)2880 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2881 {
2882 struct tcp_sock *tp = tcp_sk(sk);
2883 int mib_idx;
2884
2885 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2886 tcp_retrans_stamp_cleanup(sk);
2887
2888 if (tcp_is_reno(tp))
2889 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2890 else
2891 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2892
2893 NET_INC_STATS(sock_net(sk), mib_idx);
2894
2895 tp->prior_ssthresh = 0;
2896 tcp_init_undo(tp);
2897
2898 if (!tcp_in_cwnd_reduction(sk)) {
2899 if (!ece_ack)
2900 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2901 tcp_init_cwnd_reduction(sk);
2902 }
2903 tcp_set_ca_state(sk, TCP_CA_Recovery);
2904 }
2905
tcp_update_rto_time(struct tcp_sock * tp)2906 static void tcp_update_rto_time(struct tcp_sock *tp)
2907 {
2908 if (tp->rto_stamp) {
2909 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp;
2910 tp->rto_stamp = 0;
2911 }
2912 }
2913
2914 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2915 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2916 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2917 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2918 int *rexmit)
2919 {
2920 struct tcp_sock *tp = tcp_sk(sk);
2921 bool recovered = !before(tp->snd_una, tp->high_seq);
2922
2923 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2924 tcp_try_undo_loss(sk, false))
2925 return;
2926
2927 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2928 /* Step 3.b. A timeout is spurious if not all data are
2929 * lost, i.e., never-retransmitted data are (s)acked.
2930 */
2931 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2932 tcp_try_undo_loss(sk, true))
2933 return;
2934
2935 if (after(tp->snd_nxt, tp->high_seq)) {
2936 if (flag & FLAG_DATA_SACKED || num_dupack)
2937 tp->frto = 0; /* Step 3.a. loss was real */
2938 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2939 tp->high_seq = tp->snd_nxt;
2940 /* Step 2.b. Try send new data (but deferred until cwnd
2941 * is updated in tcp_ack()). Otherwise fall back to
2942 * the conventional recovery.
2943 */
2944 if (!tcp_write_queue_empty(sk) &&
2945 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2946 *rexmit = REXMIT_NEW;
2947 return;
2948 }
2949 tp->frto = 0;
2950 }
2951 }
2952
2953 if (recovered) {
2954 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2955 tcp_try_undo_recovery(sk);
2956 return;
2957 }
2958 if (tcp_is_reno(tp)) {
2959 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2960 * delivered. Lower inflight to clock out (re)transmissions.
2961 */
2962 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2963 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2964 else if (flag & FLAG_SND_UNA_ADVANCED)
2965 tcp_reset_reno_sack(tp);
2966 }
2967 *rexmit = REXMIT_LOST;
2968 }
2969
tcp_force_fast_retransmit(struct sock * sk)2970 static bool tcp_force_fast_retransmit(struct sock *sk)
2971 {
2972 struct tcp_sock *tp = tcp_sk(sk);
2973
2974 return after(tcp_highest_sack_seq(tp),
2975 tp->snd_una + tp->reordering * tp->mss_cache);
2976 }
2977
2978 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2979 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2980 bool *do_lost)
2981 {
2982 struct tcp_sock *tp = tcp_sk(sk);
2983
2984 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2985 /* Plain luck! Hole if filled with delayed
2986 * packet, rather than with a retransmit. Check reordering.
2987 */
2988 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2989
2990 /* We are getting evidence that the reordering degree is higher
2991 * than we realized. If there are no retransmits out then we
2992 * can undo. Otherwise we clock out new packets but do not
2993 * mark more packets lost or retransmit more.
2994 */
2995 if (tp->retrans_out)
2996 return true;
2997
2998 if (!tcp_any_retrans_done(sk))
2999 tp->retrans_stamp = 0;
3000
3001 DBGUNDO(sk, "partial recovery");
3002 tcp_undo_cwnd_reduction(sk, true);
3003 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3004 tcp_try_keep_open(sk);
3005 } else {
3006 /* Partial ACK arrived. Force fast retransmit. */
3007 *do_lost = tcp_force_fast_retransmit(sk);
3008 }
3009 return false;
3010 }
3011
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3012 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3013 {
3014 struct tcp_sock *tp = tcp_sk(sk);
3015
3016 if (tcp_rtx_queue_empty(sk))
3017 return;
3018
3019 if (unlikely(tcp_is_reno(tp))) {
3020 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3021 } else if (tcp_is_rack(sk)) {
3022 u32 prior_retrans = tp->retrans_out;
3023
3024 if (tcp_rack_mark_lost(sk))
3025 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3026 if (prior_retrans > tp->retrans_out)
3027 *ack_flag |= FLAG_LOST_RETRANS;
3028 }
3029 }
3030
3031 /* Process an event, which can update packets-in-flight not trivially.
3032 * Main goal of this function is to calculate new estimate for left_out,
3033 * taking into account both packets sitting in receiver's buffer and
3034 * packets lost by network.
3035 *
3036 * Besides that it updates the congestion state when packet loss or ECN
3037 * is detected. But it does not reduce the cwnd, it is done by the
3038 * congestion control later.
3039 *
3040 * It does _not_ decide what to send, it is made in function
3041 * tcp_xmit_retransmit_queue().
3042 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3043 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3044 int num_dupack, int *ack_flag, int *rexmit)
3045 {
3046 struct inet_connection_sock *icsk = inet_csk(sk);
3047 struct tcp_sock *tp = tcp_sk(sk);
3048 int fast_rexmit = 0, flag = *ack_flag;
3049 bool ece_ack = flag & FLAG_ECE;
3050 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3051 tcp_force_fast_retransmit(sk));
3052
3053 if (!tp->packets_out && tp->sacked_out)
3054 tp->sacked_out = 0;
3055
3056 /* Now state machine starts.
3057 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3058 if (ece_ack)
3059 tp->prior_ssthresh = 0;
3060
3061 /* B. In all the states check for reneging SACKs. */
3062 if (tcp_check_sack_reneging(sk, ack_flag))
3063 return;
3064
3065 /* C. Check consistency of the current state. */
3066 tcp_verify_left_out(tp);
3067
3068 /* D. Check state exit conditions. State can be terminated
3069 * when high_seq is ACKed. */
3070 if (icsk->icsk_ca_state == TCP_CA_Open) {
3071 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3072 tp->retrans_stamp = 0;
3073 } else if (!before(tp->snd_una, tp->high_seq)) {
3074 switch (icsk->icsk_ca_state) {
3075 case TCP_CA_CWR:
3076 /* CWR is to be held something *above* high_seq
3077 * is ACKed for CWR bit to reach receiver. */
3078 if (tp->snd_una != tp->high_seq) {
3079 tcp_end_cwnd_reduction(sk);
3080 tcp_set_ca_state(sk, TCP_CA_Open);
3081 }
3082 break;
3083
3084 case TCP_CA_Recovery:
3085 if (tcp_is_reno(tp))
3086 tcp_reset_reno_sack(tp);
3087 if (tcp_try_undo_recovery(sk))
3088 return;
3089 tcp_end_cwnd_reduction(sk);
3090 break;
3091 }
3092 }
3093
3094 /* E. Process state. */
3095 switch (icsk->icsk_ca_state) {
3096 case TCP_CA_Recovery:
3097 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3098 if (tcp_is_reno(tp))
3099 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3100 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3101 return;
3102
3103 if (tcp_try_undo_dsack(sk))
3104 tcp_try_to_open(sk, flag);
3105
3106 tcp_identify_packet_loss(sk, ack_flag);
3107 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3108 if (!tcp_time_to_recover(sk, flag))
3109 return;
3110 /* Undo reverts the recovery state. If loss is evident,
3111 * starts a new recovery (e.g. reordering then loss);
3112 */
3113 tcp_enter_recovery(sk, ece_ack);
3114 }
3115 break;
3116 case TCP_CA_Loss:
3117 tcp_process_loss(sk, flag, num_dupack, rexmit);
3118 if (icsk->icsk_ca_state != TCP_CA_Loss)
3119 tcp_update_rto_time(tp);
3120 tcp_identify_packet_loss(sk, ack_flag);
3121 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3122 (*ack_flag & FLAG_LOST_RETRANS)))
3123 return;
3124 /* Change state if cwnd is undone or retransmits are lost */
3125 fallthrough;
3126 default:
3127 if (tcp_is_reno(tp)) {
3128 if (flag & FLAG_SND_UNA_ADVANCED)
3129 tcp_reset_reno_sack(tp);
3130 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3131 }
3132
3133 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3134 tcp_try_undo_dsack(sk);
3135
3136 tcp_identify_packet_loss(sk, ack_flag);
3137 if (!tcp_time_to_recover(sk, flag)) {
3138 tcp_try_to_open(sk, flag);
3139 return;
3140 }
3141
3142 /* MTU probe failure: don't reduce cwnd */
3143 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3144 icsk->icsk_mtup.probe_size &&
3145 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3146 tcp_mtup_probe_failed(sk);
3147 /* Restores the reduction we did in tcp_mtup_probe() */
3148 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3149 tcp_simple_retransmit(sk);
3150 return;
3151 }
3152
3153 /* Otherwise enter Recovery state */
3154 tcp_enter_recovery(sk, ece_ack);
3155 fast_rexmit = 1;
3156 }
3157
3158 if (!tcp_is_rack(sk) && do_lost)
3159 tcp_update_scoreboard(sk, fast_rexmit);
3160 *rexmit = REXMIT_LOST;
3161 }
3162
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3163 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3164 {
3165 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3166 struct tcp_sock *tp = tcp_sk(sk);
3167
3168 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3169 /* If the remote keeps returning delayed ACKs, eventually
3170 * the min filter would pick it up and overestimate the
3171 * prop. delay when it expires. Skip suspected delayed ACKs.
3172 */
3173 return;
3174 }
3175 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3176 rtt_us ? : jiffies_to_usecs(1));
3177 }
3178
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3179 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3180 long seq_rtt_us, long sack_rtt_us,
3181 long ca_rtt_us, struct rate_sample *rs)
3182 {
3183 const struct tcp_sock *tp = tcp_sk(sk);
3184
3185 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3186 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3187 * Karn's algorithm forbids taking RTT if some retransmitted data
3188 * is acked (RFC6298).
3189 */
3190 if (seq_rtt_us < 0)
3191 seq_rtt_us = sack_rtt_us;
3192
3193 /* RTTM Rule: A TSecr value received in a segment is used to
3194 * update the averaged RTT measurement only if the segment
3195 * acknowledges some new data, i.e., only if it advances the
3196 * left edge of the send window.
3197 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3198 */
3199 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3200 flag & FLAG_ACKED) {
3201 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3202
3203 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3204 if (!delta)
3205 delta = 1;
3206 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3207 ca_rtt_us = seq_rtt_us;
3208 }
3209 }
3210 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3211 if (seq_rtt_us < 0)
3212 return false;
3213
3214 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3215 * always taken together with ACK, SACK, or TS-opts. Any negative
3216 * values will be skipped with the seq_rtt_us < 0 check above.
3217 */
3218 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3219 tcp_rtt_estimator(sk, seq_rtt_us);
3220 tcp_set_rto(sk);
3221
3222 /* RFC6298: only reset backoff on valid RTT measurement. */
3223 inet_csk(sk)->icsk_backoff = 0;
3224 return true;
3225 }
3226
3227 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3228 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3229 {
3230 struct rate_sample rs;
3231 long rtt_us = -1L;
3232
3233 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3234 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3235
3236 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3237 }
3238
3239
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3240 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3241 {
3242 const struct inet_connection_sock *icsk = inet_csk(sk);
3243
3244 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3245 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3246 }
3247
3248 /* Restart timer after forward progress on connection.
3249 * RFC2988 recommends to restart timer to now+rto.
3250 */
tcp_rearm_rto(struct sock * sk)3251 void tcp_rearm_rto(struct sock *sk)
3252 {
3253 const struct inet_connection_sock *icsk = inet_csk(sk);
3254 struct tcp_sock *tp = tcp_sk(sk);
3255
3256 /* If the retrans timer is currently being used by Fast Open
3257 * for SYN-ACK retrans purpose, stay put.
3258 */
3259 if (rcu_access_pointer(tp->fastopen_rsk))
3260 return;
3261
3262 if (!tp->packets_out) {
3263 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3264 } else {
3265 u32 rto = inet_csk(sk)->icsk_rto;
3266 /* Offset the time elapsed after installing regular RTO */
3267 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3268 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3269 s64 delta_us = tcp_rto_delta_us(sk);
3270 /* delta_us may not be positive if the socket is locked
3271 * when the retrans timer fires and is rescheduled.
3272 */
3273 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3274 }
3275 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3276 TCP_RTO_MAX);
3277 }
3278 }
3279
3280 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3281 static void tcp_set_xmit_timer(struct sock *sk)
3282 {
3283 if (!tcp_schedule_loss_probe(sk, true))
3284 tcp_rearm_rto(sk);
3285 }
3286
3287 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3288 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3289 {
3290 struct tcp_sock *tp = tcp_sk(sk);
3291 u32 packets_acked;
3292
3293 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3294
3295 packets_acked = tcp_skb_pcount(skb);
3296 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3297 return 0;
3298 packets_acked -= tcp_skb_pcount(skb);
3299
3300 if (packets_acked) {
3301 BUG_ON(tcp_skb_pcount(skb) == 0);
3302 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3303 }
3304
3305 return packets_acked;
3306 }
3307
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3308 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3309 const struct sk_buff *ack_skb, u32 prior_snd_una)
3310 {
3311 const struct skb_shared_info *shinfo;
3312
3313 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3314 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3315 return;
3316
3317 shinfo = skb_shinfo(skb);
3318 if (!before(shinfo->tskey, prior_snd_una) &&
3319 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3320 tcp_skb_tsorted_save(skb) {
3321 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3322 } tcp_skb_tsorted_restore(skb);
3323 }
3324 }
3325
3326 /* Remove acknowledged frames from the retransmission queue. If our packet
3327 * is before the ack sequence we can discard it as it's confirmed to have
3328 * arrived at the other end.
3329 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3330 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3331 u32 prior_fack, u32 prior_snd_una,
3332 struct tcp_sacktag_state *sack, bool ece_ack)
3333 {
3334 const struct inet_connection_sock *icsk = inet_csk(sk);
3335 u64 first_ackt, last_ackt;
3336 struct tcp_sock *tp = tcp_sk(sk);
3337 u32 prior_sacked = tp->sacked_out;
3338 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3339 struct sk_buff *skb, *next;
3340 bool fully_acked = true;
3341 long sack_rtt_us = -1L;
3342 long seq_rtt_us = -1L;
3343 long ca_rtt_us = -1L;
3344 u32 pkts_acked = 0;
3345 bool rtt_update;
3346 int flag = 0;
3347
3348 first_ackt = 0;
3349
3350 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3351 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3352 const u32 start_seq = scb->seq;
3353 u8 sacked = scb->sacked;
3354 u32 acked_pcount;
3355
3356 /* Determine how many packets and what bytes were acked, tso and else */
3357 if (after(scb->end_seq, tp->snd_una)) {
3358 if (tcp_skb_pcount(skb) == 1 ||
3359 !after(tp->snd_una, scb->seq))
3360 break;
3361
3362 acked_pcount = tcp_tso_acked(sk, skb);
3363 if (!acked_pcount)
3364 break;
3365 fully_acked = false;
3366 } else {
3367 acked_pcount = tcp_skb_pcount(skb);
3368 }
3369
3370 if (unlikely(sacked & TCPCB_RETRANS)) {
3371 if (sacked & TCPCB_SACKED_RETRANS)
3372 tp->retrans_out -= acked_pcount;
3373 flag |= FLAG_RETRANS_DATA_ACKED;
3374 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3375 last_ackt = tcp_skb_timestamp_us(skb);
3376 WARN_ON_ONCE(last_ackt == 0);
3377 if (!first_ackt)
3378 first_ackt = last_ackt;
3379
3380 if (before(start_seq, reord))
3381 reord = start_seq;
3382 if (!after(scb->end_seq, tp->high_seq))
3383 flag |= FLAG_ORIG_SACK_ACKED;
3384 }
3385
3386 if (sacked & TCPCB_SACKED_ACKED) {
3387 tp->sacked_out -= acked_pcount;
3388 } else if (tcp_is_sack(tp)) {
3389 tcp_count_delivered(tp, acked_pcount, ece_ack);
3390 if (!tcp_skb_spurious_retrans(tp, skb))
3391 tcp_rack_advance(tp, sacked, scb->end_seq,
3392 tcp_skb_timestamp_us(skb));
3393 }
3394 if (sacked & TCPCB_LOST)
3395 tp->lost_out -= acked_pcount;
3396
3397 tp->packets_out -= acked_pcount;
3398 pkts_acked += acked_pcount;
3399 tcp_rate_skb_delivered(sk, skb, sack->rate);
3400
3401 /* Initial outgoing SYN's get put onto the write_queue
3402 * just like anything else we transmit. It is not
3403 * true data, and if we misinform our callers that
3404 * this ACK acks real data, we will erroneously exit
3405 * connection startup slow start one packet too
3406 * quickly. This is severely frowned upon behavior.
3407 */
3408 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3409 flag |= FLAG_DATA_ACKED;
3410 } else {
3411 flag |= FLAG_SYN_ACKED;
3412 tp->retrans_stamp = 0;
3413 }
3414
3415 if (!fully_acked)
3416 break;
3417
3418 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3419
3420 next = skb_rb_next(skb);
3421 if (unlikely(skb == tp->retransmit_skb_hint))
3422 tp->retransmit_skb_hint = NULL;
3423 if (unlikely(skb == tp->lost_skb_hint))
3424 tp->lost_skb_hint = NULL;
3425 tcp_highest_sack_replace(sk, skb, next);
3426 tcp_rtx_queue_unlink_and_free(skb, sk);
3427 }
3428
3429 if (!skb)
3430 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3431
3432 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3433 tp->snd_up = tp->snd_una;
3434
3435 if (skb) {
3436 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3437 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3438 flag |= FLAG_SACK_RENEGING;
3439 }
3440
3441 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3442 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3443 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3444
3445 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3446 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3447 sack->rate->prior_delivered + 1 == tp->delivered &&
3448 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3449 /* Conservatively mark a delayed ACK. It's typically
3450 * from a lone runt packet over the round trip to
3451 * a receiver w/o out-of-order or CE events.
3452 */
3453 flag |= FLAG_ACK_MAYBE_DELAYED;
3454 }
3455 }
3456 if (sack->first_sackt) {
3457 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3458 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3459 }
3460 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3461 ca_rtt_us, sack->rate);
3462
3463 if (flag & FLAG_ACKED) {
3464 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3465 if (unlikely(icsk->icsk_mtup.probe_size &&
3466 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3467 tcp_mtup_probe_success(sk);
3468 }
3469
3470 if (tcp_is_reno(tp)) {
3471 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3472
3473 /* If any of the cumulatively ACKed segments was
3474 * retransmitted, non-SACK case cannot confirm that
3475 * progress was due to original transmission due to
3476 * lack of TCPCB_SACKED_ACKED bits even if some of
3477 * the packets may have been never retransmitted.
3478 */
3479 if (flag & FLAG_RETRANS_DATA_ACKED)
3480 flag &= ~FLAG_ORIG_SACK_ACKED;
3481 } else {
3482 int delta;
3483
3484 /* Non-retransmitted hole got filled? That's reordering */
3485 if (before(reord, prior_fack))
3486 tcp_check_sack_reordering(sk, reord, 0);
3487
3488 delta = prior_sacked - tp->sacked_out;
3489 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3490 }
3491 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3492 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3493 tcp_skb_timestamp_us(skb))) {
3494 /* Do not re-arm RTO if the sack RTT is measured from data sent
3495 * after when the head was last (re)transmitted. Otherwise the
3496 * timeout may continue to extend in loss recovery.
3497 */
3498 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3499 }
3500
3501 if (icsk->icsk_ca_ops->pkts_acked) {
3502 struct ack_sample sample = { .pkts_acked = pkts_acked,
3503 .rtt_us = sack->rate->rtt_us };
3504
3505 sample.in_flight = tp->mss_cache *
3506 (tp->delivered - sack->rate->prior_delivered);
3507 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3508 }
3509
3510 #if FASTRETRANS_DEBUG > 0
3511 WARN_ON((int)tp->sacked_out < 0);
3512 WARN_ON((int)tp->lost_out < 0);
3513 WARN_ON((int)tp->retrans_out < 0);
3514 if (!tp->packets_out && tcp_is_sack(tp)) {
3515 icsk = inet_csk(sk);
3516 if (tp->lost_out) {
3517 pr_debug("Leak l=%u %d\n",
3518 tp->lost_out, icsk->icsk_ca_state);
3519 tp->lost_out = 0;
3520 }
3521 if (tp->sacked_out) {
3522 pr_debug("Leak s=%u %d\n",
3523 tp->sacked_out, icsk->icsk_ca_state);
3524 tp->sacked_out = 0;
3525 }
3526 if (tp->retrans_out) {
3527 pr_debug("Leak r=%u %d\n",
3528 tp->retrans_out, icsk->icsk_ca_state);
3529 tp->retrans_out = 0;
3530 }
3531 }
3532 #endif
3533 return flag;
3534 }
3535
tcp_ack_probe(struct sock * sk)3536 static void tcp_ack_probe(struct sock *sk)
3537 {
3538 struct inet_connection_sock *icsk = inet_csk(sk);
3539 struct sk_buff *head = tcp_send_head(sk);
3540 const struct tcp_sock *tp = tcp_sk(sk);
3541
3542 /* Was it a usable window open? */
3543 if (!head)
3544 return;
3545 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3546 icsk->icsk_backoff = 0;
3547 icsk->icsk_probes_tstamp = 0;
3548 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3549 /* Socket must be waked up by subsequent tcp_data_snd_check().
3550 * This function is not for random using!
3551 */
3552 } else {
3553 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3554
3555 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3556 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3557 }
3558 }
3559
tcp_ack_is_dubious(const struct sock * sk,const int flag)3560 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3561 {
3562 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3563 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3564 }
3565
3566 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3567 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3568 {
3569 /* If reordering is high then always grow cwnd whenever data is
3570 * delivered regardless of its ordering. Otherwise stay conservative
3571 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3572 * new SACK or ECE mark may first advance cwnd here and later reduce
3573 * cwnd in tcp_fastretrans_alert() based on more states.
3574 */
3575 if (tcp_sk(sk)->reordering >
3576 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3577 return flag & FLAG_FORWARD_PROGRESS;
3578
3579 return flag & FLAG_DATA_ACKED;
3580 }
3581
3582 /* The "ultimate" congestion control function that aims to replace the rigid
3583 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3584 * It's called toward the end of processing an ACK with precise rate
3585 * information. All transmission or retransmission are delayed afterwards.
3586 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3587 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3588 int flag, const struct rate_sample *rs)
3589 {
3590 const struct inet_connection_sock *icsk = inet_csk(sk);
3591
3592 if (icsk->icsk_ca_ops->cong_control) {
3593 icsk->icsk_ca_ops->cong_control(sk, rs);
3594 return;
3595 }
3596
3597 if (tcp_in_cwnd_reduction(sk)) {
3598 /* Reduce cwnd if state mandates */
3599 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3600 } else if (tcp_may_raise_cwnd(sk, flag)) {
3601 /* Advance cwnd if state allows */
3602 tcp_cong_avoid(sk, ack, acked_sacked);
3603 }
3604 tcp_update_pacing_rate(sk);
3605 }
3606
3607 /* Check that window update is acceptable.
3608 * The function assumes that snd_una<=ack<=snd_next.
3609 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3610 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3611 const u32 ack, const u32 ack_seq,
3612 const u32 nwin)
3613 {
3614 return after(ack, tp->snd_una) ||
3615 after(ack_seq, tp->snd_wl1) ||
3616 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3617 }
3618
3619 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3620 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3621 {
3622 u32 delta = ack - tp->snd_una;
3623
3624 sock_owned_by_me((struct sock *)tp);
3625 tp->bytes_acked += delta;
3626 tp->snd_una = ack;
3627 }
3628
3629 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3630 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3631 {
3632 u32 delta = seq - tp->rcv_nxt;
3633
3634 sock_owned_by_me((struct sock *)tp);
3635 tp->bytes_received += delta;
3636 WRITE_ONCE(tp->rcv_nxt, seq);
3637 }
3638
3639 /* Update our send window.
3640 *
3641 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3642 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3643 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3644 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3645 u32 ack_seq)
3646 {
3647 struct tcp_sock *tp = tcp_sk(sk);
3648 int flag = 0;
3649 u32 nwin = ntohs(tcp_hdr(skb)->window);
3650
3651 if (likely(!tcp_hdr(skb)->syn))
3652 nwin <<= tp->rx_opt.snd_wscale;
3653
3654 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3655 flag |= FLAG_WIN_UPDATE;
3656 tcp_update_wl(tp, ack_seq);
3657
3658 if (tp->snd_wnd != nwin) {
3659 tp->snd_wnd = nwin;
3660
3661 /* Note, it is the only place, where
3662 * fast path is recovered for sending TCP.
3663 */
3664 tp->pred_flags = 0;
3665 tcp_fast_path_check(sk);
3666
3667 if (!tcp_write_queue_empty(sk))
3668 tcp_slow_start_after_idle_check(sk);
3669
3670 if (nwin > tp->max_window) {
3671 tp->max_window = nwin;
3672 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3673 }
3674 }
3675 }
3676
3677 tcp_snd_una_update(tp, ack);
3678
3679 return flag;
3680 }
3681
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3682 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3683 u32 *last_oow_ack_time)
3684 {
3685 /* Paired with the WRITE_ONCE() in this function. */
3686 u32 val = READ_ONCE(*last_oow_ack_time);
3687
3688 if (val) {
3689 s32 elapsed = (s32)(tcp_jiffies32 - val);
3690
3691 if (0 <= elapsed &&
3692 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3693 NET_INC_STATS(net, mib_idx);
3694 return true; /* rate-limited: don't send yet! */
3695 }
3696 }
3697
3698 /* Paired with the prior READ_ONCE() and with itself,
3699 * as we might be lockless.
3700 */
3701 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3702
3703 return false; /* not rate-limited: go ahead, send dupack now! */
3704 }
3705
3706 /* Return true if we're currently rate-limiting out-of-window ACKs and
3707 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3708 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3709 * attacks that send repeated SYNs or ACKs for the same connection. To
3710 * do this, we do not send a duplicate SYNACK or ACK if the remote
3711 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3712 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3713 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3714 int mib_idx, u32 *last_oow_ack_time)
3715 {
3716 /* Data packets without SYNs are not likely part of an ACK loop. */
3717 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3718 !tcp_hdr(skb)->syn)
3719 return false;
3720
3721 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3722 }
3723
3724 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3725 static void tcp_send_challenge_ack(struct sock *sk)
3726 {
3727 struct tcp_sock *tp = tcp_sk(sk);
3728 struct net *net = sock_net(sk);
3729 u32 count, now, ack_limit;
3730
3731 /* First check our per-socket dupack rate limit. */
3732 if (__tcp_oow_rate_limited(net,
3733 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3734 &tp->last_oow_ack_time))
3735 return;
3736
3737 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3738 if (ack_limit == INT_MAX)
3739 goto send_ack;
3740
3741 /* Then check host-wide RFC 5961 rate limit. */
3742 now = jiffies / HZ;
3743 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3744 u32 half = (ack_limit + 1) >> 1;
3745
3746 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3747 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3748 get_random_u32_inclusive(half, ack_limit + half - 1));
3749 }
3750 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3751 if (count > 0) {
3752 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3753 send_ack:
3754 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3755 tcp_send_ack(sk);
3756 }
3757 }
3758
tcp_store_ts_recent(struct tcp_sock * tp)3759 static void tcp_store_ts_recent(struct tcp_sock *tp)
3760 {
3761 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3762 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3763 }
3764
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3765 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3766 {
3767 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3768 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3769 * extra check below makes sure this can only happen
3770 * for pure ACK frames. -DaveM
3771 *
3772 * Not only, also it occurs for expired timestamps.
3773 */
3774
3775 if (tcp_paws_check(&tp->rx_opt, 0))
3776 tcp_store_ts_recent(tp);
3777 }
3778 }
3779
3780 /* This routine deals with acks during a TLP episode and ends an episode by
3781 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3782 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3783 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3784 {
3785 struct tcp_sock *tp = tcp_sk(sk);
3786
3787 if (before(ack, tp->tlp_high_seq))
3788 return;
3789
3790 if (!tp->tlp_retrans) {
3791 /* TLP of new data has been acknowledged */
3792 tp->tlp_high_seq = 0;
3793 } else if (flag & FLAG_DSACK_TLP) {
3794 /* This DSACK means original and TLP probe arrived; no loss */
3795 tp->tlp_high_seq = 0;
3796 } else if (after(ack, tp->tlp_high_seq)) {
3797 /* ACK advances: there was a loss, so reduce cwnd. Reset
3798 * tlp_high_seq in tcp_init_cwnd_reduction()
3799 */
3800 tcp_init_cwnd_reduction(sk);
3801 tcp_set_ca_state(sk, TCP_CA_CWR);
3802 tcp_end_cwnd_reduction(sk);
3803 tcp_try_keep_open(sk);
3804 NET_INC_STATS(sock_net(sk),
3805 LINUX_MIB_TCPLOSSPROBERECOVERY);
3806 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3807 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3808 /* Pure dupack: original and TLP probe arrived; no loss */
3809 tp->tlp_high_seq = 0;
3810 }
3811 }
3812
tcp_in_ack_event(struct sock * sk,u32 flags)3813 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3814 {
3815 const struct inet_connection_sock *icsk = inet_csk(sk);
3816
3817 if (icsk->icsk_ca_ops->in_ack_event)
3818 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3819 }
3820
3821 /* Congestion control has updated the cwnd already. So if we're in
3822 * loss recovery then now we do any new sends (for FRTO) or
3823 * retransmits (for CA_Loss or CA_recovery) that make sense.
3824 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3825 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3826 {
3827 struct tcp_sock *tp = tcp_sk(sk);
3828
3829 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3830 return;
3831
3832 if (unlikely(rexmit == REXMIT_NEW)) {
3833 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3834 TCP_NAGLE_OFF);
3835 if (after(tp->snd_nxt, tp->high_seq))
3836 return;
3837 tp->frto = 0;
3838 }
3839 tcp_xmit_retransmit_queue(sk);
3840 }
3841
3842 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3843 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3844 {
3845 const struct net *net = sock_net(sk);
3846 struct tcp_sock *tp = tcp_sk(sk);
3847 u32 delivered;
3848
3849 delivered = tp->delivered - prior_delivered;
3850 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3851 if (flag & FLAG_ECE)
3852 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3853
3854 return delivered;
3855 }
3856
3857 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3858 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3859 {
3860 struct inet_connection_sock *icsk = inet_csk(sk);
3861 struct tcp_sock *tp = tcp_sk(sk);
3862 struct tcp_sacktag_state sack_state;
3863 struct rate_sample rs = { .prior_delivered = 0 };
3864 u32 prior_snd_una = tp->snd_una;
3865 bool is_sack_reneg = tp->is_sack_reneg;
3866 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3867 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3868 int num_dupack = 0;
3869 int prior_packets = tp->packets_out;
3870 u32 delivered = tp->delivered;
3871 u32 lost = tp->lost;
3872 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3873 u32 prior_fack;
3874
3875 sack_state.first_sackt = 0;
3876 sack_state.rate = &rs;
3877 sack_state.sack_delivered = 0;
3878
3879 /* We very likely will need to access rtx queue. */
3880 prefetch(sk->tcp_rtx_queue.rb_node);
3881
3882 /* If the ack is older than previous acks
3883 * then we can probably ignore it.
3884 */
3885 if (before(ack, prior_snd_una)) {
3886 u32 max_window;
3887
3888 /* do not accept ACK for bytes we never sent. */
3889 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3890 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3891 if (before(ack, prior_snd_una - max_window)) {
3892 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3893 tcp_send_challenge_ack(sk);
3894 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3895 }
3896 goto old_ack;
3897 }
3898
3899 /* If the ack includes data we haven't sent yet, discard
3900 * this segment (RFC793 Section 3.9).
3901 */
3902 if (after(ack, tp->snd_nxt))
3903 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3904
3905 if (after(ack, prior_snd_una)) {
3906 flag |= FLAG_SND_UNA_ADVANCED;
3907 icsk->icsk_retransmits = 0;
3908
3909 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3910 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3911 if (icsk->icsk_clean_acked)
3912 icsk->icsk_clean_acked(sk, ack);
3913 #endif
3914 }
3915
3916 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3917 rs.prior_in_flight = tcp_packets_in_flight(tp);
3918
3919 /* ts_recent update must be made after we are sure that the packet
3920 * is in window.
3921 */
3922 if (flag & FLAG_UPDATE_TS_RECENT)
3923 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3924
3925 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3926 FLAG_SND_UNA_ADVANCED) {
3927 /* Window is constant, pure forward advance.
3928 * No more checks are required.
3929 * Note, we use the fact that SND.UNA>=SND.WL2.
3930 */
3931 tcp_update_wl(tp, ack_seq);
3932 tcp_snd_una_update(tp, ack);
3933 flag |= FLAG_WIN_UPDATE;
3934
3935 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3936
3937 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3938 } else {
3939 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3940
3941 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3942 flag |= FLAG_DATA;
3943 else
3944 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3945
3946 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3947
3948 if (TCP_SKB_CB(skb)->sacked)
3949 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3950 &sack_state);
3951
3952 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3953 flag |= FLAG_ECE;
3954 ack_ev_flags |= CA_ACK_ECE;
3955 }
3956
3957 if (sack_state.sack_delivered)
3958 tcp_count_delivered(tp, sack_state.sack_delivered,
3959 flag & FLAG_ECE);
3960
3961 if (flag & FLAG_WIN_UPDATE)
3962 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3963
3964 tcp_in_ack_event(sk, ack_ev_flags);
3965 }
3966
3967 /* This is a deviation from RFC3168 since it states that:
3968 * "When the TCP data sender is ready to set the CWR bit after reducing
3969 * the congestion window, it SHOULD set the CWR bit only on the first
3970 * new data packet that it transmits."
3971 * We accept CWR on pure ACKs to be more robust
3972 * with widely-deployed TCP implementations that do this.
3973 */
3974 tcp_ecn_accept_cwr(sk, skb);
3975
3976 /* We passed data and got it acked, remove any soft error
3977 * log. Something worked...
3978 */
3979 WRITE_ONCE(sk->sk_err_soft, 0);
3980 icsk->icsk_probes_out = 0;
3981 tp->rcv_tstamp = tcp_jiffies32;
3982 if (!prior_packets)
3983 goto no_queue;
3984
3985 /* See if we can take anything off of the retransmit queue. */
3986 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3987 &sack_state, flag & FLAG_ECE);
3988
3989 tcp_rack_update_reo_wnd(sk, &rs);
3990
3991 if (tp->tlp_high_seq)
3992 tcp_process_tlp_ack(sk, ack, flag);
3993
3994 if (tcp_ack_is_dubious(sk, flag)) {
3995 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3996 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3997 num_dupack = 1;
3998 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3999 if (!(flag & FLAG_DATA))
4000 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4001 }
4002 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4003 &rexmit);
4004 }
4005
4006 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4007 if (flag & FLAG_SET_XMIT_TIMER)
4008 tcp_set_xmit_timer(sk);
4009
4010 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4011 sk_dst_confirm(sk);
4012
4013 delivered = tcp_newly_delivered(sk, delivered, flag);
4014 lost = tp->lost - lost; /* freshly marked lost */
4015 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4016 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4017 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4018 tcp_xmit_recovery(sk, rexmit);
4019 return 1;
4020
4021 no_queue:
4022 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4023 if (flag & FLAG_DSACKING_ACK) {
4024 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4025 &rexmit);
4026 tcp_newly_delivered(sk, delivered, flag);
4027 }
4028 /* If this ack opens up a zero window, clear backoff. It was
4029 * being used to time the probes, and is probably far higher than
4030 * it needs to be for normal retransmission.
4031 */
4032 tcp_ack_probe(sk);
4033
4034 if (tp->tlp_high_seq)
4035 tcp_process_tlp_ack(sk, ack, flag);
4036 return 1;
4037
4038 old_ack:
4039 /* If data was SACKed, tag it and see if we should send more data.
4040 * If data was DSACKed, see if we can undo a cwnd reduction.
4041 */
4042 if (TCP_SKB_CB(skb)->sacked) {
4043 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4044 &sack_state);
4045 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4046 &rexmit);
4047 tcp_newly_delivered(sk, delivered, flag);
4048 tcp_xmit_recovery(sk, rexmit);
4049 }
4050
4051 return 0;
4052 }
4053
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4054 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4055 bool syn, struct tcp_fastopen_cookie *foc,
4056 bool exp_opt)
4057 {
4058 /* Valid only in SYN or SYN-ACK with an even length. */
4059 if (!foc || !syn || len < 0 || (len & 1))
4060 return;
4061
4062 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4063 len <= TCP_FASTOPEN_COOKIE_MAX)
4064 memcpy(foc->val, cookie, len);
4065 else if (len != 0)
4066 len = -1;
4067 foc->len = len;
4068 foc->exp = exp_opt;
4069 }
4070
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4071 static bool smc_parse_options(const struct tcphdr *th,
4072 struct tcp_options_received *opt_rx,
4073 const unsigned char *ptr,
4074 int opsize)
4075 {
4076 #if IS_ENABLED(CONFIG_SMC)
4077 if (static_branch_unlikely(&tcp_have_smc)) {
4078 if (th->syn && !(opsize & 1) &&
4079 opsize >= TCPOLEN_EXP_SMC_BASE &&
4080 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4081 opt_rx->smc_ok = 1;
4082 return true;
4083 }
4084 }
4085 #endif
4086 return false;
4087 }
4088
4089 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4090 * value on success.
4091 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4092 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4093 {
4094 const unsigned char *ptr = (const unsigned char *)(th + 1);
4095 int length = (th->doff * 4) - sizeof(struct tcphdr);
4096 u16 mss = 0;
4097
4098 while (length > 0) {
4099 int opcode = *ptr++;
4100 int opsize;
4101
4102 switch (opcode) {
4103 case TCPOPT_EOL:
4104 return mss;
4105 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4106 length--;
4107 continue;
4108 default:
4109 if (length < 2)
4110 return mss;
4111 opsize = *ptr++;
4112 if (opsize < 2) /* "silly options" */
4113 return mss;
4114 if (opsize > length)
4115 return mss; /* fail on partial options */
4116 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4117 u16 in_mss = get_unaligned_be16(ptr);
4118
4119 if (in_mss) {
4120 if (user_mss && user_mss < in_mss)
4121 in_mss = user_mss;
4122 mss = in_mss;
4123 }
4124 }
4125 ptr += opsize - 2;
4126 length -= opsize;
4127 }
4128 }
4129 return mss;
4130 }
4131 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4132
4133 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4134 * But, this can also be called on packets in the established flow when
4135 * the fast version below fails.
4136 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4137 void tcp_parse_options(const struct net *net,
4138 const struct sk_buff *skb,
4139 struct tcp_options_received *opt_rx, int estab,
4140 struct tcp_fastopen_cookie *foc)
4141 {
4142 const unsigned char *ptr;
4143 const struct tcphdr *th = tcp_hdr(skb);
4144 int length = (th->doff * 4) - sizeof(struct tcphdr);
4145
4146 ptr = (const unsigned char *)(th + 1);
4147 opt_rx->saw_tstamp = 0;
4148 opt_rx->saw_unknown = 0;
4149
4150 while (length > 0) {
4151 int opcode = *ptr++;
4152 int opsize;
4153
4154 switch (opcode) {
4155 case TCPOPT_EOL:
4156 return;
4157 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4158 length--;
4159 continue;
4160 default:
4161 if (length < 2)
4162 return;
4163 opsize = *ptr++;
4164 if (opsize < 2) /* "silly options" */
4165 return;
4166 if (opsize > length)
4167 return; /* don't parse partial options */
4168 switch (opcode) {
4169 case TCPOPT_MSS:
4170 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4171 u16 in_mss = get_unaligned_be16(ptr);
4172 if (in_mss) {
4173 if (opt_rx->user_mss &&
4174 opt_rx->user_mss < in_mss)
4175 in_mss = opt_rx->user_mss;
4176 opt_rx->mss_clamp = in_mss;
4177 }
4178 }
4179 break;
4180 case TCPOPT_WINDOW:
4181 if (opsize == TCPOLEN_WINDOW && th->syn &&
4182 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4183 __u8 snd_wscale = *(__u8 *)ptr;
4184 opt_rx->wscale_ok = 1;
4185 if (snd_wscale > TCP_MAX_WSCALE) {
4186 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4187 __func__,
4188 snd_wscale,
4189 TCP_MAX_WSCALE);
4190 snd_wscale = TCP_MAX_WSCALE;
4191 }
4192 opt_rx->snd_wscale = snd_wscale;
4193 }
4194 break;
4195 case TCPOPT_TIMESTAMP:
4196 if ((opsize == TCPOLEN_TIMESTAMP) &&
4197 ((estab && opt_rx->tstamp_ok) ||
4198 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4199 opt_rx->saw_tstamp = 1;
4200 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4201 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4202 }
4203 break;
4204 case TCPOPT_SACK_PERM:
4205 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4206 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4207 opt_rx->sack_ok = TCP_SACK_SEEN;
4208 tcp_sack_reset(opt_rx);
4209 }
4210 break;
4211
4212 case TCPOPT_SACK:
4213 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4214 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4215 opt_rx->sack_ok) {
4216 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4217 }
4218 break;
4219 #ifdef CONFIG_TCP_MD5SIG
4220 case TCPOPT_MD5SIG:
4221 /* The MD5 Hash has already been
4222 * checked (see tcp_v{4,6}_rcv()).
4223 */
4224 break;
4225 #endif
4226 case TCPOPT_FASTOPEN:
4227 tcp_parse_fastopen_option(
4228 opsize - TCPOLEN_FASTOPEN_BASE,
4229 ptr, th->syn, foc, false);
4230 break;
4231
4232 case TCPOPT_EXP:
4233 /* Fast Open option shares code 254 using a
4234 * 16 bits magic number.
4235 */
4236 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4237 get_unaligned_be16(ptr) ==
4238 TCPOPT_FASTOPEN_MAGIC) {
4239 tcp_parse_fastopen_option(opsize -
4240 TCPOLEN_EXP_FASTOPEN_BASE,
4241 ptr + 2, th->syn, foc, true);
4242 break;
4243 }
4244
4245 if (smc_parse_options(th, opt_rx, ptr, opsize))
4246 break;
4247
4248 opt_rx->saw_unknown = 1;
4249 break;
4250
4251 default:
4252 opt_rx->saw_unknown = 1;
4253 }
4254 ptr += opsize-2;
4255 length -= opsize;
4256 }
4257 }
4258 }
4259 EXPORT_SYMBOL(tcp_parse_options);
4260
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4261 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4262 {
4263 const __be32 *ptr = (const __be32 *)(th + 1);
4264
4265 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4266 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4267 tp->rx_opt.saw_tstamp = 1;
4268 ++ptr;
4269 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4270 ++ptr;
4271 if (*ptr)
4272 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4273 else
4274 tp->rx_opt.rcv_tsecr = 0;
4275 return true;
4276 }
4277 return false;
4278 }
4279
4280 /* Fast parse options. This hopes to only see timestamps.
4281 * If it is wrong it falls back on tcp_parse_options().
4282 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4283 static bool tcp_fast_parse_options(const struct net *net,
4284 const struct sk_buff *skb,
4285 const struct tcphdr *th, struct tcp_sock *tp)
4286 {
4287 /* In the spirit of fast parsing, compare doff directly to constant
4288 * values. Because equality is used, short doff can be ignored here.
4289 */
4290 if (th->doff == (sizeof(*th) / 4)) {
4291 tp->rx_opt.saw_tstamp = 0;
4292 return false;
4293 } else if (tp->rx_opt.tstamp_ok &&
4294 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4295 if (tcp_parse_aligned_timestamp(tp, th))
4296 return true;
4297 }
4298
4299 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4300 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4301 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4302
4303 return true;
4304 }
4305
4306 #ifdef CONFIG_TCP_MD5SIG
4307 /*
4308 * Parse MD5 Signature option
4309 */
tcp_parse_md5sig_option(const struct tcphdr * th)4310 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4311 {
4312 int length = (th->doff << 2) - sizeof(*th);
4313 const u8 *ptr = (const u8 *)(th + 1);
4314
4315 /* If not enough data remaining, we can short cut */
4316 while (length >= TCPOLEN_MD5SIG) {
4317 int opcode = *ptr++;
4318 int opsize;
4319
4320 switch (opcode) {
4321 case TCPOPT_EOL:
4322 return NULL;
4323 case TCPOPT_NOP:
4324 length--;
4325 continue;
4326 default:
4327 opsize = *ptr++;
4328 if (opsize < 2 || opsize > length)
4329 return NULL;
4330 if (opcode == TCPOPT_MD5SIG)
4331 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4332 }
4333 ptr += opsize - 2;
4334 length -= opsize;
4335 }
4336 return NULL;
4337 }
4338 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4339 #endif
4340
4341 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4342 *
4343 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4344 * it can pass through stack. So, the following predicate verifies that
4345 * this segment is not used for anything but congestion avoidance or
4346 * fast retransmit. Moreover, we even are able to eliminate most of such
4347 * second order effects, if we apply some small "replay" window (~RTO)
4348 * to timestamp space.
4349 *
4350 * All these measures still do not guarantee that we reject wrapped ACKs
4351 * on networks with high bandwidth, when sequence space is recycled fastly,
4352 * but it guarantees that such events will be very rare and do not affect
4353 * connection seriously. This doesn't look nice, but alas, PAWS is really
4354 * buggy extension.
4355 *
4356 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4357 * states that events when retransmit arrives after original data are rare.
4358 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4359 * the biggest problem on large power networks even with minor reordering.
4360 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4361 * up to bandwidth of 18Gigabit/sec. 8) ]
4362 */
4363
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4364 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4365 {
4366 const struct tcp_sock *tp = tcp_sk(sk);
4367 const struct tcphdr *th = tcp_hdr(skb);
4368 u32 seq = TCP_SKB_CB(skb)->seq;
4369 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4370
4371 return (/* 1. Pure ACK with correct sequence number. */
4372 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4373
4374 /* 2. ... and duplicate ACK. */
4375 ack == tp->snd_una &&
4376
4377 /* 3. ... and does not update window. */
4378 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4379
4380 /* 4. ... and sits in replay window. */
4381 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4382 }
4383
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4384 static inline bool tcp_paws_discard(const struct sock *sk,
4385 const struct sk_buff *skb)
4386 {
4387 const struct tcp_sock *tp = tcp_sk(sk);
4388
4389 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4390 !tcp_disordered_ack(sk, skb);
4391 }
4392
4393 /* Check segment sequence number for validity.
4394 *
4395 * Segment controls are considered valid, if the segment
4396 * fits to the window after truncation to the window. Acceptability
4397 * of data (and SYN, FIN, of course) is checked separately.
4398 * See tcp_data_queue(), for example.
4399 *
4400 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4401 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4402 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4403 * (borrowed from freebsd)
4404 */
4405
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4406 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4407 u32 seq, u32 end_seq)
4408 {
4409 if (before(end_seq, tp->rcv_wup))
4410 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4411
4412 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4413 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4414
4415 return SKB_NOT_DROPPED_YET;
4416 }
4417
4418
tcp_done_with_error(struct sock * sk,int err)4419 void tcp_done_with_error(struct sock *sk, int err)
4420 {
4421 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4422 WRITE_ONCE(sk->sk_err, err);
4423 smp_wmb();
4424
4425 tcp_write_queue_purge(sk);
4426 tcp_done(sk);
4427
4428 if (!sock_flag(sk, SOCK_DEAD))
4429 sk_error_report(sk);
4430 }
4431 EXPORT_SYMBOL(tcp_done_with_error);
4432
4433 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4434 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4435 {
4436 int err;
4437
4438 trace_tcp_receive_reset(sk);
4439
4440 /* mptcp can't tell us to ignore reset pkts,
4441 * so just ignore the return value of mptcp_incoming_options().
4442 */
4443 if (sk_is_mptcp(sk))
4444 mptcp_incoming_options(sk, skb);
4445
4446 /* We want the right error as BSD sees it (and indeed as we do). */
4447 switch (sk->sk_state) {
4448 case TCP_SYN_SENT:
4449 err = ECONNREFUSED;
4450 break;
4451 case TCP_CLOSE_WAIT:
4452 err = EPIPE;
4453 break;
4454 case TCP_CLOSE:
4455 return;
4456 default:
4457 err = ECONNRESET;
4458 }
4459 tcp_done_with_error(sk, err);
4460 }
4461
4462 /*
4463 * Process the FIN bit. This now behaves as it is supposed to work
4464 * and the FIN takes effect when it is validly part of sequence
4465 * space. Not before when we get holes.
4466 *
4467 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4468 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4469 * TIME-WAIT)
4470 *
4471 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4472 * close and we go into CLOSING (and later onto TIME-WAIT)
4473 *
4474 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4475 */
tcp_fin(struct sock * sk)4476 void tcp_fin(struct sock *sk)
4477 {
4478 struct tcp_sock *tp = tcp_sk(sk);
4479
4480 inet_csk_schedule_ack(sk);
4481
4482 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4483 sock_set_flag(sk, SOCK_DONE);
4484
4485 switch (sk->sk_state) {
4486 case TCP_SYN_RECV:
4487 case TCP_ESTABLISHED:
4488 /* Move to CLOSE_WAIT */
4489 tcp_set_state(sk, TCP_CLOSE_WAIT);
4490 inet_csk_enter_pingpong_mode(sk);
4491 break;
4492
4493 case TCP_CLOSE_WAIT:
4494 case TCP_CLOSING:
4495 /* Received a retransmission of the FIN, do
4496 * nothing.
4497 */
4498 break;
4499 case TCP_LAST_ACK:
4500 /* RFC793: Remain in the LAST-ACK state. */
4501 break;
4502
4503 case TCP_FIN_WAIT1:
4504 /* This case occurs when a simultaneous close
4505 * happens, we must ack the received FIN and
4506 * enter the CLOSING state.
4507 */
4508 tcp_send_ack(sk);
4509 tcp_set_state(sk, TCP_CLOSING);
4510 break;
4511 case TCP_FIN_WAIT2:
4512 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4513 tcp_send_ack(sk);
4514 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4515 break;
4516 default:
4517 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4518 * cases we should never reach this piece of code.
4519 */
4520 pr_err("%s: Impossible, sk->sk_state=%d\n",
4521 __func__, sk->sk_state);
4522 break;
4523 }
4524
4525 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4526 * Probably, we should reset in this case. For now drop them.
4527 */
4528 skb_rbtree_purge(&tp->out_of_order_queue);
4529 if (tcp_is_sack(tp))
4530 tcp_sack_reset(&tp->rx_opt);
4531
4532 if (!sock_flag(sk, SOCK_DEAD)) {
4533 sk->sk_state_change(sk);
4534
4535 /* Do not send POLL_HUP for half duplex close. */
4536 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4537 sk->sk_state == TCP_CLOSE)
4538 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4539 else
4540 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4541 }
4542 }
4543
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4544 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4545 u32 end_seq)
4546 {
4547 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4548 if (before(seq, sp->start_seq))
4549 sp->start_seq = seq;
4550 if (after(end_seq, sp->end_seq))
4551 sp->end_seq = end_seq;
4552 return true;
4553 }
4554 return false;
4555 }
4556
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4557 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4558 {
4559 struct tcp_sock *tp = tcp_sk(sk);
4560
4561 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4562 int mib_idx;
4563
4564 if (before(seq, tp->rcv_nxt))
4565 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4566 else
4567 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4568
4569 NET_INC_STATS(sock_net(sk), mib_idx);
4570
4571 tp->rx_opt.dsack = 1;
4572 tp->duplicate_sack[0].start_seq = seq;
4573 tp->duplicate_sack[0].end_seq = end_seq;
4574 }
4575 }
4576
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4577 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4578 {
4579 struct tcp_sock *tp = tcp_sk(sk);
4580
4581 if (!tp->rx_opt.dsack)
4582 tcp_dsack_set(sk, seq, end_seq);
4583 else
4584 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4585 }
4586
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4587 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4588 {
4589 /* When the ACK path fails or drops most ACKs, the sender would
4590 * timeout and spuriously retransmit the same segment repeatedly.
4591 * The receiver remembers and reflects via DSACKs. Leverage the
4592 * DSACK state and change the txhash to re-route speculatively.
4593 */
4594 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4595 sk_rethink_txhash(sk))
4596 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4597 }
4598
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4599 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4600 {
4601 struct tcp_sock *tp = tcp_sk(sk);
4602
4603 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4604 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4605 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4606 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4607
4608 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4609 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4610
4611 tcp_rcv_spurious_retrans(sk, skb);
4612 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4613 end_seq = tp->rcv_nxt;
4614 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4615 }
4616 }
4617
4618 tcp_send_ack(sk);
4619 }
4620
4621 /* These routines update the SACK block as out-of-order packets arrive or
4622 * in-order packets close up the sequence space.
4623 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4624 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4625 {
4626 int this_sack;
4627 struct tcp_sack_block *sp = &tp->selective_acks[0];
4628 struct tcp_sack_block *swalk = sp + 1;
4629
4630 /* See if the recent change to the first SACK eats into
4631 * or hits the sequence space of other SACK blocks, if so coalesce.
4632 */
4633 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4634 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4635 int i;
4636
4637 /* Zap SWALK, by moving every further SACK up by one slot.
4638 * Decrease num_sacks.
4639 */
4640 tp->rx_opt.num_sacks--;
4641 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4642 sp[i] = sp[i + 1];
4643 continue;
4644 }
4645 this_sack++;
4646 swalk++;
4647 }
4648 }
4649
tcp_sack_compress_send_ack(struct sock * sk)4650 void tcp_sack_compress_send_ack(struct sock *sk)
4651 {
4652 struct tcp_sock *tp = tcp_sk(sk);
4653
4654 if (!tp->compressed_ack)
4655 return;
4656
4657 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4658 __sock_put(sk);
4659
4660 /* Since we have to send one ack finally,
4661 * substract one from tp->compressed_ack to keep
4662 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4663 */
4664 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4665 tp->compressed_ack - 1);
4666
4667 tp->compressed_ack = 0;
4668 tcp_send_ack(sk);
4669 }
4670
4671 /* Reasonable amount of sack blocks included in TCP SACK option
4672 * The max is 4, but this becomes 3 if TCP timestamps are there.
4673 * Given that SACK packets might be lost, be conservative and use 2.
4674 */
4675 #define TCP_SACK_BLOCKS_EXPECTED 2
4676
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4677 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4678 {
4679 struct tcp_sock *tp = tcp_sk(sk);
4680 struct tcp_sack_block *sp = &tp->selective_acks[0];
4681 int cur_sacks = tp->rx_opt.num_sacks;
4682 int this_sack;
4683
4684 if (!cur_sacks)
4685 goto new_sack;
4686
4687 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4688 if (tcp_sack_extend(sp, seq, end_seq)) {
4689 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4690 tcp_sack_compress_send_ack(sk);
4691 /* Rotate this_sack to the first one. */
4692 for (; this_sack > 0; this_sack--, sp--)
4693 swap(*sp, *(sp - 1));
4694 if (cur_sacks > 1)
4695 tcp_sack_maybe_coalesce(tp);
4696 return;
4697 }
4698 }
4699
4700 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4701 tcp_sack_compress_send_ack(sk);
4702
4703 /* Could not find an adjacent existing SACK, build a new one,
4704 * put it at the front, and shift everyone else down. We
4705 * always know there is at least one SACK present already here.
4706 *
4707 * If the sack array is full, forget about the last one.
4708 */
4709 if (this_sack >= TCP_NUM_SACKS) {
4710 this_sack--;
4711 tp->rx_opt.num_sacks--;
4712 sp--;
4713 }
4714 for (; this_sack > 0; this_sack--, sp--)
4715 *sp = *(sp - 1);
4716
4717 new_sack:
4718 /* Build the new head SACK, and we're done. */
4719 sp->start_seq = seq;
4720 sp->end_seq = end_seq;
4721 tp->rx_opt.num_sacks++;
4722 }
4723
4724 /* RCV.NXT advances, some SACKs should be eaten. */
4725
tcp_sack_remove(struct tcp_sock * tp)4726 static void tcp_sack_remove(struct tcp_sock *tp)
4727 {
4728 struct tcp_sack_block *sp = &tp->selective_acks[0];
4729 int num_sacks = tp->rx_opt.num_sacks;
4730 int this_sack;
4731
4732 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4733 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4734 tp->rx_opt.num_sacks = 0;
4735 return;
4736 }
4737
4738 for (this_sack = 0; this_sack < num_sacks;) {
4739 /* Check if the start of the sack is covered by RCV.NXT. */
4740 if (!before(tp->rcv_nxt, sp->start_seq)) {
4741 int i;
4742
4743 /* RCV.NXT must cover all the block! */
4744 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4745
4746 /* Zap this SACK, by moving forward any other SACKS. */
4747 for (i = this_sack+1; i < num_sacks; i++)
4748 tp->selective_acks[i-1] = tp->selective_acks[i];
4749 num_sacks--;
4750 continue;
4751 }
4752 this_sack++;
4753 sp++;
4754 }
4755 tp->rx_opt.num_sacks = num_sacks;
4756 }
4757
4758 /**
4759 * tcp_try_coalesce - try to merge skb to prior one
4760 * @sk: socket
4761 * @to: prior buffer
4762 * @from: buffer to add in queue
4763 * @fragstolen: pointer to boolean
4764 *
4765 * Before queueing skb @from after @to, try to merge them
4766 * to reduce overall memory use and queue lengths, if cost is small.
4767 * Packets in ofo or receive queues can stay a long time.
4768 * Better try to coalesce them right now to avoid future collapses.
4769 * Returns true if caller should free @from instead of queueing it
4770 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4771 static bool tcp_try_coalesce(struct sock *sk,
4772 struct sk_buff *to,
4773 struct sk_buff *from,
4774 bool *fragstolen)
4775 {
4776 int delta;
4777
4778 *fragstolen = false;
4779
4780 /* Its possible this segment overlaps with prior segment in queue */
4781 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4782 return false;
4783
4784 if (!mptcp_skb_can_collapse(to, from))
4785 return false;
4786
4787 #ifdef CONFIG_TLS_DEVICE
4788 if (from->decrypted != to->decrypted)
4789 return false;
4790 #endif
4791
4792 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4793 return false;
4794
4795 atomic_add(delta, &sk->sk_rmem_alloc);
4796 sk_mem_charge(sk, delta);
4797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4798 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4799 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4800 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4801
4802 if (TCP_SKB_CB(from)->has_rxtstamp) {
4803 TCP_SKB_CB(to)->has_rxtstamp = true;
4804 to->tstamp = from->tstamp;
4805 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4806 }
4807
4808 return true;
4809 }
4810
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4811 static bool tcp_ooo_try_coalesce(struct sock *sk,
4812 struct sk_buff *to,
4813 struct sk_buff *from,
4814 bool *fragstolen)
4815 {
4816 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4817
4818 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4819 if (res) {
4820 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4821 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4822
4823 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4824 }
4825 return res;
4826 }
4827
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4828 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4829 enum skb_drop_reason reason)
4830 {
4831 sk_drops_add(sk, skb);
4832 kfree_skb_reason(skb, reason);
4833 }
4834
4835 /* This one checks to see if we can put data from the
4836 * out_of_order queue into the receive_queue.
4837 */
tcp_ofo_queue(struct sock * sk)4838 static void tcp_ofo_queue(struct sock *sk)
4839 {
4840 struct tcp_sock *tp = tcp_sk(sk);
4841 __u32 dsack_high = tp->rcv_nxt;
4842 bool fin, fragstolen, eaten;
4843 struct sk_buff *skb, *tail;
4844 struct rb_node *p;
4845
4846 p = rb_first(&tp->out_of_order_queue);
4847 while (p) {
4848 skb = rb_to_skb(p);
4849 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4850 break;
4851
4852 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4853 __u32 dsack = dsack_high;
4854 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4855 dsack_high = TCP_SKB_CB(skb)->end_seq;
4856 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4857 }
4858 p = rb_next(p);
4859 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4860
4861 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4862 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4863 continue;
4864 }
4865
4866 tail = skb_peek_tail(&sk->sk_receive_queue);
4867 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4868 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4869 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4870 if (!eaten)
4871 __skb_queue_tail(&sk->sk_receive_queue, skb);
4872 else
4873 kfree_skb_partial(skb, fragstolen);
4874
4875 if (unlikely(fin)) {
4876 tcp_fin(sk);
4877 /* tcp_fin() purges tp->out_of_order_queue,
4878 * so we must end this loop right now.
4879 */
4880 break;
4881 }
4882 }
4883 }
4884
4885 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4886 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4887
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4888 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4889 unsigned int size)
4890 {
4891 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4892 !sk_rmem_schedule(sk, skb, size)) {
4893
4894 if (tcp_prune_queue(sk, skb) < 0)
4895 return -1;
4896
4897 while (!sk_rmem_schedule(sk, skb, size)) {
4898 if (!tcp_prune_ofo_queue(sk, skb))
4899 return -1;
4900 }
4901 }
4902 return 0;
4903 }
4904
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4905 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4906 {
4907 struct tcp_sock *tp = tcp_sk(sk);
4908 struct rb_node **p, *parent;
4909 struct sk_buff *skb1;
4910 u32 seq, end_seq;
4911 bool fragstolen;
4912
4913 tcp_ecn_check_ce(sk, skb);
4914
4915 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4916 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4917 sk->sk_data_ready(sk);
4918 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4919 return;
4920 }
4921
4922 /* Disable header prediction. */
4923 tp->pred_flags = 0;
4924 inet_csk_schedule_ack(sk);
4925
4926 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4927 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4928 seq = TCP_SKB_CB(skb)->seq;
4929 end_seq = TCP_SKB_CB(skb)->end_seq;
4930
4931 p = &tp->out_of_order_queue.rb_node;
4932 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4933 /* Initial out of order segment, build 1 SACK. */
4934 if (tcp_is_sack(tp)) {
4935 tp->rx_opt.num_sacks = 1;
4936 tp->selective_acks[0].start_seq = seq;
4937 tp->selective_acks[0].end_seq = end_seq;
4938 }
4939 rb_link_node(&skb->rbnode, NULL, p);
4940 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4941 tp->ooo_last_skb = skb;
4942 goto end;
4943 }
4944
4945 /* In the typical case, we are adding an skb to the end of the list.
4946 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4947 */
4948 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4949 skb, &fragstolen)) {
4950 coalesce_done:
4951 /* For non sack flows, do not grow window to force DUPACK
4952 * and trigger fast retransmit.
4953 */
4954 if (tcp_is_sack(tp))
4955 tcp_grow_window(sk, skb, true);
4956 kfree_skb_partial(skb, fragstolen);
4957 skb = NULL;
4958 goto add_sack;
4959 }
4960 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4961 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4962 parent = &tp->ooo_last_skb->rbnode;
4963 p = &parent->rb_right;
4964 goto insert;
4965 }
4966
4967 /* Find place to insert this segment. Handle overlaps on the way. */
4968 parent = NULL;
4969 while (*p) {
4970 parent = *p;
4971 skb1 = rb_to_skb(parent);
4972 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4973 p = &parent->rb_left;
4974 continue;
4975 }
4976 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4977 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4978 /* All the bits are present. Drop. */
4979 NET_INC_STATS(sock_net(sk),
4980 LINUX_MIB_TCPOFOMERGE);
4981 tcp_drop_reason(sk, skb,
4982 SKB_DROP_REASON_TCP_OFOMERGE);
4983 skb = NULL;
4984 tcp_dsack_set(sk, seq, end_seq);
4985 goto add_sack;
4986 }
4987 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4988 /* Partial overlap. */
4989 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4990 } else {
4991 /* skb's seq == skb1's seq and skb covers skb1.
4992 * Replace skb1 with skb.
4993 */
4994 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4995 &tp->out_of_order_queue);
4996 tcp_dsack_extend(sk,
4997 TCP_SKB_CB(skb1)->seq,
4998 TCP_SKB_CB(skb1)->end_seq);
4999 NET_INC_STATS(sock_net(sk),
5000 LINUX_MIB_TCPOFOMERGE);
5001 tcp_drop_reason(sk, skb1,
5002 SKB_DROP_REASON_TCP_OFOMERGE);
5003 goto merge_right;
5004 }
5005 } else if (tcp_ooo_try_coalesce(sk, skb1,
5006 skb, &fragstolen)) {
5007 goto coalesce_done;
5008 }
5009 p = &parent->rb_right;
5010 }
5011 insert:
5012 /* Insert segment into RB tree. */
5013 rb_link_node(&skb->rbnode, parent, p);
5014 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5015
5016 merge_right:
5017 /* Remove other segments covered by skb. */
5018 while ((skb1 = skb_rb_next(skb)) != NULL) {
5019 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5020 break;
5021 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5022 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5023 end_seq);
5024 break;
5025 }
5026 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5027 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5028 TCP_SKB_CB(skb1)->end_seq);
5029 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5030 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5031 }
5032 /* If there is no skb after us, we are the last_skb ! */
5033 if (!skb1)
5034 tp->ooo_last_skb = skb;
5035
5036 add_sack:
5037 if (tcp_is_sack(tp))
5038 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5039 end:
5040 if (skb) {
5041 /* For non sack flows, do not grow window to force DUPACK
5042 * and trigger fast retransmit.
5043 */
5044 if (tcp_is_sack(tp))
5045 tcp_grow_window(sk, skb, false);
5046 skb_condense(skb);
5047 skb_set_owner_r(skb, sk);
5048 }
5049 }
5050
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5051 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5052 bool *fragstolen)
5053 {
5054 int eaten;
5055 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5056
5057 eaten = (tail &&
5058 tcp_try_coalesce(sk, tail,
5059 skb, fragstolen)) ? 1 : 0;
5060 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5061 if (!eaten) {
5062 __skb_queue_tail(&sk->sk_receive_queue, skb);
5063 skb_set_owner_r(skb, sk);
5064 }
5065 return eaten;
5066 }
5067
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5068 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5069 {
5070 struct sk_buff *skb;
5071 int err = -ENOMEM;
5072 int data_len = 0;
5073 bool fragstolen;
5074
5075 if (size == 0)
5076 return 0;
5077
5078 if (size > PAGE_SIZE) {
5079 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5080
5081 data_len = npages << PAGE_SHIFT;
5082 size = data_len + (size & ~PAGE_MASK);
5083 }
5084 skb = alloc_skb_with_frags(size - data_len, data_len,
5085 PAGE_ALLOC_COSTLY_ORDER,
5086 &err, sk->sk_allocation);
5087 if (!skb)
5088 goto err;
5089
5090 skb_put(skb, size - data_len);
5091 skb->data_len = data_len;
5092 skb->len = size;
5093
5094 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5095 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5096 goto err_free;
5097 }
5098
5099 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5100 if (err)
5101 goto err_free;
5102
5103 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5104 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5105 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5106
5107 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5108 WARN_ON_ONCE(fragstolen); /* should not happen */
5109 __kfree_skb(skb);
5110 }
5111 return size;
5112
5113 err_free:
5114 kfree_skb(skb);
5115 err:
5116 return err;
5117
5118 }
5119
tcp_data_ready(struct sock * sk)5120 void tcp_data_ready(struct sock *sk)
5121 {
5122 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5123 sk->sk_data_ready(sk);
5124 }
5125
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5126 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5127 {
5128 struct tcp_sock *tp = tcp_sk(sk);
5129 enum skb_drop_reason reason;
5130 bool fragstolen;
5131 int eaten;
5132
5133 /* If a subflow has been reset, the packet should not continue
5134 * to be processed, drop the packet.
5135 */
5136 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5137 __kfree_skb(skb);
5138 return;
5139 }
5140
5141 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5142 __kfree_skb(skb);
5143 return;
5144 }
5145 skb_dst_drop(skb);
5146 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5147
5148 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5149 tp->rx_opt.dsack = 0;
5150
5151 /* Queue data for delivery to the user.
5152 * Packets in sequence go to the receive queue.
5153 * Out of sequence packets to the out_of_order_queue.
5154 */
5155 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5156 if (tcp_receive_window(tp) == 0) {
5157 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5158 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5159 goto out_of_window;
5160 }
5161
5162 /* Ok. In sequence. In window. */
5163 queue_and_out:
5164 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5165 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5166 inet_csk(sk)->icsk_ack.pending |=
5167 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5168 inet_csk_schedule_ack(sk);
5169 sk->sk_data_ready(sk);
5170
5171 if (skb_queue_len(&sk->sk_receive_queue)) {
5172 reason = SKB_DROP_REASON_PROTO_MEM;
5173 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5174 goto drop;
5175 }
5176 sk_forced_mem_schedule(sk, skb->truesize);
5177 }
5178
5179 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5180 if (skb->len)
5181 tcp_event_data_recv(sk, skb);
5182 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5183 tcp_fin(sk);
5184
5185 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5186 tcp_ofo_queue(sk);
5187
5188 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5189 * gap in queue is filled.
5190 */
5191 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5192 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5193 }
5194
5195 if (tp->rx_opt.num_sacks)
5196 tcp_sack_remove(tp);
5197
5198 tcp_fast_path_check(sk);
5199
5200 if (eaten > 0)
5201 kfree_skb_partial(skb, fragstolen);
5202 if (!sock_flag(sk, SOCK_DEAD))
5203 tcp_data_ready(sk);
5204 return;
5205 }
5206
5207 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5208 tcp_rcv_spurious_retrans(sk, skb);
5209 /* A retransmit, 2nd most common case. Force an immediate ack. */
5210 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5211 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5212 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5213
5214 out_of_window:
5215 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5216 inet_csk_schedule_ack(sk);
5217 drop:
5218 tcp_drop_reason(sk, skb, reason);
5219 return;
5220 }
5221
5222 /* Out of window. F.e. zero window probe. */
5223 if (!before(TCP_SKB_CB(skb)->seq,
5224 tp->rcv_nxt + tcp_receive_window(tp))) {
5225 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5226 goto out_of_window;
5227 }
5228
5229 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5230 /* Partial packet, seq < rcv_next < end_seq */
5231 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5232
5233 /* If window is closed, drop tail of packet. But after
5234 * remembering D-SACK for its head made in previous line.
5235 */
5236 if (!tcp_receive_window(tp)) {
5237 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5238 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5239 goto out_of_window;
5240 }
5241 goto queue_and_out;
5242 }
5243
5244 tcp_data_queue_ofo(sk, skb);
5245 }
5246
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5247 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5248 {
5249 if (list)
5250 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5251
5252 return skb_rb_next(skb);
5253 }
5254
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5255 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5256 struct sk_buff_head *list,
5257 struct rb_root *root)
5258 {
5259 struct sk_buff *next = tcp_skb_next(skb, list);
5260
5261 if (list)
5262 __skb_unlink(skb, list);
5263 else
5264 rb_erase(&skb->rbnode, root);
5265
5266 __kfree_skb(skb);
5267 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5268
5269 return next;
5270 }
5271
5272 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5273 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5274 {
5275 struct rb_node **p = &root->rb_node;
5276 struct rb_node *parent = NULL;
5277 struct sk_buff *skb1;
5278
5279 while (*p) {
5280 parent = *p;
5281 skb1 = rb_to_skb(parent);
5282 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5283 p = &parent->rb_left;
5284 else
5285 p = &parent->rb_right;
5286 }
5287 rb_link_node(&skb->rbnode, parent, p);
5288 rb_insert_color(&skb->rbnode, root);
5289 }
5290
5291 /* Collapse contiguous sequence of skbs head..tail with
5292 * sequence numbers start..end.
5293 *
5294 * If tail is NULL, this means until the end of the queue.
5295 *
5296 * Segments with FIN/SYN are not collapsed (only because this
5297 * simplifies code)
5298 */
5299 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5300 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5301 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5302 {
5303 struct sk_buff *skb = head, *n;
5304 struct sk_buff_head tmp;
5305 bool end_of_skbs;
5306
5307 /* First, check that queue is collapsible and find
5308 * the point where collapsing can be useful.
5309 */
5310 restart:
5311 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5312 n = tcp_skb_next(skb, list);
5313
5314 /* No new bits? It is possible on ofo queue. */
5315 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5316 skb = tcp_collapse_one(sk, skb, list, root);
5317 if (!skb)
5318 break;
5319 goto restart;
5320 }
5321
5322 /* The first skb to collapse is:
5323 * - not SYN/FIN and
5324 * - bloated or contains data before "start" or
5325 * overlaps to the next one and mptcp allow collapsing.
5326 */
5327 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5328 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5329 before(TCP_SKB_CB(skb)->seq, start))) {
5330 end_of_skbs = false;
5331 break;
5332 }
5333
5334 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5335 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5336 end_of_skbs = false;
5337 break;
5338 }
5339
5340 /* Decided to skip this, advance start seq. */
5341 start = TCP_SKB_CB(skb)->end_seq;
5342 }
5343 if (end_of_skbs ||
5344 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5345 return;
5346
5347 __skb_queue_head_init(&tmp);
5348
5349 while (before(start, end)) {
5350 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5351 struct sk_buff *nskb;
5352
5353 nskb = alloc_skb(copy, GFP_ATOMIC);
5354 if (!nskb)
5355 break;
5356
5357 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5358 #ifdef CONFIG_TLS_DEVICE
5359 nskb->decrypted = skb->decrypted;
5360 #endif
5361 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5362 if (list)
5363 __skb_queue_before(list, skb, nskb);
5364 else
5365 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5366 skb_set_owner_r(nskb, sk);
5367 mptcp_skb_ext_move(nskb, skb);
5368
5369 /* Copy data, releasing collapsed skbs. */
5370 while (copy > 0) {
5371 int offset = start - TCP_SKB_CB(skb)->seq;
5372 int size = TCP_SKB_CB(skb)->end_seq - start;
5373
5374 BUG_ON(offset < 0);
5375 if (size > 0) {
5376 size = min(copy, size);
5377 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5378 BUG();
5379 TCP_SKB_CB(nskb)->end_seq += size;
5380 copy -= size;
5381 start += size;
5382 }
5383 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5384 skb = tcp_collapse_one(sk, skb, list, root);
5385 if (!skb ||
5386 skb == tail ||
5387 !mptcp_skb_can_collapse(nskb, skb) ||
5388 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5389 goto end;
5390 #ifdef CONFIG_TLS_DEVICE
5391 if (skb->decrypted != nskb->decrypted)
5392 goto end;
5393 #endif
5394 }
5395 }
5396 }
5397 end:
5398 skb_queue_walk_safe(&tmp, skb, n)
5399 tcp_rbtree_insert(root, skb);
5400 }
5401
5402 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5403 * and tcp_collapse() them until all the queue is collapsed.
5404 */
tcp_collapse_ofo_queue(struct sock * sk)5405 static void tcp_collapse_ofo_queue(struct sock *sk)
5406 {
5407 struct tcp_sock *tp = tcp_sk(sk);
5408 u32 range_truesize, sum_tiny = 0;
5409 struct sk_buff *skb, *head;
5410 u32 start, end;
5411
5412 skb = skb_rb_first(&tp->out_of_order_queue);
5413 new_range:
5414 if (!skb) {
5415 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5416 return;
5417 }
5418 start = TCP_SKB_CB(skb)->seq;
5419 end = TCP_SKB_CB(skb)->end_seq;
5420 range_truesize = skb->truesize;
5421
5422 for (head = skb;;) {
5423 skb = skb_rb_next(skb);
5424
5425 /* Range is terminated when we see a gap or when
5426 * we are at the queue end.
5427 */
5428 if (!skb ||
5429 after(TCP_SKB_CB(skb)->seq, end) ||
5430 before(TCP_SKB_CB(skb)->end_seq, start)) {
5431 /* Do not attempt collapsing tiny skbs */
5432 if (range_truesize != head->truesize ||
5433 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5434 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5435 head, skb, start, end);
5436 } else {
5437 sum_tiny += range_truesize;
5438 if (sum_tiny > sk->sk_rcvbuf >> 3)
5439 return;
5440 }
5441 goto new_range;
5442 }
5443
5444 range_truesize += skb->truesize;
5445 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5446 start = TCP_SKB_CB(skb)->seq;
5447 if (after(TCP_SKB_CB(skb)->end_seq, end))
5448 end = TCP_SKB_CB(skb)->end_seq;
5449 }
5450 }
5451
5452 /*
5453 * Clean the out-of-order queue to make room.
5454 * We drop high sequences packets to :
5455 * 1) Let a chance for holes to be filled.
5456 * This means we do not drop packets from ooo queue if their sequence
5457 * is before incoming packet sequence.
5458 * 2) not add too big latencies if thousands of packets sit there.
5459 * (But if application shrinks SO_RCVBUF, we could still end up
5460 * freeing whole queue here)
5461 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5462 *
5463 * Return true if queue has shrunk.
5464 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5465 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5466 {
5467 struct tcp_sock *tp = tcp_sk(sk);
5468 struct rb_node *node, *prev;
5469 bool pruned = false;
5470 int goal;
5471
5472 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5473 return false;
5474
5475 goal = sk->sk_rcvbuf >> 3;
5476 node = &tp->ooo_last_skb->rbnode;
5477
5478 do {
5479 struct sk_buff *skb = rb_to_skb(node);
5480
5481 /* If incoming skb would land last in ofo queue, stop pruning. */
5482 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5483 break;
5484 pruned = true;
5485 prev = rb_prev(node);
5486 rb_erase(node, &tp->out_of_order_queue);
5487 goal -= skb->truesize;
5488 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5489 tp->ooo_last_skb = rb_to_skb(prev);
5490 if (!prev || goal <= 0) {
5491 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5492 !tcp_under_memory_pressure(sk))
5493 break;
5494 goal = sk->sk_rcvbuf >> 3;
5495 }
5496 node = prev;
5497 } while (node);
5498
5499 if (pruned) {
5500 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5501 /* Reset SACK state. A conforming SACK implementation will
5502 * do the same at a timeout based retransmit. When a connection
5503 * is in a sad state like this, we care only about integrity
5504 * of the connection not performance.
5505 */
5506 if (tp->rx_opt.sack_ok)
5507 tcp_sack_reset(&tp->rx_opt);
5508 }
5509 return pruned;
5510 }
5511
5512 /* Reduce allocated memory if we can, trying to get
5513 * the socket within its memory limits again.
5514 *
5515 * Return less than zero if we should start dropping frames
5516 * until the socket owning process reads some of the data
5517 * to stabilize the situation.
5518 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5519 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5520 {
5521 struct tcp_sock *tp = tcp_sk(sk);
5522
5523 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5524
5525 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5526 tcp_clamp_window(sk);
5527 else if (tcp_under_memory_pressure(sk))
5528 tcp_adjust_rcv_ssthresh(sk);
5529
5530 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5531 return 0;
5532
5533 tcp_collapse_ofo_queue(sk);
5534 if (!skb_queue_empty(&sk->sk_receive_queue))
5535 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5536 skb_peek(&sk->sk_receive_queue),
5537 NULL,
5538 tp->copied_seq, tp->rcv_nxt);
5539
5540 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5541 return 0;
5542
5543 /* Collapsing did not help, destructive actions follow.
5544 * This must not ever occur. */
5545
5546 tcp_prune_ofo_queue(sk, in_skb);
5547
5548 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5549 return 0;
5550
5551 /* If we are really being abused, tell the caller to silently
5552 * drop receive data on the floor. It will get retransmitted
5553 * and hopefully then we'll have sufficient space.
5554 */
5555 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5556
5557 /* Massive buffer overcommit. */
5558 tp->pred_flags = 0;
5559 return -1;
5560 }
5561
tcp_should_expand_sndbuf(struct sock * sk)5562 static bool tcp_should_expand_sndbuf(struct sock *sk)
5563 {
5564 const struct tcp_sock *tp = tcp_sk(sk);
5565
5566 /* If the user specified a specific send buffer setting, do
5567 * not modify it.
5568 */
5569 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5570 return false;
5571
5572 /* If we are under global TCP memory pressure, do not expand. */
5573 if (tcp_under_memory_pressure(sk)) {
5574 int unused_mem = sk_unused_reserved_mem(sk);
5575
5576 /* Adjust sndbuf according to reserved mem. But make sure
5577 * it never goes below SOCK_MIN_SNDBUF.
5578 * See sk_stream_moderate_sndbuf() for more details.
5579 */
5580 if (unused_mem > SOCK_MIN_SNDBUF)
5581 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5582
5583 return false;
5584 }
5585
5586 /* If we are under soft global TCP memory pressure, do not expand. */
5587 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5588 return false;
5589
5590 /* If we filled the congestion window, do not expand. */
5591 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5592 return false;
5593
5594 return true;
5595 }
5596
tcp_new_space(struct sock * sk)5597 static void tcp_new_space(struct sock *sk)
5598 {
5599 struct tcp_sock *tp = tcp_sk(sk);
5600
5601 if (tcp_should_expand_sndbuf(sk)) {
5602 tcp_sndbuf_expand(sk);
5603 tp->snd_cwnd_stamp = tcp_jiffies32;
5604 }
5605
5606 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5607 }
5608
5609 /* Caller made space either from:
5610 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5611 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5612 *
5613 * We might be able to generate EPOLLOUT to the application if:
5614 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5615 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5616 * small enough that tcp_stream_memory_free() decides it
5617 * is time to generate EPOLLOUT.
5618 */
tcp_check_space(struct sock * sk)5619 void tcp_check_space(struct sock *sk)
5620 {
5621 /* pairs with tcp_poll() */
5622 smp_mb();
5623 if (sk->sk_socket &&
5624 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5625 tcp_new_space(sk);
5626 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5627 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5628 }
5629 }
5630
tcp_data_snd_check(struct sock * sk)5631 static inline void tcp_data_snd_check(struct sock *sk)
5632 {
5633 tcp_push_pending_frames(sk);
5634 tcp_check_space(sk);
5635 }
5636
5637 /*
5638 * Check if sending an ack is needed.
5639 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5640 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5641 {
5642 struct tcp_sock *tp = tcp_sk(sk);
5643 unsigned long rtt, delay;
5644
5645 /* More than one full frame received... */
5646 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5647 /* ... and right edge of window advances far enough.
5648 * (tcp_recvmsg() will send ACK otherwise).
5649 * If application uses SO_RCVLOWAT, we want send ack now if
5650 * we have not received enough bytes to satisfy the condition.
5651 */
5652 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5653 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5654 /* We ACK each frame or... */
5655 tcp_in_quickack_mode(sk) ||
5656 /* Protocol state mandates a one-time immediate ACK */
5657 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5658 send_now:
5659 tcp_send_ack(sk);
5660 return;
5661 }
5662
5663 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5664 tcp_send_delayed_ack(sk);
5665 return;
5666 }
5667
5668 if (!tcp_is_sack(tp) ||
5669 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5670 goto send_now;
5671
5672 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5673 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5674 tp->dup_ack_counter = 0;
5675 }
5676 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5677 tp->dup_ack_counter++;
5678 goto send_now;
5679 }
5680 tp->compressed_ack++;
5681 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5682 return;
5683
5684 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5685
5686 rtt = tp->rcv_rtt_est.rtt_us;
5687 if (tp->srtt_us && tp->srtt_us < rtt)
5688 rtt = tp->srtt_us;
5689
5690 delay = min_t(unsigned long,
5691 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5692 rtt * (NSEC_PER_USEC >> 3)/20);
5693 sock_hold(sk);
5694 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5695 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5696 HRTIMER_MODE_REL_PINNED_SOFT);
5697 }
5698
tcp_ack_snd_check(struct sock * sk)5699 static inline void tcp_ack_snd_check(struct sock *sk)
5700 {
5701 if (!inet_csk_ack_scheduled(sk)) {
5702 /* We sent a data segment already. */
5703 return;
5704 }
5705 __tcp_ack_snd_check(sk, 1);
5706 }
5707
5708 /*
5709 * This routine is only called when we have urgent data
5710 * signaled. Its the 'slow' part of tcp_urg. It could be
5711 * moved inline now as tcp_urg is only called from one
5712 * place. We handle URGent data wrong. We have to - as
5713 * BSD still doesn't use the correction from RFC961.
5714 * For 1003.1g we should support a new option TCP_STDURG to permit
5715 * either form (or just set the sysctl tcp_stdurg).
5716 */
5717
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5718 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5719 {
5720 struct tcp_sock *tp = tcp_sk(sk);
5721 u32 ptr = ntohs(th->urg_ptr);
5722
5723 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5724 ptr--;
5725 ptr += ntohl(th->seq);
5726
5727 /* Ignore urgent data that we've already seen and read. */
5728 if (after(tp->copied_seq, ptr))
5729 return;
5730
5731 /* Do not replay urg ptr.
5732 *
5733 * NOTE: interesting situation not covered by specs.
5734 * Misbehaving sender may send urg ptr, pointing to segment,
5735 * which we already have in ofo queue. We are not able to fetch
5736 * such data and will stay in TCP_URG_NOTYET until will be eaten
5737 * by recvmsg(). Seems, we are not obliged to handle such wicked
5738 * situations. But it is worth to think about possibility of some
5739 * DoSes using some hypothetical application level deadlock.
5740 */
5741 if (before(ptr, tp->rcv_nxt))
5742 return;
5743
5744 /* Do we already have a newer (or duplicate) urgent pointer? */
5745 if (tp->urg_data && !after(ptr, tp->urg_seq))
5746 return;
5747
5748 /* Tell the world about our new urgent pointer. */
5749 sk_send_sigurg(sk);
5750
5751 /* We may be adding urgent data when the last byte read was
5752 * urgent. To do this requires some care. We cannot just ignore
5753 * tp->copied_seq since we would read the last urgent byte again
5754 * as data, nor can we alter copied_seq until this data arrives
5755 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5756 *
5757 * NOTE. Double Dutch. Rendering to plain English: author of comment
5758 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5759 * and expect that both A and B disappear from stream. This is _wrong_.
5760 * Though this happens in BSD with high probability, this is occasional.
5761 * Any application relying on this is buggy. Note also, that fix "works"
5762 * only in this artificial test. Insert some normal data between A and B and we will
5763 * decline of BSD again. Verdict: it is better to remove to trap
5764 * buggy users.
5765 */
5766 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5767 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5768 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5769 tp->copied_seq++;
5770 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5771 __skb_unlink(skb, &sk->sk_receive_queue);
5772 __kfree_skb(skb);
5773 }
5774 }
5775
5776 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5777 WRITE_ONCE(tp->urg_seq, ptr);
5778
5779 /* Disable header prediction. */
5780 tp->pred_flags = 0;
5781 }
5782
5783 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5784 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5785 {
5786 struct tcp_sock *tp = tcp_sk(sk);
5787
5788 /* Check if we get a new urgent pointer - normally not. */
5789 if (unlikely(th->urg))
5790 tcp_check_urg(sk, th);
5791
5792 /* Do we wait for any urgent data? - normally not... */
5793 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5794 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5795 th->syn;
5796
5797 /* Is the urgent pointer pointing into this packet? */
5798 if (ptr < skb->len) {
5799 u8 tmp;
5800 if (skb_copy_bits(skb, ptr, &tmp, 1))
5801 BUG();
5802 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5803 if (!sock_flag(sk, SOCK_DEAD))
5804 sk->sk_data_ready(sk);
5805 }
5806 }
5807 }
5808
5809 /* Accept RST for rcv_nxt - 1 after a FIN.
5810 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5811 * FIN is sent followed by a RST packet. The RST is sent with the same
5812 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5813 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5814 * ACKs on the closed socket. In addition middleboxes can drop either the
5815 * challenge ACK or a subsequent RST.
5816 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5817 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5818 {
5819 const struct tcp_sock *tp = tcp_sk(sk);
5820
5821 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5822 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5823 TCPF_CLOSING));
5824 }
5825
5826 /* Does PAWS and seqno based validation of an incoming segment, flags will
5827 * play significant role here.
5828 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5829 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5830 const struct tcphdr *th, int syn_inerr)
5831 {
5832 struct tcp_sock *tp = tcp_sk(sk);
5833 SKB_DR(reason);
5834
5835 /* RFC1323: H1. Apply PAWS check first. */
5836 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5837 tp->rx_opt.saw_tstamp &&
5838 tcp_paws_discard(sk, skb)) {
5839 if (!th->rst) {
5840 if (unlikely(th->syn))
5841 goto syn_challenge;
5842 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5843 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5844 LINUX_MIB_TCPACKSKIPPEDPAWS,
5845 &tp->last_oow_ack_time))
5846 tcp_send_dupack(sk, skb);
5847 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5848 goto discard;
5849 }
5850 /* Reset is accepted even if it did not pass PAWS. */
5851 }
5852
5853 /* Step 1: check sequence number */
5854 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5855 if (reason) {
5856 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5857 * (RST) segments are validated by checking their SEQ-fields."
5858 * And page 69: "If an incoming segment is not acceptable,
5859 * an acknowledgment should be sent in reply (unless the RST
5860 * bit is set, if so drop the segment and return)".
5861 */
5862 if (!th->rst) {
5863 if (th->syn)
5864 goto syn_challenge;
5865 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5866 LINUX_MIB_TCPACKSKIPPEDSEQ,
5867 &tp->last_oow_ack_time))
5868 tcp_send_dupack(sk, skb);
5869 } else if (tcp_reset_check(sk, skb)) {
5870 goto reset;
5871 }
5872 goto discard;
5873 }
5874
5875 /* Step 2: check RST bit */
5876 if (th->rst) {
5877 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5878 * FIN and SACK too if available):
5879 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5880 * the right-most SACK block,
5881 * then
5882 * RESET the connection
5883 * else
5884 * Send a challenge ACK
5885 */
5886 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5887 tcp_reset_check(sk, skb))
5888 goto reset;
5889
5890 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5891 struct tcp_sack_block *sp = &tp->selective_acks[0];
5892 int max_sack = sp[0].end_seq;
5893 int this_sack;
5894
5895 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5896 ++this_sack) {
5897 max_sack = after(sp[this_sack].end_seq,
5898 max_sack) ?
5899 sp[this_sack].end_seq : max_sack;
5900 }
5901
5902 if (TCP_SKB_CB(skb)->seq == max_sack)
5903 goto reset;
5904 }
5905
5906 /* Disable TFO if RST is out-of-order
5907 * and no data has been received
5908 * for current active TFO socket
5909 */
5910 if (tp->syn_fastopen && !tp->data_segs_in &&
5911 sk->sk_state == TCP_ESTABLISHED)
5912 tcp_fastopen_active_disable(sk);
5913 tcp_send_challenge_ack(sk);
5914 SKB_DR_SET(reason, TCP_RESET);
5915 goto discard;
5916 }
5917
5918 /* step 3: check security and precedence [ignored] */
5919
5920 /* step 4: Check for a SYN
5921 * RFC 5961 4.2 : Send a challenge ack
5922 */
5923 if (th->syn) {
5924 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5925 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5926 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5927 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5928 goto pass;
5929 syn_challenge:
5930 if (syn_inerr)
5931 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5932 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5933 tcp_send_challenge_ack(sk);
5934 SKB_DR_SET(reason, TCP_INVALID_SYN);
5935 goto discard;
5936 }
5937
5938 pass:
5939 bpf_skops_parse_hdr(sk, skb);
5940
5941 return true;
5942
5943 discard:
5944 tcp_drop_reason(sk, skb, reason);
5945 return false;
5946
5947 reset:
5948 tcp_reset(sk, skb);
5949 __kfree_skb(skb);
5950 return false;
5951 }
5952
5953 /*
5954 * TCP receive function for the ESTABLISHED state.
5955 *
5956 * It is split into a fast path and a slow path. The fast path is
5957 * disabled when:
5958 * - A zero window was announced from us - zero window probing
5959 * is only handled properly in the slow path.
5960 * - Out of order segments arrived.
5961 * - Urgent data is expected.
5962 * - There is no buffer space left
5963 * - Unexpected TCP flags/window values/header lengths are received
5964 * (detected by checking the TCP header against pred_flags)
5965 * - Data is sent in both directions. Fast path only supports pure senders
5966 * or pure receivers (this means either the sequence number or the ack
5967 * value must stay constant)
5968 * - Unexpected TCP option.
5969 *
5970 * When these conditions are not satisfied it drops into a standard
5971 * receive procedure patterned after RFC793 to handle all cases.
5972 * The first three cases are guaranteed by proper pred_flags setting,
5973 * the rest is checked inline. Fast processing is turned on in
5974 * tcp_data_queue when everything is OK.
5975 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5976 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5977 {
5978 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5979 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5980 struct tcp_sock *tp = tcp_sk(sk);
5981 unsigned int len = skb->len;
5982
5983 /* TCP congestion window tracking */
5984 trace_tcp_probe(sk, skb);
5985
5986 tcp_mstamp_refresh(tp);
5987 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5988 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5989 /*
5990 * Header prediction.
5991 * The code loosely follows the one in the famous
5992 * "30 instruction TCP receive" Van Jacobson mail.
5993 *
5994 * Van's trick is to deposit buffers into socket queue
5995 * on a device interrupt, to call tcp_recv function
5996 * on the receive process context and checksum and copy
5997 * the buffer to user space. smart...
5998 *
5999 * Our current scheme is not silly either but we take the
6000 * extra cost of the net_bh soft interrupt processing...
6001 * We do checksum and copy also but from device to kernel.
6002 */
6003
6004 tp->rx_opt.saw_tstamp = 0;
6005
6006 /* pred_flags is 0xS?10 << 16 + snd_wnd
6007 * if header_prediction is to be made
6008 * 'S' will always be tp->tcp_header_len >> 2
6009 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6010 * turn it off (when there are holes in the receive
6011 * space for instance)
6012 * PSH flag is ignored.
6013 */
6014
6015 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6016 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6017 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6018 int tcp_header_len = tp->tcp_header_len;
6019
6020 /* Timestamp header prediction: tcp_header_len
6021 * is automatically equal to th->doff*4 due to pred_flags
6022 * match.
6023 */
6024
6025 /* Check timestamp */
6026 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6027 /* No? Slow path! */
6028 if (!tcp_parse_aligned_timestamp(tp, th))
6029 goto slow_path;
6030
6031 /* If PAWS failed, check it more carefully in slow path */
6032 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6033 goto slow_path;
6034
6035 /* DO NOT update ts_recent here, if checksum fails
6036 * and timestamp was corrupted part, it will result
6037 * in a hung connection since we will drop all
6038 * future packets due to the PAWS test.
6039 */
6040 }
6041
6042 if (len <= tcp_header_len) {
6043 /* Bulk data transfer: sender */
6044 if (len == tcp_header_len) {
6045 /* Predicted packet is in window by definition.
6046 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6047 * Hence, check seq<=rcv_wup reduces to:
6048 */
6049 if (tcp_header_len ==
6050 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6051 tp->rcv_nxt == tp->rcv_wup)
6052 tcp_store_ts_recent(tp);
6053
6054 /* We know that such packets are checksummed
6055 * on entry.
6056 */
6057 tcp_ack(sk, skb, 0);
6058 __kfree_skb(skb);
6059 tcp_data_snd_check(sk);
6060 /* When receiving pure ack in fast path, update
6061 * last ts ecr directly instead of calling
6062 * tcp_rcv_rtt_measure_ts()
6063 */
6064 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6065 return;
6066 } else { /* Header too small */
6067 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6068 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6069 goto discard;
6070 }
6071 } else {
6072 int eaten = 0;
6073 bool fragstolen = false;
6074
6075 if (tcp_checksum_complete(skb))
6076 goto csum_error;
6077
6078 if ((int)skb->truesize > sk->sk_forward_alloc)
6079 goto step5;
6080
6081 /* Predicted packet is in window by definition.
6082 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6083 * Hence, check seq<=rcv_wup reduces to:
6084 */
6085 if (tcp_header_len ==
6086 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6087 tp->rcv_nxt == tp->rcv_wup)
6088 tcp_store_ts_recent(tp);
6089
6090 tcp_rcv_rtt_measure_ts(sk, skb);
6091
6092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6093
6094 /* Bulk data transfer: receiver */
6095 skb_dst_drop(skb);
6096 __skb_pull(skb, tcp_header_len);
6097 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6098
6099 tcp_event_data_recv(sk, skb);
6100
6101 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6102 /* Well, only one small jumplet in fast path... */
6103 tcp_ack(sk, skb, FLAG_DATA);
6104 tcp_data_snd_check(sk);
6105 if (!inet_csk_ack_scheduled(sk))
6106 goto no_ack;
6107 } else {
6108 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6109 }
6110
6111 __tcp_ack_snd_check(sk, 0);
6112 no_ack:
6113 if (eaten)
6114 kfree_skb_partial(skb, fragstolen);
6115 tcp_data_ready(sk);
6116 return;
6117 }
6118 }
6119
6120 slow_path:
6121 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6122 goto csum_error;
6123
6124 if (!th->ack && !th->rst && !th->syn) {
6125 reason = SKB_DROP_REASON_TCP_FLAGS;
6126 goto discard;
6127 }
6128
6129 /*
6130 * Standard slow path.
6131 */
6132
6133 if (!tcp_validate_incoming(sk, skb, th, 1))
6134 return;
6135
6136 step5:
6137 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6138 if ((int)reason < 0) {
6139 reason = -reason;
6140 goto discard;
6141 }
6142 tcp_rcv_rtt_measure_ts(sk, skb);
6143
6144 /* Process urgent data. */
6145 tcp_urg(sk, skb, th);
6146
6147 /* step 7: process the segment text */
6148 tcp_data_queue(sk, skb);
6149
6150 tcp_data_snd_check(sk);
6151 tcp_ack_snd_check(sk);
6152 return;
6153
6154 csum_error:
6155 reason = SKB_DROP_REASON_TCP_CSUM;
6156 trace_tcp_bad_csum(skb);
6157 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6158 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6159
6160 discard:
6161 tcp_drop_reason(sk, skb, reason);
6162 }
6163 EXPORT_SYMBOL(tcp_rcv_established);
6164
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6165 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6166 {
6167 struct inet_connection_sock *icsk = inet_csk(sk);
6168 struct tcp_sock *tp = tcp_sk(sk);
6169
6170 tcp_mtup_init(sk);
6171 icsk->icsk_af_ops->rebuild_header(sk);
6172 tcp_init_metrics(sk);
6173
6174 /* Initialize the congestion window to start the transfer.
6175 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6176 * retransmitted. In light of RFC6298 more aggressive 1sec
6177 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6178 * retransmission has occurred.
6179 */
6180 if (tp->total_retrans > 1 && tp->undo_marker)
6181 tcp_snd_cwnd_set(tp, 1);
6182 else
6183 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6184 tp->snd_cwnd_stamp = tcp_jiffies32;
6185
6186 bpf_skops_established(sk, bpf_op, skb);
6187 /* Initialize congestion control unless BPF initialized it already: */
6188 if (!icsk->icsk_ca_initialized)
6189 tcp_init_congestion_control(sk);
6190 tcp_init_buffer_space(sk);
6191 }
6192
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6193 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6194 {
6195 struct tcp_sock *tp = tcp_sk(sk);
6196 struct inet_connection_sock *icsk = inet_csk(sk);
6197
6198 tcp_set_state(sk, TCP_ESTABLISHED);
6199 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6200
6201 if (skb) {
6202 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6203 security_inet_conn_established(sk, skb);
6204 sk_mark_napi_id(sk, skb);
6205 }
6206
6207 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6208
6209 /* Prevent spurious tcp_cwnd_restart() on first data
6210 * packet.
6211 */
6212 tp->lsndtime = tcp_jiffies32;
6213
6214 if (sock_flag(sk, SOCK_KEEPOPEN))
6215 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6216
6217 if (!tp->rx_opt.snd_wscale)
6218 __tcp_fast_path_on(tp, tp->snd_wnd);
6219 else
6220 tp->pred_flags = 0;
6221 }
6222
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6223 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6224 struct tcp_fastopen_cookie *cookie)
6225 {
6226 struct tcp_sock *tp = tcp_sk(sk);
6227 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6228 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6229 bool syn_drop = false;
6230
6231 if (mss == tp->rx_opt.user_mss) {
6232 struct tcp_options_received opt;
6233
6234 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6235 tcp_clear_options(&opt);
6236 opt.user_mss = opt.mss_clamp = 0;
6237 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6238 mss = opt.mss_clamp;
6239 }
6240
6241 if (!tp->syn_fastopen) {
6242 /* Ignore an unsolicited cookie */
6243 cookie->len = -1;
6244 } else if (tp->total_retrans) {
6245 /* SYN timed out and the SYN-ACK neither has a cookie nor
6246 * acknowledges data. Presumably the remote received only
6247 * the retransmitted (regular) SYNs: either the original
6248 * SYN-data or the corresponding SYN-ACK was dropped.
6249 */
6250 syn_drop = (cookie->len < 0 && data);
6251 } else if (cookie->len < 0 && !tp->syn_data) {
6252 /* We requested a cookie but didn't get it. If we did not use
6253 * the (old) exp opt format then try so next time (try_exp=1).
6254 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6255 */
6256 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6257 }
6258
6259 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6260
6261 if (data) { /* Retransmit unacked data in SYN */
6262 if (tp->total_retrans)
6263 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6264 else
6265 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6266 skb_rbtree_walk_from(data)
6267 tcp_mark_skb_lost(sk, data);
6268 tcp_non_congestion_loss_retransmit(sk);
6269 NET_INC_STATS(sock_net(sk),
6270 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6271 return true;
6272 }
6273 tp->syn_data_acked = tp->syn_data;
6274 if (tp->syn_data_acked) {
6275 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6276 /* SYN-data is counted as two separate packets in tcp_ack() */
6277 if (tp->delivered > 1)
6278 --tp->delivered;
6279 }
6280
6281 tcp_fastopen_add_skb(sk, synack);
6282
6283 return false;
6284 }
6285
smc_check_reset_syn(struct tcp_sock * tp)6286 static void smc_check_reset_syn(struct tcp_sock *tp)
6287 {
6288 #if IS_ENABLED(CONFIG_SMC)
6289 if (static_branch_unlikely(&tcp_have_smc)) {
6290 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6291 tp->syn_smc = 0;
6292 }
6293 #endif
6294 }
6295
tcp_try_undo_spurious_syn(struct sock * sk)6296 static void tcp_try_undo_spurious_syn(struct sock *sk)
6297 {
6298 struct tcp_sock *tp = tcp_sk(sk);
6299 u32 syn_stamp;
6300
6301 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6302 * spurious if the ACK's timestamp option echo value matches the
6303 * original SYN timestamp.
6304 */
6305 syn_stamp = tp->retrans_stamp;
6306 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6307 syn_stamp == tp->rx_opt.rcv_tsecr)
6308 tp->undo_marker = 0;
6309 }
6310
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6311 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6312 const struct tcphdr *th)
6313 {
6314 struct inet_connection_sock *icsk = inet_csk(sk);
6315 struct tcp_sock *tp = tcp_sk(sk);
6316 struct tcp_fastopen_cookie foc = { .len = -1 };
6317 int saved_clamp = tp->rx_opt.mss_clamp;
6318 bool fastopen_fail;
6319 SKB_DR(reason);
6320
6321 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6322 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6323 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6324
6325 if (th->ack) {
6326 /* rfc793:
6327 * "If the state is SYN-SENT then
6328 * first check the ACK bit
6329 * If the ACK bit is set
6330 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6331 * a reset (unless the RST bit is set, if so drop
6332 * the segment and return)"
6333 */
6334 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6335 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6336 /* Previous FIN/ACK or RST/ACK might be ignored. */
6337 if (icsk->icsk_retransmits == 0)
6338 inet_csk_reset_xmit_timer(sk,
6339 ICSK_TIME_RETRANS,
6340 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6341 goto reset_and_undo;
6342 }
6343
6344 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6345 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6346 tcp_time_stamp(tp))) {
6347 NET_INC_STATS(sock_net(sk),
6348 LINUX_MIB_PAWSACTIVEREJECTED);
6349 goto reset_and_undo;
6350 }
6351
6352 /* Now ACK is acceptable.
6353 *
6354 * "If the RST bit is set
6355 * If the ACK was acceptable then signal the user "error:
6356 * connection reset", drop the segment, enter CLOSED state,
6357 * delete TCB, and return."
6358 */
6359
6360 if (th->rst) {
6361 tcp_reset(sk, skb);
6362 consume:
6363 __kfree_skb(skb);
6364 return 0;
6365 }
6366
6367 /* rfc793:
6368 * "fifth, if neither of the SYN or RST bits is set then
6369 * drop the segment and return."
6370 *
6371 * See note below!
6372 * --ANK(990513)
6373 */
6374 if (!th->syn) {
6375 SKB_DR_SET(reason, TCP_FLAGS);
6376 goto discard_and_undo;
6377 }
6378 /* rfc793:
6379 * "If the SYN bit is on ...
6380 * are acceptable then ...
6381 * (our SYN has been ACKed), change the connection
6382 * state to ESTABLISHED..."
6383 */
6384
6385 tcp_ecn_rcv_synack(tp, th);
6386
6387 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6388 tcp_try_undo_spurious_syn(sk);
6389 tcp_ack(sk, skb, FLAG_SLOWPATH);
6390
6391 /* Ok.. it's good. Set up sequence numbers and
6392 * move to established.
6393 */
6394 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6395 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6396
6397 /* RFC1323: The window in SYN & SYN/ACK segments is
6398 * never scaled.
6399 */
6400 tp->snd_wnd = ntohs(th->window);
6401
6402 if (!tp->rx_opt.wscale_ok) {
6403 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6404 WRITE_ONCE(tp->window_clamp,
6405 min(tp->window_clamp, 65535U));
6406 }
6407
6408 if (tp->rx_opt.saw_tstamp) {
6409 tp->rx_opt.tstamp_ok = 1;
6410 tp->tcp_header_len =
6411 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6412 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6413 tcp_store_ts_recent(tp);
6414 } else {
6415 tp->tcp_header_len = sizeof(struct tcphdr);
6416 }
6417
6418 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6419 tcp_initialize_rcv_mss(sk);
6420
6421 /* Remember, tcp_poll() does not lock socket!
6422 * Change state from SYN-SENT only after copied_seq
6423 * is initialized. */
6424 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6425
6426 smc_check_reset_syn(tp);
6427
6428 smp_mb();
6429
6430 tcp_finish_connect(sk, skb);
6431
6432 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6433 tcp_rcv_fastopen_synack(sk, skb, &foc);
6434
6435 if (!sock_flag(sk, SOCK_DEAD)) {
6436 sk->sk_state_change(sk);
6437 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6438 }
6439 if (fastopen_fail)
6440 return -1;
6441 if (sk->sk_write_pending ||
6442 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6443 inet_csk_in_pingpong_mode(sk)) {
6444 /* Save one ACK. Data will be ready after
6445 * several ticks, if write_pending is set.
6446 *
6447 * It may be deleted, but with this feature tcpdumps
6448 * look so _wonderfully_ clever, that I was not able
6449 * to stand against the temptation 8) --ANK
6450 */
6451 inet_csk_schedule_ack(sk);
6452 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6453 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6454 TCP_DELACK_MAX, TCP_RTO_MAX);
6455 goto consume;
6456 }
6457 tcp_send_ack(sk);
6458 return -1;
6459 }
6460
6461 /* No ACK in the segment */
6462
6463 if (th->rst) {
6464 /* rfc793:
6465 * "If the RST bit is set
6466 *
6467 * Otherwise (no ACK) drop the segment and return."
6468 */
6469 SKB_DR_SET(reason, TCP_RESET);
6470 goto discard_and_undo;
6471 }
6472
6473 /* PAWS check. */
6474 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6475 tcp_paws_reject(&tp->rx_opt, 0)) {
6476 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6477 goto discard_and_undo;
6478 }
6479 if (th->syn) {
6480 /* We see SYN without ACK. It is attempt of
6481 * simultaneous connect with crossed SYNs.
6482 * Particularly, it can be connect to self.
6483 */
6484 tcp_set_state(sk, TCP_SYN_RECV);
6485
6486 if (tp->rx_opt.saw_tstamp) {
6487 tp->rx_opt.tstamp_ok = 1;
6488 tcp_store_ts_recent(tp);
6489 tp->tcp_header_len =
6490 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6491 } else {
6492 tp->tcp_header_len = sizeof(struct tcphdr);
6493 }
6494
6495 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6496 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6497 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6498
6499 /* RFC1323: The window in SYN & SYN/ACK segments is
6500 * never scaled.
6501 */
6502 tp->snd_wnd = ntohs(th->window);
6503 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6504 tp->max_window = tp->snd_wnd;
6505
6506 tcp_ecn_rcv_syn(tp, th);
6507
6508 tcp_mtup_init(sk);
6509 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6510 tcp_initialize_rcv_mss(sk);
6511
6512 tcp_send_synack(sk);
6513 #if 0
6514 /* Note, we could accept data and URG from this segment.
6515 * There are no obstacles to make this (except that we must
6516 * either change tcp_recvmsg() to prevent it from returning data
6517 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6518 *
6519 * However, if we ignore data in ACKless segments sometimes,
6520 * we have no reasons to accept it sometimes.
6521 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6522 * is not flawless. So, discard packet for sanity.
6523 * Uncomment this return to process the data.
6524 */
6525 return -1;
6526 #else
6527 goto consume;
6528 #endif
6529 }
6530 /* "fifth, if neither of the SYN or RST bits is set then
6531 * drop the segment and return."
6532 */
6533
6534 discard_and_undo:
6535 tcp_clear_options(&tp->rx_opt);
6536 tp->rx_opt.mss_clamp = saved_clamp;
6537 tcp_drop_reason(sk, skb, reason);
6538 return 0;
6539
6540 reset_and_undo:
6541 tcp_clear_options(&tp->rx_opt);
6542 tp->rx_opt.mss_clamp = saved_clamp;
6543 return 1;
6544 }
6545
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6546 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6547 {
6548 struct tcp_sock *tp = tcp_sk(sk);
6549 struct request_sock *req;
6550
6551 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6552 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6553 */
6554 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6555 tcp_try_undo_recovery(sk);
6556
6557 tcp_update_rto_time(tp);
6558 inet_csk(sk)->icsk_retransmits = 0;
6559 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6560 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6561 * need to zero retrans_stamp here to prevent spurious
6562 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6563 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6564 * set entering CA_Recovery, for correct retransmits_timed_out() and
6565 * undo behavior.
6566 */
6567 tcp_retrans_stamp_cleanup(sk);
6568
6569 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6570 * we no longer need req so release it.
6571 */
6572 req = rcu_dereference_protected(tp->fastopen_rsk,
6573 lockdep_sock_is_held(sk));
6574 reqsk_fastopen_remove(sk, req, false);
6575
6576 /* Re-arm the timer because data may have been sent out.
6577 * This is similar to the regular data transmission case
6578 * when new data has just been ack'ed.
6579 *
6580 * (TFO) - we could try to be more aggressive and
6581 * retransmitting any data sooner based on when they
6582 * are sent out.
6583 */
6584 tcp_rearm_rto(sk);
6585 }
6586
6587 /*
6588 * This function implements the receiving procedure of RFC 793 for
6589 * all states except ESTABLISHED and TIME_WAIT.
6590 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6591 * address independent.
6592 */
6593
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6594 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6595 {
6596 struct tcp_sock *tp = tcp_sk(sk);
6597 struct inet_connection_sock *icsk = inet_csk(sk);
6598 const struct tcphdr *th = tcp_hdr(skb);
6599 struct request_sock *req;
6600 int queued = 0;
6601 bool acceptable;
6602 SKB_DR(reason);
6603
6604 switch (sk->sk_state) {
6605 case TCP_CLOSE:
6606 SKB_DR_SET(reason, TCP_CLOSE);
6607 goto discard;
6608
6609 case TCP_LISTEN:
6610 if (th->ack)
6611 return 1;
6612
6613 if (th->rst) {
6614 SKB_DR_SET(reason, TCP_RESET);
6615 goto discard;
6616 }
6617 if (th->syn) {
6618 if (th->fin) {
6619 SKB_DR_SET(reason, TCP_FLAGS);
6620 goto discard;
6621 }
6622 /* It is possible that we process SYN packets from backlog,
6623 * so we need to make sure to disable BH and RCU right there.
6624 */
6625 rcu_read_lock();
6626 local_bh_disable();
6627 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6628 local_bh_enable();
6629 rcu_read_unlock();
6630
6631 if (!acceptable)
6632 return 1;
6633 consume_skb(skb);
6634 return 0;
6635 }
6636 SKB_DR_SET(reason, TCP_FLAGS);
6637 goto discard;
6638
6639 case TCP_SYN_SENT:
6640 tp->rx_opt.saw_tstamp = 0;
6641 tcp_mstamp_refresh(tp);
6642 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6643 if (queued >= 0)
6644 return queued;
6645
6646 /* Do step6 onward by hand. */
6647 tcp_urg(sk, skb, th);
6648 __kfree_skb(skb);
6649 tcp_data_snd_check(sk);
6650 return 0;
6651 }
6652
6653 tcp_mstamp_refresh(tp);
6654 tp->rx_opt.saw_tstamp = 0;
6655 req = rcu_dereference_protected(tp->fastopen_rsk,
6656 lockdep_sock_is_held(sk));
6657 if (req) {
6658 bool req_stolen;
6659
6660 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6661 sk->sk_state != TCP_FIN_WAIT1);
6662
6663 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6664 SKB_DR_SET(reason, TCP_FASTOPEN);
6665 goto discard;
6666 }
6667 }
6668
6669 if (!th->ack && !th->rst && !th->syn) {
6670 SKB_DR_SET(reason, TCP_FLAGS);
6671 goto discard;
6672 }
6673 if (!tcp_validate_incoming(sk, skb, th, 0))
6674 return 0;
6675
6676 /* step 5: check the ACK field */
6677 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6678 FLAG_UPDATE_TS_RECENT |
6679 FLAG_NO_CHALLENGE_ACK) > 0;
6680
6681 if (!acceptable) {
6682 if (sk->sk_state == TCP_SYN_RECV)
6683 return 1; /* send one RST */
6684 tcp_send_challenge_ack(sk);
6685 SKB_DR_SET(reason, TCP_OLD_ACK);
6686 goto discard;
6687 }
6688 switch (sk->sk_state) {
6689 case TCP_SYN_RECV:
6690 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6691 if (!tp->srtt_us)
6692 tcp_synack_rtt_meas(sk, req);
6693
6694 if (req) {
6695 tcp_rcv_synrecv_state_fastopen(sk);
6696 } else {
6697 tcp_try_undo_spurious_syn(sk);
6698 tp->retrans_stamp = 0;
6699 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6700 skb);
6701 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6702 }
6703 smp_mb();
6704 tcp_set_state(sk, TCP_ESTABLISHED);
6705 sk->sk_state_change(sk);
6706
6707 /* Note, that this wakeup is only for marginal crossed SYN case.
6708 * Passively open sockets are not waked up, because
6709 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6710 */
6711 if (sk->sk_socket)
6712 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6713
6714 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6715 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6716 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6717
6718 if (tp->rx_opt.tstamp_ok)
6719 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6720
6721 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6722 tcp_update_pacing_rate(sk);
6723
6724 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6725 tp->lsndtime = tcp_jiffies32;
6726
6727 tcp_initialize_rcv_mss(sk);
6728 tcp_fast_path_on(tp);
6729 if (sk->sk_shutdown & SEND_SHUTDOWN)
6730 tcp_shutdown(sk, SEND_SHUTDOWN);
6731 break;
6732
6733 case TCP_FIN_WAIT1: {
6734 int tmo;
6735
6736 if (req)
6737 tcp_rcv_synrecv_state_fastopen(sk);
6738
6739 if (tp->snd_una != tp->write_seq)
6740 break;
6741
6742 tcp_set_state(sk, TCP_FIN_WAIT2);
6743 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6744
6745 sk_dst_confirm(sk);
6746
6747 if (!sock_flag(sk, SOCK_DEAD)) {
6748 /* Wake up lingering close() */
6749 sk->sk_state_change(sk);
6750 break;
6751 }
6752
6753 if (READ_ONCE(tp->linger2) < 0) {
6754 tcp_done(sk);
6755 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6756 return 1;
6757 }
6758 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6759 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6760 /* Receive out of order FIN after close() */
6761 if (tp->syn_fastopen && th->fin)
6762 tcp_fastopen_active_disable(sk);
6763 tcp_done(sk);
6764 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6765 return 1;
6766 }
6767
6768 tmo = tcp_fin_time(sk);
6769 if (tmo > TCP_TIMEWAIT_LEN) {
6770 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6771 } else if (th->fin || sock_owned_by_user(sk)) {
6772 /* Bad case. We could lose such FIN otherwise.
6773 * It is not a big problem, but it looks confusing
6774 * and not so rare event. We still can lose it now,
6775 * if it spins in bh_lock_sock(), but it is really
6776 * marginal case.
6777 */
6778 inet_csk_reset_keepalive_timer(sk, tmo);
6779 } else {
6780 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6781 goto consume;
6782 }
6783 break;
6784 }
6785
6786 case TCP_CLOSING:
6787 if (tp->snd_una == tp->write_seq) {
6788 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6789 goto consume;
6790 }
6791 break;
6792
6793 case TCP_LAST_ACK:
6794 if (tp->snd_una == tp->write_seq) {
6795 tcp_update_metrics(sk);
6796 tcp_done(sk);
6797 goto consume;
6798 }
6799 break;
6800 }
6801
6802 /* step 6: check the URG bit */
6803 tcp_urg(sk, skb, th);
6804
6805 /* step 7: process the segment text */
6806 switch (sk->sk_state) {
6807 case TCP_CLOSE_WAIT:
6808 case TCP_CLOSING:
6809 case TCP_LAST_ACK:
6810 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6811 /* If a subflow has been reset, the packet should not
6812 * continue to be processed, drop the packet.
6813 */
6814 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6815 goto discard;
6816 break;
6817 }
6818 fallthrough;
6819 case TCP_FIN_WAIT1:
6820 case TCP_FIN_WAIT2:
6821 /* RFC 793 says to queue data in these states,
6822 * RFC 1122 says we MUST send a reset.
6823 * BSD 4.4 also does reset.
6824 */
6825 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6826 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6827 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6829 tcp_reset(sk, skb);
6830 return 1;
6831 }
6832 }
6833 fallthrough;
6834 case TCP_ESTABLISHED:
6835 tcp_data_queue(sk, skb);
6836 queued = 1;
6837 break;
6838 }
6839
6840 /* tcp_data could move socket to TIME-WAIT */
6841 if (sk->sk_state != TCP_CLOSE) {
6842 tcp_data_snd_check(sk);
6843 tcp_ack_snd_check(sk);
6844 }
6845
6846 if (!queued) {
6847 discard:
6848 tcp_drop_reason(sk, skb, reason);
6849 }
6850 return 0;
6851
6852 consume:
6853 __kfree_skb(skb);
6854 return 0;
6855 }
6856 EXPORT_SYMBOL(tcp_rcv_state_process);
6857
pr_drop_req(struct request_sock * req,__u16 port,int family)6858 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6859 {
6860 struct inet_request_sock *ireq = inet_rsk(req);
6861
6862 if (family == AF_INET)
6863 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6864 &ireq->ir_rmt_addr, port);
6865 #if IS_ENABLED(CONFIG_IPV6)
6866 else if (family == AF_INET6)
6867 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6868 &ireq->ir_v6_rmt_addr, port);
6869 #endif
6870 }
6871
6872 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6873 *
6874 * If we receive a SYN packet with these bits set, it means a
6875 * network is playing bad games with TOS bits. In order to
6876 * avoid possible false congestion notifications, we disable
6877 * TCP ECN negotiation.
6878 *
6879 * Exception: tcp_ca wants ECN. This is required for DCTCP
6880 * congestion control: Linux DCTCP asserts ECT on all packets,
6881 * including SYN, which is most optimal solution; however,
6882 * others, such as FreeBSD do not.
6883 *
6884 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6885 * set, indicating the use of a future TCP extension (such as AccECN). See
6886 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6887 * extensions.
6888 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6889 static void tcp_ecn_create_request(struct request_sock *req,
6890 const struct sk_buff *skb,
6891 const struct sock *listen_sk,
6892 const struct dst_entry *dst)
6893 {
6894 const struct tcphdr *th = tcp_hdr(skb);
6895 const struct net *net = sock_net(listen_sk);
6896 bool th_ecn = th->ece && th->cwr;
6897 bool ect, ecn_ok;
6898 u32 ecn_ok_dst;
6899
6900 if (!th_ecn)
6901 return;
6902
6903 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6904 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6905 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6906
6907 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6908 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6909 tcp_bpf_ca_needs_ecn((struct sock *)req))
6910 inet_rsk(req)->ecn_ok = 1;
6911 }
6912
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6913 static void tcp_openreq_init(struct request_sock *req,
6914 const struct tcp_options_received *rx_opt,
6915 struct sk_buff *skb, const struct sock *sk)
6916 {
6917 struct inet_request_sock *ireq = inet_rsk(req);
6918
6919 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6920 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6921 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6922 tcp_rsk(req)->snt_synack = 0;
6923 tcp_rsk(req)->last_oow_ack_time = 0;
6924 req->mss = rx_opt->mss_clamp;
6925 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6926 ireq->tstamp_ok = rx_opt->tstamp_ok;
6927 ireq->sack_ok = rx_opt->sack_ok;
6928 ireq->snd_wscale = rx_opt->snd_wscale;
6929 ireq->wscale_ok = rx_opt->wscale_ok;
6930 ireq->acked = 0;
6931 ireq->ecn_ok = 0;
6932 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6933 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6934 ireq->ir_mark = inet_request_mark(sk, skb);
6935 #if IS_ENABLED(CONFIG_SMC)
6936 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6937 tcp_sk(sk)->smc_hs_congested(sk));
6938 #endif
6939 }
6940
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6941 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6942 struct sock *sk_listener,
6943 bool attach_listener)
6944 {
6945 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6946 attach_listener);
6947
6948 if (req) {
6949 struct inet_request_sock *ireq = inet_rsk(req);
6950
6951 ireq->ireq_opt = NULL;
6952 #if IS_ENABLED(CONFIG_IPV6)
6953 ireq->pktopts = NULL;
6954 #endif
6955 atomic64_set(&ireq->ir_cookie, 0);
6956 ireq->ireq_state = TCP_NEW_SYN_RECV;
6957 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6958 ireq->ireq_family = sk_listener->sk_family;
6959 req->timeout = TCP_TIMEOUT_INIT;
6960 }
6961
6962 return req;
6963 }
6964 EXPORT_SYMBOL(inet_reqsk_alloc);
6965
6966 /*
6967 * Return true if a syncookie should be sent
6968 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6969 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6970 {
6971 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6972 const char *msg = "Dropping request";
6973 struct net *net = sock_net(sk);
6974 bool want_cookie = false;
6975 u8 syncookies;
6976
6977 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6978
6979 #ifdef CONFIG_SYN_COOKIES
6980 if (syncookies) {
6981 msg = "Sending cookies";
6982 want_cookie = true;
6983 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6984 } else
6985 #endif
6986 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6987
6988 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6989 xchg(&queue->synflood_warned, 1) == 0) {
6990 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6991 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6992 proto, inet6_rcv_saddr(sk),
6993 sk->sk_num, msg);
6994 } else {
6995 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6996 proto, &sk->sk_rcv_saddr,
6997 sk->sk_num, msg);
6998 }
6999 }
7000
7001 return want_cookie;
7002 }
7003
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7004 static void tcp_reqsk_record_syn(const struct sock *sk,
7005 struct request_sock *req,
7006 const struct sk_buff *skb)
7007 {
7008 if (tcp_sk(sk)->save_syn) {
7009 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7010 struct saved_syn *saved_syn;
7011 u32 mac_hdrlen;
7012 void *base;
7013
7014 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7015 base = skb_mac_header(skb);
7016 mac_hdrlen = skb_mac_header_len(skb);
7017 len += mac_hdrlen;
7018 } else {
7019 base = skb_network_header(skb);
7020 mac_hdrlen = 0;
7021 }
7022
7023 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7024 GFP_ATOMIC);
7025 if (saved_syn) {
7026 saved_syn->mac_hdrlen = mac_hdrlen;
7027 saved_syn->network_hdrlen = skb_network_header_len(skb);
7028 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7029 memcpy(saved_syn->data, base, len);
7030 req->saved_syn = saved_syn;
7031 }
7032 }
7033 }
7034
7035 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7036 * used for SYN cookie generation.
7037 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7038 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7039 const struct tcp_request_sock_ops *af_ops,
7040 struct sock *sk, struct tcphdr *th)
7041 {
7042 struct tcp_sock *tp = tcp_sk(sk);
7043 u16 mss;
7044
7045 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7046 !inet_csk_reqsk_queue_is_full(sk))
7047 return 0;
7048
7049 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7050 return 0;
7051
7052 if (sk_acceptq_is_full(sk)) {
7053 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7054 return 0;
7055 }
7056
7057 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7058 if (!mss)
7059 mss = af_ops->mss_clamp;
7060
7061 return mss;
7062 }
7063 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7064
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7065 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7066 const struct tcp_request_sock_ops *af_ops,
7067 struct sock *sk, struct sk_buff *skb)
7068 {
7069 struct tcp_fastopen_cookie foc = { .len = -1 };
7070 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7071 struct tcp_options_received tmp_opt;
7072 struct tcp_sock *tp = tcp_sk(sk);
7073 struct net *net = sock_net(sk);
7074 struct sock *fastopen_sk = NULL;
7075 struct request_sock *req;
7076 bool want_cookie = false;
7077 struct dst_entry *dst;
7078 struct flowi fl;
7079 u8 syncookies;
7080
7081 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7082
7083 /* TW buckets are converted to open requests without
7084 * limitations, they conserve resources and peer is
7085 * evidently real one.
7086 */
7087 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7088 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7089 if (!want_cookie)
7090 goto drop;
7091 }
7092
7093 if (sk_acceptq_is_full(sk)) {
7094 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7095 goto drop;
7096 }
7097
7098 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7099 if (!req)
7100 goto drop;
7101
7102 req->syncookie = want_cookie;
7103 tcp_rsk(req)->af_specific = af_ops;
7104 tcp_rsk(req)->ts_off = 0;
7105 #if IS_ENABLED(CONFIG_MPTCP)
7106 tcp_rsk(req)->is_mptcp = 0;
7107 #endif
7108
7109 tcp_clear_options(&tmp_opt);
7110 tmp_opt.mss_clamp = af_ops->mss_clamp;
7111 tmp_opt.user_mss = tp->rx_opt.user_mss;
7112 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7113 want_cookie ? NULL : &foc);
7114
7115 if (want_cookie && !tmp_opt.saw_tstamp)
7116 tcp_clear_options(&tmp_opt);
7117
7118 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7119 tmp_opt.smc_ok = 0;
7120
7121 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7122 tcp_openreq_init(req, &tmp_opt, skb, sk);
7123 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7124
7125 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7126 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7127
7128 dst = af_ops->route_req(sk, skb, &fl, req);
7129 if (!dst)
7130 goto drop_and_free;
7131
7132 if (tmp_opt.tstamp_ok)
7133 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7134
7135 if (!want_cookie && !isn) {
7136 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7137
7138 /* Kill the following clause, if you dislike this way. */
7139 if (!syncookies &&
7140 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7141 (max_syn_backlog >> 2)) &&
7142 !tcp_peer_is_proven(req, dst)) {
7143 /* Without syncookies last quarter of
7144 * backlog is filled with destinations,
7145 * proven to be alive.
7146 * It means that we continue to communicate
7147 * to destinations, already remembered
7148 * to the moment of synflood.
7149 */
7150 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7151 rsk_ops->family);
7152 goto drop_and_release;
7153 }
7154
7155 isn = af_ops->init_seq(skb);
7156 }
7157
7158 tcp_ecn_create_request(req, skb, sk, dst);
7159
7160 if (want_cookie) {
7161 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7162 if (!tmp_opt.tstamp_ok)
7163 inet_rsk(req)->ecn_ok = 0;
7164 }
7165
7166 tcp_rsk(req)->snt_isn = isn;
7167 tcp_rsk(req)->txhash = net_tx_rndhash();
7168 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7169 tcp_openreq_init_rwin(req, sk, dst);
7170 sk_rx_queue_set(req_to_sk(req), skb);
7171 if (!want_cookie) {
7172 tcp_reqsk_record_syn(sk, req, skb);
7173 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7174 }
7175 if (fastopen_sk) {
7176 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7177 &foc, TCP_SYNACK_FASTOPEN, skb);
7178 /* Add the child socket directly into the accept queue */
7179 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7180 reqsk_fastopen_remove(fastopen_sk, req, false);
7181 bh_unlock_sock(fastopen_sk);
7182 sock_put(fastopen_sk);
7183 goto drop_and_free;
7184 }
7185 sk->sk_data_ready(sk);
7186 bh_unlock_sock(fastopen_sk);
7187 sock_put(fastopen_sk);
7188 } else {
7189 tcp_rsk(req)->tfo_listener = false;
7190 if (!want_cookie) {
7191 req->timeout = tcp_timeout_init((struct sock *)req);
7192 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7193 req->timeout))) {
7194 reqsk_free(req);
7195 dst_release(dst);
7196 return 0;
7197 }
7198
7199 }
7200 af_ops->send_synack(sk, dst, &fl, req, &foc,
7201 !want_cookie ? TCP_SYNACK_NORMAL :
7202 TCP_SYNACK_COOKIE,
7203 skb);
7204 if (want_cookie) {
7205 reqsk_free(req);
7206 return 0;
7207 }
7208 }
7209 reqsk_put(req);
7210 return 0;
7211
7212 drop_and_release:
7213 dst_release(dst);
7214 drop_and_free:
7215 __reqsk_free(req);
7216 drop:
7217 tcp_listendrop(sk);
7218 return 0;
7219 }
7220 EXPORT_SYMBOL(tcp_conn_request);
7221