xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247 
248 			do_div(val, skb->truesize);
249 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
250 
251 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 				struct tcp_sock *tp = tcp_sk(sk);
253 
254 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 				tcp_set_window_clamp(sk, val);
256 
257 				if (tp->window_clamp < tp->rcvq_space.space)
258 					tp->rcvq_space.space = tp->window_clamp;
259 			}
260 		}
261 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 					       tcp_sk(sk)->advmss);
263 		/* Account for possibly-removed options */
264 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
265 				   MAX_TCP_OPTION_SPACE))
266 			tcp_gro_dev_warn(sk, skb, len);
267 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
268 		 * set then it is likely the end of an application write. So
269 		 * more data may not be arriving soon, and yet the data sender
270 		 * may be waiting for an ACK if cwnd-bound or using TX zero
271 		 * copy. So we set ICSK_ACK_PUSHED here so that
272 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
273 		 * reads all of the data and is not ping-pong. If len > MSS
274 		 * then this logic does not matter (and does not hurt) because
275 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
276 		 * reads data and there is more than an MSS of unACKed data.
277 		 */
278 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
279 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
280 	} else {
281 		/* Otherwise, we make more careful check taking into account,
282 		 * that SACKs block is variable.
283 		 *
284 		 * "len" is invariant segment length, including TCP header.
285 		 */
286 		len += skb->data - skb_transport_header(skb);
287 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
288 		    /* If PSH is not set, packet should be
289 		     * full sized, provided peer TCP is not badly broken.
290 		     * This observation (if it is correct 8)) allows
291 		     * to handle super-low mtu links fairly.
292 		     */
293 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
294 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
295 			/* Subtract also invariant (if peer is RFC compliant),
296 			 * tcp header plus fixed timestamp option length.
297 			 * Resulting "len" is MSS free of SACK jitter.
298 			 */
299 			len -= tcp_sk(sk)->tcp_header_len;
300 			icsk->icsk_ack.last_seg_size = len;
301 			if (len == lss) {
302 				icsk->icsk_ack.rcv_mss = len;
303 				return;
304 			}
305 		}
306 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
307 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
308 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
309 	}
310 }
311 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)312 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
313 {
314 	struct inet_connection_sock *icsk = inet_csk(sk);
315 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
316 
317 	if (quickacks == 0)
318 		quickacks = 2;
319 	quickacks = min(quickacks, max_quickacks);
320 	if (quickacks > icsk->icsk_ack.quick)
321 		icsk->icsk_ack.quick = quickacks;
322 }
323 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)324 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
325 {
326 	struct inet_connection_sock *icsk = inet_csk(sk);
327 
328 	tcp_incr_quickack(sk, max_quickacks);
329 	inet_csk_exit_pingpong_mode(sk);
330 	icsk->icsk_ack.ato = TCP_ATO_MIN;
331 }
332 
333 /* Send ACKs quickly, if "quick" count is not exhausted
334  * and the session is not interactive.
335  */
336 
tcp_in_quickack_mode(struct sock * sk)337 static bool tcp_in_quickack_mode(struct sock *sk)
338 {
339 	const struct inet_connection_sock *icsk = inet_csk(sk);
340 	const struct dst_entry *dst = __sk_dst_get(sk);
341 
342 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
343 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
344 }
345 
tcp_ecn_queue_cwr(struct tcp_sock * tp)346 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
347 {
348 	if (tp->ecn_flags & TCP_ECN_OK)
349 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
350 }
351 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)352 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
353 {
354 	if (tcp_hdr(skb)->cwr) {
355 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
356 
357 		/* If the sender is telling us it has entered CWR, then its
358 		 * cwnd may be very low (even just 1 packet), so we should ACK
359 		 * immediately.
360 		 */
361 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
362 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
363 	}
364 }
365 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)366 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
367 {
368 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
369 }
370 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)371 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
372 {
373 	struct tcp_sock *tp = tcp_sk(sk);
374 
375 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
376 	case INET_ECN_NOT_ECT:
377 		/* Funny extension: if ECT is not set on a segment,
378 		 * and we already seen ECT on a previous segment,
379 		 * it is probably a retransmit.
380 		 */
381 		if (tp->ecn_flags & TCP_ECN_SEEN)
382 			tcp_enter_quickack_mode(sk, 2);
383 		break;
384 	case INET_ECN_CE:
385 		if (tcp_ca_needs_ecn(sk))
386 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
387 
388 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
389 			/* Better not delay acks, sender can have a very low cwnd */
390 			tcp_enter_quickack_mode(sk, 2);
391 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
392 		}
393 		tp->ecn_flags |= TCP_ECN_SEEN;
394 		break;
395 	default:
396 		if (tcp_ca_needs_ecn(sk))
397 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
398 		tp->ecn_flags |= TCP_ECN_SEEN;
399 		break;
400 	}
401 }
402 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)403 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
404 {
405 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
406 		__tcp_ecn_check_ce(sk, skb);
407 }
408 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
412 		tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)415 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
418 		tp->ecn_flags &= ~TCP_ECN_OK;
419 }
420 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)421 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
422 {
423 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
424 		return true;
425 	return false;
426 }
427 
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)428 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
429 {
430 	tp->delivered_ce += ecn_count;
431 }
432 
433 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)434 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
435 				bool ece_ack)
436 {
437 	tp->delivered += delivered;
438 	if (ece_ack)
439 		tcp_count_delivered_ce(tp, delivered);
440 }
441 
442 /* Buffer size and advertised window tuning.
443  *
444  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
445  */
446 
tcp_sndbuf_expand(struct sock * sk)447 static void tcp_sndbuf_expand(struct sock *sk)
448 {
449 	const struct tcp_sock *tp = tcp_sk(sk);
450 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
451 	int sndmem, per_mss;
452 	u32 nr_segs;
453 
454 	/* Worst case is non GSO/TSO : each frame consumes one skb
455 	 * and skb->head is kmalloced using power of two area of memory
456 	 */
457 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
458 		  MAX_TCP_HEADER +
459 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
460 
461 	per_mss = roundup_pow_of_two(per_mss) +
462 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
463 
464 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
465 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
466 
467 	/* Fast Recovery (RFC 5681 3.2) :
468 	 * Cubic needs 1.7 factor, rounded to 2 to include
469 	 * extra cushion (application might react slowly to EPOLLOUT)
470 	 */
471 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
472 	sndmem *= nr_segs * per_mss;
473 
474 	if (sk->sk_sndbuf < sndmem)
475 		WRITE_ONCE(sk->sk_sndbuf,
476 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
477 }
478 
479 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
480  *
481  * All tcp_full_space() is split to two parts: "network" buffer, allocated
482  * forward and advertised in receiver window (tp->rcv_wnd) and
483  * "application buffer", required to isolate scheduling/application
484  * latencies from network.
485  * window_clamp is maximal advertised window. It can be less than
486  * tcp_full_space(), in this case tcp_full_space() - window_clamp
487  * is reserved for "application" buffer. The less window_clamp is
488  * the smoother our behaviour from viewpoint of network, but the lower
489  * throughput and the higher sensitivity of the connection to losses. 8)
490  *
491  * rcv_ssthresh is more strict window_clamp used at "slow start"
492  * phase to predict further behaviour of this connection.
493  * It is used for two goals:
494  * - to enforce header prediction at sender, even when application
495  *   requires some significant "application buffer". It is check #1.
496  * - to prevent pruning of receive queue because of misprediction
497  *   of receiver window. Check #2.
498  *
499  * The scheme does not work when sender sends good segments opening
500  * window and then starts to feed us spaghetti. But it should work
501  * in common situations. Otherwise, we have to rely on queue collapsing.
502  */
503 
504 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)505 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
506 			     unsigned int skbtruesize)
507 {
508 	const struct tcp_sock *tp = tcp_sk(sk);
509 	/* Optimize this! */
510 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
511 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
512 
513 	while (tp->rcv_ssthresh <= window) {
514 		if (truesize <= skb->len)
515 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
516 
517 		truesize >>= 1;
518 		window >>= 1;
519 	}
520 	return 0;
521 }
522 
523 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
524  * can play nice with us, as sk_buff and skb->head might be either
525  * freed or shared with up to MAX_SKB_FRAGS segments.
526  * Only give a boost to drivers using page frag(s) to hold the frame(s),
527  * and if no payload was pulled in skb->head before reaching us.
528  */
truesize_adjust(bool adjust,const struct sk_buff * skb)529 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
530 {
531 	u32 truesize = skb->truesize;
532 
533 	if (adjust && !skb_headlen(skb)) {
534 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
535 		/* paranoid check, some drivers might be buggy */
536 		if (unlikely((int)truesize < (int)skb->len))
537 			truesize = skb->truesize;
538 	}
539 	return truesize;
540 }
541 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)542 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
543 			    bool adjust)
544 {
545 	struct tcp_sock *tp = tcp_sk(sk);
546 	int room;
547 
548 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
549 
550 	if (room <= 0)
551 		return;
552 
553 	/* Check #1 */
554 	if (!tcp_under_memory_pressure(sk)) {
555 		unsigned int truesize = truesize_adjust(adjust, skb);
556 		int incr;
557 
558 		/* Check #2. Increase window, if skb with such overhead
559 		 * will fit to rcvbuf in future.
560 		 */
561 		if (tcp_win_from_space(sk, truesize) <= skb->len)
562 			incr = 2 * tp->advmss;
563 		else
564 			incr = __tcp_grow_window(sk, skb, truesize);
565 
566 		if (incr) {
567 			incr = max_t(int, incr, 2 * skb->len);
568 			tp->rcv_ssthresh += min(room, incr);
569 			inet_csk(sk)->icsk_ack.quick |= 1;
570 		}
571 	} else {
572 		/* Under pressure:
573 		 * Adjust rcv_ssthresh according to reserved mem
574 		 */
575 		tcp_adjust_rcv_ssthresh(sk);
576 	}
577 }
578 
579 /* 3. Try to fixup all. It is made immediately after connection enters
580  *    established state.
581  */
tcp_init_buffer_space(struct sock * sk)582 static void tcp_init_buffer_space(struct sock *sk)
583 {
584 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
585 	struct tcp_sock *tp = tcp_sk(sk);
586 	int maxwin;
587 
588 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
589 		tcp_sndbuf_expand(sk);
590 
591 	tcp_mstamp_refresh(tp);
592 	tp->rcvq_space.time = tp->tcp_mstamp;
593 	tp->rcvq_space.seq = tp->copied_seq;
594 
595 	maxwin = tcp_full_space(sk);
596 
597 	if (tp->window_clamp >= maxwin) {
598 		WRITE_ONCE(tp->window_clamp, maxwin);
599 
600 		if (tcp_app_win && maxwin > 4 * tp->advmss)
601 			WRITE_ONCE(tp->window_clamp,
602 				   max(maxwin - (maxwin >> tcp_app_win),
603 				       4 * tp->advmss));
604 	}
605 
606 	/* Force reservation of one segment. */
607 	if (tcp_app_win &&
608 	    tp->window_clamp > 2 * tp->advmss &&
609 	    tp->window_clamp + tp->advmss > maxwin)
610 		WRITE_ONCE(tp->window_clamp,
611 			   max(2 * tp->advmss, maxwin - tp->advmss));
612 
613 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
614 	tp->snd_cwnd_stamp = tcp_jiffies32;
615 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
616 				    (u32)TCP_INIT_CWND * tp->advmss);
617 }
618 
619 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)620 static void tcp_clamp_window(struct sock *sk)
621 {
622 	struct tcp_sock *tp = tcp_sk(sk);
623 	struct inet_connection_sock *icsk = inet_csk(sk);
624 	struct net *net = sock_net(sk);
625 	int rmem2;
626 
627 	icsk->icsk_ack.quick = 0;
628 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
629 
630 	if (sk->sk_rcvbuf < rmem2 &&
631 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
632 	    !tcp_under_memory_pressure(sk) &&
633 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
634 		WRITE_ONCE(sk->sk_rcvbuf,
635 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
636 	}
637 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
638 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
639 }
640 
641 /* Initialize RCV_MSS value.
642  * RCV_MSS is an our guess about MSS used by the peer.
643  * We haven't any direct information about the MSS.
644  * It's better to underestimate the RCV_MSS rather than overestimate.
645  * Overestimations make us ACKing less frequently than needed.
646  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
647  */
tcp_initialize_rcv_mss(struct sock * sk)648 void tcp_initialize_rcv_mss(struct sock *sk)
649 {
650 	const struct tcp_sock *tp = tcp_sk(sk);
651 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
652 
653 	hint = min(hint, tp->rcv_wnd / 2);
654 	hint = min(hint, TCP_MSS_DEFAULT);
655 	hint = max(hint, TCP_MIN_MSS);
656 
657 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
658 }
659 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
660 
661 /* Receiver "autotuning" code.
662  *
663  * The algorithm for RTT estimation w/o timestamps is based on
664  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
665  * <https://public.lanl.gov/radiant/pubs.html#DRS>
666  *
667  * More detail on this code can be found at
668  * <http://staff.psc.edu/jheffner/>,
669  * though this reference is out of date.  A new paper
670  * is pending.
671  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)672 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
673 {
674 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
675 	long m = sample;
676 
677 	if (new_sample != 0) {
678 		/* If we sample in larger samples in the non-timestamp
679 		 * case, we could grossly overestimate the RTT especially
680 		 * with chatty applications or bulk transfer apps which
681 		 * are stalled on filesystem I/O.
682 		 *
683 		 * Also, since we are only going for a minimum in the
684 		 * non-timestamp case, we do not smooth things out
685 		 * else with timestamps disabled convergence takes too
686 		 * long.
687 		 */
688 		if (!win_dep) {
689 			m -= (new_sample >> 3);
690 			new_sample += m;
691 		} else {
692 			m <<= 3;
693 			if (m < new_sample)
694 				new_sample = m;
695 		}
696 	} else {
697 		/* No previous measure. */
698 		new_sample = m << 3;
699 	}
700 
701 	tp->rcv_rtt_est.rtt_us = new_sample;
702 }
703 
tcp_rcv_rtt_measure(struct tcp_sock * tp)704 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
705 {
706 	u32 delta_us;
707 
708 	if (tp->rcv_rtt_est.time == 0)
709 		goto new_measure;
710 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
711 		return;
712 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
713 	if (!delta_us)
714 		delta_us = 1;
715 	tcp_rcv_rtt_update(tp, delta_us, 1);
716 
717 new_measure:
718 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
719 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
720 }
721 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)722 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
723 					  const struct sk_buff *skb)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 
727 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
728 		return;
729 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
730 
731 	if (TCP_SKB_CB(skb)->end_seq -
732 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
733 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
734 		u32 delta_us;
735 
736 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
737 			if (!delta)
738 				delta = 1;
739 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
740 			tcp_rcv_rtt_update(tp, delta_us, 0);
741 		}
742 	}
743 }
744 
745 /*
746  * This function should be called every time data is copied to user space.
747  * It calculates the appropriate TCP receive buffer space.
748  */
tcp_rcv_space_adjust(struct sock * sk)749 void tcp_rcv_space_adjust(struct sock *sk)
750 {
751 	struct tcp_sock *tp = tcp_sk(sk);
752 	u32 copied;
753 	int time;
754 
755 	trace_tcp_rcv_space_adjust(sk);
756 
757 	tcp_mstamp_refresh(tp);
758 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
759 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
760 		return;
761 
762 	/* Number of bytes copied to user in last RTT */
763 	copied = tp->copied_seq - tp->rcvq_space.seq;
764 	if (copied <= tp->rcvq_space.space)
765 		goto new_measure;
766 
767 	/* A bit of theory :
768 	 * copied = bytes received in previous RTT, our base window
769 	 * To cope with packet losses, we need a 2x factor
770 	 * To cope with slow start, and sender growing its cwin by 100 %
771 	 * every RTT, we need a 4x factor, because the ACK we are sending
772 	 * now is for the next RTT, not the current one :
773 	 * <prev RTT . ><current RTT .. ><next RTT .... >
774 	 */
775 
776 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
777 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
778 		u64 rcvwin, grow;
779 		int rcvbuf;
780 
781 		/* minimal window to cope with packet losses, assuming
782 		 * steady state. Add some cushion because of small variations.
783 		 */
784 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
785 
786 		/* Accommodate for sender rate increase (eg. slow start) */
787 		grow = rcvwin * (copied - tp->rcvq_space.space);
788 		do_div(grow, tp->rcvq_space.space);
789 		rcvwin += (grow << 1);
790 
791 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
792 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
793 		if (rcvbuf > sk->sk_rcvbuf) {
794 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
795 
796 			/* Make the window clamp follow along.  */
797 			WRITE_ONCE(tp->window_clamp,
798 				   tcp_win_from_space(sk, rcvbuf));
799 		}
800 	}
801 	tp->rcvq_space.space = copied;
802 
803 new_measure:
804 	tp->rcvq_space.seq = tp->copied_seq;
805 	tp->rcvq_space.time = tp->tcp_mstamp;
806 }
807 
808 /* There is something which you must keep in mind when you analyze the
809  * behavior of the tp->ato delayed ack timeout interval.  When a
810  * connection starts up, we want to ack as quickly as possible.  The
811  * problem is that "good" TCP's do slow start at the beginning of data
812  * transmission.  The means that until we send the first few ACK's the
813  * sender will sit on his end and only queue most of his data, because
814  * he can only send snd_cwnd unacked packets at any given time.  For
815  * each ACK we send, he increments snd_cwnd and transmits more of his
816  * queue.  -DaveM
817  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)818 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
819 {
820 	struct tcp_sock *tp = tcp_sk(sk);
821 	struct inet_connection_sock *icsk = inet_csk(sk);
822 	u32 now;
823 
824 	inet_csk_schedule_ack(sk);
825 
826 	tcp_measure_rcv_mss(sk, skb);
827 
828 	tcp_rcv_rtt_measure(tp);
829 
830 	now = tcp_jiffies32;
831 
832 	if (!icsk->icsk_ack.ato) {
833 		/* The _first_ data packet received, initialize
834 		 * delayed ACK engine.
835 		 */
836 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
837 		icsk->icsk_ack.ato = TCP_ATO_MIN;
838 	} else {
839 		int m = now - icsk->icsk_ack.lrcvtime;
840 
841 		if (m <= TCP_ATO_MIN / 2) {
842 			/* The fastest case is the first. */
843 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
844 		} else if (m < icsk->icsk_ack.ato) {
845 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
846 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
847 				icsk->icsk_ack.ato = icsk->icsk_rto;
848 		} else if (m > icsk->icsk_rto) {
849 			/* Too long gap. Apparently sender failed to
850 			 * restart window, so that we send ACKs quickly.
851 			 */
852 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
853 		}
854 	}
855 	icsk->icsk_ack.lrcvtime = now;
856 
857 	tcp_ecn_check_ce(sk, skb);
858 
859 	if (skb->len >= 128)
860 		tcp_grow_window(sk, skb, true);
861 }
862 
863 /* Called to compute a smoothed rtt estimate. The data fed to this
864  * routine either comes from timestamps, or from segments that were
865  * known _not_ to have been retransmitted [see Karn/Partridge
866  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
867  * piece by Van Jacobson.
868  * NOTE: the next three routines used to be one big routine.
869  * To save cycles in the RFC 1323 implementation it was better to break
870  * it up into three procedures. -- erics
871  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)872 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
873 {
874 	struct tcp_sock *tp = tcp_sk(sk);
875 	long m = mrtt_us; /* RTT */
876 	u32 srtt = tp->srtt_us;
877 
878 	/*	The following amusing code comes from Jacobson's
879 	 *	article in SIGCOMM '88.  Note that rtt and mdev
880 	 *	are scaled versions of rtt and mean deviation.
881 	 *	This is designed to be as fast as possible
882 	 *	m stands for "measurement".
883 	 *
884 	 *	On a 1990 paper the rto value is changed to:
885 	 *	RTO = rtt + 4 * mdev
886 	 *
887 	 * Funny. This algorithm seems to be very broken.
888 	 * These formulae increase RTO, when it should be decreased, increase
889 	 * too slowly, when it should be increased quickly, decrease too quickly
890 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
891 	 * does not matter how to _calculate_ it. Seems, it was trap
892 	 * that VJ failed to avoid. 8)
893 	 */
894 	if (srtt != 0) {
895 		m -= (srtt >> 3);	/* m is now error in rtt est */
896 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
897 		if (m < 0) {
898 			m = -m;		/* m is now abs(error) */
899 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
900 			/* This is similar to one of Eifel findings.
901 			 * Eifel blocks mdev updates when rtt decreases.
902 			 * This solution is a bit different: we use finer gain
903 			 * for mdev in this case (alpha*beta).
904 			 * Like Eifel it also prevents growth of rto,
905 			 * but also it limits too fast rto decreases,
906 			 * happening in pure Eifel.
907 			 */
908 			if (m > 0)
909 				m >>= 3;
910 		} else {
911 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
912 		}
913 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
914 		if (tp->mdev_us > tp->mdev_max_us) {
915 			tp->mdev_max_us = tp->mdev_us;
916 			if (tp->mdev_max_us > tp->rttvar_us)
917 				tp->rttvar_us = tp->mdev_max_us;
918 		}
919 		if (after(tp->snd_una, tp->rtt_seq)) {
920 			if (tp->mdev_max_us < tp->rttvar_us)
921 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
922 			tp->rtt_seq = tp->snd_nxt;
923 			tp->mdev_max_us = tcp_rto_min_us(sk);
924 
925 			tcp_bpf_rtt(sk);
926 		}
927 	} else {
928 		/* no previous measure. */
929 		srtt = m << 3;		/* take the measured time to be rtt */
930 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
931 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
932 		tp->mdev_max_us = tp->rttvar_us;
933 		tp->rtt_seq = tp->snd_nxt;
934 
935 		tcp_bpf_rtt(sk);
936 	}
937 	tp->srtt_us = max(1U, srtt);
938 }
939 
tcp_update_pacing_rate(struct sock * sk)940 static void tcp_update_pacing_rate(struct sock *sk)
941 {
942 	const struct tcp_sock *tp = tcp_sk(sk);
943 	u64 rate;
944 
945 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
946 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
947 
948 	/* current rate is (cwnd * mss) / srtt
949 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
950 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
951 	 *
952 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
953 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
954 	 *	 end of slow start and should slow down.
955 	 */
956 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
957 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
958 	else
959 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
960 
961 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
962 
963 	if (likely(tp->srtt_us))
964 		do_div(rate, tp->srtt_us);
965 
966 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
967 	 * without any lock. We want to make sure compiler wont store
968 	 * intermediate values in this location.
969 	 */
970 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
971 					     sk->sk_max_pacing_rate));
972 }
973 
974 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
975  * routine referred to above.
976  */
tcp_set_rto(struct sock * sk)977 static void tcp_set_rto(struct sock *sk)
978 {
979 	const struct tcp_sock *tp = tcp_sk(sk);
980 	/* Old crap is replaced with new one. 8)
981 	 *
982 	 * More seriously:
983 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
984 	 *    It cannot be less due to utterly erratic ACK generation made
985 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
986 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
987 	 *    is invisible. Actually, Linux-2.4 also generates erratic
988 	 *    ACKs in some circumstances.
989 	 */
990 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
991 
992 	/* 2. Fixups made earlier cannot be right.
993 	 *    If we do not estimate RTO correctly without them,
994 	 *    all the algo is pure shit and should be replaced
995 	 *    with correct one. It is exactly, which we pretend to do.
996 	 */
997 
998 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
999 	 * guarantees that rto is higher.
1000 	 */
1001 	tcp_bound_rto(sk);
1002 }
1003 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1004 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1005 {
1006 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1007 
1008 	if (!cwnd)
1009 		cwnd = TCP_INIT_CWND;
1010 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1011 }
1012 
1013 struct tcp_sacktag_state {
1014 	/* Timestamps for earliest and latest never-retransmitted segment
1015 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1016 	 * but congestion control should still get an accurate delay signal.
1017 	 */
1018 	u64	first_sackt;
1019 	u64	last_sackt;
1020 	u32	reord;
1021 	u32	sack_delivered;
1022 	int	flag;
1023 	unsigned int mss_now;
1024 	struct rate_sample *rate;
1025 };
1026 
1027 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1028  * and spurious retransmission information if this DSACK is unlikely caused by
1029  * sender's action:
1030  * - DSACKed sequence range is larger than maximum receiver's window.
1031  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1032  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1033 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1034 			  u32 end_seq, struct tcp_sacktag_state *state)
1035 {
1036 	u32 seq_len, dup_segs = 1;
1037 
1038 	if (!before(start_seq, end_seq))
1039 		return 0;
1040 
1041 	seq_len = end_seq - start_seq;
1042 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1043 	if (seq_len > tp->max_window)
1044 		return 0;
1045 	if (seq_len > tp->mss_cache)
1046 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1047 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1048 		state->flag |= FLAG_DSACK_TLP;
1049 
1050 	tp->dsack_dups += dup_segs;
1051 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1052 	if (tp->dsack_dups > tp->total_retrans)
1053 		return 0;
1054 
1055 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1056 	/* We increase the RACK ordering window in rounds where we receive
1057 	 * DSACKs that may have been due to reordering causing RACK to trigger
1058 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1059 	 * without having seen reordering, or that match TLP probes (TLP
1060 	 * is timer-driven, not triggered by RACK).
1061 	 */
1062 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1063 		tp->rack.dsack_seen = 1;
1064 
1065 	state->flag |= FLAG_DSACKING_ACK;
1066 	/* A spurious retransmission is delivered */
1067 	state->sack_delivered += dup_segs;
1068 
1069 	return dup_segs;
1070 }
1071 
1072 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1073  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1074  * distance is approximated in full-mss packet distance ("reordering").
1075  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1076 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1077 				      const int ts)
1078 {
1079 	struct tcp_sock *tp = tcp_sk(sk);
1080 	const u32 mss = tp->mss_cache;
1081 	u32 fack, metric;
1082 
1083 	fack = tcp_highest_sack_seq(tp);
1084 	if (!before(low_seq, fack))
1085 		return;
1086 
1087 	metric = fack - low_seq;
1088 	if ((metric > tp->reordering * mss) && mss) {
1089 #if FASTRETRANS_DEBUG > 1
1090 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1091 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1092 			 tp->reordering,
1093 			 0,
1094 			 tp->sacked_out,
1095 			 tp->undo_marker ? tp->undo_retrans : 0);
1096 #endif
1097 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1098 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1099 	}
1100 
1101 	/* This exciting event is worth to be remembered. 8) */
1102 	tp->reord_seen++;
1103 	NET_INC_STATS(sock_net(sk),
1104 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1105 }
1106 
1107  /* This must be called before lost_out or retrans_out are updated
1108   * on a new loss, because we want to know if all skbs previously
1109   * known to be lost have already been retransmitted, indicating
1110   * that this newly lost skb is our next skb to retransmit.
1111   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1112 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1113 {
1114 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1115 	    (tp->retransmit_skb_hint &&
1116 	     before(TCP_SKB_CB(skb)->seq,
1117 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1118 		tp->retransmit_skb_hint = skb;
1119 }
1120 
1121 /* Sum the number of packets on the wire we have marked as lost, and
1122  * notify the congestion control module that the given skb was marked lost.
1123  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1124 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1125 {
1126 	tp->lost += tcp_skb_pcount(skb);
1127 }
1128 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1129 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1130 {
1131 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1132 	struct tcp_sock *tp = tcp_sk(sk);
1133 
1134 	if (sacked & TCPCB_SACKED_ACKED)
1135 		return;
1136 
1137 	tcp_verify_retransmit_hint(tp, skb);
1138 	if (sacked & TCPCB_LOST) {
1139 		if (sacked & TCPCB_SACKED_RETRANS) {
1140 			/* Account for retransmits that are lost again */
1141 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1142 			tp->retrans_out -= tcp_skb_pcount(skb);
1143 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1144 				      tcp_skb_pcount(skb));
1145 			tcp_notify_skb_loss_event(tp, skb);
1146 		}
1147 	} else {
1148 		tp->lost_out += tcp_skb_pcount(skb);
1149 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1150 		tcp_notify_skb_loss_event(tp, skb);
1151 	}
1152 }
1153 
1154 /* This procedure tags the retransmission queue when SACKs arrive.
1155  *
1156  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1157  * Packets in queue with these bits set are counted in variables
1158  * sacked_out, retrans_out and lost_out, correspondingly.
1159  *
1160  * Valid combinations are:
1161  * Tag  InFlight	Description
1162  * 0	1		- orig segment is in flight.
1163  * S	0		- nothing flies, orig reached receiver.
1164  * L	0		- nothing flies, orig lost by net.
1165  * R	2		- both orig and retransmit are in flight.
1166  * L|R	1		- orig is lost, retransmit is in flight.
1167  * S|R  1		- orig reached receiver, retrans is still in flight.
1168  * (L|S|R is logically valid, it could occur when L|R is sacked,
1169  *  but it is equivalent to plain S and code short-curcuits it to S.
1170  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1171  *
1172  * These 6 states form finite state machine, controlled by the following events:
1173  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1174  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1175  * 3. Loss detection event of two flavors:
1176  *	A. Scoreboard estimator decided the packet is lost.
1177  *	   A'. Reno "three dupacks" marks head of queue lost.
1178  *	B. SACK arrives sacking SND.NXT at the moment, when the
1179  *	   segment was retransmitted.
1180  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1181  *
1182  * It is pleasant to note, that state diagram turns out to be commutative,
1183  * so that we are allowed not to be bothered by order of our actions,
1184  * when multiple events arrive simultaneously. (see the function below).
1185  *
1186  * Reordering detection.
1187  * --------------------
1188  * Reordering metric is maximal distance, which a packet can be displaced
1189  * in packet stream. With SACKs we can estimate it:
1190  *
1191  * 1. SACK fills old hole and the corresponding segment was not
1192  *    ever retransmitted -> reordering. Alas, we cannot use it
1193  *    when segment was retransmitted.
1194  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1195  *    for retransmitted and already SACKed segment -> reordering..
1196  * Both of these heuristics are not used in Loss state, when we cannot
1197  * account for retransmits accurately.
1198  *
1199  * SACK block validation.
1200  * ----------------------
1201  *
1202  * SACK block range validation checks that the received SACK block fits to
1203  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1204  * Note that SND.UNA is not included to the range though being valid because
1205  * it means that the receiver is rather inconsistent with itself reporting
1206  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1207  * perfectly valid, however, in light of RFC2018 which explicitly states
1208  * that "SACK block MUST reflect the newest segment.  Even if the newest
1209  * segment is going to be discarded ...", not that it looks very clever
1210  * in case of head skb. Due to potentional receiver driven attacks, we
1211  * choose to avoid immediate execution of a walk in write queue due to
1212  * reneging and defer head skb's loss recovery to standard loss recovery
1213  * procedure that will eventually trigger (nothing forbids us doing this).
1214  *
1215  * Implements also blockage to start_seq wrap-around. Problem lies in the
1216  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1217  * there's no guarantee that it will be before snd_nxt (n). The problem
1218  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1219  * wrap (s_w):
1220  *
1221  *         <- outs wnd ->                          <- wrapzone ->
1222  *         u     e      n                         u_w   e_w  s n_w
1223  *         |     |      |                          |     |   |  |
1224  * |<------------+------+----- TCP seqno space --------------+---------->|
1225  * ...-- <2^31 ->|                                           |<--------...
1226  * ...---- >2^31 ------>|                                    |<--------...
1227  *
1228  * Current code wouldn't be vulnerable but it's better still to discard such
1229  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1230  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1231  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1232  * equal to the ideal case (infinite seqno space without wrap caused issues).
1233  *
1234  * With D-SACK the lower bound is extended to cover sequence space below
1235  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1236  * again, D-SACK block must not to go across snd_una (for the same reason as
1237  * for the normal SACK blocks, explained above). But there all simplicity
1238  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1239  * fully below undo_marker they do not affect behavior in anyway and can
1240  * therefore be safely ignored. In rare cases (which are more or less
1241  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1242  * fragmentation and packet reordering past skb's retransmission. To consider
1243  * them correctly, the acceptable range must be extended even more though
1244  * the exact amount is rather hard to quantify. However, tp->max_window can
1245  * be used as an exaggerated estimate.
1246  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1247 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1248 				   u32 start_seq, u32 end_seq)
1249 {
1250 	/* Too far in future, or reversed (interpretation is ambiguous) */
1251 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1252 		return false;
1253 
1254 	/* Nasty start_seq wrap-around check (see comments above) */
1255 	if (!before(start_seq, tp->snd_nxt))
1256 		return false;
1257 
1258 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1259 	 * start_seq == snd_una is non-sensical (see comments above)
1260 	 */
1261 	if (after(start_seq, tp->snd_una))
1262 		return true;
1263 
1264 	if (!is_dsack || !tp->undo_marker)
1265 		return false;
1266 
1267 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1268 	if (after(end_seq, tp->snd_una))
1269 		return false;
1270 
1271 	if (!before(start_seq, tp->undo_marker))
1272 		return true;
1273 
1274 	/* Too old */
1275 	if (!after(end_seq, tp->undo_marker))
1276 		return false;
1277 
1278 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1279 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1280 	 */
1281 	return !before(start_seq, end_seq - tp->max_window);
1282 }
1283 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1284 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1285 			    struct tcp_sack_block_wire *sp, int num_sacks,
1286 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1290 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1291 	u32 dup_segs;
1292 
1293 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1294 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1295 	} else if (num_sacks > 1) {
1296 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1297 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1298 
1299 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1300 			return false;
1301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1302 	} else {
1303 		return false;
1304 	}
1305 
1306 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1307 	if (!dup_segs) {	/* Skip dubious DSACK */
1308 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1309 		return false;
1310 	}
1311 
1312 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1313 
1314 	/* D-SACK for already forgotten data... Do dumb counting. */
1315 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1316 	    !after(end_seq_0, prior_snd_una) &&
1317 	    after(end_seq_0, tp->undo_marker))
1318 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1319 
1320 	return true;
1321 }
1322 
1323 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1324  * the incoming SACK may not exactly match but we can find smaller MSS
1325  * aligned portion of it that matches. Therefore we might need to fragment
1326  * which may fail and creates some hassle (caller must handle error case
1327  * returns).
1328  *
1329  * FIXME: this could be merged to shift decision code
1330  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1331 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1332 				  u32 start_seq, u32 end_seq)
1333 {
1334 	int err;
1335 	bool in_sack;
1336 	unsigned int pkt_len;
1337 	unsigned int mss;
1338 
1339 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1340 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1341 
1342 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1343 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1344 		mss = tcp_skb_mss(skb);
1345 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1346 
1347 		if (!in_sack) {
1348 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1349 			if (pkt_len < mss)
1350 				pkt_len = mss;
1351 		} else {
1352 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1353 			if (pkt_len < mss)
1354 				return -EINVAL;
1355 		}
1356 
1357 		/* Round if necessary so that SACKs cover only full MSSes
1358 		 * and/or the remaining small portion (if present)
1359 		 */
1360 		if (pkt_len > mss) {
1361 			unsigned int new_len = (pkt_len / mss) * mss;
1362 			if (!in_sack && new_len < pkt_len)
1363 				new_len += mss;
1364 			pkt_len = new_len;
1365 		}
1366 
1367 		if (pkt_len >= skb->len && !in_sack)
1368 			return 0;
1369 
1370 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1371 				   pkt_len, mss, GFP_ATOMIC);
1372 		if (err < 0)
1373 			return err;
1374 	}
1375 
1376 	return in_sack;
1377 }
1378 
1379 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1380 static u8 tcp_sacktag_one(struct sock *sk,
1381 			  struct tcp_sacktag_state *state, u8 sacked,
1382 			  u32 start_seq, u32 end_seq,
1383 			  int dup_sack, int pcount,
1384 			  u64 xmit_time)
1385 {
1386 	struct tcp_sock *tp = tcp_sk(sk);
1387 
1388 	/* Account D-SACK for retransmitted packet. */
1389 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1390 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1391 		    after(end_seq, tp->undo_marker))
1392 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1393 		if ((sacked & TCPCB_SACKED_ACKED) &&
1394 		    before(start_seq, state->reord))
1395 				state->reord = start_seq;
1396 	}
1397 
1398 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1399 	if (!after(end_seq, tp->snd_una))
1400 		return sacked;
1401 
1402 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1403 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1404 
1405 		if (sacked & TCPCB_SACKED_RETRANS) {
1406 			/* If the segment is not tagged as lost,
1407 			 * we do not clear RETRANS, believing
1408 			 * that retransmission is still in flight.
1409 			 */
1410 			if (sacked & TCPCB_LOST) {
1411 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1412 				tp->lost_out -= pcount;
1413 				tp->retrans_out -= pcount;
1414 			}
1415 		} else {
1416 			if (!(sacked & TCPCB_RETRANS)) {
1417 				/* New sack for not retransmitted frame,
1418 				 * which was in hole. It is reordering.
1419 				 */
1420 				if (before(start_seq,
1421 					   tcp_highest_sack_seq(tp)) &&
1422 				    before(start_seq, state->reord))
1423 					state->reord = start_seq;
1424 
1425 				if (!after(end_seq, tp->high_seq))
1426 					state->flag |= FLAG_ORIG_SACK_ACKED;
1427 				if (state->first_sackt == 0)
1428 					state->first_sackt = xmit_time;
1429 				state->last_sackt = xmit_time;
1430 			}
1431 
1432 			if (sacked & TCPCB_LOST) {
1433 				sacked &= ~TCPCB_LOST;
1434 				tp->lost_out -= pcount;
1435 			}
1436 		}
1437 
1438 		sacked |= TCPCB_SACKED_ACKED;
1439 		state->flag |= FLAG_DATA_SACKED;
1440 		tp->sacked_out += pcount;
1441 		/* Out-of-order packets delivered */
1442 		state->sack_delivered += pcount;
1443 
1444 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1445 		if (tp->lost_skb_hint &&
1446 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1447 			tp->lost_cnt_hint += pcount;
1448 	}
1449 
1450 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1451 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1452 	 * are accounted above as well.
1453 	 */
1454 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1455 		sacked &= ~TCPCB_SACKED_RETRANS;
1456 		tp->retrans_out -= pcount;
1457 	}
1458 
1459 	return sacked;
1460 }
1461 
1462 /* Shift newly-SACKed bytes from this skb to the immediately previous
1463  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1464  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1465 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1466 			    struct sk_buff *skb,
1467 			    struct tcp_sacktag_state *state,
1468 			    unsigned int pcount, int shifted, int mss,
1469 			    bool dup_sack)
1470 {
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1473 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1474 
1475 	BUG_ON(!pcount);
1476 
1477 	/* Adjust counters and hints for the newly sacked sequence
1478 	 * range but discard the return value since prev is already
1479 	 * marked. We must tag the range first because the seq
1480 	 * advancement below implicitly advances
1481 	 * tcp_highest_sack_seq() when skb is highest_sack.
1482 	 */
1483 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1484 			start_seq, end_seq, dup_sack, pcount,
1485 			tcp_skb_timestamp_us(skb));
1486 	tcp_rate_skb_delivered(sk, skb, state->rate);
1487 
1488 	if (skb == tp->lost_skb_hint)
1489 		tp->lost_cnt_hint += pcount;
1490 
1491 	TCP_SKB_CB(prev)->end_seq += shifted;
1492 	TCP_SKB_CB(skb)->seq += shifted;
1493 
1494 	tcp_skb_pcount_add(prev, pcount);
1495 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1496 	tcp_skb_pcount_add(skb, -pcount);
1497 
1498 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1499 	 * in theory this shouldn't be necessary but as long as DSACK
1500 	 * code can come after this skb later on it's better to keep
1501 	 * setting gso_size to something.
1502 	 */
1503 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1504 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1505 
1506 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1507 	if (tcp_skb_pcount(skb) <= 1)
1508 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1509 
1510 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1511 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1512 
1513 	if (skb->len > 0) {
1514 		BUG_ON(!tcp_skb_pcount(skb));
1515 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1516 		return false;
1517 	}
1518 
1519 	/* Whole SKB was eaten :-) */
1520 
1521 	if (skb == tp->retransmit_skb_hint)
1522 		tp->retransmit_skb_hint = prev;
1523 	if (skb == tp->lost_skb_hint) {
1524 		tp->lost_skb_hint = prev;
1525 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1526 	}
1527 
1528 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1529 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1530 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1531 		TCP_SKB_CB(prev)->end_seq++;
1532 
1533 	if (skb == tcp_highest_sack(sk))
1534 		tcp_advance_highest_sack(sk, skb);
1535 
1536 	tcp_skb_collapse_tstamp(prev, skb);
1537 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1538 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1539 
1540 	tcp_rtx_queue_unlink_and_free(skb, sk);
1541 
1542 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1543 
1544 	return true;
1545 }
1546 
1547 /* I wish gso_size would have a bit more sane initialization than
1548  * something-or-zero which complicates things
1549  */
tcp_skb_seglen(const struct sk_buff * skb)1550 static int tcp_skb_seglen(const struct sk_buff *skb)
1551 {
1552 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1553 }
1554 
1555 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1556 static int skb_can_shift(const struct sk_buff *skb)
1557 {
1558 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1559 }
1560 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1561 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1562 		  int pcount, int shiftlen)
1563 {
1564 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1565 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1566 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1567 	 * even if current MSS is bigger.
1568 	 */
1569 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1570 		return 0;
1571 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1572 		return 0;
1573 	return skb_shift(to, from, shiftlen);
1574 }
1575 
1576 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1577  * skb.
1578  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1579 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1580 					  struct tcp_sacktag_state *state,
1581 					  u32 start_seq, u32 end_seq,
1582 					  bool dup_sack)
1583 {
1584 	struct tcp_sock *tp = tcp_sk(sk);
1585 	struct sk_buff *prev;
1586 	int mss;
1587 	int pcount = 0;
1588 	int len;
1589 	int in_sack;
1590 
1591 	/* Normally R but no L won't result in plain S */
1592 	if (!dup_sack &&
1593 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1594 		goto fallback;
1595 	if (!skb_can_shift(skb))
1596 		goto fallback;
1597 	/* This frame is about to be dropped (was ACKed). */
1598 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1599 		goto fallback;
1600 
1601 	/* Can only happen with delayed DSACK + discard craziness */
1602 	prev = skb_rb_prev(skb);
1603 	if (!prev)
1604 		goto fallback;
1605 
1606 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1607 		goto fallback;
1608 
1609 	if (!tcp_skb_can_collapse(prev, skb))
1610 		goto fallback;
1611 
1612 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1613 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1614 
1615 	if (in_sack) {
1616 		len = skb->len;
1617 		pcount = tcp_skb_pcount(skb);
1618 		mss = tcp_skb_seglen(skb);
1619 
1620 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1621 		 * drop this restriction as unnecessary
1622 		 */
1623 		if (mss != tcp_skb_seglen(prev))
1624 			goto fallback;
1625 	} else {
1626 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1627 			goto noop;
1628 		/* CHECKME: This is non-MSS split case only?, this will
1629 		 * cause skipped skbs due to advancing loop btw, original
1630 		 * has that feature too
1631 		 */
1632 		if (tcp_skb_pcount(skb) <= 1)
1633 			goto noop;
1634 
1635 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1636 		if (!in_sack) {
1637 			/* TODO: head merge to next could be attempted here
1638 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1639 			 * though it might not be worth of the additional hassle
1640 			 *
1641 			 * ...we can probably just fallback to what was done
1642 			 * previously. We could try merging non-SACKed ones
1643 			 * as well but it probably isn't going to buy off
1644 			 * because later SACKs might again split them, and
1645 			 * it would make skb timestamp tracking considerably
1646 			 * harder problem.
1647 			 */
1648 			goto fallback;
1649 		}
1650 
1651 		len = end_seq - TCP_SKB_CB(skb)->seq;
1652 		BUG_ON(len < 0);
1653 		BUG_ON(len > skb->len);
1654 
1655 		/* MSS boundaries should be honoured or else pcount will
1656 		 * severely break even though it makes things bit trickier.
1657 		 * Optimize common case to avoid most of the divides
1658 		 */
1659 		mss = tcp_skb_mss(skb);
1660 
1661 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1662 		 * drop this restriction as unnecessary
1663 		 */
1664 		if (mss != tcp_skb_seglen(prev))
1665 			goto fallback;
1666 
1667 		if (len == mss) {
1668 			pcount = 1;
1669 		} else if (len < mss) {
1670 			goto noop;
1671 		} else {
1672 			pcount = len / mss;
1673 			len = pcount * mss;
1674 		}
1675 	}
1676 
1677 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1678 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1679 		goto fallback;
1680 
1681 	if (!tcp_skb_shift(prev, skb, pcount, len))
1682 		goto fallback;
1683 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1684 		goto out;
1685 
1686 	/* Hole filled allows collapsing with the next as well, this is very
1687 	 * useful when hole on every nth skb pattern happens
1688 	 */
1689 	skb = skb_rb_next(prev);
1690 	if (!skb)
1691 		goto out;
1692 
1693 	if (!skb_can_shift(skb) ||
1694 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1695 	    (mss != tcp_skb_seglen(skb)))
1696 		goto out;
1697 
1698 	if (!tcp_skb_can_collapse(prev, skb))
1699 		goto out;
1700 	len = skb->len;
1701 	pcount = tcp_skb_pcount(skb);
1702 	if (tcp_skb_shift(prev, skb, pcount, len))
1703 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1704 				len, mss, 0);
1705 
1706 out:
1707 	return prev;
1708 
1709 noop:
1710 	return skb;
1711 
1712 fallback:
1713 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1714 	return NULL;
1715 }
1716 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1717 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1718 					struct tcp_sack_block *next_dup,
1719 					struct tcp_sacktag_state *state,
1720 					u32 start_seq, u32 end_seq,
1721 					bool dup_sack_in)
1722 {
1723 	struct tcp_sock *tp = tcp_sk(sk);
1724 	struct sk_buff *tmp;
1725 
1726 	skb_rbtree_walk_from(skb) {
1727 		int in_sack = 0;
1728 		bool dup_sack = dup_sack_in;
1729 
1730 		/* queue is in-order => we can short-circuit the walk early */
1731 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1732 			break;
1733 
1734 		if (next_dup  &&
1735 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1736 			in_sack = tcp_match_skb_to_sack(sk, skb,
1737 							next_dup->start_seq,
1738 							next_dup->end_seq);
1739 			if (in_sack > 0)
1740 				dup_sack = true;
1741 		}
1742 
1743 		/* skb reference here is a bit tricky to get right, since
1744 		 * shifting can eat and free both this skb and the next,
1745 		 * so not even _safe variant of the loop is enough.
1746 		 */
1747 		if (in_sack <= 0) {
1748 			tmp = tcp_shift_skb_data(sk, skb, state,
1749 						 start_seq, end_seq, dup_sack);
1750 			if (tmp) {
1751 				if (tmp != skb) {
1752 					skb = tmp;
1753 					continue;
1754 				}
1755 
1756 				in_sack = 0;
1757 			} else {
1758 				in_sack = tcp_match_skb_to_sack(sk, skb,
1759 								start_seq,
1760 								end_seq);
1761 			}
1762 		}
1763 
1764 		if (unlikely(in_sack < 0))
1765 			break;
1766 
1767 		if (in_sack) {
1768 			TCP_SKB_CB(skb)->sacked =
1769 				tcp_sacktag_one(sk,
1770 						state,
1771 						TCP_SKB_CB(skb)->sacked,
1772 						TCP_SKB_CB(skb)->seq,
1773 						TCP_SKB_CB(skb)->end_seq,
1774 						dup_sack,
1775 						tcp_skb_pcount(skb),
1776 						tcp_skb_timestamp_us(skb));
1777 			tcp_rate_skb_delivered(sk, skb, state->rate);
1778 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1779 				list_del_init(&skb->tcp_tsorted_anchor);
1780 
1781 			if (!before(TCP_SKB_CB(skb)->seq,
1782 				    tcp_highest_sack_seq(tp)))
1783 				tcp_advance_highest_sack(sk, skb);
1784 		}
1785 	}
1786 	return skb;
1787 }
1788 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1789 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1790 {
1791 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1792 	struct sk_buff *skb;
1793 
1794 	while (*p) {
1795 		parent = *p;
1796 		skb = rb_to_skb(parent);
1797 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1798 			p = &parent->rb_left;
1799 			continue;
1800 		}
1801 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1802 			p = &parent->rb_right;
1803 			continue;
1804 		}
1805 		return skb;
1806 	}
1807 	return NULL;
1808 }
1809 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1810 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1811 					u32 skip_to_seq)
1812 {
1813 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1814 		return skb;
1815 
1816 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1817 }
1818 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1819 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1820 						struct sock *sk,
1821 						struct tcp_sack_block *next_dup,
1822 						struct tcp_sacktag_state *state,
1823 						u32 skip_to_seq)
1824 {
1825 	if (!next_dup)
1826 		return skb;
1827 
1828 	if (before(next_dup->start_seq, skip_to_seq)) {
1829 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1830 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1831 				       next_dup->start_seq, next_dup->end_seq,
1832 				       1);
1833 	}
1834 
1835 	return skb;
1836 }
1837 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1838 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1839 {
1840 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1841 }
1842 
1843 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1844 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1845 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1846 {
1847 	struct tcp_sock *tp = tcp_sk(sk);
1848 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1849 				    TCP_SKB_CB(ack_skb)->sacked);
1850 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1851 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1852 	struct tcp_sack_block *cache;
1853 	struct sk_buff *skb;
1854 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1855 	int used_sacks;
1856 	bool found_dup_sack = false;
1857 	int i, j;
1858 	int first_sack_index;
1859 
1860 	state->flag = 0;
1861 	state->reord = tp->snd_nxt;
1862 
1863 	if (!tp->sacked_out)
1864 		tcp_highest_sack_reset(sk);
1865 
1866 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1867 					 num_sacks, prior_snd_una, state);
1868 
1869 	/* Eliminate too old ACKs, but take into
1870 	 * account more or less fresh ones, they can
1871 	 * contain valid SACK info.
1872 	 */
1873 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1874 		return 0;
1875 
1876 	if (!tp->packets_out)
1877 		goto out;
1878 
1879 	used_sacks = 0;
1880 	first_sack_index = 0;
1881 	for (i = 0; i < num_sacks; i++) {
1882 		bool dup_sack = !i && found_dup_sack;
1883 
1884 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1885 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1886 
1887 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1888 					    sp[used_sacks].start_seq,
1889 					    sp[used_sacks].end_seq)) {
1890 			int mib_idx;
1891 
1892 			if (dup_sack) {
1893 				if (!tp->undo_marker)
1894 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1895 				else
1896 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1897 			} else {
1898 				/* Don't count olds caused by ACK reordering */
1899 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1900 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1901 					continue;
1902 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1903 			}
1904 
1905 			NET_INC_STATS(sock_net(sk), mib_idx);
1906 			if (i == 0)
1907 				first_sack_index = -1;
1908 			continue;
1909 		}
1910 
1911 		/* Ignore very old stuff early */
1912 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1913 			if (i == 0)
1914 				first_sack_index = -1;
1915 			continue;
1916 		}
1917 
1918 		used_sacks++;
1919 	}
1920 
1921 	/* order SACK blocks to allow in order walk of the retrans queue */
1922 	for (i = used_sacks - 1; i > 0; i--) {
1923 		for (j = 0; j < i; j++) {
1924 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1925 				swap(sp[j], sp[j + 1]);
1926 
1927 				/* Track where the first SACK block goes to */
1928 				if (j == first_sack_index)
1929 					first_sack_index = j + 1;
1930 			}
1931 		}
1932 	}
1933 
1934 	state->mss_now = tcp_current_mss(sk);
1935 	skb = NULL;
1936 	i = 0;
1937 
1938 	if (!tp->sacked_out) {
1939 		/* It's already past, so skip checking against it */
1940 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1941 	} else {
1942 		cache = tp->recv_sack_cache;
1943 		/* Skip empty blocks in at head of the cache */
1944 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1945 		       !cache->end_seq)
1946 			cache++;
1947 	}
1948 
1949 	while (i < used_sacks) {
1950 		u32 start_seq = sp[i].start_seq;
1951 		u32 end_seq = sp[i].end_seq;
1952 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1953 		struct tcp_sack_block *next_dup = NULL;
1954 
1955 		if (found_dup_sack && ((i + 1) == first_sack_index))
1956 			next_dup = &sp[i + 1];
1957 
1958 		/* Skip too early cached blocks */
1959 		while (tcp_sack_cache_ok(tp, cache) &&
1960 		       !before(start_seq, cache->end_seq))
1961 			cache++;
1962 
1963 		/* Can skip some work by looking recv_sack_cache? */
1964 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1965 		    after(end_seq, cache->start_seq)) {
1966 
1967 			/* Head todo? */
1968 			if (before(start_seq, cache->start_seq)) {
1969 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1970 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1971 						       state,
1972 						       start_seq,
1973 						       cache->start_seq,
1974 						       dup_sack);
1975 			}
1976 
1977 			/* Rest of the block already fully processed? */
1978 			if (!after(end_seq, cache->end_seq))
1979 				goto advance_sp;
1980 
1981 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1982 						       state,
1983 						       cache->end_seq);
1984 
1985 			/* ...tail remains todo... */
1986 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1987 				/* ...but better entrypoint exists! */
1988 				skb = tcp_highest_sack(sk);
1989 				if (!skb)
1990 					break;
1991 				cache++;
1992 				goto walk;
1993 			}
1994 
1995 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1996 			/* Check overlap against next cached too (past this one already) */
1997 			cache++;
1998 			continue;
1999 		}
2000 
2001 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2002 			skb = tcp_highest_sack(sk);
2003 			if (!skb)
2004 				break;
2005 		}
2006 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2007 
2008 walk:
2009 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2010 				       start_seq, end_seq, dup_sack);
2011 
2012 advance_sp:
2013 		i++;
2014 	}
2015 
2016 	/* Clear the head of the cache sack blocks so we can skip it next time */
2017 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2018 		tp->recv_sack_cache[i].start_seq = 0;
2019 		tp->recv_sack_cache[i].end_seq = 0;
2020 	}
2021 	for (j = 0; j < used_sacks; j++)
2022 		tp->recv_sack_cache[i++] = sp[j];
2023 
2024 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2025 		tcp_check_sack_reordering(sk, state->reord, 0);
2026 
2027 	tcp_verify_left_out(tp);
2028 out:
2029 
2030 #if FASTRETRANS_DEBUG > 0
2031 	WARN_ON((int)tp->sacked_out < 0);
2032 	WARN_ON((int)tp->lost_out < 0);
2033 	WARN_ON((int)tp->retrans_out < 0);
2034 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2035 #endif
2036 	return state->flag;
2037 }
2038 
2039 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2040  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2041  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2042 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2043 {
2044 	u32 holes;
2045 
2046 	holes = max(tp->lost_out, 1U);
2047 	holes = min(holes, tp->packets_out);
2048 
2049 	if ((tp->sacked_out + holes) > tp->packets_out) {
2050 		tp->sacked_out = tp->packets_out - holes;
2051 		return true;
2052 	}
2053 	return false;
2054 }
2055 
2056 /* If we receive more dupacks than we expected counting segments
2057  * in assumption of absent reordering, interpret this as reordering.
2058  * The only another reason could be bug in receiver TCP.
2059  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2060 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2061 {
2062 	struct tcp_sock *tp = tcp_sk(sk);
2063 
2064 	if (!tcp_limit_reno_sacked(tp))
2065 		return;
2066 
2067 	tp->reordering = min_t(u32, tp->packets_out + addend,
2068 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2069 	tp->reord_seen++;
2070 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2071 }
2072 
2073 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2074 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2075 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2076 {
2077 	if (num_dupack) {
2078 		struct tcp_sock *tp = tcp_sk(sk);
2079 		u32 prior_sacked = tp->sacked_out;
2080 		s32 delivered;
2081 
2082 		tp->sacked_out += num_dupack;
2083 		tcp_check_reno_reordering(sk, 0);
2084 		delivered = tp->sacked_out - prior_sacked;
2085 		if (delivered > 0)
2086 			tcp_count_delivered(tp, delivered, ece_ack);
2087 		tcp_verify_left_out(tp);
2088 	}
2089 }
2090 
2091 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2092 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2093 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2094 {
2095 	struct tcp_sock *tp = tcp_sk(sk);
2096 
2097 	if (acked > 0) {
2098 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2099 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2100 				    ece_ack);
2101 		if (acked - 1 >= tp->sacked_out)
2102 			tp->sacked_out = 0;
2103 		else
2104 			tp->sacked_out -= acked - 1;
2105 	}
2106 	tcp_check_reno_reordering(sk, acked);
2107 	tcp_verify_left_out(tp);
2108 }
2109 
tcp_reset_reno_sack(struct tcp_sock * tp)2110 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2111 {
2112 	tp->sacked_out = 0;
2113 }
2114 
tcp_clear_retrans(struct tcp_sock * tp)2115 void tcp_clear_retrans(struct tcp_sock *tp)
2116 {
2117 	tp->retrans_out = 0;
2118 	tp->lost_out = 0;
2119 	tp->undo_marker = 0;
2120 	tp->undo_retrans = -1;
2121 	tp->sacked_out = 0;
2122 	tp->rto_stamp = 0;
2123 	tp->total_rto = 0;
2124 	tp->total_rto_recoveries = 0;
2125 	tp->total_rto_time = 0;
2126 }
2127 
tcp_init_undo(struct tcp_sock * tp)2128 static inline void tcp_init_undo(struct tcp_sock *tp)
2129 {
2130 	tp->undo_marker = tp->snd_una;
2131 
2132 	/* Retransmission still in flight may cause DSACKs later. */
2133 	/* First, account for regular retransmits in flight: */
2134 	tp->undo_retrans = tp->retrans_out;
2135 	/* Next, account for TLP retransmits in flight: */
2136 	if (tp->tlp_high_seq && tp->tlp_retrans)
2137 		tp->undo_retrans++;
2138 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2139 	if (!tp->undo_retrans)
2140 		tp->undo_retrans = -1;
2141 }
2142 
tcp_is_rack(const struct sock * sk)2143 static bool tcp_is_rack(const struct sock *sk)
2144 {
2145 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2146 		TCP_RACK_LOSS_DETECTION;
2147 }
2148 
2149 /* If we detect SACK reneging, forget all SACK information
2150  * and reset tags completely, otherwise preserve SACKs. If receiver
2151  * dropped its ofo queue, we will know this due to reneging detection.
2152  */
tcp_timeout_mark_lost(struct sock * sk)2153 static void tcp_timeout_mark_lost(struct sock *sk)
2154 {
2155 	struct tcp_sock *tp = tcp_sk(sk);
2156 	struct sk_buff *skb, *head;
2157 	bool is_reneg;			/* is receiver reneging on SACKs? */
2158 
2159 	head = tcp_rtx_queue_head(sk);
2160 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2161 	if (is_reneg) {
2162 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2163 		tp->sacked_out = 0;
2164 		/* Mark SACK reneging until we recover from this loss event. */
2165 		tp->is_sack_reneg = 1;
2166 	} else if (tcp_is_reno(tp)) {
2167 		tcp_reset_reno_sack(tp);
2168 	}
2169 
2170 	skb = head;
2171 	skb_rbtree_walk_from(skb) {
2172 		if (is_reneg)
2173 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2174 		else if (tcp_is_rack(sk) && skb != head &&
2175 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2176 			continue; /* Don't mark recently sent ones lost yet */
2177 		tcp_mark_skb_lost(sk, skb);
2178 	}
2179 	tcp_verify_left_out(tp);
2180 	tcp_clear_all_retrans_hints(tp);
2181 }
2182 
2183 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2184 void tcp_enter_loss(struct sock *sk)
2185 {
2186 	const struct inet_connection_sock *icsk = inet_csk(sk);
2187 	struct tcp_sock *tp = tcp_sk(sk);
2188 	struct net *net = sock_net(sk);
2189 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2190 	u8 reordering;
2191 
2192 	tcp_timeout_mark_lost(sk);
2193 
2194 	/* Reduce ssthresh if it has not yet been made inside this window. */
2195 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2196 	    !after(tp->high_seq, tp->snd_una) ||
2197 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2198 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2199 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2200 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2201 		tcp_ca_event(sk, CA_EVENT_LOSS);
2202 		tcp_init_undo(tp);
2203 	}
2204 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2205 	tp->snd_cwnd_cnt   = 0;
2206 	tp->snd_cwnd_stamp = tcp_jiffies32;
2207 
2208 	/* Timeout in disordered state after receiving substantial DUPACKs
2209 	 * suggests that the degree of reordering is over-estimated.
2210 	 */
2211 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2212 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2213 	    tp->sacked_out >= reordering)
2214 		tp->reordering = min_t(unsigned int, tp->reordering,
2215 				       reordering);
2216 
2217 	tcp_set_ca_state(sk, TCP_CA_Loss);
2218 	tp->high_seq = tp->snd_nxt;
2219 	tp->tlp_high_seq = 0;
2220 	tcp_ecn_queue_cwr(tp);
2221 
2222 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2223 	 * loss recovery is underway except recurring timeout(s) on
2224 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2225 	 */
2226 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2227 		   (new_recovery || icsk->icsk_retransmits) &&
2228 		   !inet_csk(sk)->icsk_mtup.probe_size;
2229 }
2230 
2231 /* If ACK arrived pointing to a remembered SACK, it means that our
2232  * remembered SACKs do not reflect real state of receiver i.e.
2233  * receiver _host_ is heavily congested (or buggy).
2234  *
2235  * To avoid big spurious retransmission bursts due to transient SACK
2236  * scoreboard oddities that look like reneging, we give the receiver a
2237  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2238  * restore sanity to the SACK scoreboard. If the apparent reneging
2239  * persists until this RTO then we'll clear the SACK scoreboard.
2240  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2241 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2242 {
2243 	if (*ack_flag & FLAG_SACK_RENEGING &&
2244 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2245 		struct tcp_sock *tp = tcp_sk(sk);
2246 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2247 					  msecs_to_jiffies(10));
2248 
2249 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2250 					  delay, TCP_RTO_MAX);
2251 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2252 		return true;
2253 	}
2254 	return false;
2255 }
2256 
2257 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2258  * counter when SACK is enabled (without SACK, sacked_out is used for
2259  * that purpose).
2260  *
2261  * With reordering, holes may still be in flight, so RFC3517 recovery
2262  * uses pure sacked_out (total number of SACKed segments) even though
2263  * it violates the RFC that uses duplicate ACKs, often these are equal
2264  * but when e.g. out-of-window ACKs or packet duplication occurs,
2265  * they differ. Since neither occurs due to loss, TCP should really
2266  * ignore them.
2267  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2268 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2269 {
2270 	return tp->sacked_out + 1;
2271 }
2272 
2273 /* Linux NewReno/SACK/ECN state machine.
2274  * --------------------------------------
2275  *
2276  * "Open"	Normal state, no dubious events, fast path.
2277  * "Disorder"   In all the respects it is "Open",
2278  *		but requires a bit more attention. It is entered when
2279  *		we see some SACKs or dupacks. It is split of "Open"
2280  *		mainly to move some processing from fast path to slow one.
2281  * "CWR"	CWND was reduced due to some Congestion Notification event.
2282  *		It can be ECN, ICMP source quench, local device congestion.
2283  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2284  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2285  *
2286  * tcp_fastretrans_alert() is entered:
2287  * - each incoming ACK, if state is not "Open"
2288  * - when arrived ACK is unusual, namely:
2289  *	* SACK
2290  *	* Duplicate ACK.
2291  *	* ECN ECE.
2292  *
2293  * Counting packets in flight is pretty simple.
2294  *
2295  *	in_flight = packets_out - left_out + retrans_out
2296  *
2297  *	packets_out is SND.NXT-SND.UNA counted in packets.
2298  *
2299  *	retrans_out is number of retransmitted segments.
2300  *
2301  *	left_out is number of segments left network, but not ACKed yet.
2302  *
2303  *		left_out = sacked_out + lost_out
2304  *
2305  *     sacked_out: Packets, which arrived to receiver out of order
2306  *		   and hence not ACKed. With SACKs this number is simply
2307  *		   amount of SACKed data. Even without SACKs
2308  *		   it is easy to give pretty reliable estimate of this number,
2309  *		   counting duplicate ACKs.
2310  *
2311  *       lost_out: Packets lost by network. TCP has no explicit
2312  *		   "loss notification" feedback from network (for now).
2313  *		   It means that this number can be only _guessed_.
2314  *		   Actually, it is the heuristics to predict lossage that
2315  *		   distinguishes different algorithms.
2316  *
2317  *	F.e. after RTO, when all the queue is considered as lost,
2318  *	lost_out = packets_out and in_flight = retrans_out.
2319  *
2320  *		Essentially, we have now a few algorithms detecting
2321  *		lost packets.
2322  *
2323  *		If the receiver supports SACK:
2324  *
2325  *		RFC6675/3517: It is the conventional algorithm. A packet is
2326  *		considered lost if the number of higher sequence packets
2327  *		SACKed is greater than or equal the DUPACK thoreshold
2328  *		(reordering). This is implemented in tcp_mark_head_lost and
2329  *		tcp_update_scoreboard.
2330  *
2331  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2332  *		(2017-) that checks timing instead of counting DUPACKs.
2333  *		Essentially a packet is considered lost if it's not S/ACKed
2334  *		after RTT + reordering_window, where both metrics are
2335  *		dynamically measured and adjusted. This is implemented in
2336  *		tcp_rack_mark_lost.
2337  *
2338  *		If the receiver does not support SACK:
2339  *
2340  *		NewReno (RFC6582): in Recovery we assume that one segment
2341  *		is lost (classic Reno). While we are in Recovery and
2342  *		a partial ACK arrives, we assume that one more packet
2343  *		is lost (NewReno). This heuristics are the same in NewReno
2344  *		and SACK.
2345  *
2346  * Really tricky (and requiring careful tuning) part of algorithm
2347  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2348  * The first determines the moment _when_ we should reduce CWND and,
2349  * hence, slow down forward transmission. In fact, it determines the moment
2350  * when we decide that hole is caused by loss, rather than by a reorder.
2351  *
2352  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2353  * holes, caused by lost packets.
2354  *
2355  * And the most logically complicated part of algorithm is undo
2356  * heuristics. We detect false retransmits due to both too early
2357  * fast retransmit (reordering) and underestimated RTO, analyzing
2358  * timestamps and D-SACKs. When we detect that some segments were
2359  * retransmitted by mistake and CWND reduction was wrong, we undo
2360  * window reduction and abort recovery phase. This logic is hidden
2361  * inside several functions named tcp_try_undo_<something>.
2362  */
2363 
2364 /* This function decides, when we should leave Disordered state
2365  * and enter Recovery phase, reducing congestion window.
2366  *
2367  * Main question: may we further continue forward transmission
2368  * with the same cwnd?
2369  */
tcp_time_to_recover(struct sock * sk,int flag)2370 static bool tcp_time_to_recover(struct sock *sk, int flag)
2371 {
2372 	struct tcp_sock *tp = tcp_sk(sk);
2373 
2374 	/* Trick#1: The loss is proven. */
2375 	if (tp->lost_out)
2376 		return true;
2377 
2378 	/* Not-A-Trick#2 : Classic rule... */
2379 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2380 		return true;
2381 
2382 	return false;
2383 }
2384 
2385 /* Detect loss in event "A" above by marking head of queue up as lost.
2386  * For RFC3517 SACK, a segment is considered lost if it
2387  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2388  * the maximum SACKed segments to pass before reaching this limit.
2389  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2390 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2391 {
2392 	struct tcp_sock *tp = tcp_sk(sk);
2393 	struct sk_buff *skb;
2394 	int cnt;
2395 	/* Use SACK to deduce losses of new sequences sent during recovery */
2396 	const u32 loss_high = tp->snd_nxt;
2397 
2398 	WARN_ON(packets > tp->packets_out);
2399 	skb = tp->lost_skb_hint;
2400 	if (skb) {
2401 		/* Head already handled? */
2402 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2403 			return;
2404 		cnt = tp->lost_cnt_hint;
2405 	} else {
2406 		skb = tcp_rtx_queue_head(sk);
2407 		cnt = 0;
2408 	}
2409 
2410 	skb_rbtree_walk_from(skb) {
2411 		/* TODO: do this better */
2412 		/* this is not the most efficient way to do this... */
2413 		tp->lost_skb_hint = skb;
2414 		tp->lost_cnt_hint = cnt;
2415 
2416 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2417 			break;
2418 
2419 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2420 			cnt += tcp_skb_pcount(skb);
2421 
2422 		if (cnt > packets)
2423 			break;
2424 
2425 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2426 			tcp_mark_skb_lost(sk, skb);
2427 
2428 		if (mark_head)
2429 			break;
2430 	}
2431 	tcp_verify_left_out(tp);
2432 }
2433 
2434 /* Account newly detected lost packet(s) */
2435 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2436 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2437 {
2438 	struct tcp_sock *tp = tcp_sk(sk);
2439 
2440 	if (tcp_is_sack(tp)) {
2441 		int sacked_upto = tp->sacked_out - tp->reordering;
2442 		if (sacked_upto >= 0)
2443 			tcp_mark_head_lost(sk, sacked_upto, 0);
2444 		else if (fast_rexmit)
2445 			tcp_mark_head_lost(sk, 1, 1);
2446 	}
2447 }
2448 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2449 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2450 {
2451 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2452 	       before(tp->rx_opt.rcv_tsecr, when);
2453 }
2454 
2455 /* skb is spurious retransmitted if the returned timestamp echo
2456  * reply is prior to the skb transmission time
2457  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2458 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2459 				     const struct sk_buff *skb)
2460 {
2461 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2462 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2463 }
2464 
2465 /* Nothing was retransmitted or returned timestamp is less
2466  * than timestamp of the first retransmission.
2467  */
tcp_packet_delayed(const struct tcp_sock * tp)2468 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2469 {
2470 	const struct sock *sk = (const struct sock *)tp;
2471 
2472 	if (tp->retrans_stamp &&
2473 	    tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2474 		return true;  /* got echoed TS before first retransmission */
2475 
2476 	/* Check if nothing was retransmitted (retrans_stamp==0), which may
2477 	 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2478 	 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2479 	 * retrans_stamp even if we had retransmitted the SYN.
2480 	 */
2481 	if (!tp->retrans_stamp &&	   /* no record of a retransmit/SYN? */
2482 	    sk->sk_state != TCP_SYN_SENT)  /* not the FLAG_SYN_ACKED case? */
2483 		return true;  /* nothing was retransmitted */
2484 
2485 	return false;
2486 }
2487 
2488 /* Undo procedures. */
2489 
2490 /* We can clear retrans_stamp when there are no retransmissions in the
2491  * window. It would seem that it is trivially available for us in
2492  * tp->retrans_out, however, that kind of assumptions doesn't consider
2493  * what will happen if errors occur when sending retransmission for the
2494  * second time. ...It could the that such segment has only
2495  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2496  * the head skb is enough except for some reneging corner cases that
2497  * are not worth the effort.
2498  *
2499  * Main reason for all this complexity is the fact that connection dying
2500  * time now depends on the validity of the retrans_stamp, in particular,
2501  * that successive retransmissions of a segment must not advance
2502  * retrans_stamp under any conditions.
2503  */
tcp_any_retrans_done(const struct sock * sk)2504 static bool tcp_any_retrans_done(const struct sock *sk)
2505 {
2506 	const struct tcp_sock *tp = tcp_sk(sk);
2507 	struct sk_buff *skb;
2508 
2509 	if (tp->retrans_out)
2510 		return true;
2511 
2512 	skb = tcp_rtx_queue_head(sk);
2513 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2514 		return true;
2515 
2516 	return false;
2517 }
2518 
2519 /* If loss recovery is finished and there are no retransmits out in the
2520  * network, then we clear retrans_stamp so that upon the next loss recovery
2521  * retransmits_timed_out() and timestamp-undo are using the correct value.
2522  */
tcp_retrans_stamp_cleanup(struct sock * sk)2523 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2524 {
2525 	if (!tcp_any_retrans_done(sk))
2526 		tcp_sk(sk)->retrans_stamp = 0;
2527 }
2528 
DBGUNDO(struct sock * sk,const char * msg)2529 static void DBGUNDO(struct sock *sk, const char *msg)
2530 {
2531 #if FASTRETRANS_DEBUG > 1
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 	struct inet_sock *inet = inet_sk(sk);
2534 
2535 	if (sk->sk_family == AF_INET) {
2536 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2537 			 msg,
2538 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2539 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2540 			 tp->snd_ssthresh, tp->prior_ssthresh,
2541 			 tp->packets_out);
2542 	}
2543 #if IS_ENABLED(CONFIG_IPV6)
2544 	else if (sk->sk_family == AF_INET6) {
2545 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2546 			 msg,
2547 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2548 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2549 			 tp->snd_ssthresh, tp->prior_ssthresh,
2550 			 tp->packets_out);
2551 	}
2552 #endif
2553 #endif
2554 }
2555 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2556 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2557 {
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 
2560 	if (unmark_loss) {
2561 		struct sk_buff *skb;
2562 
2563 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2564 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2565 		}
2566 		tp->lost_out = 0;
2567 		tcp_clear_all_retrans_hints(tp);
2568 	}
2569 
2570 	if (tp->prior_ssthresh) {
2571 		const struct inet_connection_sock *icsk = inet_csk(sk);
2572 
2573 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2574 
2575 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2576 			tp->snd_ssthresh = tp->prior_ssthresh;
2577 			tcp_ecn_withdraw_cwr(tp);
2578 		}
2579 	}
2580 	tp->snd_cwnd_stamp = tcp_jiffies32;
2581 	tp->undo_marker = 0;
2582 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2583 }
2584 
tcp_may_undo(const struct tcp_sock * tp)2585 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2586 {
2587 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2588 }
2589 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2590 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2591 {
2592 	struct tcp_sock *tp = tcp_sk(sk);
2593 
2594 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2595 		/* Hold old state until something *above* high_seq
2596 		 * is ACKed. For Reno it is MUST to prevent false
2597 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2598 		if (!tcp_any_retrans_done(sk))
2599 			tp->retrans_stamp = 0;
2600 		return true;
2601 	}
2602 	return false;
2603 }
2604 
2605 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2606 static bool tcp_try_undo_recovery(struct sock *sk)
2607 {
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 
2610 	if (tcp_may_undo(tp)) {
2611 		int mib_idx;
2612 
2613 		/* Happy end! We did not retransmit anything
2614 		 * or our original transmission succeeded.
2615 		 */
2616 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2617 		tcp_undo_cwnd_reduction(sk, false);
2618 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2619 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2620 		else
2621 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2622 
2623 		NET_INC_STATS(sock_net(sk), mib_idx);
2624 	} else if (tp->rack.reo_wnd_persist) {
2625 		tp->rack.reo_wnd_persist--;
2626 	}
2627 	if (tcp_is_non_sack_preventing_reopen(sk))
2628 		return true;
2629 	tcp_set_ca_state(sk, TCP_CA_Open);
2630 	tp->is_sack_reneg = 0;
2631 	return false;
2632 }
2633 
2634 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2635 static bool tcp_try_undo_dsack(struct sock *sk)
2636 {
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 
2639 	if (tp->undo_marker && !tp->undo_retrans) {
2640 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2641 					       tp->rack.reo_wnd_persist + 1);
2642 		DBGUNDO(sk, "D-SACK");
2643 		tcp_undo_cwnd_reduction(sk, false);
2644 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2645 		return true;
2646 	}
2647 	return false;
2648 }
2649 
2650 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2651 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2652 {
2653 	struct tcp_sock *tp = tcp_sk(sk);
2654 
2655 	if (frto_undo || tcp_may_undo(tp)) {
2656 		tcp_undo_cwnd_reduction(sk, true);
2657 
2658 		DBGUNDO(sk, "partial loss");
2659 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2660 		if (frto_undo)
2661 			NET_INC_STATS(sock_net(sk),
2662 					LINUX_MIB_TCPSPURIOUSRTOS);
2663 		inet_csk(sk)->icsk_retransmits = 0;
2664 		if (tcp_is_non_sack_preventing_reopen(sk))
2665 			return true;
2666 		if (frto_undo || tcp_is_sack(tp)) {
2667 			tcp_set_ca_state(sk, TCP_CA_Open);
2668 			tp->is_sack_reneg = 0;
2669 		}
2670 		return true;
2671 	}
2672 	return false;
2673 }
2674 
2675 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2676  * It computes the number of packets to send (sndcnt) based on packets newly
2677  * delivered:
2678  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2679  *	cwnd reductions across a full RTT.
2680  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2681  *      But when SND_UNA is acked without further losses,
2682  *      slow starts cwnd up to ssthresh to speed up the recovery.
2683  */
tcp_init_cwnd_reduction(struct sock * sk)2684 static void tcp_init_cwnd_reduction(struct sock *sk)
2685 {
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 
2688 	tp->high_seq = tp->snd_nxt;
2689 	tp->tlp_high_seq = 0;
2690 	tp->snd_cwnd_cnt = 0;
2691 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2692 	tp->prr_delivered = 0;
2693 	tp->prr_out = 0;
2694 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2695 	tcp_ecn_queue_cwr(tp);
2696 }
2697 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2698 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2699 {
2700 	struct tcp_sock *tp = tcp_sk(sk);
2701 	int sndcnt = 0;
2702 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2703 
2704 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2705 		return;
2706 
2707 	tp->prr_delivered += newly_acked_sacked;
2708 	if (delta < 0) {
2709 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2710 			       tp->prior_cwnd - 1;
2711 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2712 	} else {
2713 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2714 			       newly_acked_sacked);
2715 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2716 			sndcnt++;
2717 		sndcnt = min(delta, sndcnt);
2718 	}
2719 	/* Force a fast retransmit upon entering fast recovery */
2720 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2721 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2722 }
2723 
tcp_end_cwnd_reduction(struct sock * sk)2724 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2725 {
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 
2728 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2729 		return;
2730 
2731 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2732 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2733 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2734 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2735 		tp->snd_cwnd_stamp = tcp_jiffies32;
2736 	}
2737 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2738 }
2739 
2740 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2741 void tcp_enter_cwr(struct sock *sk)
2742 {
2743 	struct tcp_sock *tp = tcp_sk(sk);
2744 
2745 	tp->prior_ssthresh = 0;
2746 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2747 		tp->undo_marker = 0;
2748 		tcp_init_cwnd_reduction(sk);
2749 		tcp_set_ca_state(sk, TCP_CA_CWR);
2750 	}
2751 }
2752 EXPORT_SYMBOL(tcp_enter_cwr);
2753 
tcp_try_keep_open(struct sock * sk)2754 static void tcp_try_keep_open(struct sock *sk)
2755 {
2756 	struct tcp_sock *tp = tcp_sk(sk);
2757 	int state = TCP_CA_Open;
2758 
2759 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2760 		state = TCP_CA_Disorder;
2761 
2762 	if (inet_csk(sk)->icsk_ca_state != state) {
2763 		tcp_set_ca_state(sk, state);
2764 		tp->high_seq = tp->snd_nxt;
2765 	}
2766 }
2767 
tcp_try_to_open(struct sock * sk,int flag)2768 static void tcp_try_to_open(struct sock *sk, int flag)
2769 {
2770 	struct tcp_sock *tp = tcp_sk(sk);
2771 
2772 	tcp_verify_left_out(tp);
2773 
2774 	if (!tcp_any_retrans_done(sk))
2775 		tp->retrans_stamp = 0;
2776 
2777 	if (flag & FLAG_ECE)
2778 		tcp_enter_cwr(sk);
2779 
2780 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2781 		tcp_try_keep_open(sk);
2782 	}
2783 }
2784 
tcp_mtup_probe_failed(struct sock * sk)2785 static void tcp_mtup_probe_failed(struct sock *sk)
2786 {
2787 	struct inet_connection_sock *icsk = inet_csk(sk);
2788 
2789 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2790 	icsk->icsk_mtup.probe_size = 0;
2791 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2792 }
2793 
tcp_mtup_probe_success(struct sock * sk)2794 static void tcp_mtup_probe_success(struct sock *sk)
2795 {
2796 	struct tcp_sock *tp = tcp_sk(sk);
2797 	struct inet_connection_sock *icsk = inet_csk(sk);
2798 	u64 val;
2799 
2800 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2801 
2802 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2803 	do_div(val, icsk->icsk_mtup.probe_size);
2804 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2805 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2806 
2807 	tp->snd_cwnd_cnt = 0;
2808 	tp->snd_cwnd_stamp = tcp_jiffies32;
2809 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2810 
2811 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2812 	icsk->icsk_mtup.probe_size = 0;
2813 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2814 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2815 }
2816 
2817 /* Sometimes we deduce that packets have been dropped due to reasons other than
2818  * congestion, like path MTU reductions or failed client TFO attempts. In these
2819  * cases we call this function to retransmit as many packets as cwnd allows,
2820  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2821  * non-zero value (and may do so in a later calling context due to TSQ), we
2822  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2823  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2824  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2825  * prematurely).
2826  */
tcp_non_congestion_loss_retransmit(struct sock * sk)2827 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2828 {
2829 	const struct inet_connection_sock *icsk = inet_csk(sk);
2830 	struct tcp_sock *tp = tcp_sk(sk);
2831 
2832 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2833 		tp->high_seq = tp->snd_nxt;
2834 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2835 		tp->prior_ssthresh = 0;
2836 		tp->undo_marker = 0;
2837 		tcp_set_ca_state(sk, TCP_CA_Loss);
2838 	}
2839 	tcp_xmit_retransmit_queue(sk);
2840 }
2841 
2842 /* Do a simple retransmit without using the backoff mechanisms in
2843  * tcp_timer. This is used for path mtu discovery.
2844  * The socket is already locked here.
2845  */
tcp_simple_retransmit(struct sock * sk)2846 void tcp_simple_retransmit(struct sock *sk)
2847 {
2848 	struct tcp_sock *tp = tcp_sk(sk);
2849 	struct sk_buff *skb;
2850 	int mss;
2851 
2852 	/* A fastopen SYN request is stored as two separate packets within
2853 	 * the retransmit queue, this is done by tcp_send_syn_data().
2854 	 * As a result simply checking the MSS of the frames in the queue
2855 	 * will not work for the SYN packet.
2856 	 *
2857 	 * Us being here is an indication of a path MTU issue so we can
2858 	 * assume that the fastopen SYN was lost and just mark all the
2859 	 * frames in the retransmit queue as lost. We will use an MSS of
2860 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2861 	 */
2862 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2863 		mss = -1;
2864 	else
2865 		mss = tcp_current_mss(sk);
2866 
2867 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2868 		if (tcp_skb_seglen(skb) > mss)
2869 			tcp_mark_skb_lost(sk, skb);
2870 	}
2871 
2872 	tcp_clear_retrans_hints_partial(tp);
2873 
2874 	if (!tp->lost_out)
2875 		return;
2876 
2877 	if (tcp_is_reno(tp))
2878 		tcp_limit_reno_sacked(tp);
2879 
2880 	tcp_verify_left_out(tp);
2881 
2882 	/* Don't muck with the congestion window here.
2883 	 * Reason is that we do not increase amount of _data_
2884 	 * in network, but units changed and effective
2885 	 * cwnd/ssthresh really reduced now.
2886 	 */
2887 	tcp_non_congestion_loss_retransmit(sk);
2888 }
2889 EXPORT_SYMBOL(tcp_simple_retransmit);
2890 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2891 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2892 {
2893 	struct tcp_sock *tp = tcp_sk(sk);
2894 	int mib_idx;
2895 
2896 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2897 	tcp_retrans_stamp_cleanup(sk);
2898 
2899 	if (tcp_is_reno(tp))
2900 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2901 	else
2902 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2903 
2904 	NET_INC_STATS(sock_net(sk), mib_idx);
2905 
2906 	tp->prior_ssthresh = 0;
2907 	tcp_init_undo(tp);
2908 
2909 	if (!tcp_in_cwnd_reduction(sk)) {
2910 		if (!ece_ack)
2911 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2912 		tcp_init_cwnd_reduction(sk);
2913 	}
2914 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2915 }
2916 
tcp_update_rto_time(struct tcp_sock * tp)2917 static void tcp_update_rto_time(struct tcp_sock *tp)
2918 {
2919 	if (tp->rto_stamp) {
2920 		tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp;
2921 		tp->rto_stamp = 0;
2922 	}
2923 }
2924 
2925 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2926  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2927  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2928 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2929 			     int *rexmit)
2930 {
2931 	struct tcp_sock *tp = tcp_sk(sk);
2932 	bool recovered = !before(tp->snd_una, tp->high_seq);
2933 
2934 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2935 	    tcp_try_undo_loss(sk, false))
2936 		return;
2937 
2938 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2939 		/* Step 3.b. A timeout is spurious if not all data are
2940 		 * lost, i.e., never-retransmitted data are (s)acked.
2941 		 */
2942 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2943 		    tcp_try_undo_loss(sk, true))
2944 			return;
2945 
2946 		if (after(tp->snd_nxt, tp->high_seq)) {
2947 			if (flag & FLAG_DATA_SACKED || num_dupack)
2948 				tp->frto = 0; /* Step 3.a. loss was real */
2949 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2950 			tp->high_seq = tp->snd_nxt;
2951 			/* Step 2.b. Try send new data (but deferred until cwnd
2952 			 * is updated in tcp_ack()). Otherwise fall back to
2953 			 * the conventional recovery.
2954 			 */
2955 			if (!tcp_write_queue_empty(sk) &&
2956 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2957 				*rexmit = REXMIT_NEW;
2958 				return;
2959 			}
2960 			tp->frto = 0;
2961 		}
2962 	}
2963 
2964 	if (recovered) {
2965 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2966 		tcp_try_undo_recovery(sk);
2967 		return;
2968 	}
2969 	if (tcp_is_reno(tp)) {
2970 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2971 		 * delivered. Lower inflight to clock out (re)transmissions.
2972 		 */
2973 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2974 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2975 		else if (flag & FLAG_SND_UNA_ADVANCED)
2976 			tcp_reset_reno_sack(tp);
2977 	}
2978 	*rexmit = REXMIT_LOST;
2979 }
2980 
tcp_force_fast_retransmit(struct sock * sk)2981 static bool tcp_force_fast_retransmit(struct sock *sk)
2982 {
2983 	struct tcp_sock *tp = tcp_sk(sk);
2984 
2985 	return after(tcp_highest_sack_seq(tp),
2986 		     tp->snd_una + tp->reordering * tp->mss_cache);
2987 }
2988 
2989 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2990 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2991 				 bool *do_lost)
2992 {
2993 	struct tcp_sock *tp = tcp_sk(sk);
2994 
2995 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2996 		/* Plain luck! Hole if filled with delayed
2997 		 * packet, rather than with a retransmit. Check reordering.
2998 		 */
2999 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
3000 
3001 		/* We are getting evidence that the reordering degree is higher
3002 		 * than we realized. If there are no retransmits out then we
3003 		 * can undo. Otherwise we clock out new packets but do not
3004 		 * mark more packets lost or retransmit more.
3005 		 */
3006 		if (tp->retrans_out)
3007 			return true;
3008 
3009 		if (!tcp_any_retrans_done(sk))
3010 			tp->retrans_stamp = 0;
3011 
3012 		DBGUNDO(sk, "partial recovery");
3013 		tcp_undo_cwnd_reduction(sk, true);
3014 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3015 		tcp_try_keep_open(sk);
3016 	} else {
3017 		/* Partial ACK arrived. Force fast retransmit. */
3018 		*do_lost = tcp_force_fast_retransmit(sk);
3019 	}
3020 	return false;
3021 }
3022 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3023 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3024 {
3025 	struct tcp_sock *tp = tcp_sk(sk);
3026 
3027 	if (tcp_rtx_queue_empty(sk))
3028 		return;
3029 
3030 	if (unlikely(tcp_is_reno(tp))) {
3031 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3032 	} else if (tcp_is_rack(sk)) {
3033 		u32 prior_retrans = tp->retrans_out;
3034 
3035 		if (tcp_rack_mark_lost(sk))
3036 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3037 		if (prior_retrans > tp->retrans_out)
3038 			*ack_flag |= FLAG_LOST_RETRANS;
3039 	}
3040 }
3041 
3042 /* Process an event, which can update packets-in-flight not trivially.
3043  * Main goal of this function is to calculate new estimate for left_out,
3044  * taking into account both packets sitting in receiver's buffer and
3045  * packets lost by network.
3046  *
3047  * Besides that it updates the congestion state when packet loss or ECN
3048  * is detected. But it does not reduce the cwnd, it is done by the
3049  * congestion control later.
3050  *
3051  * It does _not_ decide what to send, it is made in function
3052  * tcp_xmit_retransmit_queue().
3053  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3054 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3055 				  int num_dupack, int *ack_flag, int *rexmit)
3056 {
3057 	struct inet_connection_sock *icsk = inet_csk(sk);
3058 	struct tcp_sock *tp = tcp_sk(sk);
3059 	int fast_rexmit = 0, flag = *ack_flag;
3060 	bool ece_ack = flag & FLAG_ECE;
3061 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3062 				      tcp_force_fast_retransmit(sk));
3063 
3064 	if (!tp->packets_out && tp->sacked_out)
3065 		tp->sacked_out = 0;
3066 
3067 	/* Now state machine starts.
3068 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3069 	if (ece_ack)
3070 		tp->prior_ssthresh = 0;
3071 
3072 	/* B. In all the states check for reneging SACKs. */
3073 	if (tcp_check_sack_reneging(sk, ack_flag))
3074 		return;
3075 
3076 	/* C. Check consistency of the current state. */
3077 	tcp_verify_left_out(tp);
3078 
3079 	/* D. Check state exit conditions. State can be terminated
3080 	 *    when high_seq is ACKed. */
3081 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3082 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3083 		tp->retrans_stamp = 0;
3084 	} else if (!before(tp->snd_una, tp->high_seq)) {
3085 		switch (icsk->icsk_ca_state) {
3086 		case TCP_CA_CWR:
3087 			/* CWR is to be held something *above* high_seq
3088 			 * is ACKed for CWR bit to reach receiver. */
3089 			if (tp->snd_una != tp->high_seq) {
3090 				tcp_end_cwnd_reduction(sk);
3091 				tcp_set_ca_state(sk, TCP_CA_Open);
3092 			}
3093 			break;
3094 
3095 		case TCP_CA_Recovery:
3096 			if (tcp_is_reno(tp))
3097 				tcp_reset_reno_sack(tp);
3098 			if (tcp_try_undo_recovery(sk))
3099 				return;
3100 			tcp_end_cwnd_reduction(sk);
3101 			break;
3102 		}
3103 	}
3104 
3105 	/* E. Process state. */
3106 	switch (icsk->icsk_ca_state) {
3107 	case TCP_CA_Recovery:
3108 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3109 			if (tcp_is_reno(tp))
3110 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3111 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3112 			return;
3113 
3114 		if (tcp_try_undo_dsack(sk))
3115 			tcp_try_to_open(sk, flag);
3116 
3117 		tcp_identify_packet_loss(sk, ack_flag);
3118 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3119 			if (!tcp_time_to_recover(sk, flag))
3120 				return;
3121 			/* Undo reverts the recovery state. If loss is evident,
3122 			 * starts a new recovery (e.g. reordering then loss);
3123 			 */
3124 			tcp_enter_recovery(sk, ece_ack);
3125 		}
3126 		break;
3127 	case TCP_CA_Loss:
3128 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3129 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3130 			tcp_update_rto_time(tp);
3131 		tcp_identify_packet_loss(sk, ack_flag);
3132 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3133 		      (*ack_flag & FLAG_LOST_RETRANS)))
3134 			return;
3135 		/* Change state if cwnd is undone or retransmits are lost */
3136 		fallthrough;
3137 	default:
3138 		if (tcp_is_reno(tp)) {
3139 			if (flag & FLAG_SND_UNA_ADVANCED)
3140 				tcp_reset_reno_sack(tp);
3141 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3142 		}
3143 
3144 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3145 			tcp_try_undo_dsack(sk);
3146 
3147 		tcp_identify_packet_loss(sk, ack_flag);
3148 		if (!tcp_time_to_recover(sk, flag)) {
3149 			tcp_try_to_open(sk, flag);
3150 			return;
3151 		}
3152 
3153 		/* MTU probe failure: don't reduce cwnd */
3154 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3155 		    icsk->icsk_mtup.probe_size &&
3156 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3157 			tcp_mtup_probe_failed(sk);
3158 			/* Restores the reduction we did in tcp_mtup_probe() */
3159 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3160 			tcp_simple_retransmit(sk);
3161 			return;
3162 		}
3163 
3164 		/* Otherwise enter Recovery state */
3165 		tcp_enter_recovery(sk, ece_ack);
3166 		fast_rexmit = 1;
3167 	}
3168 
3169 	if (!tcp_is_rack(sk) && do_lost)
3170 		tcp_update_scoreboard(sk, fast_rexmit);
3171 	*rexmit = REXMIT_LOST;
3172 }
3173 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3174 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3175 {
3176 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3177 	struct tcp_sock *tp = tcp_sk(sk);
3178 
3179 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3180 		/* If the remote keeps returning delayed ACKs, eventually
3181 		 * the min filter would pick it up and overestimate the
3182 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3183 		 */
3184 		return;
3185 	}
3186 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3187 			   rtt_us ? : jiffies_to_usecs(1));
3188 }
3189 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3190 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3191 			       long seq_rtt_us, long sack_rtt_us,
3192 			       long ca_rtt_us, struct rate_sample *rs)
3193 {
3194 	const struct tcp_sock *tp = tcp_sk(sk);
3195 
3196 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3197 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3198 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3199 	 * is acked (RFC6298).
3200 	 */
3201 	if (seq_rtt_us < 0)
3202 		seq_rtt_us = sack_rtt_us;
3203 
3204 	/* RTTM Rule: A TSecr value received in a segment is used to
3205 	 * update the averaged RTT measurement only if the segment
3206 	 * acknowledges some new data, i.e., only if it advances the
3207 	 * left edge of the send window.
3208 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3209 	 */
3210 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3211 	    flag & FLAG_ACKED) {
3212 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3213 
3214 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3215 			if (!delta)
3216 				delta = 1;
3217 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3218 			ca_rtt_us = seq_rtt_us;
3219 		}
3220 	}
3221 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3222 	if (seq_rtt_us < 0)
3223 		return false;
3224 
3225 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3226 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3227 	 * values will be skipped with the seq_rtt_us < 0 check above.
3228 	 */
3229 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3230 	tcp_rtt_estimator(sk, seq_rtt_us);
3231 	tcp_set_rto(sk);
3232 
3233 	/* RFC6298: only reset backoff on valid RTT measurement. */
3234 	inet_csk(sk)->icsk_backoff = 0;
3235 	return true;
3236 }
3237 
3238 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3239 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3240 {
3241 	struct rate_sample rs;
3242 	long rtt_us = -1L;
3243 
3244 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3245 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3246 
3247 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3248 }
3249 
3250 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3251 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3252 {
3253 	const struct inet_connection_sock *icsk = inet_csk(sk);
3254 
3255 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3256 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3257 }
3258 
3259 /* Restart timer after forward progress on connection.
3260  * RFC2988 recommends to restart timer to now+rto.
3261  */
tcp_rearm_rto(struct sock * sk)3262 void tcp_rearm_rto(struct sock *sk)
3263 {
3264 	const struct inet_connection_sock *icsk = inet_csk(sk);
3265 	struct tcp_sock *tp = tcp_sk(sk);
3266 
3267 	/* If the retrans timer is currently being used by Fast Open
3268 	 * for SYN-ACK retrans purpose, stay put.
3269 	 */
3270 	if (rcu_access_pointer(tp->fastopen_rsk))
3271 		return;
3272 
3273 	if (!tp->packets_out) {
3274 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3275 	} else {
3276 		u32 rto = inet_csk(sk)->icsk_rto;
3277 		/* Offset the time elapsed after installing regular RTO */
3278 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3279 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3280 			s64 delta_us = tcp_rto_delta_us(sk);
3281 			/* delta_us may not be positive if the socket is locked
3282 			 * when the retrans timer fires and is rescheduled.
3283 			 */
3284 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3285 		}
3286 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3287 				     TCP_RTO_MAX);
3288 	}
3289 }
3290 
3291 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3292 static void tcp_set_xmit_timer(struct sock *sk)
3293 {
3294 	if (!tcp_schedule_loss_probe(sk, true))
3295 		tcp_rearm_rto(sk);
3296 }
3297 
3298 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3299 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3300 {
3301 	struct tcp_sock *tp = tcp_sk(sk);
3302 	u32 packets_acked;
3303 
3304 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3305 
3306 	packets_acked = tcp_skb_pcount(skb);
3307 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3308 		return 0;
3309 	packets_acked -= tcp_skb_pcount(skb);
3310 
3311 	if (packets_acked) {
3312 		BUG_ON(tcp_skb_pcount(skb) == 0);
3313 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3314 	}
3315 
3316 	return packets_acked;
3317 }
3318 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3319 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3320 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3321 {
3322 	const struct skb_shared_info *shinfo;
3323 
3324 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3325 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3326 		return;
3327 
3328 	shinfo = skb_shinfo(skb);
3329 	if (!before(shinfo->tskey, prior_snd_una) &&
3330 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3331 		tcp_skb_tsorted_save(skb) {
3332 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3333 		} tcp_skb_tsorted_restore(skb);
3334 	}
3335 }
3336 
3337 /* Remove acknowledged frames from the retransmission queue. If our packet
3338  * is before the ack sequence we can discard it as it's confirmed to have
3339  * arrived at the other end.
3340  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3341 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3342 			       u32 prior_fack, u32 prior_snd_una,
3343 			       struct tcp_sacktag_state *sack, bool ece_ack)
3344 {
3345 	const struct inet_connection_sock *icsk = inet_csk(sk);
3346 	u64 first_ackt, last_ackt;
3347 	struct tcp_sock *tp = tcp_sk(sk);
3348 	u32 prior_sacked = tp->sacked_out;
3349 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3350 	struct sk_buff *skb, *next;
3351 	bool fully_acked = true;
3352 	long sack_rtt_us = -1L;
3353 	long seq_rtt_us = -1L;
3354 	long ca_rtt_us = -1L;
3355 	u32 pkts_acked = 0;
3356 	bool rtt_update;
3357 	int flag = 0;
3358 
3359 	first_ackt = 0;
3360 
3361 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3362 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3363 		const u32 start_seq = scb->seq;
3364 		u8 sacked = scb->sacked;
3365 		u32 acked_pcount;
3366 
3367 		/* Determine how many packets and what bytes were acked, tso and else */
3368 		if (after(scb->end_seq, tp->snd_una)) {
3369 			if (tcp_skb_pcount(skb) == 1 ||
3370 			    !after(tp->snd_una, scb->seq))
3371 				break;
3372 
3373 			acked_pcount = tcp_tso_acked(sk, skb);
3374 			if (!acked_pcount)
3375 				break;
3376 			fully_acked = false;
3377 		} else {
3378 			acked_pcount = tcp_skb_pcount(skb);
3379 		}
3380 
3381 		if (unlikely(sacked & TCPCB_RETRANS)) {
3382 			if (sacked & TCPCB_SACKED_RETRANS)
3383 				tp->retrans_out -= acked_pcount;
3384 			flag |= FLAG_RETRANS_DATA_ACKED;
3385 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3386 			last_ackt = tcp_skb_timestamp_us(skb);
3387 			WARN_ON_ONCE(last_ackt == 0);
3388 			if (!first_ackt)
3389 				first_ackt = last_ackt;
3390 
3391 			if (before(start_seq, reord))
3392 				reord = start_seq;
3393 			if (!after(scb->end_seq, tp->high_seq))
3394 				flag |= FLAG_ORIG_SACK_ACKED;
3395 		}
3396 
3397 		if (sacked & TCPCB_SACKED_ACKED) {
3398 			tp->sacked_out -= acked_pcount;
3399 		} else if (tcp_is_sack(tp)) {
3400 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3401 			if (!tcp_skb_spurious_retrans(tp, skb))
3402 				tcp_rack_advance(tp, sacked, scb->end_seq,
3403 						 tcp_skb_timestamp_us(skb));
3404 		}
3405 		if (sacked & TCPCB_LOST)
3406 			tp->lost_out -= acked_pcount;
3407 
3408 		tp->packets_out -= acked_pcount;
3409 		pkts_acked += acked_pcount;
3410 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3411 
3412 		/* Initial outgoing SYN's get put onto the write_queue
3413 		 * just like anything else we transmit.  It is not
3414 		 * true data, and if we misinform our callers that
3415 		 * this ACK acks real data, we will erroneously exit
3416 		 * connection startup slow start one packet too
3417 		 * quickly.  This is severely frowned upon behavior.
3418 		 */
3419 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3420 			flag |= FLAG_DATA_ACKED;
3421 		} else {
3422 			flag |= FLAG_SYN_ACKED;
3423 			tp->retrans_stamp = 0;
3424 		}
3425 
3426 		if (!fully_acked)
3427 			break;
3428 
3429 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3430 
3431 		next = skb_rb_next(skb);
3432 		if (unlikely(skb == tp->retransmit_skb_hint))
3433 			tp->retransmit_skb_hint = NULL;
3434 		if (unlikely(skb == tp->lost_skb_hint))
3435 			tp->lost_skb_hint = NULL;
3436 		tcp_highest_sack_replace(sk, skb, next);
3437 		tcp_rtx_queue_unlink_and_free(skb, sk);
3438 	}
3439 
3440 	if (!skb)
3441 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3442 
3443 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3444 		tp->snd_up = tp->snd_una;
3445 
3446 	if (skb) {
3447 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3448 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3449 			flag |= FLAG_SACK_RENEGING;
3450 	}
3451 
3452 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3453 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3454 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3455 
3456 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3457 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3458 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3459 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3460 			/* Conservatively mark a delayed ACK. It's typically
3461 			 * from a lone runt packet over the round trip to
3462 			 * a receiver w/o out-of-order or CE events.
3463 			 */
3464 			flag |= FLAG_ACK_MAYBE_DELAYED;
3465 		}
3466 	}
3467 	if (sack->first_sackt) {
3468 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3469 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3470 	}
3471 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3472 					ca_rtt_us, sack->rate);
3473 
3474 	if (flag & FLAG_ACKED) {
3475 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3476 		if (unlikely(icsk->icsk_mtup.probe_size &&
3477 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3478 			tcp_mtup_probe_success(sk);
3479 		}
3480 
3481 		if (tcp_is_reno(tp)) {
3482 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3483 
3484 			/* If any of the cumulatively ACKed segments was
3485 			 * retransmitted, non-SACK case cannot confirm that
3486 			 * progress was due to original transmission due to
3487 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3488 			 * the packets may have been never retransmitted.
3489 			 */
3490 			if (flag & FLAG_RETRANS_DATA_ACKED)
3491 				flag &= ~FLAG_ORIG_SACK_ACKED;
3492 		} else {
3493 			int delta;
3494 
3495 			/* Non-retransmitted hole got filled? That's reordering */
3496 			if (before(reord, prior_fack))
3497 				tcp_check_sack_reordering(sk, reord, 0);
3498 
3499 			delta = prior_sacked - tp->sacked_out;
3500 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3501 		}
3502 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3503 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3504 						    tcp_skb_timestamp_us(skb))) {
3505 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3506 		 * after when the head was last (re)transmitted. Otherwise the
3507 		 * timeout may continue to extend in loss recovery.
3508 		 */
3509 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3510 	}
3511 
3512 	if (icsk->icsk_ca_ops->pkts_acked) {
3513 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3514 					     .rtt_us = sack->rate->rtt_us };
3515 
3516 		sample.in_flight = tp->mss_cache *
3517 			(tp->delivered - sack->rate->prior_delivered);
3518 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3519 	}
3520 
3521 #if FASTRETRANS_DEBUG > 0
3522 	WARN_ON((int)tp->sacked_out < 0);
3523 	WARN_ON((int)tp->lost_out < 0);
3524 	WARN_ON((int)tp->retrans_out < 0);
3525 	if (!tp->packets_out && tcp_is_sack(tp)) {
3526 		icsk = inet_csk(sk);
3527 		if (tp->lost_out) {
3528 			pr_debug("Leak l=%u %d\n",
3529 				 tp->lost_out, icsk->icsk_ca_state);
3530 			tp->lost_out = 0;
3531 		}
3532 		if (tp->sacked_out) {
3533 			pr_debug("Leak s=%u %d\n",
3534 				 tp->sacked_out, icsk->icsk_ca_state);
3535 			tp->sacked_out = 0;
3536 		}
3537 		if (tp->retrans_out) {
3538 			pr_debug("Leak r=%u %d\n",
3539 				 tp->retrans_out, icsk->icsk_ca_state);
3540 			tp->retrans_out = 0;
3541 		}
3542 	}
3543 #endif
3544 	return flag;
3545 }
3546 
tcp_ack_probe(struct sock * sk)3547 static void tcp_ack_probe(struct sock *sk)
3548 {
3549 	struct inet_connection_sock *icsk = inet_csk(sk);
3550 	struct sk_buff *head = tcp_send_head(sk);
3551 	const struct tcp_sock *tp = tcp_sk(sk);
3552 
3553 	/* Was it a usable window open? */
3554 	if (!head)
3555 		return;
3556 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3557 		icsk->icsk_backoff = 0;
3558 		icsk->icsk_probes_tstamp = 0;
3559 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3560 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3561 		 * This function is not for random using!
3562 		 */
3563 	} else {
3564 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3565 
3566 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3567 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3568 	}
3569 }
3570 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3571 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3572 {
3573 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3574 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3575 }
3576 
3577 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3578 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3579 {
3580 	/* If reordering is high then always grow cwnd whenever data is
3581 	 * delivered regardless of its ordering. Otherwise stay conservative
3582 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3583 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3584 	 * cwnd in tcp_fastretrans_alert() based on more states.
3585 	 */
3586 	if (tcp_sk(sk)->reordering >
3587 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3588 		return flag & FLAG_FORWARD_PROGRESS;
3589 
3590 	return flag & FLAG_DATA_ACKED;
3591 }
3592 
3593 /* The "ultimate" congestion control function that aims to replace the rigid
3594  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3595  * It's called toward the end of processing an ACK with precise rate
3596  * information. All transmission or retransmission are delayed afterwards.
3597  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3598 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3599 			     int flag, const struct rate_sample *rs)
3600 {
3601 	const struct inet_connection_sock *icsk = inet_csk(sk);
3602 
3603 	if (icsk->icsk_ca_ops->cong_control) {
3604 		icsk->icsk_ca_ops->cong_control(sk, rs);
3605 		return;
3606 	}
3607 
3608 	if (tcp_in_cwnd_reduction(sk)) {
3609 		/* Reduce cwnd if state mandates */
3610 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3611 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3612 		/* Advance cwnd if state allows */
3613 		tcp_cong_avoid(sk, ack, acked_sacked);
3614 	}
3615 	tcp_update_pacing_rate(sk);
3616 }
3617 
3618 /* Check that window update is acceptable.
3619  * The function assumes that snd_una<=ack<=snd_next.
3620  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3621 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3622 					const u32 ack, const u32 ack_seq,
3623 					const u32 nwin)
3624 {
3625 	return	after(ack, tp->snd_una) ||
3626 		after(ack_seq, tp->snd_wl1) ||
3627 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3628 }
3629 
3630 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3631 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3632 {
3633 	u32 delta = ack - tp->snd_una;
3634 
3635 	sock_owned_by_me((struct sock *)tp);
3636 	tp->bytes_acked += delta;
3637 	tp->snd_una = ack;
3638 }
3639 
3640 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3641 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3642 {
3643 	u32 delta = seq - tp->rcv_nxt;
3644 
3645 	sock_owned_by_me((struct sock *)tp);
3646 	tp->bytes_received += delta;
3647 	WRITE_ONCE(tp->rcv_nxt, seq);
3648 }
3649 
3650 /* Update our send window.
3651  *
3652  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3653  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3654  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3655 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3656 				 u32 ack_seq)
3657 {
3658 	struct tcp_sock *tp = tcp_sk(sk);
3659 	int flag = 0;
3660 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3661 
3662 	if (likely(!tcp_hdr(skb)->syn))
3663 		nwin <<= tp->rx_opt.snd_wscale;
3664 
3665 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3666 		flag |= FLAG_WIN_UPDATE;
3667 		tcp_update_wl(tp, ack_seq);
3668 
3669 		if (tp->snd_wnd != nwin) {
3670 			tp->snd_wnd = nwin;
3671 
3672 			/* Note, it is the only place, where
3673 			 * fast path is recovered for sending TCP.
3674 			 */
3675 			tp->pred_flags = 0;
3676 			tcp_fast_path_check(sk);
3677 
3678 			if (!tcp_write_queue_empty(sk))
3679 				tcp_slow_start_after_idle_check(sk);
3680 
3681 			if (nwin > tp->max_window) {
3682 				tp->max_window = nwin;
3683 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3684 			}
3685 		}
3686 	}
3687 
3688 	tcp_snd_una_update(tp, ack);
3689 
3690 	return flag;
3691 }
3692 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3693 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3694 				   u32 *last_oow_ack_time)
3695 {
3696 	/* Paired with the WRITE_ONCE() in this function. */
3697 	u32 val = READ_ONCE(*last_oow_ack_time);
3698 
3699 	if (val) {
3700 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3701 
3702 		if (0 <= elapsed &&
3703 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3704 			NET_INC_STATS(net, mib_idx);
3705 			return true;	/* rate-limited: don't send yet! */
3706 		}
3707 	}
3708 
3709 	/* Paired with the prior READ_ONCE() and with itself,
3710 	 * as we might be lockless.
3711 	 */
3712 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3713 
3714 	return false;	/* not rate-limited: go ahead, send dupack now! */
3715 }
3716 
3717 /* Return true if we're currently rate-limiting out-of-window ACKs and
3718  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3719  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3720  * attacks that send repeated SYNs or ACKs for the same connection. To
3721  * do this, we do not send a duplicate SYNACK or ACK if the remote
3722  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3723  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3724 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3725 			  int mib_idx, u32 *last_oow_ack_time)
3726 {
3727 	/* Data packets without SYNs are not likely part of an ACK loop. */
3728 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3729 	    !tcp_hdr(skb)->syn)
3730 		return false;
3731 
3732 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3733 }
3734 
3735 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3736 static void tcp_send_challenge_ack(struct sock *sk)
3737 {
3738 	struct tcp_sock *tp = tcp_sk(sk);
3739 	struct net *net = sock_net(sk);
3740 	u32 count, now, ack_limit;
3741 
3742 	/* First check our per-socket dupack rate limit. */
3743 	if (__tcp_oow_rate_limited(net,
3744 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3745 				   &tp->last_oow_ack_time))
3746 		return;
3747 
3748 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3749 	if (ack_limit == INT_MAX)
3750 		goto send_ack;
3751 
3752 	/* Then check host-wide RFC 5961 rate limit. */
3753 	now = jiffies / HZ;
3754 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3755 		u32 half = (ack_limit + 1) >> 1;
3756 
3757 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3758 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3759 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3760 	}
3761 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3762 	if (count > 0) {
3763 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3764 send_ack:
3765 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3766 		tcp_send_ack(sk);
3767 	}
3768 }
3769 
tcp_store_ts_recent(struct tcp_sock * tp)3770 static void tcp_store_ts_recent(struct tcp_sock *tp)
3771 {
3772 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3773 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3774 }
3775 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3776 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3777 {
3778 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3779 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3780 		 * extra check below makes sure this can only happen
3781 		 * for pure ACK frames.  -DaveM
3782 		 *
3783 		 * Not only, also it occurs for expired timestamps.
3784 		 */
3785 
3786 		if (tcp_paws_check(&tp->rx_opt, 0))
3787 			tcp_store_ts_recent(tp);
3788 	}
3789 }
3790 
3791 /* This routine deals with acks during a TLP episode and ends an episode by
3792  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3793  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3794 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3795 {
3796 	struct tcp_sock *tp = tcp_sk(sk);
3797 
3798 	if (before(ack, tp->tlp_high_seq))
3799 		return;
3800 
3801 	if (!tp->tlp_retrans) {
3802 		/* TLP of new data has been acknowledged */
3803 		tp->tlp_high_seq = 0;
3804 	} else if (flag & FLAG_DSACK_TLP) {
3805 		/* This DSACK means original and TLP probe arrived; no loss */
3806 		tp->tlp_high_seq = 0;
3807 	} else if (after(ack, tp->tlp_high_seq)) {
3808 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3809 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3810 		 */
3811 		tcp_init_cwnd_reduction(sk);
3812 		tcp_set_ca_state(sk, TCP_CA_CWR);
3813 		tcp_end_cwnd_reduction(sk);
3814 		tcp_try_keep_open(sk);
3815 		NET_INC_STATS(sock_net(sk),
3816 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3817 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3818 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3819 		/* Pure dupack: original and TLP probe arrived; no loss */
3820 		tp->tlp_high_seq = 0;
3821 	}
3822 }
3823 
tcp_in_ack_event(struct sock * sk,int flag)3824 static void tcp_in_ack_event(struct sock *sk, int flag)
3825 {
3826 	const struct inet_connection_sock *icsk = inet_csk(sk);
3827 
3828 	if (icsk->icsk_ca_ops->in_ack_event) {
3829 		u32 ack_ev_flags = 0;
3830 
3831 		if (flag & FLAG_WIN_UPDATE)
3832 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3833 		if (flag & FLAG_SLOWPATH) {
3834 			ack_ev_flags |= CA_ACK_SLOWPATH;
3835 			if (flag & FLAG_ECE)
3836 				ack_ev_flags |= CA_ACK_ECE;
3837 		}
3838 
3839 		icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3840 	}
3841 }
3842 
3843 /* Congestion control has updated the cwnd already. So if we're in
3844  * loss recovery then now we do any new sends (for FRTO) or
3845  * retransmits (for CA_Loss or CA_recovery) that make sense.
3846  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3847 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3848 {
3849 	struct tcp_sock *tp = tcp_sk(sk);
3850 
3851 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3852 		return;
3853 
3854 	if (unlikely(rexmit == REXMIT_NEW)) {
3855 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3856 					  TCP_NAGLE_OFF);
3857 		if (after(tp->snd_nxt, tp->high_seq))
3858 			return;
3859 		tp->frto = 0;
3860 	}
3861 	tcp_xmit_retransmit_queue(sk);
3862 }
3863 
3864 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3865 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3866 {
3867 	const struct net *net = sock_net(sk);
3868 	struct tcp_sock *tp = tcp_sk(sk);
3869 	u32 delivered;
3870 
3871 	delivered = tp->delivered - prior_delivered;
3872 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3873 	if (flag & FLAG_ECE)
3874 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3875 
3876 	return delivered;
3877 }
3878 
3879 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3880 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3881 {
3882 	struct inet_connection_sock *icsk = inet_csk(sk);
3883 	struct tcp_sock *tp = tcp_sk(sk);
3884 	struct tcp_sacktag_state sack_state;
3885 	struct rate_sample rs = { .prior_delivered = 0 };
3886 	u32 prior_snd_una = tp->snd_una;
3887 	bool is_sack_reneg = tp->is_sack_reneg;
3888 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3889 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3890 	int num_dupack = 0;
3891 	int prior_packets = tp->packets_out;
3892 	u32 delivered = tp->delivered;
3893 	u32 lost = tp->lost;
3894 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3895 	u32 prior_fack;
3896 
3897 	sack_state.first_sackt = 0;
3898 	sack_state.rate = &rs;
3899 	sack_state.sack_delivered = 0;
3900 
3901 	/* We very likely will need to access rtx queue. */
3902 	prefetch(sk->tcp_rtx_queue.rb_node);
3903 
3904 	/* If the ack is older than previous acks
3905 	 * then we can probably ignore it.
3906 	 */
3907 	if (before(ack, prior_snd_una)) {
3908 		u32 max_window;
3909 
3910 		/* do not accept ACK for bytes we never sent. */
3911 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3912 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3913 		if (before(ack, prior_snd_una - max_window)) {
3914 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3915 				tcp_send_challenge_ack(sk);
3916 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3917 		}
3918 		goto old_ack;
3919 	}
3920 
3921 	/* If the ack includes data we haven't sent yet, discard
3922 	 * this segment (RFC793 Section 3.9).
3923 	 */
3924 	if (after(ack, tp->snd_nxt))
3925 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3926 
3927 	if (after(ack, prior_snd_una)) {
3928 		flag |= FLAG_SND_UNA_ADVANCED;
3929 		icsk->icsk_retransmits = 0;
3930 
3931 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3932 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3933 			if (icsk->icsk_clean_acked)
3934 				icsk->icsk_clean_acked(sk, ack);
3935 #endif
3936 	}
3937 
3938 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3939 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3940 
3941 	/* ts_recent update must be made after we are sure that the packet
3942 	 * is in window.
3943 	 */
3944 	if (flag & FLAG_UPDATE_TS_RECENT)
3945 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3946 
3947 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3948 	    FLAG_SND_UNA_ADVANCED) {
3949 		/* Window is constant, pure forward advance.
3950 		 * No more checks are required.
3951 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3952 		 */
3953 		tcp_update_wl(tp, ack_seq);
3954 		tcp_snd_una_update(tp, ack);
3955 		flag |= FLAG_WIN_UPDATE;
3956 
3957 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3958 	} else {
3959 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3960 			flag |= FLAG_DATA;
3961 		else
3962 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3963 
3964 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3965 
3966 		if (TCP_SKB_CB(skb)->sacked)
3967 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3968 							&sack_state);
3969 
3970 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
3971 			flag |= FLAG_ECE;
3972 
3973 		if (sack_state.sack_delivered)
3974 			tcp_count_delivered(tp, sack_state.sack_delivered,
3975 					    flag & FLAG_ECE);
3976 	}
3977 
3978 	/* This is a deviation from RFC3168 since it states that:
3979 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3980 	 * the congestion window, it SHOULD set the CWR bit only on the first
3981 	 * new data packet that it transmits."
3982 	 * We accept CWR on pure ACKs to be more robust
3983 	 * with widely-deployed TCP implementations that do this.
3984 	 */
3985 	tcp_ecn_accept_cwr(sk, skb);
3986 
3987 	/* We passed data and got it acked, remove any soft error
3988 	 * log. Something worked...
3989 	 */
3990 	WRITE_ONCE(sk->sk_err_soft, 0);
3991 	icsk->icsk_probes_out = 0;
3992 	tp->rcv_tstamp = tcp_jiffies32;
3993 	if (!prior_packets)
3994 		goto no_queue;
3995 
3996 	/* See if we can take anything off of the retransmit queue. */
3997 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3998 				    &sack_state, flag & FLAG_ECE);
3999 
4000 	tcp_rack_update_reo_wnd(sk, &rs);
4001 
4002 	tcp_in_ack_event(sk, flag);
4003 
4004 	if (tp->tlp_high_seq)
4005 		tcp_process_tlp_ack(sk, ack, flag);
4006 
4007 	if (tcp_ack_is_dubious(sk, flag)) {
4008 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4009 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4010 			num_dupack = 1;
4011 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4012 			if (!(flag & FLAG_DATA))
4013 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4014 		}
4015 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4016 				      &rexmit);
4017 	}
4018 
4019 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4020 	if (flag & FLAG_SET_XMIT_TIMER)
4021 		tcp_set_xmit_timer(sk);
4022 
4023 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4024 		sk_dst_confirm(sk);
4025 
4026 	delivered = tcp_newly_delivered(sk, delivered, flag);
4027 	lost = tp->lost - lost;			/* freshly marked lost */
4028 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4029 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4030 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4031 	tcp_xmit_recovery(sk, rexmit);
4032 	return 1;
4033 
4034 no_queue:
4035 	tcp_in_ack_event(sk, flag);
4036 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4037 	if (flag & FLAG_DSACKING_ACK) {
4038 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4039 				      &rexmit);
4040 		tcp_newly_delivered(sk, delivered, flag);
4041 	}
4042 	/* If this ack opens up a zero window, clear backoff.  It was
4043 	 * being used to time the probes, and is probably far higher than
4044 	 * it needs to be for normal retransmission.
4045 	 */
4046 	tcp_ack_probe(sk);
4047 
4048 	if (tp->tlp_high_seq)
4049 		tcp_process_tlp_ack(sk, ack, flag);
4050 	return 1;
4051 
4052 old_ack:
4053 	/* If data was SACKed, tag it and see if we should send more data.
4054 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4055 	 */
4056 	if (TCP_SKB_CB(skb)->sacked) {
4057 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4058 						&sack_state);
4059 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4060 				      &rexmit);
4061 		tcp_newly_delivered(sk, delivered, flag);
4062 		tcp_xmit_recovery(sk, rexmit);
4063 	}
4064 
4065 	return 0;
4066 }
4067 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4068 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4069 				      bool syn, struct tcp_fastopen_cookie *foc,
4070 				      bool exp_opt)
4071 {
4072 	/* Valid only in SYN or SYN-ACK with an even length.  */
4073 	if (!foc || !syn || len < 0 || (len & 1))
4074 		return;
4075 
4076 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4077 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4078 		memcpy(foc->val, cookie, len);
4079 	else if (len != 0)
4080 		len = -1;
4081 	foc->len = len;
4082 	foc->exp = exp_opt;
4083 }
4084 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4085 static bool smc_parse_options(const struct tcphdr *th,
4086 			      struct tcp_options_received *opt_rx,
4087 			      const unsigned char *ptr,
4088 			      int opsize)
4089 {
4090 #if IS_ENABLED(CONFIG_SMC)
4091 	if (static_branch_unlikely(&tcp_have_smc)) {
4092 		if (th->syn && !(opsize & 1) &&
4093 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4094 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4095 			opt_rx->smc_ok = 1;
4096 			return true;
4097 		}
4098 	}
4099 #endif
4100 	return false;
4101 }
4102 
4103 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4104  * value on success.
4105  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4106 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4107 {
4108 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4109 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4110 	u16 mss = 0;
4111 
4112 	while (length > 0) {
4113 		int opcode = *ptr++;
4114 		int opsize;
4115 
4116 		switch (opcode) {
4117 		case TCPOPT_EOL:
4118 			return mss;
4119 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4120 			length--;
4121 			continue;
4122 		default:
4123 			if (length < 2)
4124 				return mss;
4125 			opsize = *ptr++;
4126 			if (opsize < 2) /* "silly options" */
4127 				return mss;
4128 			if (opsize > length)
4129 				return mss;	/* fail on partial options */
4130 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4131 				u16 in_mss = get_unaligned_be16(ptr);
4132 
4133 				if (in_mss) {
4134 					if (user_mss && user_mss < in_mss)
4135 						in_mss = user_mss;
4136 					mss = in_mss;
4137 				}
4138 			}
4139 			ptr += opsize - 2;
4140 			length -= opsize;
4141 		}
4142 	}
4143 	return mss;
4144 }
4145 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4146 
4147 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4148  * But, this can also be called on packets in the established flow when
4149  * the fast version below fails.
4150  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4151 void tcp_parse_options(const struct net *net,
4152 		       const struct sk_buff *skb,
4153 		       struct tcp_options_received *opt_rx, int estab,
4154 		       struct tcp_fastopen_cookie *foc)
4155 {
4156 	const unsigned char *ptr;
4157 	const struct tcphdr *th = tcp_hdr(skb);
4158 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4159 
4160 	ptr = (const unsigned char *)(th + 1);
4161 	opt_rx->saw_tstamp = 0;
4162 	opt_rx->saw_unknown = 0;
4163 
4164 	while (length > 0) {
4165 		int opcode = *ptr++;
4166 		int opsize;
4167 
4168 		switch (opcode) {
4169 		case TCPOPT_EOL:
4170 			return;
4171 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4172 			length--;
4173 			continue;
4174 		default:
4175 			if (length < 2)
4176 				return;
4177 			opsize = *ptr++;
4178 			if (opsize < 2) /* "silly options" */
4179 				return;
4180 			if (opsize > length)
4181 				return;	/* don't parse partial options */
4182 			switch (opcode) {
4183 			case TCPOPT_MSS:
4184 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4185 					u16 in_mss = get_unaligned_be16(ptr);
4186 					if (in_mss) {
4187 						if (opt_rx->user_mss &&
4188 						    opt_rx->user_mss < in_mss)
4189 							in_mss = opt_rx->user_mss;
4190 						opt_rx->mss_clamp = in_mss;
4191 					}
4192 				}
4193 				break;
4194 			case TCPOPT_WINDOW:
4195 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4196 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4197 					__u8 snd_wscale = *(__u8 *)ptr;
4198 					opt_rx->wscale_ok = 1;
4199 					if (snd_wscale > TCP_MAX_WSCALE) {
4200 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4201 								     __func__,
4202 								     snd_wscale,
4203 								     TCP_MAX_WSCALE);
4204 						snd_wscale = TCP_MAX_WSCALE;
4205 					}
4206 					opt_rx->snd_wscale = snd_wscale;
4207 				}
4208 				break;
4209 			case TCPOPT_TIMESTAMP:
4210 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4211 				    ((estab && opt_rx->tstamp_ok) ||
4212 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4213 					opt_rx->saw_tstamp = 1;
4214 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4215 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4216 				}
4217 				break;
4218 			case TCPOPT_SACK_PERM:
4219 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4220 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4221 					opt_rx->sack_ok = TCP_SACK_SEEN;
4222 					tcp_sack_reset(opt_rx);
4223 				}
4224 				break;
4225 
4226 			case TCPOPT_SACK:
4227 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4228 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4229 				   opt_rx->sack_ok) {
4230 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4231 				}
4232 				break;
4233 #ifdef CONFIG_TCP_MD5SIG
4234 			case TCPOPT_MD5SIG:
4235 				/* The MD5 Hash has already been
4236 				 * checked (see tcp_v{4,6}_rcv()).
4237 				 */
4238 				break;
4239 #endif
4240 			case TCPOPT_FASTOPEN:
4241 				tcp_parse_fastopen_option(
4242 					opsize - TCPOLEN_FASTOPEN_BASE,
4243 					ptr, th->syn, foc, false);
4244 				break;
4245 
4246 			case TCPOPT_EXP:
4247 				/* Fast Open option shares code 254 using a
4248 				 * 16 bits magic number.
4249 				 */
4250 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4251 				    get_unaligned_be16(ptr) ==
4252 				    TCPOPT_FASTOPEN_MAGIC) {
4253 					tcp_parse_fastopen_option(opsize -
4254 						TCPOLEN_EXP_FASTOPEN_BASE,
4255 						ptr + 2, th->syn, foc, true);
4256 					break;
4257 				}
4258 
4259 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4260 					break;
4261 
4262 				opt_rx->saw_unknown = 1;
4263 				break;
4264 
4265 			default:
4266 				opt_rx->saw_unknown = 1;
4267 			}
4268 			ptr += opsize-2;
4269 			length -= opsize;
4270 		}
4271 	}
4272 }
4273 EXPORT_SYMBOL(tcp_parse_options);
4274 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4275 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4276 {
4277 	const __be32 *ptr = (const __be32 *)(th + 1);
4278 
4279 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4280 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4281 		tp->rx_opt.saw_tstamp = 1;
4282 		++ptr;
4283 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4284 		++ptr;
4285 		if (*ptr)
4286 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4287 		else
4288 			tp->rx_opt.rcv_tsecr = 0;
4289 		return true;
4290 	}
4291 	return false;
4292 }
4293 
4294 /* Fast parse options. This hopes to only see timestamps.
4295  * If it is wrong it falls back on tcp_parse_options().
4296  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4297 static bool tcp_fast_parse_options(const struct net *net,
4298 				   const struct sk_buff *skb,
4299 				   const struct tcphdr *th, struct tcp_sock *tp)
4300 {
4301 	/* In the spirit of fast parsing, compare doff directly to constant
4302 	 * values.  Because equality is used, short doff can be ignored here.
4303 	 */
4304 	if (th->doff == (sizeof(*th) / 4)) {
4305 		tp->rx_opt.saw_tstamp = 0;
4306 		return false;
4307 	} else if (tp->rx_opt.tstamp_ok &&
4308 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4309 		if (tcp_parse_aligned_timestamp(tp, th))
4310 			return true;
4311 	}
4312 
4313 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4314 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4315 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4316 
4317 	return true;
4318 }
4319 
4320 #ifdef CONFIG_TCP_MD5SIG
4321 /*
4322  * Parse MD5 Signature option
4323  */
tcp_parse_md5sig_option(const struct tcphdr * th)4324 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4325 {
4326 	int length = (th->doff << 2) - sizeof(*th);
4327 	const u8 *ptr = (const u8 *)(th + 1);
4328 
4329 	/* If not enough data remaining, we can short cut */
4330 	while (length >= TCPOLEN_MD5SIG) {
4331 		int opcode = *ptr++;
4332 		int opsize;
4333 
4334 		switch (opcode) {
4335 		case TCPOPT_EOL:
4336 			return NULL;
4337 		case TCPOPT_NOP:
4338 			length--;
4339 			continue;
4340 		default:
4341 			opsize = *ptr++;
4342 			if (opsize < 2 || opsize > length)
4343 				return NULL;
4344 			if (opcode == TCPOPT_MD5SIG)
4345 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4346 		}
4347 		ptr += opsize - 2;
4348 		length -= opsize;
4349 	}
4350 	return NULL;
4351 }
4352 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4353 #endif
4354 
4355 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4356  *
4357  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4358  * it can pass through stack. So, the following predicate verifies that
4359  * this segment is not used for anything but congestion avoidance or
4360  * fast retransmit. Moreover, we even are able to eliminate most of such
4361  * second order effects, if we apply some small "replay" window (~RTO)
4362  * to timestamp space.
4363  *
4364  * All these measures still do not guarantee that we reject wrapped ACKs
4365  * on networks with high bandwidth, when sequence space is recycled fastly,
4366  * but it guarantees that such events will be very rare and do not affect
4367  * connection seriously. This doesn't look nice, but alas, PAWS is really
4368  * buggy extension.
4369  *
4370  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4371  * states that events when retransmit arrives after original data are rare.
4372  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4373  * the biggest problem on large power networks even with minor reordering.
4374  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4375  * up to bandwidth of 18Gigabit/sec. 8) ]
4376  */
4377 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4378 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4379 {
4380 	const struct tcp_sock *tp = tcp_sk(sk);
4381 	const struct tcphdr *th = tcp_hdr(skb);
4382 	u32 seq = TCP_SKB_CB(skb)->seq;
4383 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4384 
4385 	return (/* 1. Pure ACK with correct sequence number. */
4386 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4387 
4388 		/* 2. ... and duplicate ACK. */
4389 		ack == tp->snd_una &&
4390 
4391 		/* 3. ... and does not update window. */
4392 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4393 
4394 		/* 4. ... and sits in replay window. */
4395 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4396 }
4397 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4398 static inline bool tcp_paws_discard(const struct sock *sk,
4399 				   const struct sk_buff *skb)
4400 {
4401 	const struct tcp_sock *tp = tcp_sk(sk);
4402 
4403 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4404 	       !tcp_disordered_ack(sk, skb);
4405 }
4406 
4407 /* Check segment sequence number for validity.
4408  *
4409  * Segment controls are considered valid, if the segment
4410  * fits to the window after truncation to the window. Acceptability
4411  * of data (and SYN, FIN, of course) is checked separately.
4412  * See tcp_data_queue(), for example.
4413  *
4414  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4415  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4416  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4417  * (borrowed from freebsd)
4418  */
4419 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4420 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4421 					 u32 seq, u32 end_seq)
4422 {
4423 	if (before(end_seq, tp->rcv_wup))
4424 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4425 
4426 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4427 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4428 
4429 	return SKB_NOT_DROPPED_YET;
4430 }
4431 
4432 
tcp_done_with_error(struct sock * sk,int err)4433 void tcp_done_with_error(struct sock *sk, int err)
4434 {
4435 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4436 	WRITE_ONCE(sk->sk_err, err);
4437 	smp_wmb();
4438 
4439 	tcp_write_queue_purge(sk);
4440 	tcp_done(sk);
4441 
4442 	if (!sock_flag(sk, SOCK_DEAD))
4443 		sk_error_report(sk);
4444 }
4445 EXPORT_SYMBOL(tcp_done_with_error);
4446 
4447 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4448 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4449 {
4450 	int err;
4451 
4452 	trace_tcp_receive_reset(sk);
4453 
4454 	/* mptcp can't tell us to ignore reset pkts,
4455 	 * so just ignore the return value of mptcp_incoming_options().
4456 	 */
4457 	if (sk_is_mptcp(sk))
4458 		mptcp_incoming_options(sk, skb);
4459 
4460 	/* We want the right error as BSD sees it (and indeed as we do). */
4461 	switch (sk->sk_state) {
4462 	case TCP_SYN_SENT:
4463 		err = ECONNREFUSED;
4464 		break;
4465 	case TCP_CLOSE_WAIT:
4466 		err = EPIPE;
4467 		break;
4468 	case TCP_CLOSE:
4469 		return;
4470 	default:
4471 		err = ECONNRESET;
4472 	}
4473 	tcp_done_with_error(sk, err);
4474 }
4475 
4476 /*
4477  * 	Process the FIN bit. This now behaves as it is supposed to work
4478  *	and the FIN takes effect when it is validly part of sequence
4479  *	space. Not before when we get holes.
4480  *
4481  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4482  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4483  *	TIME-WAIT)
4484  *
4485  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4486  *	close and we go into CLOSING (and later onto TIME-WAIT)
4487  *
4488  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4489  */
tcp_fin(struct sock * sk)4490 void tcp_fin(struct sock *sk)
4491 {
4492 	struct tcp_sock *tp = tcp_sk(sk);
4493 
4494 	inet_csk_schedule_ack(sk);
4495 
4496 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4497 	sock_set_flag(sk, SOCK_DONE);
4498 
4499 	switch (sk->sk_state) {
4500 	case TCP_SYN_RECV:
4501 	case TCP_ESTABLISHED:
4502 		/* Move to CLOSE_WAIT */
4503 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4504 		inet_csk_enter_pingpong_mode(sk);
4505 		break;
4506 
4507 	case TCP_CLOSE_WAIT:
4508 	case TCP_CLOSING:
4509 		/* Received a retransmission of the FIN, do
4510 		 * nothing.
4511 		 */
4512 		break;
4513 	case TCP_LAST_ACK:
4514 		/* RFC793: Remain in the LAST-ACK state. */
4515 		break;
4516 
4517 	case TCP_FIN_WAIT1:
4518 		/* This case occurs when a simultaneous close
4519 		 * happens, we must ack the received FIN and
4520 		 * enter the CLOSING state.
4521 		 */
4522 		tcp_send_ack(sk);
4523 		tcp_set_state(sk, TCP_CLOSING);
4524 		break;
4525 	case TCP_FIN_WAIT2:
4526 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4527 		tcp_send_ack(sk);
4528 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4529 		break;
4530 	default:
4531 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4532 		 * cases we should never reach this piece of code.
4533 		 */
4534 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4535 		       __func__, sk->sk_state);
4536 		break;
4537 	}
4538 
4539 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4540 	 * Probably, we should reset in this case. For now drop them.
4541 	 */
4542 	skb_rbtree_purge(&tp->out_of_order_queue);
4543 	if (tcp_is_sack(tp))
4544 		tcp_sack_reset(&tp->rx_opt);
4545 
4546 	if (!sock_flag(sk, SOCK_DEAD)) {
4547 		sk->sk_state_change(sk);
4548 
4549 		/* Do not send POLL_HUP for half duplex close. */
4550 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4551 		    sk->sk_state == TCP_CLOSE)
4552 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4553 		else
4554 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4555 	}
4556 }
4557 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4558 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4559 				  u32 end_seq)
4560 {
4561 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4562 		if (before(seq, sp->start_seq))
4563 			sp->start_seq = seq;
4564 		if (after(end_seq, sp->end_seq))
4565 			sp->end_seq = end_seq;
4566 		return true;
4567 	}
4568 	return false;
4569 }
4570 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4571 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4572 {
4573 	struct tcp_sock *tp = tcp_sk(sk);
4574 
4575 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4576 		int mib_idx;
4577 
4578 		if (before(seq, tp->rcv_nxt))
4579 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4580 		else
4581 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4582 
4583 		NET_INC_STATS(sock_net(sk), mib_idx);
4584 
4585 		tp->rx_opt.dsack = 1;
4586 		tp->duplicate_sack[0].start_seq = seq;
4587 		tp->duplicate_sack[0].end_seq = end_seq;
4588 	}
4589 }
4590 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4591 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4592 {
4593 	struct tcp_sock *tp = tcp_sk(sk);
4594 
4595 	if (!tp->rx_opt.dsack)
4596 		tcp_dsack_set(sk, seq, end_seq);
4597 	else
4598 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4599 }
4600 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4601 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4602 {
4603 	/* When the ACK path fails or drops most ACKs, the sender would
4604 	 * timeout and spuriously retransmit the same segment repeatedly.
4605 	 * The receiver remembers and reflects via DSACKs. Leverage the
4606 	 * DSACK state and change the txhash to re-route speculatively.
4607 	 */
4608 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4609 	    sk_rethink_txhash(sk))
4610 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4611 }
4612 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4613 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4614 {
4615 	struct tcp_sock *tp = tcp_sk(sk);
4616 
4617 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4618 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4619 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4620 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4621 
4622 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4623 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4624 
4625 			tcp_rcv_spurious_retrans(sk, skb);
4626 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4627 				end_seq = tp->rcv_nxt;
4628 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4629 		}
4630 	}
4631 
4632 	tcp_send_ack(sk);
4633 }
4634 
4635 /* These routines update the SACK block as out-of-order packets arrive or
4636  * in-order packets close up the sequence space.
4637  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4638 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4639 {
4640 	int this_sack;
4641 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4642 	struct tcp_sack_block *swalk = sp + 1;
4643 
4644 	/* See if the recent change to the first SACK eats into
4645 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4646 	 */
4647 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4648 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4649 			int i;
4650 
4651 			/* Zap SWALK, by moving every further SACK up by one slot.
4652 			 * Decrease num_sacks.
4653 			 */
4654 			tp->rx_opt.num_sacks--;
4655 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4656 				sp[i] = sp[i + 1];
4657 			continue;
4658 		}
4659 		this_sack++;
4660 		swalk++;
4661 	}
4662 }
4663 
tcp_sack_compress_send_ack(struct sock * sk)4664 void tcp_sack_compress_send_ack(struct sock *sk)
4665 {
4666 	struct tcp_sock *tp = tcp_sk(sk);
4667 
4668 	if (!tp->compressed_ack)
4669 		return;
4670 
4671 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4672 		__sock_put(sk);
4673 
4674 	/* Since we have to send one ack finally,
4675 	 * substract one from tp->compressed_ack to keep
4676 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4677 	 */
4678 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4679 		      tp->compressed_ack - 1);
4680 
4681 	tp->compressed_ack = 0;
4682 	tcp_send_ack(sk);
4683 }
4684 
4685 /* Reasonable amount of sack blocks included in TCP SACK option
4686  * The max is 4, but this becomes 3 if TCP timestamps are there.
4687  * Given that SACK packets might be lost, be conservative and use 2.
4688  */
4689 #define TCP_SACK_BLOCKS_EXPECTED 2
4690 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4691 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4692 {
4693 	struct tcp_sock *tp = tcp_sk(sk);
4694 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4695 	int cur_sacks = tp->rx_opt.num_sacks;
4696 	int this_sack;
4697 
4698 	if (!cur_sacks)
4699 		goto new_sack;
4700 
4701 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4702 		if (tcp_sack_extend(sp, seq, end_seq)) {
4703 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4704 				tcp_sack_compress_send_ack(sk);
4705 			/* Rotate this_sack to the first one. */
4706 			for (; this_sack > 0; this_sack--, sp--)
4707 				swap(*sp, *(sp - 1));
4708 			if (cur_sacks > 1)
4709 				tcp_sack_maybe_coalesce(tp);
4710 			return;
4711 		}
4712 	}
4713 
4714 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4715 		tcp_sack_compress_send_ack(sk);
4716 
4717 	/* Could not find an adjacent existing SACK, build a new one,
4718 	 * put it at the front, and shift everyone else down.  We
4719 	 * always know there is at least one SACK present already here.
4720 	 *
4721 	 * If the sack array is full, forget about the last one.
4722 	 */
4723 	if (this_sack >= TCP_NUM_SACKS) {
4724 		this_sack--;
4725 		tp->rx_opt.num_sacks--;
4726 		sp--;
4727 	}
4728 	for (; this_sack > 0; this_sack--, sp--)
4729 		*sp = *(sp - 1);
4730 
4731 new_sack:
4732 	/* Build the new head SACK, and we're done. */
4733 	sp->start_seq = seq;
4734 	sp->end_seq = end_seq;
4735 	tp->rx_opt.num_sacks++;
4736 }
4737 
4738 /* RCV.NXT advances, some SACKs should be eaten. */
4739 
tcp_sack_remove(struct tcp_sock * tp)4740 static void tcp_sack_remove(struct tcp_sock *tp)
4741 {
4742 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4743 	int num_sacks = tp->rx_opt.num_sacks;
4744 	int this_sack;
4745 
4746 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4747 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4748 		tp->rx_opt.num_sacks = 0;
4749 		return;
4750 	}
4751 
4752 	for (this_sack = 0; this_sack < num_sacks;) {
4753 		/* Check if the start of the sack is covered by RCV.NXT. */
4754 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4755 			int i;
4756 
4757 			/* RCV.NXT must cover all the block! */
4758 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4759 
4760 			/* Zap this SACK, by moving forward any other SACKS. */
4761 			for (i = this_sack+1; i < num_sacks; i++)
4762 				tp->selective_acks[i-1] = tp->selective_acks[i];
4763 			num_sacks--;
4764 			continue;
4765 		}
4766 		this_sack++;
4767 		sp++;
4768 	}
4769 	tp->rx_opt.num_sacks = num_sacks;
4770 }
4771 
4772 /**
4773  * tcp_try_coalesce - try to merge skb to prior one
4774  * @sk: socket
4775  * @to: prior buffer
4776  * @from: buffer to add in queue
4777  * @fragstolen: pointer to boolean
4778  *
4779  * Before queueing skb @from after @to, try to merge them
4780  * to reduce overall memory use and queue lengths, if cost is small.
4781  * Packets in ofo or receive queues can stay a long time.
4782  * Better try to coalesce them right now to avoid future collapses.
4783  * Returns true if caller should free @from instead of queueing it
4784  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4785 static bool tcp_try_coalesce(struct sock *sk,
4786 			     struct sk_buff *to,
4787 			     struct sk_buff *from,
4788 			     bool *fragstolen)
4789 {
4790 	int delta;
4791 
4792 	*fragstolen = false;
4793 
4794 	/* Its possible this segment overlaps with prior segment in queue */
4795 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4796 		return false;
4797 
4798 	if (!mptcp_skb_can_collapse(to, from))
4799 		return false;
4800 
4801 #ifdef CONFIG_TLS_DEVICE
4802 	if (from->decrypted != to->decrypted)
4803 		return false;
4804 #endif
4805 
4806 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4807 		return false;
4808 
4809 	atomic_add(delta, &sk->sk_rmem_alloc);
4810 	sk_mem_charge(sk, delta);
4811 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4812 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4813 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4814 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4815 
4816 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4817 		TCP_SKB_CB(to)->has_rxtstamp = true;
4818 		to->tstamp = from->tstamp;
4819 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4820 	}
4821 
4822 	return true;
4823 }
4824 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4825 static bool tcp_ooo_try_coalesce(struct sock *sk,
4826 			     struct sk_buff *to,
4827 			     struct sk_buff *from,
4828 			     bool *fragstolen)
4829 {
4830 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4831 
4832 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4833 	if (res) {
4834 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4835 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4836 
4837 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4838 	}
4839 	return res;
4840 }
4841 
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4842 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4843 			    enum skb_drop_reason reason)
4844 {
4845 	sk_drops_add(sk, skb);
4846 	kfree_skb_reason(skb, reason);
4847 }
4848 
4849 /* This one checks to see if we can put data from the
4850  * out_of_order queue into the receive_queue.
4851  */
tcp_ofo_queue(struct sock * sk)4852 static void tcp_ofo_queue(struct sock *sk)
4853 {
4854 	struct tcp_sock *tp = tcp_sk(sk);
4855 	__u32 dsack_high = tp->rcv_nxt;
4856 	bool fin, fragstolen, eaten;
4857 	struct sk_buff *skb, *tail;
4858 	struct rb_node *p;
4859 
4860 	p = rb_first(&tp->out_of_order_queue);
4861 	while (p) {
4862 		skb = rb_to_skb(p);
4863 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4864 			break;
4865 
4866 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4867 			__u32 dsack = dsack_high;
4868 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4869 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4870 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4871 		}
4872 		p = rb_next(p);
4873 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4874 
4875 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4876 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4877 			continue;
4878 		}
4879 
4880 		tail = skb_peek_tail(&sk->sk_receive_queue);
4881 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4882 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4883 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4884 		if (!eaten)
4885 			tcp_add_receive_queue(sk, skb);
4886 		else
4887 			kfree_skb_partial(skb, fragstolen);
4888 
4889 		if (unlikely(fin)) {
4890 			tcp_fin(sk);
4891 			/* tcp_fin() purges tp->out_of_order_queue,
4892 			 * so we must end this loop right now.
4893 			 */
4894 			break;
4895 		}
4896 	}
4897 }
4898 
4899 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4900 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4901 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4902 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4903 				 unsigned int size)
4904 {
4905 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4906 	    !sk_rmem_schedule(sk, skb, size)) {
4907 
4908 		if (tcp_prune_queue(sk, skb) < 0)
4909 			return -1;
4910 
4911 		while (!sk_rmem_schedule(sk, skb, size)) {
4912 			if (!tcp_prune_ofo_queue(sk, skb))
4913 				return -1;
4914 		}
4915 	}
4916 	return 0;
4917 }
4918 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4919 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4920 {
4921 	struct tcp_sock *tp = tcp_sk(sk);
4922 	struct rb_node **p, *parent;
4923 	struct sk_buff *skb1;
4924 	u32 seq, end_seq;
4925 	bool fragstolen;
4926 
4927 	tcp_ecn_check_ce(sk, skb);
4928 
4929 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4930 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4931 		sk->sk_data_ready(sk);
4932 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4933 		return;
4934 	}
4935 
4936 	/* Disable header prediction. */
4937 	tp->pred_flags = 0;
4938 	inet_csk_schedule_ack(sk);
4939 
4940 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4941 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4942 	seq = TCP_SKB_CB(skb)->seq;
4943 	end_seq = TCP_SKB_CB(skb)->end_seq;
4944 
4945 	p = &tp->out_of_order_queue.rb_node;
4946 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4947 		/* Initial out of order segment, build 1 SACK. */
4948 		if (tcp_is_sack(tp)) {
4949 			tp->rx_opt.num_sacks = 1;
4950 			tp->selective_acks[0].start_seq = seq;
4951 			tp->selective_acks[0].end_seq = end_seq;
4952 		}
4953 		rb_link_node(&skb->rbnode, NULL, p);
4954 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4955 		tp->ooo_last_skb = skb;
4956 		goto end;
4957 	}
4958 
4959 	/* In the typical case, we are adding an skb to the end of the list.
4960 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4961 	 */
4962 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4963 				 skb, &fragstolen)) {
4964 coalesce_done:
4965 		/* For non sack flows, do not grow window to force DUPACK
4966 		 * and trigger fast retransmit.
4967 		 */
4968 		if (tcp_is_sack(tp))
4969 			tcp_grow_window(sk, skb, true);
4970 		kfree_skb_partial(skb, fragstolen);
4971 		skb = NULL;
4972 		goto add_sack;
4973 	}
4974 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4975 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4976 		parent = &tp->ooo_last_skb->rbnode;
4977 		p = &parent->rb_right;
4978 		goto insert;
4979 	}
4980 
4981 	/* Find place to insert this segment. Handle overlaps on the way. */
4982 	parent = NULL;
4983 	while (*p) {
4984 		parent = *p;
4985 		skb1 = rb_to_skb(parent);
4986 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4987 			p = &parent->rb_left;
4988 			continue;
4989 		}
4990 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4991 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4992 				/* All the bits are present. Drop. */
4993 				NET_INC_STATS(sock_net(sk),
4994 					      LINUX_MIB_TCPOFOMERGE);
4995 				tcp_drop_reason(sk, skb,
4996 						SKB_DROP_REASON_TCP_OFOMERGE);
4997 				skb = NULL;
4998 				tcp_dsack_set(sk, seq, end_seq);
4999 				goto add_sack;
5000 			}
5001 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5002 				/* Partial overlap. */
5003 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5004 			} else {
5005 				/* skb's seq == skb1's seq and skb covers skb1.
5006 				 * Replace skb1 with skb.
5007 				 */
5008 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5009 						&tp->out_of_order_queue);
5010 				tcp_dsack_extend(sk,
5011 						 TCP_SKB_CB(skb1)->seq,
5012 						 TCP_SKB_CB(skb1)->end_seq);
5013 				NET_INC_STATS(sock_net(sk),
5014 					      LINUX_MIB_TCPOFOMERGE);
5015 				tcp_drop_reason(sk, skb1,
5016 						SKB_DROP_REASON_TCP_OFOMERGE);
5017 				goto merge_right;
5018 			}
5019 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5020 						skb, &fragstolen)) {
5021 			goto coalesce_done;
5022 		}
5023 		p = &parent->rb_right;
5024 	}
5025 insert:
5026 	/* Insert segment into RB tree. */
5027 	rb_link_node(&skb->rbnode, parent, p);
5028 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5029 
5030 merge_right:
5031 	/* Remove other segments covered by skb. */
5032 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5033 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5034 			break;
5035 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5036 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5037 					 end_seq);
5038 			break;
5039 		}
5040 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5041 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5042 				 TCP_SKB_CB(skb1)->end_seq);
5043 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5044 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5045 	}
5046 	/* If there is no skb after us, we are the last_skb ! */
5047 	if (!skb1)
5048 		tp->ooo_last_skb = skb;
5049 
5050 add_sack:
5051 	if (tcp_is_sack(tp))
5052 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5053 end:
5054 	if (skb) {
5055 		/* For non sack flows, do not grow window to force DUPACK
5056 		 * and trigger fast retransmit.
5057 		 */
5058 		if (tcp_is_sack(tp))
5059 			tcp_grow_window(sk, skb, false);
5060 		skb_condense(skb);
5061 		skb_set_owner_r(skb, sk);
5062 	}
5063 }
5064 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5065 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5066 				      bool *fragstolen)
5067 {
5068 	int eaten;
5069 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5070 
5071 	eaten = (tail &&
5072 		 tcp_try_coalesce(sk, tail,
5073 				  skb, fragstolen)) ? 1 : 0;
5074 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5075 	if (!eaten) {
5076 		tcp_add_receive_queue(sk, skb);
5077 		skb_set_owner_r(skb, sk);
5078 	}
5079 	return eaten;
5080 }
5081 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5082 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5083 {
5084 	struct sk_buff *skb;
5085 	int err = -ENOMEM;
5086 	int data_len = 0;
5087 	bool fragstolen;
5088 
5089 	if (size == 0)
5090 		return 0;
5091 
5092 	if (size > PAGE_SIZE) {
5093 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5094 
5095 		data_len = npages << PAGE_SHIFT;
5096 		size = data_len + (size & ~PAGE_MASK);
5097 	}
5098 	skb = alloc_skb_with_frags(size - data_len, data_len,
5099 				   PAGE_ALLOC_COSTLY_ORDER,
5100 				   &err, sk->sk_allocation);
5101 	if (!skb)
5102 		goto err;
5103 
5104 	skb_put(skb, size - data_len);
5105 	skb->data_len = data_len;
5106 	skb->len = size;
5107 
5108 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5109 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5110 		goto err_free;
5111 	}
5112 
5113 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5114 	if (err)
5115 		goto err_free;
5116 
5117 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5118 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5119 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5120 
5121 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5122 		WARN_ON_ONCE(fragstolen); /* should not happen */
5123 		__kfree_skb(skb);
5124 	}
5125 	return size;
5126 
5127 err_free:
5128 	kfree_skb(skb);
5129 err:
5130 	return err;
5131 
5132 }
5133 
tcp_data_ready(struct sock * sk)5134 void tcp_data_ready(struct sock *sk)
5135 {
5136 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5137 		sk->sk_data_ready(sk);
5138 }
5139 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5140 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5141 {
5142 	struct tcp_sock *tp = tcp_sk(sk);
5143 	enum skb_drop_reason reason;
5144 	bool fragstolen;
5145 	int eaten;
5146 
5147 	/* If a subflow has been reset, the packet should not continue
5148 	 * to be processed, drop the packet.
5149 	 */
5150 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5151 		__kfree_skb(skb);
5152 		return;
5153 	}
5154 
5155 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5156 		__kfree_skb(skb);
5157 		return;
5158 	}
5159 	tcp_cleanup_skb(skb);
5160 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5161 
5162 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5163 	tp->rx_opt.dsack = 0;
5164 
5165 	/*  Queue data for delivery to the user.
5166 	 *  Packets in sequence go to the receive queue.
5167 	 *  Out of sequence packets to the out_of_order_queue.
5168 	 */
5169 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5170 		if (tcp_receive_window(tp) == 0) {
5171 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5172 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5173 			goto out_of_window;
5174 		}
5175 
5176 		/* Ok. In sequence. In window. */
5177 queue_and_out:
5178 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5179 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5180 			inet_csk(sk)->icsk_ack.pending |=
5181 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5182 			inet_csk_schedule_ack(sk);
5183 			sk->sk_data_ready(sk);
5184 
5185 			if (skb_queue_len(&sk->sk_receive_queue)) {
5186 				reason = SKB_DROP_REASON_PROTO_MEM;
5187 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5188 				goto drop;
5189 			}
5190 			sk_forced_mem_schedule(sk, skb->truesize);
5191 		}
5192 
5193 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5194 		if (skb->len)
5195 			tcp_event_data_recv(sk, skb);
5196 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5197 			tcp_fin(sk);
5198 
5199 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5200 			tcp_ofo_queue(sk);
5201 
5202 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5203 			 * gap in queue is filled.
5204 			 */
5205 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5206 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5207 		}
5208 
5209 		if (tp->rx_opt.num_sacks)
5210 			tcp_sack_remove(tp);
5211 
5212 		tcp_fast_path_check(sk);
5213 
5214 		if (eaten > 0)
5215 			kfree_skb_partial(skb, fragstolen);
5216 		if (!sock_flag(sk, SOCK_DEAD))
5217 			tcp_data_ready(sk);
5218 		return;
5219 	}
5220 
5221 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5222 		tcp_rcv_spurious_retrans(sk, skb);
5223 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5224 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5225 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5226 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5227 
5228 out_of_window:
5229 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5230 		inet_csk_schedule_ack(sk);
5231 drop:
5232 		tcp_drop_reason(sk, skb, reason);
5233 		return;
5234 	}
5235 
5236 	/* Out of window. F.e. zero window probe. */
5237 	if (!before(TCP_SKB_CB(skb)->seq,
5238 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5239 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5240 		goto out_of_window;
5241 	}
5242 
5243 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5244 		/* Partial packet, seq < rcv_next < end_seq */
5245 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5246 
5247 		/* If window is closed, drop tail of packet. But after
5248 		 * remembering D-SACK for its head made in previous line.
5249 		 */
5250 		if (!tcp_receive_window(tp)) {
5251 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5252 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5253 			goto out_of_window;
5254 		}
5255 		goto queue_and_out;
5256 	}
5257 
5258 	tcp_data_queue_ofo(sk, skb);
5259 }
5260 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5261 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5262 {
5263 	if (list)
5264 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5265 
5266 	return skb_rb_next(skb);
5267 }
5268 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5269 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5270 					struct sk_buff_head *list,
5271 					struct rb_root *root)
5272 {
5273 	struct sk_buff *next = tcp_skb_next(skb, list);
5274 
5275 	if (list)
5276 		__skb_unlink(skb, list);
5277 	else
5278 		rb_erase(&skb->rbnode, root);
5279 
5280 	__kfree_skb(skb);
5281 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5282 
5283 	return next;
5284 }
5285 
5286 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5287 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5288 {
5289 	struct rb_node **p = &root->rb_node;
5290 	struct rb_node *parent = NULL;
5291 	struct sk_buff *skb1;
5292 
5293 	while (*p) {
5294 		parent = *p;
5295 		skb1 = rb_to_skb(parent);
5296 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5297 			p = &parent->rb_left;
5298 		else
5299 			p = &parent->rb_right;
5300 	}
5301 	rb_link_node(&skb->rbnode, parent, p);
5302 	rb_insert_color(&skb->rbnode, root);
5303 }
5304 
5305 /* Collapse contiguous sequence of skbs head..tail with
5306  * sequence numbers start..end.
5307  *
5308  * If tail is NULL, this means until the end of the queue.
5309  *
5310  * Segments with FIN/SYN are not collapsed (only because this
5311  * simplifies code)
5312  */
5313 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5314 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5315 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5316 {
5317 	struct sk_buff *skb = head, *n;
5318 	struct sk_buff_head tmp;
5319 	bool end_of_skbs;
5320 
5321 	/* First, check that queue is collapsible and find
5322 	 * the point where collapsing can be useful.
5323 	 */
5324 restart:
5325 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5326 		n = tcp_skb_next(skb, list);
5327 
5328 		/* No new bits? It is possible on ofo queue. */
5329 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5330 			skb = tcp_collapse_one(sk, skb, list, root);
5331 			if (!skb)
5332 				break;
5333 			goto restart;
5334 		}
5335 
5336 		/* The first skb to collapse is:
5337 		 * - not SYN/FIN and
5338 		 * - bloated or contains data before "start" or
5339 		 *   overlaps to the next one and mptcp allow collapsing.
5340 		 */
5341 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5342 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5343 		     before(TCP_SKB_CB(skb)->seq, start))) {
5344 			end_of_skbs = false;
5345 			break;
5346 		}
5347 
5348 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5349 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5350 			end_of_skbs = false;
5351 			break;
5352 		}
5353 
5354 		/* Decided to skip this, advance start seq. */
5355 		start = TCP_SKB_CB(skb)->end_seq;
5356 	}
5357 	if (end_of_skbs ||
5358 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5359 		return;
5360 
5361 	__skb_queue_head_init(&tmp);
5362 
5363 	while (before(start, end)) {
5364 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5365 		struct sk_buff *nskb;
5366 
5367 		nskb = alloc_skb(copy, GFP_ATOMIC);
5368 		if (!nskb)
5369 			break;
5370 
5371 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5372 #ifdef CONFIG_TLS_DEVICE
5373 		nskb->decrypted = skb->decrypted;
5374 #endif
5375 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5376 		if (list)
5377 			__skb_queue_before(list, skb, nskb);
5378 		else
5379 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5380 		skb_set_owner_r(nskb, sk);
5381 		mptcp_skb_ext_move(nskb, skb);
5382 
5383 		/* Copy data, releasing collapsed skbs. */
5384 		while (copy > 0) {
5385 			int offset = start - TCP_SKB_CB(skb)->seq;
5386 			int size = TCP_SKB_CB(skb)->end_seq - start;
5387 
5388 			BUG_ON(offset < 0);
5389 			if (size > 0) {
5390 				size = min(copy, size);
5391 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5392 					BUG();
5393 				TCP_SKB_CB(nskb)->end_seq += size;
5394 				copy -= size;
5395 				start += size;
5396 			}
5397 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5398 				skb = tcp_collapse_one(sk, skb, list, root);
5399 				if (!skb ||
5400 				    skb == tail ||
5401 				    !mptcp_skb_can_collapse(nskb, skb) ||
5402 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5403 					goto end;
5404 #ifdef CONFIG_TLS_DEVICE
5405 				if (skb->decrypted != nskb->decrypted)
5406 					goto end;
5407 #endif
5408 			}
5409 		}
5410 	}
5411 end:
5412 	skb_queue_walk_safe(&tmp, skb, n)
5413 		tcp_rbtree_insert(root, skb);
5414 }
5415 
5416 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5417  * and tcp_collapse() them until all the queue is collapsed.
5418  */
tcp_collapse_ofo_queue(struct sock * sk)5419 static void tcp_collapse_ofo_queue(struct sock *sk)
5420 {
5421 	struct tcp_sock *tp = tcp_sk(sk);
5422 	u32 range_truesize, sum_tiny = 0;
5423 	struct sk_buff *skb, *head;
5424 	u32 start, end;
5425 
5426 	skb = skb_rb_first(&tp->out_of_order_queue);
5427 new_range:
5428 	if (!skb) {
5429 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5430 		return;
5431 	}
5432 	start = TCP_SKB_CB(skb)->seq;
5433 	end = TCP_SKB_CB(skb)->end_seq;
5434 	range_truesize = skb->truesize;
5435 
5436 	for (head = skb;;) {
5437 		skb = skb_rb_next(skb);
5438 
5439 		/* Range is terminated when we see a gap or when
5440 		 * we are at the queue end.
5441 		 */
5442 		if (!skb ||
5443 		    after(TCP_SKB_CB(skb)->seq, end) ||
5444 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5445 			/* Do not attempt collapsing tiny skbs */
5446 			if (range_truesize != head->truesize ||
5447 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5448 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5449 					     head, skb, start, end);
5450 			} else {
5451 				sum_tiny += range_truesize;
5452 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5453 					return;
5454 			}
5455 			goto new_range;
5456 		}
5457 
5458 		range_truesize += skb->truesize;
5459 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5460 			start = TCP_SKB_CB(skb)->seq;
5461 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5462 			end = TCP_SKB_CB(skb)->end_seq;
5463 	}
5464 }
5465 
5466 /*
5467  * Clean the out-of-order queue to make room.
5468  * We drop high sequences packets to :
5469  * 1) Let a chance for holes to be filled.
5470  *    This means we do not drop packets from ooo queue if their sequence
5471  *    is before incoming packet sequence.
5472  * 2) not add too big latencies if thousands of packets sit there.
5473  *    (But if application shrinks SO_RCVBUF, we could still end up
5474  *     freeing whole queue here)
5475  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5476  *
5477  * Return true if queue has shrunk.
5478  */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5479 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5480 {
5481 	struct tcp_sock *tp = tcp_sk(sk);
5482 	struct rb_node *node, *prev;
5483 	bool pruned = false;
5484 	int goal;
5485 
5486 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5487 		return false;
5488 
5489 	goal = sk->sk_rcvbuf >> 3;
5490 	node = &tp->ooo_last_skb->rbnode;
5491 
5492 	do {
5493 		struct sk_buff *skb = rb_to_skb(node);
5494 
5495 		/* If incoming skb would land last in ofo queue, stop pruning. */
5496 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5497 			break;
5498 		pruned = true;
5499 		prev = rb_prev(node);
5500 		rb_erase(node, &tp->out_of_order_queue);
5501 		goal -= skb->truesize;
5502 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5503 		tp->ooo_last_skb = rb_to_skb(prev);
5504 		if (!prev || goal <= 0) {
5505 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5506 			    !tcp_under_memory_pressure(sk))
5507 				break;
5508 			goal = sk->sk_rcvbuf >> 3;
5509 		}
5510 		node = prev;
5511 	} while (node);
5512 
5513 	if (pruned) {
5514 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5515 		/* Reset SACK state.  A conforming SACK implementation will
5516 		 * do the same at a timeout based retransmit.  When a connection
5517 		 * is in a sad state like this, we care only about integrity
5518 		 * of the connection not performance.
5519 		 */
5520 		if (tp->rx_opt.sack_ok)
5521 			tcp_sack_reset(&tp->rx_opt);
5522 	}
5523 	return pruned;
5524 }
5525 
5526 /* Reduce allocated memory if we can, trying to get
5527  * the socket within its memory limits again.
5528  *
5529  * Return less than zero if we should start dropping frames
5530  * until the socket owning process reads some of the data
5531  * to stabilize the situation.
5532  */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5533 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5534 {
5535 	struct tcp_sock *tp = tcp_sk(sk);
5536 
5537 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5538 
5539 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5540 		tcp_clamp_window(sk);
5541 	else if (tcp_under_memory_pressure(sk))
5542 		tcp_adjust_rcv_ssthresh(sk);
5543 
5544 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5545 		return 0;
5546 
5547 	tcp_collapse_ofo_queue(sk);
5548 	if (!skb_queue_empty(&sk->sk_receive_queue))
5549 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5550 			     skb_peek(&sk->sk_receive_queue),
5551 			     NULL,
5552 			     tp->copied_seq, tp->rcv_nxt);
5553 
5554 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5555 		return 0;
5556 
5557 	/* Collapsing did not help, destructive actions follow.
5558 	 * This must not ever occur. */
5559 
5560 	tcp_prune_ofo_queue(sk, in_skb);
5561 
5562 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5563 		return 0;
5564 
5565 	/* If we are really being abused, tell the caller to silently
5566 	 * drop receive data on the floor.  It will get retransmitted
5567 	 * and hopefully then we'll have sufficient space.
5568 	 */
5569 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5570 
5571 	/* Massive buffer overcommit. */
5572 	tp->pred_flags = 0;
5573 	return -1;
5574 }
5575 
tcp_should_expand_sndbuf(struct sock * sk)5576 static bool tcp_should_expand_sndbuf(struct sock *sk)
5577 {
5578 	const struct tcp_sock *tp = tcp_sk(sk);
5579 
5580 	/* If the user specified a specific send buffer setting, do
5581 	 * not modify it.
5582 	 */
5583 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5584 		return false;
5585 
5586 	/* If we are under global TCP memory pressure, do not expand.  */
5587 	if (tcp_under_memory_pressure(sk)) {
5588 		int unused_mem = sk_unused_reserved_mem(sk);
5589 
5590 		/* Adjust sndbuf according to reserved mem. But make sure
5591 		 * it never goes below SOCK_MIN_SNDBUF.
5592 		 * See sk_stream_moderate_sndbuf() for more details.
5593 		 */
5594 		if (unused_mem > SOCK_MIN_SNDBUF)
5595 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5596 
5597 		return false;
5598 	}
5599 
5600 	/* If we are under soft global TCP memory pressure, do not expand.  */
5601 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5602 		return false;
5603 
5604 	/* If we filled the congestion window, do not expand.  */
5605 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5606 		return false;
5607 
5608 	return true;
5609 }
5610 
tcp_new_space(struct sock * sk)5611 static void tcp_new_space(struct sock *sk)
5612 {
5613 	struct tcp_sock *tp = tcp_sk(sk);
5614 
5615 	if (tcp_should_expand_sndbuf(sk)) {
5616 		tcp_sndbuf_expand(sk);
5617 		tp->snd_cwnd_stamp = tcp_jiffies32;
5618 	}
5619 
5620 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5621 }
5622 
5623 /* Caller made space either from:
5624  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5625  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5626  *
5627  * We might be able to generate EPOLLOUT to the application if:
5628  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5629  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5630  *    small enough that tcp_stream_memory_free() decides it
5631  *    is time to generate EPOLLOUT.
5632  */
tcp_check_space(struct sock * sk)5633 void tcp_check_space(struct sock *sk)
5634 {
5635 	/* pairs with tcp_poll() */
5636 	smp_mb();
5637 	if (sk->sk_socket &&
5638 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5639 		tcp_new_space(sk);
5640 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5641 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5642 	}
5643 }
5644 
tcp_data_snd_check(struct sock * sk)5645 static inline void tcp_data_snd_check(struct sock *sk)
5646 {
5647 	tcp_push_pending_frames(sk);
5648 	tcp_check_space(sk);
5649 }
5650 
5651 /*
5652  * Check if sending an ack is needed.
5653  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5654 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5655 {
5656 	struct tcp_sock *tp = tcp_sk(sk);
5657 	unsigned long rtt, delay;
5658 
5659 	    /* More than one full frame received... */
5660 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5661 	     /* ... and right edge of window advances far enough.
5662 	      * (tcp_recvmsg() will send ACK otherwise).
5663 	      * If application uses SO_RCVLOWAT, we want send ack now if
5664 	      * we have not received enough bytes to satisfy the condition.
5665 	      */
5666 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5667 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5668 	    /* We ACK each frame or... */
5669 	    tcp_in_quickack_mode(sk) ||
5670 	    /* Protocol state mandates a one-time immediate ACK */
5671 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5672 send_now:
5673 		tcp_send_ack(sk);
5674 		return;
5675 	}
5676 
5677 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5678 		tcp_send_delayed_ack(sk);
5679 		return;
5680 	}
5681 
5682 	if (!tcp_is_sack(tp) ||
5683 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5684 		goto send_now;
5685 
5686 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5687 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5688 		tp->dup_ack_counter = 0;
5689 	}
5690 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5691 		tp->dup_ack_counter++;
5692 		goto send_now;
5693 	}
5694 	tp->compressed_ack++;
5695 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5696 		return;
5697 
5698 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5699 
5700 	rtt = tp->rcv_rtt_est.rtt_us;
5701 	if (tp->srtt_us && tp->srtt_us < rtt)
5702 		rtt = tp->srtt_us;
5703 
5704 	delay = min_t(unsigned long,
5705 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5706 		      rtt * (NSEC_PER_USEC >> 3)/20);
5707 	sock_hold(sk);
5708 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5709 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5710 			       HRTIMER_MODE_REL_PINNED_SOFT);
5711 }
5712 
tcp_ack_snd_check(struct sock * sk)5713 static inline void tcp_ack_snd_check(struct sock *sk)
5714 {
5715 	if (!inet_csk_ack_scheduled(sk)) {
5716 		/* We sent a data segment already. */
5717 		return;
5718 	}
5719 	__tcp_ack_snd_check(sk, 1);
5720 }
5721 
5722 /*
5723  *	This routine is only called when we have urgent data
5724  *	signaled. Its the 'slow' part of tcp_urg. It could be
5725  *	moved inline now as tcp_urg is only called from one
5726  *	place. We handle URGent data wrong. We have to - as
5727  *	BSD still doesn't use the correction from RFC961.
5728  *	For 1003.1g we should support a new option TCP_STDURG to permit
5729  *	either form (or just set the sysctl tcp_stdurg).
5730  */
5731 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5732 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5733 {
5734 	struct tcp_sock *tp = tcp_sk(sk);
5735 	u32 ptr = ntohs(th->urg_ptr);
5736 
5737 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5738 		ptr--;
5739 	ptr += ntohl(th->seq);
5740 
5741 	/* Ignore urgent data that we've already seen and read. */
5742 	if (after(tp->copied_seq, ptr))
5743 		return;
5744 
5745 	/* Do not replay urg ptr.
5746 	 *
5747 	 * NOTE: interesting situation not covered by specs.
5748 	 * Misbehaving sender may send urg ptr, pointing to segment,
5749 	 * which we already have in ofo queue. We are not able to fetch
5750 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5751 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5752 	 * situations. But it is worth to think about possibility of some
5753 	 * DoSes using some hypothetical application level deadlock.
5754 	 */
5755 	if (before(ptr, tp->rcv_nxt))
5756 		return;
5757 
5758 	/* Do we already have a newer (or duplicate) urgent pointer? */
5759 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5760 		return;
5761 
5762 	/* Tell the world about our new urgent pointer. */
5763 	sk_send_sigurg(sk);
5764 
5765 	/* We may be adding urgent data when the last byte read was
5766 	 * urgent. To do this requires some care. We cannot just ignore
5767 	 * tp->copied_seq since we would read the last urgent byte again
5768 	 * as data, nor can we alter copied_seq until this data arrives
5769 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5770 	 *
5771 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5772 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5773 	 * and expect that both A and B disappear from stream. This is _wrong_.
5774 	 * Though this happens in BSD with high probability, this is occasional.
5775 	 * Any application relying on this is buggy. Note also, that fix "works"
5776 	 * only in this artificial test. Insert some normal data between A and B and we will
5777 	 * decline of BSD again. Verdict: it is better to remove to trap
5778 	 * buggy users.
5779 	 */
5780 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5781 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5782 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5783 		tp->copied_seq++;
5784 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5785 			__skb_unlink(skb, &sk->sk_receive_queue);
5786 			__kfree_skb(skb);
5787 		}
5788 	}
5789 
5790 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5791 	WRITE_ONCE(tp->urg_seq, ptr);
5792 
5793 	/* Disable header prediction. */
5794 	tp->pred_flags = 0;
5795 }
5796 
5797 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5798 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5799 {
5800 	struct tcp_sock *tp = tcp_sk(sk);
5801 
5802 	/* Check if we get a new urgent pointer - normally not. */
5803 	if (unlikely(th->urg))
5804 		tcp_check_urg(sk, th);
5805 
5806 	/* Do we wait for any urgent data? - normally not... */
5807 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5808 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5809 			  th->syn;
5810 
5811 		/* Is the urgent pointer pointing into this packet? */
5812 		if (ptr < skb->len) {
5813 			u8 tmp;
5814 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5815 				BUG();
5816 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5817 			if (!sock_flag(sk, SOCK_DEAD))
5818 				sk->sk_data_ready(sk);
5819 		}
5820 	}
5821 }
5822 
5823 /* Accept RST for rcv_nxt - 1 after a FIN.
5824  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5825  * FIN is sent followed by a RST packet. The RST is sent with the same
5826  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5827  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5828  * ACKs on the closed socket. In addition middleboxes can drop either the
5829  * challenge ACK or a subsequent RST.
5830  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5831 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5832 {
5833 	const struct tcp_sock *tp = tcp_sk(sk);
5834 
5835 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5836 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5837 					       TCPF_CLOSING));
5838 }
5839 
5840 /* Does PAWS and seqno based validation of an incoming segment, flags will
5841  * play significant role here.
5842  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5843 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5844 				  const struct tcphdr *th, int syn_inerr)
5845 {
5846 	struct tcp_sock *tp = tcp_sk(sk);
5847 	SKB_DR(reason);
5848 
5849 	/* RFC1323: H1. Apply PAWS check first. */
5850 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5851 	    tp->rx_opt.saw_tstamp &&
5852 	    tcp_paws_discard(sk, skb)) {
5853 		if (!th->rst) {
5854 			if (unlikely(th->syn))
5855 				goto syn_challenge;
5856 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5857 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5858 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5859 						  &tp->last_oow_ack_time))
5860 				tcp_send_dupack(sk, skb);
5861 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5862 			goto discard;
5863 		}
5864 		/* Reset is accepted even if it did not pass PAWS. */
5865 	}
5866 
5867 	/* Step 1: check sequence number */
5868 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5869 	if (reason) {
5870 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5871 		 * (RST) segments are validated by checking their SEQ-fields."
5872 		 * And page 69: "If an incoming segment is not acceptable,
5873 		 * an acknowledgment should be sent in reply (unless the RST
5874 		 * bit is set, if so drop the segment and return)".
5875 		 */
5876 		if (!th->rst) {
5877 			if (th->syn)
5878 				goto syn_challenge;
5879 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5880 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5881 						  &tp->last_oow_ack_time))
5882 				tcp_send_dupack(sk, skb);
5883 		} else if (tcp_reset_check(sk, skb)) {
5884 			goto reset;
5885 		}
5886 		goto discard;
5887 	}
5888 
5889 	/* Step 2: check RST bit */
5890 	if (th->rst) {
5891 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5892 		 * FIN and SACK too if available):
5893 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5894 		 * the right-most SACK block,
5895 		 * then
5896 		 *     RESET the connection
5897 		 * else
5898 		 *     Send a challenge ACK
5899 		 */
5900 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5901 		    tcp_reset_check(sk, skb))
5902 			goto reset;
5903 
5904 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5905 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5906 			int max_sack = sp[0].end_seq;
5907 			int this_sack;
5908 
5909 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5910 			     ++this_sack) {
5911 				max_sack = after(sp[this_sack].end_seq,
5912 						 max_sack) ?
5913 					sp[this_sack].end_seq : max_sack;
5914 			}
5915 
5916 			if (TCP_SKB_CB(skb)->seq == max_sack)
5917 				goto reset;
5918 		}
5919 
5920 		/* Disable TFO if RST is out-of-order
5921 		 * and no data has been received
5922 		 * for current active TFO socket
5923 		 */
5924 		if (tp->syn_fastopen && !tp->data_segs_in &&
5925 		    sk->sk_state == TCP_ESTABLISHED)
5926 			tcp_fastopen_active_disable(sk);
5927 		tcp_send_challenge_ack(sk);
5928 		SKB_DR_SET(reason, TCP_RESET);
5929 		goto discard;
5930 	}
5931 
5932 	/* step 3: check security and precedence [ignored] */
5933 
5934 	/* step 4: Check for a SYN
5935 	 * RFC 5961 4.2 : Send a challenge ack
5936 	 */
5937 	if (th->syn) {
5938 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5939 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5940 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5941 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5942 			goto pass;
5943 syn_challenge:
5944 		if (syn_inerr)
5945 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5946 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5947 		tcp_send_challenge_ack(sk);
5948 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5949 		goto discard;
5950 	}
5951 
5952 pass:
5953 	bpf_skops_parse_hdr(sk, skb);
5954 
5955 	return true;
5956 
5957 discard:
5958 	tcp_drop_reason(sk, skb, reason);
5959 	return false;
5960 
5961 reset:
5962 	tcp_reset(sk, skb);
5963 	__kfree_skb(skb);
5964 	return false;
5965 }
5966 
5967 /*
5968  *	TCP receive function for the ESTABLISHED state.
5969  *
5970  *	It is split into a fast path and a slow path. The fast path is
5971  * 	disabled when:
5972  *	- A zero window was announced from us - zero window probing
5973  *        is only handled properly in the slow path.
5974  *	- Out of order segments arrived.
5975  *	- Urgent data is expected.
5976  *	- There is no buffer space left
5977  *	- Unexpected TCP flags/window values/header lengths are received
5978  *	  (detected by checking the TCP header against pred_flags)
5979  *	- Data is sent in both directions. Fast path only supports pure senders
5980  *	  or pure receivers (this means either the sequence number or the ack
5981  *	  value must stay constant)
5982  *	- Unexpected TCP option.
5983  *
5984  *	When these conditions are not satisfied it drops into a standard
5985  *	receive procedure patterned after RFC793 to handle all cases.
5986  *	The first three cases are guaranteed by proper pred_flags setting,
5987  *	the rest is checked inline. Fast processing is turned on in
5988  *	tcp_data_queue when everything is OK.
5989  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5990 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5991 {
5992 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5993 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5994 	struct tcp_sock *tp = tcp_sk(sk);
5995 	unsigned int len = skb->len;
5996 
5997 	/* TCP congestion window tracking */
5998 	trace_tcp_probe(sk, skb);
5999 
6000 	tcp_mstamp_refresh(tp);
6001 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6002 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6003 	/*
6004 	 *	Header prediction.
6005 	 *	The code loosely follows the one in the famous
6006 	 *	"30 instruction TCP receive" Van Jacobson mail.
6007 	 *
6008 	 *	Van's trick is to deposit buffers into socket queue
6009 	 *	on a device interrupt, to call tcp_recv function
6010 	 *	on the receive process context and checksum and copy
6011 	 *	the buffer to user space. smart...
6012 	 *
6013 	 *	Our current scheme is not silly either but we take the
6014 	 *	extra cost of the net_bh soft interrupt processing...
6015 	 *	We do checksum and copy also but from device to kernel.
6016 	 */
6017 
6018 	tp->rx_opt.saw_tstamp = 0;
6019 
6020 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6021 	 *	if header_prediction is to be made
6022 	 *	'S' will always be tp->tcp_header_len >> 2
6023 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6024 	 *  turn it off	(when there are holes in the receive
6025 	 *	 space for instance)
6026 	 *	PSH flag is ignored.
6027 	 */
6028 
6029 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6030 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6031 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6032 		int tcp_header_len = tp->tcp_header_len;
6033 
6034 		/* Timestamp header prediction: tcp_header_len
6035 		 * is automatically equal to th->doff*4 due to pred_flags
6036 		 * match.
6037 		 */
6038 
6039 		/* Check timestamp */
6040 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6041 			/* No? Slow path! */
6042 			if (!tcp_parse_aligned_timestamp(tp, th))
6043 				goto slow_path;
6044 
6045 			/* If PAWS failed, check it more carefully in slow path */
6046 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6047 				goto slow_path;
6048 
6049 			/* DO NOT update ts_recent here, if checksum fails
6050 			 * and timestamp was corrupted part, it will result
6051 			 * in a hung connection since we will drop all
6052 			 * future packets due to the PAWS test.
6053 			 */
6054 		}
6055 
6056 		if (len <= tcp_header_len) {
6057 			/* Bulk data transfer: sender */
6058 			if (len == tcp_header_len) {
6059 				/* Predicted packet is in window by definition.
6060 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6061 				 * Hence, check seq<=rcv_wup reduces to:
6062 				 */
6063 				if (tcp_header_len ==
6064 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6065 				    tp->rcv_nxt == tp->rcv_wup)
6066 					tcp_store_ts_recent(tp);
6067 
6068 				/* We know that such packets are checksummed
6069 				 * on entry.
6070 				 */
6071 				tcp_ack(sk, skb, 0);
6072 				__kfree_skb(skb);
6073 				tcp_data_snd_check(sk);
6074 				/* When receiving pure ack in fast path, update
6075 				 * last ts ecr directly instead of calling
6076 				 * tcp_rcv_rtt_measure_ts()
6077 				 */
6078 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6079 				return;
6080 			} else { /* Header too small */
6081 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6082 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6083 				goto discard;
6084 			}
6085 		} else {
6086 			int eaten = 0;
6087 			bool fragstolen = false;
6088 
6089 			if (tcp_checksum_complete(skb))
6090 				goto csum_error;
6091 
6092 			if ((int)skb->truesize > sk->sk_forward_alloc)
6093 				goto step5;
6094 
6095 			/* Predicted packet is in window by definition.
6096 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6097 			 * Hence, check seq<=rcv_wup reduces to:
6098 			 */
6099 			if (tcp_header_len ==
6100 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6101 			    tp->rcv_nxt == tp->rcv_wup)
6102 				tcp_store_ts_recent(tp);
6103 
6104 			tcp_rcv_rtt_measure_ts(sk, skb);
6105 
6106 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6107 
6108 			/* Bulk data transfer: receiver */
6109 			tcp_cleanup_skb(skb);
6110 			__skb_pull(skb, tcp_header_len);
6111 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6112 
6113 			tcp_event_data_recv(sk, skb);
6114 
6115 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6116 				/* Well, only one small jumplet in fast path... */
6117 				tcp_ack(sk, skb, FLAG_DATA);
6118 				tcp_data_snd_check(sk);
6119 				if (!inet_csk_ack_scheduled(sk))
6120 					goto no_ack;
6121 			} else {
6122 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6123 			}
6124 
6125 			__tcp_ack_snd_check(sk, 0);
6126 no_ack:
6127 			if (eaten)
6128 				kfree_skb_partial(skb, fragstolen);
6129 			tcp_data_ready(sk);
6130 			return;
6131 		}
6132 	}
6133 
6134 slow_path:
6135 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6136 		goto csum_error;
6137 
6138 	if (!th->ack && !th->rst && !th->syn) {
6139 		reason = SKB_DROP_REASON_TCP_FLAGS;
6140 		goto discard;
6141 	}
6142 
6143 	/*
6144 	 *	Standard slow path.
6145 	 */
6146 
6147 	if (!tcp_validate_incoming(sk, skb, th, 1))
6148 		return;
6149 
6150 step5:
6151 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6152 	if ((int)reason < 0) {
6153 		reason = -reason;
6154 		goto discard;
6155 	}
6156 	tcp_rcv_rtt_measure_ts(sk, skb);
6157 
6158 	/* Process urgent data. */
6159 	tcp_urg(sk, skb, th);
6160 
6161 	/* step 7: process the segment text */
6162 	tcp_data_queue(sk, skb);
6163 
6164 	tcp_data_snd_check(sk);
6165 	tcp_ack_snd_check(sk);
6166 	return;
6167 
6168 csum_error:
6169 	reason = SKB_DROP_REASON_TCP_CSUM;
6170 	trace_tcp_bad_csum(skb);
6171 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6172 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6173 
6174 discard:
6175 	tcp_drop_reason(sk, skb, reason);
6176 }
6177 EXPORT_SYMBOL(tcp_rcv_established);
6178 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6179 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6180 {
6181 	struct inet_connection_sock *icsk = inet_csk(sk);
6182 	struct tcp_sock *tp = tcp_sk(sk);
6183 
6184 	tcp_mtup_init(sk);
6185 	icsk->icsk_af_ops->rebuild_header(sk);
6186 	tcp_init_metrics(sk);
6187 
6188 	/* Initialize the congestion window to start the transfer.
6189 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6190 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6191 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6192 	 * retransmission has occurred.
6193 	 */
6194 	if (tp->total_retrans > 1 && tp->undo_marker)
6195 		tcp_snd_cwnd_set(tp, 1);
6196 	else
6197 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6198 	tp->snd_cwnd_stamp = tcp_jiffies32;
6199 
6200 	bpf_skops_established(sk, bpf_op, skb);
6201 	/* Initialize congestion control unless BPF initialized it already: */
6202 	if (!icsk->icsk_ca_initialized)
6203 		tcp_init_congestion_control(sk);
6204 	tcp_init_buffer_space(sk);
6205 }
6206 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6207 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6208 {
6209 	struct tcp_sock *tp = tcp_sk(sk);
6210 	struct inet_connection_sock *icsk = inet_csk(sk);
6211 
6212 	tcp_set_state(sk, TCP_ESTABLISHED);
6213 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6214 
6215 	if (skb) {
6216 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6217 		security_inet_conn_established(sk, skb);
6218 		sk_mark_napi_id(sk, skb);
6219 	}
6220 
6221 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6222 
6223 	/* Prevent spurious tcp_cwnd_restart() on first data
6224 	 * packet.
6225 	 */
6226 	tp->lsndtime = tcp_jiffies32;
6227 
6228 	if (sock_flag(sk, SOCK_KEEPOPEN))
6229 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6230 
6231 	if (!tp->rx_opt.snd_wscale)
6232 		__tcp_fast_path_on(tp, tp->snd_wnd);
6233 	else
6234 		tp->pred_flags = 0;
6235 }
6236 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6237 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6238 				    struct tcp_fastopen_cookie *cookie)
6239 {
6240 	struct tcp_sock *tp = tcp_sk(sk);
6241 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6242 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6243 	bool syn_drop = false;
6244 
6245 	if (mss == tp->rx_opt.user_mss) {
6246 		struct tcp_options_received opt;
6247 
6248 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6249 		tcp_clear_options(&opt);
6250 		opt.user_mss = opt.mss_clamp = 0;
6251 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6252 		mss = opt.mss_clamp;
6253 	}
6254 
6255 	if (!tp->syn_fastopen) {
6256 		/* Ignore an unsolicited cookie */
6257 		cookie->len = -1;
6258 	} else if (tp->total_retrans) {
6259 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6260 		 * acknowledges data. Presumably the remote received only
6261 		 * the retransmitted (regular) SYNs: either the original
6262 		 * SYN-data or the corresponding SYN-ACK was dropped.
6263 		 */
6264 		syn_drop = (cookie->len < 0 && data);
6265 	} else if (cookie->len < 0 && !tp->syn_data) {
6266 		/* We requested a cookie but didn't get it. If we did not use
6267 		 * the (old) exp opt format then try so next time (try_exp=1).
6268 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6269 		 */
6270 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6271 	}
6272 
6273 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6274 
6275 	if (data) { /* Retransmit unacked data in SYN */
6276 		if (tp->total_retrans)
6277 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6278 		else
6279 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6280 		skb_rbtree_walk_from(data)
6281 			 tcp_mark_skb_lost(sk, data);
6282 		tcp_non_congestion_loss_retransmit(sk);
6283 		NET_INC_STATS(sock_net(sk),
6284 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6285 		return true;
6286 	}
6287 	tp->syn_data_acked = tp->syn_data;
6288 	if (tp->syn_data_acked) {
6289 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6290 		/* SYN-data is counted as two separate packets in tcp_ack() */
6291 		if (tp->delivered > 1)
6292 			--tp->delivered;
6293 	}
6294 
6295 	tcp_fastopen_add_skb(sk, synack);
6296 
6297 	return false;
6298 }
6299 
smc_check_reset_syn(struct tcp_sock * tp)6300 static void smc_check_reset_syn(struct tcp_sock *tp)
6301 {
6302 #if IS_ENABLED(CONFIG_SMC)
6303 	if (static_branch_unlikely(&tcp_have_smc)) {
6304 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6305 			tp->syn_smc = 0;
6306 	}
6307 #endif
6308 }
6309 
tcp_try_undo_spurious_syn(struct sock * sk)6310 static void tcp_try_undo_spurious_syn(struct sock *sk)
6311 {
6312 	struct tcp_sock *tp = tcp_sk(sk);
6313 	u32 syn_stamp;
6314 
6315 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6316 	 * spurious if the ACK's timestamp option echo value matches the
6317 	 * original SYN timestamp.
6318 	 */
6319 	syn_stamp = tp->retrans_stamp;
6320 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6321 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6322 		tp->undo_marker = 0;
6323 }
6324 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6325 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6326 					 const struct tcphdr *th)
6327 {
6328 	struct inet_connection_sock *icsk = inet_csk(sk);
6329 	struct tcp_sock *tp = tcp_sk(sk);
6330 	struct tcp_fastopen_cookie foc = { .len = -1 };
6331 	int saved_clamp = tp->rx_opt.mss_clamp;
6332 	bool fastopen_fail;
6333 	SKB_DR(reason);
6334 
6335 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6336 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6337 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6338 
6339 	if (th->ack) {
6340 		/* rfc793:
6341 		 * "If the state is SYN-SENT then
6342 		 *    first check the ACK bit
6343 		 *      If the ACK bit is set
6344 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6345 		 *        a reset (unless the RST bit is set, if so drop
6346 		 *        the segment and return)"
6347 		 */
6348 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6349 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6350 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6351 			if (icsk->icsk_retransmits == 0)
6352 				inet_csk_reset_xmit_timer(sk,
6353 						ICSK_TIME_RETRANS,
6354 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6355 			goto reset_and_undo;
6356 		}
6357 
6358 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6359 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6360 			     tcp_time_stamp(tp))) {
6361 			NET_INC_STATS(sock_net(sk),
6362 					LINUX_MIB_PAWSACTIVEREJECTED);
6363 			goto reset_and_undo;
6364 		}
6365 
6366 		/* Now ACK is acceptable.
6367 		 *
6368 		 * "If the RST bit is set
6369 		 *    If the ACK was acceptable then signal the user "error:
6370 		 *    connection reset", drop the segment, enter CLOSED state,
6371 		 *    delete TCB, and return."
6372 		 */
6373 
6374 		if (th->rst) {
6375 			tcp_reset(sk, skb);
6376 consume:
6377 			__kfree_skb(skb);
6378 			return 0;
6379 		}
6380 
6381 		/* rfc793:
6382 		 *   "fifth, if neither of the SYN or RST bits is set then
6383 		 *    drop the segment and return."
6384 		 *
6385 		 *    See note below!
6386 		 *                                        --ANK(990513)
6387 		 */
6388 		if (!th->syn) {
6389 			SKB_DR_SET(reason, TCP_FLAGS);
6390 			goto discard_and_undo;
6391 		}
6392 		/* rfc793:
6393 		 *   "If the SYN bit is on ...
6394 		 *    are acceptable then ...
6395 		 *    (our SYN has been ACKed), change the connection
6396 		 *    state to ESTABLISHED..."
6397 		 */
6398 
6399 		tcp_ecn_rcv_synack(tp, th);
6400 
6401 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6402 		tcp_try_undo_spurious_syn(sk);
6403 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6404 
6405 		/* Ok.. it's good. Set up sequence numbers and
6406 		 * move to established.
6407 		 */
6408 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6409 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6410 
6411 		/* RFC1323: The window in SYN & SYN/ACK segments is
6412 		 * never scaled.
6413 		 */
6414 		tp->snd_wnd = ntohs(th->window);
6415 
6416 		if (!tp->rx_opt.wscale_ok) {
6417 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6418 			WRITE_ONCE(tp->window_clamp,
6419 				   min(tp->window_clamp, 65535U));
6420 		}
6421 
6422 		if (tp->rx_opt.saw_tstamp) {
6423 			tp->rx_opt.tstamp_ok	   = 1;
6424 			tp->tcp_header_len =
6425 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6426 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6427 			tcp_store_ts_recent(tp);
6428 		} else {
6429 			tp->tcp_header_len = sizeof(struct tcphdr);
6430 		}
6431 
6432 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6433 		tcp_initialize_rcv_mss(sk);
6434 
6435 		/* Remember, tcp_poll() does not lock socket!
6436 		 * Change state from SYN-SENT only after copied_seq
6437 		 * is initialized. */
6438 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6439 
6440 		smc_check_reset_syn(tp);
6441 
6442 		smp_mb();
6443 
6444 		tcp_finish_connect(sk, skb);
6445 
6446 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6447 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6448 
6449 		if (!sock_flag(sk, SOCK_DEAD)) {
6450 			sk->sk_state_change(sk);
6451 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6452 		}
6453 		if (fastopen_fail)
6454 			return -1;
6455 		if (sk->sk_write_pending ||
6456 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6457 		    inet_csk_in_pingpong_mode(sk)) {
6458 			/* Save one ACK. Data will be ready after
6459 			 * several ticks, if write_pending is set.
6460 			 *
6461 			 * It may be deleted, but with this feature tcpdumps
6462 			 * look so _wonderfully_ clever, that I was not able
6463 			 * to stand against the temptation 8)     --ANK
6464 			 */
6465 			inet_csk_schedule_ack(sk);
6466 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6467 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6468 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6469 			goto consume;
6470 		}
6471 		tcp_send_ack(sk);
6472 		return -1;
6473 	}
6474 
6475 	/* No ACK in the segment */
6476 
6477 	if (th->rst) {
6478 		/* rfc793:
6479 		 * "If the RST bit is set
6480 		 *
6481 		 *      Otherwise (no ACK) drop the segment and return."
6482 		 */
6483 		SKB_DR_SET(reason, TCP_RESET);
6484 		goto discard_and_undo;
6485 	}
6486 
6487 	/* PAWS check. */
6488 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6489 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6490 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6491 		goto discard_and_undo;
6492 	}
6493 	if (th->syn) {
6494 		/* We see SYN without ACK. It is attempt of
6495 		 * simultaneous connect with crossed SYNs.
6496 		 * Particularly, it can be connect to self.
6497 		 */
6498 		tcp_set_state(sk, TCP_SYN_RECV);
6499 
6500 		if (tp->rx_opt.saw_tstamp) {
6501 			tp->rx_opt.tstamp_ok = 1;
6502 			tcp_store_ts_recent(tp);
6503 			tp->tcp_header_len =
6504 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6505 		} else {
6506 			tp->tcp_header_len = sizeof(struct tcphdr);
6507 		}
6508 
6509 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6510 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6511 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6512 
6513 		/* RFC1323: The window in SYN & SYN/ACK segments is
6514 		 * never scaled.
6515 		 */
6516 		tp->snd_wnd    = ntohs(th->window);
6517 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6518 		tp->max_window = tp->snd_wnd;
6519 
6520 		tcp_ecn_rcv_syn(tp, th);
6521 
6522 		tcp_mtup_init(sk);
6523 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6524 		tcp_initialize_rcv_mss(sk);
6525 
6526 		tcp_send_synack(sk);
6527 #if 0
6528 		/* Note, we could accept data and URG from this segment.
6529 		 * There are no obstacles to make this (except that we must
6530 		 * either change tcp_recvmsg() to prevent it from returning data
6531 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6532 		 *
6533 		 * However, if we ignore data in ACKless segments sometimes,
6534 		 * we have no reasons to accept it sometimes.
6535 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6536 		 * is not flawless. So, discard packet for sanity.
6537 		 * Uncomment this return to process the data.
6538 		 */
6539 		return -1;
6540 #else
6541 		goto consume;
6542 #endif
6543 	}
6544 	/* "fifth, if neither of the SYN or RST bits is set then
6545 	 * drop the segment and return."
6546 	 */
6547 
6548 discard_and_undo:
6549 	tcp_clear_options(&tp->rx_opt);
6550 	tp->rx_opt.mss_clamp = saved_clamp;
6551 	tcp_drop_reason(sk, skb, reason);
6552 	return 0;
6553 
6554 reset_and_undo:
6555 	tcp_clear_options(&tp->rx_opt);
6556 	tp->rx_opt.mss_clamp = saved_clamp;
6557 	return 1;
6558 }
6559 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6560 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6561 {
6562 	struct tcp_sock *tp = tcp_sk(sk);
6563 	struct request_sock *req;
6564 
6565 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6566 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6567 	 */
6568 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6569 		tcp_try_undo_recovery(sk);
6570 
6571 	tcp_update_rto_time(tp);
6572 	inet_csk(sk)->icsk_retransmits = 0;
6573 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6574 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6575 	 * need to zero retrans_stamp here to prevent spurious
6576 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6577 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6578 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6579 	 * undo behavior.
6580 	 */
6581 	tcp_retrans_stamp_cleanup(sk);
6582 
6583 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6584 	 * we no longer need req so release it.
6585 	 */
6586 	req = rcu_dereference_protected(tp->fastopen_rsk,
6587 					lockdep_sock_is_held(sk));
6588 	reqsk_fastopen_remove(sk, req, false);
6589 
6590 	/* Re-arm the timer because data may have been sent out.
6591 	 * This is similar to the regular data transmission case
6592 	 * when new data has just been ack'ed.
6593 	 *
6594 	 * (TFO) - we could try to be more aggressive and
6595 	 * retransmitting any data sooner based on when they
6596 	 * are sent out.
6597 	 */
6598 	tcp_rearm_rto(sk);
6599 }
6600 
6601 /*
6602  *	This function implements the receiving procedure of RFC 793 for
6603  *	all states except ESTABLISHED and TIME_WAIT.
6604  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6605  *	address independent.
6606  */
6607 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6608 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6609 {
6610 	struct tcp_sock *tp = tcp_sk(sk);
6611 	struct inet_connection_sock *icsk = inet_csk(sk);
6612 	const struct tcphdr *th = tcp_hdr(skb);
6613 	struct request_sock *req;
6614 	int queued = 0;
6615 	bool acceptable;
6616 	SKB_DR(reason);
6617 
6618 	switch (sk->sk_state) {
6619 	case TCP_CLOSE:
6620 		SKB_DR_SET(reason, TCP_CLOSE);
6621 		goto discard;
6622 
6623 	case TCP_LISTEN:
6624 		if (th->ack)
6625 			return 1;
6626 
6627 		if (th->rst) {
6628 			SKB_DR_SET(reason, TCP_RESET);
6629 			goto discard;
6630 		}
6631 		if (th->syn) {
6632 			if (th->fin) {
6633 				SKB_DR_SET(reason, TCP_FLAGS);
6634 				goto discard;
6635 			}
6636 			/* It is possible that we process SYN packets from backlog,
6637 			 * so we need to make sure to disable BH and RCU right there.
6638 			 */
6639 			rcu_read_lock();
6640 			local_bh_disable();
6641 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6642 			local_bh_enable();
6643 			rcu_read_unlock();
6644 
6645 			if (!acceptable)
6646 				return 1;
6647 			consume_skb(skb);
6648 			return 0;
6649 		}
6650 		SKB_DR_SET(reason, TCP_FLAGS);
6651 		goto discard;
6652 
6653 	case TCP_SYN_SENT:
6654 		tp->rx_opt.saw_tstamp = 0;
6655 		tcp_mstamp_refresh(tp);
6656 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6657 		if (queued >= 0)
6658 			return queued;
6659 
6660 		/* Do step6 onward by hand. */
6661 		tcp_urg(sk, skb, th);
6662 		__kfree_skb(skb);
6663 		tcp_data_snd_check(sk);
6664 		return 0;
6665 	}
6666 
6667 	tcp_mstamp_refresh(tp);
6668 	tp->rx_opt.saw_tstamp = 0;
6669 	req = rcu_dereference_protected(tp->fastopen_rsk,
6670 					lockdep_sock_is_held(sk));
6671 	if (req) {
6672 		bool req_stolen;
6673 
6674 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6675 		    sk->sk_state != TCP_FIN_WAIT1);
6676 
6677 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6678 			SKB_DR_SET(reason, TCP_FASTOPEN);
6679 			goto discard;
6680 		}
6681 	}
6682 
6683 	if (!th->ack && !th->rst && !th->syn) {
6684 		SKB_DR_SET(reason, TCP_FLAGS);
6685 		goto discard;
6686 	}
6687 	if (!tcp_validate_incoming(sk, skb, th, 0))
6688 		return 0;
6689 
6690 	/* step 5: check the ACK field */
6691 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6692 				      FLAG_UPDATE_TS_RECENT |
6693 				      FLAG_NO_CHALLENGE_ACK) > 0;
6694 
6695 	if (!acceptable) {
6696 		if (sk->sk_state == TCP_SYN_RECV)
6697 			return 1;	/* send one RST */
6698 		tcp_send_challenge_ack(sk);
6699 		SKB_DR_SET(reason, TCP_OLD_ACK);
6700 		goto discard;
6701 	}
6702 	switch (sk->sk_state) {
6703 	case TCP_SYN_RECV:
6704 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6705 		if (!tp->srtt_us)
6706 			tcp_synack_rtt_meas(sk, req);
6707 
6708 		if (req) {
6709 			tcp_rcv_synrecv_state_fastopen(sk);
6710 		} else {
6711 			tcp_try_undo_spurious_syn(sk);
6712 			tp->retrans_stamp = 0;
6713 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6714 					  skb);
6715 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6716 		}
6717 		smp_mb();
6718 		tcp_set_state(sk, TCP_ESTABLISHED);
6719 		sk->sk_state_change(sk);
6720 
6721 		/* Note, that this wakeup is only for marginal crossed SYN case.
6722 		 * Passively open sockets are not waked up, because
6723 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6724 		 */
6725 		if (sk->sk_socket)
6726 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6727 
6728 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6729 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6730 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6731 
6732 		if (tp->rx_opt.tstamp_ok)
6733 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6734 
6735 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6736 			tcp_update_pacing_rate(sk);
6737 
6738 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6739 		tp->lsndtime = tcp_jiffies32;
6740 
6741 		tcp_initialize_rcv_mss(sk);
6742 		tcp_fast_path_on(tp);
6743 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6744 			tcp_shutdown(sk, SEND_SHUTDOWN);
6745 		break;
6746 
6747 	case TCP_FIN_WAIT1: {
6748 		int tmo;
6749 
6750 		if (req)
6751 			tcp_rcv_synrecv_state_fastopen(sk);
6752 
6753 		if (tp->snd_una != tp->write_seq)
6754 			break;
6755 
6756 		tcp_set_state(sk, TCP_FIN_WAIT2);
6757 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6758 
6759 		sk_dst_confirm(sk);
6760 
6761 		if (!sock_flag(sk, SOCK_DEAD)) {
6762 			/* Wake up lingering close() */
6763 			sk->sk_state_change(sk);
6764 			break;
6765 		}
6766 
6767 		if (READ_ONCE(tp->linger2) < 0) {
6768 			tcp_done(sk);
6769 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6770 			return 1;
6771 		}
6772 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6773 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6774 			/* Receive out of order FIN after close() */
6775 			if (tp->syn_fastopen && th->fin)
6776 				tcp_fastopen_active_disable(sk);
6777 			tcp_done(sk);
6778 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6779 			return 1;
6780 		}
6781 
6782 		tmo = tcp_fin_time(sk);
6783 		if (tmo > TCP_TIMEWAIT_LEN) {
6784 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6785 		} else if (th->fin || sock_owned_by_user(sk)) {
6786 			/* Bad case. We could lose such FIN otherwise.
6787 			 * It is not a big problem, but it looks confusing
6788 			 * and not so rare event. We still can lose it now,
6789 			 * if it spins in bh_lock_sock(), but it is really
6790 			 * marginal case.
6791 			 */
6792 			inet_csk_reset_keepalive_timer(sk, tmo);
6793 		} else {
6794 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6795 			goto consume;
6796 		}
6797 		break;
6798 	}
6799 
6800 	case TCP_CLOSING:
6801 		if (tp->snd_una == tp->write_seq) {
6802 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6803 			goto consume;
6804 		}
6805 		break;
6806 
6807 	case TCP_LAST_ACK:
6808 		if (tp->snd_una == tp->write_seq) {
6809 			tcp_update_metrics(sk);
6810 			tcp_done(sk);
6811 			goto consume;
6812 		}
6813 		break;
6814 	}
6815 
6816 	/* step 6: check the URG bit */
6817 	tcp_urg(sk, skb, th);
6818 
6819 	/* step 7: process the segment text */
6820 	switch (sk->sk_state) {
6821 	case TCP_CLOSE_WAIT:
6822 	case TCP_CLOSING:
6823 	case TCP_LAST_ACK:
6824 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6825 			/* If a subflow has been reset, the packet should not
6826 			 * continue to be processed, drop the packet.
6827 			 */
6828 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6829 				goto discard;
6830 			break;
6831 		}
6832 		fallthrough;
6833 	case TCP_FIN_WAIT1:
6834 	case TCP_FIN_WAIT2:
6835 		/* RFC 793 says to queue data in these states,
6836 		 * RFC 1122 says we MUST send a reset.
6837 		 * BSD 4.4 also does reset.
6838 		 */
6839 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6840 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6841 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6842 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6843 				tcp_reset(sk, skb);
6844 				return 1;
6845 			}
6846 		}
6847 		fallthrough;
6848 	case TCP_ESTABLISHED:
6849 		tcp_data_queue(sk, skb);
6850 		queued = 1;
6851 		break;
6852 	}
6853 
6854 	/* tcp_data could move socket to TIME-WAIT */
6855 	if (sk->sk_state != TCP_CLOSE) {
6856 		tcp_data_snd_check(sk);
6857 		tcp_ack_snd_check(sk);
6858 	}
6859 
6860 	if (!queued) {
6861 discard:
6862 		tcp_drop_reason(sk, skb, reason);
6863 	}
6864 	return 0;
6865 
6866 consume:
6867 	__kfree_skb(skb);
6868 	return 0;
6869 }
6870 EXPORT_SYMBOL(tcp_rcv_state_process);
6871 
pr_drop_req(struct request_sock * req,__u16 port,int family)6872 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6873 {
6874 	struct inet_request_sock *ireq = inet_rsk(req);
6875 
6876 	if (family == AF_INET)
6877 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6878 				    &ireq->ir_rmt_addr, port);
6879 #if IS_ENABLED(CONFIG_IPV6)
6880 	else if (family == AF_INET6)
6881 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6882 				    &ireq->ir_v6_rmt_addr, port);
6883 #endif
6884 }
6885 
6886 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6887  *
6888  * If we receive a SYN packet with these bits set, it means a
6889  * network is playing bad games with TOS bits. In order to
6890  * avoid possible false congestion notifications, we disable
6891  * TCP ECN negotiation.
6892  *
6893  * Exception: tcp_ca wants ECN. This is required for DCTCP
6894  * congestion control: Linux DCTCP asserts ECT on all packets,
6895  * including SYN, which is most optimal solution; however,
6896  * others, such as FreeBSD do not.
6897  *
6898  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6899  * set, indicating the use of a future TCP extension (such as AccECN). See
6900  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6901  * extensions.
6902  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6903 static void tcp_ecn_create_request(struct request_sock *req,
6904 				   const struct sk_buff *skb,
6905 				   const struct sock *listen_sk,
6906 				   const struct dst_entry *dst)
6907 {
6908 	const struct tcphdr *th = tcp_hdr(skb);
6909 	const struct net *net = sock_net(listen_sk);
6910 	bool th_ecn = th->ece && th->cwr;
6911 	bool ect, ecn_ok;
6912 	u32 ecn_ok_dst;
6913 
6914 	if (!th_ecn)
6915 		return;
6916 
6917 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6918 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6919 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6920 
6921 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6922 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6923 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6924 		inet_rsk(req)->ecn_ok = 1;
6925 }
6926 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6927 static void tcp_openreq_init(struct request_sock *req,
6928 			     const struct tcp_options_received *rx_opt,
6929 			     struct sk_buff *skb, const struct sock *sk)
6930 {
6931 	struct inet_request_sock *ireq = inet_rsk(req);
6932 
6933 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6934 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6935 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6936 	tcp_rsk(req)->snt_synack = 0;
6937 	tcp_rsk(req)->last_oow_ack_time = 0;
6938 	req->mss = rx_opt->mss_clamp;
6939 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6940 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6941 	ireq->sack_ok = rx_opt->sack_ok;
6942 	ireq->snd_wscale = rx_opt->snd_wscale;
6943 	ireq->wscale_ok = rx_opt->wscale_ok;
6944 	ireq->acked = 0;
6945 	ireq->ecn_ok = 0;
6946 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6947 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6948 	ireq->ir_mark = inet_request_mark(sk, skb);
6949 #if IS_ENABLED(CONFIG_SMC)
6950 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6951 			tcp_sk(sk)->smc_hs_congested(sk));
6952 #endif
6953 }
6954 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6955 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6956 				      struct sock *sk_listener,
6957 				      bool attach_listener)
6958 {
6959 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6960 					       attach_listener);
6961 
6962 	if (req) {
6963 		struct inet_request_sock *ireq = inet_rsk(req);
6964 
6965 		ireq->ireq_opt = NULL;
6966 #if IS_ENABLED(CONFIG_IPV6)
6967 		ireq->pktopts = NULL;
6968 #endif
6969 		atomic64_set(&ireq->ir_cookie, 0);
6970 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6971 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6972 		ireq->ireq_family = sk_listener->sk_family;
6973 		req->timeout = TCP_TIMEOUT_INIT;
6974 	}
6975 
6976 	return req;
6977 }
6978 EXPORT_SYMBOL(inet_reqsk_alloc);
6979 
6980 /*
6981  * Return true if a syncookie should be sent
6982  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6983 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6984 {
6985 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6986 	const char *msg = "Dropping request";
6987 	struct net *net = sock_net(sk);
6988 	bool want_cookie = false;
6989 	u8 syncookies;
6990 
6991 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6992 
6993 #ifdef CONFIG_SYN_COOKIES
6994 	if (syncookies) {
6995 		msg = "Sending cookies";
6996 		want_cookie = true;
6997 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6998 	} else
6999 #endif
7000 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7001 
7002 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7003 	    xchg(&queue->synflood_warned, 1) == 0) {
7004 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7005 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7006 					proto, inet6_rcv_saddr(sk),
7007 					sk->sk_num, msg);
7008 		} else {
7009 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7010 					proto, &sk->sk_rcv_saddr,
7011 					sk->sk_num, msg);
7012 		}
7013 	}
7014 
7015 	return want_cookie;
7016 }
7017 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7018 static void tcp_reqsk_record_syn(const struct sock *sk,
7019 				 struct request_sock *req,
7020 				 const struct sk_buff *skb)
7021 {
7022 	if (tcp_sk(sk)->save_syn) {
7023 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7024 		struct saved_syn *saved_syn;
7025 		u32 mac_hdrlen;
7026 		void *base;
7027 
7028 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7029 			base = skb_mac_header(skb);
7030 			mac_hdrlen = skb_mac_header_len(skb);
7031 			len += mac_hdrlen;
7032 		} else {
7033 			base = skb_network_header(skb);
7034 			mac_hdrlen = 0;
7035 		}
7036 
7037 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7038 				    GFP_ATOMIC);
7039 		if (saved_syn) {
7040 			saved_syn->mac_hdrlen = mac_hdrlen;
7041 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7042 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7043 			memcpy(saved_syn->data, base, len);
7044 			req->saved_syn = saved_syn;
7045 		}
7046 	}
7047 }
7048 
7049 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7050  * used for SYN cookie generation.
7051  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7052 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7053 			  const struct tcp_request_sock_ops *af_ops,
7054 			  struct sock *sk, struct tcphdr *th)
7055 {
7056 	struct tcp_sock *tp = tcp_sk(sk);
7057 	u16 mss;
7058 
7059 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7060 	    !inet_csk_reqsk_queue_is_full(sk))
7061 		return 0;
7062 
7063 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7064 		return 0;
7065 
7066 	if (sk_acceptq_is_full(sk)) {
7067 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7068 		return 0;
7069 	}
7070 
7071 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7072 	if (!mss)
7073 		mss = af_ops->mss_clamp;
7074 
7075 	return mss;
7076 }
7077 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7078 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7079 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7080 		     const struct tcp_request_sock_ops *af_ops,
7081 		     struct sock *sk, struct sk_buff *skb)
7082 {
7083 	struct tcp_fastopen_cookie foc = { .len = -1 };
7084 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7085 	struct tcp_options_received tmp_opt;
7086 	struct tcp_sock *tp = tcp_sk(sk);
7087 	struct net *net = sock_net(sk);
7088 	struct sock *fastopen_sk = NULL;
7089 	struct request_sock *req;
7090 	bool want_cookie = false;
7091 	struct dst_entry *dst;
7092 	struct flowi fl;
7093 	u8 syncookies;
7094 
7095 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7096 
7097 	/* TW buckets are converted to open requests without
7098 	 * limitations, they conserve resources and peer is
7099 	 * evidently real one.
7100 	 */
7101 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7102 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7103 		if (!want_cookie)
7104 			goto drop;
7105 	}
7106 
7107 	if (sk_acceptq_is_full(sk)) {
7108 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7109 		goto drop;
7110 	}
7111 
7112 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7113 	if (!req)
7114 		goto drop;
7115 
7116 	req->syncookie = want_cookie;
7117 	tcp_rsk(req)->af_specific = af_ops;
7118 	tcp_rsk(req)->ts_off = 0;
7119 #if IS_ENABLED(CONFIG_MPTCP)
7120 	tcp_rsk(req)->is_mptcp = 0;
7121 #endif
7122 
7123 	tcp_clear_options(&tmp_opt);
7124 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7125 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7126 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7127 			  want_cookie ? NULL : &foc);
7128 
7129 	if (want_cookie && !tmp_opt.saw_tstamp)
7130 		tcp_clear_options(&tmp_opt);
7131 
7132 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7133 		tmp_opt.smc_ok = 0;
7134 
7135 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7136 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7137 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7138 
7139 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7140 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7141 
7142 	dst = af_ops->route_req(sk, skb, &fl, req);
7143 	if (!dst)
7144 		goto drop_and_free;
7145 
7146 	if (tmp_opt.tstamp_ok)
7147 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7148 
7149 	if (!want_cookie && !isn) {
7150 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7151 
7152 		/* Kill the following clause, if you dislike this way. */
7153 		if (!syncookies &&
7154 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7155 		     (max_syn_backlog >> 2)) &&
7156 		    !tcp_peer_is_proven(req, dst)) {
7157 			/* Without syncookies last quarter of
7158 			 * backlog is filled with destinations,
7159 			 * proven to be alive.
7160 			 * It means that we continue to communicate
7161 			 * to destinations, already remembered
7162 			 * to the moment of synflood.
7163 			 */
7164 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7165 				    rsk_ops->family);
7166 			goto drop_and_release;
7167 		}
7168 
7169 		isn = af_ops->init_seq(skb);
7170 	}
7171 
7172 	tcp_ecn_create_request(req, skb, sk, dst);
7173 
7174 	if (want_cookie) {
7175 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7176 		if (!tmp_opt.tstamp_ok)
7177 			inet_rsk(req)->ecn_ok = 0;
7178 	}
7179 
7180 	tcp_rsk(req)->snt_isn = isn;
7181 	tcp_rsk(req)->txhash = net_tx_rndhash();
7182 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7183 	tcp_openreq_init_rwin(req, sk, dst);
7184 	sk_rx_queue_set(req_to_sk(req), skb);
7185 	if (!want_cookie) {
7186 		tcp_reqsk_record_syn(sk, req, skb);
7187 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7188 	}
7189 	if (fastopen_sk) {
7190 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7191 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7192 		/* Add the child socket directly into the accept queue */
7193 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7194 			reqsk_fastopen_remove(fastopen_sk, req, false);
7195 			bh_unlock_sock(fastopen_sk);
7196 			sock_put(fastopen_sk);
7197 			goto drop_and_free;
7198 		}
7199 		sk->sk_data_ready(sk);
7200 		bh_unlock_sock(fastopen_sk);
7201 		sock_put(fastopen_sk);
7202 	} else {
7203 		tcp_rsk(req)->tfo_listener = false;
7204 		if (!want_cookie) {
7205 			req->timeout = tcp_timeout_init((struct sock *)req);
7206 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7207 								    req->timeout))) {
7208 				reqsk_free(req);
7209 				dst_release(dst);
7210 				return 0;
7211 			}
7212 
7213 		}
7214 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7215 				    !want_cookie ? TCP_SYNACK_NORMAL :
7216 						   TCP_SYNACK_COOKIE,
7217 				    skb);
7218 		if (want_cookie) {
7219 			reqsk_free(req);
7220 			return 0;
7221 		}
7222 	}
7223 	reqsk_put(req);
7224 	return 0;
7225 
7226 drop_and_release:
7227 	dst_release(dst);
7228 drop_and_free:
7229 	__reqsk_free(req);
7230 drop:
7231 	tcp_listendrop(sk);
7232 	return 0;
7233 }
7234 EXPORT_SYMBOL(tcp_conn_request);
7235