1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33
34 #include "exec/exec-all.h"
35 #include "exec/page-protection.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-core.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/boards.h"
40 #include "sysemu/xen.h"
41 #include "sysemu/kvm.h"
42 #include "sysemu/tcg.h"
43 #include "sysemu/qtest.h"
44 #include "qemu/timer.h"
45 #include "qemu/config-file.h"
46 #include "qemu/error-report.h"
47 #include "qemu/qemu-print.h"
48 #include "qemu/log.h"
49 #include "qemu/memalign.h"
50 #include "exec/memory.h"
51 #include "exec/ioport.h"
52 #include "sysemu/dma.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/hw_accel.h"
55 #include "sysemu/xen-mapcache.h"
56 #include "trace.h"
57
58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
59 #include <linux/falloc.h>
60 #endif
61
62 #include "qemu/rcu_queue.h"
63 #include "qemu/main-loop.h"
64 #include "exec/translate-all.h"
65 #include "sysemu/replay.h"
66
67 #include "exec/memory-internal.h"
68 #include "exec/ram_addr.h"
69
70 #include "qemu/pmem.h"
71
72 #include "migration/vmstate.h"
73
74 #include "qemu/range.h"
75 #ifndef _WIN32
76 #include "qemu/mmap-alloc.h"
77 #endif
78
79 #include "monitor/monitor.h"
80
81 #ifdef CONFIG_LIBDAXCTL
82 #include <daxctl/libdaxctl.h>
83 #endif
84
85 //#define DEBUG_SUBPAGE
86
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
89 */
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
94
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
97
98 static MemoryRegion io_mem_unassigned;
99
100 typedef struct PhysPageEntry PhysPageEntry;
101
102 struct PhysPageEntry {
103 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
104 uint32_t skip : 6;
105 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106 uint32_t ptr : 26;
107 };
108
109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
110
111 /* Size of the L2 (and L3, etc) page tables. */
112 #define ADDR_SPACE_BITS 64
113
114 #define P_L2_BITS 9
115 #define P_L2_SIZE (1 << P_L2_BITS)
116
117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
118
119 typedef PhysPageEntry Node[P_L2_SIZE];
120
121 typedef struct PhysPageMap {
122 struct rcu_head rcu;
123
124 unsigned sections_nb;
125 unsigned sections_nb_alloc;
126 unsigned nodes_nb;
127 unsigned nodes_nb_alloc;
128 Node *nodes;
129 MemoryRegionSection *sections;
130 } PhysPageMap;
131
132 struct AddressSpaceDispatch {
133 MemoryRegionSection *mru_section;
134 /* This is a multi-level map on the physical address space.
135 * The bottom level has pointers to MemoryRegionSections.
136 */
137 PhysPageEntry phys_map;
138 PhysPageMap map;
139 };
140
141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
142 typedef struct subpage_t {
143 MemoryRegion iomem;
144 FlatView *fv;
145 hwaddr base;
146 uint16_t sub_section[];
147 } subpage_t;
148
149 #define PHYS_SECTION_UNASSIGNED 0
150
151 static void io_mem_init(void);
152 static void memory_map_init(void);
153 static void tcg_log_global_after_sync(MemoryListener *listener);
154 static void tcg_commit(MemoryListener *listener);
155
156 /**
157 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
158 * @cpu: the CPU whose AddressSpace this is
159 * @as: the AddressSpace itself
160 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
161 * @tcg_as_listener: listener for tracking changes to the AddressSpace
162 */
163 typedef struct CPUAddressSpace {
164 CPUState *cpu;
165 AddressSpace *as;
166 struct AddressSpaceDispatch *memory_dispatch;
167 MemoryListener tcg_as_listener;
168 } CPUAddressSpace;
169
170 struct DirtyBitmapSnapshot {
171 ram_addr_t start;
172 ram_addr_t end;
173 unsigned long dirty[];
174 };
175
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
177 {
178 static unsigned alloc_hint = 16;
179 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
180 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
181 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
182 alloc_hint = map->nodes_nb_alloc;
183 }
184 }
185
phys_map_node_alloc(PhysPageMap * map,bool leaf)186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
187 {
188 unsigned i;
189 uint32_t ret;
190 PhysPageEntry e;
191 PhysPageEntry *p;
192
193 ret = map->nodes_nb++;
194 p = map->nodes[ret];
195 assert(ret != PHYS_MAP_NODE_NIL);
196 assert(ret != map->nodes_nb_alloc);
197
198 e.skip = leaf ? 0 : 1;
199 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
200 for (i = 0; i < P_L2_SIZE; ++i) {
201 memcpy(&p[i], &e, sizeof(e));
202 }
203 return ret;
204 }
205
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
207 hwaddr *index, uint64_t *nb, uint16_t leaf,
208 int level)
209 {
210 PhysPageEntry *p;
211 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
212
213 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
214 lp->ptr = phys_map_node_alloc(map, level == 0);
215 }
216 p = map->nodes[lp->ptr];
217 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
218
219 while (*nb && lp < &p[P_L2_SIZE]) {
220 if ((*index & (step - 1)) == 0 && *nb >= step) {
221 lp->skip = 0;
222 lp->ptr = leaf;
223 *index += step;
224 *nb -= step;
225 } else {
226 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
227 }
228 ++lp;
229 }
230 }
231
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)232 static void phys_page_set(AddressSpaceDispatch *d,
233 hwaddr index, uint64_t nb,
234 uint16_t leaf)
235 {
236 /* Wildly overreserve - it doesn't matter much. */
237 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
238
239 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 }
241
242 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
243 * and update our entry so we can skip it and go directly to the destination.
244 */
phys_page_compact(PhysPageEntry * lp,Node * nodes)245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
246 {
247 unsigned valid_ptr = P_L2_SIZE;
248 int valid = 0;
249 PhysPageEntry *p;
250 int i;
251
252 if (lp->ptr == PHYS_MAP_NODE_NIL) {
253 return;
254 }
255
256 p = nodes[lp->ptr];
257 for (i = 0; i < P_L2_SIZE; i++) {
258 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
259 continue;
260 }
261
262 valid_ptr = i;
263 valid++;
264 if (p[i].skip) {
265 phys_page_compact(&p[i], nodes);
266 }
267 }
268
269 /* We can only compress if there's only one child. */
270 if (valid != 1) {
271 return;
272 }
273
274 assert(valid_ptr < P_L2_SIZE);
275
276 /* Don't compress if it won't fit in the # of bits we have. */
277 if (P_L2_LEVELS >= (1 << 6) &&
278 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
279 return;
280 }
281
282 lp->ptr = p[valid_ptr].ptr;
283 if (!p[valid_ptr].skip) {
284 /* If our only child is a leaf, make this a leaf. */
285 /* By design, we should have made this node a leaf to begin with so we
286 * should never reach here.
287 * But since it's so simple to handle this, let's do it just in case we
288 * change this rule.
289 */
290 lp->skip = 0;
291 } else {
292 lp->skip += p[valid_ptr].skip;
293 }
294 }
295
address_space_dispatch_compact(AddressSpaceDispatch * d)296 void address_space_dispatch_compact(AddressSpaceDispatch *d)
297 {
298 if (d->phys_map.skip) {
299 phys_page_compact(&d->phys_map, d->map.nodes);
300 }
301 }
302
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)303 static inline bool section_covers_addr(const MemoryRegionSection *section,
304 hwaddr addr)
305 {
306 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
307 * the section must cover the entire address space.
308 */
309 return int128_gethi(section->size) ||
310 range_covers_byte(section->offset_within_address_space,
311 int128_getlo(section->size), addr);
312 }
313
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
315 {
316 PhysPageEntry lp = d->phys_map, *p;
317 Node *nodes = d->map.nodes;
318 MemoryRegionSection *sections = d->map.sections;
319 hwaddr index = addr >> TARGET_PAGE_BITS;
320 int i;
321
322 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
323 if (lp.ptr == PHYS_MAP_NODE_NIL) {
324 return §ions[PHYS_SECTION_UNASSIGNED];
325 }
326 p = nodes[lp.ptr];
327 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 }
329
330 if (section_covers_addr(§ions[lp.ptr], addr)) {
331 return §ions[lp.ptr];
332 } else {
333 return §ions[PHYS_SECTION_UNASSIGNED];
334 }
335 }
336
337 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
339 hwaddr addr,
340 bool resolve_subpage)
341 {
342 MemoryRegionSection *section = qatomic_read(&d->mru_section);
343 subpage_t *subpage;
344
345 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
346 !section_covers_addr(section, addr)) {
347 section = phys_page_find(d, addr);
348 qatomic_set(&d->mru_section, section);
349 }
350 if (resolve_subpage && section->mr->subpage) {
351 subpage = container_of(section->mr, subpage_t, iomem);
352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353 }
354 return section;
355 }
356
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360 hwaddr *plen, bool resolve_subpage)
361 {
362 MemoryRegionSection *section;
363 MemoryRegion *mr;
364 Int128 diff;
365
366 section = address_space_lookup_region(d, addr, resolve_subpage);
367 /* Compute offset within MemoryRegionSection */
368 addr -= section->offset_within_address_space;
369
370 /* Compute offset within MemoryRegion */
371 *xlat = addr + section->offset_within_region;
372
373 mr = section->mr;
374
375 /* MMIO registers can be expected to perform full-width accesses based only
376 * on their address, without considering adjacent registers that could
377 * decode to completely different MemoryRegions. When such registers
378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379 * regions overlap wildly. For this reason we cannot clamp the accesses
380 * here.
381 *
382 * If the length is small (as is the case for address_space_ldl/stl),
383 * everything works fine. If the incoming length is large, however,
384 * the caller really has to do the clamping through memory_access_size.
385 */
386 if (memory_region_is_ram(mr)) {
387 diff = int128_sub(section->size, int128_make64(addr));
388 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 }
390 return section;
391 }
392
393 /**
394 * address_space_translate_iommu - translate an address through an IOMMU
395 * memory region and then through the target address space.
396 *
397 * @iommu_mr: the IOMMU memory region that we start the translation from
398 * @addr: the address to be translated through the MMU
399 * @xlat: the translated address offset within the destination memory region.
400 * It cannot be %NULL.
401 * @plen_out: valid read/write length of the translated address. It
402 * cannot be %NULL.
403 * @page_mask_out: page mask for the translated address. This
404 * should only be meaningful for IOMMU translated
405 * addresses, since there may be huge pages that this bit
406 * would tell. It can be %NULL if we don't care about it.
407 * @is_write: whether the translation operation is for write
408 * @is_mmio: whether this can be MMIO, set true if it can
409 * @target_as: the address space targeted by the IOMMU
410 * @attrs: transaction attributes
411 *
412 * This function is called from RCU critical section. It is the common
413 * part of flatview_do_translate and address_space_translate_cached.
414 */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
416 hwaddr *xlat,
417 hwaddr *plen_out,
418 hwaddr *page_mask_out,
419 bool is_write,
420 bool is_mmio,
421 AddressSpace **target_as,
422 MemTxAttrs attrs)
423 {
424 MemoryRegionSection *section;
425 hwaddr page_mask = (hwaddr)-1;
426
427 do {
428 hwaddr addr = *xlat;
429 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
430 int iommu_idx = 0;
431 IOMMUTLBEntry iotlb;
432
433 if (imrc->attrs_to_index) {
434 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 }
436
437 iotlb = imrc->translate(iommu_mr, addr, is_write ?
438 IOMMU_WO : IOMMU_RO, iommu_idx);
439
440 if (!(iotlb.perm & (1 << is_write))) {
441 goto unassigned;
442 }
443
444 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
445 | (addr & iotlb.addr_mask));
446 page_mask &= iotlb.addr_mask;
447 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
448 *target_as = iotlb.target_as;
449
450 section = address_space_translate_internal(
451 address_space_to_dispatch(iotlb.target_as), addr, xlat,
452 plen_out, is_mmio);
453
454 iommu_mr = memory_region_get_iommu(section->mr);
455 } while (unlikely(iommu_mr));
456
457 if (page_mask_out) {
458 *page_mask_out = page_mask;
459 }
460 return *section;
461
462 unassigned:
463 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464 }
465
466 /**
467 * flatview_do_translate - translate an address in FlatView
468 *
469 * @fv: the flat view that we want to translate on
470 * @addr: the address to be translated in above address space
471 * @xlat: the translated address offset within memory region. It
472 * cannot be @NULL.
473 * @plen_out: valid read/write length of the translated address. It
474 * can be @NULL when we don't care about it.
475 * @page_mask_out: page mask for the translated address. This
476 * should only be meaningful for IOMMU translated
477 * addresses, since there may be huge pages that this bit
478 * would tell. It can be @NULL if we don't care about it.
479 * @is_write: whether the translation operation is for write
480 * @is_mmio: whether this can be MMIO, set true if it can
481 * @target_as: the address space targeted by the IOMMU
482 * @attrs: memory transaction attributes
483 *
484 * This function is called from RCU critical section
485 */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as,
494 MemTxAttrs attrs)
495 {
496 MemoryRegionSection *section;
497 IOMMUMemoryRegion *iommu_mr;
498 hwaddr plen = (hwaddr)(-1);
499
500 if (!plen_out) {
501 plen_out = &plen;
502 }
503
504 section = address_space_translate_internal(
505 flatview_to_dispatch(fv), addr, xlat,
506 plen_out, is_mmio);
507
508 iommu_mr = memory_region_get_iommu(section->mr);
509 if (unlikely(iommu_mr)) {
510 return address_space_translate_iommu(iommu_mr, xlat,
511 plen_out, page_mask_out,
512 is_write, is_mmio,
513 target_as, attrs);
514 }
515 if (page_mask_out) {
516 /* Not behind an IOMMU, use default page size. */
517 *page_mask_out = ~TARGET_PAGE_MASK;
518 }
519
520 return *section;
521 }
522
523 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
525 bool is_write, MemTxAttrs attrs)
526 {
527 MemoryRegionSection section;
528 hwaddr xlat, page_mask;
529
530 /*
531 * This can never be MMIO, and we don't really care about plen,
532 * but page mask.
533 */
534 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
535 NULL, &page_mask, is_write, false, &as,
536 attrs);
537
538 /* Illegal translation */
539 if (section.mr == &io_mem_unassigned) {
540 goto iotlb_fail;
541 }
542
543 /* Convert memory region offset into address space offset */
544 xlat += section.offset_within_address_space -
545 section.offset_within_region;
546
547 return (IOMMUTLBEntry) {
548 .target_as = as,
549 .iova = addr & ~page_mask,
550 .translated_addr = xlat & ~page_mask,
551 .addr_mask = page_mask,
552 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
553 .perm = IOMMU_RW,
554 };
555
556 iotlb_fail:
557 return (IOMMUTLBEntry) {0};
558 }
559
560 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
562 hwaddr *plen, bool is_write,
563 MemTxAttrs attrs)
564 {
565 MemoryRegion *mr;
566 MemoryRegionSection section;
567 AddressSpace *as = NULL;
568
569 /* This can be MMIO, so setup MMIO bit. */
570 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
571 is_write, true, &as, attrs);
572 mr = section.mr;
573
574 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
575 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
576 *plen = MIN(page, *plen);
577 }
578
579 return mr;
580 }
581
582 typedef struct TCGIOMMUNotifier {
583 IOMMUNotifier n;
584 MemoryRegion *mr;
585 CPUState *cpu;
586 int iommu_idx;
587 bool active;
588 } TCGIOMMUNotifier;
589
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
591 {
592 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
593
594 if (!notifier->active) {
595 return;
596 }
597 tlb_flush(notifier->cpu);
598 notifier->active = false;
599 /* We leave the notifier struct on the list to avoid reallocating it later.
600 * Generally the number of IOMMUs a CPU deals with will be small.
601 * In any case we can't unregister the iommu notifier from a notify
602 * callback.
603 */
604 }
605
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)606 static void tcg_register_iommu_notifier(CPUState *cpu,
607 IOMMUMemoryRegion *iommu_mr,
608 int iommu_idx)
609 {
610 /* Make sure this CPU has an IOMMU notifier registered for this
611 * IOMMU/IOMMU index combination, so that we can flush its TLB
612 * when the IOMMU tells us the mappings we've cached have changed.
613 */
614 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
615 TCGIOMMUNotifier *notifier = NULL;
616 int i;
617
618 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
619 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
620 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
621 break;
622 }
623 }
624 if (i == cpu->iommu_notifiers->len) {
625 /* Not found, add a new entry at the end of the array */
626 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
627 notifier = g_new0(TCGIOMMUNotifier, 1);
628 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
629
630 notifier->mr = mr;
631 notifier->iommu_idx = iommu_idx;
632 notifier->cpu = cpu;
633 /* Rather than trying to register interest in the specific part
634 * of the iommu's address space that we've accessed and then
635 * expand it later as subsequent accesses touch more of it, we
636 * just register interest in the whole thing, on the assumption
637 * that iommu reconfiguration will be rare.
638 */
639 iommu_notifier_init(¬ifier->n,
640 tcg_iommu_unmap_notify,
641 IOMMU_NOTIFIER_UNMAP,
642 0,
643 HWADDR_MAX,
644 iommu_idx);
645 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n,
646 &error_fatal);
647 }
648
649 if (!notifier->active) {
650 notifier->active = true;
651 }
652 }
653
tcg_iommu_free_notifier_list(CPUState * cpu)654 void tcg_iommu_free_notifier_list(CPUState *cpu)
655 {
656 /* Destroy the CPU's notifier list */
657 int i;
658 TCGIOMMUNotifier *notifier;
659
660 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
661 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
662 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
663 g_free(notifier);
664 }
665 g_array_free(cpu->iommu_notifiers, true);
666 }
667
tcg_iommu_init_notifier_list(CPUState * cpu)668 void tcg_iommu_init_notifier_list(CPUState *cpu)
669 {
670 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 }
672
673 /* Called from RCU critical section */
674 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
676 hwaddr *xlat, hwaddr *plen,
677 MemTxAttrs attrs, int *prot)
678 {
679 MemoryRegionSection *section;
680 IOMMUMemoryRegion *iommu_mr;
681 IOMMUMemoryRegionClass *imrc;
682 IOMMUTLBEntry iotlb;
683 int iommu_idx;
684 hwaddr addr = orig_addr;
685 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
686
687 for (;;) {
688 section = address_space_translate_internal(d, addr, &addr, plen, false);
689
690 iommu_mr = memory_region_get_iommu(section->mr);
691 if (!iommu_mr) {
692 break;
693 }
694
695 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696
697 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
698 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
699 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
700 * doesn't short-cut its translation table walk.
701 */
702 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
703 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
704 | (addr & iotlb.addr_mask));
705 /* Update the caller's prot bits to remove permissions the IOMMU
706 * is giving us a failure response for. If we get down to no
707 * permissions left at all we can give up now.
708 */
709 if (!(iotlb.perm & IOMMU_RO)) {
710 *prot &= ~(PAGE_READ | PAGE_EXEC);
711 }
712 if (!(iotlb.perm & IOMMU_WO)) {
713 *prot &= ~PAGE_WRITE;
714 }
715
716 if (!*prot) {
717 goto translate_fail;
718 }
719
720 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721 }
722
723 assert(!memory_region_is_iommu(section->mr));
724 *xlat = addr;
725 return section;
726
727 translate_fail:
728 /*
729 * We should be given a page-aligned address -- certainly
730 * tlb_set_page_with_attrs() does so. The page offset of xlat
731 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
732 * The page portion of xlat will be logged by memory_region_access_valid()
733 * when this memory access is rejected, so use the original untranslated
734 * physical address.
735 */
736 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
737 *xlat = orig_addr;
738 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 }
740
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)741 void cpu_address_space_init(CPUState *cpu, int asidx,
742 const char *prefix, MemoryRegion *mr)
743 {
744 CPUAddressSpace *newas;
745 AddressSpace *as = g_new0(AddressSpace, 1);
746 char *as_name;
747
748 assert(mr);
749 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
750 address_space_init(as, mr, as_name);
751 g_free(as_name);
752
753 /* Target code should have set num_ases before calling us */
754 assert(asidx < cpu->num_ases);
755
756 if (asidx == 0) {
757 /* address space 0 gets the convenience alias */
758 cpu->as = as;
759 }
760
761 /* KVM cannot currently support multiple address spaces. */
762 assert(asidx == 0 || !kvm_enabled());
763
764 if (!cpu->cpu_ases) {
765 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766 cpu->cpu_ases_count = cpu->num_ases;
767 }
768
769 newas = &cpu->cpu_ases[asidx];
770 newas->cpu = cpu;
771 newas->as = as;
772 if (tcg_enabled()) {
773 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
774 newas->tcg_as_listener.commit = tcg_commit;
775 newas->tcg_as_listener.name = "tcg";
776 memory_listener_register(&newas->tcg_as_listener, as);
777 }
778 }
779
cpu_address_space_destroy(CPUState * cpu,int asidx)780 void cpu_address_space_destroy(CPUState *cpu, int asidx)
781 {
782 CPUAddressSpace *cpuas;
783
784 assert(cpu->cpu_ases);
785 assert(asidx >= 0 && asidx < cpu->num_ases);
786 /* KVM cannot currently support multiple address spaces. */
787 assert(asidx == 0 || !kvm_enabled());
788
789 cpuas = &cpu->cpu_ases[asidx];
790 if (tcg_enabled()) {
791 memory_listener_unregister(&cpuas->tcg_as_listener);
792 }
793
794 address_space_destroy(cpuas->as);
795 g_free_rcu(cpuas->as, rcu);
796
797 if (asidx == 0) {
798 /* reset the convenience alias for address space 0 */
799 cpu->as = NULL;
800 }
801
802 if (--cpu->cpu_ases_count == 0) {
803 g_free(cpu->cpu_ases);
804 cpu->cpu_ases = NULL;
805 }
806 }
807
cpu_get_address_space(CPUState * cpu,int asidx)808 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
809 {
810 /* Return the AddressSpace corresponding to the specified index */
811 return cpu->cpu_ases[asidx].as;
812 }
813
814 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)815 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
816 {
817 RAMBlock *block;
818
819 block = qatomic_rcu_read(&ram_list.mru_block);
820 if (block && addr - block->offset < block->max_length) {
821 return block;
822 }
823 RAMBLOCK_FOREACH(block) {
824 if (addr - block->offset < block->max_length) {
825 goto found;
826 }
827 }
828
829 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
830 abort();
831
832 found:
833 /* It is safe to write mru_block outside the BQL. This
834 * is what happens:
835 *
836 * mru_block = xxx
837 * rcu_read_unlock()
838 * xxx removed from list
839 * rcu_read_lock()
840 * read mru_block
841 * mru_block = NULL;
842 * call_rcu(reclaim_ramblock, xxx);
843 * rcu_read_unlock()
844 *
845 * qatomic_rcu_set is not needed here. The block was already published
846 * when it was placed into the list. Here we're just making an extra
847 * copy of the pointer.
848 */
849 ram_list.mru_block = block;
850 return block;
851 }
852
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)853 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
854 {
855 CPUState *cpu;
856 ram_addr_t start1;
857 RAMBlock *block;
858 ram_addr_t end;
859
860 assert(tcg_enabled());
861 end = TARGET_PAGE_ALIGN(start + length);
862 start &= TARGET_PAGE_MASK;
863
864 RCU_READ_LOCK_GUARD();
865 block = qemu_get_ram_block(start);
866 assert(block == qemu_get_ram_block(end - 1));
867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
868 CPU_FOREACH(cpu) {
869 tlb_reset_dirty(cpu, start1, length);
870 }
871 }
872
873 /* Note: start and end must be within the same ram block. */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)874 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
875 ram_addr_t length,
876 unsigned client)
877 {
878 DirtyMemoryBlocks *blocks;
879 unsigned long end, page, start_page;
880 bool dirty = false;
881 RAMBlock *ramblock;
882 uint64_t mr_offset, mr_size;
883
884 if (length == 0) {
885 return false;
886 }
887
888 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
889 start_page = start >> TARGET_PAGE_BITS;
890 page = start_page;
891
892 WITH_RCU_READ_LOCK_GUARD() {
893 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
894 ramblock = qemu_get_ram_block(start);
895 /* Range sanity check on the ramblock */
896 assert(start >= ramblock->offset &&
897 start + length <= ramblock->offset + ramblock->used_length);
898
899 while (page < end) {
900 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
901 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
902 unsigned long num = MIN(end - page,
903 DIRTY_MEMORY_BLOCK_SIZE - offset);
904
905 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
906 offset, num);
907 page += num;
908 }
909
910 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
911 mr_size = (end - start_page) << TARGET_PAGE_BITS;
912 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
913 }
914
915 if (dirty) {
916 cpu_physical_memory_dirty_bits_cleared(start, length);
917 }
918
919 return dirty;
920 }
921
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)922 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
923 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
924 {
925 DirtyMemoryBlocks *blocks;
926 ram_addr_t start, first, last;
927 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
928 DirtyBitmapSnapshot *snap;
929 unsigned long page, end, dest;
930
931 start = memory_region_get_ram_addr(mr);
932 /* We know we're only called for RAM MemoryRegions */
933 assert(start != RAM_ADDR_INVALID);
934 start += offset;
935
936 first = QEMU_ALIGN_DOWN(start, align);
937 last = QEMU_ALIGN_UP(start + length, align);
938
939 snap = g_malloc0(sizeof(*snap) +
940 ((last - first) >> (TARGET_PAGE_BITS + 3)));
941 snap->start = first;
942 snap->end = last;
943
944 page = first >> TARGET_PAGE_BITS;
945 end = last >> TARGET_PAGE_BITS;
946 dest = 0;
947
948 WITH_RCU_READ_LOCK_GUARD() {
949 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
950
951 while (page < end) {
952 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
953 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
954 unsigned long num = MIN(end - page,
955 DIRTY_MEMORY_BLOCK_SIZE - ofs);
956
957 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
958 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
959 ofs >>= BITS_PER_LEVEL;
960
961 bitmap_copy_and_clear_atomic(snap->dirty + dest,
962 blocks->blocks[idx] + ofs,
963 num);
964 page += num;
965 dest += num >> BITS_PER_LEVEL;
966 }
967 }
968
969 cpu_physical_memory_dirty_bits_cleared(start, length);
970
971 memory_region_clear_dirty_bitmap(mr, offset, length);
972
973 return snap;
974 }
975
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)976 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
977 ram_addr_t start,
978 ram_addr_t length)
979 {
980 unsigned long page, end;
981
982 assert(start >= snap->start);
983 assert(start + length <= snap->end);
984
985 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
986 page = (start - snap->start) >> TARGET_PAGE_BITS;
987
988 while (page < end) {
989 if (test_bit(page, snap->dirty)) {
990 return true;
991 }
992 page++;
993 }
994 return false;
995 }
996
997 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)998 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
999 MemoryRegionSection *section)
1000 {
1001 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1002 return section - d->map.sections;
1003 }
1004
1005 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1006 uint16_t section);
1007 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1008
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1009 static uint16_t phys_section_add(PhysPageMap *map,
1010 MemoryRegionSection *section)
1011 {
1012 /* The physical section number is ORed with a page-aligned
1013 * pointer to produce the iotlb entries. Thus it should
1014 * never overflow into the page-aligned value.
1015 */
1016 assert(map->sections_nb < TARGET_PAGE_SIZE);
1017
1018 if (map->sections_nb == map->sections_nb_alloc) {
1019 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1020 map->sections = g_renew(MemoryRegionSection, map->sections,
1021 map->sections_nb_alloc);
1022 }
1023 map->sections[map->sections_nb] = *section;
1024 memory_region_ref(section->mr);
1025 return map->sections_nb++;
1026 }
1027
phys_section_destroy(MemoryRegion * mr)1028 static void phys_section_destroy(MemoryRegion *mr)
1029 {
1030 bool have_sub_page = mr->subpage;
1031
1032 memory_region_unref(mr);
1033
1034 if (have_sub_page) {
1035 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1036 object_unref(OBJECT(&subpage->iomem));
1037 g_free(subpage);
1038 }
1039 }
1040
phys_sections_free(PhysPageMap * map)1041 static void phys_sections_free(PhysPageMap *map)
1042 {
1043 while (map->sections_nb > 0) {
1044 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1045 phys_section_destroy(section->mr);
1046 }
1047 g_free(map->sections);
1048 g_free(map->nodes);
1049 }
1050
register_subpage(FlatView * fv,MemoryRegionSection * section)1051 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1052 {
1053 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1054 subpage_t *subpage;
1055 hwaddr base = section->offset_within_address_space
1056 & TARGET_PAGE_MASK;
1057 MemoryRegionSection *existing = phys_page_find(d, base);
1058 MemoryRegionSection subsection = {
1059 .offset_within_address_space = base,
1060 .size = int128_make64(TARGET_PAGE_SIZE),
1061 };
1062 hwaddr start, end;
1063
1064 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1065
1066 if (!(existing->mr->subpage)) {
1067 subpage = subpage_init(fv, base);
1068 subsection.fv = fv;
1069 subsection.mr = &subpage->iomem;
1070 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1071 phys_section_add(&d->map, &subsection));
1072 } else {
1073 subpage = container_of(existing->mr, subpage_t, iomem);
1074 }
1075 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1076 end = start + int128_get64(section->size) - 1;
1077 subpage_register(subpage, start, end,
1078 phys_section_add(&d->map, section));
1079 }
1080
1081
register_multipage(FlatView * fv,MemoryRegionSection * section)1082 static void register_multipage(FlatView *fv,
1083 MemoryRegionSection *section)
1084 {
1085 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1086 hwaddr start_addr = section->offset_within_address_space;
1087 uint16_t section_index = phys_section_add(&d->map, section);
1088 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1089 TARGET_PAGE_BITS));
1090
1091 assert(num_pages);
1092 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1093 }
1094
1095 /*
1096 * The range in *section* may look like this:
1097 *
1098 * |s|PPPPPPP|s|
1099 *
1100 * where s stands for subpage and P for page.
1101 */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1102 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1103 {
1104 MemoryRegionSection remain = *section;
1105 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1106
1107 /* register first subpage */
1108 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1109 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1110 - remain.offset_within_address_space;
1111
1112 MemoryRegionSection now = remain;
1113 now.size = int128_min(int128_make64(left), now.size);
1114 register_subpage(fv, &now);
1115 if (int128_eq(remain.size, now.size)) {
1116 return;
1117 }
1118 remain.size = int128_sub(remain.size, now.size);
1119 remain.offset_within_address_space += int128_get64(now.size);
1120 remain.offset_within_region += int128_get64(now.size);
1121 }
1122
1123 /* register whole pages */
1124 if (int128_ge(remain.size, page_size)) {
1125 MemoryRegionSection now = remain;
1126 now.size = int128_and(now.size, int128_neg(page_size));
1127 register_multipage(fv, &now);
1128 if (int128_eq(remain.size, now.size)) {
1129 return;
1130 }
1131 remain.size = int128_sub(remain.size, now.size);
1132 remain.offset_within_address_space += int128_get64(now.size);
1133 remain.offset_within_region += int128_get64(now.size);
1134 }
1135
1136 /* register last subpage */
1137 register_subpage(fv, &remain);
1138 }
1139
qemu_flush_coalesced_mmio_buffer(void)1140 void qemu_flush_coalesced_mmio_buffer(void)
1141 {
1142 if (kvm_enabled())
1143 kvm_flush_coalesced_mmio_buffer();
1144 }
1145
qemu_mutex_lock_ramlist(void)1146 void qemu_mutex_lock_ramlist(void)
1147 {
1148 qemu_mutex_lock(&ram_list.mutex);
1149 }
1150
qemu_mutex_unlock_ramlist(void)1151 void qemu_mutex_unlock_ramlist(void)
1152 {
1153 qemu_mutex_unlock(&ram_list.mutex);
1154 }
1155
ram_block_format(void)1156 GString *ram_block_format(void)
1157 {
1158 RAMBlock *block;
1159 char *psize;
1160 GString *buf = g_string_new("");
1161
1162 RCU_READ_LOCK_GUARD();
1163 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1164 "Block Name", "PSize", "Offset", "Used", "Total",
1165 "HVA", "RO");
1166
1167 RAMBLOCK_FOREACH(block) {
1168 psize = size_to_str(block->page_size);
1169 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1170 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1171 block->idstr, psize,
1172 (uint64_t)block->offset,
1173 (uint64_t)block->used_length,
1174 (uint64_t)block->max_length,
1175 (uint64_t)(uintptr_t)block->host,
1176 block->mr->readonly ? "ro" : "rw");
1177
1178 g_free(psize);
1179 }
1180
1181 return buf;
1182 }
1183
find_min_backend_pagesize(Object * obj,void * opaque)1184 static int find_min_backend_pagesize(Object *obj, void *opaque)
1185 {
1186 long *hpsize_min = opaque;
1187
1188 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1189 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1190 long hpsize = host_memory_backend_pagesize(backend);
1191
1192 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1193 *hpsize_min = hpsize;
1194 }
1195 }
1196
1197 return 0;
1198 }
1199
find_max_backend_pagesize(Object * obj,void * opaque)1200 static int find_max_backend_pagesize(Object *obj, void *opaque)
1201 {
1202 long *hpsize_max = opaque;
1203
1204 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1205 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1206 long hpsize = host_memory_backend_pagesize(backend);
1207
1208 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1209 *hpsize_max = hpsize;
1210 }
1211 }
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * TODO: We assume right now that all mapped host memory backends are
1218 * used as RAM, however some might be used for different purposes.
1219 */
qemu_minrampagesize(void)1220 long qemu_minrampagesize(void)
1221 {
1222 long hpsize = LONG_MAX;
1223 Object *memdev_root = object_resolve_path("/objects", NULL);
1224
1225 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1226 return hpsize;
1227 }
1228
qemu_maxrampagesize(void)1229 long qemu_maxrampagesize(void)
1230 {
1231 long pagesize = 0;
1232 Object *memdev_root = object_resolve_path("/objects", NULL);
1233
1234 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1235 return pagesize;
1236 }
1237
1238 #ifdef CONFIG_POSIX
get_file_size(int fd)1239 static int64_t get_file_size(int fd)
1240 {
1241 int64_t size;
1242 #if defined(__linux__)
1243 struct stat st;
1244
1245 if (fstat(fd, &st) < 0) {
1246 return -errno;
1247 }
1248
1249 /* Special handling for devdax character devices */
1250 if (S_ISCHR(st.st_mode)) {
1251 g_autofree char *subsystem_path = NULL;
1252 g_autofree char *subsystem = NULL;
1253
1254 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1255 major(st.st_rdev), minor(st.st_rdev));
1256 subsystem = g_file_read_link(subsystem_path, NULL);
1257
1258 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1259 g_autofree char *size_path = NULL;
1260 g_autofree char *size_str = NULL;
1261
1262 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1263 major(st.st_rdev), minor(st.st_rdev));
1264
1265 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1266 return g_ascii_strtoll(size_str, NULL, 0);
1267 }
1268 }
1269 }
1270 #endif /* defined(__linux__) */
1271
1272 /* st.st_size may be zero for special files yet lseek(2) works */
1273 size = lseek(fd, 0, SEEK_END);
1274 if (size < 0) {
1275 return -errno;
1276 }
1277 return size;
1278 }
1279
get_file_align(int fd)1280 static int64_t get_file_align(int fd)
1281 {
1282 int64_t align = -1;
1283 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1284 struct stat st;
1285
1286 if (fstat(fd, &st) < 0) {
1287 return -errno;
1288 }
1289
1290 /* Special handling for devdax character devices */
1291 if (S_ISCHR(st.st_mode)) {
1292 g_autofree char *path = NULL;
1293 g_autofree char *rpath = NULL;
1294 struct daxctl_ctx *ctx;
1295 struct daxctl_region *region;
1296 int rc = 0;
1297
1298 path = g_strdup_printf("/sys/dev/char/%d:%d",
1299 major(st.st_rdev), minor(st.st_rdev));
1300 rpath = realpath(path, NULL);
1301 if (!rpath) {
1302 return -errno;
1303 }
1304
1305 rc = daxctl_new(&ctx);
1306 if (rc) {
1307 return -1;
1308 }
1309
1310 daxctl_region_foreach(ctx, region) {
1311 if (strstr(rpath, daxctl_region_get_path(region))) {
1312 align = daxctl_region_get_align(region);
1313 break;
1314 }
1315 }
1316 daxctl_unref(ctx);
1317 }
1318 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1319
1320 return align;
1321 }
1322
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1323 static int file_ram_open(const char *path,
1324 const char *region_name,
1325 bool readonly,
1326 bool *created)
1327 {
1328 char *filename;
1329 char *sanitized_name;
1330 char *c;
1331 int fd = -1;
1332
1333 *created = false;
1334 for (;;) {
1335 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1336 if (fd >= 0) {
1337 /*
1338 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1339 * opened a directory and fail similarly to how we fail ENOENT
1340 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1341 */
1342 if (readonly) {
1343 struct stat file_stat;
1344
1345 if (fstat(fd, &file_stat)) {
1346 close(fd);
1347 if (errno == EINTR) {
1348 continue;
1349 }
1350 return -errno;
1351 } else if (S_ISDIR(file_stat.st_mode)) {
1352 close(fd);
1353 return -EISDIR;
1354 }
1355 }
1356 /* @path names an existing file, use it */
1357 break;
1358 }
1359 if (errno == ENOENT) {
1360 if (readonly) {
1361 /* Refuse to create new, readonly files. */
1362 return -ENOENT;
1363 }
1364 /* @path names a file that doesn't exist, create it */
1365 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1366 if (fd >= 0) {
1367 *created = true;
1368 break;
1369 }
1370 } else if (errno == EISDIR) {
1371 /* @path names a directory, create a file there */
1372 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1373 sanitized_name = g_strdup(region_name);
1374 for (c = sanitized_name; *c != '\0'; c++) {
1375 if (*c == '/') {
1376 *c = '_';
1377 }
1378 }
1379
1380 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1381 sanitized_name);
1382 g_free(sanitized_name);
1383
1384 fd = mkstemp(filename);
1385 if (fd >= 0) {
1386 unlink(filename);
1387 g_free(filename);
1388 break;
1389 }
1390 g_free(filename);
1391 }
1392 if (errno != EEXIST && errno != EINTR) {
1393 return -errno;
1394 }
1395 /*
1396 * Try again on EINTR and EEXIST. The latter happens when
1397 * something else creates the file between our two open().
1398 */
1399 }
1400
1401 return fd;
1402 }
1403
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1404 static void *file_ram_alloc(RAMBlock *block,
1405 ram_addr_t memory,
1406 int fd,
1407 bool truncate,
1408 off_t offset,
1409 Error **errp)
1410 {
1411 uint32_t qemu_map_flags;
1412 void *area;
1413
1414 block->page_size = qemu_fd_getpagesize(fd);
1415 if (block->mr->align % block->page_size) {
1416 error_setg(errp, "alignment 0x%" PRIx64
1417 " must be multiples of page size 0x%zx",
1418 block->mr->align, block->page_size);
1419 return NULL;
1420 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1421 error_setg(errp, "alignment 0x%" PRIx64
1422 " must be a power of two", block->mr->align);
1423 return NULL;
1424 } else if (offset % block->page_size) {
1425 error_setg(errp, "offset 0x%" PRIx64
1426 " must be multiples of page size 0x%zx",
1427 offset, block->page_size);
1428 return NULL;
1429 }
1430 block->mr->align = MAX(block->page_size, block->mr->align);
1431 #if defined(__s390x__)
1432 if (kvm_enabled()) {
1433 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1434 }
1435 #endif
1436
1437 if (memory < block->page_size) {
1438 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1439 "or larger than page size 0x%zx",
1440 memory, block->page_size);
1441 return NULL;
1442 }
1443
1444 memory = ROUND_UP(memory, block->page_size);
1445
1446 /*
1447 * ftruncate is not supported by hugetlbfs in older
1448 * hosts, so don't bother bailing out on errors.
1449 * If anything goes wrong with it under other filesystems,
1450 * mmap will fail.
1451 *
1452 * Do not truncate the non-empty backend file to avoid corrupting
1453 * the existing data in the file. Disabling shrinking is not
1454 * enough. For example, the current vNVDIMM implementation stores
1455 * the guest NVDIMM labels at the end of the backend file. If the
1456 * backend file is later extended, QEMU will not be able to find
1457 * those labels. Therefore, extending the non-empty backend file
1458 * is disabled as well.
1459 */
1460 if (truncate && ftruncate(fd, offset + memory)) {
1461 perror("ftruncate");
1462 }
1463
1464 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1465 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1466 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1467 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1468 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1469 if (area == MAP_FAILED) {
1470 error_setg_errno(errp, errno,
1471 "unable to map backing store for guest RAM");
1472 return NULL;
1473 }
1474
1475 block->fd = fd;
1476 block->fd_offset = offset;
1477 return area;
1478 }
1479 #endif
1480
1481 /* Allocate space within the ram_addr_t space that governs the
1482 * dirty bitmaps.
1483 * Called with the ramlist lock held.
1484 */
find_ram_offset(ram_addr_t size)1485 static ram_addr_t find_ram_offset(ram_addr_t size)
1486 {
1487 RAMBlock *block, *next_block;
1488 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1489
1490 assert(size != 0); /* it would hand out same offset multiple times */
1491
1492 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1493 return 0;
1494 }
1495
1496 RAMBLOCK_FOREACH(block) {
1497 ram_addr_t candidate, next = RAM_ADDR_MAX;
1498
1499 /* Align blocks to start on a 'long' in the bitmap
1500 * which makes the bitmap sync'ing take the fast path.
1501 */
1502 candidate = block->offset + block->max_length;
1503 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1504
1505 /* Search for the closest following block
1506 * and find the gap.
1507 */
1508 RAMBLOCK_FOREACH(next_block) {
1509 if (next_block->offset >= candidate) {
1510 next = MIN(next, next_block->offset);
1511 }
1512 }
1513
1514 /* If it fits remember our place and remember the size
1515 * of gap, but keep going so that we might find a smaller
1516 * gap to fill so avoiding fragmentation.
1517 */
1518 if (next - candidate >= size && next - candidate < mingap) {
1519 offset = candidate;
1520 mingap = next - candidate;
1521 }
1522
1523 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1524 }
1525
1526 if (offset == RAM_ADDR_MAX) {
1527 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1528 (uint64_t)size);
1529 abort();
1530 }
1531
1532 trace_find_ram_offset(size, offset);
1533
1534 return offset;
1535 }
1536
qemu_ram_setup_dump(void * addr,ram_addr_t size)1537 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1538 {
1539 int ret;
1540
1541 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1542 if (!machine_dump_guest_core(current_machine)) {
1543 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1544 if (ret) {
1545 perror("qemu_madvise");
1546 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1547 "but dump-guest-core=off specified\n");
1548 }
1549 }
1550 }
1551
qemu_ram_get_idstr(RAMBlock * rb)1552 const char *qemu_ram_get_idstr(RAMBlock *rb)
1553 {
1554 return rb->idstr;
1555 }
1556
qemu_ram_get_host_addr(RAMBlock * rb)1557 void *qemu_ram_get_host_addr(RAMBlock *rb)
1558 {
1559 return rb->host;
1560 }
1561
qemu_ram_get_offset(RAMBlock * rb)1562 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1563 {
1564 return rb->offset;
1565 }
1566
qemu_ram_get_used_length(RAMBlock * rb)1567 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1568 {
1569 return rb->used_length;
1570 }
1571
qemu_ram_get_max_length(RAMBlock * rb)1572 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1573 {
1574 return rb->max_length;
1575 }
1576
qemu_ram_is_shared(RAMBlock * rb)1577 bool qemu_ram_is_shared(RAMBlock *rb)
1578 {
1579 return rb->flags & RAM_SHARED;
1580 }
1581
qemu_ram_is_noreserve(RAMBlock * rb)1582 bool qemu_ram_is_noreserve(RAMBlock *rb)
1583 {
1584 return rb->flags & RAM_NORESERVE;
1585 }
1586
1587 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1588 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1589 {
1590 return rb->flags & RAM_UF_ZEROPAGE;
1591 }
1592
qemu_ram_set_uf_zeroable(RAMBlock * rb)1593 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1594 {
1595 rb->flags |= RAM_UF_ZEROPAGE;
1596 }
1597
qemu_ram_is_migratable(RAMBlock * rb)1598 bool qemu_ram_is_migratable(RAMBlock *rb)
1599 {
1600 return rb->flags & RAM_MIGRATABLE;
1601 }
1602
qemu_ram_set_migratable(RAMBlock * rb)1603 void qemu_ram_set_migratable(RAMBlock *rb)
1604 {
1605 rb->flags |= RAM_MIGRATABLE;
1606 }
1607
qemu_ram_unset_migratable(RAMBlock * rb)1608 void qemu_ram_unset_migratable(RAMBlock *rb)
1609 {
1610 rb->flags &= ~RAM_MIGRATABLE;
1611 }
1612
qemu_ram_is_named_file(RAMBlock * rb)1613 bool qemu_ram_is_named_file(RAMBlock *rb)
1614 {
1615 return rb->flags & RAM_NAMED_FILE;
1616 }
1617
qemu_ram_get_fd(RAMBlock * rb)1618 int qemu_ram_get_fd(RAMBlock *rb)
1619 {
1620 return rb->fd;
1621 }
1622
1623 /* Called with the BQL held. */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1624 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1625 {
1626 RAMBlock *block;
1627
1628 assert(new_block);
1629 assert(!new_block->idstr[0]);
1630
1631 if (dev) {
1632 char *id = qdev_get_dev_path(dev);
1633 if (id) {
1634 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1635 g_free(id);
1636 }
1637 }
1638 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1639
1640 RCU_READ_LOCK_GUARD();
1641 RAMBLOCK_FOREACH(block) {
1642 if (block != new_block &&
1643 !strcmp(block->idstr, new_block->idstr)) {
1644 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1645 new_block->idstr);
1646 abort();
1647 }
1648 }
1649 }
1650
1651 /* Called with the BQL held. */
qemu_ram_unset_idstr(RAMBlock * block)1652 void qemu_ram_unset_idstr(RAMBlock *block)
1653 {
1654 /* FIXME: arch_init.c assumes that this is not called throughout
1655 * migration. Ignore the problem since hot-unplug during migration
1656 * does not work anyway.
1657 */
1658 if (block) {
1659 memset(block->idstr, 0, sizeof(block->idstr));
1660 }
1661 }
1662
qemu_ram_pagesize(RAMBlock * rb)1663 size_t qemu_ram_pagesize(RAMBlock *rb)
1664 {
1665 return rb->page_size;
1666 }
1667
1668 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1669 size_t qemu_ram_pagesize_largest(void)
1670 {
1671 RAMBlock *block;
1672 size_t largest = 0;
1673
1674 RAMBLOCK_FOREACH(block) {
1675 largest = MAX(largest, qemu_ram_pagesize(block));
1676 }
1677
1678 return largest;
1679 }
1680
memory_try_enable_merging(void * addr,size_t len)1681 static int memory_try_enable_merging(void *addr, size_t len)
1682 {
1683 if (!machine_mem_merge(current_machine)) {
1684 /* disabled by the user */
1685 return 0;
1686 }
1687
1688 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1689 }
1690
1691 /*
1692 * Resizing RAM while migrating can result in the migration being canceled.
1693 * Care has to be taken if the guest might have already detected the memory.
1694 *
1695 * As memory core doesn't know how is memory accessed, it is up to
1696 * resize callback to update device state and/or add assertions to detect
1697 * misuse, if necessary.
1698 */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1699 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1700 {
1701 const ram_addr_t oldsize = block->used_length;
1702 const ram_addr_t unaligned_size = newsize;
1703
1704 assert(block);
1705
1706 newsize = TARGET_PAGE_ALIGN(newsize);
1707 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1708
1709 if (block->used_length == newsize) {
1710 /*
1711 * We don't have to resize the ram block (which only knows aligned
1712 * sizes), however, we have to notify if the unaligned size changed.
1713 */
1714 if (unaligned_size != memory_region_size(block->mr)) {
1715 memory_region_set_size(block->mr, unaligned_size);
1716 if (block->resized) {
1717 block->resized(block->idstr, unaligned_size, block->host);
1718 }
1719 }
1720 return 0;
1721 }
1722
1723 if (!(block->flags & RAM_RESIZEABLE)) {
1724 error_setg_errno(errp, EINVAL,
1725 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1726 " != 0x" RAM_ADDR_FMT, block->idstr,
1727 newsize, block->used_length);
1728 return -EINVAL;
1729 }
1730
1731 if (block->max_length < newsize) {
1732 error_setg_errno(errp, EINVAL,
1733 "Size too large: %s: 0x" RAM_ADDR_FMT
1734 " > 0x" RAM_ADDR_FMT, block->idstr,
1735 newsize, block->max_length);
1736 return -EINVAL;
1737 }
1738
1739 /* Notify before modifying the ram block and touching the bitmaps. */
1740 if (block->host) {
1741 ram_block_notify_resize(block->host, oldsize, newsize);
1742 }
1743
1744 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1745 block->used_length = newsize;
1746 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1747 DIRTY_CLIENTS_ALL);
1748 memory_region_set_size(block->mr, unaligned_size);
1749 if (block->resized) {
1750 block->resized(block->idstr, unaligned_size, block->host);
1751 }
1752 return 0;
1753 }
1754
1755 /*
1756 * Trigger sync on the given ram block for range [start, start + length]
1757 * with the backing store if one is available.
1758 * Otherwise no-op.
1759 * @Note: this is supposed to be a synchronous op.
1760 */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1761 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1762 {
1763 /* The requested range should fit in within the block range */
1764 g_assert((start + length) <= block->used_length);
1765
1766 #ifdef CONFIG_LIBPMEM
1767 /* The lack of support for pmem should not block the sync */
1768 if (ramblock_is_pmem(block)) {
1769 void *addr = ramblock_ptr(block, start);
1770 pmem_persist(addr, length);
1771 return;
1772 }
1773 #endif
1774 if (block->fd >= 0) {
1775 /**
1776 * Case there is no support for PMEM or the memory has not been
1777 * specified as persistent (or is not one) - use the msync.
1778 * Less optimal but still achieves the same goal
1779 */
1780 void *addr = ramblock_ptr(block, start);
1781 if (qemu_msync(addr, length, block->fd)) {
1782 warn_report("%s: failed to sync memory range: start: "
1783 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1784 __func__, start, length);
1785 }
1786 }
1787 }
1788
1789 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1790 static void dirty_memory_extend(ram_addr_t new_ram_size)
1791 {
1792 unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1793 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1794 DIRTY_MEMORY_BLOCK_SIZE);
1795 int i;
1796
1797 /* Only need to extend if block count increased */
1798 if (new_num_blocks <= old_num_blocks) {
1799 return;
1800 }
1801
1802 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1803 DirtyMemoryBlocks *old_blocks;
1804 DirtyMemoryBlocks *new_blocks;
1805 int j;
1806
1807 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1808 new_blocks = g_malloc(sizeof(*new_blocks) +
1809 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1810
1811 if (old_num_blocks) {
1812 memcpy(new_blocks->blocks, old_blocks->blocks,
1813 old_num_blocks * sizeof(old_blocks->blocks[0]));
1814 }
1815
1816 for (j = old_num_blocks; j < new_num_blocks; j++) {
1817 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1818 }
1819
1820 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1821
1822 if (old_blocks) {
1823 g_free_rcu(old_blocks, rcu);
1824 }
1825 }
1826
1827 ram_list.num_dirty_blocks = new_num_blocks;
1828 }
1829
ram_block_add(RAMBlock * new_block,Error ** errp)1830 static void ram_block_add(RAMBlock *new_block, Error **errp)
1831 {
1832 const bool noreserve = qemu_ram_is_noreserve(new_block);
1833 const bool shared = qemu_ram_is_shared(new_block);
1834 RAMBlock *block;
1835 RAMBlock *last_block = NULL;
1836 bool free_on_error = false;
1837 ram_addr_t ram_size;
1838 Error *err = NULL;
1839
1840 qemu_mutex_lock_ramlist();
1841 new_block->offset = find_ram_offset(new_block->max_length);
1842
1843 if (!new_block->host) {
1844 if (xen_enabled()) {
1845 xen_ram_alloc(new_block->offset, new_block->max_length,
1846 new_block->mr, &err);
1847 if (err) {
1848 error_propagate(errp, err);
1849 qemu_mutex_unlock_ramlist();
1850 return;
1851 }
1852 } else {
1853 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1854 &new_block->mr->align,
1855 shared, noreserve);
1856 if (!new_block->host) {
1857 error_setg_errno(errp, errno,
1858 "cannot set up guest memory '%s'",
1859 memory_region_name(new_block->mr));
1860 qemu_mutex_unlock_ramlist();
1861 return;
1862 }
1863 memory_try_enable_merging(new_block->host, new_block->max_length);
1864 free_on_error = true;
1865 }
1866 }
1867
1868 if (new_block->flags & RAM_GUEST_MEMFD) {
1869 int ret;
1870
1871 if (!kvm_enabled()) {
1872 error_setg(errp, "cannot set up private guest memory for %s: KVM required",
1873 object_get_typename(OBJECT(current_machine->cgs)));
1874 goto out_free;
1875 }
1876 assert(new_block->guest_memfd < 0);
1877
1878 ret = ram_block_discard_require(true);
1879 if (ret < 0) {
1880 error_setg_errno(errp, -ret,
1881 "cannot set up private guest memory: discard currently blocked");
1882 error_append_hint(errp, "Are you using assigned devices?\n");
1883 goto out_free;
1884 }
1885
1886 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1887 0, errp);
1888 if (new_block->guest_memfd < 0) {
1889 qemu_mutex_unlock_ramlist();
1890 goto out_free;
1891 }
1892 }
1893
1894 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1895 dirty_memory_extend(ram_size);
1896 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1897 * QLIST (which has an RCU-friendly variant) does not have insertion at
1898 * tail, so save the last element in last_block.
1899 */
1900 RAMBLOCK_FOREACH(block) {
1901 last_block = block;
1902 if (block->max_length < new_block->max_length) {
1903 break;
1904 }
1905 }
1906 if (block) {
1907 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1908 } else if (last_block) {
1909 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1910 } else { /* list is empty */
1911 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1912 }
1913 ram_list.mru_block = NULL;
1914
1915 /* Write list before version */
1916 smp_wmb();
1917 ram_list.version++;
1918 qemu_mutex_unlock_ramlist();
1919
1920 cpu_physical_memory_set_dirty_range(new_block->offset,
1921 new_block->used_length,
1922 DIRTY_CLIENTS_ALL);
1923
1924 if (new_block->host) {
1925 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1926 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1927 /*
1928 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1929 * Configure it unless the machine is a qtest server, in which case
1930 * KVM is not used and it may be forked (eg for fuzzing purposes).
1931 */
1932 if (!qtest_enabled()) {
1933 qemu_madvise(new_block->host, new_block->max_length,
1934 QEMU_MADV_DONTFORK);
1935 }
1936 ram_block_notify_add(new_block->host, new_block->used_length,
1937 new_block->max_length);
1938 }
1939 return;
1940
1941 out_free:
1942 if (free_on_error) {
1943 qemu_anon_ram_free(new_block->host, new_block->max_length);
1944 new_block->host = NULL;
1945 }
1946 }
1947
1948 #ifdef CONFIG_POSIX
qemu_ram_alloc_from_fd(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,Error ** errp)1949 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1950 uint32_t ram_flags, int fd, off_t offset,
1951 Error **errp)
1952 {
1953 RAMBlock *new_block;
1954 Error *local_err = NULL;
1955 int64_t file_size, file_align;
1956
1957 /* Just support these ram flags by now. */
1958 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1959 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1960 RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
1961
1962 if (xen_enabled()) {
1963 error_setg(errp, "-mem-path not supported with Xen");
1964 return NULL;
1965 }
1966
1967 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1968 error_setg(errp,
1969 "host lacks kvm mmu notifiers, -mem-path unsupported");
1970 return NULL;
1971 }
1972
1973 size = TARGET_PAGE_ALIGN(size);
1974 size = REAL_HOST_PAGE_ALIGN(size);
1975
1976 file_size = get_file_size(fd);
1977 if (file_size && file_size < offset + size) {
1978 error_setg(errp, "%s backing store size 0x%" PRIx64
1979 " is too small for 'size' option 0x" RAM_ADDR_FMT
1980 " plus 'offset' option 0x%" PRIx64,
1981 memory_region_name(mr), file_size, size,
1982 (uint64_t)offset);
1983 return NULL;
1984 }
1985
1986 file_align = get_file_align(fd);
1987 if (file_align > 0 && file_align > mr->align) {
1988 error_setg(errp, "backing store align 0x%" PRIx64
1989 " is larger than 'align' option 0x%" PRIx64,
1990 file_align, mr->align);
1991 return NULL;
1992 }
1993
1994 new_block = g_malloc0(sizeof(*new_block));
1995 new_block->mr = mr;
1996 new_block->used_length = size;
1997 new_block->max_length = size;
1998 new_block->flags = ram_flags;
1999 new_block->guest_memfd = -1;
2000 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
2001 errp);
2002 if (!new_block->host) {
2003 g_free(new_block);
2004 return NULL;
2005 }
2006
2007 ram_block_add(new_block, &local_err);
2008 if (local_err) {
2009 g_free(new_block);
2010 error_propagate(errp, local_err);
2011 return NULL;
2012 }
2013 return new_block;
2014
2015 }
2016
2017
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2018 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2019 uint32_t ram_flags, const char *mem_path,
2020 off_t offset, Error **errp)
2021 {
2022 int fd;
2023 bool created;
2024 RAMBlock *block;
2025
2026 fd = file_ram_open(mem_path, memory_region_name(mr),
2027 !!(ram_flags & RAM_READONLY_FD), &created);
2028 if (fd < 0) {
2029 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2030 mem_path);
2031 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2032 fd == -EACCES) {
2033 /*
2034 * If we can open the file R/O (note: will never create a new file)
2035 * and we are dealing with a private mapping, there are still ways
2036 * to consume such files and get RAM instead of ROM.
2037 */
2038 fd = file_ram_open(mem_path, memory_region_name(mr), true,
2039 &created);
2040 if (fd < 0) {
2041 return NULL;
2042 }
2043 assert(!created);
2044 close(fd);
2045 error_append_hint(errp, "Consider opening the backing store"
2046 " read-only but still creating writable RAM using"
2047 " '-object memory-backend-file,readonly=on,rom=off...'"
2048 " (see \"VM templating\" documentation)\n");
2049 }
2050 return NULL;
2051 }
2052
2053 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
2054 if (!block) {
2055 if (created) {
2056 unlink(mem_path);
2057 }
2058 close(fd);
2059 return NULL;
2060 }
2061
2062 return block;
2063 }
2064 #endif
2065
2066 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,void (* resized)(const char *,uint64_t length,void * host),void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2067 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2068 void (*resized)(const char*,
2069 uint64_t length,
2070 void *host),
2071 void *host, uint32_t ram_flags,
2072 MemoryRegion *mr, Error **errp)
2073 {
2074 RAMBlock *new_block;
2075 Error *local_err = NULL;
2076 int align;
2077
2078 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2079 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2080 assert(!host ^ (ram_flags & RAM_PREALLOC));
2081
2082 align = qemu_real_host_page_size();
2083 align = MAX(align, TARGET_PAGE_SIZE);
2084 size = ROUND_UP(size, align);
2085 max_size = ROUND_UP(max_size, align);
2086
2087 new_block = g_malloc0(sizeof(*new_block));
2088 new_block->mr = mr;
2089 new_block->resized = resized;
2090 new_block->used_length = size;
2091 new_block->max_length = max_size;
2092 assert(max_size >= size);
2093 new_block->fd = -1;
2094 new_block->guest_memfd = -1;
2095 new_block->page_size = qemu_real_host_page_size();
2096 new_block->host = host;
2097 new_block->flags = ram_flags;
2098 ram_block_add(new_block, &local_err);
2099 if (local_err) {
2100 g_free(new_block);
2101 error_propagate(errp, local_err);
2102 return NULL;
2103 }
2104 return new_block;
2105 }
2106
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2107 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2108 MemoryRegion *mr, Error **errp)
2109 {
2110 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2111 errp);
2112 }
2113
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2114 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2115 MemoryRegion *mr, Error **errp)
2116 {
2117 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2118 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2119 }
2120
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,void (* resized)(const char *,uint64_t length,void * host),MemoryRegion * mr,Error ** errp)2121 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2122 void (*resized)(const char*,
2123 uint64_t length,
2124 void *host),
2125 MemoryRegion *mr, Error **errp)
2126 {
2127 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2128 RAM_RESIZEABLE, mr, errp);
2129 }
2130
reclaim_ramblock(RAMBlock * block)2131 static void reclaim_ramblock(RAMBlock *block)
2132 {
2133 if (block->flags & RAM_PREALLOC) {
2134 ;
2135 } else if (xen_enabled()) {
2136 xen_invalidate_map_cache_entry(block->host);
2137 #ifndef _WIN32
2138 } else if (block->fd >= 0) {
2139 qemu_ram_munmap(block->fd, block->host, block->max_length);
2140 close(block->fd);
2141 #endif
2142 } else {
2143 qemu_anon_ram_free(block->host, block->max_length);
2144 }
2145
2146 if (block->guest_memfd >= 0) {
2147 close(block->guest_memfd);
2148 ram_block_discard_require(false);
2149 }
2150
2151 g_free(block);
2152 }
2153
qemu_ram_free(RAMBlock * block)2154 void qemu_ram_free(RAMBlock *block)
2155 {
2156 if (!block) {
2157 return;
2158 }
2159
2160 if (block->host) {
2161 ram_block_notify_remove(block->host, block->used_length,
2162 block->max_length);
2163 }
2164
2165 qemu_mutex_lock_ramlist();
2166 QLIST_REMOVE_RCU(block, next);
2167 ram_list.mru_block = NULL;
2168 /* Write list before version */
2169 smp_wmb();
2170 ram_list.version++;
2171 call_rcu(block, reclaim_ramblock, rcu);
2172 qemu_mutex_unlock_ramlist();
2173 }
2174
2175 #ifndef _WIN32
qemu_ram_remap(ram_addr_t addr,ram_addr_t length)2176 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2177 {
2178 RAMBlock *block;
2179 ram_addr_t offset;
2180 int flags;
2181 void *area, *vaddr;
2182 int prot;
2183
2184 RAMBLOCK_FOREACH(block) {
2185 offset = addr - block->offset;
2186 if (offset < block->max_length) {
2187 vaddr = ramblock_ptr(block, offset);
2188 if (block->flags & RAM_PREALLOC) {
2189 ;
2190 } else if (xen_enabled()) {
2191 abort();
2192 } else {
2193 flags = MAP_FIXED;
2194 flags |= block->flags & RAM_SHARED ?
2195 MAP_SHARED : MAP_PRIVATE;
2196 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2197 prot = PROT_READ;
2198 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2199 if (block->fd >= 0) {
2200 area = mmap(vaddr, length, prot, flags, block->fd,
2201 offset + block->fd_offset);
2202 } else {
2203 flags |= MAP_ANONYMOUS;
2204 area = mmap(vaddr, length, prot, flags, -1, 0);
2205 }
2206 if (area != vaddr) {
2207 error_report("Could not remap addr: "
2208 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2209 length, addr);
2210 exit(1);
2211 }
2212 memory_try_enable_merging(vaddr, length);
2213 qemu_ram_setup_dump(vaddr, length);
2214 }
2215 }
2216 }
2217 }
2218 #endif /* !_WIN32 */
2219
2220 /*
2221 * Return a host pointer to guest's ram.
2222 * For Xen, foreign mappings get created if they don't already exist.
2223 *
2224 * @block: block for the RAM to lookup (optional and may be NULL).
2225 * @addr: address within the memory region.
2226 * @size: pointer to requested size (optional and may be NULL).
2227 * size may get modified and return a value smaller than
2228 * what was requested.
2229 * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2230 * @is_write: hint wether to map RW or RO in the xen-mapcache.
2231 * (optional and may always be set to true).
2232 *
2233 * Called within RCU critical section.
2234 */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2235 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2236 hwaddr *size, bool lock,
2237 bool is_write)
2238 {
2239 hwaddr len = 0;
2240
2241 if (size && *size == 0) {
2242 return NULL;
2243 }
2244
2245 if (block == NULL) {
2246 block = qemu_get_ram_block(addr);
2247 addr -= block->offset;
2248 }
2249 if (size) {
2250 *size = MIN(*size, block->max_length - addr);
2251 len = *size;
2252 }
2253
2254 if (xen_enabled() && block->host == NULL) {
2255 /* We need to check if the requested address is in the RAM
2256 * because we don't want to map the entire memory in QEMU.
2257 * In that case just map the requested area.
2258 */
2259 if (xen_mr_is_memory(block->mr)) {
2260 return xen_map_cache(block->mr, block->offset + addr,
2261 len, block->offset,
2262 lock, lock, is_write);
2263 }
2264
2265 block->host = xen_map_cache(block->mr, block->offset,
2266 block->max_length,
2267 block->offset,
2268 1, lock, is_write);
2269 }
2270
2271 return ramblock_ptr(block, addr);
2272 }
2273
2274 /*
2275 * Return a host pointer to ram allocated with qemu_ram_alloc.
2276 * This should not be used for general purpose DMA. Use address_space_map
2277 * or address_space_rw instead. For local memory (e.g. video ram) that the
2278 * device owns, use memory_region_get_ram_ptr.
2279 *
2280 * Called within RCU critical section.
2281 */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2282 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2283 {
2284 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2285 }
2286
2287 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2288 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2289 {
2290 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2291 assert((uintptr_t)host >= (uintptr_t)rb->host);
2292 assert(res < rb->max_length);
2293
2294 return res;
2295 }
2296
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2297 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2298 ram_addr_t *offset)
2299 {
2300 RAMBlock *block;
2301 uint8_t *host = ptr;
2302
2303 if (xen_enabled()) {
2304 ram_addr_t ram_addr;
2305 RCU_READ_LOCK_GUARD();
2306 ram_addr = xen_ram_addr_from_mapcache(ptr);
2307 if (ram_addr == RAM_ADDR_INVALID) {
2308 return NULL;
2309 }
2310
2311 block = qemu_get_ram_block(ram_addr);
2312 if (block) {
2313 *offset = ram_addr - block->offset;
2314 }
2315 return block;
2316 }
2317
2318 RCU_READ_LOCK_GUARD();
2319 block = qatomic_rcu_read(&ram_list.mru_block);
2320 if (block && block->host && host - block->host < block->max_length) {
2321 goto found;
2322 }
2323
2324 RAMBLOCK_FOREACH(block) {
2325 /* This case append when the block is not mapped. */
2326 if (block->host == NULL) {
2327 continue;
2328 }
2329 if (host - block->host < block->max_length) {
2330 goto found;
2331 }
2332 }
2333
2334 return NULL;
2335
2336 found:
2337 *offset = (host - block->host);
2338 if (round_offset) {
2339 *offset &= TARGET_PAGE_MASK;
2340 }
2341 return block;
2342 }
2343
2344 /*
2345 * Finds the named RAMBlock
2346 *
2347 * name: The name of RAMBlock to find
2348 *
2349 * Returns: RAMBlock (or NULL if not found)
2350 */
qemu_ram_block_by_name(const char * name)2351 RAMBlock *qemu_ram_block_by_name(const char *name)
2352 {
2353 RAMBlock *block;
2354
2355 RAMBLOCK_FOREACH(block) {
2356 if (!strcmp(name, block->idstr)) {
2357 return block;
2358 }
2359 }
2360
2361 return NULL;
2362 }
2363
2364 /*
2365 * Some of the system routines need to translate from a host pointer
2366 * (typically a TLB entry) back to a ram offset.
2367 */
qemu_ram_addr_from_host(void * ptr)2368 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2369 {
2370 RAMBlock *block;
2371 ram_addr_t offset;
2372
2373 block = qemu_ram_block_from_host(ptr, false, &offset);
2374 if (!block) {
2375 return RAM_ADDR_INVALID;
2376 }
2377
2378 return block->offset + offset;
2379 }
2380
qemu_ram_addr_from_host_nofail(void * ptr)2381 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2382 {
2383 ram_addr_t ram_addr;
2384
2385 ram_addr = qemu_ram_addr_from_host(ptr);
2386 if (ram_addr == RAM_ADDR_INVALID) {
2387 error_report("Bad ram pointer %p", ptr);
2388 abort();
2389 }
2390 return ram_addr;
2391 }
2392
2393 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2394 MemTxAttrs attrs, void *buf, hwaddr len);
2395 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2396 const void *buf, hwaddr len);
2397 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2398 bool is_write, MemTxAttrs attrs);
2399
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2400 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2401 unsigned len, MemTxAttrs attrs)
2402 {
2403 subpage_t *subpage = opaque;
2404 uint8_t buf[8];
2405 MemTxResult res;
2406
2407 #if defined(DEBUG_SUBPAGE)
2408 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2409 subpage, len, addr);
2410 #endif
2411 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2412 if (res) {
2413 return res;
2414 }
2415 *data = ldn_p(buf, len);
2416 return MEMTX_OK;
2417 }
2418
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2419 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2420 uint64_t value, unsigned len, MemTxAttrs attrs)
2421 {
2422 subpage_t *subpage = opaque;
2423 uint8_t buf[8];
2424
2425 #if defined(DEBUG_SUBPAGE)
2426 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2427 " value %"PRIx64"\n",
2428 __func__, subpage, len, addr, value);
2429 #endif
2430 stn_p(buf, len, value);
2431 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2432 }
2433
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2434 static bool subpage_accepts(void *opaque, hwaddr addr,
2435 unsigned len, bool is_write,
2436 MemTxAttrs attrs)
2437 {
2438 subpage_t *subpage = opaque;
2439 #if defined(DEBUG_SUBPAGE)
2440 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2441 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2442 #endif
2443
2444 return flatview_access_valid(subpage->fv, addr + subpage->base,
2445 len, is_write, attrs);
2446 }
2447
2448 static const MemoryRegionOps subpage_ops = {
2449 .read_with_attrs = subpage_read,
2450 .write_with_attrs = subpage_write,
2451 .impl.min_access_size = 1,
2452 .impl.max_access_size = 8,
2453 .valid.min_access_size = 1,
2454 .valid.max_access_size = 8,
2455 .valid.accepts = subpage_accepts,
2456 .endianness = DEVICE_NATIVE_ENDIAN,
2457 };
2458
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2459 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2460 uint16_t section)
2461 {
2462 int idx, eidx;
2463
2464 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2465 return -1;
2466 idx = SUBPAGE_IDX(start);
2467 eidx = SUBPAGE_IDX(end);
2468 #if defined(DEBUG_SUBPAGE)
2469 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2470 __func__, mmio, start, end, idx, eidx, section);
2471 #endif
2472 for (; idx <= eidx; idx++) {
2473 mmio->sub_section[idx] = section;
2474 }
2475
2476 return 0;
2477 }
2478
subpage_init(FlatView * fv,hwaddr base)2479 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2480 {
2481 subpage_t *mmio;
2482
2483 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2484 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2485 mmio->fv = fv;
2486 mmio->base = base;
2487 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2488 NULL, TARGET_PAGE_SIZE);
2489 mmio->iomem.subpage = true;
2490 #if defined(DEBUG_SUBPAGE)
2491 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2492 mmio, base, TARGET_PAGE_SIZE);
2493 #endif
2494
2495 return mmio;
2496 }
2497
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2498 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2499 {
2500 assert(fv);
2501 MemoryRegionSection section = {
2502 .fv = fv,
2503 .mr = mr,
2504 .offset_within_address_space = 0,
2505 .offset_within_region = 0,
2506 .size = int128_2_64(),
2507 };
2508
2509 return phys_section_add(map, §ion);
2510 }
2511
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)2512 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2513 hwaddr index, MemTxAttrs attrs)
2514 {
2515 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2516 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2517 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2518 int section_index = index & ~TARGET_PAGE_MASK;
2519 MemoryRegionSection *ret;
2520
2521 assert(section_index < d->map.sections_nb);
2522 ret = d->map.sections + section_index;
2523 assert(ret->mr);
2524 assert(ret->mr->ops);
2525
2526 return ret;
2527 }
2528
io_mem_init(void)2529 static void io_mem_init(void)
2530 {
2531 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2532 NULL, UINT64_MAX);
2533 }
2534
address_space_dispatch_new(FlatView * fv)2535 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2536 {
2537 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2538 uint16_t n;
2539
2540 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2541 assert(n == PHYS_SECTION_UNASSIGNED);
2542
2543 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2544
2545 return d;
2546 }
2547
address_space_dispatch_free(AddressSpaceDispatch * d)2548 void address_space_dispatch_free(AddressSpaceDispatch *d)
2549 {
2550 phys_sections_free(&d->map);
2551 g_free(d);
2552 }
2553
do_nothing(CPUState * cpu,run_on_cpu_data d)2554 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2555 {
2556 }
2557
tcg_log_global_after_sync(MemoryListener * listener)2558 static void tcg_log_global_after_sync(MemoryListener *listener)
2559 {
2560 CPUAddressSpace *cpuas;
2561
2562 /* Wait for the CPU to end the current TB. This avoids the following
2563 * incorrect race:
2564 *
2565 * vCPU migration
2566 * ---------------------- -------------------------
2567 * TLB check -> slow path
2568 * notdirty_mem_write
2569 * write to RAM
2570 * mark dirty
2571 * clear dirty flag
2572 * TLB check -> fast path
2573 * read memory
2574 * write to RAM
2575 *
2576 * by pushing the migration thread's memory read after the vCPU thread has
2577 * written the memory.
2578 */
2579 if (replay_mode == REPLAY_MODE_NONE) {
2580 /*
2581 * VGA can make calls to this function while updating the screen.
2582 * In record/replay mode this causes a deadlock, because
2583 * run_on_cpu waits for rr mutex. Therefore no races are possible
2584 * in this case and no need for making run_on_cpu when
2585 * record/replay is enabled.
2586 */
2587 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2588 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2589 }
2590 }
2591
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2592 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2593 {
2594 CPUAddressSpace *cpuas = data.host_ptr;
2595
2596 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2597 tlb_flush(cpu);
2598 }
2599
tcg_commit(MemoryListener * listener)2600 static void tcg_commit(MemoryListener *listener)
2601 {
2602 CPUAddressSpace *cpuas;
2603 CPUState *cpu;
2604
2605 assert(tcg_enabled());
2606 /* since each CPU stores ram addresses in its TLB cache, we must
2607 reset the modified entries */
2608 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2609 cpu = cpuas->cpu;
2610
2611 /*
2612 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2613 * Otherwise we race between (1) other cpu threads and (2) ongoing
2614 * i/o for the current cpu thread, with data cached by mmu_lookup().
2615 *
2616 * In addition, queueing the work function will kick the cpu back to
2617 * the main loop, which will end the RCU critical section and reclaim
2618 * the memory data structures.
2619 *
2620 * That said, the listener is also called during realize, before
2621 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2622 */
2623 if (cpu->halt_cond) {
2624 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2625 } else {
2626 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2627 }
2628 }
2629
memory_map_init(void)2630 static void memory_map_init(void)
2631 {
2632 system_memory = g_malloc(sizeof(*system_memory));
2633
2634 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2635 address_space_init(&address_space_memory, system_memory, "memory");
2636
2637 system_io = g_malloc(sizeof(*system_io));
2638 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2639 65536);
2640 address_space_init(&address_space_io, system_io, "I/O");
2641 }
2642
get_system_memory(void)2643 MemoryRegion *get_system_memory(void)
2644 {
2645 return system_memory;
2646 }
2647
get_system_io(void)2648 MemoryRegion *get_system_io(void)
2649 {
2650 return system_io;
2651 }
2652
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2653 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2654 hwaddr length)
2655 {
2656 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2657 ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2658
2659 /* We know we're only called for RAM MemoryRegions */
2660 assert(ramaddr != RAM_ADDR_INVALID);
2661 addr += ramaddr;
2662
2663 /* No early return if dirty_log_mask is or becomes 0, because
2664 * cpu_physical_memory_set_dirty_range will still call
2665 * xen_modified_memory.
2666 */
2667 if (dirty_log_mask) {
2668 dirty_log_mask =
2669 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2670 }
2671 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2672 assert(tcg_enabled());
2673 tb_invalidate_phys_range(addr, addr + length - 1);
2674 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2675 }
2676 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2677 }
2678
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2679 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2680 {
2681 /*
2682 * In principle this function would work on other memory region types too,
2683 * but the ROM device use case is the only one where this operation is
2684 * necessary. Other memory regions should use the
2685 * address_space_read/write() APIs.
2686 */
2687 assert(memory_region_is_romd(mr));
2688
2689 invalidate_and_set_dirty(mr, addr, size);
2690 }
2691
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2692 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2693 {
2694 unsigned access_size_max = mr->ops->valid.max_access_size;
2695
2696 /* Regions are assumed to support 1-4 byte accesses unless
2697 otherwise specified. */
2698 if (access_size_max == 0) {
2699 access_size_max = 4;
2700 }
2701
2702 /* Bound the maximum access by the alignment of the address. */
2703 if (!mr->ops->impl.unaligned) {
2704 unsigned align_size_max = addr & -addr;
2705 if (align_size_max != 0 && align_size_max < access_size_max) {
2706 access_size_max = align_size_max;
2707 }
2708 }
2709
2710 /* Don't attempt accesses larger than the maximum. */
2711 if (l > access_size_max) {
2712 l = access_size_max;
2713 }
2714 l = pow2floor(l);
2715
2716 return l;
2717 }
2718
prepare_mmio_access(MemoryRegion * mr)2719 bool prepare_mmio_access(MemoryRegion *mr)
2720 {
2721 bool release_lock = false;
2722
2723 if (!bql_locked()) {
2724 bql_lock();
2725 release_lock = true;
2726 }
2727 if (mr->flush_coalesced_mmio) {
2728 qemu_flush_coalesced_mmio_buffer();
2729 }
2730
2731 return release_lock;
2732 }
2733
2734 /**
2735 * flatview_access_allowed
2736 * @mr: #MemoryRegion to be accessed
2737 * @attrs: memory transaction attributes
2738 * @addr: address within that memory region
2739 * @len: the number of bytes to access
2740 *
2741 * Check if a memory transaction is allowed.
2742 *
2743 * Returns: true if transaction is allowed, false if denied.
2744 */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2745 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2746 hwaddr addr, hwaddr len)
2747 {
2748 if (likely(!attrs.memory)) {
2749 return true;
2750 }
2751 if (memory_region_is_ram(mr)) {
2752 return true;
2753 }
2754 qemu_log_mask(LOG_GUEST_ERROR,
2755 "Invalid access to non-RAM device at "
2756 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2757 "region '%s'\n", addr, len, memory_region_name(mr));
2758 return false;
2759 }
2760
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2761 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2762 const uint8_t *buf,
2763 hwaddr len, hwaddr mr_addr,
2764 hwaddr *l, MemoryRegion *mr)
2765 {
2766 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2767 return MEMTX_ACCESS_ERROR;
2768 }
2769
2770 if (!memory_access_is_direct(mr, true)) {
2771 uint64_t val;
2772 MemTxResult result;
2773 bool release_lock = prepare_mmio_access(mr);
2774
2775 *l = memory_access_size(mr, *l, mr_addr);
2776 /*
2777 * XXX: could force current_cpu to NULL to avoid
2778 * potential bugs
2779 */
2780
2781 /*
2782 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2783 * the buffer by following ldn_he_p().
2784 */
2785 #ifdef QEMU_STATIC_ANALYSIS
2786 assert((*l == 1 && len >= 1) ||
2787 (*l == 2 && len >= 2) ||
2788 (*l == 4 && len >= 4) ||
2789 (*l == 8 && len >= 8));
2790 #endif
2791 val = ldn_he_p(buf, *l);
2792 result = memory_region_dispatch_write(mr, mr_addr, val,
2793 size_memop(*l), attrs);
2794 if (release_lock) {
2795 bql_unlock();
2796 }
2797
2798 return result;
2799 } else {
2800 /* RAM case */
2801 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2802 false, true);
2803
2804 memmove(ram_ptr, buf, *l);
2805 invalidate_and_set_dirty(mr, mr_addr, *l);
2806
2807 return MEMTX_OK;
2808 }
2809 }
2810
2811 /* Called within RCU critical section. */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2812 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2813 MemTxAttrs attrs,
2814 const void *ptr,
2815 hwaddr len, hwaddr mr_addr,
2816 hwaddr l, MemoryRegion *mr)
2817 {
2818 MemTxResult result = MEMTX_OK;
2819 const uint8_t *buf = ptr;
2820
2821 for (;;) {
2822 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2823 mr);
2824
2825 len -= l;
2826 buf += l;
2827 addr += l;
2828
2829 if (!len) {
2830 break;
2831 }
2832
2833 l = len;
2834 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2835 }
2836
2837 return result;
2838 }
2839
2840 /* Called from RCU critical section. */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2841 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2842 const void *buf, hwaddr len)
2843 {
2844 hwaddr l;
2845 hwaddr mr_addr;
2846 MemoryRegion *mr;
2847
2848 l = len;
2849 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2850 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2851 return MEMTX_ACCESS_ERROR;
2852 }
2853 return flatview_write_continue(fv, addr, attrs, buf, len,
2854 mr_addr, l, mr);
2855 }
2856
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2857 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2858 hwaddr len, hwaddr mr_addr,
2859 hwaddr *l,
2860 MemoryRegion *mr)
2861 {
2862 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2863 return MEMTX_ACCESS_ERROR;
2864 }
2865
2866 if (!memory_access_is_direct(mr, false)) {
2867 /* I/O case */
2868 uint64_t val;
2869 MemTxResult result;
2870 bool release_lock = prepare_mmio_access(mr);
2871
2872 *l = memory_access_size(mr, *l, mr_addr);
2873 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2874 attrs);
2875
2876 /*
2877 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2878 * the buffer by following stn_he_p().
2879 */
2880 #ifdef QEMU_STATIC_ANALYSIS
2881 assert((*l == 1 && len >= 1) ||
2882 (*l == 2 && len >= 2) ||
2883 (*l == 4 && len >= 4) ||
2884 (*l == 8 && len >= 8));
2885 #endif
2886 stn_he_p(buf, *l, val);
2887
2888 if (release_lock) {
2889 bql_unlock();
2890 }
2891 return result;
2892 } else {
2893 /* RAM case */
2894 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2895 false, false);
2896
2897 memcpy(buf, ram_ptr, *l);
2898
2899 return MEMTX_OK;
2900 }
2901 }
2902
2903 /* Called within RCU critical section. */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2904 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2905 MemTxAttrs attrs, void *ptr,
2906 hwaddr len, hwaddr mr_addr, hwaddr l,
2907 MemoryRegion *mr)
2908 {
2909 MemTxResult result = MEMTX_OK;
2910 uint8_t *buf = ptr;
2911
2912 fuzz_dma_read_cb(addr, len, mr);
2913 for (;;) {
2914 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2915
2916 len -= l;
2917 buf += l;
2918 addr += l;
2919
2920 if (!len) {
2921 break;
2922 }
2923
2924 l = len;
2925 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2926 }
2927
2928 return result;
2929 }
2930
2931 /* Called from RCU critical section. */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2932 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2933 MemTxAttrs attrs, void *buf, hwaddr len)
2934 {
2935 hwaddr l;
2936 hwaddr mr_addr;
2937 MemoryRegion *mr;
2938
2939 l = len;
2940 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2941 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2942 return MEMTX_ACCESS_ERROR;
2943 }
2944 return flatview_read_continue(fv, addr, attrs, buf, len,
2945 mr_addr, l, mr);
2946 }
2947
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2948 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2949 MemTxAttrs attrs, void *buf, hwaddr len)
2950 {
2951 MemTxResult result = MEMTX_OK;
2952 FlatView *fv;
2953
2954 if (len > 0) {
2955 RCU_READ_LOCK_GUARD();
2956 fv = address_space_to_flatview(as);
2957 result = flatview_read(fv, addr, attrs, buf, len);
2958 }
2959
2960 return result;
2961 }
2962
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2963 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2964 MemTxAttrs attrs,
2965 const void *buf, hwaddr len)
2966 {
2967 MemTxResult result = MEMTX_OK;
2968 FlatView *fv;
2969
2970 if (len > 0) {
2971 RCU_READ_LOCK_GUARD();
2972 fv = address_space_to_flatview(as);
2973 result = flatview_write(fv, addr, attrs, buf, len);
2974 }
2975
2976 return result;
2977 }
2978
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)2979 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2980 void *buf, hwaddr len, bool is_write)
2981 {
2982 if (is_write) {
2983 return address_space_write(as, addr, attrs, buf, len);
2984 } else {
2985 return address_space_read_full(as, addr, attrs, buf, len);
2986 }
2987 }
2988
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)2989 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2990 uint8_t c, hwaddr len, MemTxAttrs attrs)
2991 {
2992 #define FILLBUF_SIZE 512
2993 uint8_t fillbuf[FILLBUF_SIZE];
2994 int l;
2995 MemTxResult error = MEMTX_OK;
2996
2997 memset(fillbuf, c, FILLBUF_SIZE);
2998 while (len > 0) {
2999 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
3000 error |= address_space_write(as, addr, attrs, fillbuf, l);
3001 len -= l;
3002 addr += l;
3003 }
3004
3005 return error;
3006 }
3007
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3008 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3009 hwaddr len, bool is_write)
3010 {
3011 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3012 buf, len, is_write);
3013 }
3014
3015 enum write_rom_type {
3016 WRITE_DATA,
3017 FLUSH_CACHE,
3018 };
3019
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3020 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3021 hwaddr addr,
3022 MemTxAttrs attrs,
3023 const void *ptr,
3024 hwaddr len,
3025 enum write_rom_type type)
3026 {
3027 hwaddr l;
3028 uint8_t *ram_ptr;
3029 hwaddr addr1;
3030 MemoryRegion *mr;
3031 const uint8_t *buf = ptr;
3032
3033 RCU_READ_LOCK_GUARD();
3034 while (len > 0) {
3035 l = len;
3036 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3037
3038 if (!(memory_region_is_ram(mr) ||
3039 memory_region_is_romd(mr))) {
3040 l = memory_access_size(mr, l, addr1);
3041 } else {
3042 /* ROM/RAM case */
3043 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3044 switch (type) {
3045 case WRITE_DATA:
3046 memcpy(ram_ptr, buf, l);
3047 invalidate_and_set_dirty(mr, addr1, l);
3048 break;
3049 case FLUSH_CACHE:
3050 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3051 break;
3052 }
3053 }
3054 len -= l;
3055 buf += l;
3056 addr += l;
3057 }
3058 return MEMTX_OK;
3059 }
3060
3061 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3062 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3063 MemTxAttrs attrs,
3064 const void *buf, hwaddr len)
3065 {
3066 return address_space_write_rom_internal(as, addr, attrs,
3067 buf, len, WRITE_DATA);
3068 }
3069
cpu_flush_icache_range(hwaddr start,hwaddr len)3070 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3071 {
3072 /*
3073 * This function should do the same thing as an icache flush that was
3074 * triggered from within the guest. For TCG we are always cache coherent,
3075 * so there is no need to flush anything. For KVM / Xen we need to flush
3076 * the host's instruction cache at least.
3077 */
3078 if (tcg_enabled()) {
3079 return;
3080 }
3081
3082 address_space_write_rom_internal(&address_space_memory,
3083 start, MEMTXATTRS_UNSPECIFIED,
3084 NULL, len, FLUSH_CACHE);
3085 }
3086
3087 /*
3088 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3089 * to detect illegal pointers passed to address_space_unmap.
3090 */
3091 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3092
3093 typedef struct {
3094 uint64_t magic;
3095 MemoryRegion *mr;
3096 hwaddr addr;
3097 size_t len;
3098 uint8_t buffer[];
3099 } BounceBuffer;
3100
3101 static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3102 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3103 {
3104 QLIST_REMOVE(client, link);
3105 g_free(client);
3106 }
3107
address_space_notify_map_clients_locked(AddressSpace * as)3108 static void address_space_notify_map_clients_locked(AddressSpace *as)
3109 {
3110 AddressSpaceMapClient *client;
3111
3112 while (!QLIST_EMPTY(&as->map_client_list)) {
3113 client = QLIST_FIRST(&as->map_client_list);
3114 qemu_bh_schedule(client->bh);
3115 address_space_unregister_map_client_do(client);
3116 }
3117 }
3118
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3119 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3120 {
3121 AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3122
3123 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3124 client->bh = bh;
3125 QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3126 /* Write map_client_list before reading bounce_buffer_size. */
3127 smp_mb();
3128 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3129 address_space_notify_map_clients_locked(as);
3130 }
3131 }
3132
cpu_exec_init_all(void)3133 void cpu_exec_init_all(void)
3134 {
3135 qemu_mutex_init(&ram_list.mutex);
3136 /* The data structures we set up here depend on knowing the page size,
3137 * so no more changes can be made after this point.
3138 * In an ideal world, nothing we did before we had finished the
3139 * machine setup would care about the target page size, and we could
3140 * do this much later, rather than requiring board models to state
3141 * up front what their requirements are.
3142 */
3143 finalize_target_page_bits();
3144 io_mem_init();
3145 memory_map_init();
3146 }
3147
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3148 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3149 {
3150 AddressSpaceMapClient *client;
3151
3152 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3153 QLIST_FOREACH(client, &as->map_client_list, link) {
3154 if (client->bh == bh) {
3155 address_space_unregister_map_client_do(client);
3156 break;
3157 }
3158 }
3159 }
3160
address_space_notify_map_clients(AddressSpace * as)3161 static void address_space_notify_map_clients(AddressSpace *as)
3162 {
3163 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3164 address_space_notify_map_clients_locked(as);
3165 }
3166
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3167 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3168 bool is_write, MemTxAttrs attrs)
3169 {
3170 MemoryRegion *mr;
3171 hwaddr l, xlat;
3172
3173 while (len > 0) {
3174 l = len;
3175 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3176 if (!memory_access_is_direct(mr, is_write)) {
3177 l = memory_access_size(mr, l, addr);
3178 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3179 return false;
3180 }
3181 }
3182
3183 len -= l;
3184 addr += l;
3185 }
3186 return true;
3187 }
3188
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3189 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3190 hwaddr len, bool is_write,
3191 MemTxAttrs attrs)
3192 {
3193 FlatView *fv;
3194
3195 RCU_READ_LOCK_GUARD();
3196 fv = address_space_to_flatview(as);
3197 return flatview_access_valid(fv, addr, len, is_write, attrs);
3198 }
3199
3200 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3201 flatview_extend_translation(FlatView *fv, hwaddr addr,
3202 hwaddr target_len,
3203 MemoryRegion *mr, hwaddr base, hwaddr len,
3204 bool is_write, MemTxAttrs attrs)
3205 {
3206 hwaddr done = 0;
3207 hwaddr xlat;
3208 MemoryRegion *this_mr;
3209
3210 for (;;) {
3211 target_len -= len;
3212 addr += len;
3213 done += len;
3214 if (target_len == 0) {
3215 return done;
3216 }
3217
3218 len = target_len;
3219 this_mr = flatview_translate(fv, addr, &xlat,
3220 &len, is_write, attrs);
3221 if (this_mr != mr || xlat != base + done) {
3222 return done;
3223 }
3224 }
3225 }
3226
3227 /* Map a physical memory region into a host virtual address.
3228 * May map a subset of the requested range, given by and returned in *plen.
3229 * May return NULL if resources needed to perform the mapping are exhausted.
3230 * Use only for reads OR writes - not for read-modify-write operations.
3231 * Use address_space_register_map_client() to know when retrying the map
3232 * operation is likely to succeed.
3233 */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3234 void *address_space_map(AddressSpace *as,
3235 hwaddr addr,
3236 hwaddr *plen,
3237 bool is_write,
3238 MemTxAttrs attrs)
3239 {
3240 hwaddr len = *plen;
3241 hwaddr l, xlat;
3242 MemoryRegion *mr;
3243 FlatView *fv;
3244
3245 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3246
3247 if (len == 0) {
3248 return NULL;
3249 }
3250
3251 l = len;
3252 RCU_READ_LOCK_GUARD();
3253 fv = address_space_to_flatview(as);
3254 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3255
3256 if (!memory_access_is_direct(mr, is_write)) {
3257 size_t used = qatomic_read(&as->bounce_buffer_size);
3258 for (;;) {
3259 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3260 size_t new_size = used + alloc;
3261 size_t actual =
3262 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3263 if (actual == used) {
3264 l = alloc;
3265 break;
3266 }
3267 used = actual;
3268 }
3269
3270 if (l == 0) {
3271 *plen = 0;
3272 return NULL;
3273 }
3274
3275 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3276 bounce->magic = BOUNCE_BUFFER_MAGIC;
3277 memory_region_ref(mr);
3278 bounce->mr = mr;
3279 bounce->addr = addr;
3280 bounce->len = l;
3281
3282 if (!is_write) {
3283 flatview_read(fv, addr, attrs,
3284 bounce->buffer, l);
3285 }
3286
3287 *plen = l;
3288 return bounce->buffer;
3289 }
3290
3291 memory_region_ref(mr);
3292 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3293 l, is_write, attrs);
3294 fuzz_dma_read_cb(addr, *plen, mr);
3295 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3296 }
3297
3298 /* Unmaps a memory region previously mapped by address_space_map().
3299 * Will also mark the memory as dirty if is_write is true. access_len gives
3300 * the amount of memory that was actually read or written by the caller.
3301 */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3302 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3303 bool is_write, hwaddr access_len)
3304 {
3305 MemoryRegion *mr;
3306 ram_addr_t addr1;
3307
3308 mr = memory_region_from_host(buffer, &addr1);
3309 if (mr != NULL) {
3310 if (is_write) {
3311 invalidate_and_set_dirty(mr, addr1, access_len);
3312 }
3313 if (xen_enabled()) {
3314 xen_invalidate_map_cache_entry(buffer);
3315 }
3316 memory_region_unref(mr);
3317 return;
3318 }
3319
3320
3321 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3322 assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3323
3324 if (is_write) {
3325 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3326 bounce->buffer, access_len);
3327 }
3328
3329 qatomic_sub(&as->bounce_buffer_size, bounce->len);
3330 bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3331 memory_region_unref(bounce->mr);
3332 g_free(bounce);
3333 /* Write bounce_buffer_size before reading map_client_list. */
3334 smp_mb();
3335 address_space_notify_map_clients(as);
3336 }
3337
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3338 void *cpu_physical_memory_map(hwaddr addr,
3339 hwaddr *plen,
3340 bool is_write)
3341 {
3342 return address_space_map(&address_space_memory, addr, plen, is_write,
3343 MEMTXATTRS_UNSPECIFIED);
3344 }
3345
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3346 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3347 bool is_write, hwaddr access_len)
3348 {
3349 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3350 }
3351
3352 #define ARG1_DECL AddressSpace *as
3353 #define ARG1 as
3354 #define SUFFIX
3355 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3356 #define RCU_READ_LOCK(...) rcu_read_lock()
3357 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3358 #include "memory_ldst.c.inc"
3359
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3360 int64_t address_space_cache_init(MemoryRegionCache *cache,
3361 AddressSpace *as,
3362 hwaddr addr,
3363 hwaddr len,
3364 bool is_write)
3365 {
3366 AddressSpaceDispatch *d;
3367 hwaddr l;
3368 MemoryRegion *mr;
3369 Int128 diff;
3370
3371 assert(len > 0);
3372
3373 l = len;
3374 cache->fv = address_space_get_flatview(as);
3375 d = flatview_to_dispatch(cache->fv);
3376 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3377
3378 /*
3379 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3380 * Take that into account to compute how many bytes are there between
3381 * cache->xlat and the end of the section.
3382 */
3383 diff = int128_sub(cache->mrs.size,
3384 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3385 l = int128_get64(int128_min(diff, int128_make64(l)));
3386
3387 mr = cache->mrs.mr;
3388 memory_region_ref(mr);
3389 if (memory_access_is_direct(mr, is_write)) {
3390 /* We don't care about the memory attributes here as we're only
3391 * doing this if we found actual RAM, which behaves the same
3392 * regardless of attributes; so UNSPECIFIED is fine.
3393 */
3394 l = flatview_extend_translation(cache->fv, addr, len, mr,
3395 cache->xlat, l, is_write,
3396 MEMTXATTRS_UNSPECIFIED);
3397 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3398 is_write);
3399 } else {
3400 cache->ptr = NULL;
3401 }
3402
3403 cache->len = l;
3404 cache->is_write = is_write;
3405 return l;
3406 }
3407
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3408 void address_space_cache_invalidate(MemoryRegionCache *cache,
3409 hwaddr addr,
3410 hwaddr access_len)
3411 {
3412 assert(cache->is_write);
3413 if (likely(cache->ptr)) {
3414 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3415 }
3416 }
3417
address_space_cache_destroy(MemoryRegionCache * cache)3418 void address_space_cache_destroy(MemoryRegionCache *cache)
3419 {
3420 if (!cache->mrs.mr) {
3421 return;
3422 }
3423
3424 if (xen_enabled()) {
3425 xen_invalidate_map_cache_entry(cache->ptr);
3426 }
3427 memory_region_unref(cache->mrs.mr);
3428 flatview_unref(cache->fv);
3429 cache->mrs.mr = NULL;
3430 cache->fv = NULL;
3431 }
3432
3433 /* Called from RCU critical section. This function has the same
3434 * semantics as address_space_translate, but it only works on a
3435 * predefined range of a MemoryRegion that was mapped with
3436 * address_space_cache_init.
3437 */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3438 static inline MemoryRegion *address_space_translate_cached(
3439 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3440 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3441 {
3442 MemoryRegionSection section;
3443 MemoryRegion *mr;
3444 IOMMUMemoryRegion *iommu_mr;
3445 AddressSpace *target_as;
3446
3447 assert(!cache->ptr);
3448 *xlat = addr + cache->xlat;
3449
3450 mr = cache->mrs.mr;
3451 iommu_mr = memory_region_get_iommu(mr);
3452 if (!iommu_mr) {
3453 /* MMIO region. */
3454 return mr;
3455 }
3456
3457 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3458 NULL, is_write, true,
3459 &target_as, attrs);
3460 return section.mr;
3461 }
3462
3463 /* Called within RCU critical section. */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3464 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3465 const void *ptr,
3466 hwaddr len,
3467 hwaddr mr_addr,
3468 hwaddr l,
3469 MemoryRegion *mr)
3470 {
3471 MemTxResult result = MEMTX_OK;
3472 const uint8_t *buf = ptr;
3473
3474 for (;;) {
3475 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3476 mr);
3477
3478 len -= l;
3479 buf += l;
3480 mr_addr += l;
3481
3482 if (!len) {
3483 break;
3484 }
3485
3486 l = len;
3487 }
3488
3489 return result;
3490 }
3491
3492 /* Called within RCU critical section. */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3493 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3494 void *ptr, hwaddr len,
3495 hwaddr mr_addr, hwaddr l,
3496 MemoryRegion *mr)
3497 {
3498 MemTxResult result = MEMTX_OK;
3499 uint8_t *buf = ptr;
3500
3501 for (;;) {
3502 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3503 len -= l;
3504 buf += l;
3505 mr_addr += l;
3506
3507 if (!len) {
3508 break;
3509 }
3510 l = len;
3511 }
3512
3513 return result;
3514 }
3515
3516 /* Called from RCU critical section. address_space_read_cached uses this
3517 * out of line function when the target is an MMIO or IOMMU region.
3518 */
3519 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3520 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3521 void *buf, hwaddr len)
3522 {
3523 hwaddr mr_addr, l;
3524 MemoryRegion *mr;
3525
3526 l = len;
3527 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3528 MEMTXATTRS_UNSPECIFIED);
3529 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3530 buf, len, mr_addr, l, mr);
3531 }
3532
3533 /* Called from RCU critical section. address_space_write_cached uses this
3534 * out of line function when the target is an MMIO or IOMMU region.
3535 */
3536 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3537 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3538 const void *buf, hwaddr len)
3539 {
3540 hwaddr mr_addr, l;
3541 MemoryRegion *mr;
3542
3543 l = len;
3544 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3545 MEMTXATTRS_UNSPECIFIED);
3546 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3547 buf, len, mr_addr, l, mr);
3548 }
3549
3550 #define ARG1_DECL MemoryRegionCache *cache
3551 #define ARG1 cache
3552 #define SUFFIX _cached_slow
3553 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3554 #define RCU_READ_LOCK() ((void)0)
3555 #define RCU_READ_UNLOCK() ((void)0)
3556 #include "memory_ldst.c.inc"
3557
3558 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3559 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3560 void *ptr, size_t len, bool is_write)
3561 {
3562 hwaddr phys_addr;
3563 vaddr l, page;
3564 uint8_t *buf = ptr;
3565
3566 cpu_synchronize_state(cpu);
3567 while (len > 0) {
3568 int asidx;
3569 MemTxAttrs attrs;
3570 MemTxResult res;
3571
3572 page = addr & TARGET_PAGE_MASK;
3573 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3574 asidx = cpu_asidx_from_attrs(cpu, attrs);
3575 /* if no physical page mapped, return an error */
3576 if (phys_addr == -1)
3577 return -1;
3578 l = (page + TARGET_PAGE_SIZE) - addr;
3579 if (l > len)
3580 l = len;
3581 phys_addr += (addr & ~TARGET_PAGE_MASK);
3582 if (is_write) {
3583 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3584 attrs, buf, l);
3585 } else {
3586 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3587 attrs, buf, l);
3588 }
3589 if (res != MEMTX_OK) {
3590 return -1;
3591 }
3592 len -= l;
3593 buf += l;
3594 addr += l;
3595 }
3596 return 0;
3597 }
3598
cpu_physical_memory_is_io(hwaddr phys_addr)3599 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3600 {
3601 MemoryRegion*mr;
3602 hwaddr l = 1;
3603
3604 RCU_READ_LOCK_GUARD();
3605 mr = address_space_translate(&address_space_memory,
3606 phys_addr, &phys_addr, &l, false,
3607 MEMTXATTRS_UNSPECIFIED);
3608
3609 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3610 }
3611
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3612 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3613 {
3614 RAMBlock *block;
3615 int ret = 0;
3616
3617 RCU_READ_LOCK_GUARD();
3618 RAMBLOCK_FOREACH(block) {
3619 ret = func(block, opaque);
3620 if (ret) {
3621 break;
3622 }
3623 }
3624 return ret;
3625 }
3626
3627 /*
3628 * Unmap pages of memory from start to start+length such that
3629 * they a) read as 0, b) Trigger whatever fault mechanism
3630 * the OS provides for postcopy.
3631 * The pages must be unmapped by the end of the function.
3632 * Returns: 0 on success, none-0 on failure
3633 *
3634 */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3635 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3636 {
3637 int ret = -1;
3638
3639 uint8_t *host_startaddr = rb->host + start;
3640
3641 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3642 error_report("%s: Unaligned start address: %p",
3643 __func__, host_startaddr);
3644 goto err;
3645 }
3646
3647 if ((start + length) <= rb->max_length) {
3648 bool need_madvise, need_fallocate;
3649 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3650 error_report("%s: Unaligned length: %zx", __func__, length);
3651 goto err;
3652 }
3653
3654 errno = ENOTSUP; /* If we are missing MADVISE etc */
3655
3656 /* The logic here is messy;
3657 * madvise DONTNEED fails for hugepages
3658 * fallocate works on hugepages and shmem
3659 * shared anonymous memory requires madvise REMOVE
3660 */
3661 need_madvise = (rb->page_size == qemu_real_host_page_size());
3662 need_fallocate = rb->fd != -1;
3663 if (need_fallocate) {
3664 /* For a file, this causes the area of the file to be zero'd
3665 * if read, and for hugetlbfs also causes it to be unmapped
3666 * so a userfault will trigger.
3667 */
3668 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3669 /*
3670 * fallocate() will fail with readonly files. Let's print a
3671 * proper error message.
3672 */
3673 if (rb->flags & RAM_READONLY_FD) {
3674 error_report("%s: Discarding RAM with readonly files is not"
3675 " supported", __func__);
3676 goto err;
3677
3678 }
3679 /*
3680 * We'll discard data from the actual file, even though we only
3681 * have a MAP_PRIVATE mapping, possibly messing with other
3682 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3683 * change that behavior whithout violating the promised
3684 * semantics of ram_block_discard_range().
3685 *
3686 * Only warn, because it works as long as nobody else uses that
3687 * file.
3688 */
3689 if (!qemu_ram_is_shared(rb)) {
3690 warn_report_once("%s: Discarding RAM"
3691 " in private file mappings is possibly"
3692 " dangerous, because it will modify the"
3693 " underlying file and will affect other"
3694 " users of the file", __func__);
3695 }
3696
3697 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3698 start, length);
3699 if (ret) {
3700 ret = -errno;
3701 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3702 __func__, rb->idstr, start, length, ret);
3703 goto err;
3704 }
3705 #else
3706 ret = -ENOSYS;
3707 error_report("%s: fallocate not available/file"
3708 "%s:%" PRIx64 " +%zx (%d)",
3709 __func__, rb->idstr, start, length, ret);
3710 goto err;
3711 #endif
3712 }
3713 if (need_madvise) {
3714 /* For normal RAM this causes it to be unmapped,
3715 * for shared memory it causes the local mapping to disappear
3716 * and to fall back on the file contents (which we just
3717 * fallocate'd away).
3718 */
3719 #if defined(CONFIG_MADVISE)
3720 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3721 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3722 } else {
3723 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3724 }
3725 if (ret) {
3726 ret = -errno;
3727 error_report("%s: Failed to discard range "
3728 "%s:%" PRIx64 " +%zx (%d)",
3729 __func__, rb->idstr, start, length, ret);
3730 goto err;
3731 }
3732 #else
3733 ret = -ENOSYS;
3734 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3735 __func__, rb->idstr, start, length, ret);
3736 goto err;
3737 #endif
3738 }
3739 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3740 need_madvise, need_fallocate, ret);
3741 } else {
3742 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3743 __func__, rb->idstr, start, length, rb->max_length);
3744 }
3745
3746 err:
3747 return ret;
3748 }
3749
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3750 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3751 size_t length)
3752 {
3753 int ret = -1;
3754
3755 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3756 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3757 start, length);
3758
3759 if (ret) {
3760 ret = -errno;
3761 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3762 __func__, rb->idstr, start, length, ret);
3763 }
3764 #else
3765 ret = -ENOSYS;
3766 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3767 __func__, rb->idstr, start, length, ret);
3768 #endif
3769
3770 return ret;
3771 }
3772
ramblock_is_pmem(RAMBlock * rb)3773 bool ramblock_is_pmem(RAMBlock *rb)
3774 {
3775 return rb->flags & RAM_PMEM;
3776 }
3777
mtree_print_phys_entries(int start,int end,int skip,int ptr)3778 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3779 {
3780 if (start == end - 1) {
3781 qemu_printf("\t%3d ", start);
3782 } else {
3783 qemu_printf("\t%3d..%-3d ", start, end - 1);
3784 }
3785 qemu_printf(" skip=%d ", skip);
3786 if (ptr == PHYS_MAP_NODE_NIL) {
3787 qemu_printf(" ptr=NIL");
3788 } else if (!skip) {
3789 qemu_printf(" ptr=#%d", ptr);
3790 } else {
3791 qemu_printf(" ptr=[%d]", ptr);
3792 }
3793 qemu_printf("\n");
3794 }
3795
3796 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3797 int128_sub((size), int128_one())) : 0)
3798
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3799 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3800 {
3801 int i;
3802
3803 qemu_printf(" Dispatch\n");
3804 qemu_printf(" Physical sections\n");
3805
3806 for (i = 0; i < d->map.sections_nb; ++i) {
3807 MemoryRegionSection *s = d->map.sections + i;
3808 const char *names[] = { " [unassigned]", " [not dirty]",
3809 " [ROM]", " [watch]" };
3810
3811 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3812 " %s%s%s%s%s",
3813 i,
3814 s->offset_within_address_space,
3815 s->offset_within_address_space + MR_SIZE(s->size),
3816 s->mr->name ? s->mr->name : "(noname)",
3817 i < ARRAY_SIZE(names) ? names[i] : "",
3818 s->mr == root ? " [ROOT]" : "",
3819 s == d->mru_section ? " [MRU]" : "",
3820 s->mr->is_iommu ? " [iommu]" : "");
3821
3822 if (s->mr->alias) {
3823 qemu_printf(" alias=%s", s->mr->alias->name ?
3824 s->mr->alias->name : "noname");
3825 }
3826 qemu_printf("\n");
3827 }
3828
3829 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3830 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3831 for (i = 0; i < d->map.nodes_nb; ++i) {
3832 int j, jprev;
3833 PhysPageEntry prev;
3834 Node *n = d->map.nodes + i;
3835
3836 qemu_printf(" [%d]\n", i);
3837
3838 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3839 PhysPageEntry *pe = *n + j;
3840
3841 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3842 continue;
3843 }
3844
3845 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3846
3847 jprev = j;
3848 prev = *pe;
3849 }
3850
3851 if (jprev != ARRAY_SIZE(*n)) {
3852 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3853 }
3854 }
3855 }
3856
3857 /* Require any discards to work. */
3858 static unsigned int ram_block_discard_required_cnt;
3859 /* Require only coordinated discards to work. */
3860 static unsigned int ram_block_coordinated_discard_required_cnt;
3861 /* Disable any discards. */
3862 static unsigned int ram_block_discard_disabled_cnt;
3863 /* Disable only uncoordinated discards. */
3864 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3865 static QemuMutex ram_block_discard_disable_mutex;
3866
ram_block_discard_disable_mutex_lock(void)3867 static void ram_block_discard_disable_mutex_lock(void)
3868 {
3869 static gsize initialized;
3870
3871 if (g_once_init_enter(&initialized)) {
3872 qemu_mutex_init(&ram_block_discard_disable_mutex);
3873 g_once_init_leave(&initialized, 1);
3874 }
3875 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3876 }
3877
ram_block_discard_disable_mutex_unlock(void)3878 static void ram_block_discard_disable_mutex_unlock(void)
3879 {
3880 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3881 }
3882
ram_block_discard_disable(bool state)3883 int ram_block_discard_disable(bool state)
3884 {
3885 int ret = 0;
3886
3887 ram_block_discard_disable_mutex_lock();
3888 if (!state) {
3889 ram_block_discard_disabled_cnt--;
3890 } else if (ram_block_discard_required_cnt ||
3891 ram_block_coordinated_discard_required_cnt) {
3892 ret = -EBUSY;
3893 } else {
3894 ram_block_discard_disabled_cnt++;
3895 }
3896 ram_block_discard_disable_mutex_unlock();
3897 return ret;
3898 }
3899
ram_block_uncoordinated_discard_disable(bool state)3900 int ram_block_uncoordinated_discard_disable(bool state)
3901 {
3902 int ret = 0;
3903
3904 ram_block_discard_disable_mutex_lock();
3905 if (!state) {
3906 ram_block_uncoordinated_discard_disabled_cnt--;
3907 } else if (ram_block_discard_required_cnt) {
3908 ret = -EBUSY;
3909 } else {
3910 ram_block_uncoordinated_discard_disabled_cnt++;
3911 }
3912 ram_block_discard_disable_mutex_unlock();
3913 return ret;
3914 }
3915
ram_block_discard_require(bool state)3916 int ram_block_discard_require(bool state)
3917 {
3918 int ret = 0;
3919
3920 ram_block_discard_disable_mutex_lock();
3921 if (!state) {
3922 ram_block_discard_required_cnt--;
3923 } else if (ram_block_discard_disabled_cnt ||
3924 ram_block_uncoordinated_discard_disabled_cnt) {
3925 ret = -EBUSY;
3926 } else {
3927 ram_block_discard_required_cnt++;
3928 }
3929 ram_block_discard_disable_mutex_unlock();
3930 return ret;
3931 }
3932
ram_block_coordinated_discard_require(bool state)3933 int ram_block_coordinated_discard_require(bool state)
3934 {
3935 int ret = 0;
3936
3937 ram_block_discard_disable_mutex_lock();
3938 if (!state) {
3939 ram_block_coordinated_discard_required_cnt--;
3940 } else if (ram_block_discard_disabled_cnt) {
3941 ret = -EBUSY;
3942 } else {
3943 ram_block_coordinated_discard_required_cnt++;
3944 }
3945 ram_block_discard_disable_mutex_unlock();
3946 return ret;
3947 }
3948
ram_block_discard_is_disabled(void)3949 bool ram_block_discard_is_disabled(void)
3950 {
3951 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3952 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3953 }
3954
ram_block_discard_is_required(void)3955 bool ram_block_discard_is_required(void)
3956 {
3957 return qatomic_read(&ram_block_discard_required_cnt) ||
3958 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3959 }
3960