1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * efi.c - EFI subsystem
4 *
5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8 *
9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
11 * The existance of /sys/firmware/efi may also be used by userspace to
12 * determine that the system supports EFI.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/initrd.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 #include <linux/security.h>
35
36 #include <asm/early_ioremap.h>
37
38 struct efi __read_mostly efi = {
39 .runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
40 .acpi = EFI_INVALID_TABLE_ADDR,
41 .acpi20 = EFI_INVALID_TABLE_ADDR,
42 .smbios = EFI_INVALID_TABLE_ADDR,
43 .smbios3 = EFI_INVALID_TABLE_ADDR,
44 .esrt = EFI_INVALID_TABLE_ADDR,
45 .tpm_log = EFI_INVALID_TABLE_ADDR,
46 .tpm_final_log = EFI_INVALID_TABLE_ADDR,
47 #ifdef CONFIG_LOAD_UEFI_KEYS
48 .mokvar_table = EFI_INVALID_TABLE_ADDR,
49 #endif
50 #ifdef CONFIG_EFI_COCO_SECRET
51 .coco_secret = EFI_INVALID_TABLE_ADDR,
52 #endif
53 #ifdef CONFIG_UNACCEPTED_MEMORY
54 .unaccepted = EFI_INVALID_TABLE_ADDR,
55 #endif
56 };
57 EXPORT_SYMBOL(efi);
58
59 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
60 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
61 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
62 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
63
64 extern unsigned long screen_info_table;
65
66 struct mm_struct efi_mm = {
67 .mm_mt = MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
68 .mm_users = ATOMIC_INIT(2),
69 .mm_count = ATOMIC_INIT(1),
70 .write_protect_seq = SEQCNT_ZERO(efi_mm.write_protect_seq),
71 MMAP_LOCK_INITIALIZER(efi_mm)
72 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
73 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
74 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
75 };
76
77 struct workqueue_struct *efi_rts_wq;
78
79 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
setup_noefi(char * arg)80 static int __init setup_noefi(char *arg)
81 {
82 disable_runtime = true;
83 return 0;
84 }
85 early_param("noefi", setup_noefi);
86
efi_runtime_disabled(void)87 bool efi_runtime_disabled(void)
88 {
89 return disable_runtime;
90 }
91
__efi_soft_reserve_enabled(void)92 bool __pure __efi_soft_reserve_enabled(void)
93 {
94 return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
95 }
96
parse_efi_cmdline(char * str)97 static int __init parse_efi_cmdline(char *str)
98 {
99 if (!str) {
100 pr_warn("need at least one option\n");
101 return -EINVAL;
102 }
103
104 if (parse_option_str(str, "debug"))
105 set_bit(EFI_DBG, &efi.flags);
106
107 if (parse_option_str(str, "noruntime"))
108 disable_runtime = true;
109
110 if (parse_option_str(str, "runtime"))
111 disable_runtime = false;
112
113 if (parse_option_str(str, "nosoftreserve"))
114 set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
115
116 return 0;
117 }
118 early_param("efi", parse_efi_cmdline);
119
120 struct kobject *efi_kobj;
121
122 /*
123 * Let's not leave out systab information that snuck into
124 * the efivars driver
125 * Note, do not add more fields in systab sysfs file as it breaks sysfs
126 * one value per file rule!
127 */
systab_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)128 static ssize_t systab_show(struct kobject *kobj,
129 struct kobj_attribute *attr, char *buf)
130 {
131 char *str = buf;
132
133 if (!kobj || !buf)
134 return -EINVAL;
135
136 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
137 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
138 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
139 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
140 /*
141 * If both SMBIOS and SMBIOS3 entry points are implemented, the
142 * SMBIOS3 entry point shall be preferred, so we list it first to
143 * let applications stop parsing after the first match.
144 */
145 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
146 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
147 if (efi.smbios != EFI_INVALID_TABLE_ADDR)
148 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
149
150 if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
151 str = efi_systab_show_arch(str);
152
153 return str - buf;
154 }
155
156 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
157
fw_platform_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)158 static ssize_t fw_platform_size_show(struct kobject *kobj,
159 struct kobj_attribute *attr, char *buf)
160 {
161 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
162 }
163
164 extern __weak struct kobj_attribute efi_attr_fw_vendor;
165 extern __weak struct kobj_attribute efi_attr_runtime;
166 extern __weak struct kobj_attribute efi_attr_config_table;
167 static struct kobj_attribute efi_attr_fw_platform_size =
168 __ATTR_RO(fw_platform_size);
169
170 static struct attribute *efi_subsys_attrs[] = {
171 &efi_attr_systab.attr,
172 &efi_attr_fw_platform_size.attr,
173 &efi_attr_fw_vendor.attr,
174 &efi_attr_runtime.attr,
175 &efi_attr_config_table.attr,
176 NULL,
177 };
178
efi_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)179 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
180 int n)
181 {
182 return attr->mode;
183 }
184
185 static const struct attribute_group efi_subsys_attr_group = {
186 .attrs = efi_subsys_attrs,
187 .is_visible = efi_attr_is_visible,
188 };
189
190 static struct efivars generic_efivars;
191 static struct efivar_operations generic_ops;
192
generic_ops_supported(void)193 static bool generic_ops_supported(void)
194 {
195 unsigned long name_size;
196 efi_status_t status;
197 efi_char16_t name;
198 efi_guid_t guid;
199
200 name_size = sizeof(name);
201
202 if (!efi.get_next_variable)
203 return false;
204 status = efi.get_next_variable(&name_size, &name, &guid);
205 if (status == EFI_UNSUPPORTED)
206 return false;
207
208 return true;
209 }
210
generic_ops_register(void)211 static int generic_ops_register(void)
212 {
213 if (!generic_ops_supported())
214 return 0;
215
216 generic_ops.get_variable = efi.get_variable;
217 generic_ops.get_next_variable = efi.get_next_variable;
218 generic_ops.query_variable_store = efi_query_variable_store;
219 generic_ops.query_variable_info = efi.query_variable_info;
220
221 if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
222 generic_ops.set_variable = efi.set_variable;
223 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
224 }
225 return efivars_register(&generic_efivars, &generic_ops);
226 }
227
generic_ops_unregister(void)228 static void generic_ops_unregister(void)
229 {
230 if (!generic_ops.get_variable)
231 return;
232
233 efivars_unregister(&generic_efivars);
234 }
235
236 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
237 #define EFIVAR_SSDT_NAME_MAX 16UL
238 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
efivar_ssdt_setup(char * str)239 static int __init efivar_ssdt_setup(char *str)
240 {
241 int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
242
243 if (ret)
244 return ret;
245
246 if (strlen(str) < sizeof(efivar_ssdt))
247 memcpy(efivar_ssdt, str, strlen(str));
248 else
249 pr_warn("efivar_ssdt: name too long: %s\n", str);
250 return 1;
251 }
252 __setup("efivar_ssdt=", efivar_ssdt_setup);
253
efivar_ssdt_load(void)254 static __init int efivar_ssdt_load(void)
255 {
256 unsigned long name_size = 256;
257 efi_char16_t *name = NULL;
258 efi_status_t status;
259 efi_guid_t guid;
260
261 if (!efivar_ssdt[0])
262 return 0;
263
264 name = kzalloc(name_size, GFP_KERNEL);
265 if (!name)
266 return -ENOMEM;
267
268 for (;;) {
269 char utf8_name[EFIVAR_SSDT_NAME_MAX];
270 unsigned long data_size = 0;
271 void *data;
272 int limit;
273
274 status = efi.get_next_variable(&name_size, name, &guid);
275 if (status == EFI_NOT_FOUND) {
276 break;
277 } else if (status == EFI_BUFFER_TOO_SMALL) {
278 efi_char16_t *name_tmp =
279 krealloc(name, name_size, GFP_KERNEL);
280 if (!name_tmp) {
281 kfree(name);
282 return -ENOMEM;
283 }
284 name = name_tmp;
285 continue;
286 }
287
288 limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
289 ucs2_as_utf8(utf8_name, name, limit - 1);
290 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
291 continue;
292
293 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
294
295 status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
296 if (status != EFI_BUFFER_TOO_SMALL || !data_size)
297 return -EIO;
298
299 data = kmalloc(data_size, GFP_KERNEL);
300 if (!data)
301 return -ENOMEM;
302
303 status = efi.get_variable(name, &guid, NULL, &data_size, data);
304 if (status == EFI_SUCCESS) {
305 acpi_status ret = acpi_load_table(data, NULL);
306 if (ret)
307 pr_err("failed to load table: %u\n", ret);
308 else
309 continue;
310 } else {
311 pr_err("failed to get var data: 0x%lx\n", status);
312 }
313 kfree(data);
314 }
315 return 0;
316 }
317 #else
efivar_ssdt_load(void)318 static inline int efivar_ssdt_load(void) { return 0; }
319 #endif
320
321 #ifdef CONFIG_DEBUG_FS
322
323 #define EFI_DEBUGFS_MAX_BLOBS 32
324
325 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
326
efi_debugfs_init(void)327 static void __init efi_debugfs_init(void)
328 {
329 struct dentry *efi_debugfs;
330 efi_memory_desc_t *md;
331 char name[32];
332 int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
333 int i = 0;
334
335 efi_debugfs = debugfs_create_dir("efi", NULL);
336 if (IS_ERR_OR_NULL(efi_debugfs))
337 return;
338
339 for_each_efi_memory_desc(md) {
340 switch (md->type) {
341 case EFI_BOOT_SERVICES_CODE:
342 snprintf(name, sizeof(name), "boot_services_code%d",
343 type_count[md->type]++);
344 break;
345 case EFI_BOOT_SERVICES_DATA:
346 snprintf(name, sizeof(name), "boot_services_data%d",
347 type_count[md->type]++);
348 break;
349 default:
350 continue;
351 }
352
353 if (i >= EFI_DEBUGFS_MAX_BLOBS) {
354 pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
355 EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
356 break;
357 }
358
359 debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
360 debugfs_blob[i].data = memremap(md->phys_addr,
361 debugfs_blob[i].size,
362 MEMREMAP_WB);
363 if (!debugfs_blob[i].data)
364 continue;
365
366 debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
367 i++;
368 }
369 }
370 #else
efi_debugfs_init(void)371 static inline void efi_debugfs_init(void) {}
372 #endif
373
374 /*
375 * We register the efi subsystem with the firmware subsystem and the
376 * efivars subsystem with the efi subsystem, if the system was booted with
377 * EFI.
378 */
efisubsys_init(void)379 static int __init efisubsys_init(void)
380 {
381 int error;
382
383 if (!efi_enabled(EFI_RUNTIME_SERVICES))
384 efi.runtime_supported_mask = 0;
385
386 if (!efi_enabled(EFI_BOOT))
387 return 0;
388
389 if (efi.runtime_supported_mask) {
390 /*
391 * Since we process only one efi_runtime_service() at a time, an
392 * ordered workqueue (which creates only one execution context)
393 * should suffice for all our needs.
394 */
395 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
396 if (!efi_rts_wq) {
397 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
398 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
399 efi.runtime_supported_mask = 0;
400 return 0;
401 }
402 }
403
404 if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
405 platform_device_register_simple("rtc-efi", 0, NULL, 0);
406
407 /* We register the efi directory at /sys/firmware/efi */
408 efi_kobj = kobject_create_and_add("efi", firmware_kobj);
409 if (!efi_kobj) {
410 pr_err("efi: Firmware registration failed.\n");
411 error = -ENOMEM;
412 goto err_destroy_wq;
413 }
414
415 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
416 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
417 error = generic_ops_register();
418 if (error)
419 goto err_put;
420 efivar_ssdt_load();
421 platform_device_register_simple("efivars", 0, NULL, 0);
422 }
423
424 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
425 if (error) {
426 pr_err("efi: Sysfs attribute export failed with error %d.\n",
427 error);
428 goto err_unregister;
429 }
430
431 /* and the standard mountpoint for efivarfs */
432 error = sysfs_create_mount_point(efi_kobj, "efivars");
433 if (error) {
434 pr_err("efivars: Subsystem registration failed.\n");
435 goto err_remove_group;
436 }
437
438 if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
439 efi_debugfs_init();
440
441 #ifdef CONFIG_EFI_COCO_SECRET
442 if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
443 platform_device_register_simple("efi_secret", 0, NULL, 0);
444 #endif
445
446 return 0;
447
448 err_remove_group:
449 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
450 err_unregister:
451 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
452 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
453 generic_ops_unregister();
454 err_put:
455 kobject_put(efi_kobj);
456 efi_kobj = NULL;
457 err_destroy_wq:
458 if (efi_rts_wq)
459 destroy_workqueue(efi_rts_wq);
460
461 return error;
462 }
463
464 subsys_initcall(efisubsys_init);
465
efi_find_mirror(void)466 void __init efi_find_mirror(void)
467 {
468 efi_memory_desc_t *md;
469 u64 mirror_size = 0, total_size = 0;
470
471 if (!efi_enabled(EFI_MEMMAP))
472 return;
473
474 for_each_efi_memory_desc(md) {
475 unsigned long long start = md->phys_addr;
476 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
477
478 total_size += size;
479 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
480 memblock_mark_mirror(start, size);
481 mirror_size += size;
482 }
483 }
484 if (mirror_size)
485 pr_info("Memory: %lldM/%lldM mirrored memory\n",
486 mirror_size>>20, total_size>>20);
487 }
488
489 /*
490 * Find the efi memory descriptor for a given physical address. Given a
491 * physical address, determine if it exists within an EFI Memory Map entry,
492 * and if so, populate the supplied memory descriptor with the appropriate
493 * data.
494 */
__efi_mem_desc_lookup(u64 phys_addr,efi_memory_desc_t * out_md)495 int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
496 {
497 efi_memory_desc_t *md;
498
499 if (!efi_enabled(EFI_MEMMAP)) {
500 pr_err_once("EFI_MEMMAP is not enabled.\n");
501 return -EINVAL;
502 }
503
504 if (!out_md) {
505 pr_err_once("out_md is null.\n");
506 return -EINVAL;
507 }
508
509 for_each_efi_memory_desc(md) {
510 u64 size;
511 u64 end;
512
513 /* skip bogus entries (including empty ones) */
514 if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
515 (md->num_pages <= 0) ||
516 (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
517 continue;
518
519 size = md->num_pages << EFI_PAGE_SHIFT;
520 end = md->phys_addr + size;
521 if (phys_addr >= md->phys_addr && phys_addr < end) {
522 memcpy(out_md, md, sizeof(*out_md));
523 return 0;
524 }
525 }
526 return -ENOENT;
527 }
528
529 extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
530 __weak __alias(__efi_mem_desc_lookup);
531
532 /*
533 * Calculate the highest address of an efi memory descriptor.
534 */
efi_mem_desc_end(efi_memory_desc_t * md)535 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
536 {
537 u64 size = md->num_pages << EFI_PAGE_SHIFT;
538 u64 end = md->phys_addr + size;
539 return end;
540 }
541
efi_arch_mem_reserve(phys_addr_t addr,u64 size)542 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
543
544 /**
545 * efi_mem_reserve - Reserve an EFI memory region
546 * @addr: Physical address to reserve
547 * @size: Size of reservation
548 *
549 * Mark a region as reserved from general kernel allocation and
550 * prevent it being released by efi_free_boot_services().
551 *
552 * This function should be called drivers once they've parsed EFI
553 * configuration tables to figure out where their data lives, e.g.
554 * efi_esrt_init().
555 */
efi_mem_reserve(phys_addr_t addr,u64 size)556 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
557 {
558 /* efi_mem_reserve() does not work under Xen */
559 if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
560 return;
561
562 if (!memblock_is_region_reserved(addr, size))
563 memblock_reserve(addr, size);
564
565 /*
566 * Some architectures (x86) reserve all boot services ranges
567 * until efi_free_boot_services() because of buggy firmware
568 * implementations. This means the above memblock_reserve() is
569 * superfluous on x86 and instead what it needs to do is
570 * ensure the @start, @size is not freed.
571 */
572 efi_arch_mem_reserve(addr, size);
573 }
574
575 static const efi_config_table_type_t common_tables[] __initconst = {
576 {ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" },
577 {ACPI_TABLE_GUID, &efi.acpi, "ACPI" },
578 {SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" },
579 {SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" },
580 {EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" },
581 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" },
582 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" },
583 {LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" },
584 {LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" },
585 {LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" },
586 {LINUX_EFI_INITRD_MEDIA_GUID, &initrd, "INITRD" },
587 {EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" },
588 #ifdef CONFIG_EFI_RCI2_TABLE
589 {DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys },
590 #endif
591 #ifdef CONFIG_LOAD_UEFI_KEYS
592 {LINUX_EFI_MOK_VARIABLE_TABLE_GUID, &efi.mokvar_table, "MOKvar" },
593 #endif
594 #ifdef CONFIG_EFI_COCO_SECRET
595 {LINUX_EFI_COCO_SECRET_AREA_GUID, &efi.coco_secret, "CocoSecret" },
596 #endif
597 #ifdef CONFIG_UNACCEPTED_MEMORY
598 {LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID, &efi.unaccepted, "Unaccepted" },
599 #endif
600 #ifdef CONFIG_EFI_GENERIC_STUB
601 {LINUX_EFI_SCREEN_INFO_TABLE_GUID, &screen_info_table },
602 #endif
603 {},
604 };
605
match_config_table(const efi_guid_t * guid,unsigned long table,const efi_config_table_type_t * table_types)606 static __init int match_config_table(const efi_guid_t *guid,
607 unsigned long table,
608 const efi_config_table_type_t *table_types)
609 {
610 int i;
611
612 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
613 if (efi_guidcmp(*guid, table_types[i].guid))
614 continue;
615
616 if (!efi_config_table_is_usable(guid, table)) {
617 if (table_types[i].name[0])
618 pr_cont("(%s=0x%lx unusable) ",
619 table_types[i].name, table);
620 return 1;
621 }
622
623 *(table_types[i].ptr) = table;
624 if (table_types[i].name[0])
625 pr_cont("%s=0x%lx ", table_types[i].name, table);
626 return 1;
627 }
628
629 return 0;
630 }
631
632 /**
633 * reserve_unaccepted - Map and reserve unaccepted configuration table
634 * @unaccepted: Pointer to unaccepted memory table
635 *
636 * memblock_add() makes sure that the table is mapped in direct mapping. During
637 * normal boot it happens automatically because the table is allocated from
638 * usable memory. But during crashkernel boot only memory specifically reserved
639 * for crash scenario is mapped. memblock_add() forces the table to be mapped
640 * in crashkernel case.
641 *
642 * Align the range to the nearest page borders. Ranges smaller than page size
643 * are not going to be mapped.
644 *
645 * memblock_reserve() makes sure that future allocations will not touch the
646 * table.
647 */
648
reserve_unaccepted(struct efi_unaccepted_memory * unaccepted)649 static __init void reserve_unaccepted(struct efi_unaccepted_memory *unaccepted)
650 {
651 phys_addr_t start, size;
652
653 start = PAGE_ALIGN_DOWN(efi.unaccepted);
654 size = PAGE_ALIGN(sizeof(*unaccepted) + unaccepted->size);
655
656 memblock_add(start, size);
657 memblock_reserve(start, size);
658 }
659
efi_config_parse_tables(const efi_config_table_t * config_tables,int count,const efi_config_table_type_t * arch_tables)660 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
661 int count,
662 const efi_config_table_type_t *arch_tables)
663 {
664 const efi_config_table_64_t *tbl64 = (void *)config_tables;
665 const efi_config_table_32_t *tbl32 = (void *)config_tables;
666 const efi_guid_t *guid;
667 unsigned long table;
668 int i;
669
670 pr_info("");
671 for (i = 0; i < count; i++) {
672 if (!IS_ENABLED(CONFIG_X86)) {
673 guid = &config_tables[i].guid;
674 table = (unsigned long)config_tables[i].table;
675 } else if (efi_enabled(EFI_64BIT)) {
676 guid = &tbl64[i].guid;
677 table = tbl64[i].table;
678
679 if (IS_ENABLED(CONFIG_X86_32) &&
680 tbl64[i].table > U32_MAX) {
681 pr_cont("\n");
682 pr_err("Table located above 4GB, disabling EFI.\n");
683 return -EINVAL;
684 }
685 } else {
686 guid = &tbl32[i].guid;
687 table = tbl32[i].table;
688 }
689
690 if (!match_config_table(guid, table, common_tables) && arch_tables)
691 match_config_table(guid, table, arch_tables);
692 }
693 pr_cont("\n");
694 set_bit(EFI_CONFIG_TABLES, &efi.flags);
695
696 if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
697 struct linux_efi_random_seed *seed;
698 u32 size = 0;
699
700 seed = early_memremap(efi_rng_seed, sizeof(*seed));
701 if (seed != NULL) {
702 size = min_t(u32, seed->size, SZ_1K); // sanity check
703 early_memunmap(seed, sizeof(*seed));
704 } else {
705 pr_err("Could not map UEFI random seed!\n");
706 }
707 if (size > 0) {
708 seed = early_memremap(efi_rng_seed,
709 sizeof(*seed) + size);
710 if (seed != NULL) {
711 add_bootloader_randomness(seed->bits, size);
712 memzero_explicit(seed->bits, size);
713 early_memunmap(seed, sizeof(*seed) + size);
714 } else {
715 pr_err("Could not map UEFI random seed!\n");
716 }
717 }
718 }
719
720 if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
721 efi_memattr_init();
722
723 efi_tpm_eventlog_init();
724
725 if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
726 unsigned long prsv = mem_reserve;
727
728 while (prsv) {
729 struct linux_efi_memreserve *rsv;
730 u8 *p;
731
732 /*
733 * Just map a full page: that is what we will get
734 * anyway, and it permits us to map the entire entry
735 * before knowing its size.
736 */
737 p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
738 PAGE_SIZE);
739 if (p == NULL) {
740 pr_err("Could not map UEFI memreserve entry!\n");
741 return -ENOMEM;
742 }
743
744 rsv = (void *)(p + prsv % PAGE_SIZE);
745
746 /* reserve the entry itself */
747 memblock_reserve(prsv,
748 struct_size(rsv, entry, rsv->size));
749
750 for (i = 0; i < atomic_read(&rsv->count); i++) {
751 memblock_reserve(rsv->entry[i].base,
752 rsv->entry[i].size);
753 }
754
755 prsv = rsv->next;
756 early_memunmap(p, PAGE_SIZE);
757 }
758 }
759
760 if (rt_prop != EFI_INVALID_TABLE_ADDR) {
761 efi_rt_properties_table_t *tbl;
762
763 tbl = early_memremap(rt_prop, sizeof(*tbl));
764 if (tbl) {
765 efi.runtime_supported_mask &= tbl->runtime_services_supported;
766 early_memunmap(tbl, sizeof(*tbl));
767 }
768 }
769
770 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
771 initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
772 struct linux_efi_initrd *tbl;
773
774 tbl = early_memremap(initrd, sizeof(*tbl));
775 if (tbl) {
776 phys_initrd_start = tbl->base;
777 phys_initrd_size = tbl->size;
778 early_memunmap(tbl, sizeof(*tbl));
779 }
780 }
781
782 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
783 efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
784 struct efi_unaccepted_memory *unaccepted;
785
786 unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
787 if (unaccepted) {
788
789 if (unaccepted->version == 1) {
790 reserve_unaccepted(unaccepted);
791 } else {
792 efi.unaccepted = EFI_INVALID_TABLE_ADDR;
793 }
794
795 early_memunmap(unaccepted, sizeof(*unaccepted));
796 }
797 }
798
799 return 0;
800 }
801
efi_systab_check_header(const efi_table_hdr_t * systab_hdr)802 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
803 {
804 if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
805 pr_err("System table signature incorrect!\n");
806 return -EINVAL;
807 }
808
809 return 0;
810 }
811
812 #ifndef CONFIG_IA64
map_fw_vendor(unsigned long fw_vendor,size_t size)813 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
814 size_t size)
815 {
816 const efi_char16_t *ret;
817
818 ret = early_memremap_ro(fw_vendor, size);
819 if (!ret)
820 pr_err("Could not map the firmware vendor!\n");
821 return ret;
822 }
823
unmap_fw_vendor(const void * fw_vendor,size_t size)824 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
825 {
826 early_memunmap((void *)fw_vendor, size);
827 }
828 #else
829 #define map_fw_vendor(p, s) __va(p)
830 #define unmap_fw_vendor(v, s)
831 #endif
832
efi_systab_report_header(const efi_table_hdr_t * systab_hdr,unsigned long fw_vendor)833 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
834 unsigned long fw_vendor)
835 {
836 char vendor[100] = "unknown";
837 const efi_char16_t *c16;
838 size_t i;
839 u16 rev;
840
841 c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
842 if (c16) {
843 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
844 vendor[i] = c16[i];
845 vendor[i] = '\0';
846
847 unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
848 }
849
850 rev = (u16)systab_hdr->revision;
851 pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
852
853 rev %= 10;
854 if (rev)
855 pr_cont(".%u", rev);
856
857 pr_cont(" by %s\n", vendor);
858
859 if (IS_ENABLED(CONFIG_X86_64) &&
860 systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
861 !strcmp(vendor, "Apple")) {
862 pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
863 efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
864 }
865 }
866
867 static __initdata char memory_type_name[][13] = {
868 "Reserved",
869 "Loader Code",
870 "Loader Data",
871 "Boot Code",
872 "Boot Data",
873 "Runtime Code",
874 "Runtime Data",
875 "Conventional",
876 "Unusable",
877 "ACPI Reclaim",
878 "ACPI Mem NVS",
879 "MMIO",
880 "MMIO Port",
881 "PAL Code",
882 "Persistent",
883 "Unaccepted",
884 };
885
efi_md_typeattr_format(char * buf,size_t size,const efi_memory_desc_t * md)886 char * __init efi_md_typeattr_format(char *buf, size_t size,
887 const efi_memory_desc_t *md)
888 {
889 char *pos;
890 int type_len;
891 u64 attr;
892
893 pos = buf;
894 if (md->type >= ARRAY_SIZE(memory_type_name))
895 type_len = snprintf(pos, size, "[type=%u", md->type);
896 else
897 type_len = snprintf(pos, size, "[%-*s",
898 (int)(sizeof(memory_type_name[0]) - 1),
899 memory_type_name[md->type]);
900 if (type_len >= size)
901 return buf;
902
903 pos += type_len;
904 size -= type_len;
905
906 attr = md->attribute;
907 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
908 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
909 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
910 EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
911 EFI_MEMORY_MORE_RELIABLE | EFI_MEMORY_HOT_PLUGGABLE |
912 EFI_MEMORY_RUNTIME))
913 snprintf(pos, size, "|attr=0x%016llx]",
914 (unsigned long long)attr);
915 else
916 snprintf(pos, size,
917 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
918 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
919 attr & EFI_MEMORY_HOT_PLUGGABLE ? "HP" : "",
920 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
921 attr & EFI_MEMORY_CPU_CRYPTO ? "CC" : "",
922 attr & EFI_MEMORY_SP ? "SP" : "",
923 attr & EFI_MEMORY_NV ? "NV" : "",
924 attr & EFI_MEMORY_XP ? "XP" : "",
925 attr & EFI_MEMORY_RP ? "RP" : "",
926 attr & EFI_MEMORY_WP ? "WP" : "",
927 attr & EFI_MEMORY_RO ? "RO" : "",
928 attr & EFI_MEMORY_UCE ? "UCE" : "",
929 attr & EFI_MEMORY_WB ? "WB" : "",
930 attr & EFI_MEMORY_WT ? "WT" : "",
931 attr & EFI_MEMORY_WC ? "WC" : "",
932 attr & EFI_MEMORY_UC ? "UC" : "");
933 return buf;
934 }
935
936 /*
937 * IA64 has a funky EFI memory map that doesn't work the same way as
938 * other architectures.
939 */
940 #ifndef CONFIG_IA64
941 /*
942 * efi_mem_attributes - lookup memmap attributes for physical address
943 * @phys_addr: the physical address to lookup
944 *
945 * Search in the EFI memory map for the region covering
946 * @phys_addr. Returns the EFI memory attributes if the region
947 * was found in the memory map, 0 otherwise.
948 */
efi_mem_attributes(unsigned long phys_addr)949 u64 efi_mem_attributes(unsigned long phys_addr)
950 {
951 efi_memory_desc_t *md;
952
953 if (!efi_enabled(EFI_MEMMAP))
954 return 0;
955
956 for_each_efi_memory_desc(md) {
957 if ((md->phys_addr <= phys_addr) &&
958 (phys_addr < (md->phys_addr +
959 (md->num_pages << EFI_PAGE_SHIFT))))
960 return md->attribute;
961 }
962 return 0;
963 }
964
965 /*
966 * efi_mem_type - lookup memmap type for physical address
967 * @phys_addr: the physical address to lookup
968 *
969 * Search in the EFI memory map for the region covering @phys_addr.
970 * Returns the EFI memory type if the region was found in the memory
971 * map, -EINVAL otherwise.
972 */
efi_mem_type(unsigned long phys_addr)973 int efi_mem_type(unsigned long phys_addr)
974 {
975 const efi_memory_desc_t *md;
976
977 if (!efi_enabled(EFI_MEMMAP))
978 return -ENOTSUPP;
979
980 for_each_efi_memory_desc(md) {
981 if ((md->phys_addr <= phys_addr) &&
982 (phys_addr < (md->phys_addr +
983 (md->num_pages << EFI_PAGE_SHIFT))))
984 return md->type;
985 }
986 return -EINVAL;
987 }
988 #endif
989
efi_status_to_err(efi_status_t status)990 int efi_status_to_err(efi_status_t status)
991 {
992 int err;
993
994 switch (status) {
995 case EFI_SUCCESS:
996 err = 0;
997 break;
998 case EFI_INVALID_PARAMETER:
999 err = -EINVAL;
1000 break;
1001 case EFI_OUT_OF_RESOURCES:
1002 err = -ENOSPC;
1003 break;
1004 case EFI_DEVICE_ERROR:
1005 err = -EIO;
1006 break;
1007 case EFI_WRITE_PROTECTED:
1008 err = -EROFS;
1009 break;
1010 case EFI_SECURITY_VIOLATION:
1011 err = -EACCES;
1012 break;
1013 case EFI_NOT_FOUND:
1014 err = -ENOENT;
1015 break;
1016 case EFI_ABORTED:
1017 err = -EINTR;
1018 break;
1019 default:
1020 err = -EINVAL;
1021 }
1022
1023 return err;
1024 }
1025 EXPORT_SYMBOL_GPL(efi_status_to_err);
1026
1027 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
1028 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
1029
efi_memreserve_map_root(void)1030 static int __init efi_memreserve_map_root(void)
1031 {
1032 if (mem_reserve == EFI_INVALID_TABLE_ADDR)
1033 return -ENODEV;
1034
1035 efi_memreserve_root = memremap(mem_reserve,
1036 sizeof(*efi_memreserve_root),
1037 MEMREMAP_WB);
1038 if (WARN_ON_ONCE(!efi_memreserve_root))
1039 return -ENOMEM;
1040 return 0;
1041 }
1042
efi_mem_reserve_iomem(phys_addr_t addr,u64 size)1043 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1044 {
1045 struct resource *res, *parent;
1046 int ret;
1047
1048 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1049 if (!res)
1050 return -ENOMEM;
1051
1052 res->name = "reserved";
1053 res->flags = IORESOURCE_MEM;
1054 res->start = addr;
1055 res->end = addr + size - 1;
1056
1057 /* we expect a conflict with a 'System RAM' region */
1058 parent = request_resource_conflict(&iomem_resource, res);
1059 ret = parent ? request_resource(parent, res) : 0;
1060
1061 /*
1062 * Given that efi_mem_reserve_iomem() can be called at any
1063 * time, only call memblock_reserve() if the architecture
1064 * keeps the infrastructure around.
1065 */
1066 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1067 memblock_reserve(addr, size);
1068
1069 return ret;
1070 }
1071
efi_mem_reserve_persistent(phys_addr_t addr,u64 size)1072 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1073 {
1074 struct linux_efi_memreserve *rsv;
1075 unsigned long prsv;
1076 int rc, index;
1077
1078 if (efi_memreserve_root == (void *)ULONG_MAX)
1079 return -ENODEV;
1080
1081 if (!efi_memreserve_root) {
1082 rc = efi_memreserve_map_root();
1083 if (rc)
1084 return rc;
1085 }
1086
1087 /* first try to find a slot in an existing linked list entry */
1088 for (prsv = efi_memreserve_root->next; prsv; ) {
1089 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1090 if (!rsv)
1091 return -ENOMEM;
1092 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1093 if (index < rsv->size) {
1094 rsv->entry[index].base = addr;
1095 rsv->entry[index].size = size;
1096
1097 memunmap(rsv);
1098 return efi_mem_reserve_iomem(addr, size);
1099 }
1100 prsv = rsv->next;
1101 memunmap(rsv);
1102 }
1103
1104 /* no slot found - allocate a new linked list entry */
1105 rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1106 if (!rsv)
1107 return -ENOMEM;
1108
1109 rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1110 if (rc) {
1111 free_page((unsigned long)rsv);
1112 return rc;
1113 }
1114
1115 /*
1116 * The memremap() call above assumes that a linux_efi_memreserve entry
1117 * never crosses a page boundary, so let's ensure that this remains true
1118 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1119 * using SZ_4K explicitly in the size calculation below.
1120 */
1121 rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1122 atomic_set(&rsv->count, 1);
1123 rsv->entry[0].base = addr;
1124 rsv->entry[0].size = size;
1125
1126 spin_lock(&efi_mem_reserve_persistent_lock);
1127 rsv->next = efi_memreserve_root->next;
1128 efi_memreserve_root->next = __pa(rsv);
1129 spin_unlock(&efi_mem_reserve_persistent_lock);
1130
1131 return efi_mem_reserve_iomem(addr, size);
1132 }
1133
efi_memreserve_root_init(void)1134 static int __init efi_memreserve_root_init(void)
1135 {
1136 if (efi_memreserve_root)
1137 return 0;
1138 if (efi_memreserve_map_root())
1139 efi_memreserve_root = (void *)ULONG_MAX;
1140 return 0;
1141 }
1142 early_initcall(efi_memreserve_root_init);
1143
1144 #ifdef CONFIG_KEXEC
update_efi_random_seed(struct notifier_block * nb,unsigned long code,void * unused)1145 static int update_efi_random_seed(struct notifier_block *nb,
1146 unsigned long code, void *unused)
1147 {
1148 struct linux_efi_random_seed *seed;
1149 u32 size = 0;
1150
1151 if (!kexec_in_progress)
1152 return NOTIFY_DONE;
1153
1154 seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1155 if (seed != NULL) {
1156 size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1157 memunmap(seed);
1158 } else {
1159 pr_err("Could not map UEFI random seed!\n");
1160 }
1161 if (size > 0) {
1162 seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1163 MEMREMAP_WB);
1164 if (seed != NULL) {
1165 seed->size = size;
1166 get_random_bytes(seed->bits, seed->size);
1167 memunmap(seed);
1168 } else {
1169 pr_err("Could not map UEFI random seed!\n");
1170 }
1171 }
1172 return NOTIFY_DONE;
1173 }
1174
1175 static struct notifier_block efi_random_seed_nb = {
1176 .notifier_call = update_efi_random_seed,
1177 };
1178
register_update_efi_random_seed(void)1179 static int __init register_update_efi_random_seed(void)
1180 {
1181 if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1182 return 0;
1183 return register_reboot_notifier(&efi_random_seed_nb);
1184 }
1185 late_initcall(register_update_efi_random_seed);
1186 #endif
1187