1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <net/addrconf.h>
63 #include <net/bonding.h>
64 #include <linux/uaccess.h>
65 #include <linux/crash_dump.h>
66 #include <net/udp_tunnel.h>
67 #include <net/xfrm.h>
68 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
69 #include <net/tls.h>
70 #endif
71
72 #include "cxgb4.h"
73 #include "cxgb4_filter.h"
74 #include "t4_regs.h"
75 #include "t4_values.h"
76 #include "t4_msg.h"
77 #include "t4fw_api.h"
78 #include "t4fw_version.h"
79 #include "cxgb4_dcb.h"
80 #include "srq.h"
81 #include "cxgb4_debugfs.h"
82 #include "clip_tbl.h"
83 #include "l2t.h"
84 #include "smt.h"
85 #include "sched.h"
86 #include "cxgb4_tc_u32.h"
87 #include "cxgb4_tc_flower.h"
88 #include "cxgb4_tc_mqprio.h"
89 #include "cxgb4_tc_matchall.h"
90 #include "cxgb4_ptp.h"
91 #include "cxgb4_cudbg.h"
92
93 char cxgb4_driver_name[] = KBUILD_MODNAME;
94
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100
101 /* Macros needed to support the PCI Device ID Table ...
102 */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110 * called for both.
111 */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 { 0, } \
119 }
120
121 #include "t4_pci_id_tbl.h"
122
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
138 MODULE_FIRMWARE(FW4_FNAME);
139 MODULE_FIRMWARE(FW5_FNAME);
140 MODULE_FIRMWARE(FW6_FNAME);
141
142 /*
143 * The driver uses the best interrupt scheme available on a platform in the
144 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
145 * of these schemes the driver may consider as follows:
146 *
147 * msi = 2: choose from among all three options
148 * msi = 1: only consider MSI and INTx interrupts
149 * msi = 0: force INTx interrupts
150 */
151 static int msi = 2;
152
153 module_param(msi, int, 0644);
154 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
155
156 /*
157 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
158 * offset by 2 bytes in order to have the IP headers line up on 4-byte
159 * boundaries. This is a requirement for many architectures which will throw
160 * a machine check fault if an attempt is made to access one of the 4-byte IP
161 * header fields on a non-4-byte boundary. And it's a major performance issue
162 * even on some architectures which allow it like some implementations of the
163 * x86 ISA. However, some architectures don't mind this and for some very
164 * edge-case performance sensitive applications (like forwarding large volumes
165 * of small packets), setting this DMA offset to 0 will decrease the number of
166 * PCI-E Bus transfers enough to measurably affect performance.
167 */
168 static int rx_dma_offset = 2;
169
170 /* TX Queue select used to determine what algorithm to use for selecting TX
171 * queue. Select between the kernel provided function (select_queue=0) or user
172 * cxgb_select_queue function (select_queue=1)
173 *
174 * Default: select_queue=0
175 */
176 static int select_queue;
177 module_param(select_queue, int, 0644);
178 MODULE_PARM_DESC(select_queue,
179 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
180
181 static struct dentry *cxgb4_debugfs_root;
182
183 LIST_HEAD(adapter_list);
184 DEFINE_MUTEX(uld_mutex);
185 LIST_HEAD(uld_list);
186
187 static int cfg_queues(struct adapter *adap);
188
link_report(struct net_device * dev)189 static void link_report(struct net_device *dev)
190 {
191 if (!netif_carrier_ok(dev))
192 netdev_info(dev, "link down\n");
193 else {
194 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
195
196 const char *s;
197 const struct port_info *p = netdev_priv(dev);
198
199 switch (p->link_cfg.speed) {
200 case 100:
201 s = "100Mbps";
202 break;
203 case 1000:
204 s = "1Gbps";
205 break;
206 case 10000:
207 s = "10Gbps";
208 break;
209 case 25000:
210 s = "25Gbps";
211 break;
212 case 40000:
213 s = "40Gbps";
214 break;
215 case 50000:
216 s = "50Gbps";
217 break;
218 case 100000:
219 s = "100Gbps";
220 break;
221 default:
222 pr_info("%s: unsupported speed: %d\n",
223 dev->name, p->link_cfg.speed);
224 return;
225 }
226
227 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
228 fc[p->link_cfg.fc]);
229 }
230 }
231
232 #ifdef CONFIG_CHELSIO_T4_DCB
233 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)234 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
235 {
236 struct port_info *pi = netdev_priv(dev);
237 struct adapter *adap = pi->adapter;
238 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
239 int i;
240
241 /* We use a simple mapping of Port TX Queue Index to DCB
242 * Priority when we're enabling DCB.
243 */
244 for (i = 0; i < pi->nqsets; i++, txq++) {
245 u32 name, value;
246 int err;
247
248 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
249 FW_PARAMS_PARAM_X_V(
250 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
251 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
252 value = enable ? i : 0xffffffff;
253
254 /* Since we can be called while atomic (from "interrupt
255 * level") we need to issue the Set Parameters Commannd
256 * without sleeping (timeout < 0).
257 */
258 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
259 &name, &value,
260 -FW_CMD_MAX_TIMEOUT);
261
262 if (err)
263 dev_err(adap->pdev_dev,
264 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
265 enable ? "set" : "unset", pi->port_id, i, -err);
266 else
267 txq->dcb_prio = enable ? value : 0;
268 }
269 }
270
cxgb4_dcb_enabled(const struct net_device * dev)271 int cxgb4_dcb_enabled(const struct net_device *dev)
272 {
273 struct port_info *pi = netdev_priv(dev);
274
275 if (!pi->dcb.enabled)
276 return 0;
277
278 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
279 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
280 }
281 #endif /* CONFIG_CHELSIO_T4_DCB */
282
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)283 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
284 {
285 struct net_device *dev = adapter->port[port_id];
286
287 /* Skip changes from disabled ports. */
288 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
289 if (link_stat)
290 netif_carrier_on(dev);
291 else {
292 #ifdef CONFIG_CHELSIO_T4_DCB
293 if (cxgb4_dcb_enabled(dev)) {
294 cxgb4_dcb_reset(dev);
295 dcb_tx_queue_prio_enable(dev, false);
296 }
297 #endif /* CONFIG_CHELSIO_T4_DCB */
298 netif_carrier_off(dev);
299 }
300
301 link_report(dev);
302 }
303 }
304
t4_os_portmod_changed(struct adapter * adap,int port_id)305 void t4_os_portmod_changed(struct adapter *adap, int port_id)
306 {
307 static const char *mod_str[] = {
308 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
309 };
310
311 struct net_device *dev = adap->port[port_id];
312 struct port_info *pi = netdev_priv(dev);
313
314 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
315 netdev_info(dev, "port module unplugged\n");
316 else if (pi->mod_type < ARRAY_SIZE(mod_str))
317 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
318 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
319 netdev_info(dev, "%s: unsupported port module inserted\n",
320 dev->name);
321 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
322 netdev_info(dev, "%s: unknown port module inserted\n",
323 dev->name);
324 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
325 netdev_info(dev, "%s: transceiver module error\n", dev->name);
326 else
327 netdev_info(dev, "%s: unknown module type %d inserted\n",
328 dev->name, pi->mod_type);
329
330 /* If the interface is running, then we'll need any "sticky" Link
331 * Parameters redone with a new Transceiver Module.
332 */
333 pi->link_cfg.redo_l1cfg = netif_running(dev);
334 }
335
336 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
337 module_param(dbfifo_int_thresh, int, 0644);
338 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
339
340 /*
341 * usecs to sleep while draining the dbfifo
342 */
343 static int dbfifo_drain_delay = 1000;
344 module_param(dbfifo_drain_delay, int, 0644);
345 MODULE_PARM_DESC(dbfifo_drain_delay,
346 "usecs to sleep while draining the dbfifo");
347
cxgb4_set_addr_hash(struct port_info * pi)348 static inline int cxgb4_set_addr_hash(struct port_info *pi)
349 {
350 struct adapter *adap = pi->adapter;
351 u64 vec = 0;
352 bool ucast = false;
353 struct hash_mac_addr *entry;
354
355 /* Calculate the hash vector for the updated list and program it */
356 list_for_each_entry(entry, &adap->mac_hlist, list) {
357 ucast |= is_unicast_ether_addr(entry->addr);
358 vec |= (1ULL << hash_mac_addr(entry->addr));
359 }
360 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
361 vec, false);
362 }
363
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)364 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
365 {
366 struct port_info *pi = netdev_priv(netdev);
367 struct adapter *adap = pi->adapter;
368 int ret;
369 u64 mhash = 0;
370 u64 uhash = 0;
371 /* idx stores the index of allocated filters,
372 * its size should be modified based on the number of
373 * MAC addresses that we allocate filters for
374 */
375
376 u16 idx[1] = {};
377 bool free = false;
378 bool ucast = is_unicast_ether_addr(mac_addr);
379 const u8 *maclist[1] = {mac_addr};
380 struct hash_mac_addr *new_entry;
381
382 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
383 idx, ucast ? &uhash : &mhash, false);
384 if (ret < 0)
385 goto out;
386 /* if hash != 0, then add the addr to hash addr list
387 * so on the end we will calculate the hash for the
388 * list and program it
389 */
390 if (uhash || mhash) {
391 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
392 if (!new_entry)
393 return -ENOMEM;
394 ether_addr_copy(new_entry->addr, mac_addr);
395 list_add_tail(&new_entry->list, &adap->mac_hlist);
396 ret = cxgb4_set_addr_hash(pi);
397 }
398 out:
399 return ret < 0 ? ret : 0;
400 }
401
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)402 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
403 {
404 struct port_info *pi = netdev_priv(netdev);
405 struct adapter *adap = pi->adapter;
406 int ret;
407 const u8 *maclist[1] = {mac_addr};
408 struct hash_mac_addr *entry, *tmp;
409
410 /* If the MAC address to be removed is in the hash addr
411 * list, delete it from the list and update hash vector
412 */
413 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
414 if (ether_addr_equal(entry->addr, mac_addr)) {
415 list_del(&entry->list);
416 kfree(entry);
417 return cxgb4_set_addr_hash(pi);
418 }
419 }
420
421 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
422 return ret < 0 ? -EINVAL : 0;
423 }
424
425 /*
426 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
427 * If @mtu is -1 it is left unchanged.
428 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)429 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
430 {
431 struct port_info *pi = netdev_priv(dev);
432 struct adapter *adapter = pi->adapter;
433
434 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436
437 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
438 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
439 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
440 sleep_ok);
441 }
442
443 /**
444 * cxgb4_change_mac - Update match filter for a MAC address.
445 * @pi: the port_info
446 * @viid: the VI id
447 * @tcam_idx: TCAM index of existing filter for old value of MAC address,
448 * or -1
449 * @addr: the new MAC address value
450 * @persist: whether a new MAC allocation should be persistent
451 * @smt_idx: the destination to store the new SMT index.
452 *
453 * Modifies an MPS filter and sets it to the new MAC address if
454 * @tcam_idx >= 0, or adds the MAC address to a new filter if
455 * @tcam_idx < 0. In the latter case the address is added persistently
456 * if @persist is %true.
457 * Addresses are programmed to hash region, if tcam runs out of entries.
458 *
459 */
cxgb4_change_mac(struct port_info * pi,unsigned int viid,int * tcam_idx,const u8 * addr,bool persist,u8 * smt_idx)460 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
461 int *tcam_idx, const u8 *addr, bool persist,
462 u8 *smt_idx)
463 {
464 struct adapter *adapter = pi->adapter;
465 struct hash_mac_addr *entry, *new_entry;
466 int ret;
467
468 ret = t4_change_mac(adapter, adapter->mbox, viid,
469 *tcam_idx, addr, persist, smt_idx);
470 /* We ran out of TCAM entries. try programming hash region. */
471 if (ret == -ENOMEM) {
472 /* If the MAC address to be updated is in the hash addr
473 * list, update it from the list
474 */
475 list_for_each_entry(entry, &adapter->mac_hlist, list) {
476 if (entry->iface_mac) {
477 ether_addr_copy(entry->addr, addr);
478 goto set_hash;
479 }
480 }
481 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
482 if (!new_entry)
483 return -ENOMEM;
484 ether_addr_copy(new_entry->addr, addr);
485 new_entry->iface_mac = true;
486 list_add_tail(&new_entry->list, &adapter->mac_hlist);
487 set_hash:
488 ret = cxgb4_set_addr_hash(pi);
489 } else if (ret >= 0) {
490 *tcam_idx = ret;
491 ret = 0;
492 }
493
494 return ret;
495 }
496
497 /*
498 * link_start - enable a port
499 * @dev: the port to enable
500 *
501 * Performs the MAC and PHY actions needed to enable a port.
502 */
link_start(struct net_device * dev)503 static int link_start(struct net_device *dev)
504 {
505 struct port_info *pi = netdev_priv(dev);
506 unsigned int mb = pi->adapter->mbox;
507 int ret;
508
509 /*
510 * We do not set address filters and promiscuity here, the stack does
511 * that step explicitly.
512 */
513 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
514 dev->mtu, -1, -1, -1,
515 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
516 if (ret == 0)
517 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
518 dev->dev_addr, true, &pi->smt_idx);
519 if (ret == 0)
520 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
521 &pi->link_cfg);
522 if (ret == 0) {
523 local_bh_disable();
524 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
525 true, CXGB4_DCB_ENABLED);
526 local_bh_enable();
527 }
528
529 return ret;
530 }
531
532 #ifdef CONFIG_CHELSIO_T4_DCB
533 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
535 {
536 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
537 struct net_device *dev = adap->port[adap->chan_map[port]];
538 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
539 int new_dcb_enabled;
540
541 cxgb4_dcb_handle_fw_update(adap, pcmd);
542 new_dcb_enabled = cxgb4_dcb_enabled(dev);
543
544 /* If the DCB has become enabled or disabled on the port then we're
545 * going to need to set up/tear down DCB Priority parameters for the
546 * TX Queues associated with the port.
547 */
548 if (new_dcb_enabled != old_dcb_enabled)
549 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
550 }
551 #endif /* CONFIG_CHELSIO_T4_DCB */
552
553 /* Response queue handler for the FW event queue.
554 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
556 const struct pkt_gl *gl)
557 {
558 u8 opcode = ((const struct rss_header *)rsp)->opcode;
559
560 rsp++; /* skip RSS header */
561
562 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
563 */
564 if (unlikely(opcode == CPL_FW4_MSG &&
565 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
566 rsp++;
567 opcode = ((const struct rss_header *)rsp)->opcode;
568 rsp++;
569 if (opcode != CPL_SGE_EGR_UPDATE) {
570 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
571 , opcode);
572 goto out;
573 }
574 }
575
576 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
577 const struct cpl_sge_egr_update *p = (void *)rsp;
578 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
579 struct sge_txq *txq;
580
581 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
582 txq->restarts++;
583 if (txq->q_type == CXGB4_TXQ_ETH) {
584 struct sge_eth_txq *eq;
585
586 eq = container_of(txq, struct sge_eth_txq, q);
587 t4_sge_eth_txq_egress_update(q->adap, eq, -1);
588 } else {
589 struct sge_uld_txq *oq;
590
591 oq = container_of(txq, struct sge_uld_txq, q);
592 tasklet_schedule(&oq->qresume_tsk);
593 }
594 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
595 const struct cpl_fw6_msg *p = (void *)rsp;
596
597 #ifdef CONFIG_CHELSIO_T4_DCB
598 const struct fw_port_cmd *pcmd = (const void *)p->data;
599 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
600 unsigned int action =
601 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
602
603 if (cmd == FW_PORT_CMD &&
604 (action == FW_PORT_ACTION_GET_PORT_INFO ||
605 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
606 int port = FW_PORT_CMD_PORTID_G(
607 be32_to_cpu(pcmd->op_to_portid));
608 struct net_device *dev;
609 int dcbxdis, state_input;
610
611 dev = q->adap->port[q->adap->chan_map[port]];
612 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
613 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
614 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
615 & FW_PORT_CMD_DCBXDIS32_F));
616 state_input = (dcbxdis
617 ? CXGB4_DCB_INPUT_FW_DISABLED
618 : CXGB4_DCB_INPUT_FW_ENABLED);
619
620 cxgb4_dcb_state_fsm(dev, state_input);
621 }
622
623 if (cmd == FW_PORT_CMD &&
624 action == FW_PORT_ACTION_L2_DCB_CFG)
625 dcb_rpl(q->adap, pcmd);
626 else
627 #endif
628 if (p->type == 0)
629 t4_handle_fw_rpl(q->adap, p->data);
630 } else if (opcode == CPL_L2T_WRITE_RPL) {
631 const struct cpl_l2t_write_rpl *p = (void *)rsp;
632
633 do_l2t_write_rpl(q->adap, p);
634 } else if (opcode == CPL_SMT_WRITE_RPL) {
635 const struct cpl_smt_write_rpl *p = (void *)rsp;
636
637 do_smt_write_rpl(q->adap, p);
638 } else if (opcode == CPL_SET_TCB_RPL) {
639 const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641 filter_rpl(q->adap, p);
642 } else if (opcode == CPL_ACT_OPEN_RPL) {
643 const struct cpl_act_open_rpl *p = (void *)rsp;
644
645 hash_filter_rpl(q->adap, p);
646 } else if (opcode == CPL_ABORT_RPL_RSS) {
647 const struct cpl_abort_rpl_rss *p = (void *)rsp;
648
649 hash_del_filter_rpl(q->adap, p);
650 } else if (opcode == CPL_SRQ_TABLE_RPL) {
651 const struct cpl_srq_table_rpl *p = (void *)rsp;
652
653 do_srq_table_rpl(q->adap, p);
654 } else
655 dev_err(q->adap->pdev_dev,
656 "unexpected CPL %#x on FW event queue\n", opcode);
657 out:
658 return 0;
659 }
660
disable_msi(struct adapter * adapter)661 static void disable_msi(struct adapter *adapter)
662 {
663 if (adapter->flags & CXGB4_USING_MSIX) {
664 pci_disable_msix(adapter->pdev);
665 adapter->flags &= ~CXGB4_USING_MSIX;
666 } else if (adapter->flags & CXGB4_USING_MSI) {
667 pci_disable_msi(adapter->pdev);
668 adapter->flags &= ~CXGB4_USING_MSI;
669 }
670 }
671
672 /*
673 * Interrupt handler for non-data events used with MSI-X.
674 */
t4_nondata_intr(int irq,void * cookie)675 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
676 {
677 struct adapter *adap = cookie;
678 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
679
680 if (v & PFSW_F) {
681 adap->swintr = 1;
682 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
683 }
684 if (adap->flags & CXGB4_MASTER_PF)
685 t4_slow_intr_handler(adap);
686 return IRQ_HANDLED;
687 }
688
cxgb4_set_msix_aff(struct adapter * adap,unsigned short vec,cpumask_var_t * aff_mask,int idx)689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
690 cpumask_var_t *aff_mask, int idx)
691 {
692 int rv;
693
694 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
695 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
696 return -ENOMEM;
697 }
698
699 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
700 *aff_mask);
701
702 rv = irq_set_affinity_hint(vec, *aff_mask);
703 if (rv)
704 dev_warn(adap->pdev_dev,
705 "irq_set_affinity_hint %u failed %d\n",
706 vec, rv);
707
708 return 0;
709 }
710
cxgb4_clear_msix_aff(unsigned short vec,cpumask_var_t aff_mask)711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
712 {
713 irq_set_affinity_hint(vec, NULL);
714 free_cpumask_var(aff_mask);
715 }
716
request_msix_queue_irqs(struct adapter * adap)717 static int request_msix_queue_irqs(struct adapter *adap)
718 {
719 struct sge *s = &adap->sge;
720 struct msix_info *minfo;
721 int err, ethqidx;
722
723 if (s->fwevtq_msix_idx < 0)
724 return -ENOMEM;
725
726 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
727 t4_sge_intr_msix, 0,
728 adap->msix_info[s->fwevtq_msix_idx].desc,
729 &s->fw_evtq);
730 if (err)
731 return err;
732
733 for_each_ethrxq(s, ethqidx) {
734 minfo = s->ethrxq[ethqidx].msix;
735 err = request_irq(minfo->vec,
736 t4_sge_intr_msix, 0,
737 minfo->desc,
738 &s->ethrxq[ethqidx].rspq);
739 if (err)
740 goto unwind;
741
742 cxgb4_set_msix_aff(adap, minfo->vec,
743 &minfo->aff_mask, ethqidx);
744 }
745 return 0;
746
747 unwind:
748 while (--ethqidx >= 0) {
749 minfo = s->ethrxq[ethqidx].msix;
750 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
751 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
752 }
753 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
754 return err;
755 }
756
free_msix_queue_irqs(struct adapter * adap)757 static void free_msix_queue_irqs(struct adapter *adap)
758 {
759 struct sge *s = &adap->sge;
760 struct msix_info *minfo;
761 int i;
762
763 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
764 for_each_ethrxq(s, i) {
765 minfo = s->ethrxq[i].msix;
766 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
767 free_irq(minfo->vec, &s->ethrxq[i].rspq);
768 }
769 }
770
setup_ppod_edram(struct adapter * adap)771 static int setup_ppod_edram(struct adapter *adap)
772 {
773 unsigned int param, val;
774 int ret;
775
776 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
777 * if firmware supports ppod edram feature or not. If firmware
778 * returns 1, then driver can enable this feature by sending
779 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
780 * enable ppod edram feature.
781 */
782 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
784
785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
786 if (ret < 0) {
787 dev_warn(adap->pdev_dev,
788 "querying PPOD_EDRAM support failed: %d\n",
789 ret);
790 return -1;
791 }
792
793 if (val != 1)
794 return -1;
795
796 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
797 if (ret < 0) {
798 dev_err(adap->pdev_dev,
799 "setting PPOD_EDRAM failed: %d\n", ret);
800 return -1;
801 }
802 return 0;
803 }
804
adap_config_hpfilter(struct adapter * adapter)805 static void adap_config_hpfilter(struct adapter *adapter)
806 {
807 u32 param, val = 0;
808 int ret;
809
810 /* Enable HP filter region. Older fw will fail this request and
811 * it is fine.
812 */
813 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
814 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
815 1, ¶m, &val);
816
817 /* An error means FW doesn't know about HP filter support,
818 * it's not a problem, don't return an error.
819 */
820 if (ret < 0)
821 dev_err(adapter->pdev_dev,
822 "HP filter region isn't supported by FW\n");
823 }
824
cxgb4_config_rss(const struct port_info * pi,u16 * rss,u16 rss_size,u16 viid)825 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
826 u16 rss_size, u16 viid)
827 {
828 struct adapter *adap = pi->adapter;
829 int ret;
830
831 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
832 rss_size);
833 if (ret)
834 return ret;
835
836 /* If Tunnel All Lookup isn't specified in the global RSS
837 * Configuration, then we need to specify a default Ingress
838 * Queue for any ingress packets which aren't hashed. We'll
839 * use our first ingress queue ...
840 */
841 return t4_config_vi_rss(adap, adap->mbox, viid,
842 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
843 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
844 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
845 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
846 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
847 rss[0]);
848 }
849
850 /**
851 * cxgb4_write_rss - write the RSS table for a given port
852 * @pi: the port
853 * @queues: array of queue indices for RSS
854 *
855 * Sets up the portion of the HW RSS table for the port's VI to distribute
856 * packets to the Rx queues in @queues.
857 * Should never be called before setting up sge eth rx queues
858 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)859 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
860 {
861 struct adapter *adapter = pi->adapter;
862 const struct sge_eth_rxq *rxq;
863 int i, err;
864 u16 *rss;
865
866 rxq = &adapter->sge.ethrxq[pi->first_qset];
867 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
868 if (!rss)
869 return -ENOMEM;
870
871 /* map the queue indices to queue ids */
872 for (i = 0; i < pi->rss_size; i++, queues++)
873 rss[i] = rxq[*queues].rspq.abs_id;
874
875 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
876 kfree(rss);
877 return err;
878 }
879
880 /**
881 * setup_rss - configure RSS
882 * @adap: the adapter
883 *
884 * Sets up RSS for each port.
885 */
setup_rss(struct adapter * adap)886 static int setup_rss(struct adapter *adap)
887 {
888 int i, j, err;
889
890 for_each_port(adap, i) {
891 const struct port_info *pi = adap2pinfo(adap, i);
892
893 /* Fill default values with equal distribution */
894 for (j = 0; j < pi->rss_size; j++)
895 pi->rss[j] = j % pi->nqsets;
896
897 err = cxgb4_write_rss(pi, pi->rss);
898 if (err)
899 return err;
900 }
901 return 0;
902 }
903
904 /*
905 * Return the channel of the ingress queue with the given qid.
906 */
rxq_to_chan(const struct sge * p,unsigned int qid)907 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
908 {
909 qid -= p->ingr_start;
910 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
911 }
912
cxgb4_quiesce_rx(struct sge_rspq * q)913 void cxgb4_quiesce_rx(struct sge_rspq *q)
914 {
915 if (q->handler)
916 napi_disable(&q->napi);
917 }
918
919 /*
920 * Wait until all NAPI handlers are descheduled.
921 */
quiesce_rx(struct adapter * adap)922 static void quiesce_rx(struct adapter *adap)
923 {
924 int i;
925
926 for (i = 0; i < adap->sge.ingr_sz; i++) {
927 struct sge_rspq *q = adap->sge.ingr_map[i];
928
929 if (!q)
930 continue;
931
932 cxgb4_quiesce_rx(q);
933 }
934 }
935
936 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)937 static void disable_interrupts(struct adapter *adap)
938 {
939 struct sge *s = &adap->sge;
940
941 if (adap->flags & CXGB4_FULL_INIT_DONE) {
942 t4_intr_disable(adap);
943 if (adap->flags & CXGB4_USING_MSIX) {
944 free_msix_queue_irqs(adap);
945 free_irq(adap->msix_info[s->nd_msix_idx].vec,
946 adap);
947 } else {
948 free_irq(adap->pdev->irq, adap);
949 }
950 quiesce_rx(adap);
951 }
952 }
953
cxgb4_enable_rx(struct adapter * adap,struct sge_rspq * q)954 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
955 {
956 if (q->handler)
957 napi_enable(&q->napi);
958
959 /* 0-increment GTS to start the timer and enable interrupts */
960 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
961 SEINTARM_V(q->intr_params) |
962 INGRESSQID_V(q->cntxt_id));
963 }
964
965 /*
966 * Enable NAPI scheduling and interrupt generation for all Rx queues.
967 */
enable_rx(struct adapter * adap)968 static void enable_rx(struct adapter *adap)
969 {
970 int i;
971
972 for (i = 0; i < adap->sge.ingr_sz; i++) {
973 struct sge_rspq *q = adap->sge.ingr_map[i];
974
975 if (!q)
976 continue;
977
978 cxgb4_enable_rx(adap, q);
979 }
980 }
981
setup_non_data_intr(struct adapter * adap)982 static int setup_non_data_intr(struct adapter *adap)
983 {
984 int msix;
985
986 adap->sge.nd_msix_idx = -1;
987 if (!(adap->flags & CXGB4_USING_MSIX))
988 return 0;
989
990 /* Request MSI-X vector for non-data interrupt */
991 msix = cxgb4_get_msix_idx_from_bmap(adap);
992 if (msix < 0)
993 return -ENOMEM;
994
995 snprintf(adap->msix_info[msix].desc,
996 sizeof(adap->msix_info[msix].desc),
997 "%s", adap->port[0]->name);
998
999 adap->sge.nd_msix_idx = msix;
1000 return 0;
1001 }
1002
setup_fw_sge_queues(struct adapter * adap)1003 static int setup_fw_sge_queues(struct adapter *adap)
1004 {
1005 struct sge *s = &adap->sge;
1006 int msix, err = 0;
1007
1008 bitmap_zero(s->starving_fl, s->egr_sz);
1009 bitmap_zero(s->txq_maperr, s->egr_sz);
1010
1011 if (adap->flags & CXGB4_USING_MSIX) {
1012 s->fwevtq_msix_idx = -1;
1013 msix = cxgb4_get_msix_idx_from_bmap(adap);
1014 if (msix < 0)
1015 return -ENOMEM;
1016
1017 snprintf(adap->msix_info[msix].desc,
1018 sizeof(adap->msix_info[msix].desc),
1019 "%s-FWeventq", adap->port[0]->name);
1020 } else {
1021 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1022 NULL, NULL, NULL, -1);
1023 if (err)
1024 return err;
1025 msix = -((int)s->intrq.abs_id + 1);
1026 }
1027
1028 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029 msix, NULL, fwevtq_handler, NULL, -1);
1030 if (err && msix >= 0)
1031 cxgb4_free_msix_idx_in_bmap(adap, msix);
1032
1033 s->fwevtq_msix_idx = msix;
1034 return err;
1035 }
1036
1037 /**
1038 * setup_sge_queues - configure SGE Tx/Rx/response queues
1039 * @adap: the adapter
1040 *
1041 * Determines how many sets of SGE queues to use and initializes them.
1042 * We support multiple queue sets per port if we have MSI-X, otherwise
1043 * just one queue set per port.
1044 */
setup_sge_queues(struct adapter * adap)1045 static int setup_sge_queues(struct adapter *adap)
1046 {
1047 struct sge_uld_rxq_info *rxq_info = NULL;
1048 struct sge *s = &adap->sge;
1049 unsigned int cmplqid = 0;
1050 int err, i, j, msix = 0;
1051
1052 if (is_uld(adap))
1053 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1054
1055 if (!(adap->flags & CXGB4_USING_MSIX))
1056 msix = -((int)s->intrq.abs_id + 1);
1057
1058 for_each_port(adap, i) {
1059 struct net_device *dev = adap->port[i];
1060 struct port_info *pi = netdev_priv(dev);
1061 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1062 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1063
1064 for (j = 0; j < pi->nqsets; j++, q++) {
1065 if (msix >= 0) {
1066 msix = cxgb4_get_msix_idx_from_bmap(adap);
1067 if (msix < 0) {
1068 err = msix;
1069 goto freeout;
1070 }
1071
1072 snprintf(adap->msix_info[msix].desc,
1073 sizeof(adap->msix_info[msix].desc),
1074 "%s-Rx%d", dev->name, j);
1075 q->msix = &adap->msix_info[msix];
1076 }
1077
1078 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1079 msix, &q->fl,
1080 t4_ethrx_handler,
1081 NULL,
1082 t4_get_tp_ch_map(adap,
1083 pi->tx_chan));
1084 if (err)
1085 goto freeout;
1086 q->rspq.idx = j;
1087 memset(&q->stats, 0, sizeof(q->stats));
1088 }
1089
1090 q = &s->ethrxq[pi->first_qset];
1091 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1092 err = t4_sge_alloc_eth_txq(adap, t, dev,
1093 netdev_get_tx_queue(dev, j),
1094 q->rspq.cntxt_id,
1095 !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1096 if (err)
1097 goto freeout;
1098 }
1099 }
1100
1101 for_each_port(adap, i) {
1102 /* Note that cmplqid below is 0 if we don't
1103 * have RDMA queues, and that's the right value.
1104 */
1105 if (rxq_info)
1106 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1107
1108 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1109 s->fw_evtq.cntxt_id, cmplqid);
1110 if (err)
1111 goto freeout;
1112 }
1113
1114 if (!is_t4(adap->params.chip)) {
1115 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1116 netdev_get_tx_queue(adap->port[0], 0)
1117 , s->fw_evtq.cntxt_id, false);
1118 if (err)
1119 goto freeout;
1120 }
1121
1122 t4_write_reg(adap, is_t4(adap->params.chip) ?
1123 MPS_TRC_RSS_CONTROL_A :
1124 MPS_T5_TRC_RSS_CONTROL_A,
1125 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1126 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1127 return 0;
1128 freeout:
1129 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1130 t4_free_sge_resources(adap);
1131 return err;
1132 }
1133
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1134 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1135 struct net_device *sb_dev)
1136 {
1137 int txq;
1138
1139 #ifdef CONFIG_CHELSIO_T4_DCB
1140 /* If a Data Center Bridging has been successfully negotiated on this
1141 * link then we'll use the skb's priority to map it to a TX Queue.
1142 * The skb's priority is determined via the VLAN Tag Priority Code
1143 * Point field.
1144 */
1145 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1146 u16 vlan_tci;
1147 int err;
1148
1149 err = vlan_get_tag(skb, &vlan_tci);
1150 if (unlikely(err)) {
1151 if (net_ratelimit())
1152 netdev_warn(dev,
1153 "TX Packet without VLAN Tag on DCB Link\n");
1154 txq = 0;
1155 } else {
1156 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1157 #ifdef CONFIG_CHELSIO_T4_FCOE
1158 if (skb->protocol == htons(ETH_P_FCOE))
1159 txq = skb->priority & 0x7;
1160 #endif /* CONFIG_CHELSIO_T4_FCOE */
1161 }
1162 return txq;
1163 }
1164 #endif /* CONFIG_CHELSIO_T4_DCB */
1165
1166 if (dev->num_tc) {
1167 struct port_info *pi = netdev2pinfo(dev);
1168 u8 ver, proto;
1169
1170 ver = ip_hdr(skb)->version;
1171 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1172 ip_hdr(skb)->protocol;
1173
1174 /* Send unsupported traffic pattern to normal NIC queues. */
1175 txq = netdev_pick_tx(dev, skb, sb_dev);
1176 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1177 skb->encapsulation ||
1178 tls_is_skb_tx_device_offloaded(skb) ||
1179 (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180 txq = txq % pi->nqsets;
1181
1182 return txq;
1183 }
1184
1185 if (select_queue) {
1186 txq = (skb_rx_queue_recorded(skb)
1187 ? skb_get_rx_queue(skb)
1188 : smp_processor_id());
1189
1190 while (unlikely(txq >= dev->real_num_tx_queues))
1191 txq -= dev->real_num_tx_queues;
1192
1193 return txq;
1194 }
1195
1196 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197 }
1198
closest_timer(const struct sge * s,int time)1199 static int closest_timer(const struct sge *s, int time)
1200 {
1201 int i, delta, match = 0, min_delta = INT_MAX;
1202
1203 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204 delta = time - s->timer_val[i];
1205 if (delta < 0)
1206 delta = -delta;
1207 if (delta < min_delta) {
1208 min_delta = delta;
1209 match = i;
1210 }
1211 }
1212 return match;
1213 }
1214
closest_thres(const struct sge * s,int thres)1215 static int closest_thres(const struct sge *s, int thres)
1216 {
1217 int i, delta, match = 0, min_delta = INT_MAX;
1218
1219 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220 delta = thres - s->counter_val[i];
1221 if (delta < 0)
1222 delta = -delta;
1223 if (delta < min_delta) {
1224 min_delta = delta;
1225 match = i;
1226 }
1227 }
1228 return match;
1229 }
1230
1231 /**
1232 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233 * @q: the Rx queue
1234 * @us: the hold-off time in us, or 0 to disable timer
1235 * @cnt: the hold-off packet count, or 0 to disable counter
1236 *
1237 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1238 * one of the two needs to be enabled for the queue to generate interrupts.
1239 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241 unsigned int us, unsigned int cnt)
1242 {
1243 struct adapter *adap = q->adap;
1244
1245 if ((us | cnt) == 0)
1246 cnt = 1;
1247
1248 if (cnt) {
1249 int err;
1250 u32 v, new_idx;
1251
1252 new_idx = closest_thres(&adap->sge, cnt);
1253 if (q->desc && q->pktcnt_idx != new_idx) {
1254 /* the queue has already been created, update it */
1255 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256 FW_PARAMS_PARAM_X_V(
1257 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260 &v, &new_idx);
1261 if (err)
1262 return err;
1263 }
1264 q->pktcnt_idx = new_idx;
1265 }
1266
1267 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269 return 0;
1270 }
1271
cxgb_set_features(struct net_device * dev,netdev_features_t features)1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273 {
1274 netdev_features_t changed = dev->features ^ features;
1275 const struct port_info *pi = netdev_priv(dev);
1276 int err;
1277
1278 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279 return 0;
1280
1281 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282 pi->viid_mirror, -1, -1, -1, -1,
1283 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284 if (unlikely(err))
1285 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286 return err;
1287 }
1288
setup_debugfs(struct adapter * adap)1289 static int setup_debugfs(struct adapter *adap)
1290 {
1291 if (IS_ERR_OR_NULL(adap->debugfs_root))
1292 return -1;
1293
1294 #ifdef CONFIG_DEBUG_FS
1295 t4_setup_debugfs(adap);
1296 #endif
1297 return 0;
1298 }
1299
cxgb4_port_mirror_free_rxq(struct adapter * adap,struct sge_eth_rxq * mirror_rxq)1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301 struct sge_eth_rxq *mirror_rxq)
1302 {
1303 if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304 !(adap->flags & CXGB4_SHUTTING_DOWN))
1305 cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306
1307 if (adap->flags & CXGB4_USING_MSIX) {
1308 cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309 mirror_rxq->msix->aff_mask);
1310 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312 }
1313
1314 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315 }
1316
cxgb4_port_mirror_alloc_queues(struct net_device * dev)1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318 {
1319 struct port_info *pi = netdev2pinfo(dev);
1320 struct adapter *adap = netdev2adap(dev);
1321 struct sge_eth_rxq *mirror_rxq;
1322 struct sge *s = &adap->sge;
1323 int ret = 0, msix = 0;
1324 u16 i, rxqid;
1325 u16 *rss;
1326
1327 if (!pi->vi_mirror_count)
1328 return 0;
1329
1330 if (s->mirror_rxq[pi->port_id])
1331 return 0;
1332
1333 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334 if (!mirror_rxq)
1335 return -ENOMEM;
1336
1337 s->mirror_rxq[pi->port_id] = mirror_rxq;
1338
1339 if (!(adap->flags & CXGB4_USING_MSIX))
1340 msix = -((int)adap->sge.intrq.abs_id + 1);
1341
1342 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343 mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344
1345 /* Allocate Mirror Rxqs */
1346 if (msix >= 0) {
1347 msix = cxgb4_get_msix_idx_from_bmap(adap);
1348 if (msix < 0) {
1349 ret = msix;
1350 goto out_free_queues;
1351 }
1352
1353 mirror_rxq->msix = &adap->msix_info[msix];
1354 snprintf(mirror_rxq->msix->desc,
1355 sizeof(mirror_rxq->msix->desc),
1356 "%s-mirrorrxq%d", dev->name, i);
1357 }
1358
1359 init_rspq(adap, &mirror_rxq->rspq,
1360 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364
1365 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366
1367 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368 dev, msix, &mirror_rxq->fl,
1369 t4_ethrx_handler, NULL, 0);
1370 if (ret)
1371 goto out_free_msix_idx;
1372
1373 /* Setup MSI-X vectors for Mirror Rxqs */
1374 if (adap->flags & CXGB4_USING_MSIX) {
1375 ret = request_irq(mirror_rxq->msix->vec,
1376 t4_sge_intr_msix, 0,
1377 mirror_rxq->msix->desc,
1378 &mirror_rxq->rspq);
1379 if (ret)
1380 goto out_free_rxq;
1381
1382 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383 &mirror_rxq->msix->aff_mask, i);
1384 }
1385
1386 /* Start NAPI for Mirror Rxqs */
1387 cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388 }
1389
1390 /* Setup RSS for Mirror Rxqs */
1391 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392 if (!rss) {
1393 ret = -ENOMEM;
1394 goto out_free_queues;
1395 }
1396
1397 mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398 for (i = 0; i < pi->rss_size; i++)
1399 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400
1401 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402 kfree(rss);
1403 if (ret)
1404 goto out_free_queues;
1405
1406 return 0;
1407
1408 out_free_rxq:
1409 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410
1411 out_free_msix_idx:
1412 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413
1414 out_free_queues:
1415 while (rxqid-- > 0)
1416 cxgb4_port_mirror_free_rxq(adap,
1417 &s->mirror_rxq[pi->port_id][rxqid]);
1418
1419 kfree(s->mirror_rxq[pi->port_id]);
1420 s->mirror_rxq[pi->port_id] = NULL;
1421 return ret;
1422 }
1423
cxgb4_port_mirror_free_queues(struct net_device * dev)1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425 {
1426 struct port_info *pi = netdev2pinfo(dev);
1427 struct adapter *adap = netdev2adap(dev);
1428 struct sge *s = &adap->sge;
1429 u16 i;
1430
1431 if (!pi->vi_mirror_count)
1432 return;
1433
1434 if (!s->mirror_rxq[pi->port_id])
1435 return;
1436
1437 for (i = 0; i < pi->nmirrorqsets; i++)
1438 cxgb4_port_mirror_free_rxq(adap,
1439 &s->mirror_rxq[pi->port_id][i]);
1440
1441 kfree(s->mirror_rxq[pi->port_id]);
1442 s->mirror_rxq[pi->port_id] = NULL;
1443 }
1444
cxgb4_port_mirror_start(struct net_device * dev)1445 static int cxgb4_port_mirror_start(struct net_device *dev)
1446 {
1447 struct port_info *pi = netdev2pinfo(dev);
1448 struct adapter *adap = netdev2adap(dev);
1449 int ret, idx = -1;
1450
1451 if (!pi->vi_mirror_count)
1452 return 0;
1453
1454 /* Mirror VIs can be created dynamically after stack had
1455 * already setup Rx modes like MTU, promisc, allmulti, etc.
1456 * on main VI. So, parse what the stack had setup on the
1457 * main VI and update the same on the mirror VI.
1458 */
1459 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463 if (ret) {
1464 dev_err(adap->pdev_dev,
1465 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466 pi->viid_mirror, ret);
1467 return ret;
1468 }
1469
1470 /* Enable replication bit for the device's MAC address
1471 * in MPS TCAM, so that the packets for the main VI are
1472 * replicated to mirror VI.
1473 */
1474 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475 dev->dev_addr, true, NULL);
1476 if (ret) {
1477 dev_err(adap->pdev_dev,
1478 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479 pi->viid_mirror, ret);
1480 return ret;
1481 }
1482
1483 /* Enabling a Virtual Interface can result in an interrupt
1484 * during the processing of the VI Enable command and, in some
1485 * paths, result in an attempt to issue another command in the
1486 * interrupt context. Thus, we disable interrupts during the
1487 * course of the VI Enable command ...
1488 */
1489 local_bh_disable();
1490 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491 false);
1492 local_bh_enable();
1493 if (ret)
1494 dev_err(adap->pdev_dev,
1495 "Failed starting Mirror VI 0x%x, ret: %d\n",
1496 pi->viid_mirror, ret);
1497
1498 return ret;
1499 }
1500
cxgb4_port_mirror_stop(struct net_device * dev)1501 static void cxgb4_port_mirror_stop(struct net_device *dev)
1502 {
1503 struct port_info *pi = netdev2pinfo(dev);
1504 struct adapter *adap = netdev2adap(dev);
1505
1506 if (!pi->vi_mirror_count)
1507 return;
1508
1509 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510 false);
1511 }
1512
cxgb4_port_mirror_alloc(struct net_device * dev)1513 int cxgb4_port_mirror_alloc(struct net_device *dev)
1514 {
1515 struct port_info *pi = netdev2pinfo(dev);
1516 struct adapter *adap = netdev2adap(dev);
1517 int ret = 0;
1518
1519 if (!pi->nmirrorqsets)
1520 return -EOPNOTSUPP;
1521
1522 mutex_lock(&pi->vi_mirror_mutex);
1523 if (pi->viid_mirror) {
1524 pi->vi_mirror_count++;
1525 goto out_unlock;
1526 }
1527
1528 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529 &pi->viid_mirror);
1530 if (ret)
1531 goto out_unlock;
1532
1533 pi->vi_mirror_count = 1;
1534
1535 if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536 ret = cxgb4_port_mirror_alloc_queues(dev);
1537 if (ret)
1538 goto out_free_vi;
1539
1540 ret = cxgb4_port_mirror_start(dev);
1541 if (ret)
1542 goto out_free_queues;
1543 }
1544
1545 mutex_unlock(&pi->vi_mirror_mutex);
1546 return 0;
1547
1548 out_free_queues:
1549 cxgb4_port_mirror_free_queues(dev);
1550
1551 out_free_vi:
1552 pi->vi_mirror_count = 0;
1553 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554 pi->viid_mirror = 0;
1555
1556 out_unlock:
1557 mutex_unlock(&pi->vi_mirror_mutex);
1558 return ret;
1559 }
1560
cxgb4_port_mirror_free(struct net_device * dev)1561 void cxgb4_port_mirror_free(struct net_device *dev)
1562 {
1563 struct port_info *pi = netdev2pinfo(dev);
1564 struct adapter *adap = netdev2adap(dev);
1565
1566 mutex_lock(&pi->vi_mirror_mutex);
1567 if (!pi->viid_mirror)
1568 goto out_unlock;
1569
1570 if (pi->vi_mirror_count > 1) {
1571 pi->vi_mirror_count--;
1572 goto out_unlock;
1573 }
1574
1575 cxgb4_port_mirror_stop(dev);
1576 cxgb4_port_mirror_free_queues(dev);
1577
1578 pi->vi_mirror_count = 0;
1579 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580 pi->viid_mirror = 0;
1581
1582 out_unlock:
1583 mutex_unlock(&pi->vi_mirror_mutex);
1584 }
1585
1586 /*
1587 * upper-layer driver support
1588 */
1589
1590 /*
1591 * Allocate an active-open TID and set it to the supplied value.
1592 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1593 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594 {
1595 int atid = -1;
1596
1597 spin_lock_bh(&t->atid_lock);
1598 if (t->afree) {
1599 union aopen_entry *p = t->afree;
1600
1601 atid = (p - t->atid_tab) + t->atid_base;
1602 t->afree = p->next;
1603 p->data = data;
1604 t->atids_in_use++;
1605 }
1606 spin_unlock_bh(&t->atid_lock);
1607 return atid;
1608 }
1609 EXPORT_SYMBOL(cxgb4_alloc_atid);
1610
1611 /*
1612 * Release an active-open TID.
1613 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615 {
1616 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617
1618 spin_lock_bh(&t->atid_lock);
1619 p->next = t->afree;
1620 t->afree = p;
1621 t->atids_in_use--;
1622 spin_unlock_bh(&t->atid_lock);
1623 }
1624 EXPORT_SYMBOL(cxgb4_free_atid);
1625
1626 /*
1627 * Allocate a server TID and set it to the supplied value.
1628 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630 {
1631 int stid;
1632
1633 spin_lock_bh(&t->stid_lock);
1634 if (family == PF_INET) {
1635 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636 if (stid < t->nstids)
1637 __set_bit(stid, t->stid_bmap);
1638 else
1639 stid = -1;
1640 } else {
1641 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642 if (stid < 0)
1643 stid = -1;
1644 }
1645 if (stid >= 0) {
1646 t->stid_tab[stid].data = data;
1647 stid += t->stid_base;
1648 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1649 * This is equivalent to 4 TIDs. With CLIP enabled it
1650 * needs 2 TIDs.
1651 */
1652 if (family == PF_INET6) {
1653 t->stids_in_use += 2;
1654 t->v6_stids_in_use += 2;
1655 } else {
1656 t->stids_in_use++;
1657 }
1658 }
1659 spin_unlock_bh(&t->stid_lock);
1660 return stid;
1661 }
1662 EXPORT_SYMBOL(cxgb4_alloc_stid);
1663
1664 /* Allocate a server filter TID and set it to the supplied value.
1665 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667 {
1668 int stid;
1669
1670 spin_lock_bh(&t->stid_lock);
1671 if (family == PF_INET) {
1672 stid = find_next_zero_bit(t->stid_bmap,
1673 t->nstids + t->nsftids, t->nstids);
1674 if (stid < (t->nstids + t->nsftids))
1675 __set_bit(stid, t->stid_bmap);
1676 else
1677 stid = -1;
1678 } else {
1679 stid = -1;
1680 }
1681 if (stid >= 0) {
1682 t->stid_tab[stid].data = data;
1683 stid -= t->nstids;
1684 stid += t->sftid_base;
1685 t->sftids_in_use++;
1686 }
1687 spin_unlock_bh(&t->stid_lock);
1688 return stid;
1689 }
1690 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691
1692 /* Release a server TID.
1693 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695 {
1696 /* Is it a server filter TID? */
1697 if (t->nsftids && (stid >= t->sftid_base)) {
1698 stid -= t->sftid_base;
1699 stid += t->nstids;
1700 } else {
1701 stid -= t->stid_base;
1702 }
1703
1704 spin_lock_bh(&t->stid_lock);
1705 if (family == PF_INET)
1706 __clear_bit(stid, t->stid_bmap);
1707 else
1708 bitmap_release_region(t->stid_bmap, stid, 1);
1709 t->stid_tab[stid].data = NULL;
1710 if (stid < t->nstids) {
1711 if (family == PF_INET6) {
1712 t->stids_in_use -= 2;
1713 t->v6_stids_in_use -= 2;
1714 } else {
1715 t->stids_in_use--;
1716 }
1717 } else {
1718 t->sftids_in_use--;
1719 }
1720
1721 spin_unlock_bh(&t->stid_lock);
1722 }
1723 EXPORT_SYMBOL(cxgb4_free_stid);
1724
1725 /*
1726 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1727 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729 unsigned int tid)
1730 {
1731 struct cpl_tid_release *req;
1732
1733 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734 req = __skb_put(skb, sizeof(*req));
1735 INIT_TP_WR(req, tid);
1736 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737 }
1738
1739 /*
1740 * Queue a TID release request and if necessary schedule a work queue to
1741 * process it.
1742 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744 unsigned int tid)
1745 {
1746 struct adapter *adap = container_of(t, struct adapter, tids);
1747 void **p = &t->tid_tab[tid - t->tid_base];
1748
1749 spin_lock_bh(&adap->tid_release_lock);
1750 *p = adap->tid_release_head;
1751 /* Low 2 bits encode the Tx channel number */
1752 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753 if (!adap->tid_release_task_busy) {
1754 adap->tid_release_task_busy = true;
1755 queue_work(adap->workq, &adap->tid_release_task);
1756 }
1757 spin_unlock_bh(&adap->tid_release_lock);
1758 }
1759
1760 /*
1761 * Process the list of pending TID release requests.
1762 */
process_tid_release_list(struct work_struct * work)1763 static void process_tid_release_list(struct work_struct *work)
1764 {
1765 struct sk_buff *skb;
1766 struct adapter *adap;
1767
1768 adap = container_of(work, struct adapter, tid_release_task);
1769
1770 spin_lock_bh(&adap->tid_release_lock);
1771 while (adap->tid_release_head) {
1772 void **p = adap->tid_release_head;
1773 unsigned int chan = (uintptr_t)p & 3;
1774 p = (void *)p - chan;
1775
1776 adap->tid_release_head = *p;
1777 *p = NULL;
1778 spin_unlock_bh(&adap->tid_release_lock);
1779
1780 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781 GFP_KERNEL)))
1782 schedule_timeout_uninterruptible(1);
1783
1784 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785 t4_ofld_send(adap, skb);
1786 spin_lock_bh(&adap->tid_release_lock);
1787 }
1788 adap->tid_release_task_busy = false;
1789 spin_unlock_bh(&adap->tid_release_lock);
1790 }
1791
1792 /*
1793 * Release a TID and inform HW. If we are unable to allocate the release
1794 * message we defer to a work queue.
1795 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797 unsigned short family)
1798 {
1799 struct adapter *adap = container_of(t, struct adapter, tids);
1800 struct sk_buff *skb;
1801
1802 if (tid_out_of_range(&adap->tids, tid)) {
1803 dev_err(adap->pdev_dev, "tid %d out of range\n", tid);
1804 return;
1805 }
1806
1807 if (t->tid_tab[tid - adap->tids.tid_base]) {
1808 t->tid_tab[tid - adap->tids.tid_base] = NULL;
1809 atomic_dec(&t->conns_in_use);
1810 if (t->hash_base && (tid >= t->hash_base)) {
1811 if (family == AF_INET6)
1812 atomic_sub(2, &t->hash_tids_in_use);
1813 else
1814 atomic_dec(&t->hash_tids_in_use);
1815 } else {
1816 if (family == AF_INET6)
1817 atomic_sub(2, &t->tids_in_use);
1818 else
1819 atomic_dec(&t->tids_in_use);
1820 }
1821 }
1822
1823 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1824 if (likely(skb)) {
1825 mk_tid_release(skb, chan, tid);
1826 t4_ofld_send(adap, skb);
1827 } else
1828 cxgb4_queue_tid_release(t, chan, tid);
1829 }
1830 EXPORT_SYMBOL(cxgb4_remove_tid);
1831
1832 /*
1833 * Allocate and initialize the TID tables. Returns 0 on success.
1834 */
tid_init(struct tid_info * t)1835 static int tid_init(struct tid_info *t)
1836 {
1837 struct adapter *adap = container_of(t, struct adapter, tids);
1838 unsigned int max_ftids = t->nftids + t->nsftids;
1839 unsigned int natids = t->natids;
1840 unsigned int hpftid_bmap_size;
1841 unsigned int eotid_bmap_size;
1842 unsigned int stid_bmap_size;
1843 unsigned int ftid_bmap_size;
1844 size_t size;
1845
1846 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1847 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1848 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1849 eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1850 size = t->ntids * sizeof(*t->tid_tab) +
1851 natids * sizeof(*t->atid_tab) +
1852 t->nstids * sizeof(*t->stid_tab) +
1853 t->nsftids * sizeof(*t->stid_tab) +
1854 stid_bmap_size * sizeof(long) +
1855 t->nhpftids * sizeof(*t->hpftid_tab) +
1856 hpftid_bmap_size * sizeof(long) +
1857 max_ftids * sizeof(*t->ftid_tab) +
1858 ftid_bmap_size * sizeof(long) +
1859 t->neotids * sizeof(*t->eotid_tab) +
1860 eotid_bmap_size * sizeof(long);
1861
1862 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1863 if (!t->tid_tab)
1864 return -ENOMEM;
1865
1866 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1867 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1868 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1869 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1870 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1871 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1872 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1873 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1874 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1875 spin_lock_init(&t->stid_lock);
1876 spin_lock_init(&t->atid_lock);
1877 spin_lock_init(&t->ftid_lock);
1878
1879 t->stids_in_use = 0;
1880 t->v6_stids_in_use = 0;
1881 t->sftids_in_use = 0;
1882 t->afree = NULL;
1883 t->atids_in_use = 0;
1884 atomic_set(&t->tids_in_use, 0);
1885 atomic_set(&t->conns_in_use, 0);
1886 atomic_set(&t->hash_tids_in_use, 0);
1887 atomic_set(&t->eotids_in_use, 0);
1888
1889 /* Setup the free list for atid_tab and clear the stid bitmap. */
1890 if (natids) {
1891 while (--natids)
1892 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1893 t->afree = t->atid_tab;
1894 }
1895
1896 if (is_offload(adap)) {
1897 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1898 /* Reserve stid 0 for T4/T5 adapters */
1899 if (!t->stid_base &&
1900 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1901 __set_bit(0, t->stid_bmap);
1902
1903 if (t->neotids)
1904 bitmap_zero(t->eotid_bmap, t->neotids);
1905 }
1906
1907 if (t->nhpftids)
1908 bitmap_zero(t->hpftid_bmap, t->nhpftids);
1909 bitmap_zero(t->ftid_bmap, t->nftids);
1910 return 0;
1911 }
1912
1913 /**
1914 * cxgb4_create_server - create an IP server
1915 * @dev: the device
1916 * @stid: the server TID
1917 * @sip: local IP address to bind server to
1918 * @sport: the server's TCP port
1919 * @vlan: the VLAN header information
1920 * @queue: queue to direct messages from this server to
1921 *
1922 * Create an IP server for the given port and address.
1923 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1924 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1925 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1926 __be32 sip, __be16 sport, __be16 vlan,
1927 unsigned int queue)
1928 {
1929 unsigned int chan;
1930 struct sk_buff *skb;
1931 struct adapter *adap;
1932 struct cpl_pass_open_req *req;
1933 int ret;
1934
1935 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1936 if (!skb)
1937 return -ENOMEM;
1938
1939 adap = netdev2adap(dev);
1940 req = __skb_put(skb, sizeof(*req));
1941 INIT_TP_WR(req, 0);
1942 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1943 req->local_port = sport;
1944 req->peer_port = htons(0);
1945 req->local_ip = sip;
1946 req->peer_ip = htonl(0);
1947 chan = rxq_to_chan(&adap->sge, queue);
1948 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1949 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1950 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1951 ret = t4_mgmt_tx(adap, skb);
1952 return net_xmit_eval(ret);
1953 }
1954 EXPORT_SYMBOL(cxgb4_create_server);
1955
1956 /* cxgb4_create_server6 - create an IPv6 server
1957 * @dev: the device
1958 * @stid: the server TID
1959 * @sip: local IPv6 address to bind server to
1960 * @sport: the server's TCP port
1961 * @queue: queue to direct messages from this server to
1962 *
1963 * Create an IPv6 server for the given port and address.
1964 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1965 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1966 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1967 const struct in6_addr *sip, __be16 sport,
1968 unsigned int queue)
1969 {
1970 unsigned int chan;
1971 struct sk_buff *skb;
1972 struct adapter *adap;
1973 struct cpl_pass_open_req6 *req;
1974 int ret;
1975
1976 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1977 if (!skb)
1978 return -ENOMEM;
1979
1980 adap = netdev2adap(dev);
1981 req = __skb_put(skb, sizeof(*req));
1982 INIT_TP_WR(req, 0);
1983 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1984 req->local_port = sport;
1985 req->peer_port = htons(0);
1986 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1987 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1988 req->peer_ip_hi = cpu_to_be64(0);
1989 req->peer_ip_lo = cpu_to_be64(0);
1990 chan = rxq_to_chan(&adap->sge, queue);
1991 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1992 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1993 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1994 ret = t4_mgmt_tx(adap, skb);
1995 return net_xmit_eval(ret);
1996 }
1997 EXPORT_SYMBOL(cxgb4_create_server6);
1998
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1999 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
2000 unsigned int queue, bool ipv6)
2001 {
2002 struct sk_buff *skb;
2003 struct adapter *adap;
2004 struct cpl_close_listsvr_req *req;
2005 int ret;
2006
2007 adap = netdev2adap(dev);
2008
2009 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2010 if (!skb)
2011 return -ENOMEM;
2012
2013 req = __skb_put(skb, sizeof(*req));
2014 INIT_TP_WR(req, 0);
2015 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2016 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2017 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2018 ret = t4_mgmt_tx(adap, skb);
2019 return net_xmit_eval(ret);
2020 }
2021 EXPORT_SYMBOL(cxgb4_remove_server);
2022
2023 /**
2024 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2025 * @mtus: the HW MTU table
2026 * @mtu: the target MTU
2027 * @idx: index of selected entry in the MTU table
2028 *
2029 * Returns the index and the value in the HW MTU table that is closest to
2030 * but does not exceed @mtu, unless @mtu is smaller than any value in the
2031 * table, in which case that smallest available value is selected.
2032 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)2033 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2034 unsigned int *idx)
2035 {
2036 unsigned int i = 0;
2037
2038 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2039 ++i;
2040 if (idx)
2041 *idx = i;
2042 return mtus[i];
2043 }
2044 EXPORT_SYMBOL(cxgb4_best_mtu);
2045
2046 /**
2047 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2048 * @mtus: the HW MTU table
2049 * @header_size: Header Size
2050 * @data_size_max: maximum Data Segment Size
2051 * @data_size_align: desired Data Segment Size Alignment (2^N)
2052 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2053 *
2054 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
2055 * MTU Table based solely on a Maximum MTU parameter, we break that
2056 * parameter up into a Header Size and Maximum Data Segment Size, and
2057 * provide a desired Data Segment Size Alignment. If we find an MTU in
2058 * the Hardware MTU Table which will result in a Data Segment Size with
2059 * the requested alignment _and_ that MTU isn't "too far" from the
2060 * closest MTU, then we'll return that rather than the closest MTU.
2061 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)2062 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2063 unsigned short header_size,
2064 unsigned short data_size_max,
2065 unsigned short data_size_align,
2066 unsigned int *mtu_idxp)
2067 {
2068 unsigned short max_mtu = header_size + data_size_max;
2069 unsigned short data_size_align_mask = data_size_align - 1;
2070 int mtu_idx, aligned_mtu_idx;
2071
2072 /* Scan the MTU Table till we find an MTU which is larger than our
2073 * Maximum MTU or we reach the end of the table. Along the way,
2074 * record the last MTU found, if any, which will result in a Data
2075 * Segment Length matching the requested alignment.
2076 */
2077 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2078 unsigned short data_size = mtus[mtu_idx] - header_size;
2079
2080 /* If this MTU minus the Header Size would result in a
2081 * Data Segment Size of the desired alignment, remember it.
2082 */
2083 if ((data_size & data_size_align_mask) == 0)
2084 aligned_mtu_idx = mtu_idx;
2085
2086 /* If we're not at the end of the Hardware MTU Table and the
2087 * next element is larger than our Maximum MTU, drop out of
2088 * the loop.
2089 */
2090 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2091 break;
2092 }
2093
2094 /* If we fell out of the loop because we ran to the end of the table,
2095 * then we just have to use the last [largest] entry.
2096 */
2097 if (mtu_idx == NMTUS)
2098 mtu_idx--;
2099
2100 /* If we found an MTU which resulted in the requested Data Segment
2101 * Length alignment and that's "not far" from the largest MTU which is
2102 * less than or equal to the maximum MTU, then use that.
2103 */
2104 if (aligned_mtu_idx >= 0 &&
2105 mtu_idx - aligned_mtu_idx <= 1)
2106 mtu_idx = aligned_mtu_idx;
2107
2108 /* If the caller has passed in an MTU Index pointer, pass the
2109 * MTU Index back. Return the MTU value.
2110 */
2111 if (mtu_idxp)
2112 *mtu_idxp = mtu_idx;
2113 return mtus[mtu_idx];
2114 }
2115 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2116
2117 /**
2118 * cxgb4_port_chan - get the HW channel of a port
2119 * @dev: the net device for the port
2120 *
2121 * Return the HW Tx channel of the given port.
2122 */
cxgb4_port_chan(const struct net_device * dev)2123 unsigned int cxgb4_port_chan(const struct net_device *dev)
2124 {
2125 return netdev2pinfo(dev)->tx_chan;
2126 }
2127 EXPORT_SYMBOL(cxgb4_port_chan);
2128
2129 /**
2130 * cxgb4_port_e2cchan - get the HW c-channel of a port
2131 * @dev: the net device for the port
2132 *
2133 * Return the HW RX c-channel of the given port.
2134 */
cxgb4_port_e2cchan(const struct net_device * dev)2135 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2136 {
2137 return netdev2pinfo(dev)->rx_cchan;
2138 }
2139 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2140
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)2141 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2142 {
2143 struct adapter *adap = netdev2adap(dev);
2144 u32 v1, v2, lp_count, hp_count;
2145
2146 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2147 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2148 if (is_t4(adap->params.chip)) {
2149 lp_count = LP_COUNT_G(v1);
2150 hp_count = HP_COUNT_G(v1);
2151 } else {
2152 lp_count = LP_COUNT_T5_G(v1);
2153 hp_count = HP_COUNT_T5_G(v2);
2154 }
2155 return lpfifo ? lp_count : hp_count;
2156 }
2157 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2158
2159 /**
2160 * cxgb4_port_viid - get the VI id of a port
2161 * @dev: the net device for the port
2162 *
2163 * Return the VI id of the given port.
2164 */
cxgb4_port_viid(const struct net_device * dev)2165 unsigned int cxgb4_port_viid(const struct net_device *dev)
2166 {
2167 return netdev2pinfo(dev)->viid;
2168 }
2169 EXPORT_SYMBOL(cxgb4_port_viid);
2170
2171 /**
2172 * cxgb4_port_idx - get the index of a port
2173 * @dev: the net device for the port
2174 *
2175 * Return the index of the given port.
2176 */
cxgb4_port_idx(const struct net_device * dev)2177 unsigned int cxgb4_port_idx(const struct net_device *dev)
2178 {
2179 return netdev2pinfo(dev)->port_id;
2180 }
2181 EXPORT_SYMBOL(cxgb4_port_idx);
2182
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)2183 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2184 struct tp_tcp_stats *v6)
2185 {
2186 struct adapter *adap = pci_get_drvdata(pdev);
2187
2188 spin_lock(&adap->stats_lock);
2189 t4_tp_get_tcp_stats(adap, v4, v6, false);
2190 spin_unlock(&adap->stats_lock);
2191 }
2192 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2193
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)2194 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2195 const unsigned int *pgsz_order)
2196 {
2197 struct adapter *adap = netdev2adap(dev);
2198
2199 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2200 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2201 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2202 HPZ3_V(pgsz_order[3]));
2203 }
2204 EXPORT_SYMBOL(cxgb4_iscsi_init);
2205
cxgb4_flush_eq_cache(struct net_device * dev)2206 int cxgb4_flush_eq_cache(struct net_device *dev)
2207 {
2208 struct adapter *adap = netdev2adap(dev);
2209
2210 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2211 }
2212 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2213
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)2214 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2215 {
2216 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2217 __be64 indices;
2218 int ret;
2219
2220 spin_lock(&adap->win0_lock);
2221 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2222 sizeof(indices), (__be32 *)&indices,
2223 T4_MEMORY_READ);
2224 spin_unlock(&adap->win0_lock);
2225 if (!ret) {
2226 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2227 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2228 }
2229 return ret;
2230 }
2231
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)2232 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2233 u16 size)
2234 {
2235 struct adapter *adap = netdev2adap(dev);
2236 u16 hw_pidx, hw_cidx;
2237 int ret;
2238
2239 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2240 if (ret)
2241 goto out;
2242
2243 if (pidx != hw_pidx) {
2244 u16 delta;
2245 u32 val;
2246
2247 if (pidx >= hw_pidx)
2248 delta = pidx - hw_pidx;
2249 else
2250 delta = size - hw_pidx + pidx;
2251
2252 if (is_t4(adap->params.chip))
2253 val = PIDX_V(delta);
2254 else
2255 val = PIDX_T5_V(delta);
2256 wmb();
2257 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2258 QID_V(qid) | val);
2259 }
2260 out:
2261 return ret;
2262 }
2263 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2264
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)2265 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2266 {
2267 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2268 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2269 u32 offset, memtype, memaddr;
2270 struct adapter *adap;
2271 u32 hma_size = 0;
2272 int ret;
2273
2274 adap = netdev2adap(dev);
2275
2276 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2277
2278 /* Figure out where the offset lands in the Memory Type/Address scheme.
2279 * This code assumes that the memory is laid out starting at offset 0
2280 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2281 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2282 * MC0, and some have both MC0 and MC1.
2283 */
2284 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2285 edc0_size = EDRAM0_SIZE_G(size) << 20;
2286 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2287 edc1_size = EDRAM1_SIZE_G(size) << 20;
2288 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2289 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2290
2291 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2292 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2293 hma_size = EXT_MEM1_SIZE_G(size) << 20;
2294 }
2295 edc0_end = edc0_size;
2296 edc1_end = edc0_end + edc1_size;
2297 mc0_end = edc1_end + mc0_size;
2298
2299 if (offset < edc0_end) {
2300 memtype = MEM_EDC0;
2301 memaddr = offset;
2302 } else if (offset < edc1_end) {
2303 memtype = MEM_EDC1;
2304 memaddr = offset - edc0_end;
2305 } else {
2306 if (hma_size && (offset < (edc1_end + hma_size))) {
2307 memtype = MEM_HMA;
2308 memaddr = offset - edc1_end;
2309 } else if (offset < mc0_end) {
2310 memtype = MEM_MC0;
2311 memaddr = offset - edc1_end;
2312 } else if (is_t5(adap->params.chip)) {
2313 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2314 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2315 mc1_end = mc0_end + mc1_size;
2316 if (offset < mc1_end) {
2317 memtype = MEM_MC1;
2318 memaddr = offset - mc0_end;
2319 } else {
2320 /* offset beyond the end of any memory */
2321 goto err;
2322 }
2323 } else {
2324 /* T4/T6 only has a single memory channel */
2325 goto err;
2326 }
2327 }
2328
2329 spin_lock(&adap->win0_lock);
2330 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2331 spin_unlock(&adap->win0_lock);
2332 return ret;
2333
2334 err:
2335 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2336 stag, offset);
2337 return -EINVAL;
2338 }
2339 EXPORT_SYMBOL(cxgb4_read_tpte);
2340
cxgb4_read_sge_timestamp(struct net_device * dev)2341 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2342 {
2343 u32 hi, lo;
2344 struct adapter *adap;
2345
2346 adap = netdev2adap(dev);
2347 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2348 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2349
2350 return ((u64)hi << 32) | (u64)lo;
2351 }
2352 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2353
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)2354 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2355 unsigned int qid,
2356 enum cxgb4_bar2_qtype qtype,
2357 int user,
2358 u64 *pbar2_qoffset,
2359 unsigned int *pbar2_qid)
2360 {
2361 return t4_bar2_sge_qregs(netdev2adap(dev),
2362 qid,
2363 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2364 ? T4_BAR2_QTYPE_EGRESS
2365 : T4_BAR2_QTYPE_INGRESS),
2366 user,
2367 pbar2_qoffset,
2368 pbar2_qid);
2369 }
2370 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2371
2372 static struct pci_driver cxgb4_driver;
2373
check_neigh_update(struct neighbour * neigh)2374 static void check_neigh_update(struct neighbour *neigh)
2375 {
2376 const struct device *parent;
2377 const struct net_device *netdev = neigh->dev;
2378
2379 if (is_vlan_dev(netdev))
2380 netdev = vlan_dev_real_dev(netdev);
2381 parent = netdev->dev.parent;
2382 if (parent && parent->driver == &cxgb4_driver.driver)
2383 t4_l2t_update(dev_get_drvdata(parent), neigh);
2384 }
2385
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)2386 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2387 void *data)
2388 {
2389 switch (event) {
2390 case NETEVENT_NEIGH_UPDATE:
2391 check_neigh_update(data);
2392 break;
2393 case NETEVENT_REDIRECT:
2394 default:
2395 break;
2396 }
2397 return 0;
2398 }
2399
2400 static bool netevent_registered;
2401 static struct notifier_block cxgb4_netevent_nb = {
2402 .notifier_call = netevent_cb
2403 };
2404
drain_db_fifo(struct adapter * adap,int usecs)2405 static void drain_db_fifo(struct adapter *adap, int usecs)
2406 {
2407 u32 v1, v2, lp_count, hp_count;
2408
2409 do {
2410 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2411 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2412 if (is_t4(adap->params.chip)) {
2413 lp_count = LP_COUNT_G(v1);
2414 hp_count = HP_COUNT_G(v1);
2415 } else {
2416 lp_count = LP_COUNT_T5_G(v1);
2417 hp_count = HP_COUNT_T5_G(v2);
2418 }
2419
2420 if (lp_count == 0 && hp_count == 0)
2421 break;
2422 set_current_state(TASK_UNINTERRUPTIBLE);
2423 schedule_timeout(usecs_to_jiffies(usecs));
2424 } while (1);
2425 }
2426
disable_txq_db(struct sge_txq * q)2427 static void disable_txq_db(struct sge_txq *q)
2428 {
2429 unsigned long flags;
2430
2431 spin_lock_irqsave(&q->db_lock, flags);
2432 q->db_disabled = 1;
2433 spin_unlock_irqrestore(&q->db_lock, flags);
2434 }
2435
enable_txq_db(struct adapter * adap,struct sge_txq * q)2436 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2437 {
2438 spin_lock_irq(&q->db_lock);
2439 if (q->db_pidx_inc) {
2440 /* Make sure that all writes to the TX descriptors
2441 * are committed before we tell HW about them.
2442 */
2443 wmb();
2444 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2445 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2446 q->db_pidx_inc = 0;
2447 }
2448 q->db_disabled = 0;
2449 spin_unlock_irq(&q->db_lock);
2450 }
2451
disable_dbs(struct adapter * adap)2452 static void disable_dbs(struct adapter *adap)
2453 {
2454 int i;
2455
2456 for_each_ethrxq(&adap->sge, i)
2457 disable_txq_db(&adap->sge.ethtxq[i].q);
2458 if (is_offload(adap)) {
2459 struct sge_uld_txq_info *txq_info =
2460 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2461
2462 if (txq_info) {
2463 for_each_ofldtxq(&adap->sge, i) {
2464 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2465
2466 disable_txq_db(&txq->q);
2467 }
2468 }
2469 }
2470 for_each_port(adap, i)
2471 disable_txq_db(&adap->sge.ctrlq[i].q);
2472 }
2473
enable_dbs(struct adapter * adap)2474 static void enable_dbs(struct adapter *adap)
2475 {
2476 int i;
2477
2478 for_each_ethrxq(&adap->sge, i)
2479 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2480 if (is_offload(adap)) {
2481 struct sge_uld_txq_info *txq_info =
2482 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2483
2484 if (txq_info) {
2485 for_each_ofldtxq(&adap->sge, i) {
2486 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2487
2488 enable_txq_db(adap, &txq->q);
2489 }
2490 }
2491 }
2492 for_each_port(adap, i)
2493 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2494 }
2495
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)2496 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2497 {
2498 enum cxgb4_uld type = CXGB4_ULD_RDMA;
2499
2500 if (adap->uld && adap->uld[type].handle)
2501 adap->uld[type].control(adap->uld[type].handle, cmd);
2502 }
2503
process_db_full(struct work_struct * work)2504 static void process_db_full(struct work_struct *work)
2505 {
2506 struct adapter *adap;
2507
2508 adap = container_of(work, struct adapter, db_full_task);
2509
2510 drain_db_fifo(adap, dbfifo_drain_delay);
2511 enable_dbs(adap);
2512 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2513 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2514 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2515 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2516 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2517 else
2518 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2519 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2520 }
2521
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2522 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2523 {
2524 u16 hw_pidx, hw_cidx;
2525 int ret;
2526
2527 spin_lock_irq(&q->db_lock);
2528 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2529 if (ret)
2530 goto out;
2531 if (q->db_pidx != hw_pidx) {
2532 u16 delta;
2533 u32 val;
2534
2535 if (q->db_pidx >= hw_pidx)
2536 delta = q->db_pidx - hw_pidx;
2537 else
2538 delta = q->size - hw_pidx + q->db_pidx;
2539
2540 if (is_t4(adap->params.chip))
2541 val = PIDX_V(delta);
2542 else
2543 val = PIDX_T5_V(delta);
2544 wmb();
2545 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2546 QID_V(q->cntxt_id) | val);
2547 }
2548 out:
2549 q->db_disabled = 0;
2550 q->db_pidx_inc = 0;
2551 spin_unlock_irq(&q->db_lock);
2552 if (ret)
2553 CH_WARN(adap, "DB drop recovery failed.\n");
2554 }
2555
recover_all_queues(struct adapter * adap)2556 static void recover_all_queues(struct adapter *adap)
2557 {
2558 int i;
2559
2560 for_each_ethrxq(&adap->sge, i)
2561 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2562 if (is_offload(adap)) {
2563 struct sge_uld_txq_info *txq_info =
2564 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2565 if (txq_info) {
2566 for_each_ofldtxq(&adap->sge, i) {
2567 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2568
2569 sync_txq_pidx(adap, &txq->q);
2570 }
2571 }
2572 }
2573 for_each_port(adap, i)
2574 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2575 }
2576
process_db_drop(struct work_struct * work)2577 static void process_db_drop(struct work_struct *work)
2578 {
2579 struct adapter *adap;
2580
2581 adap = container_of(work, struct adapter, db_drop_task);
2582
2583 if (is_t4(adap->params.chip)) {
2584 drain_db_fifo(adap, dbfifo_drain_delay);
2585 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2586 drain_db_fifo(adap, dbfifo_drain_delay);
2587 recover_all_queues(adap);
2588 drain_db_fifo(adap, dbfifo_drain_delay);
2589 enable_dbs(adap);
2590 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2591 } else if (is_t5(adap->params.chip)) {
2592 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2593 u16 qid = (dropped_db >> 15) & 0x1ffff;
2594 u16 pidx_inc = dropped_db & 0x1fff;
2595 u64 bar2_qoffset;
2596 unsigned int bar2_qid;
2597 int ret;
2598
2599 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2600 0, &bar2_qoffset, &bar2_qid);
2601 if (ret)
2602 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2603 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2604 else
2605 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2606 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2607
2608 /* Re-enable BAR2 WC */
2609 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2610 }
2611
2612 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2613 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2614 }
2615
t4_db_full(struct adapter * adap)2616 void t4_db_full(struct adapter *adap)
2617 {
2618 if (is_t4(adap->params.chip)) {
2619 disable_dbs(adap);
2620 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2621 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2622 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2623 queue_work(adap->workq, &adap->db_full_task);
2624 }
2625 }
2626
t4_db_dropped(struct adapter * adap)2627 void t4_db_dropped(struct adapter *adap)
2628 {
2629 if (is_t4(adap->params.chip)) {
2630 disable_dbs(adap);
2631 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2632 }
2633 queue_work(adap->workq, &adap->db_drop_task);
2634 }
2635
t4_register_netevent_notifier(void)2636 void t4_register_netevent_notifier(void)
2637 {
2638 if (!netevent_registered) {
2639 register_netevent_notifier(&cxgb4_netevent_nb);
2640 netevent_registered = true;
2641 }
2642 }
2643
detach_ulds(struct adapter * adap)2644 static void detach_ulds(struct adapter *adap)
2645 {
2646 unsigned int i;
2647
2648 if (!is_uld(adap))
2649 return;
2650
2651 mutex_lock(&uld_mutex);
2652 list_del(&adap->list_node);
2653
2654 for (i = 0; i < CXGB4_ULD_MAX; i++)
2655 if (adap->uld && adap->uld[i].handle)
2656 adap->uld[i].state_change(adap->uld[i].handle,
2657 CXGB4_STATE_DETACH);
2658
2659 if (netevent_registered && list_empty(&adapter_list)) {
2660 unregister_netevent_notifier(&cxgb4_netevent_nb);
2661 netevent_registered = false;
2662 }
2663 mutex_unlock(&uld_mutex);
2664 }
2665
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2666 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2667 {
2668 unsigned int i;
2669
2670 mutex_lock(&uld_mutex);
2671 for (i = 0; i < CXGB4_ULD_MAX; i++)
2672 if (adap->uld && adap->uld[i].handle)
2673 adap->uld[i].state_change(adap->uld[i].handle,
2674 new_state);
2675 mutex_unlock(&uld_mutex);
2676 }
2677
2678 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2679 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2680 unsigned long event, void *data)
2681 {
2682 struct inet6_ifaddr *ifa = data;
2683 struct net_device *event_dev = ifa->idev->dev;
2684 const struct device *parent = NULL;
2685 #if IS_ENABLED(CONFIG_BONDING)
2686 struct adapter *adap;
2687 #endif
2688 if (is_vlan_dev(event_dev))
2689 event_dev = vlan_dev_real_dev(event_dev);
2690 #if IS_ENABLED(CONFIG_BONDING)
2691 if (event_dev->flags & IFF_MASTER) {
2692 list_for_each_entry(adap, &adapter_list, list_node) {
2693 switch (event) {
2694 case NETDEV_UP:
2695 cxgb4_clip_get(adap->port[0],
2696 (const u32 *)ifa, 1);
2697 break;
2698 case NETDEV_DOWN:
2699 cxgb4_clip_release(adap->port[0],
2700 (const u32 *)ifa, 1);
2701 break;
2702 default:
2703 break;
2704 }
2705 }
2706 return NOTIFY_OK;
2707 }
2708 #endif
2709
2710 if (event_dev)
2711 parent = event_dev->dev.parent;
2712
2713 if (parent && parent->driver == &cxgb4_driver.driver) {
2714 switch (event) {
2715 case NETDEV_UP:
2716 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2717 break;
2718 case NETDEV_DOWN:
2719 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2720 break;
2721 default:
2722 break;
2723 }
2724 }
2725 return NOTIFY_OK;
2726 }
2727
2728 static bool inet6addr_registered;
2729 static struct notifier_block cxgb4_inet6addr_notifier = {
2730 .notifier_call = cxgb4_inet6addr_handler
2731 };
2732
update_clip(const struct adapter * adap)2733 static void update_clip(const struct adapter *adap)
2734 {
2735 int i;
2736 struct net_device *dev;
2737 int ret;
2738
2739 rcu_read_lock();
2740
2741 for (i = 0; i < MAX_NPORTS; i++) {
2742 dev = adap->port[i];
2743 ret = 0;
2744
2745 if (dev)
2746 ret = cxgb4_update_root_dev_clip(dev);
2747
2748 if (ret < 0)
2749 break;
2750 }
2751 rcu_read_unlock();
2752 }
2753 #endif /* IS_ENABLED(CONFIG_IPV6) */
2754
2755 /**
2756 * cxgb_up - enable the adapter
2757 * @adap: adapter being enabled
2758 *
2759 * Called when the first port is enabled, this function performs the
2760 * actions necessary to make an adapter operational, such as completing
2761 * the initialization of HW modules, and enabling interrupts.
2762 *
2763 * Must be called with the rtnl lock held.
2764 */
cxgb_up(struct adapter * adap)2765 static int cxgb_up(struct adapter *adap)
2766 {
2767 struct sge *s = &adap->sge;
2768 int err;
2769
2770 mutex_lock(&uld_mutex);
2771 err = setup_sge_queues(adap);
2772 if (err)
2773 goto rel_lock;
2774 err = setup_rss(adap);
2775 if (err)
2776 goto freeq;
2777
2778 if (adap->flags & CXGB4_USING_MSIX) {
2779 if (s->nd_msix_idx < 0) {
2780 err = -ENOMEM;
2781 goto irq_err;
2782 }
2783
2784 err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2785 t4_nondata_intr, 0,
2786 adap->msix_info[s->nd_msix_idx].desc, adap);
2787 if (err)
2788 goto irq_err;
2789
2790 err = request_msix_queue_irqs(adap);
2791 if (err)
2792 goto irq_err_free_nd_msix;
2793 } else {
2794 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2795 (adap->flags & CXGB4_USING_MSI) ? 0
2796 : IRQF_SHARED,
2797 adap->port[0]->name, adap);
2798 if (err)
2799 goto irq_err;
2800 }
2801
2802 enable_rx(adap);
2803 t4_sge_start(adap);
2804 t4_intr_enable(adap);
2805 adap->flags |= CXGB4_FULL_INIT_DONE;
2806 mutex_unlock(&uld_mutex);
2807
2808 notify_ulds(adap, CXGB4_STATE_UP);
2809 #if IS_ENABLED(CONFIG_IPV6)
2810 update_clip(adap);
2811 #endif
2812 return err;
2813
2814 irq_err_free_nd_msix:
2815 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2816 irq_err:
2817 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2818 freeq:
2819 t4_free_sge_resources(adap);
2820 rel_lock:
2821 mutex_unlock(&uld_mutex);
2822 return err;
2823 }
2824
cxgb_down(struct adapter * adapter)2825 static void cxgb_down(struct adapter *adapter)
2826 {
2827 cancel_work_sync(&adapter->tid_release_task);
2828 cancel_work_sync(&adapter->db_full_task);
2829 cancel_work_sync(&adapter->db_drop_task);
2830 adapter->tid_release_task_busy = false;
2831 adapter->tid_release_head = NULL;
2832
2833 t4_sge_stop(adapter);
2834 t4_free_sge_resources(adapter);
2835
2836 adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2837 }
2838
2839 /*
2840 * net_device operations
2841 */
cxgb_open(struct net_device * dev)2842 static int cxgb_open(struct net_device *dev)
2843 {
2844 struct port_info *pi = netdev_priv(dev);
2845 struct adapter *adapter = pi->adapter;
2846 int err;
2847
2848 netif_carrier_off(dev);
2849
2850 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2851 err = cxgb_up(adapter);
2852 if (err < 0)
2853 return err;
2854 }
2855
2856 /* It's possible that the basic port information could have
2857 * changed since we first read it.
2858 */
2859 err = t4_update_port_info(pi);
2860 if (err < 0)
2861 return err;
2862
2863 err = link_start(dev);
2864 if (err)
2865 return err;
2866
2867 if (pi->nmirrorqsets) {
2868 mutex_lock(&pi->vi_mirror_mutex);
2869 err = cxgb4_port_mirror_alloc_queues(dev);
2870 if (err)
2871 goto out_unlock;
2872
2873 err = cxgb4_port_mirror_start(dev);
2874 if (err)
2875 goto out_free_queues;
2876 mutex_unlock(&pi->vi_mirror_mutex);
2877 }
2878
2879 netif_tx_start_all_queues(dev);
2880 return 0;
2881
2882 out_free_queues:
2883 cxgb4_port_mirror_free_queues(dev);
2884
2885 out_unlock:
2886 mutex_unlock(&pi->vi_mirror_mutex);
2887 return err;
2888 }
2889
cxgb_close(struct net_device * dev)2890 static int cxgb_close(struct net_device *dev)
2891 {
2892 struct port_info *pi = netdev_priv(dev);
2893 struct adapter *adapter = pi->adapter;
2894 int ret;
2895
2896 netif_tx_stop_all_queues(dev);
2897 netif_carrier_off(dev);
2898 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2899 false, false, false);
2900 #ifdef CONFIG_CHELSIO_T4_DCB
2901 cxgb4_dcb_reset(dev);
2902 dcb_tx_queue_prio_enable(dev, false);
2903 #endif
2904 if (ret)
2905 return ret;
2906
2907 if (pi->nmirrorqsets) {
2908 mutex_lock(&pi->vi_mirror_mutex);
2909 cxgb4_port_mirror_stop(dev);
2910 cxgb4_port_mirror_free_queues(dev);
2911 mutex_unlock(&pi->vi_mirror_mutex);
2912 }
2913
2914 return 0;
2915 }
2916
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2917 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2918 __be32 sip, __be16 sport, __be16 vlan,
2919 unsigned int queue, unsigned char port, unsigned char mask)
2920 {
2921 int ret;
2922 struct filter_entry *f;
2923 struct adapter *adap;
2924 int i;
2925 u8 *val;
2926
2927 adap = netdev2adap(dev);
2928
2929 /* Adjust stid to correct filter index */
2930 stid -= adap->tids.sftid_base;
2931 stid += adap->tids.nftids;
2932
2933 /* Check to make sure the filter requested is writable ...
2934 */
2935 f = &adap->tids.ftid_tab[stid];
2936 ret = writable_filter(f);
2937 if (ret)
2938 return ret;
2939
2940 /* Clear out any old resources being used by the filter before
2941 * we start constructing the new filter.
2942 */
2943 if (f->valid)
2944 clear_filter(adap, f);
2945
2946 /* Clear out filter specifications */
2947 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2948 f->fs.val.lport = be16_to_cpu(sport);
2949 f->fs.mask.lport = ~0;
2950 val = (u8 *)&sip;
2951 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2952 for (i = 0; i < 4; i++) {
2953 f->fs.val.lip[i] = val[i];
2954 f->fs.mask.lip[i] = ~0;
2955 }
2956 if (adap->params.tp.vlan_pri_map & PORT_F) {
2957 f->fs.val.iport = port;
2958 f->fs.mask.iport = mask;
2959 }
2960 }
2961
2962 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2963 f->fs.val.proto = IPPROTO_TCP;
2964 f->fs.mask.proto = ~0;
2965 }
2966
2967 f->fs.dirsteer = 1;
2968 f->fs.iq = queue;
2969 /* Mark filter as locked */
2970 f->locked = 1;
2971 f->fs.rpttid = 1;
2972
2973 /* Save the actual tid. We need this to get the corresponding
2974 * filter entry structure in filter_rpl.
2975 */
2976 f->tid = stid + adap->tids.ftid_base;
2977 ret = set_filter_wr(adap, stid);
2978 if (ret) {
2979 clear_filter(adap, f);
2980 return ret;
2981 }
2982
2983 return 0;
2984 }
2985 EXPORT_SYMBOL(cxgb4_create_server_filter);
2986
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2987 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2988 unsigned int queue, bool ipv6)
2989 {
2990 struct filter_entry *f;
2991 struct adapter *adap;
2992
2993 adap = netdev2adap(dev);
2994
2995 /* Adjust stid to correct filter index */
2996 stid -= adap->tids.sftid_base;
2997 stid += adap->tids.nftids;
2998
2999 f = &adap->tids.ftid_tab[stid];
3000 /* Unlock the filter */
3001 f->locked = 0;
3002
3003 return delete_filter(adap, stid);
3004 }
3005 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3006
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)3007 static void cxgb_get_stats(struct net_device *dev,
3008 struct rtnl_link_stats64 *ns)
3009 {
3010 struct port_stats stats;
3011 struct port_info *p = netdev_priv(dev);
3012 struct adapter *adapter = p->adapter;
3013
3014 /* Block retrieving statistics during EEH error
3015 * recovery. Otherwise, the recovery might fail
3016 * and the PCI device will be removed permanently
3017 */
3018 spin_lock(&adapter->stats_lock);
3019 if (!netif_device_present(dev)) {
3020 spin_unlock(&adapter->stats_lock);
3021 return;
3022 }
3023 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3024 &p->stats_base);
3025 spin_unlock(&adapter->stats_lock);
3026
3027 ns->tx_bytes = stats.tx_octets;
3028 ns->tx_packets = stats.tx_frames;
3029 ns->rx_bytes = stats.rx_octets;
3030 ns->rx_packets = stats.rx_frames;
3031 ns->multicast = stats.rx_mcast_frames;
3032
3033 /* detailed rx_errors */
3034 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3035 stats.rx_runt;
3036 ns->rx_over_errors = 0;
3037 ns->rx_crc_errors = stats.rx_fcs_err;
3038 ns->rx_frame_errors = stats.rx_symbol_err;
3039 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
3040 stats.rx_ovflow2 + stats.rx_ovflow3 +
3041 stats.rx_trunc0 + stats.rx_trunc1 +
3042 stats.rx_trunc2 + stats.rx_trunc3;
3043 ns->rx_missed_errors = 0;
3044
3045 /* detailed tx_errors */
3046 ns->tx_aborted_errors = 0;
3047 ns->tx_carrier_errors = 0;
3048 ns->tx_fifo_errors = 0;
3049 ns->tx_heartbeat_errors = 0;
3050 ns->tx_window_errors = 0;
3051
3052 ns->tx_errors = stats.tx_error_frames;
3053 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3054 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3055 }
3056
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)3057 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3058 {
3059 unsigned int mbox;
3060 int ret = 0, prtad, devad;
3061 struct port_info *pi = netdev_priv(dev);
3062 struct adapter *adapter = pi->adapter;
3063 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3064
3065 switch (cmd) {
3066 case SIOCGMIIPHY:
3067 if (pi->mdio_addr < 0)
3068 return -EOPNOTSUPP;
3069 data->phy_id = pi->mdio_addr;
3070 break;
3071 case SIOCGMIIREG:
3072 case SIOCSMIIREG:
3073 if (mdio_phy_id_is_c45(data->phy_id)) {
3074 prtad = mdio_phy_id_prtad(data->phy_id);
3075 devad = mdio_phy_id_devad(data->phy_id);
3076 } else if (data->phy_id < 32) {
3077 prtad = data->phy_id;
3078 devad = 0;
3079 data->reg_num &= 0x1f;
3080 } else
3081 return -EINVAL;
3082
3083 mbox = pi->adapter->pf;
3084 if (cmd == SIOCGMIIREG)
3085 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3086 data->reg_num, &data->val_out);
3087 else
3088 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3089 data->reg_num, data->val_in);
3090 break;
3091 case SIOCGHWTSTAMP:
3092 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3093 sizeof(pi->tstamp_config)) ?
3094 -EFAULT : 0;
3095 case SIOCSHWTSTAMP:
3096 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3097 sizeof(pi->tstamp_config)))
3098 return -EFAULT;
3099
3100 if (!is_t4(adapter->params.chip)) {
3101 switch (pi->tstamp_config.tx_type) {
3102 case HWTSTAMP_TX_OFF:
3103 case HWTSTAMP_TX_ON:
3104 break;
3105 default:
3106 return -ERANGE;
3107 }
3108
3109 switch (pi->tstamp_config.rx_filter) {
3110 case HWTSTAMP_FILTER_NONE:
3111 pi->rxtstamp = false;
3112 break;
3113 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3114 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3115 cxgb4_ptprx_timestamping(pi, pi->port_id,
3116 PTP_TS_L4);
3117 break;
3118 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3119 cxgb4_ptprx_timestamping(pi, pi->port_id,
3120 PTP_TS_L2_L4);
3121 break;
3122 case HWTSTAMP_FILTER_ALL:
3123 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3124 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3125 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3126 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3127 pi->rxtstamp = true;
3128 break;
3129 default:
3130 pi->tstamp_config.rx_filter =
3131 HWTSTAMP_FILTER_NONE;
3132 return -ERANGE;
3133 }
3134
3135 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3136 (pi->tstamp_config.rx_filter ==
3137 HWTSTAMP_FILTER_NONE)) {
3138 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3139 pi->ptp_enable = false;
3140 }
3141
3142 if (pi->tstamp_config.rx_filter !=
3143 HWTSTAMP_FILTER_NONE) {
3144 if (cxgb4_ptp_redirect_rx_packet(adapter,
3145 pi) >= 0)
3146 pi->ptp_enable = true;
3147 }
3148 } else {
3149 /* For T4 Adapters */
3150 switch (pi->tstamp_config.rx_filter) {
3151 case HWTSTAMP_FILTER_NONE:
3152 pi->rxtstamp = false;
3153 break;
3154 case HWTSTAMP_FILTER_ALL:
3155 pi->rxtstamp = true;
3156 break;
3157 default:
3158 pi->tstamp_config.rx_filter =
3159 HWTSTAMP_FILTER_NONE;
3160 return -ERANGE;
3161 }
3162 }
3163 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3164 sizeof(pi->tstamp_config)) ?
3165 -EFAULT : 0;
3166 default:
3167 return -EOPNOTSUPP;
3168 }
3169 return ret;
3170 }
3171
cxgb_set_rxmode(struct net_device * dev)3172 static void cxgb_set_rxmode(struct net_device *dev)
3173 {
3174 /* unfortunately we can't return errors to the stack */
3175 set_rxmode(dev, -1, false);
3176 }
3177
cxgb_change_mtu(struct net_device * dev,int new_mtu)3178 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3179 {
3180 struct port_info *pi = netdev_priv(dev);
3181 int ret;
3182
3183 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3184 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3185 if (!ret)
3186 dev->mtu = new_mtu;
3187 return ret;
3188 }
3189
3190 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)3191 static int cxgb4_mgmt_open(struct net_device *dev)
3192 {
3193 /* Turn carrier off since we don't have to transmit anything on this
3194 * interface.
3195 */
3196 netif_carrier_off(dev);
3197 return 0;
3198 }
3199
3200 /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)3201 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3202 {
3203 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3204 unsigned int i, vf, nvfs;
3205 u16 a, b;
3206 int err;
3207 u8 *na;
3208
3209 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3210 if (err)
3211 return;
3212
3213 na = adap->params.vpd.na;
3214 for (i = 0; i < ETH_ALEN; i++)
3215 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3216 hex2val(na[2 * i + 1]));
3217
3218 a = (hw_addr[0] << 8) | hw_addr[1];
3219 b = (hw_addr[1] << 8) | hw_addr[2];
3220 a ^= b;
3221 a |= 0x0200; /* locally assigned Ethernet MAC address */
3222 a &= ~0x0100; /* not a multicast Ethernet MAC address */
3223 macaddr[0] = a >> 8;
3224 macaddr[1] = a & 0xff;
3225
3226 for (i = 2; i < 5; i++)
3227 macaddr[i] = hw_addr[i + 1];
3228
3229 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3230 vf < nvfs; vf++) {
3231 macaddr[5] = adap->pf * nvfs + vf;
3232 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3233 }
3234 }
3235
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)3236 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3237 {
3238 struct port_info *pi = netdev_priv(dev);
3239 struct adapter *adap = pi->adapter;
3240 int ret;
3241
3242 /* verify MAC addr is valid */
3243 if (!is_valid_ether_addr(mac)) {
3244 dev_err(pi->adapter->pdev_dev,
3245 "Invalid Ethernet address %pM for VF %d\n",
3246 mac, vf);
3247 return -EINVAL;
3248 }
3249
3250 dev_info(pi->adapter->pdev_dev,
3251 "Setting MAC %pM on VF %d\n", mac, vf);
3252 ret = t4_set_vf_mac_acl(adap, vf + 1, pi->lport, 1, mac);
3253 if (!ret)
3254 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3255 return ret;
3256 }
3257
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)3258 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3259 int vf, struct ifla_vf_info *ivi)
3260 {
3261 struct port_info *pi = netdev_priv(dev);
3262 struct adapter *adap = pi->adapter;
3263 struct vf_info *vfinfo;
3264
3265 if (vf >= adap->num_vfs)
3266 return -EINVAL;
3267 vfinfo = &adap->vfinfo[vf];
3268
3269 ivi->vf = vf;
3270 ivi->max_tx_rate = vfinfo->tx_rate;
3271 ivi->min_tx_rate = 0;
3272 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3273 ivi->vlan = vfinfo->vlan;
3274 ivi->linkstate = vfinfo->link_state;
3275 return 0;
3276 }
3277
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)3278 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3279 struct netdev_phys_item_id *ppid)
3280 {
3281 struct port_info *pi = netdev_priv(dev);
3282 unsigned int phy_port_id;
3283
3284 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3285 ppid->id_len = sizeof(phy_port_id);
3286 memcpy(ppid->id, &phy_port_id, ppid->id_len);
3287 return 0;
3288 }
3289
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)3290 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3291 int min_tx_rate, int max_tx_rate)
3292 {
3293 struct port_info *pi = netdev_priv(dev);
3294 struct adapter *adap = pi->adapter;
3295 unsigned int link_ok, speed, mtu;
3296 u32 fw_pfvf, fw_class;
3297 int class_id = vf;
3298 int ret;
3299 u16 pktsize;
3300
3301 if (vf >= adap->num_vfs)
3302 return -EINVAL;
3303
3304 if (min_tx_rate) {
3305 dev_err(adap->pdev_dev,
3306 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3307 min_tx_rate, vf);
3308 return -EINVAL;
3309 }
3310
3311 if (max_tx_rate == 0) {
3312 /* unbind VF to to any Traffic Class */
3313 fw_pfvf =
3314 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3315 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3316 fw_class = 0xffffffff;
3317 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3318 &fw_pfvf, &fw_class);
3319 if (ret) {
3320 dev_err(adap->pdev_dev,
3321 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3322 ret, adap->pf, vf);
3323 return -EINVAL;
3324 }
3325 dev_info(adap->pdev_dev,
3326 "PF %d VF %d is unbound from TX Rate Limiting\n",
3327 adap->pf, vf);
3328 adap->vfinfo[vf].tx_rate = 0;
3329 return 0;
3330 }
3331
3332 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3333 if (ret != FW_SUCCESS) {
3334 dev_err(adap->pdev_dev,
3335 "Failed to get link information for VF %d\n", vf);
3336 return -EINVAL;
3337 }
3338
3339 if (!link_ok) {
3340 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3341 return -EINVAL;
3342 }
3343
3344 if (max_tx_rate > speed) {
3345 dev_err(adap->pdev_dev,
3346 "Max tx rate %d for VF %d can't be > link-speed %u",
3347 max_tx_rate, vf, speed);
3348 return -EINVAL;
3349 }
3350
3351 pktsize = mtu;
3352 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3353 pktsize = pktsize - sizeof(struct ethhdr) - 4;
3354 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3355 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3356 /* configure Traffic Class for rate-limiting */
3357 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3358 SCHED_CLASS_LEVEL_CL_RL,
3359 SCHED_CLASS_MODE_CLASS,
3360 SCHED_CLASS_RATEUNIT_BITS,
3361 SCHED_CLASS_RATEMODE_ABS,
3362 pi->tx_chan, class_id, 0,
3363 max_tx_rate * 1000, 0, pktsize, 0);
3364 if (ret) {
3365 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3366 ret);
3367 return -EINVAL;
3368 }
3369 dev_info(adap->pdev_dev,
3370 "Class %d with MSS %u configured with rate %u\n",
3371 class_id, pktsize, max_tx_rate);
3372
3373 /* bind VF to configured Traffic Class */
3374 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3375 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3376 fw_class = class_id;
3377 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3378 &fw_class);
3379 if (ret) {
3380 dev_err(adap->pdev_dev,
3381 "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3382 ret, adap->pf, vf, class_id);
3383 return -EINVAL;
3384 }
3385 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3386 adap->pf, vf, class_id);
3387 adap->vfinfo[vf].tx_rate = max_tx_rate;
3388 return 0;
3389 }
3390
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)3391 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3392 u16 vlan, u8 qos, __be16 vlan_proto)
3393 {
3394 struct port_info *pi = netdev_priv(dev);
3395 struct adapter *adap = pi->adapter;
3396 int ret;
3397
3398 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3399 return -EINVAL;
3400
3401 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3402 return -EPROTONOSUPPORT;
3403
3404 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3405 if (!ret) {
3406 adap->vfinfo[vf].vlan = vlan;
3407 return 0;
3408 }
3409
3410 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3411 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3412 return ret;
3413 }
3414
cxgb4_mgmt_set_vf_link_state(struct net_device * dev,int vf,int link)3415 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3416 int link)
3417 {
3418 struct port_info *pi = netdev_priv(dev);
3419 struct adapter *adap = pi->adapter;
3420 u32 param, val;
3421 int ret = 0;
3422
3423 if (vf >= adap->num_vfs)
3424 return -EINVAL;
3425
3426 switch (link) {
3427 case IFLA_VF_LINK_STATE_AUTO:
3428 val = FW_VF_LINK_STATE_AUTO;
3429 break;
3430
3431 case IFLA_VF_LINK_STATE_ENABLE:
3432 val = FW_VF_LINK_STATE_ENABLE;
3433 break;
3434
3435 case IFLA_VF_LINK_STATE_DISABLE:
3436 val = FW_VF_LINK_STATE_DISABLE;
3437 break;
3438
3439 default:
3440 return -EINVAL;
3441 }
3442
3443 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3444 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3445 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3446 ¶m, &val);
3447 if (ret) {
3448 dev_err(adap->pdev_dev,
3449 "Error %d in setting PF %d VF %d link state\n",
3450 ret, adap->pf, vf);
3451 return -EINVAL;
3452 }
3453
3454 adap->vfinfo[vf].link_state = link;
3455 return ret;
3456 }
3457 #endif /* CONFIG_PCI_IOV */
3458
cxgb_set_mac_addr(struct net_device * dev,void * p)3459 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3460 {
3461 int ret;
3462 struct sockaddr *addr = p;
3463 struct port_info *pi = netdev_priv(dev);
3464
3465 if (!is_valid_ether_addr(addr->sa_data))
3466 return -EADDRNOTAVAIL;
3467
3468 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3469 addr->sa_data, true, &pi->smt_idx);
3470 if (ret < 0)
3471 return ret;
3472
3473 eth_hw_addr_set(dev, addr->sa_data);
3474 return 0;
3475 }
3476
3477 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)3478 static void cxgb_netpoll(struct net_device *dev)
3479 {
3480 struct port_info *pi = netdev_priv(dev);
3481 struct adapter *adap = pi->adapter;
3482
3483 if (adap->flags & CXGB4_USING_MSIX) {
3484 int i;
3485 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3486
3487 for (i = pi->nqsets; i; i--, rx++)
3488 t4_sge_intr_msix(0, &rx->rspq);
3489 } else
3490 t4_intr_handler(adap)(0, adap);
3491 }
3492 #endif
3493
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)3494 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3495 {
3496 struct port_info *pi = netdev_priv(dev);
3497 struct adapter *adap = pi->adapter;
3498 struct ch_sched_queue qe = { 0 };
3499 struct ch_sched_params p = { 0 };
3500 struct sched_class *e;
3501 u32 req_rate;
3502 int err = 0;
3503
3504 if (!can_sched(dev))
3505 return -ENOTSUPP;
3506
3507 if (index < 0 || index > pi->nqsets - 1)
3508 return -EINVAL;
3509
3510 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3511 dev_err(adap->pdev_dev,
3512 "Failed to rate limit on queue %d. Link Down?\n",
3513 index);
3514 return -EINVAL;
3515 }
3516
3517 qe.queue = index;
3518 e = cxgb4_sched_queue_lookup(dev, &qe);
3519 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3520 dev_err(adap->pdev_dev,
3521 "Queue %u already bound to class %u of type: %u\n",
3522 index, e->idx, e->info.u.params.level);
3523 return -EBUSY;
3524 }
3525
3526 /* Convert from Mbps to Kbps */
3527 req_rate = rate * 1000;
3528
3529 /* Max rate is 100 Gbps */
3530 if (req_rate > SCHED_MAX_RATE_KBPS) {
3531 dev_err(adap->pdev_dev,
3532 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3533 rate, SCHED_MAX_RATE_KBPS / 1000);
3534 return -ERANGE;
3535 }
3536
3537 /* First unbind the queue from any existing class */
3538 memset(&qe, 0, sizeof(qe));
3539 qe.queue = index;
3540 qe.class = SCHED_CLS_NONE;
3541
3542 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3543 if (err) {
3544 dev_err(adap->pdev_dev,
3545 "Unbinding Queue %d on port %d fail. Err: %d\n",
3546 index, pi->port_id, err);
3547 return err;
3548 }
3549
3550 /* Queue already unbound */
3551 if (!req_rate)
3552 return 0;
3553
3554 /* Fetch any available unused or matching scheduling class */
3555 p.type = SCHED_CLASS_TYPE_PACKET;
3556 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
3557 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
3558 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3559 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3560 p.u.params.channel = pi->tx_chan;
3561 p.u.params.class = SCHED_CLS_NONE;
3562 p.u.params.minrate = 0;
3563 p.u.params.maxrate = req_rate;
3564 p.u.params.weight = 0;
3565 p.u.params.pktsize = dev->mtu;
3566
3567 e = cxgb4_sched_class_alloc(dev, &p);
3568 if (!e)
3569 return -ENOMEM;
3570
3571 /* Bind the queue to a scheduling class */
3572 memset(&qe, 0, sizeof(qe));
3573 qe.queue = index;
3574 qe.class = e->idx;
3575
3576 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3577 if (err)
3578 dev_err(adap->pdev_dev,
3579 "Queue rate limiting failed. Err: %d\n", err);
3580 return err;
3581 }
3582
cxgb_setup_tc_flower(struct net_device * dev,struct flow_cls_offload * cls_flower)3583 static int cxgb_setup_tc_flower(struct net_device *dev,
3584 struct flow_cls_offload *cls_flower)
3585 {
3586 switch (cls_flower->command) {
3587 case FLOW_CLS_REPLACE:
3588 return cxgb4_tc_flower_replace(dev, cls_flower);
3589 case FLOW_CLS_DESTROY:
3590 return cxgb4_tc_flower_destroy(dev, cls_flower);
3591 case FLOW_CLS_STATS:
3592 return cxgb4_tc_flower_stats(dev, cls_flower);
3593 default:
3594 return -EOPNOTSUPP;
3595 }
3596 }
3597
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)3598 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3599 struct tc_cls_u32_offload *cls_u32)
3600 {
3601 switch (cls_u32->command) {
3602 case TC_CLSU32_NEW_KNODE:
3603 case TC_CLSU32_REPLACE_KNODE:
3604 return cxgb4_config_knode(dev, cls_u32);
3605 case TC_CLSU32_DELETE_KNODE:
3606 return cxgb4_delete_knode(dev, cls_u32);
3607 default:
3608 return -EOPNOTSUPP;
3609 }
3610 }
3611
cxgb_setup_tc_matchall(struct net_device * dev,struct tc_cls_matchall_offload * cls_matchall,bool ingress)3612 static int cxgb_setup_tc_matchall(struct net_device *dev,
3613 struct tc_cls_matchall_offload *cls_matchall,
3614 bool ingress)
3615 {
3616 struct adapter *adap = netdev2adap(dev);
3617
3618 if (!adap->tc_matchall)
3619 return -ENOMEM;
3620
3621 switch (cls_matchall->command) {
3622 case TC_CLSMATCHALL_REPLACE:
3623 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3624 case TC_CLSMATCHALL_DESTROY:
3625 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3626 case TC_CLSMATCHALL_STATS:
3627 if (ingress)
3628 return cxgb4_tc_matchall_stats(dev, cls_matchall);
3629 break;
3630 default:
3631 break;
3632 }
3633
3634 return -EOPNOTSUPP;
3635 }
3636
cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3637 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3638 void *type_data, void *cb_priv)
3639 {
3640 struct net_device *dev = cb_priv;
3641 struct port_info *pi = netdev2pinfo(dev);
3642 struct adapter *adap = netdev2adap(dev);
3643
3644 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3645 dev_err(adap->pdev_dev,
3646 "Failed to setup tc on port %d. Link Down?\n",
3647 pi->port_id);
3648 return -EINVAL;
3649 }
3650
3651 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3652 return -EOPNOTSUPP;
3653
3654 switch (type) {
3655 case TC_SETUP_CLSU32:
3656 return cxgb_setup_tc_cls_u32(dev, type_data);
3657 case TC_SETUP_CLSFLOWER:
3658 return cxgb_setup_tc_flower(dev, type_data);
3659 case TC_SETUP_CLSMATCHALL:
3660 return cxgb_setup_tc_matchall(dev, type_data, true);
3661 default:
3662 return -EOPNOTSUPP;
3663 }
3664 }
3665
cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3666 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3667 void *type_data, void *cb_priv)
3668 {
3669 struct net_device *dev = cb_priv;
3670 struct port_info *pi = netdev2pinfo(dev);
3671 struct adapter *adap = netdev2adap(dev);
3672
3673 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3674 dev_err(adap->pdev_dev,
3675 "Failed to setup tc on port %d. Link Down?\n",
3676 pi->port_id);
3677 return -EINVAL;
3678 }
3679
3680 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3681 return -EOPNOTSUPP;
3682
3683 switch (type) {
3684 case TC_SETUP_CLSMATCHALL:
3685 return cxgb_setup_tc_matchall(dev, type_data, false);
3686 default:
3687 break;
3688 }
3689
3690 return -EOPNOTSUPP;
3691 }
3692
cxgb_setup_tc_mqprio(struct net_device * dev,struct tc_mqprio_qopt_offload * mqprio)3693 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3694 struct tc_mqprio_qopt_offload *mqprio)
3695 {
3696 struct adapter *adap = netdev2adap(dev);
3697
3698 if (!is_ethofld(adap) || !adap->tc_mqprio)
3699 return -ENOMEM;
3700
3701 return cxgb4_setup_tc_mqprio(dev, mqprio);
3702 }
3703
3704 static LIST_HEAD(cxgb_block_cb_list);
3705
cxgb_setup_tc_block(struct net_device * dev,struct flow_block_offload * f)3706 static int cxgb_setup_tc_block(struct net_device *dev,
3707 struct flow_block_offload *f)
3708 {
3709 struct port_info *pi = netdev_priv(dev);
3710 flow_setup_cb_t *cb;
3711 bool ingress_only;
3712
3713 pi->tc_block_shared = f->block_shared;
3714 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3715 cb = cxgb_setup_tc_block_egress_cb;
3716 ingress_only = false;
3717 } else {
3718 cb = cxgb_setup_tc_block_ingress_cb;
3719 ingress_only = true;
3720 }
3721
3722 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3723 cb, pi, dev, ingress_only);
3724 }
3725
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3726 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3727 void *type_data)
3728 {
3729 switch (type) {
3730 case TC_SETUP_QDISC_MQPRIO:
3731 return cxgb_setup_tc_mqprio(dev, type_data);
3732 case TC_SETUP_BLOCK:
3733 return cxgb_setup_tc_block(dev, type_data);
3734 default:
3735 return -EOPNOTSUPP;
3736 }
3737 }
3738
cxgb_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3739 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3740 unsigned int table, unsigned int entry,
3741 struct udp_tunnel_info *ti)
3742 {
3743 struct port_info *pi = netdev_priv(netdev);
3744 struct adapter *adapter = pi->adapter;
3745 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3746 int ret = 0, i;
3747
3748 switch (ti->type) {
3749 case UDP_TUNNEL_TYPE_VXLAN:
3750 adapter->vxlan_port = 0;
3751 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3752 break;
3753 case UDP_TUNNEL_TYPE_GENEVE:
3754 adapter->geneve_port = 0;
3755 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3756 break;
3757 default:
3758 return -EINVAL;
3759 }
3760
3761 /* Matchall mac entries can be deleted only after all tunnel ports
3762 * are brought down or removed.
3763 */
3764 if (!adapter->rawf_cnt)
3765 return 0;
3766 for_each_port(adapter, i) {
3767 pi = adap2pinfo(adapter, i);
3768 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3769 match_all_mac, match_all_mac,
3770 adapter->rawf_start + pi->port_id,
3771 1, pi->port_id, false);
3772 if (ret < 0) {
3773 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3774 i);
3775 return ret;
3776 }
3777 }
3778
3779 return 0;
3780 }
3781
cxgb_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3782 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3783 unsigned int table, unsigned int entry,
3784 struct udp_tunnel_info *ti)
3785 {
3786 struct port_info *pi = netdev_priv(netdev);
3787 struct adapter *adapter = pi->adapter;
3788 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3789 int i, ret;
3790
3791 switch (ti->type) {
3792 case UDP_TUNNEL_TYPE_VXLAN:
3793 adapter->vxlan_port = ti->port;
3794 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3795 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3796 break;
3797 case UDP_TUNNEL_TYPE_GENEVE:
3798 adapter->geneve_port = ti->port;
3799 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3800 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3801 break;
3802 default:
3803 return -EINVAL;
3804 }
3805
3806 /* Create a 'match all' mac filter entry for inner mac,
3807 * if raw mac interface is supported. Once the linux kernel provides
3808 * driver entry points for adding/deleting the inner mac addresses,
3809 * we will remove this 'match all' entry and fallback to adding
3810 * exact match filters.
3811 */
3812 for_each_port(adapter, i) {
3813 pi = adap2pinfo(adapter, i);
3814
3815 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3816 match_all_mac,
3817 match_all_mac,
3818 adapter->rawf_start + pi->port_id,
3819 1, pi->port_id, false);
3820 if (ret < 0) {
3821 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3822 be16_to_cpu(ti->port));
3823 return ret;
3824 }
3825 }
3826
3827 return 0;
3828 }
3829
3830 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3831 .set_port = cxgb_udp_tunnel_set_port,
3832 .unset_port = cxgb_udp_tunnel_unset_port,
3833 .tables = {
3834 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
3835 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3836 },
3837 };
3838
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3839 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3840 struct net_device *dev,
3841 netdev_features_t features)
3842 {
3843 struct port_info *pi = netdev_priv(dev);
3844 struct adapter *adapter = pi->adapter;
3845
3846 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3847 return features;
3848
3849 /* Check if hw supports offload for this packet */
3850 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3851 return features;
3852
3853 /* Offload is not supported for this encapsulated packet */
3854 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3855 }
3856
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3857 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3858 netdev_features_t features)
3859 {
3860 /* Disable GRO, if RX_CSUM is disabled */
3861 if (!(features & NETIF_F_RXCSUM))
3862 features &= ~NETIF_F_GRO;
3863
3864 return features;
3865 }
3866
3867 static const struct net_device_ops cxgb4_netdev_ops = {
3868 .ndo_open = cxgb_open,
3869 .ndo_stop = cxgb_close,
3870 .ndo_start_xmit = t4_start_xmit,
3871 .ndo_select_queue = cxgb_select_queue,
3872 .ndo_get_stats64 = cxgb_get_stats,
3873 .ndo_set_rx_mode = cxgb_set_rxmode,
3874 .ndo_set_mac_address = cxgb_set_mac_addr,
3875 .ndo_set_features = cxgb_set_features,
3876 .ndo_validate_addr = eth_validate_addr,
3877 .ndo_eth_ioctl = cxgb_ioctl,
3878 .ndo_change_mtu = cxgb_change_mtu,
3879 #ifdef CONFIG_NET_POLL_CONTROLLER
3880 .ndo_poll_controller = cxgb_netpoll,
3881 #endif
3882 #ifdef CONFIG_CHELSIO_T4_FCOE
3883 .ndo_fcoe_enable = cxgb_fcoe_enable,
3884 .ndo_fcoe_disable = cxgb_fcoe_disable,
3885 #endif /* CONFIG_CHELSIO_T4_FCOE */
3886 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3887 .ndo_setup_tc = cxgb_setup_tc,
3888 .ndo_features_check = cxgb_features_check,
3889 .ndo_fix_features = cxgb_fix_features,
3890 };
3891
3892 #ifdef CONFIG_PCI_IOV
3893 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3894 .ndo_open = cxgb4_mgmt_open,
3895 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3896 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3897 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3898 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3899 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3900 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state,
3901 };
3902
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3903 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3904 struct ethtool_drvinfo *info)
3905 {
3906 struct adapter *adapter = netdev2adap(dev);
3907
3908 strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3909 strscpy(info->bus_info, pci_name(adapter->pdev),
3910 sizeof(info->bus_info));
3911 }
3912
3913 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3914 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3915 };
3916 #endif
3917
notify_fatal_err(struct work_struct * work)3918 static void notify_fatal_err(struct work_struct *work)
3919 {
3920 struct adapter *adap;
3921
3922 adap = container_of(work, struct adapter, fatal_err_notify_task);
3923 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3924 }
3925
t4_fatal_err(struct adapter * adap)3926 void t4_fatal_err(struct adapter *adap)
3927 {
3928 int port;
3929
3930 if (pci_channel_offline(adap->pdev))
3931 return;
3932
3933 /* Disable the SGE since ULDs are going to free resources that
3934 * could be exposed to the adapter. RDMA MWs for example...
3935 */
3936 t4_shutdown_adapter(adap);
3937 for_each_port(adap, port) {
3938 struct net_device *dev = adap->port[port];
3939
3940 /* If we get here in very early initialization the network
3941 * devices may not have been set up yet.
3942 */
3943 if (!dev)
3944 continue;
3945
3946 netif_tx_stop_all_queues(dev);
3947 netif_carrier_off(dev);
3948 }
3949 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3950 queue_work(adap->workq, &adap->fatal_err_notify_task);
3951 }
3952
setup_memwin(struct adapter * adap)3953 static void setup_memwin(struct adapter *adap)
3954 {
3955 u32 nic_win_base = t4_get_util_window(adap);
3956
3957 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3958 }
3959
setup_memwin_rdma(struct adapter * adap)3960 static void setup_memwin_rdma(struct adapter *adap)
3961 {
3962 if (adap->vres.ocq.size) {
3963 u32 start;
3964 unsigned int sz_kb;
3965
3966 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3967 start &= PCI_BASE_ADDRESS_MEM_MASK;
3968 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3969 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3970 t4_write_reg(adap,
3971 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3972 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3973 t4_write_reg(adap,
3974 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3975 adap->vres.ocq.start);
3976 t4_read_reg(adap,
3977 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3978 }
3979 }
3980
3981 /* HMA Definitions */
3982
3983 /* The maximum number of address that can be send in a single FW cmd */
3984 #define HMA_MAX_ADDR_IN_CMD 5
3985
3986 #define HMA_PAGE_SIZE PAGE_SIZE
3987
3988 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3989
3990 #define HMA_PAGE_ORDER \
3991 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3992 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3993
3994 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3995 * configuration(in units of MB).
3996 */
3997 #define HMA_MIN_TOTAL_SIZE 1
3998 #define HMA_MAX_TOTAL_SIZE \
3999 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
4000 HMA_MAX_NO_FW_ADDRESS) >> 20)
4001
adap_free_hma_mem(struct adapter * adapter)4002 static void adap_free_hma_mem(struct adapter *adapter)
4003 {
4004 struct scatterlist *iter;
4005 struct page *page;
4006 int i;
4007
4008 if (!adapter->hma.sgt)
4009 return;
4010
4011 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4012 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4013 adapter->hma.sgt->nents, DMA_BIDIRECTIONAL);
4014 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4015 }
4016
4017 for_each_sg(adapter->hma.sgt->sgl, iter,
4018 adapter->hma.sgt->orig_nents, i) {
4019 page = sg_page(iter);
4020 if (page)
4021 __free_pages(page, HMA_PAGE_ORDER);
4022 }
4023
4024 kfree(adapter->hma.phy_addr);
4025 sg_free_table(adapter->hma.sgt);
4026 kfree(adapter->hma.sgt);
4027 adapter->hma.sgt = NULL;
4028 }
4029
adap_config_hma(struct adapter * adapter)4030 static int adap_config_hma(struct adapter *adapter)
4031 {
4032 struct scatterlist *sgl, *iter;
4033 struct sg_table *sgt;
4034 struct page *newpage;
4035 unsigned int i, j, k;
4036 u32 param, hma_size;
4037 unsigned int ncmds;
4038 size_t page_size;
4039 u32 page_order;
4040 int node, ret;
4041
4042 /* HMA is supported only for T6+ cards.
4043 * Avoid initializing HMA in kdump kernels.
4044 */
4045 if (is_kdump_kernel() ||
4046 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4047 return 0;
4048
4049 /* Get the HMA region size required by fw */
4050 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4051 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4052 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4053 1, ¶m, &hma_size);
4054 /* An error means card has its own memory or HMA is not supported by
4055 * the firmware. Return without any errors.
4056 */
4057 if (ret || !hma_size)
4058 return 0;
4059
4060 if (hma_size < HMA_MIN_TOTAL_SIZE ||
4061 hma_size > HMA_MAX_TOTAL_SIZE) {
4062 dev_err(adapter->pdev_dev,
4063 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
4064 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4065 return -EINVAL;
4066 }
4067
4068 page_size = HMA_PAGE_SIZE;
4069 page_order = HMA_PAGE_ORDER;
4070 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4071 if (unlikely(!adapter->hma.sgt)) {
4072 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4073 return -ENOMEM;
4074 }
4075 sgt = adapter->hma.sgt;
4076 /* FW returned value will be in MB's
4077 */
4078 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4079 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4080 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4081 kfree(adapter->hma.sgt);
4082 adapter->hma.sgt = NULL;
4083 return -ENOMEM;
4084 }
4085
4086 sgl = adapter->hma.sgt->sgl;
4087 node = dev_to_node(adapter->pdev_dev);
4088 for_each_sg(sgl, iter, sgt->orig_nents, i) {
4089 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4090 __GFP_ZERO, page_order);
4091 if (!newpage) {
4092 dev_err(adapter->pdev_dev,
4093 "Not enough memory for HMA page allocation\n");
4094 ret = -ENOMEM;
4095 goto free_hma;
4096 }
4097 sg_set_page(iter, newpage, page_size << page_order, 0);
4098 }
4099
4100 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4101 DMA_BIDIRECTIONAL);
4102 if (!sgt->nents) {
4103 dev_err(adapter->pdev_dev,
4104 "Not enough memory for HMA DMA mapping");
4105 ret = -ENOMEM;
4106 goto free_hma;
4107 }
4108 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4109
4110 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4111 GFP_KERNEL);
4112 if (unlikely(!adapter->hma.phy_addr))
4113 goto free_hma;
4114
4115 for_each_sg(sgl, iter, sgt->nents, i) {
4116 newpage = sg_page(iter);
4117 adapter->hma.phy_addr[i] = sg_dma_address(iter);
4118 }
4119
4120 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4121 /* Pass on the addresses to firmware */
4122 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4123 struct fw_hma_cmd hma_cmd;
4124 u8 naddr = HMA_MAX_ADDR_IN_CMD;
4125 u8 soc = 0, eoc = 0;
4126 u8 hma_mode = 1; /* Presently we support only Page table mode */
4127
4128 soc = (i == 0) ? 1 : 0;
4129 eoc = (i == ncmds - 1) ? 1 : 0;
4130
4131 /* For last cmd, set naddr corresponding to remaining
4132 * addresses
4133 */
4134 if (i == ncmds - 1) {
4135 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4136 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4137 }
4138 memset(&hma_cmd, 0, sizeof(hma_cmd));
4139 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4140 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4141 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4142
4143 hma_cmd.mode_to_pcie_params =
4144 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4145 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4146
4147 /* HMA cmd size specified in MB's */
4148 hma_cmd.naddr_size =
4149 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4150 FW_HMA_CMD_NADDR_V(naddr));
4151
4152 /* Total Page size specified in units of 4K */
4153 hma_cmd.addr_size_pkd =
4154 htonl(FW_HMA_CMD_ADDR_SIZE_V
4155 ((page_size << page_order) >> 12));
4156
4157 /* Fill the 5 addresses */
4158 for (j = 0; j < naddr; j++) {
4159 hma_cmd.phy_address[j] =
4160 cpu_to_be64(adapter->hma.phy_addr[j + k]);
4161 }
4162 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4163 sizeof(hma_cmd), &hma_cmd);
4164 if (ret) {
4165 dev_err(adapter->pdev_dev,
4166 "HMA FW command failed with err %d\n", ret);
4167 goto free_hma;
4168 }
4169 }
4170
4171 if (!ret)
4172 dev_info(adapter->pdev_dev,
4173 "Reserved %uMB host memory for HMA\n", hma_size);
4174 return ret;
4175
4176 free_hma:
4177 adap_free_hma_mem(adapter);
4178 return ret;
4179 }
4180
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)4181 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4182 {
4183 u32 v;
4184 int ret;
4185
4186 /* Now that we've successfully configured and initialized the adapter
4187 * can ask the Firmware what resources it has provisioned for us.
4188 */
4189 ret = t4_get_pfres(adap);
4190 if (ret) {
4191 dev_err(adap->pdev_dev,
4192 "Unable to retrieve resource provisioning information\n");
4193 return ret;
4194 }
4195
4196 /* get device capabilities */
4197 memset(c, 0, sizeof(*c));
4198 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4199 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4200 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4201 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4202 if (ret < 0)
4203 return ret;
4204
4205 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4206 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4207 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4208 if (ret < 0)
4209 return ret;
4210
4211 ret = t4_config_glbl_rss(adap, adap->pf,
4212 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4213 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4214 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4215 if (ret < 0)
4216 return ret;
4217
4218 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4219 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4220 FW_CMD_CAP_PF);
4221 if (ret < 0)
4222 return ret;
4223
4224 t4_sge_init(adap);
4225
4226 /* tweak some settings */
4227 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4228 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4229 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4230 v = t4_read_reg(adap, TP_PIO_DATA_A);
4231 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4232
4233 /* first 4 Tx modulation queues point to consecutive Tx channels */
4234 adap->params.tp.tx_modq_map = 0xE4;
4235 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4236 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4237
4238 /* associate each Tx modulation queue with consecutive Tx channels */
4239 v = 0x84218421;
4240 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4241 &v, 1, TP_TX_SCHED_HDR_A);
4242 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4243 &v, 1, TP_TX_SCHED_FIFO_A);
4244 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4245 &v, 1, TP_TX_SCHED_PCMD_A);
4246
4247 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4248 if (is_offload(adap)) {
4249 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4250 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4251 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4252 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4253 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4254 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4255 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4256 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4257 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4258 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4259 }
4260
4261 /* get basic stuff going */
4262 return t4_early_init(adap, adap->pf);
4263 }
4264
4265 /*
4266 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4267 */
4268 #define MAX_ATIDS 8192U
4269
4270 /*
4271 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4272 *
4273 * If the firmware we're dealing with has Configuration File support, then
4274 * we use that to perform all configuration
4275 */
4276
4277 /*
4278 * Tweak configuration based on module parameters, etc. Most of these have
4279 * defaults assigned to them by Firmware Configuration Files (if we're using
4280 * them) but need to be explicitly set if we're using hard-coded
4281 * initialization. But even in the case of using Firmware Configuration
4282 * Files, we'd like to expose the ability to change these via module
4283 * parameters so these are essentially common tweaks/settings for
4284 * Configuration Files and hard-coded initialization ...
4285 */
adap_init0_tweaks(struct adapter * adapter)4286 static int adap_init0_tweaks(struct adapter *adapter)
4287 {
4288 /*
4289 * Fix up various Host-Dependent Parameters like Page Size, Cache
4290 * Line Size, etc. The firmware default is for a 4KB Page Size and
4291 * 64B Cache Line Size ...
4292 */
4293 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4294
4295 /*
4296 * Process module parameters which affect early initialization.
4297 */
4298 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4299 dev_err(&adapter->pdev->dev,
4300 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4301 rx_dma_offset);
4302 rx_dma_offset = 2;
4303 }
4304 t4_set_reg_field(adapter, SGE_CONTROL_A,
4305 PKTSHIFT_V(PKTSHIFT_M),
4306 PKTSHIFT_V(rx_dma_offset));
4307
4308 /*
4309 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4310 * adds the pseudo header itself.
4311 */
4312 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4313 CSUM_HAS_PSEUDO_HDR_F, 0);
4314
4315 return 0;
4316 }
4317
4318 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4319 * unto themselves and they contain their own firmware to perform their
4320 * tasks ...
4321 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)4322 static int phy_aq1202_version(const u8 *phy_fw_data,
4323 size_t phy_fw_size)
4324 {
4325 int offset;
4326
4327 /* At offset 0x8 you're looking for the primary image's
4328 * starting offset which is 3 Bytes wide
4329 *
4330 * At offset 0xa of the primary image, you look for the offset
4331 * of the DRAM segment which is 3 Bytes wide.
4332 *
4333 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4334 * wide
4335 */
4336 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4337 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4338 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4339
4340 offset = le24(phy_fw_data + 0x8) << 12;
4341 offset = le24(phy_fw_data + offset + 0xa);
4342 return be16(phy_fw_data + offset + 0x27e);
4343
4344 #undef be16
4345 #undef le16
4346 #undef le24
4347 }
4348
4349 static struct info_10gbt_phy_fw {
4350 unsigned int phy_fw_id; /* PCI Device ID */
4351 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
4352 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4353 int phy_flash; /* Has FLASH for PHY Firmware */
4354 } phy_info_array[] = {
4355 {
4356 PHY_AQ1202_DEVICEID,
4357 PHY_AQ1202_FIRMWARE,
4358 phy_aq1202_version,
4359 1,
4360 },
4361 {
4362 PHY_BCM84834_DEVICEID,
4363 PHY_BCM84834_FIRMWARE,
4364 NULL,
4365 0,
4366 },
4367 { 0, NULL, NULL },
4368 };
4369
find_phy_info(int devid)4370 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4371 {
4372 int i;
4373
4374 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4375 if (phy_info_array[i].phy_fw_id == devid)
4376 return &phy_info_array[i];
4377 }
4378 return NULL;
4379 }
4380
4381 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
4382 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
4383 * we return a negative error number. If we transfer new firmware we return 1
4384 * (from t4_load_phy_fw()). If we don't do anything we return 0.
4385 */
adap_init0_phy(struct adapter * adap)4386 static int adap_init0_phy(struct adapter *adap)
4387 {
4388 const struct firmware *phyf;
4389 int ret;
4390 struct info_10gbt_phy_fw *phy_info;
4391
4392 /* Use the device ID to determine which PHY file to flash.
4393 */
4394 phy_info = find_phy_info(adap->pdev->device);
4395 if (!phy_info) {
4396 dev_warn(adap->pdev_dev,
4397 "No PHY Firmware file found for this PHY\n");
4398 return -EOPNOTSUPP;
4399 }
4400
4401 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4402 * use that. The adapter firmware provides us with a memory buffer
4403 * where we can load a PHY firmware file from the host if we want to
4404 * override the PHY firmware File in flash.
4405 */
4406 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4407 adap->pdev_dev);
4408 if (ret < 0) {
4409 /* For adapters without FLASH attached to PHY for their
4410 * firmware, it's obviously a fatal error if we can't get the
4411 * firmware to the adapter. For adapters with PHY firmware
4412 * FLASH storage, it's worth a warning if we can't find the
4413 * PHY Firmware but we'll neuter the error ...
4414 */
4415 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4416 "/lib/firmware/%s, error %d\n",
4417 phy_info->phy_fw_file, -ret);
4418 if (phy_info->phy_flash) {
4419 int cur_phy_fw_ver = 0;
4420
4421 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4422 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4423 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4424 ret = 0;
4425 }
4426
4427 return ret;
4428 }
4429
4430 /* Load PHY Firmware onto adapter.
4431 */
4432 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4433 (u8 *)phyf->data, phyf->size);
4434 if (ret < 0)
4435 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4436 -ret);
4437 else if (ret > 0) {
4438 int new_phy_fw_ver = 0;
4439
4440 if (phy_info->phy_fw_version)
4441 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4442 phyf->size);
4443 dev_info(adap->pdev_dev, "Successfully transferred PHY "
4444 "Firmware /lib/firmware/%s, version %#x\n",
4445 phy_info->phy_fw_file, new_phy_fw_ver);
4446 }
4447
4448 release_firmware(phyf);
4449
4450 return ret;
4451 }
4452
4453 /*
4454 * Attempt to initialize the adapter via a Firmware Configuration File.
4455 */
adap_init0_config(struct adapter * adapter,int reset)4456 static int adap_init0_config(struct adapter *adapter, int reset)
4457 {
4458 char *fw_config_file, fw_config_file_path[256];
4459 u32 finiver, finicsum, cfcsum, param, val;
4460 struct fw_caps_config_cmd caps_cmd;
4461 unsigned long mtype = 0, maddr = 0;
4462 const struct firmware *cf;
4463 char *config_name = NULL;
4464 int config_issued = 0;
4465 int ret;
4466
4467 /*
4468 * Reset device if necessary.
4469 */
4470 if (reset) {
4471 ret = t4_fw_reset(adapter, adapter->mbox,
4472 PIORSTMODE_F | PIORST_F);
4473 if (ret < 0)
4474 goto bye;
4475 }
4476
4477 /* If this is a 10Gb/s-BT adapter make sure the chip-external
4478 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
4479 * to be performed after any global adapter RESET above since some
4480 * PHYs only have local RAM copies of the PHY firmware.
4481 */
4482 if (is_10gbt_device(adapter->pdev->device)) {
4483 ret = adap_init0_phy(adapter);
4484 if (ret < 0)
4485 goto bye;
4486 }
4487 /*
4488 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4489 * then use that. Otherwise, use the configuration file stored
4490 * in the adapter flash ...
4491 */
4492 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4493 case CHELSIO_T4:
4494 fw_config_file = FW4_CFNAME;
4495 break;
4496 case CHELSIO_T5:
4497 fw_config_file = FW5_CFNAME;
4498 break;
4499 case CHELSIO_T6:
4500 fw_config_file = FW6_CFNAME;
4501 break;
4502 default:
4503 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4504 adapter->pdev->device);
4505 ret = -EINVAL;
4506 goto bye;
4507 }
4508
4509 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4510 if (ret < 0) {
4511 config_name = "On FLASH";
4512 mtype = FW_MEMTYPE_CF_FLASH;
4513 maddr = t4_flash_cfg_addr(adapter);
4514 } else {
4515 u32 params[7], val[7];
4516
4517 sprintf(fw_config_file_path,
4518 "/lib/firmware/%s", fw_config_file);
4519 config_name = fw_config_file_path;
4520
4521 if (cf->size >= FLASH_CFG_MAX_SIZE)
4522 ret = -ENOMEM;
4523 else {
4524 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4525 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4526 ret = t4_query_params(adapter, adapter->mbox,
4527 adapter->pf, 0, 1, params, val);
4528 if (ret == 0) {
4529 /*
4530 * For t4_memory_rw() below addresses and
4531 * sizes have to be in terms of multiples of 4
4532 * bytes. So, if the Configuration File isn't
4533 * a multiple of 4 bytes in length we'll have
4534 * to write that out separately since we can't
4535 * guarantee that the bytes following the
4536 * residual byte in the buffer returned by
4537 * request_firmware() are zeroed out ...
4538 */
4539 size_t resid = cf->size & 0x3;
4540 size_t size = cf->size & ~0x3;
4541 __be32 *data = (__be32 *)cf->data;
4542
4543 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4544 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4545
4546 spin_lock(&adapter->win0_lock);
4547 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4548 size, data, T4_MEMORY_WRITE);
4549 if (ret == 0 && resid != 0) {
4550 union {
4551 __be32 word;
4552 char buf[4];
4553 } last;
4554 int i;
4555
4556 last.word = data[size >> 2];
4557 for (i = resid; i < 4; i++)
4558 last.buf[i] = 0;
4559 ret = t4_memory_rw(adapter, 0, mtype,
4560 maddr + size,
4561 4, &last.word,
4562 T4_MEMORY_WRITE);
4563 }
4564 spin_unlock(&adapter->win0_lock);
4565 }
4566 }
4567
4568 release_firmware(cf);
4569 if (ret)
4570 goto bye;
4571 }
4572
4573 val = 0;
4574
4575 /* Ofld + Hash filter is supported. Older fw will fail this request and
4576 * it is fine.
4577 */
4578 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4579 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4580 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4581 1, ¶m, &val);
4582
4583 /* FW doesn't know about Hash filter + ofld support,
4584 * it's not a problem, don't return an error.
4585 */
4586 if (ret < 0) {
4587 dev_warn(adapter->pdev_dev,
4588 "Hash filter with ofld is not supported by FW\n");
4589 }
4590
4591 /*
4592 * Issue a Capability Configuration command to the firmware to get it
4593 * to parse the Configuration File. We don't use t4_fw_config_file()
4594 * because we want the ability to modify various features after we've
4595 * processed the configuration file ...
4596 */
4597 memset(&caps_cmd, 0, sizeof(caps_cmd));
4598 caps_cmd.op_to_write =
4599 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4600 FW_CMD_REQUEST_F |
4601 FW_CMD_READ_F);
4602 caps_cmd.cfvalid_to_len16 =
4603 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4604 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4605 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4606 FW_LEN16(caps_cmd));
4607 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4608 &caps_cmd);
4609
4610 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4611 * Configuration File in FLASH), our last gasp effort is to use the
4612 * Firmware Configuration File which is embedded in the firmware. A
4613 * very few early versions of the firmware didn't have one embedded
4614 * but we can ignore those.
4615 */
4616 if (ret == -ENOENT) {
4617 memset(&caps_cmd, 0, sizeof(caps_cmd));
4618 caps_cmd.op_to_write =
4619 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4620 FW_CMD_REQUEST_F |
4621 FW_CMD_READ_F);
4622 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4623 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4624 sizeof(caps_cmd), &caps_cmd);
4625 config_name = "Firmware Default";
4626 }
4627
4628 config_issued = 1;
4629 if (ret < 0)
4630 goto bye;
4631
4632 finiver = ntohl(caps_cmd.finiver);
4633 finicsum = ntohl(caps_cmd.finicsum);
4634 cfcsum = ntohl(caps_cmd.cfcsum);
4635 if (finicsum != cfcsum)
4636 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4637 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4638 finicsum, cfcsum);
4639
4640 /*
4641 * And now tell the firmware to use the configuration we just loaded.
4642 */
4643 caps_cmd.op_to_write =
4644 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4645 FW_CMD_REQUEST_F |
4646 FW_CMD_WRITE_F);
4647 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4648 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4649 NULL);
4650 if (ret < 0)
4651 goto bye;
4652
4653 /*
4654 * Tweak configuration based on system architecture, module
4655 * parameters, etc.
4656 */
4657 ret = adap_init0_tweaks(adapter);
4658 if (ret < 0)
4659 goto bye;
4660
4661 /* We will proceed even if HMA init fails. */
4662 ret = adap_config_hma(adapter);
4663 if (ret)
4664 dev_err(adapter->pdev_dev,
4665 "HMA configuration failed with error %d\n", ret);
4666
4667 if (is_t6(adapter->params.chip)) {
4668 adap_config_hpfilter(adapter);
4669 ret = setup_ppod_edram(adapter);
4670 if (!ret)
4671 dev_info(adapter->pdev_dev, "Successfully enabled "
4672 "ppod edram feature\n");
4673 }
4674
4675 /*
4676 * And finally tell the firmware to initialize itself using the
4677 * parameters from the Configuration File.
4678 */
4679 ret = t4_fw_initialize(adapter, adapter->mbox);
4680 if (ret < 0)
4681 goto bye;
4682
4683 /* Emit Firmware Configuration File information and return
4684 * successfully.
4685 */
4686 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4687 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4688 config_name, finiver, cfcsum);
4689 return 0;
4690
4691 /*
4692 * Something bad happened. Return the error ... (If the "error"
4693 * is that there's no Configuration File on the adapter we don't
4694 * want to issue a warning since this is fairly common.)
4695 */
4696 bye:
4697 if (config_issued && ret != -ENOENT)
4698 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4699 config_name, -ret);
4700 return ret;
4701 }
4702
4703 static struct fw_info fw_info_array[] = {
4704 {
4705 .chip = CHELSIO_T4,
4706 .fs_name = FW4_CFNAME,
4707 .fw_mod_name = FW4_FNAME,
4708 .fw_hdr = {
4709 .chip = FW_HDR_CHIP_T4,
4710 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4711 .intfver_nic = FW_INTFVER(T4, NIC),
4712 .intfver_vnic = FW_INTFVER(T4, VNIC),
4713 .intfver_ri = FW_INTFVER(T4, RI),
4714 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4715 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4716 },
4717 }, {
4718 .chip = CHELSIO_T5,
4719 .fs_name = FW5_CFNAME,
4720 .fw_mod_name = FW5_FNAME,
4721 .fw_hdr = {
4722 .chip = FW_HDR_CHIP_T5,
4723 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4724 .intfver_nic = FW_INTFVER(T5, NIC),
4725 .intfver_vnic = FW_INTFVER(T5, VNIC),
4726 .intfver_ri = FW_INTFVER(T5, RI),
4727 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4728 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4729 },
4730 }, {
4731 .chip = CHELSIO_T6,
4732 .fs_name = FW6_CFNAME,
4733 .fw_mod_name = FW6_FNAME,
4734 .fw_hdr = {
4735 .chip = FW_HDR_CHIP_T6,
4736 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4737 .intfver_nic = FW_INTFVER(T6, NIC),
4738 .intfver_vnic = FW_INTFVER(T6, VNIC),
4739 .intfver_ofld = FW_INTFVER(T6, OFLD),
4740 .intfver_ri = FW_INTFVER(T6, RI),
4741 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4742 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4743 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4744 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4745 },
4746 }
4747
4748 };
4749
find_fw_info(int chip)4750 static struct fw_info *find_fw_info(int chip)
4751 {
4752 int i;
4753
4754 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4755 if (fw_info_array[i].chip == chip)
4756 return &fw_info_array[i];
4757 }
4758 return NULL;
4759 }
4760
4761 /*
4762 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4763 */
adap_init0(struct adapter * adap,int vpd_skip)4764 static int adap_init0(struct adapter *adap, int vpd_skip)
4765 {
4766 struct fw_caps_config_cmd caps_cmd;
4767 u32 params[7], val[7];
4768 enum dev_state state;
4769 u32 v, port_vec;
4770 int reset = 1;
4771 int ret;
4772
4773 /* Grab Firmware Device Log parameters as early as possible so we have
4774 * access to it for debugging, etc.
4775 */
4776 ret = t4_init_devlog_params(adap);
4777 if (ret < 0)
4778 return ret;
4779
4780 /* Contact FW, advertising Master capability */
4781 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4782 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4783 if (ret < 0) {
4784 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4785 ret);
4786 return ret;
4787 }
4788 if (ret == adap->mbox)
4789 adap->flags |= CXGB4_MASTER_PF;
4790
4791 /*
4792 * If we're the Master PF Driver and the device is uninitialized,
4793 * then let's consider upgrading the firmware ... (We always want
4794 * to check the firmware version number in order to A. get it for
4795 * later reporting and B. to warn if the currently loaded firmware
4796 * is excessively mismatched relative to the driver.)
4797 */
4798
4799 t4_get_version_info(adap);
4800 ret = t4_check_fw_version(adap);
4801 /* If firmware is too old (not supported by driver) force an update. */
4802 if (ret)
4803 state = DEV_STATE_UNINIT;
4804 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4805 struct fw_info *fw_info;
4806 struct fw_hdr *card_fw;
4807 const struct firmware *fw;
4808 const u8 *fw_data = NULL;
4809 unsigned int fw_size = 0;
4810
4811 /* This is the firmware whose headers the driver was compiled
4812 * against
4813 */
4814 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4815 if (fw_info == NULL) {
4816 dev_err(adap->pdev_dev,
4817 "unable to get firmware info for chip %d.\n",
4818 CHELSIO_CHIP_VERSION(adap->params.chip));
4819 return -EINVAL;
4820 }
4821
4822 /* allocate memory to read the header of the firmware on the
4823 * card
4824 */
4825 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4826 if (!card_fw) {
4827 ret = -ENOMEM;
4828 goto bye;
4829 }
4830
4831 /* Get FW from from /lib/firmware/ */
4832 ret = request_firmware(&fw, fw_info->fw_mod_name,
4833 adap->pdev_dev);
4834 if (ret < 0) {
4835 dev_err(adap->pdev_dev,
4836 "unable to load firmware image %s, error %d\n",
4837 fw_info->fw_mod_name, ret);
4838 } else {
4839 fw_data = fw->data;
4840 fw_size = fw->size;
4841 }
4842
4843 /* upgrade FW logic */
4844 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4845 state, &reset);
4846
4847 /* Cleaning up */
4848 release_firmware(fw);
4849 kvfree(card_fw);
4850
4851 if (ret < 0)
4852 goto bye;
4853 }
4854
4855 /* If the firmware is initialized already, emit a simply note to that
4856 * effect. Otherwise, it's time to try initializing the adapter.
4857 */
4858 if (state == DEV_STATE_INIT) {
4859 ret = adap_config_hma(adap);
4860 if (ret)
4861 dev_err(adap->pdev_dev,
4862 "HMA configuration failed with error %d\n",
4863 ret);
4864 dev_info(adap->pdev_dev, "Coming up as %s: "\
4865 "Adapter already initialized\n",
4866 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4867 } else {
4868 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4869 "Initializing adapter\n");
4870
4871 /* Find out whether we're dealing with a version of the
4872 * firmware which has configuration file support.
4873 */
4874 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4875 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4876 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4877 params, val);
4878
4879 /* If the firmware doesn't support Configuration Files,
4880 * return an error.
4881 */
4882 if (ret < 0) {
4883 dev_err(adap->pdev_dev, "firmware doesn't support "
4884 "Firmware Configuration Files\n");
4885 goto bye;
4886 }
4887
4888 /* The firmware provides us with a memory buffer where we can
4889 * load a Configuration File from the host if we want to
4890 * override the Configuration File in flash.
4891 */
4892 ret = adap_init0_config(adap, reset);
4893 if (ret == -ENOENT) {
4894 dev_err(adap->pdev_dev, "no Configuration File "
4895 "present on adapter.\n");
4896 goto bye;
4897 }
4898 if (ret < 0) {
4899 dev_err(adap->pdev_dev, "could not initialize "
4900 "adapter, error %d\n", -ret);
4901 goto bye;
4902 }
4903 }
4904
4905 /* Now that we've successfully configured and initialized the adapter
4906 * (or found it already initialized), we can ask the Firmware what
4907 * resources it has provisioned for us.
4908 */
4909 ret = t4_get_pfres(adap);
4910 if (ret) {
4911 dev_err(adap->pdev_dev,
4912 "Unable to retrieve resource provisioning information\n");
4913 goto bye;
4914 }
4915
4916 /* Grab VPD parameters. This should be done after we establish a
4917 * connection to the firmware since some of the VPD parameters
4918 * (notably the Core Clock frequency) are retrieved via requests to
4919 * the firmware. On the other hand, we need these fairly early on
4920 * so we do this right after getting ahold of the firmware.
4921 *
4922 * We need to do this after initializing the adapter because someone
4923 * could have FLASHed a new VPD which won't be read by the firmware
4924 * until we do the RESET ...
4925 */
4926 if (!vpd_skip) {
4927 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4928 if (ret < 0)
4929 goto bye;
4930 }
4931
4932 /* Find out what ports are available to us. Note that we need to do
4933 * this before calling adap_init0_no_config() since it needs nports
4934 * and portvec ...
4935 */
4936 v =
4937 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4938 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4939 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4940 if (ret < 0)
4941 goto bye;
4942
4943 adap->params.nports = hweight32(port_vec);
4944 adap->params.portvec = port_vec;
4945
4946 /* Give the SGE code a chance to pull in anything that it needs ...
4947 * Note that this must be called after we retrieve our VPD parameters
4948 * in order to know how to convert core ticks to seconds, etc.
4949 */
4950 ret = t4_sge_init(adap);
4951 if (ret < 0)
4952 goto bye;
4953
4954 /* Grab the SGE Doorbell Queue Timer values. If successful, that
4955 * indicates that the Firmware and Hardware support this.
4956 */
4957 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4958 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4959 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4960 1, params, val);
4961
4962 if (!ret) {
4963 adap->sge.dbqtimer_tick = val[0];
4964 ret = t4_read_sge_dbqtimers(adap,
4965 ARRAY_SIZE(adap->sge.dbqtimer_val),
4966 adap->sge.dbqtimer_val);
4967 }
4968
4969 if (!ret)
4970 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4971
4972 if (is_bypass_device(adap->pdev->device))
4973 adap->params.bypass = 1;
4974
4975 /*
4976 * Grab some of our basic fundamental operating parameters.
4977 */
4978 params[0] = FW_PARAM_PFVF(EQ_START);
4979 params[1] = FW_PARAM_PFVF(L2T_START);
4980 params[2] = FW_PARAM_PFVF(L2T_END);
4981 params[3] = FW_PARAM_PFVF(FILTER_START);
4982 params[4] = FW_PARAM_PFVF(FILTER_END);
4983 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4984 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4985 if (ret < 0)
4986 goto bye;
4987 adap->sge.egr_start = val[0];
4988 adap->l2t_start = val[1];
4989 adap->l2t_end = val[2];
4990 adap->tids.ftid_base = val[3];
4991 adap->tids.nftids = val[4] - val[3] + 1;
4992 adap->sge.ingr_start = val[5];
4993
4994 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4995 params[0] = FW_PARAM_PFVF(HPFILTER_START);
4996 params[1] = FW_PARAM_PFVF(HPFILTER_END);
4997 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4998 params, val);
4999 if (ret < 0)
5000 goto bye;
5001
5002 adap->tids.hpftid_base = val[0];
5003 adap->tids.nhpftids = val[1] - val[0] + 1;
5004
5005 /* Read the raw mps entries. In T6, the last 2 tcam entries
5006 * are reserved for raw mac addresses (rawf = 2, one per port).
5007 */
5008 params[0] = FW_PARAM_PFVF(RAWF_START);
5009 params[1] = FW_PARAM_PFVF(RAWF_END);
5010 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5011 params, val);
5012 if (ret == 0) {
5013 adap->rawf_start = val[0];
5014 adap->rawf_cnt = val[1] - val[0] + 1;
5015 }
5016
5017 adap->tids.tid_base =
5018 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5019 }
5020
5021 /* qids (ingress/egress) returned from firmware can be anywhere
5022 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5023 * Hence driver needs to allocate memory for this range to
5024 * store the queue info. Get the highest IQFLINT/EQ index returned
5025 * in FW_EQ_*_CMD.alloc command.
5026 */
5027 params[0] = FW_PARAM_PFVF(EQ_END);
5028 params[1] = FW_PARAM_PFVF(IQFLINT_END);
5029 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5030 if (ret < 0)
5031 goto bye;
5032 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5033 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5034
5035 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5036 sizeof(*adap->sge.egr_map), GFP_KERNEL);
5037 if (!adap->sge.egr_map) {
5038 ret = -ENOMEM;
5039 goto bye;
5040 }
5041
5042 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5043 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5044 if (!adap->sge.ingr_map) {
5045 ret = -ENOMEM;
5046 goto bye;
5047 }
5048
5049 /* Allocate the memory for the vaious egress queue bitmaps
5050 * ie starving_fl, txq_maperr and blocked_fl.
5051 */
5052 adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5053 if (!adap->sge.starving_fl) {
5054 ret = -ENOMEM;
5055 goto bye;
5056 }
5057
5058 adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5059 if (!adap->sge.txq_maperr) {
5060 ret = -ENOMEM;
5061 goto bye;
5062 }
5063
5064 #ifdef CONFIG_DEBUG_FS
5065 adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5066 if (!adap->sge.blocked_fl) {
5067 ret = -ENOMEM;
5068 goto bye;
5069 }
5070 #endif
5071
5072 params[0] = FW_PARAM_PFVF(CLIP_START);
5073 params[1] = FW_PARAM_PFVF(CLIP_END);
5074 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5075 if (ret < 0)
5076 goto bye;
5077 adap->clipt_start = val[0];
5078 adap->clipt_end = val[1];
5079
5080 /* Get the supported number of traffic classes */
5081 params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5082 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5083 if (ret < 0) {
5084 /* We couldn't retrieve the number of Traffic Classes
5085 * supported by the hardware/firmware. So we hard
5086 * code it here.
5087 */
5088 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5089 } else {
5090 adap->params.nsched_cls = val[0];
5091 }
5092
5093 /* query params related to active filter region */
5094 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5095 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5096 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5097 /* If Active filter size is set we enable establishing
5098 * offload connection through firmware work request
5099 */
5100 if ((val[0] != val[1]) && (ret >= 0)) {
5101 adap->flags |= CXGB4_FW_OFLD_CONN;
5102 adap->tids.aftid_base = val[0];
5103 adap->tids.aftid_end = val[1];
5104 }
5105
5106 /* If we're running on newer firmware, let it know that we're
5107 * prepared to deal with encapsulated CPL messages. Older
5108 * firmware won't understand this and we'll just get
5109 * unencapsulated messages ...
5110 */
5111 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5112 val[0] = 1;
5113 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5114
5115 /*
5116 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5117 * capability. Earlier versions of the firmware didn't have the
5118 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5119 * permission to use ULPTX MEMWRITE DSGL.
5120 */
5121 if (is_t4(adap->params.chip)) {
5122 adap->params.ulptx_memwrite_dsgl = false;
5123 } else {
5124 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5125 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5126 1, params, val);
5127 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5128 }
5129
5130 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5131 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5132 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5133 1, params, val);
5134 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5135
5136 /* See if FW supports FW_FILTER2 work request */
5137 if (is_t4(adap->params.chip)) {
5138 adap->params.filter2_wr_support = false;
5139 } else {
5140 params[0] = FW_PARAM_DEV(FILTER2_WR);
5141 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5142 1, params, val);
5143 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5144 }
5145
5146 /* Check if FW supports returning vin and smt index.
5147 * If this is not supported, driver will interpret
5148 * these values from viid.
5149 */
5150 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5151 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5152 1, params, val);
5153 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5154
5155 /*
5156 * Get device capabilities so we can determine what resources we need
5157 * to manage.
5158 */
5159 memset(&caps_cmd, 0, sizeof(caps_cmd));
5160 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5161 FW_CMD_REQUEST_F | FW_CMD_READ_F);
5162 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5163 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5164 &caps_cmd);
5165 if (ret < 0)
5166 goto bye;
5167
5168 /* hash filter has some mandatory register settings to be tested and for
5169 * that it needs to test whether offload is enabled or not, hence
5170 * checking and setting it here.
5171 */
5172 if (caps_cmd.ofldcaps)
5173 adap->params.offload = 1;
5174
5175 if (caps_cmd.ofldcaps ||
5176 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5177 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5178 /* query offload-related parameters */
5179 params[0] = FW_PARAM_DEV(NTID);
5180 params[1] = FW_PARAM_PFVF(SERVER_START);
5181 params[2] = FW_PARAM_PFVF(SERVER_END);
5182 params[3] = FW_PARAM_PFVF(TDDP_START);
5183 params[4] = FW_PARAM_PFVF(TDDP_END);
5184 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5185 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5186 params, val);
5187 if (ret < 0)
5188 goto bye;
5189 adap->tids.ntids = val[0];
5190 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5191 adap->tids.stid_base = val[1];
5192 adap->tids.nstids = val[2] - val[1] + 1;
5193 /*
5194 * Setup server filter region. Divide the available filter
5195 * region into two parts. Regular filters get 1/3rd and server
5196 * filters get 2/3rd part. This is only enabled if workarond
5197 * path is enabled.
5198 * 1. For regular filters.
5199 * 2. Server filter: This are special filters which are used
5200 * to redirect SYN packets to offload queue.
5201 */
5202 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5203 adap->tids.sftid_base = adap->tids.ftid_base +
5204 DIV_ROUND_UP(adap->tids.nftids, 3);
5205 adap->tids.nsftids = adap->tids.nftids -
5206 DIV_ROUND_UP(adap->tids.nftids, 3);
5207 adap->tids.nftids = adap->tids.sftid_base -
5208 adap->tids.ftid_base;
5209 }
5210 adap->vres.ddp.start = val[3];
5211 adap->vres.ddp.size = val[4] - val[3] + 1;
5212 adap->params.ofldq_wr_cred = val[5];
5213
5214 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5215 init_hash_filter(adap);
5216 } else {
5217 adap->num_ofld_uld += 1;
5218 }
5219
5220 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5221 params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5222 params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5223 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5224 params, val);
5225 if (!ret) {
5226 adap->tids.eotid_base = val[0];
5227 adap->tids.neotids = min_t(u32, MAX_ATIDS,
5228 val[1] - val[0] + 1);
5229 adap->params.ethofld = 1;
5230 }
5231 }
5232 }
5233 if (caps_cmd.rdmacaps) {
5234 params[0] = FW_PARAM_PFVF(STAG_START);
5235 params[1] = FW_PARAM_PFVF(STAG_END);
5236 params[2] = FW_PARAM_PFVF(RQ_START);
5237 params[3] = FW_PARAM_PFVF(RQ_END);
5238 params[4] = FW_PARAM_PFVF(PBL_START);
5239 params[5] = FW_PARAM_PFVF(PBL_END);
5240 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5241 params, val);
5242 if (ret < 0)
5243 goto bye;
5244 adap->vres.stag.start = val[0];
5245 adap->vres.stag.size = val[1] - val[0] + 1;
5246 adap->vres.rq.start = val[2];
5247 adap->vres.rq.size = val[3] - val[2] + 1;
5248 adap->vres.pbl.start = val[4];
5249 adap->vres.pbl.size = val[5] - val[4] + 1;
5250
5251 params[0] = FW_PARAM_PFVF(SRQ_START);
5252 params[1] = FW_PARAM_PFVF(SRQ_END);
5253 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5254 params, val);
5255 if (!ret) {
5256 adap->vres.srq.start = val[0];
5257 adap->vres.srq.size = val[1] - val[0] + 1;
5258 }
5259 if (adap->vres.srq.size) {
5260 adap->srq = t4_init_srq(adap->vres.srq.size);
5261 if (!adap->srq)
5262 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5263 }
5264
5265 params[0] = FW_PARAM_PFVF(SQRQ_START);
5266 params[1] = FW_PARAM_PFVF(SQRQ_END);
5267 params[2] = FW_PARAM_PFVF(CQ_START);
5268 params[3] = FW_PARAM_PFVF(CQ_END);
5269 params[4] = FW_PARAM_PFVF(OCQ_START);
5270 params[5] = FW_PARAM_PFVF(OCQ_END);
5271 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5272 val);
5273 if (ret < 0)
5274 goto bye;
5275 adap->vres.qp.start = val[0];
5276 adap->vres.qp.size = val[1] - val[0] + 1;
5277 adap->vres.cq.start = val[2];
5278 adap->vres.cq.size = val[3] - val[2] + 1;
5279 adap->vres.ocq.start = val[4];
5280 adap->vres.ocq.size = val[5] - val[4] + 1;
5281
5282 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5283 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5284 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5285 val);
5286 if (ret < 0) {
5287 adap->params.max_ordird_qp = 8;
5288 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5289 ret = 0;
5290 } else {
5291 adap->params.max_ordird_qp = val[0];
5292 adap->params.max_ird_adapter = val[1];
5293 }
5294 dev_info(adap->pdev_dev,
5295 "max_ordird_qp %d max_ird_adapter %d\n",
5296 adap->params.max_ordird_qp,
5297 adap->params.max_ird_adapter);
5298
5299 /* Enable write_with_immediate if FW supports it */
5300 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5301 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5302 val);
5303 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5304
5305 /* Enable write_cmpl if FW supports it */
5306 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5307 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5308 val);
5309 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5310 adap->num_ofld_uld += 2;
5311 }
5312 if (caps_cmd.iscsicaps) {
5313 params[0] = FW_PARAM_PFVF(ISCSI_START);
5314 params[1] = FW_PARAM_PFVF(ISCSI_END);
5315 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5316 params, val);
5317 if (ret < 0)
5318 goto bye;
5319 adap->vres.iscsi.start = val[0];
5320 adap->vres.iscsi.size = val[1] - val[0] + 1;
5321 if (is_t6(adap->params.chip)) {
5322 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5323 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5324 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5325 params, val);
5326 if (!ret) {
5327 adap->vres.ppod_edram.start = val[0];
5328 adap->vres.ppod_edram.size =
5329 val[1] - val[0] + 1;
5330
5331 dev_info(adap->pdev_dev,
5332 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5333 val[0], val[1],
5334 adap->vres.ppod_edram.size);
5335 }
5336 }
5337 /* LIO target and cxgb4i initiaitor */
5338 adap->num_ofld_uld += 2;
5339 }
5340 if (caps_cmd.cryptocaps) {
5341 if (ntohs(caps_cmd.cryptocaps) &
5342 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5343 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5344 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5345 2, params, val);
5346 if (ret < 0) {
5347 if (ret != -EINVAL)
5348 goto bye;
5349 } else {
5350 adap->vres.ncrypto_fc = val[0];
5351 }
5352 adap->num_ofld_uld += 1;
5353 }
5354 if (ntohs(caps_cmd.cryptocaps) &
5355 FW_CAPS_CONFIG_TLS_INLINE) {
5356 params[0] = FW_PARAM_PFVF(TLS_START);
5357 params[1] = FW_PARAM_PFVF(TLS_END);
5358 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5359 2, params, val);
5360 if (ret < 0)
5361 goto bye;
5362 adap->vres.key.start = val[0];
5363 adap->vres.key.size = val[1] - val[0] + 1;
5364 adap->num_uld += 1;
5365 }
5366 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5367 }
5368
5369 /* The MTU/MSS Table is initialized by now, so load their values. If
5370 * we're initializing the adapter, then we'll make any modifications
5371 * we want to the MTU/MSS Table and also initialize the congestion
5372 * parameters.
5373 */
5374 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5375 if (state != DEV_STATE_INIT) {
5376 int i;
5377
5378 /* The default MTU Table contains values 1492 and 1500.
5379 * However, for TCP, it's better to have two values which are
5380 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5381 * This allows us to have a TCP Data Payload which is a
5382 * multiple of 8 regardless of what combination of TCP Options
5383 * are in use (always a multiple of 4 bytes) which is
5384 * important for performance reasons. For instance, if no
5385 * options are in use, then we have a 20-byte IP header and a
5386 * 20-byte TCP header. In this case, a 1500-byte MSS would
5387 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5388 * which is not a multiple of 8. So using an MSS of 1488 in
5389 * this case results in a TCP Data Payload of 1448 bytes which
5390 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5391 * Stamps have been negotiated, then an MTU of 1500 bytes
5392 * results in a TCP Data Payload of 1448 bytes which, as
5393 * above, is a multiple of 8 bytes ...
5394 */
5395 for (i = 0; i < NMTUS; i++)
5396 if (adap->params.mtus[i] == 1492) {
5397 adap->params.mtus[i] = 1488;
5398 break;
5399 }
5400
5401 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5402 adap->params.b_wnd);
5403 }
5404 t4_init_sge_params(adap);
5405 adap->flags |= CXGB4_FW_OK;
5406 t4_init_tp_params(adap, true);
5407 return 0;
5408
5409 /*
5410 * Something bad happened. If a command timed out or failed with EIO
5411 * FW does not operate within its spec or something catastrophic
5412 * happened to HW/FW, stop issuing commands.
5413 */
5414 bye:
5415 adap_free_hma_mem(adap);
5416 kfree(adap->sge.egr_map);
5417 kfree(adap->sge.ingr_map);
5418 bitmap_free(adap->sge.starving_fl);
5419 bitmap_free(adap->sge.txq_maperr);
5420 #ifdef CONFIG_DEBUG_FS
5421 bitmap_free(adap->sge.blocked_fl);
5422 #endif
5423 if (ret != -ETIMEDOUT && ret != -EIO)
5424 t4_fw_bye(adap, adap->mbox);
5425 return ret;
5426 }
5427
5428 /* EEH callbacks */
5429
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)5430 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5431 pci_channel_state_t state)
5432 {
5433 int i;
5434 struct adapter *adap = pci_get_drvdata(pdev);
5435
5436 if (!adap)
5437 goto out;
5438
5439 rtnl_lock();
5440 adap->flags &= ~CXGB4_FW_OK;
5441 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5442 spin_lock(&adap->stats_lock);
5443 for_each_port(adap, i) {
5444 struct net_device *dev = adap->port[i];
5445 if (dev) {
5446 netif_device_detach(dev);
5447 netif_carrier_off(dev);
5448 }
5449 }
5450 spin_unlock(&adap->stats_lock);
5451 disable_interrupts(adap);
5452 if (adap->flags & CXGB4_FULL_INIT_DONE)
5453 cxgb_down(adap);
5454 rtnl_unlock();
5455 if ((adap->flags & CXGB4_DEV_ENABLED)) {
5456 pci_disable_device(pdev);
5457 adap->flags &= ~CXGB4_DEV_ENABLED;
5458 }
5459 out: return state == pci_channel_io_perm_failure ?
5460 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5461 }
5462
eeh_slot_reset(struct pci_dev * pdev)5463 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5464 {
5465 int i, ret;
5466 struct fw_caps_config_cmd c;
5467 struct adapter *adap = pci_get_drvdata(pdev);
5468
5469 if (!adap) {
5470 pci_restore_state(pdev);
5471 pci_save_state(pdev);
5472 return PCI_ERS_RESULT_RECOVERED;
5473 }
5474
5475 if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5476 if (pci_enable_device(pdev)) {
5477 dev_err(&pdev->dev, "Cannot reenable PCI "
5478 "device after reset\n");
5479 return PCI_ERS_RESULT_DISCONNECT;
5480 }
5481 adap->flags |= CXGB4_DEV_ENABLED;
5482 }
5483
5484 pci_set_master(pdev);
5485 pci_restore_state(pdev);
5486 pci_save_state(pdev);
5487
5488 if (t4_wait_dev_ready(adap->regs) < 0)
5489 return PCI_ERS_RESULT_DISCONNECT;
5490 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5491 return PCI_ERS_RESULT_DISCONNECT;
5492 adap->flags |= CXGB4_FW_OK;
5493 if (adap_init1(adap, &c))
5494 return PCI_ERS_RESULT_DISCONNECT;
5495
5496 for_each_port(adap, i) {
5497 struct port_info *pi = adap2pinfo(adap, i);
5498 u8 vivld = 0, vin = 0;
5499
5500 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5501 NULL, NULL, &vivld, &vin);
5502 if (ret < 0)
5503 return PCI_ERS_RESULT_DISCONNECT;
5504 pi->viid = ret;
5505 pi->xact_addr_filt = -1;
5506 /* If fw supports returning the VIN as part of FW_VI_CMD,
5507 * save the returned values.
5508 */
5509 if (adap->params.viid_smt_extn_support) {
5510 pi->vivld = vivld;
5511 pi->vin = vin;
5512 } else {
5513 /* Retrieve the values from VIID */
5514 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5515 pi->vin = FW_VIID_VIN_G(pi->viid);
5516 }
5517 }
5518
5519 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5520 adap->params.b_wnd);
5521 setup_memwin(adap);
5522 if (cxgb_up(adap))
5523 return PCI_ERS_RESULT_DISCONNECT;
5524 return PCI_ERS_RESULT_RECOVERED;
5525 }
5526
eeh_resume(struct pci_dev * pdev)5527 static void eeh_resume(struct pci_dev *pdev)
5528 {
5529 int i;
5530 struct adapter *adap = pci_get_drvdata(pdev);
5531
5532 if (!adap)
5533 return;
5534
5535 rtnl_lock();
5536 for_each_port(adap, i) {
5537 struct net_device *dev = adap->port[i];
5538 if (dev) {
5539 if (netif_running(dev)) {
5540 link_start(dev);
5541 cxgb_set_rxmode(dev);
5542 }
5543 netif_device_attach(dev);
5544 }
5545 }
5546 rtnl_unlock();
5547 }
5548
eeh_reset_prepare(struct pci_dev * pdev)5549 static void eeh_reset_prepare(struct pci_dev *pdev)
5550 {
5551 struct adapter *adapter = pci_get_drvdata(pdev);
5552 int i;
5553
5554 if (adapter->pf != 4)
5555 return;
5556
5557 adapter->flags &= ~CXGB4_FW_OK;
5558
5559 notify_ulds(adapter, CXGB4_STATE_DOWN);
5560
5561 for_each_port(adapter, i)
5562 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5563 cxgb_close(adapter->port[i]);
5564
5565 disable_interrupts(adapter);
5566 cxgb4_free_mps_ref_entries(adapter);
5567
5568 adap_free_hma_mem(adapter);
5569
5570 if (adapter->flags & CXGB4_FULL_INIT_DONE)
5571 cxgb_down(adapter);
5572 }
5573
eeh_reset_done(struct pci_dev * pdev)5574 static void eeh_reset_done(struct pci_dev *pdev)
5575 {
5576 struct adapter *adapter = pci_get_drvdata(pdev);
5577 int err, i;
5578
5579 if (adapter->pf != 4)
5580 return;
5581
5582 err = t4_wait_dev_ready(adapter->regs);
5583 if (err < 0) {
5584 dev_err(adapter->pdev_dev,
5585 "Device not ready, err %d", err);
5586 return;
5587 }
5588
5589 setup_memwin(adapter);
5590
5591 err = adap_init0(adapter, 1);
5592 if (err) {
5593 dev_err(adapter->pdev_dev,
5594 "Adapter init failed, err %d", err);
5595 return;
5596 }
5597
5598 setup_memwin_rdma(adapter);
5599
5600 if (adapter->flags & CXGB4_FW_OK) {
5601 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5602 if (err) {
5603 dev_err(adapter->pdev_dev,
5604 "Port init failed, err %d", err);
5605 return;
5606 }
5607 }
5608
5609 err = cfg_queues(adapter);
5610 if (err) {
5611 dev_err(adapter->pdev_dev,
5612 "Config queues failed, err %d", err);
5613 return;
5614 }
5615
5616 cxgb4_init_mps_ref_entries(adapter);
5617
5618 err = setup_fw_sge_queues(adapter);
5619 if (err) {
5620 dev_err(adapter->pdev_dev,
5621 "FW sge queue allocation failed, err %d", err);
5622 return;
5623 }
5624
5625 for_each_port(adapter, i)
5626 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5627 cxgb_open(adapter->port[i]);
5628 }
5629
5630 static const struct pci_error_handlers cxgb4_eeh = {
5631 .error_detected = eeh_err_detected,
5632 .slot_reset = eeh_slot_reset,
5633 .resume = eeh_resume,
5634 .reset_prepare = eeh_reset_prepare,
5635 .reset_done = eeh_reset_done,
5636 };
5637
5638 /* Return true if the Link Configuration supports "High Speeds" (those greater
5639 * than 1Gb/s).
5640 */
is_x_10g_port(const struct link_config * lc)5641 static inline bool is_x_10g_port(const struct link_config *lc)
5642 {
5643 unsigned int speeds, high_speeds;
5644
5645 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5646 high_speeds = speeds &
5647 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5648
5649 return high_speeds != 0;
5650 }
5651
5652 /* Perform default configuration of DMA queues depending on the number and type
5653 * of ports we found and the number of available CPUs. Most settings can be
5654 * modified by the admin prior to actual use.
5655 */
cfg_queues(struct adapter * adap)5656 static int cfg_queues(struct adapter *adap)
5657 {
5658 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5659 u32 ncpus = num_online_cpus();
5660 u32 niqflint, neq, num_ulds;
5661 struct sge *s = &adap->sge;
5662 u32 i, n10g = 0, qidx = 0;
5663 u32 q10g = 0, q1g;
5664
5665 /* Reduce memory usage in kdump environment, disable all offload. */
5666 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5667 adap->params.offload = 0;
5668 adap->params.crypto = 0;
5669 adap->params.ethofld = 0;
5670 }
5671
5672 /* Calculate the number of Ethernet Queue Sets available based on
5673 * resources provisioned for us. We always have an Asynchronous
5674 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
5675 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5676 * Ingress Queue. Meanwhile, we need two Egress Queues for each
5677 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5678 *
5679 * Note that we should also take into account all of the various
5680 * Offload Queues. But, in any situation where we're operating in
5681 * a Resource Constrained Provisioning environment, doing any Offload
5682 * at all is problematic ...
5683 */
5684 niqflint = adap->params.pfres.niqflint - 1;
5685 if (!(adap->flags & CXGB4_USING_MSIX))
5686 niqflint--;
5687 neq = adap->params.pfres.neq / 2;
5688 avail_qsets = min(niqflint, neq);
5689
5690 if (avail_qsets < adap->params.nports) {
5691 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5692 avail_qsets, adap->params.nports);
5693 return -ENOMEM;
5694 }
5695
5696 /* Count the number of 10Gb/s or better ports */
5697 for_each_port(adap, i)
5698 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5699
5700 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5701
5702 /* We default to 1 queue per non-10G port and up to # of cores queues
5703 * per 10G port.
5704 */
5705 if (n10g)
5706 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5707
5708 #ifdef CONFIG_CHELSIO_T4_DCB
5709 /* For Data Center Bridging support we need to be able to support up
5710 * to 8 Traffic Priorities; each of which will be assigned to its
5711 * own TX Queue in order to prevent Head-Of-Line Blocking.
5712 */
5713 q1g = 8;
5714 if (adap->params.nports * 8 > avail_eth_qsets) {
5715 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5716 avail_eth_qsets, adap->params.nports * 8);
5717 return -ENOMEM;
5718 }
5719
5720 if (adap->params.nports * ncpus < avail_eth_qsets)
5721 q10g = max(8U, ncpus);
5722 else
5723 q10g = max(8U, q10g);
5724
5725 while ((q10g * n10g) >
5726 (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5727 q10g--;
5728
5729 #else /* !CONFIG_CHELSIO_T4_DCB */
5730 q1g = 1;
5731 q10g = min(q10g, ncpus);
5732 #endif /* !CONFIG_CHELSIO_T4_DCB */
5733 if (is_kdump_kernel()) {
5734 q10g = 1;
5735 q1g = 1;
5736 }
5737
5738 for_each_port(adap, i) {
5739 struct port_info *pi = adap2pinfo(adap, i);
5740
5741 pi->first_qset = qidx;
5742 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5743 qidx += pi->nqsets;
5744 }
5745
5746 s->ethqsets = qidx;
5747 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5748 avail_qsets -= qidx;
5749
5750 if (is_uld(adap)) {
5751 /* For offload we use 1 queue/channel if all ports are up to 1G,
5752 * otherwise we divide all available queues amongst the channels
5753 * capped by the number of available cores.
5754 */
5755 num_ulds = adap->num_uld + adap->num_ofld_uld;
5756 i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5757 avail_uld_qsets = roundup(i, adap->params.nports);
5758 if (avail_qsets < num_ulds * adap->params.nports) {
5759 adap->params.offload = 0;
5760 adap->params.crypto = 0;
5761 s->ofldqsets = 0;
5762 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5763 s->ofldqsets = adap->params.nports;
5764 } else {
5765 s->ofldqsets = avail_uld_qsets;
5766 }
5767
5768 avail_qsets -= num_ulds * s->ofldqsets;
5769 }
5770
5771 /* ETHOFLD Queues used for QoS offload should follow same
5772 * allocation scheme as normal Ethernet Queues.
5773 */
5774 if (is_ethofld(adap)) {
5775 if (avail_qsets < s->max_ethqsets) {
5776 adap->params.ethofld = 0;
5777 s->eoqsets = 0;
5778 } else {
5779 s->eoqsets = s->max_ethqsets;
5780 }
5781 avail_qsets -= s->eoqsets;
5782 }
5783
5784 /* Mirror queues must follow same scheme as normal Ethernet
5785 * Queues, when there are enough queues available. Otherwise,
5786 * allocate at least 1 queue per port. If even 1 queue is not
5787 * available, then disable mirror queues support.
5788 */
5789 if (avail_qsets >= s->max_ethqsets)
5790 s->mirrorqsets = s->max_ethqsets;
5791 else if (avail_qsets >= adap->params.nports)
5792 s->mirrorqsets = adap->params.nports;
5793 else
5794 s->mirrorqsets = 0;
5795 avail_qsets -= s->mirrorqsets;
5796
5797 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5798 struct sge_eth_rxq *r = &s->ethrxq[i];
5799
5800 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5801 r->fl.size = 72;
5802 }
5803
5804 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5805 s->ethtxq[i].q.size = 1024;
5806
5807 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5808 s->ctrlq[i].q.size = 512;
5809
5810 if (!is_t4(adap->params.chip))
5811 s->ptptxq.q.size = 8;
5812
5813 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5814 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5815
5816 return 0;
5817 }
5818
5819 /*
5820 * Reduce the number of Ethernet queues across all ports to at most n.
5821 * n provides at least one queue per port.
5822 */
reduce_ethqs(struct adapter * adap,int n)5823 static void reduce_ethqs(struct adapter *adap, int n)
5824 {
5825 int i;
5826 struct port_info *pi;
5827
5828 while (n < adap->sge.ethqsets)
5829 for_each_port(adap, i) {
5830 pi = adap2pinfo(adap, i);
5831 if (pi->nqsets > 1) {
5832 pi->nqsets--;
5833 adap->sge.ethqsets--;
5834 if (adap->sge.ethqsets <= n)
5835 break;
5836 }
5837 }
5838
5839 n = 0;
5840 for_each_port(adap, i) {
5841 pi = adap2pinfo(adap, i);
5842 pi->first_qset = n;
5843 n += pi->nqsets;
5844 }
5845 }
5846
alloc_msix_info(struct adapter * adap,u32 num_vec)5847 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5848 {
5849 struct msix_info *msix_info;
5850
5851 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5852 if (!msix_info)
5853 return -ENOMEM;
5854
5855 adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL);
5856 if (!adap->msix_bmap.msix_bmap) {
5857 kfree(msix_info);
5858 return -ENOMEM;
5859 }
5860
5861 spin_lock_init(&adap->msix_bmap.lock);
5862 adap->msix_bmap.mapsize = num_vec;
5863
5864 adap->msix_info = msix_info;
5865 return 0;
5866 }
5867
free_msix_info(struct adapter * adap)5868 static void free_msix_info(struct adapter *adap)
5869 {
5870 bitmap_free(adap->msix_bmap.msix_bmap);
5871 kfree(adap->msix_info);
5872 }
5873
cxgb4_get_msix_idx_from_bmap(struct adapter * adap)5874 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5875 {
5876 struct msix_bmap *bmap = &adap->msix_bmap;
5877 unsigned int msix_idx;
5878 unsigned long flags;
5879
5880 spin_lock_irqsave(&bmap->lock, flags);
5881 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5882 if (msix_idx < bmap->mapsize) {
5883 __set_bit(msix_idx, bmap->msix_bmap);
5884 } else {
5885 spin_unlock_irqrestore(&bmap->lock, flags);
5886 return -ENOSPC;
5887 }
5888
5889 spin_unlock_irqrestore(&bmap->lock, flags);
5890 return msix_idx;
5891 }
5892
cxgb4_free_msix_idx_in_bmap(struct adapter * adap,unsigned int msix_idx)5893 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5894 unsigned int msix_idx)
5895 {
5896 struct msix_bmap *bmap = &adap->msix_bmap;
5897 unsigned long flags;
5898
5899 spin_lock_irqsave(&bmap->lock, flags);
5900 __clear_bit(msix_idx, bmap->msix_bmap);
5901 spin_unlock_irqrestore(&bmap->lock, flags);
5902 }
5903
5904 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5905 #define EXTRA_VECS 2
5906
enable_msix(struct adapter * adap)5907 static int enable_msix(struct adapter *adap)
5908 {
5909 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5910 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5911 u8 num_uld = 0, nchan = adap->params.nports;
5912 u32 i, want, need, num_vec;
5913 struct sge *s = &adap->sge;
5914 struct msix_entry *entries;
5915 struct port_info *pi;
5916 int allocated, ret;
5917
5918 want = s->max_ethqsets;
5919 #ifdef CONFIG_CHELSIO_T4_DCB
5920 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5921 * each port.
5922 */
5923 need = 8 * nchan;
5924 #else
5925 need = nchan;
5926 #endif
5927 eth_need = need;
5928 if (is_uld(adap)) {
5929 num_uld = adap->num_ofld_uld + adap->num_uld;
5930 want += num_uld * s->ofldqsets;
5931 uld_need = num_uld * nchan;
5932 need += uld_need;
5933 }
5934
5935 if (is_ethofld(adap)) {
5936 want += s->eoqsets;
5937 ethofld_need = eth_need;
5938 need += ethofld_need;
5939 }
5940
5941 if (s->mirrorqsets) {
5942 want += s->mirrorqsets;
5943 mirror_need = nchan;
5944 need += mirror_need;
5945 }
5946
5947 want += EXTRA_VECS;
5948 need += EXTRA_VECS;
5949
5950 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5951 if (!entries)
5952 return -ENOMEM;
5953
5954 for (i = 0; i < want; i++)
5955 entries[i].entry = i;
5956
5957 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5958 if (allocated < 0) {
5959 /* Disable offload and attempt to get vectors for NIC
5960 * only mode.
5961 */
5962 want = s->max_ethqsets + EXTRA_VECS;
5963 need = eth_need + EXTRA_VECS;
5964 allocated = pci_enable_msix_range(adap->pdev, entries,
5965 need, want);
5966 if (allocated < 0) {
5967 dev_info(adap->pdev_dev,
5968 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5969 ret = allocated;
5970 goto out_free;
5971 }
5972
5973 dev_info(adap->pdev_dev,
5974 "Disabling offload due to insufficient MSI-X vectors\n");
5975 adap->params.offload = 0;
5976 adap->params.crypto = 0;
5977 adap->params.ethofld = 0;
5978 s->ofldqsets = 0;
5979 s->eoqsets = 0;
5980 s->mirrorqsets = 0;
5981 uld_need = 0;
5982 ethofld_need = 0;
5983 mirror_need = 0;
5984 }
5985
5986 num_vec = allocated;
5987 if (num_vec < want) {
5988 /* Distribute available vectors to the various queue groups.
5989 * Every group gets its minimum requirement and NIC gets top
5990 * priority for leftovers.
5991 */
5992 ethqsets = eth_need;
5993 if (is_uld(adap))
5994 ofldqsets = nchan;
5995 if (is_ethofld(adap))
5996 eoqsets = ethofld_need;
5997 if (s->mirrorqsets)
5998 mirrorqsets = mirror_need;
5999
6000 num_vec -= need;
6001 while (num_vec) {
6002 if (num_vec < eth_need + ethofld_need ||
6003 ethqsets > s->max_ethqsets)
6004 break;
6005
6006 for_each_port(adap, i) {
6007 pi = adap2pinfo(adap, i);
6008 if (pi->nqsets < 2)
6009 continue;
6010
6011 ethqsets++;
6012 num_vec--;
6013 if (ethofld_need) {
6014 eoqsets++;
6015 num_vec--;
6016 }
6017 }
6018 }
6019
6020 if (is_uld(adap)) {
6021 while (num_vec) {
6022 if (num_vec < uld_need ||
6023 ofldqsets > s->ofldqsets)
6024 break;
6025
6026 ofldqsets++;
6027 num_vec -= uld_need;
6028 }
6029 }
6030
6031 if (s->mirrorqsets) {
6032 while (num_vec) {
6033 if (num_vec < mirror_need ||
6034 mirrorqsets > s->mirrorqsets)
6035 break;
6036
6037 mirrorqsets++;
6038 num_vec -= mirror_need;
6039 }
6040 }
6041 } else {
6042 ethqsets = s->max_ethqsets;
6043 if (is_uld(adap))
6044 ofldqsets = s->ofldqsets;
6045 if (is_ethofld(adap))
6046 eoqsets = s->eoqsets;
6047 if (s->mirrorqsets)
6048 mirrorqsets = s->mirrorqsets;
6049 }
6050
6051 if (ethqsets < s->max_ethqsets) {
6052 s->max_ethqsets = ethqsets;
6053 reduce_ethqs(adap, ethqsets);
6054 }
6055
6056 if (is_uld(adap)) {
6057 s->ofldqsets = ofldqsets;
6058 s->nqs_per_uld = s->ofldqsets;
6059 }
6060
6061 if (is_ethofld(adap))
6062 s->eoqsets = eoqsets;
6063
6064 if (s->mirrorqsets) {
6065 s->mirrorqsets = mirrorqsets;
6066 for_each_port(adap, i) {
6067 pi = adap2pinfo(adap, i);
6068 pi->nmirrorqsets = s->mirrorqsets / nchan;
6069 mutex_init(&pi->vi_mirror_mutex);
6070 }
6071 }
6072
6073 /* map for msix */
6074 ret = alloc_msix_info(adap, allocated);
6075 if (ret)
6076 goto out_disable_msix;
6077
6078 for (i = 0; i < allocated; i++) {
6079 adap->msix_info[i].vec = entries[i].vector;
6080 adap->msix_info[i].idx = i;
6081 }
6082
6083 dev_info(adap->pdev_dev,
6084 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6085 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6086 s->mirrorqsets);
6087
6088 kfree(entries);
6089 return 0;
6090
6091 out_disable_msix:
6092 pci_disable_msix(adap->pdev);
6093
6094 out_free:
6095 kfree(entries);
6096 return ret;
6097 }
6098
6099 #undef EXTRA_VECS
6100
init_rss(struct adapter * adap)6101 static int init_rss(struct adapter *adap)
6102 {
6103 unsigned int i;
6104 int err;
6105
6106 err = t4_init_rss_mode(adap, adap->mbox);
6107 if (err)
6108 return err;
6109
6110 for_each_port(adap, i) {
6111 struct port_info *pi = adap2pinfo(adap, i);
6112
6113 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6114 if (!pi->rss)
6115 return -ENOMEM;
6116 }
6117 return 0;
6118 }
6119
6120 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)6121 static void print_adapter_info(struct adapter *adapter)
6122 {
6123 /* Hardware/Firmware/etc. Version/Revision IDs */
6124 t4_dump_version_info(adapter);
6125
6126 /* Software/Hardware configuration */
6127 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6128 is_offload(adapter) ? "R" : "",
6129 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6130 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6131 is_offload(adapter) ? "Offload" : "non-Offload");
6132 }
6133
print_port_info(const struct net_device * dev)6134 static void print_port_info(const struct net_device *dev)
6135 {
6136 char buf[80];
6137 char *bufp = buf;
6138 const struct port_info *pi = netdev_priv(dev);
6139 const struct adapter *adap = pi->adapter;
6140
6141 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6142 bufp += sprintf(bufp, "100M/");
6143 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6144 bufp += sprintf(bufp, "1G/");
6145 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6146 bufp += sprintf(bufp, "10G/");
6147 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6148 bufp += sprintf(bufp, "25G/");
6149 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6150 bufp += sprintf(bufp, "40G/");
6151 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6152 bufp += sprintf(bufp, "50G/");
6153 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6154 bufp += sprintf(bufp, "100G/");
6155 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6156 bufp += sprintf(bufp, "200G/");
6157 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6158 bufp += sprintf(bufp, "400G/");
6159 if (bufp != buf)
6160 --bufp;
6161 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6162
6163 netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf);
6164 }
6165
6166 /*
6167 * Free the following resources:
6168 * - memory used for tables
6169 * - MSI/MSI-X
6170 * - net devices
6171 * - resources FW is holding for us
6172 */
free_some_resources(struct adapter * adapter)6173 static void free_some_resources(struct adapter *adapter)
6174 {
6175 unsigned int i;
6176
6177 kvfree(adapter->smt);
6178 kvfree(adapter->l2t);
6179 kvfree(adapter->srq);
6180 t4_cleanup_sched(adapter);
6181 kvfree(adapter->tids.tid_tab);
6182 cxgb4_cleanup_tc_matchall(adapter);
6183 cxgb4_cleanup_tc_mqprio(adapter);
6184 cxgb4_cleanup_tc_flower(adapter);
6185 cxgb4_cleanup_tc_u32(adapter);
6186 cxgb4_cleanup_ethtool_filters(adapter);
6187 kfree(adapter->sge.egr_map);
6188 kfree(adapter->sge.ingr_map);
6189 bitmap_free(adapter->sge.starving_fl);
6190 bitmap_free(adapter->sge.txq_maperr);
6191 #ifdef CONFIG_DEBUG_FS
6192 bitmap_free(adapter->sge.blocked_fl);
6193 #endif
6194 disable_msi(adapter);
6195
6196 for_each_port(adapter, i)
6197 if (adapter->port[i]) {
6198 struct port_info *pi = adap2pinfo(adapter, i);
6199
6200 if (pi->viid != 0)
6201 t4_free_vi(adapter, adapter->mbox, adapter->pf,
6202 0, pi->viid);
6203 kfree(adap2pinfo(adapter, i)->rss);
6204 free_netdev(adapter->port[i]);
6205 }
6206 if (adapter->flags & CXGB4_FW_OK)
6207 t4_fw_bye(adapter, adapter->pf);
6208 }
6209
6210 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6211 NETIF_F_GSO_UDP_L4)
6212 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6213 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6214 #define SEGMENT_SIZE 128
6215
t4_get_chip_type(struct adapter * adap,int ver)6216 static int t4_get_chip_type(struct adapter *adap, int ver)
6217 {
6218 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6219
6220 switch (ver) {
6221 case CHELSIO_T4:
6222 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6223 case CHELSIO_T5:
6224 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6225 case CHELSIO_T6:
6226 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6227 default:
6228 break;
6229 }
6230 return -EINVAL;
6231 }
6232
6233 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)6234 static void cxgb4_mgmt_setup(struct net_device *dev)
6235 {
6236 dev->type = ARPHRD_NONE;
6237 dev->mtu = 0;
6238 dev->hard_header_len = 0;
6239 dev->addr_len = 0;
6240 dev->tx_queue_len = 0;
6241 dev->flags |= IFF_NOARP;
6242 dev->priv_flags |= IFF_NO_QUEUE;
6243
6244 /* Initialize the device structure. */
6245 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6246 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6247 }
6248
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)6249 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6250 {
6251 struct adapter *adap = pci_get_drvdata(pdev);
6252 int err = 0;
6253 int current_vfs = pci_num_vf(pdev);
6254 u32 pcie_fw;
6255
6256 pcie_fw = readl(adap->regs + PCIE_FW_A);
6257 /* Check if fw is initialized */
6258 if (!(pcie_fw & PCIE_FW_INIT_F)) {
6259 dev_warn(&pdev->dev, "Device not initialized\n");
6260 return -EOPNOTSUPP;
6261 }
6262
6263 /* If any of the VF's is already assigned to Guest OS, then
6264 * SRIOV for the same cannot be modified
6265 */
6266 if (current_vfs && pci_vfs_assigned(pdev)) {
6267 dev_err(&pdev->dev,
6268 "Cannot modify SR-IOV while VFs are assigned\n");
6269 return current_vfs;
6270 }
6271 /* Note that the upper-level code ensures that we're never called with
6272 * a non-zero "num_vfs" when we already have VFs instantiated. But
6273 * it never hurts to code defensively.
6274 */
6275 if (num_vfs != 0 && current_vfs != 0)
6276 return -EBUSY;
6277
6278 /* Nothing to do for no change. */
6279 if (num_vfs == current_vfs)
6280 return num_vfs;
6281
6282 /* Disable SRIOV when zero is passed. */
6283 if (!num_vfs) {
6284 pci_disable_sriov(pdev);
6285 /* free VF Management Interface */
6286 unregister_netdev(adap->port[0]);
6287 free_netdev(adap->port[0]);
6288 adap->port[0] = NULL;
6289
6290 /* free VF resources */
6291 adap->num_vfs = 0;
6292 kfree(adap->vfinfo);
6293 adap->vfinfo = NULL;
6294 return 0;
6295 }
6296
6297 if (!current_vfs) {
6298 struct fw_pfvf_cmd port_cmd, port_rpl;
6299 struct net_device *netdev;
6300 unsigned int pmask, port;
6301 struct pci_dev *pbridge;
6302 struct port_info *pi;
6303 char name[IFNAMSIZ];
6304 u32 devcap2;
6305 u16 flags;
6306
6307 /* If we want to instantiate Virtual Functions, then our
6308 * parent bridge's PCI-E needs to support Alternative Routing
6309 * ID (ARI) because our VFs will show up at function offset 8
6310 * and above.
6311 */
6312 pbridge = pdev->bus->self;
6313 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6314 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6315
6316 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6317 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6318 /* Our parent bridge does not support ARI so issue a
6319 * warning and skip instantiating the VFs. They
6320 * won't be reachable.
6321 */
6322 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6323 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6324 PCI_FUNC(pbridge->devfn));
6325 return -ENOTSUPP;
6326 }
6327 memset(&port_cmd, 0, sizeof(port_cmd));
6328 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6329 FW_CMD_REQUEST_F |
6330 FW_CMD_READ_F |
6331 FW_PFVF_CMD_PFN_V(adap->pf) |
6332 FW_PFVF_CMD_VFN_V(0));
6333 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6334 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6335 &port_rpl);
6336 if (err)
6337 return err;
6338 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6339 port = ffs(pmask) - 1;
6340 /* Allocate VF Management Interface. */
6341 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6342 adap->pf);
6343 netdev = alloc_netdev(sizeof(struct port_info),
6344 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6345 if (!netdev)
6346 return -ENOMEM;
6347
6348 pi = netdev_priv(netdev);
6349 pi->adapter = adap;
6350 pi->lport = port;
6351 pi->tx_chan = port;
6352 SET_NETDEV_DEV(netdev, &pdev->dev);
6353
6354 adap->port[0] = netdev;
6355 pi->port_id = 0;
6356
6357 err = register_netdev(adap->port[0]);
6358 if (err) {
6359 pr_info("Unable to register VF mgmt netdev %s\n", name);
6360 free_netdev(adap->port[0]);
6361 adap->port[0] = NULL;
6362 return err;
6363 }
6364 /* Allocate and set up VF Information. */
6365 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6366 sizeof(struct vf_info), GFP_KERNEL);
6367 if (!adap->vfinfo) {
6368 unregister_netdev(adap->port[0]);
6369 free_netdev(adap->port[0]);
6370 adap->port[0] = NULL;
6371 return -ENOMEM;
6372 }
6373 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6374 }
6375 /* Instantiate the requested number of VFs. */
6376 err = pci_enable_sriov(pdev, num_vfs);
6377 if (err) {
6378 pr_info("Unable to instantiate %d VFs\n", num_vfs);
6379 if (!current_vfs) {
6380 unregister_netdev(adap->port[0]);
6381 free_netdev(adap->port[0]);
6382 adap->port[0] = NULL;
6383 kfree(adap->vfinfo);
6384 adap->vfinfo = NULL;
6385 }
6386 return err;
6387 }
6388
6389 adap->num_vfs = num_vfs;
6390 return num_vfs;
6391 }
6392 #endif /* CONFIG_PCI_IOV */
6393
6394 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6395
chcr_offload_state(struct adapter * adap,enum cxgb4_netdev_tls_ops op_val)6396 static int chcr_offload_state(struct adapter *adap,
6397 enum cxgb4_netdev_tls_ops op_val)
6398 {
6399 switch (op_val) {
6400 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6401 case CXGB4_TLSDEV_OPS:
6402 if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6403 dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6404 return -EOPNOTSUPP;
6405 }
6406 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6407 dev_dbg(adap->pdev_dev,
6408 "ch_ktls driver has no registered tlsdev_ops\n");
6409 return -EOPNOTSUPP;
6410 }
6411 break;
6412 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6413 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6414 case CXGB4_XFRMDEV_OPS:
6415 if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6416 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6417 return -EOPNOTSUPP;
6418 }
6419 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6420 dev_dbg(adap->pdev_dev,
6421 "chipsec driver has no registered xfrmdev_ops\n");
6422 return -EOPNOTSUPP;
6423 }
6424 break;
6425 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6426 default:
6427 dev_dbg(adap->pdev_dev,
6428 "driver has no support for offload %d\n", op_val);
6429 return -EOPNOTSUPP;
6430 }
6431
6432 return 0;
6433 }
6434
6435 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6436
6437 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6438
cxgb4_ktls_dev_add(struct net_device * netdev,struct sock * sk,enum tls_offload_ctx_dir direction,struct tls_crypto_info * crypto_info,u32 tcp_sn)6439 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6440 enum tls_offload_ctx_dir direction,
6441 struct tls_crypto_info *crypto_info,
6442 u32 tcp_sn)
6443 {
6444 struct adapter *adap = netdev2adap(netdev);
6445 int ret;
6446
6447 mutex_lock(&uld_mutex);
6448 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6449 if (ret)
6450 goto out_unlock;
6451
6452 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6453 if (ret)
6454 goto out_unlock;
6455
6456 ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6457 direction,
6458 crypto_info,
6459 tcp_sn);
6460 /* if there is a failure, clear the refcount */
6461 if (ret)
6462 cxgb4_set_ktls_feature(adap,
6463 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6464 out_unlock:
6465 mutex_unlock(&uld_mutex);
6466 return ret;
6467 }
6468
cxgb4_ktls_dev_del(struct net_device * netdev,struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)6469 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6470 struct tls_context *tls_ctx,
6471 enum tls_offload_ctx_dir direction)
6472 {
6473 struct adapter *adap = netdev2adap(netdev);
6474
6475 mutex_lock(&uld_mutex);
6476 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6477 goto out_unlock;
6478
6479 adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6480 direction);
6481
6482 out_unlock:
6483 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6484 mutex_unlock(&uld_mutex);
6485 }
6486
6487 static const struct tlsdev_ops cxgb4_ktls_ops = {
6488 .tls_dev_add = cxgb4_ktls_dev_add,
6489 .tls_dev_del = cxgb4_ktls_dev_del,
6490 };
6491 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6492
6493 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6494
cxgb4_xfrm_add_state(struct xfrm_state * x,struct netlink_ext_ack * extack)6495 static int cxgb4_xfrm_add_state(struct xfrm_state *x,
6496 struct netlink_ext_ack *extack)
6497 {
6498 struct adapter *adap = netdev2adap(x->xso.dev);
6499 int ret;
6500
6501 if (!mutex_trylock(&uld_mutex)) {
6502 NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use");
6503 return -EBUSY;
6504 }
6505 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6506 if (ret)
6507 goto out_unlock;
6508
6509 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack);
6510
6511 out_unlock:
6512 mutex_unlock(&uld_mutex);
6513
6514 return ret;
6515 }
6516
cxgb4_xfrm_del_state(struct xfrm_state * x)6517 static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6518 {
6519 struct adapter *adap = netdev2adap(x->xso.dev);
6520
6521 if (!mutex_trylock(&uld_mutex)) {
6522 dev_dbg(adap->pdev_dev,
6523 "crypto uld critical resource is under use\n");
6524 return;
6525 }
6526 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6527 goto out_unlock;
6528
6529 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6530
6531 out_unlock:
6532 mutex_unlock(&uld_mutex);
6533 }
6534
cxgb4_xfrm_free_state(struct xfrm_state * x)6535 static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6536 {
6537 struct adapter *adap = netdev2adap(x->xso.dev);
6538
6539 if (!mutex_trylock(&uld_mutex)) {
6540 dev_dbg(adap->pdev_dev,
6541 "crypto uld critical resource is under use\n");
6542 return;
6543 }
6544 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6545 goto out_unlock;
6546
6547 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6548
6549 out_unlock:
6550 mutex_unlock(&uld_mutex);
6551 }
6552
cxgb4_ipsec_offload_ok(struct sk_buff * skb,struct xfrm_state * x)6553 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6554 {
6555 struct adapter *adap = netdev2adap(x->xso.dev);
6556 bool ret = false;
6557
6558 if (!mutex_trylock(&uld_mutex)) {
6559 dev_dbg(adap->pdev_dev,
6560 "crypto uld critical resource is under use\n");
6561 return ret;
6562 }
6563 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6564 goto out_unlock;
6565
6566 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6567
6568 out_unlock:
6569 mutex_unlock(&uld_mutex);
6570 return ret;
6571 }
6572
cxgb4_advance_esn_state(struct xfrm_state * x)6573 static void cxgb4_advance_esn_state(struct xfrm_state *x)
6574 {
6575 struct adapter *adap = netdev2adap(x->xso.dev);
6576
6577 if (!mutex_trylock(&uld_mutex)) {
6578 dev_dbg(adap->pdev_dev,
6579 "crypto uld critical resource is under use\n");
6580 return;
6581 }
6582 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6583 goto out_unlock;
6584
6585 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6586
6587 out_unlock:
6588 mutex_unlock(&uld_mutex);
6589 }
6590
6591 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6592 .xdo_dev_state_add = cxgb4_xfrm_add_state,
6593 .xdo_dev_state_delete = cxgb4_xfrm_del_state,
6594 .xdo_dev_state_free = cxgb4_xfrm_free_state,
6595 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok,
6596 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6597 };
6598
6599 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6600
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)6601 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6602 {
6603 struct net_device *netdev;
6604 struct adapter *adapter;
6605 static int adap_idx = 1;
6606 int s_qpp, qpp, num_seg;
6607 struct port_info *pi;
6608 enum chip_type chip;
6609 void __iomem *regs;
6610 int func, chip_ver;
6611 u16 device_id;
6612 int i, err;
6613 u32 whoami;
6614
6615 err = pci_request_regions(pdev, KBUILD_MODNAME);
6616 if (err) {
6617 /* Just info, some other driver may have claimed the device. */
6618 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6619 return err;
6620 }
6621
6622 err = pci_enable_device(pdev);
6623 if (err) {
6624 dev_err(&pdev->dev, "cannot enable PCI device\n");
6625 goto out_release_regions;
6626 }
6627
6628 regs = pci_ioremap_bar(pdev, 0);
6629 if (!regs) {
6630 dev_err(&pdev->dev, "cannot map device registers\n");
6631 err = -ENOMEM;
6632 goto out_disable_device;
6633 }
6634
6635 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6636 if (!adapter) {
6637 err = -ENOMEM;
6638 goto out_unmap_bar0;
6639 }
6640
6641 adapter->regs = regs;
6642 err = t4_wait_dev_ready(regs);
6643 if (err < 0)
6644 goto out_free_adapter;
6645
6646 /* We control everything through one PF */
6647 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6648 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6649 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6650 if ((int)chip < 0) {
6651 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6652 err = chip;
6653 goto out_free_adapter;
6654 }
6655 chip_ver = CHELSIO_CHIP_VERSION(chip);
6656 func = chip_ver <= CHELSIO_T5 ?
6657 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6658
6659 adapter->pdev = pdev;
6660 adapter->pdev_dev = &pdev->dev;
6661 adapter->name = pci_name(pdev);
6662 adapter->mbox = func;
6663 adapter->pf = func;
6664 adapter->params.chip = chip;
6665 adapter->adap_idx = adap_idx;
6666 adapter->msg_enable = DFLT_MSG_ENABLE;
6667 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6668 (sizeof(struct mbox_cmd) *
6669 T4_OS_LOG_MBOX_CMDS),
6670 GFP_KERNEL);
6671 if (!adapter->mbox_log) {
6672 err = -ENOMEM;
6673 goto out_free_adapter;
6674 }
6675 spin_lock_init(&adapter->mbox_lock);
6676 INIT_LIST_HEAD(&adapter->mlist.list);
6677 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6678 pci_set_drvdata(pdev, adapter);
6679
6680 if (func != ent->driver_data) {
6681 pci_disable_device(pdev);
6682 pci_save_state(pdev); /* to restore SR-IOV later */
6683 return 0;
6684 }
6685
6686 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6687 if (err) {
6688 dev_err(&pdev->dev, "no usable DMA configuration\n");
6689 goto out_free_adapter;
6690 }
6691
6692 pci_set_master(pdev);
6693 pci_save_state(pdev);
6694 adap_idx++;
6695 adapter->workq = create_singlethread_workqueue("cxgb4");
6696 if (!adapter->workq) {
6697 err = -ENOMEM;
6698 goto out_free_adapter;
6699 }
6700
6701 /* PCI device has been enabled */
6702 adapter->flags |= CXGB4_DEV_ENABLED;
6703 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6704
6705 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6706 * Ingress Packet Data to Free List Buffers in order to allow for
6707 * chipset performance optimizations between the Root Complex and
6708 * Memory Controllers. (Messages to the associated Ingress Queue
6709 * notifying new Packet Placement in the Free Lists Buffers will be
6710 * send without the Relaxed Ordering Attribute thus guaranteeing that
6711 * all preceding PCIe Transaction Layer Packets will be processed
6712 * first.) But some Root Complexes have various issues with Upstream
6713 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6714 * The PCIe devices which under the Root Complexes will be cleared the
6715 * Relaxed Ordering bit in the configuration space, So we check our
6716 * PCIe configuration space to see if it's flagged with advice against
6717 * using Relaxed Ordering.
6718 */
6719 if (!pcie_relaxed_ordering_enabled(pdev))
6720 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6721
6722 spin_lock_init(&adapter->stats_lock);
6723 spin_lock_init(&adapter->tid_release_lock);
6724 spin_lock_init(&adapter->win0_lock);
6725
6726 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6727 INIT_WORK(&adapter->db_full_task, process_db_full);
6728 INIT_WORK(&adapter->db_drop_task, process_db_drop);
6729 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6730
6731 err = t4_prep_adapter(adapter);
6732 if (err)
6733 goto out_free_adapter;
6734
6735 if (is_kdump_kernel()) {
6736 /* Collect hardware state and append to /proc/vmcore */
6737 err = cxgb4_cudbg_vmcore_add_dump(adapter);
6738 if (err) {
6739 dev_warn(adapter->pdev_dev,
6740 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6741 err);
6742 err = 0;
6743 }
6744 }
6745
6746 if (!is_t4(adapter->params.chip)) {
6747 s_qpp = (QUEUESPERPAGEPF0_S +
6748 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6749 adapter->pf);
6750 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6751 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6752 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6753
6754 /* Each segment size is 128B. Write coalescing is enabled only
6755 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6756 * queue is less no of segments that can be accommodated in
6757 * a page size.
6758 */
6759 if (qpp > num_seg) {
6760 dev_err(&pdev->dev,
6761 "Incorrect number of egress queues per page\n");
6762 err = -EINVAL;
6763 goto out_free_adapter;
6764 }
6765 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6766 pci_resource_len(pdev, 2));
6767 if (!adapter->bar2) {
6768 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6769 err = -ENOMEM;
6770 goto out_free_adapter;
6771 }
6772 }
6773
6774 setup_memwin(adapter);
6775 err = adap_init0(adapter, 0);
6776 if (err)
6777 goto out_unmap_bar;
6778
6779 setup_memwin_rdma(adapter);
6780
6781 /* configure SGE_STAT_CFG_A to read WC stats */
6782 if (!is_t4(adapter->params.chip))
6783 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6784 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6785 T6_STATMODE_V(0)));
6786
6787 /* Initialize hash mac addr list */
6788 INIT_LIST_HEAD(&adapter->mac_hlist);
6789
6790 for_each_port(adapter, i) {
6791 /* For supporting MQPRIO Offload, need some extra
6792 * queues for each ETHOFLD TIDs. Keep it equal to
6793 * MAX_ATIDs for now. Once we connect to firmware
6794 * later and query the EOTID params, we'll come to
6795 * know the actual # of EOTIDs supported.
6796 */
6797 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6798 MAX_ETH_QSETS + MAX_ATIDS);
6799 if (!netdev) {
6800 err = -ENOMEM;
6801 goto out_free_dev;
6802 }
6803
6804 SET_NETDEV_DEV(netdev, &pdev->dev);
6805
6806 adapter->port[i] = netdev;
6807 pi = netdev_priv(netdev);
6808 pi->adapter = adapter;
6809 pi->xact_addr_filt = -1;
6810 pi->port_id = i;
6811 netdev->irq = pdev->irq;
6812
6813 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6814 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6815 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6816 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6817 NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA;
6818
6819 if (chip_ver > CHELSIO_T5) {
6820 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6821 NETIF_F_IPV6_CSUM |
6822 NETIF_F_RXCSUM |
6823 NETIF_F_GSO_UDP_TUNNEL |
6824 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6825 NETIF_F_TSO | NETIF_F_TSO6;
6826
6827 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6828 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6829 NETIF_F_HW_TLS_RECORD;
6830
6831 if (adapter->rawf_cnt)
6832 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6833 }
6834
6835 netdev->features |= netdev->hw_features;
6836 netdev->vlan_features = netdev->features & VLAN_FEAT;
6837 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6838 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6839 netdev->hw_features |= NETIF_F_HW_TLS_TX;
6840 netdev->tlsdev_ops = &cxgb4_ktls_ops;
6841 /* initialize the refcount */
6842 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6843 }
6844 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6845 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6846 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6847 netdev->hw_enc_features |= NETIF_F_HW_ESP;
6848 netdev->features |= NETIF_F_HW_ESP;
6849 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6850 }
6851 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6852
6853 netdev->priv_flags |= IFF_UNICAST_FLT;
6854
6855 /* MTU range: 81 - 9600 */
6856 netdev->min_mtu = 81; /* accommodate SACK */
6857 netdev->max_mtu = MAX_MTU;
6858
6859 netdev->netdev_ops = &cxgb4_netdev_ops;
6860 #ifdef CONFIG_CHELSIO_T4_DCB
6861 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6862 cxgb4_dcb_state_init(netdev);
6863 cxgb4_dcb_version_init(netdev);
6864 #endif
6865 cxgb4_set_ethtool_ops(netdev);
6866 }
6867
6868 cxgb4_init_ethtool_dump(adapter);
6869
6870 pci_set_drvdata(pdev, adapter);
6871
6872 if (adapter->flags & CXGB4_FW_OK) {
6873 err = t4_port_init(adapter, func, func, 0);
6874 if (err)
6875 goto out_free_dev;
6876 } else if (adapter->params.nports == 1) {
6877 /* If we don't have a connection to the firmware -- possibly
6878 * because of an error -- grab the raw VPD parameters so we
6879 * can set the proper MAC Address on the debug network
6880 * interface that we've created.
6881 */
6882 u8 hw_addr[ETH_ALEN];
6883 u8 *na = adapter->params.vpd.na;
6884
6885 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6886 if (!err) {
6887 for (i = 0; i < ETH_ALEN; i++)
6888 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6889 hex2val(na[2 * i + 1]));
6890 t4_set_hw_addr(adapter, 0, hw_addr);
6891 }
6892 }
6893
6894 if (!(adapter->flags & CXGB4_FW_OK))
6895 goto fw_attach_fail;
6896
6897 /* Configure queues and allocate tables now, they can be needed as
6898 * soon as the first register_netdev completes.
6899 */
6900 err = cfg_queues(adapter);
6901 if (err)
6902 goto out_free_dev;
6903
6904 adapter->smt = t4_init_smt();
6905 if (!adapter->smt) {
6906 /* We tolerate a lack of SMT, giving up some functionality */
6907 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6908 }
6909
6910 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6911 if (!adapter->l2t) {
6912 /* We tolerate a lack of L2T, giving up some functionality */
6913 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6914 adapter->params.offload = 0;
6915 }
6916
6917 #if IS_ENABLED(CONFIG_IPV6)
6918 if (chip_ver <= CHELSIO_T5 &&
6919 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6920 /* CLIP functionality is not present in hardware,
6921 * hence disable all offload features
6922 */
6923 dev_warn(&pdev->dev,
6924 "CLIP not enabled in hardware, continuing\n");
6925 adapter->params.offload = 0;
6926 } else {
6927 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6928 adapter->clipt_end);
6929 if (!adapter->clipt) {
6930 /* We tolerate a lack of clip_table, giving up
6931 * some functionality
6932 */
6933 dev_warn(&pdev->dev,
6934 "could not allocate Clip table, continuing\n");
6935 adapter->params.offload = 0;
6936 }
6937 }
6938 #endif
6939
6940 for_each_port(adapter, i) {
6941 pi = adap2pinfo(adapter, i);
6942 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6943 if (!pi->sched_tbl)
6944 dev_warn(&pdev->dev,
6945 "could not activate scheduling on port %d\n",
6946 i);
6947 }
6948
6949 if (is_offload(adapter) || is_hashfilter(adapter)) {
6950 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6951 u32 v;
6952
6953 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6954 if (chip_ver <= CHELSIO_T5) {
6955 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6956 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6957 adapter->tids.hash_base = v / 4;
6958 } else {
6959 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6960 v = t4_read_reg(adapter,
6961 T6_LE_DB_HASH_TID_BASE_A);
6962 adapter->tids.hash_base = v;
6963 }
6964 }
6965 }
6966
6967 if (tid_init(&adapter->tids) < 0) {
6968 dev_warn(&pdev->dev, "could not allocate TID table, "
6969 "continuing\n");
6970 adapter->params.offload = 0;
6971 } else {
6972 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6973 if (!adapter->tc_u32)
6974 dev_warn(&pdev->dev,
6975 "could not offload tc u32, continuing\n");
6976
6977 if (cxgb4_init_tc_flower(adapter))
6978 dev_warn(&pdev->dev,
6979 "could not offload tc flower, continuing\n");
6980
6981 if (cxgb4_init_tc_mqprio(adapter))
6982 dev_warn(&pdev->dev,
6983 "could not offload tc mqprio, continuing\n");
6984
6985 if (cxgb4_init_tc_matchall(adapter))
6986 dev_warn(&pdev->dev,
6987 "could not offload tc matchall, continuing\n");
6988 if (cxgb4_init_ethtool_filters(adapter))
6989 dev_warn(&pdev->dev,
6990 "could not initialize ethtool filters, continuing\n");
6991 }
6992
6993 /* See what interrupts we'll be using */
6994 if (msi > 1 && enable_msix(adapter) == 0)
6995 adapter->flags |= CXGB4_USING_MSIX;
6996 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6997 adapter->flags |= CXGB4_USING_MSI;
6998 if (msi > 1)
6999 free_msix_info(adapter);
7000 }
7001
7002 /* check for PCI Express bandwidth capabiltites */
7003 pcie_print_link_status(pdev);
7004
7005 cxgb4_init_mps_ref_entries(adapter);
7006
7007 err = init_rss(adapter);
7008 if (err)
7009 goto out_free_dev;
7010
7011 err = setup_non_data_intr(adapter);
7012 if (err) {
7013 dev_err(adapter->pdev_dev,
7014 "Non Data interrupt allocation failed, err: %d\n", err);
7015 goto out_free_dev;
7016 }
7017
7018 err = setup_fw_sge_queues(adapter);
7019 if (err) {
7020 dev_err(adapter->pdev_dev,
7021 "FW sge queue allocation failed, err %d", err);
7022 goto out_free_dev;
7023 }
7024
7025 fw_attach_fail:
7026 /*
7027 * The card is now ready to go. If any errors occur during device
7028 * registration we do not fail the whole card but rather proceed only
7029 * with the ports we manage to register successfully. However we must
7030 * register at least one net device.
7031 */
7032 for_each_port(adapter, i) {
7033 pi = adap2pinfo(adapter, i);
7034 adapter->port[i]->dev_port = pi->lport;
7035 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7036 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7037
7038 netif_carrier_off(adapter->port[i]);
7039
7040 err = register_netdev(adapter->port[i]);
7041 if (err)
7042 break;
7043 adapter->chan_map[pi->tx_chan] = i;
7044 print_port_info(adapter->port[i]);
7045 }
7046 if (i == 0) {
7047 dev_err(&pdev->dev, "could not register any net devices\n");
7048 goto out_free_dev;
7049 }
7050 if (err) {
7051 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7052 err = 0;
7053 }
7054
7055 if (cxgb4_debugfs_root) {
7056 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7057 cxgb4_debugfs_root);
7058 setup_debugfs(adapter);
7059 }
7060
7061 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7062 pdev->needs_freset = 1;
7063
7064 if (is_uld(adapter))
7065 cxgb4_uld_enable(adapter);
7066
7067 if (!is_t4(adapter->params.chip))
7068 cxgb4_ptp_init(adapter);
7069
7070 if (IS_REACHABLE(CONFIG_THERMAL) &&
7071 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7072 cxgb4_thermal_init(adapter);
7073
7074 print_adapter_info(adapter);
7075 return 0;
7076
7077 out_free_dev:
7078 t4_free_sge_resources(adapter);
7079 free_some_resources(adapter);
7080 if (adapter->flags & CXGB4_USING_MSIX)
7081 free_msix_info(adapter);
7082 if (adapter->num_uld || adapter->num_ofld_uld)
7083 t4_uld_mem_free(adapter);
7084 out_unmap_bar:
7085 if (!is_t4(adapter->params.chip))
7086 iounmap(adapter->bar2);
7087 out_free_adapter:
7088 if (adapter->workq)
7089 destroy_workqueue(adapter->workq);
7090
7091 kfree(adapter->mbox_log);
7092 kfree(adapter);
7093 out_unmap_bar0:
7094 iounmap(regs);
7095 out_disable_device:
7096 pci_disable_device(pdev);
7097 out_release_regions:
7098 pci_release_regions(pdev);
7099 return err;
7100 }
7101
remove_one(struct pci_dev * pdev)7102 static void remove_one(struct pci_dev *pdev)
7103 {
7104 struct adapter *adapter = pci_get_drvdata(pdev);
7105 struct hash_mac_addr *entry, *tmp;
7106
7107 if (!adapter) {
7108 pci_release_regions(pdev);
7109 return;
7110 }
7111
7112 /* If we allocated filters, free up state associated with any
7113 * valid filters ...
7114 */
7115 clear_all_filters(adapter);
7116
7117 adapter->flags |= CXGB4_SHUTTING_DOWN;
7118
7119 if (adapter->pf == 4) {
7120 int i;
7121
7122 /* Tear down per-adapter Work Queue first since it can contain
7123 * references to our adapter data structure.
7124 */
7125 destroy_workqueue(adapter->workq);
7126
7127 detach_ulds(adapter);
7128
7129 for_each_port(adapter, i)
7130 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7131 unregister_netdev(adapter->port[i]);
7132
7133 t4_uld_clean_up(adapter);
7134
7135 adap_free_hma_mem(adapter);
7136
7137 disable_interrupts(adapter);
7138
7139 cxgb4_free_mps_ref_entries(adapter);
7140
7141 debugfs_remove_recursive(adapter->debugfs_root);
7142
7143 if (!is_t4(adapter->params.chip))
7144 cxgb4_ptp_stop(adapter);
7145 if (IS_REACHABLE(CONFIG_THERMAL))
7146 cxgb4_thermal_remove(adapter);
7147
7148 if (adapter->flags & CXGB4_FULL_INIT_DONE)
7149 cxgb_down(adapter);
7150
7151 if (adapter->flags & CXGB4_USING_MSIX)
7152 free_msix_info(adapter);
7153 if (adapter->num_uld || adapter->num_ofld_uld)
7154 t4_uld_mem_free(adapter);
7155 free_some_resources(adapter);
7156 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7157 list) {
7158 list_del(&entry->list);
7159 kfree(entry);
7160 }
7161
7162 #if IS_ENABLED(CONFIG_IPV6)
7163 t4_cleanup_clip_tbl(adapter);
7164 #endif
7165 if (!is_t4(adapter->params.chip))
7166 iounmap(adapter->bar2);
7167 }
7168 #ifdef CONFIG_PCI_IOV
7169 else {
7170 cxgb4_iov_configure(adapter->pdev, 0);
7171 }
7172 #endif
7173 iounmap(adapter->regs);
7174 if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7175 pci_disable_device(pdev);
7176 adapter->flags &= ~CXGB4_DEV_ENABLED;
7177 }
7178 pci_release_regions(pdev);
7179 kfree(adapter->mbox_log);
7180 synchronize_rcu();
7181 kfree(adapter);
7182 }
7183
7184 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7185 * delivery. This is essentially a stripped down version of the PCI remove()
7186 * function where we do the minimal amount of work necessary to shutdown any
7187 * further activity.
7188 */
shutdown_one(struct pci_dev * pdev)7189 static void shutdown_one(struct pci_dev *pdev)
7190 {
7191 struct adapter *adapter = pci_get_drvdata(pdev);
7192
7193 /* As with remove_one() above (see extended comment), we only want do
7194 * do cleanup on PCI Devices which went all the way through init_one()
7195 * ...
7196 */
7197 if (!adapter) {
7198 pci_release_regions(pdev);
7199 return;
7200 }
7201
7202 adapter->flags |= CXGB4_SHUTTING_DOWN;
7203
7204 if (adapter->pf == 4) {
7205 int i;
7206
7207 for_each_port(adapter, i)
7208 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7209 cxgb_close(adapter->port[i]);
7210
7211 rtnl_lock();
7212 cxgb4_mqprio_stop_offload(adapter);
7213 rtnl_unlock();
7214
7215 if (is_uld(adapter)) {
7216 detach_ulds(adapter);
7217 t4_uld_clean_up(adapter);
7218 }
7219
7220 disable_interrupts(adapter);
7221 disable_msi(adapter);
7222
7223 t4_sge_stop(adapter);
7224 if (adapter->flags & CXGB4_FW_OK)
7225 t4_fw_bye(adapter, adapter->mbox);
7226 }
7227 }
7228
7229 static struct pci_driver cxgb4_driver = {
7230 .name = KBUILD_MODNAME,
7231 .id_table = cxgb4_pci_tbl,
7232 .probe = init_one,
7233 .remove = remove_one,
7234 .shutdown = shutdown_one,
7235 #ifdef CONFIG_PCI_IOV
7236 .sriov_configure = cxgb4_iov_configure,
7237 #endif
7238 .err_handler = &cxgb4_eeh,
7239 };
7240
cxgb4_init_module(void)7241 static int __init cxgb4_init_module(void)
7242 {
7243 int ret;
7244
7245 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7246
7247 ret = pci_register_driver(&cxgb4_driver);
7248 if (ret < 0)
7249 goto err_pci;
7250
7251 #if IS_ENABLED(CONFIG_IPV6)
7252 if (!inet6addr_registered) {
7253 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7254 if (ret)
7255 pci_unregister_driver(&cxgb4_driver);
7256 else
7257 inet6addr_registered = true;
7258 }
7259 #endif
7260
7261 if (ret == 0)
7262 return ret;
7263
7264 err_pci:
7265 debugfs_remove(cxgb4_debugfs_root);
7266
7267 return ret;
7268 }
7269
cxgb4_cleanup_module(void)7270 static void __exit cxgb4_cleanup_module(void)
7271 {
7272 #if IS_ENABLED(CONFIG_IPV6)
7273 if (inet6addr_registered) {
7274 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7275 inet6addr_registered = false;
7276 }
7277 #endif
7278 pci_unregister_driver(&cxgb4_driver);
7279 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
7280 }
7281
7282 module_init(cxgb4_init_module);
7283 module_exit(cxgb4_cleanup_module);
7284