xref: /openbmc/linux/fs/btrfs/scrub.c (revision d32fd6bb9f2bc8178cdd65ebec1ad670a8bfa241)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This detemines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP		8
50 
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX		16
58 
59 #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60 
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66 
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 	bool is_metadata;
70 
71 	union {
72 		/*
73 		 * Csum pointer for data csum verification.  Should point to a
74 		 * sector csum inside scrub_stripe::csums.
75 		 *
76 		 * NULL if this data sector has no csum.
77 		 */
78 		u8 *csum;
79 
80 		/*
81 		 * Extra info for metadata verification.  All sectors inside a
82 		 * tree block share the same generation.
83 		 */
84 		u64 generation;
85 	};
86 };
87 
88 enum scrub_stripe_flags {
89 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90 	SCRUB_STRIPE_FLAG_INITIALIZED,
91 
92 	/* Set when the read-repair is finished. */
93 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94 
95 	/*
96 	 * Set for data stripes if it's triggered from P/Q stripe.
97 	 * During such scrub, we should not report errors in data stripes, nor
98 	 * update the accounting.
99 	 */
100 	SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109 	struct scrub_ctx *sctx;
110 	struct btrfs_block_group *bg;
111 
112 	struct page *pages[SCRUB_STRIPE_PAGES];
113 	struct scrub_sector_verification *sectors;
114 
115 	struct btrfs_device *dev;
116 	u64 logical;
117 	u64 physical;
118 
119 	u16 mirror_num;
120 
121 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 	u16 nr_sectors;
123 
124 	/*
125 	 * How many data/meta extents are in this stripe.  Only for scrub status
126 	 * reporting purposes.
127 	 */
128 	u16 nr_data_extents;
129 	u16 nr_meta_extents;
130 
131 	atomic_t pending_io;
132 	wait_queue_head_t io_wait;
133 	wait_queue_head_t repair_wait;
134 
135 	/*
136 	 * Indicate the states of the stripe.  Bits are defined in
137 	 * scrub_stripe_flags enum.
138 	 */
139 	unsigned long state;
140 
141 	/* Indicate which sectors are covered by extent items. */
142 	unsigned long extent_sector_bitmap;
143 
144 	/*
145 	 * The errors hit during the initial read of the stripe.
146 	 *
147 	 * Would be utilized for error reporting and repair.
148 	 *
149 	 * The remaining init_nr_* records the number of errors hit, only used
150 	 * by error reporting.
151 	 */
152 	unsigned long init_error_bitmap;
153 	unsigned int init_nr_io_errors;
154 	unsigned int init_nr_csum_errors;
155 	unsigned int init_nr_meta_errors;
156 
157 	/*
158 	 * The following error bitmaps are all for the current status.
159 	 * Every time we submit a new read, these bitmaps may be updated.
160 	 *
161 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 	 *
163 	 * IO and csum errors can happen for both metadata and data.
164 	 */
165 	unsigned long error_bitmap;
166 	unsigned long io_error_bitmap;
167 	unsigned long csum_error_bitmap;
168 	unsigned long meta_error_bitmap;
169 
170 	/* For writeback (repair or replace) error reporting. */
171 	unsigned long write_error_bitmap;
172 
173 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174 	spinlock_t write_error_lock;
175 
176 	/*
177 	 * Checksum for the whole stripe if this stripe is inside a data block
178 	 * group.
179 	 */
180 	u8 *csums;
181 
182 	struct work_struct work;
183 };
184 
185 struct scrub_ctx {
186 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187 	struct scrub_stripe	*raid56_data_stripes;
188 	struct btrfs_fs_info	*fs_info;
189 	struct btrfs_path	extent_path;
190 	struct btrfs_path	csum_path;
191 	int			first_free;
192 	int			cur_stripe;
193 	atomic_t		cancel_req;
194 	int			readonly;
195 	int			sectors_per_bio;
196 
197 	/* State of IO submission throttling affecting the associated device */
198 	ktime_t			throttle_deadline;
199 	u64			throttle_sent;
200 
201 	int			is_dev_replace;
202 	u64			write_pointer;
203 
204 	struct mutex            wr_lock;
205 	struct btrfs_device     *wr_tgtdev;
206 
207 	/*
208 	 * statistics
209 	 */
210 	struct btrfs_scrub_progress stat;
211 	spinlock_t		stat_lock;
212 
213 	/*
214 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
215 	 * decrement bios_in_flight and workers_pending and then do a wakeup
216 	 * on the list_wait wait queue. We must ensure the main scrub task
217 	 * doesn't free the scrub context before or while the workers are
218 	 * doing the wakeup() call.
219 	 */
220 	refcount_t              refs;
221 };
222 
223 struct scrub_warning {
224 	struct btrfs_path	*path;
225 	u64			extent_item_size;
226 	const char		*errstr;
227 	u64			physical;
228 	u64			logical;
229 	struct btrfs_device	*dev;
230 };
231 
release_scrub_stripe(struct scrub_stripe * stripe)232 static void release_scrub_stripe(struct scrub_stripe *stripe)
233 {
234 	if (!stripe)
235 		return;
236 
237 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
238 		if (stripe->pages[i])
239 			__free_page(stripe->pages[i]);
240 		stripe->pages[i] = NULL;
241 	}
242 	kfree(stripe->sectors);
243 	kfree(stripe->csums);
244 	stripe->sectors = NULL;
245 	stripe->csums = NULL;
246 	stripe->sctx = NULL;
247 	stripe->state = 0;
248 }
249 
init_scrub_stripe(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe)250 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
251 			     struct scrub_stripe *stripe)
252 {
253 	int ret;
254 
255 	memset(stripe, 0, sizeof(*stripe));
256 
257 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
258 	stripe->state = 0;
259 
260 	init_waitqueue_head(&stripe->io_wait);
261 	init_waitqueue_head(&stripe->repair_wait);
262 	atomic_set(&stripe->pending_io, 0);
263 	spin_lock_init(&stripe->write_error_lock);
264 
265 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
266 	if (ret < 0)
267 		goto error;
268 
269 	stripe->sectors = kcalloc(stripe->nr_sectors,
270 				  sizeof(struct scrub_sector_verification),
271 				  GFP_KERNEL);
272 	if (!stripe->sectors)
273 		goto error;
274 
275 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
276 				fs_info->csum_size, GFP_KERNEL);
277 	if (!stripe->csums)
278 		goto error;
279 	return 0;
280 error:
281 	release_scrub_stripe(stripe);
282 	return -ENOMEM;
283 }
284 
wait_scrub_stripe_io(struct scrub_stripe * stripe)285 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
286 {
287 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
288 }
289 
290 static void scrub_put_ctx(struct scrub_ctx *sctx);
291 
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)292 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
293 {
294 	while (atomic_read(&fs_info->scrub_pause_req)) {
295 		mutex_unlock(&fs_info->scrub_lock);
296 		wait_event(fs_info->scrub_pause_wait,
297 		   atomic_read(&fs_info->scrub_pause_req) == 0);
298 		mutex_lock(&fs_info->scrub_lock);
299 	}
300 }
301 
scrub_pause_on(struct btrfs_fs_info * fs_info)302 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
303 {
304 	atomic_inc(&fs_info->scrubs_paused);
305 	wake_up(&fs_info->scrub_pause_wait);
306 }
307 
scrub_pause_off(struct btrfs_fs_info * fs_info)308 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
309 {
310 	mutex_lock(&fs_info->scrub_lock);
311 	__scrub_blocked_if_needed(fs_info);
312 	atomic_dec(&fs_info->scrubs_paused);
313 	mutex_unlock(&fs_info->scrub_lock);
314 
315 	wake_up(&fs_info->scrub_pause_wait);
316 }
317 
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)318 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 {
320 	scrub_pause_on(fs_info);
321 	scrub_pause_off(fs_info);
322 }
323 
scrub_free_ctx(struct scrub_ctx * sctx)324 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
325 {
326 	int i;
327 
328 	if (!sctx)
329 		return;
330 
331 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
332 		release_scrub_stripe(&sctx->stripes[i]);
333 
334 	kvfree(sctx);
335 }
336 
scrub_put_ctx(struct scrub_ctx * sctx)337 static void scrub_put_ctx(struct scrub_ctx *sctx)
338 {
339 	if (refcount_dec_and_test(&sctx->refs))
340 		scrub_free_ctx(sctx);
341 }
342 
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)343 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
344 		struct btrfs_fs_info *fs_info, int is_dev_replace)
345 {
346 	struct scrub_ctx *sctx;
347 	int		i;
348 
349 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
350 	 * kvzalloc().
351 	 */
352 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
353 	if (!sctx)
354 		goto nomem;
355 	refcount_set(&sctx->refs, 1);
356 	sctx->is_dev_replace = is_dev_replace;
357 	sctx->fs_info = fs_info;
358 	sctx->extent_path.search_commit_root = 1;
359 	sctx->extent_path.skip_locking = 1;
360 	sctx->csum_path.search_commit_root = 1;
361 	sctx->csum_path.skip_locking = 1;
362 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
363 		int ret;
364 
365 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
366 		if (ret < 0)
367 			goto nomem;
368 		sctx->stripes[i].sctx = sctx;
369 	}
370 	sctx->first_free = 0;
371 	atomic_set(&sctx->cancel_req, 0);
372 
373 	spin_lock_init(&sctx->stat_lock);
374 	sctx->throttle_deadline = 0;
375 
376 	mutex_init(&sctx->wr_lock);
377 	if (is_dev_replace) {
378 		WARN_ON(!fs_info->dev_replace.tgtdev);
379 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
380 	}
381 
382 	return sctx;
383 
384 nomem:
385 	scrub_free_ctx(sctx);
386 	return ERR_PTR(-ENOMEM);
387 }
388 
scrub_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)389 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
390 				     u64 root, void *warn_ctx)
391 {
392 	u32 nlink;
393 	int ret;
394 	int i;
395 	unsigned nofs_flag;
396 	struct extent_buffer *eb;
397 	struct btrfs_inode_item *inode_item;
398 	struct scrub_warning *swarn = warn_ctx;
399 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
400 	struct inode_fs_paths *ipath = NULL;
401 	struct btrfs_root *local_root;
402 	struct btrfs_key key;
403 
404 	local_root = btrfs_get_fs_root(fs_info, root, true);
405 	if (IS_ERR(local_root)) {
406 		ret = PTR_ERR(local_root);
407 		goto err;
408 	}
409 
410 	/*
411 	 * this makes the path point to (inum INODE_ITEM ioff)
412 	 */
413 	key.objectid = inum;
414 	key.type = BTRFS_INODE_ITEM_KEY;
415 	key.offset = 0;
416 
417 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
418 	if (ret) {
419 		btrfs_put_root(local_root);
420 		btrfs_release_path(swarn->path);
421 		goto err;
422 	}
423 
424 	eb = swarn->path->nodes[0];
425 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
426 					struct btrfs_inode_item);
427 	nlink = btrfs_inode_nlink(eb, inode_item);
428 	btrfs_release_path(swarn->path);
429 
430 	/*
431 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
432 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
433 	 * not seem to be strictly necessary.
434 	 */
435 	nofs_flag = memalloc_nofs_save();
436 	ipath = init_ipath(4096, local_root, swarn->path);
437 	memalloc_nofs_restore(nofs_flag);
438 	if (IS_ERR(ipath)) {
439 		btrfs_put_root(local_root);
440 		ret = PTR_ERR(ipath);
441 		ipath = NULL;
442 		goto err;
443 	}
444 	ret = paths_from_inode(inum, ipath);
445 
446 	if (ret < 0)
447 		goto err;
448 
449 	/*
450 	 * we deliberately ignore the bit ipath might have been too small to
451 	 * hold all of the paths here
452 	 */
453 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
454 		btrfs_warn_in_rcu(fs_info,
455 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
456 				  swarn->errstr, swarn->logical,
457 				  btrfs_dev_name(swarn->dev),
458 				  swarn->physical,
459 				  root, inum, offset,
460 				  fs_info->sectorsize, nlink,
461 				  (char *)(unsigned long)ipath->fspath->val[i]);
462 
463 	btrfs_put_root(local_root);
464 	free_ipath(ipath);
465 	return 0;
466 
467 err:
468 	btrfs_warn_in_rcu(fs_info,
469 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
470 			  swarn->errstr, swarn->logical,
471 			  btrfs_dev_name(swarn->dev),
472 			  swarn->physical,
473 			  root, inum, offset, ret);
474 
475 	free_ipath(ipath);
476 	return 0;
477 }
478 
scrub_print_common_warning(const char * errstr,struct btrfs_device * dev,bool is_super,u64 logical,u64 physical)479 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
480 				       bool is_super, u64 logical, u64 physical)
481 {
482 	struct btrfs_fs_info *fs_info = dev->fs_info;
483 	struct btrfs_path *path;
484 	struct btrfs_key found_key;
485 	struct extent_buffer *eb;
486 	struct btrfs_extent_item *ei;
487 	struct scrub_warning swarn;
488 	u64 flags = 0;
489 	u32 item_size;
490 	int ret;
491 
492 	/* Super block error, no need to search extent tree. */
493 	if (is_super) {
494 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
495 				  errstr, btrfs_dev_name(dev), physical);
496 		return;
497 	}
498 	path = btrfs_alloc_path();
499 	if (!path)
500 		return;
501 
502 	swarn.physical = physical;
503 	swarn.logical = logical;
504 	swarn.errstr = errstr;
505 	swarn.dev = NULL;
506 
507 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
508 				  &flags);
509 	if (ret < 0)
510 		goto out;
511 
512 	swarn.extent_item_size = found_key.offset;
513 
514 	eb = path->nodes[0];
515 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
516 	item_size = btrfs_item_size(eb, path->slots[0]);
517 
518 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
519 		unsigned long ptr = 0;
520 		u8 ref_level;
521 		u64 ref_root;
522 
523 		while (true) {
524 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
525 						      item_size, &ref_root,
526 						      &ref_level);
527 			if (ret < 0) {
528 				btrfs_warn(fs_info,
529 				"failed to resolve tree backref for logical %llu: %d",
530 						  swarn.logical, ret);
531 				break;
532 			}
533 			if (ret > 0)
534 				break;
535 			btrfs_warn_in_rcu(fs_info,
536 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
537 				errstr, swarn.logical, btrfs_dev_name(dev),
538 				swarn.physical, (ref_level ? "node" : "leaf"),
539 				ref_level, ref_root);
540 		}
541 		btrfs_release_path(path);
542 	} else {
543 		struct btrfs_backref_walk_ctx ctx = { 0 };
544 
545 		btrfs_release_path(path);
546 
547 		ctx.bytenr = found_key.objectid;
548 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
549 		ctx.fs_info = fs_info;
550 
551 		swarn.path = path;
552 		swarn.dev = dev;
553 
554 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
555 	}
556 
557 out:
558 	btrfs_free_path(path);
559 }
560 
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)561 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
562 {
563 	int ret = 0;
564 	u64 length;
565 
566 	if (!btrfs_is_zoned(sctx->fs_info))
567 		return 0;
568 
569 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
570 		return 0;
571 
572 	if (sctx->write_pointer < physical) {
573 		length = physical - sctx->write_pointer;
574 
575 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
576 						sctx->write_pointer, length);
577 		if (!ret)
578 			sctx->write_pointer = physical;
579 	}
580 	return ret;
581 }
582 
scrub_stripe_get_page(struct scrub_stripe * stripe,int sector_nr)583 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
584 {
585 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
586 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
587 
588 	return stripe->pages[page_index];
589 }
590 
scrub_stripe_get_page_offset(struct scrub_stripe * stripe,int sector_nr)591 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
592 						 int sector_nr)
593 {
594 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
595 
596 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
597 }
598 
scrub_verify_one_metadata(struct scrub_stripe * stripe,int sector_nr)599 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
600 {
601 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
602 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
603 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
604 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
605 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
606 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
607 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
608 	u8 calculated_csum[BTRFS_CSUM_SIZE];
609 	struct btrfs_header *header;
610 
611 	/*
612 	 * Here we don't have a good way to attach the pages (and subpages)
613 	 * to a dummy extent buffer, thus we have to directly grab the members
614 	 * from pages.
615 	 */
616 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
617 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
618 
619 	if (logical != btrfs_stack_header_bytenr(header)) {
620 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
621 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
622 		btrfs_warn_rl(fs_info,
623 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
624 			      logical, stripe->mirror_num,
625 			      btrfs_stack_header_bytenr(header), logical);
626 		return;
627 	}
628 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
629 		   BTRFS_FSID_SIZE) != 0) {
630 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
631 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
632 		btrfs_warn_rl(fs_info,
633 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
634 			      logical, stripe->mirror_num,
635 			      header->fsid, fs_info->fs_devices->fsid);
636 		return;
637 	}
638 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
639 		   BTRFS_UUID_SIZE) != 0) {
640 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
641 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
642 		btrfs_warn_rl(fs_info,
643 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
644 			      logical, stripe->mirror_num,
645 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
646 		return;
647 	}
648 
649 	/* Now check tree block csum. */
650 	shash->tfm = fs_info->csum_shash;
651 	crypto_shash_init(shash);
652 	crypto_shash_update(shash, page_address(first_page) + first_off +
653 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
654 
655 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
656 		struct page *page = scrub_stripe_get_page(stripe, i);
657 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
658 
659 		crypto_shash_update(shash, page_address(page) + page_off,
660 				    fs_info->sectorsize);
661 	}
662 
663 	crypto_shash_final(shash, calculated_csum);
664 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
665 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
666 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
667 		btrfs_warn_rl(fs_info,
668 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
669 			      logical, stripe->mirror_num,
670 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
671 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
672 		return;
673 	}
674 	if (stripe->sectors[sector_nr].generation !=
675 	    btrfs_stack_header_generation(header)) {
676 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
677 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
678 		btrfs_warn_rl(fs_info,
679 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
680 			      logical, stripe->mirror_num,
681 			      btrfs_stack_header_generation(header),
682 			      stripe->sectors[sector_nr].generation);
683 		return;
684 	}
685 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
686 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
687 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
688 }
689 
scrub_verify_one_sector(struct scrub_stripe * stripe,int sector_nr)690 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
691 {
692 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
693 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
694 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
695 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
696 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
697 	u8 csum_buf[BTRFS_CSUM_SIZE];
698 	int ret;
699 
700 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
701 
702 	/* Sector not utilized, skip it. */
703 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
704 		return;
705 
706 	/* IO error, no need to check. */
707 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
708 		return;
709 
710 	/* Metadata, verify the full tree block. */
711 	if (sector->is_metadata) {
712 		/*
713 		 * Check if the tree block crosses the stripe boudary.  If
714 		 * crossed the boundary, we cannot verify it but only give a
715 		 * warning.
716 		 *
717 		 * This can only happen on a very old filesystem where chunks
718 		 * are not ensured to be stripe aligned.
719 		 */
720 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
721 			btrfs_warn_rl(fs_info,
722 			"tree block at %llu crosses stripe boundary %llu",
723 				      stripe->logical +
724 				      (sector_nr << fs_info->sectorsize_bits),
725 				      stripe->logical);
726 			return;
727 		}
728 		scrub_verify_one_metadata(stripe, sector_nr);
729 		return;
730 	}
731 
732 	/*
733 	 * Data is easier, we just verify the data csum (if we have it).  For
734 	 * cases without csum, we have no other choice but to trust it.
735 	 */
736 	if (!sector->csum) {
737 		clear_bit(sector_nr, &stripe->error_bitmap);
738 		return;
739 	}
740 
741 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
742 	if (ret < 0) {
743 		set_bit(sector_nr, &stripe->csum_error_bitmap);
744 		set_bit(sector_nr, &stripe->error_bitmap);
745 	} else {
746 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
747 		clear_bit(sector_nr, &stripe->error_bitmap);
748 	}
749 }
750 
751 /* Verify specified sectors of a stripe. */
scrub_verify_one_stripe(struct scrub_stripe * stripe,unsigned long bitmap)752 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
753 {
754 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
755 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
756 	int sector_nr;
757 
758 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
759 		scrub_verify_one_sector(stripe, sector_nr);
760 		if (stripe->sectors[sector_nr].is_metadata)
761 			sector_nr += sectors_per_tree - 1;
762 	}
763 }
764 
calc_sector_number(struct scrub_stripe * stripe,struct bio_vec * first_bvec)765 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
766 {
767 	int i;
768 
769 	for (i = 0; i < stripe->nr_sectors; i++) {
770 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
771 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
772 			break;
773 	}
774 	ASSERT(i < stripe->nr_sectors);
775 	return i;
776 }
777 
778 /*
779  * Repair read is different to the regular read:
780  *
781  * - Only reads the failed sectors
782  * - May have extra blocksize limits
783  */
scrub_repair_read_endio(struct btrfs_bio * bbio)784 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
785 {
786 	struct scrub_stripe *stripe = bbio->private;
787 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
788 	struct bio_vec *bvec;
789 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
790 	u32 bio_size = 0;
791 	int i;
792 
793 	ASSERT(sector_nr < stripe->nr_sectors);
794 
795 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
796 		bio_size += bvec->bv_len;
797 
798 	if (bbio->bio.bi_status) {
799 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
800 			   bio_size >> fs_info->sectorsize_bits);
801 		bitmap_set(&stripe->error_bitmap, sector_nr,
802 			   bio_size >> fs_info->sectorsize_bits);
803 	} else {
804 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
805 			     bio_size >> fs_info->sectorsize_bits);
806 	}
807 	bio_put(&bbio->bio);
808 	if (atomic_dec_and_test(&stripe->pending_io))
809 		wake_up(&stripe->io_wait);
810 }
811 
calc_next_mirror(int mirror,int num_copies)812 static int calc_next_mirror(int mirror, int num_copies)
813 {
814 	ASSERT(mirror <= num_copies);
815 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
816 }
817 
scrub_stripe_submit_repair_read(struct scrub_stripe * stripe,int mirror,int blocksize,bool wait)818 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
819 					    int mirror, int blocksize, bool wait)
820 {
821 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
822 	struct btrfs_bio *bbio = NULL;
823 	const unsigned long old_error_bitmap = stripe->error_bitmap;
824 	int i;
825 
826 	ASSERT(stripe->mirror_num >= 1);
827 	ASSERT(atomic_read(&stripe->pending_io) == 0);
828 
829 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
830 		struct page *page;
831 		int pgoff;
832 		int ret;
833 
834 		page = scrub_stripe_get_page(stripe, i);
835 		pgoff = scrub_stripe_get_page_offset(stripe, i);
836 
837 		/* The current sector cannot be merged, submit the bio. */
838 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
839 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
840 			ASSERT(bbio->bio.bi_iter.bi_size);
841 			atomic_inc(&stripe->pending_io);
842 			btrfs_submit_bio(bbio, mirror);
843 			if (wait)
844 				wait_scrub_stripe_io(stripe);
845 			bbio = NULL;
846 		}
847 
848 		if (!bbio) {
849 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
850 				fs_info, scrub_repair_read_endio, stripe);
851 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
852 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
853 		}
854 
855 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
856 		ASSERT(ret == fs_info->sectorsize);
857 	}
858 	if (bbio) {
859 		ASSERT(bbio->bio.bi_iter.bi_size);
860 		atomic_inc(&stripe->pending_io);
861 		btrfs_submit_bio(bbio, mirror);
862 		if (wait)
863 			wait_scrub_stripe_io(stripe);
864 	}
865 }
866 
scrub_stripe_report_errors(struct scrub_ctx * sctx,struct scrub_stripe * stripe)867 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
868 				       struct scrub_stripe *stripe)
869 {
870 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
871 				      DEFAULT_RATELIMIT_BURST);
872 	struct btrfs_fs_info *fs_info = sctx->fs_info;
873 	struct btrfs_device *dev = NULL;
874 	u64 physical = 0;
875 	int nr_data_sectors = 0;
876 	int nr_meta_sectors = 0;
877 	int nr_nodatacsum_sectors = 0;
878 	int nr_repaired_sectors = 0;
879 	int sector_nr;
880 
881 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
882 		return;
883 
884 	/*
885 	 * Init needed infos for error reporting.
886 	 *
887 	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
888 	 * thus no need for dev/physical, error reporting still needs dev and physical.
889 	 */
890 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
891 		u64 mapped_len = fs_info->sectorsize;
892 		struct btrfs_io_context *bioc = NULL;
893 		int stripe_index = stripe->mirror_num - 1;
894 		int ret;
895 
896 		/* For scrub, our mirror_num should always start at 1. */
897 		ASSERT(stripe->mirror_num >= 1);
898 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
899 				      stripe->logical, &mapped_len, &bioc,
900 				      NULL, NULL, 1);
901 		/*
902 		 * If we failed, dev will be NULL, and later detailed reports
903 		 * will just be skipped.
904 		 */
905 		if (ret < 0)
906 			goto skip;
907 		physical = bioc->stripes[stripe_index].physical;
908 		dev = bioc->stripes[stripe_index].dev;
909 		btrfs_put_bioc(bioc);
910 	}
911 
912 skip:
913 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
914 		bool repaired = false;
915 
916 		if (stripe->sectors[sector_nr].is_metadata) {
917 			nr_meta_sectors++;
918 		} else {
919 			nr_data_sectors++;
920 			if (!stripe->sectors[sector_nr].csum)
921 				nr_nodatacsum_sectors++;
922 		}
923 
924 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
925 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
926 			nr_repaired_sectors++;
927 			repaired = true;
928 		}
929 
930 		/* Good sector from the beginning, nothing need to be done. */
931 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
932 			continue;
933 
934 		/*
935 		 * Report error for the corrupted sectors.  If repaired, just
936 		 * output the message of repaired message.
937 		 */
938 		if (repaired) {
939 			if (dev) {
940 				btrfs_err_rl_in_rcu(fs_info,
941 			"fixed up error at logical %llu on dev %s physical %llu",
942 					    stripe->logical, btrfs_dev_name(dev),
943 					    physical);
944 			} else {
945 				btrfs_err_rl_in_rcu(fs_info,
946 			"fixed up error at logical %llu on mirror %u",
947 					    stripe->logical, stripe->mirror_num);
948 			}
949 			continue;
950 		}
951 
952 		/* The remaining are all for unrepaired. */
953 		if (dev) {
954 			btrfs_err_rl_in_rcu(fs_info,
955 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
956 					    stripe->logical, btrfs_dev_name(dev),
957 					    physical);
958 		} else {
959 			btrfs_err_rl_in_rcu(fs_info,
960 	"unable to fixup (regular) error at logical %llu on mirror %u",
961 					    stripe->logical, stripe->mirror_num);
962 		}
963 
964 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
965 			if (__ratelimit(&rs) && dev)
966 				scrub_print_common_warning("i/o error", dev, false,
967 						     stripe->logical, physical);
968 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
969 			if (__ratelimit(&rs) && dev)
970 				scrub_print_common_warning("checksum error", dev, false,
971 						     stripe->logical, physical);
972 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
973 			if (__ratelimit(&rs) && dev)
974 				scrub_print_common_warning("header error", dev, false,
975 						     stripe->logical, physical);
976 	}
977 
978 	spin_lock(&sctx->stat_lock);
979 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
980 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
981 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
982 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
983 	sctx->stat.no_csum += nr_nodatacsum_sectors;
984 	sctx->stat.read_errors += stripe->init_nr_io_errors;
985 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
986 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
987 	sctx->stat.uncorrectable_errors +=
988 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
989 	sctx->stat.corrected_errors += nr_repaired_sectors;
990 	spin_unlock(&sctx->stat_lock);
991 }
992 
993 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
994 				unsigned long write_bitmap, bool dev_replace);
995 
996 /*
997  * The main entrance for all read related scrub work, including:
998  *
999  * - Wait for the initial read to finish
1000  * - Verify and locate any bad sectors
1001  * - Go through the remaining mirrors and try to read as large blocksize as
1002  *   possible
1003  * - Go through all mirrors (including the failed mirror) sector-by-sector
1004  * - Submit writeback for repaired sectors
1005  *
1006  * Writeback for dev-replace does not happen here, it needs extra
1007  * synchronization for zoned devices.
1008  */
scrub_stripe_read_repair_worker(struct work_struct * work)1009 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1010 {
1011 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1012 	struct scrub_ctx *sctx = stripe->sctx;
1013 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1014 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1015 					  stripe->bg->length);
1016 	unsigned long repaired;
1017 	int mirror;
1018 	int i;
1019 
1020 	ASSERT(stripe->mirror_num > 0);
1021 
1022 	wait_scrub_stripe_io(stripe);
1023 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1024 	/* Save the initial failed bitmap for later repair and report usage. */
1025 	stripe->init_error_bitmap = stripe->error_bitmap;
1026 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1027 						  stripe->nr_sectors);
1028 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1029 						    stripe->nr_sectors);
1030 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1031 						    stripe->nr_sectors);
1032 
1033 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1034 		goto out;
1035 
1036 	/*
1037 	 * Try all remaining mirrors.
1038 	 *
1039 	 * Here we still try to read as large block as possible, as this is
1040 	 * faster and we have extra safety nets to rely on.
1041 	 */
1042 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1043 	     mirror != stripe->mirror_num;
1044 	     mirror = calc_next_mirror(mirror, num_copies)) {
1045 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1046 
1047 		scrub_stripe_submit_repair_read(stripe, mirror,
1048 						BTRFS_STRIPE_LEN, false);
1049 		wait_scrub_stripe_io(stripe);
1050 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1051 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1052 			goto out;
1053 	}
1054 
1055 	/*
1056 	 * Last safety net, try re-checking all mirrors, including the failed
1057 	 * one, sector-by-sector.
1058 	 *
1059 	 * As if one sector failed the drive's internal csum, the whole read
1060 	 * containing the offending sector would be marked as error.
1061 	 * Thus here we do sector-by-sector read.
1062 	 *
1063 	 * This can be slow, thus we only try it as the last resort.
1064 	 */
1065 
1066 	for (i = 0, mirror = stripe->mirror_num;
1067 	     i < num_copies;
1068 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1069 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1070 
1071 		scrub_stripe_submit_repair_read(stripe, mirror,
1072 						fs_info->sectorsize, true);
1073 		wait_scrub_stripe_io(stripe);
1074 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1075 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1076 			goto out;
1077 	}
1078 out:
1079 	/*
1080 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1081 	 * in-place, but queue the bg to be relocated.
1082 	 */
1083 	bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1084 		      stripe->nr_sectors);
1085 	if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1086 		if (btrfs_is_zoned(fs_info)) {
1087 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1088 		} else {
1089 			scrub_write_sectors(sctx, stripe, repaired, false);
1090 			wait_scrub_stripe_io(stripe);
1091 		}
1092 	}
1093 
1094 	scrub_stripe_report_errors(sctx, stripe);
1095 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1096 	wake_up(&stripe->repair_wait);
1097 }
1098 
scrub_read_endio(struct btrfs_bio * bbio)1099 static void scrub_read_endio(struct btrfs_bio *bbio)
1100 {
1101 	struct scrub_stripe *stripe = bbio->private;
1102 	struct bio_vec *bvec;
1103 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1104 	int num_sectors;
1105 	u32 bio_size = 0;
1106 	int i;
1107 
1108 	ASSERT(sector_nr < stripe->nr_sectors);
1109 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1110 		bio_size += bvec->bv_len;
1111 	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1112 
1113 	if (bbio->bio.bi_status) {
1114 		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1115 		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1116 	} else {
1117 		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1118 	}
1119 	bio_put(&bbio->bio);
1120 	if (atomic_dec_and_test(&stripe->pending_io)) {
1121 		wake_up(&stripe->io_wait);
1122 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1123 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1124 	}
1125 }
1126 
scrub_write_endio(struct btrfs_bio * bbio)1127 static void scrub_write_endio(struct btrfs_bio *bbio)
1128 {
1129 	struct scrub_stripe *stripe = bbio->private;
1130 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1131 	struct bio_vec *bvec;
1132 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1133 	u32 bio_size = 0;
1134 	int i;
1135 
1136 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1137 		bio_size += bvec->bv_len;
1138 
1139 	if (bbio->bio.bi_status) {
1140 		unsigned long flags;
1141 
1142 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1143 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1144 			   bio_size >> fs_info->sectorsize_bits);
1145 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1146 	}
1147 	bio_put(&bbio->bio);
1148 
1149 	if (atomic_dec_and_test(&stripe->pending_io))
1150 		wake_up(&stripe->io_wait);
1151 }
1152 
scrub_submit_write_bio(struct scrub_ctx * sctx,struct scrub_stripe * stripe,struct btrfs_bio * bbio,bool dev_replace)1153 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1154 				   struct scrub_stripe *stripe,
1155 				   struct btrfs_bio *bbio, bool dev_replace)
1156 {
1157 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1158 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1159 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1160 		      stripe->logical;
1161 
1162 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1163 	atomic_inc(&stripe->pending_io);
1164 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1165 	if (!btrfs_is_zoned(fs_info))
1166 		return;
1167 	/*
1168 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1169 	 * the write to finish before the next write.
1170 	 */
1171 	wait_scrub_stripe_io(stripe);
1172 
1173 	/*
1174 	 * And also need to update the write pointer if write finished
1175 	 * successfully.
1176 	 */
1177 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1178 		      &stripe->write_error_bitmap))
1179 		sctx->write_pointer += bio_len;
1180 }
1181 
1182 /*
1183  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1184  *
1185  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1186  *
1187  * - Only needs logical bytenr and mirror_num
1188  *   Just like the scrub read path
1189  *
1190  * - Would only result in writes to the specified mirror
1191  *   Unlike the regular writeback path, which would write back to all stripes
1192  *
1193  * - Handle dev-replace and read-repair writeback differently
1194  */
scrub_write_sectors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,unsigned long write_bitmap,bool dev_replace)1195 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1196 				unsigned long write_bitmap, bool dev_replace)
1197 {
1198 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1199 	struct btrfs_bio *bbio = NULL;
1200 	int sector_nr;
1201 
1202 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1203 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1204 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1205 		int ret;
1206 
1207 		/* We should only writeback sectors covered by an extent. */
1208 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1209 
1210 		/* Cannot merge with previous sector, submit the current one. */
1211 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1212 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1213 			bbio = NULL;
1214 		}
1215 		if (!bbio) {
1216 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1217 					       fs_info, scrub_write_endio, stripe);
1218 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1219 				(sector_nr << fs_info->sectorsize_bits)) >>
1220 				SECTOR_SHIFT;
1221 		}
1222 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1223 		ASSERT(ret == fs_info->sectorsize);
1224 	}
1225 	if (bbio)
1226 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1227 }
1228 
1229 /*
1230  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1231  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1232  */
scrub_throttle_dev_io(struct scrub_ctx * sctx,struct btrfs_device * device,unsigned int bio_size)1233 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1234 				  unsigned int bio_size)
1235 {
1236 	const int time_slice = 1000;
1237 	s64 delta;
1238 	ktime_t now;
1239 	u32 div;
1240 	u64 bwlimit;
1241 
1242 	bwlimit = READ_ONCE(device->scrub_speed_max);
1243 	if (bwlimit == 0)
1244 		return;
1245 
1246 	/*
1247 	 * Slice is divided into intervals when the IO is submitted, adjust by
1248 	 * bwlimit and maximum of 64 intervals.
1249 	 */
1250 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1251 	div = min_t(u32, 64, div);
1252 
1253 	/* Start new epoch, set deadline */
1254 	now = ktime_get();
1255 	if (sctx->throttle_deadline == 0) {
1256 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1257 		sctx->throttle_sent = 0;
1258 	}
1259 
1260 	/* Still in the time to send? */
1261 	if (ktime_before(now, sctx->throttle_deadline)) {
1262 		/* If current bio is within the limit, send it */
1263 		sctx->throttle_sent += bio_size;
1264 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1265 			return;
1266 
1267 		/* We're over the limit, sleep until the rest of the slice */
1268 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1269 	} else {
1270 		/* New request after deadline, start new epoch */
1271 		delta = 0;
1272 	}
1273 
1274 	if (delta) {
1275 		long timeout;
1276 
1277 		timeout = div_u64(delta * HZ, 1000);
1278 		schedule_timeout_interruptible(timeout);
1279 	}
1280 
1281 	/* Next call will start the deadline period */
1282 	sctx->throttle_deadline = 0;
1283 }
1284 
1285 /*
1286  * Given a physical address, this will calculate it's
1287  * logical offset. if this is a parity stripe, it will return
1288  * the most left data stripe's logical offset.
1289  *
1290  * return 0 if it is a data stripe, 1 means parity stripe.
1291  */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)1292 static int get_raid56_logic_offset(u64 physical, int num,
1293 				   struct map_lookup *map, u64 *offset,
1294 				   u64 *stripe_start)
1295 {
1296 	int i;
1297 	int j = 0;
1298 	u64 last_offset;
1299 	const int data_stripes = nr_data_stripes(map);
1300 
1301 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1302 	if (stripe_start)
1303 		*stripe_start = last_offset;
1304 
1305 	*offset = last_offset;
1306 	for (i = 0; i < data_stripes; i++) {
1307 		u32 stripe_nr;
1308 		u32 stripe_index;
1309 		u32 rot;
1310 
1311 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1312 
1313 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1314 
1315 		/* Work out the disk rotation on this stripe-set */
1316 		rot = stripe_nr % map->num_stripes;
1317 		/* calculate which stripe this data locates */
1318 		rot += i;
1319 		stripe_index = rot % map->num_stripes;
1320 		if (stripe_index == num)
1321 			return 0;
1322 		if (stripe_index < num)
1323 			j++;
1324 	}
1325 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1326 	return 1;
1327 }
1328 
1329 /*
1330  * Return 0 if the extent item range covers any byte of the range.
1331  * Return <0 if the extent item is before @search_start.
1332  * Return >0 if the extent item is after @start_start + @search_len.
1333  */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)1334 static int compare_extent_item_range(struct btrfs_path *path,
1335 				     u64 search_start, u64 search_len)
1336 {
1337 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1338 	u64 len;
1339 	struct btrfs_key key;
1340 
1341 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1342 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1343 	       key.type == BTRFS_METADATA_ITEM_KEY);
1344 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1345 		len = fs_info->nodesize;
1346 	else
1347 		len = key.offset;
1348 
1349 	if (key.objectid + len <= search_start)
1350 		return -1;
1351 	if (key.objectid >= search_start + search_len)
1352 		return 1;
1353 	return 0;
1354 }
1355 
1356 /*
1357  * Locate one extent item which covers any byte in range
1358  * [@search_start, @search_start + @search_length)
1359  *
1360  * If the path is not initialized, we will initialize the search by doing
1361  * a btrfs_search_slot().
1362  * If the path is already initialized, we will use the path as the initial
1363  * slot, to avoid duplicated btrfs_search_slot() calls.
1364  *
1365  * NOTE: If an extent item starts before @search_start, we will still
1366  * return the extent item. This is for data extent crossing stripe boundary.
1367  *
1368  * Return 0 if we found such extent item, and @path will point to the extent item.
1369  * Return >0 if no such extent item can be found, and @path will be released.
1370  * Return <0 if hit fatal error, and @path will be released.
1371  */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)1372 static int find_first_extent_item(struct btrfs_root *extent_root,
1373 				  struct btrfs_path *path,
1374 				  u64 search_start, u64 search_len)
1375 {
1376 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1377 	struct btrfs_key key;
1378 	int ret;
1379 
1380 	/* Continue using the existing path */
1381 	if (path->nodes[0])
1382 		goto search_forward;
1383 
1384 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1385 		key.type = BTRFS_METADATA_ITEM_KEY;
1386 	else
1387 		key.type = BTRFS_EXTENT_ITEM_KEY;
1388 	key.objectid = search_start;
1389 	key.offset = (u64)-1;
1390 
1391 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1392 	if (ret < 0)
1393 		return ret;
1394 
1395 	ASSERT(ret > 0);
1396 	/*
1397 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1398 	 * an extent item starting before @search_start.
1399 	 */
1400 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1401 	if (ret < 0)
1402 		return ret;
1403 	/*
1404 	 * No matter whether we have found an extent item, the next loop will
1405 	 * properly do every check on the key.
1406 	 */
1407 search_forward:
1408 	while (true) {
1409 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1410 		if (key.objectid >= search_start + search_len)
1411 			break;
1412 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1413 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1414 			goto next;
1415 
1416 		ret = compare_extent_item_range(path, search_start, search_len);
1417 		if (ret == 0)
1418 			return ret;
1419 		if (ret > 0)
1420 			break;
1421 next:
1422 		path->slots[0]++;
1423 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1424 			ret = btrfs_next_leaf(extent_root, path);
1425 			if (ret) {
1426 				/* Either no more item or fatal error */
1427 				btrfs_release_path(path);
1428 				return ret;
1429 			}
1430 		}
1431 	}
1432 	btrfs_release_path(path);
1433 	return 1;
1434 }
1435 
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)1436 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1437 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1438 {
1439 	struct btrfs_key key;
1440 	struct btrfs_extent_item *ei;
1441 
1442 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1443 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1444 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1445 	*extent_start_ret = key.objectid;
1446 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1447 		*size_ret = path->nodes[0]->fs_info->nodesize;
1448 	else
1449 		*size_ret = key.offset;
1450 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1451 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1452 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1453 }
1454 
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)1455 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1456 					u64 physical, u64 physical_end)
1457 {
1458 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1459 	int ret = 0;
1460 
1461 	if (!btrfs_is_zoned(fs_info))
1462 		return 0;
1463 
1464 	mutex_lock(&sctx->wr_lock);
1465 	if (sctx->write_pointer < physical_end) {
1466 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1467 						    physical,
1468 						    sctx->write_pointer);
1469 		if (ret)
1470 			btrfs_err(fs_info,
1471 				  "zoned: failed to recover write pointer");
1472 	}
1473 	mutex_unlock(&sctx->wr_lock);
1474 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1475 
1476 	return ret;
1477 }
1478 
fill_one_extent_info(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe,u64 extent_start,u64 extent_len,u64 extent_flags,u64 extent_gen)1479 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1480 				 struct scrub_stripe *stripe,
1481 				 u64 extent_start, u64 extent_len,
1482 				 u64 extent_flags, u64 extent_gen)
1483 {
1484 	for (u64 cur_logical = max(stripe->logical, extent_start);
1485 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1486 			       extent_start + extent_len);
1487 	     cur_logical += fs_info->sectorsize) {
1488 		const int nr_sector = (cur_logical - stripe->logical) >>
1489 				      fs_info->sectorsize_bits;
1490 		struct scrub_sector_verification *sector =
1491 						&stripe->sectors[nr_sector];
1492 
1493 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1494 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1495 			sector->is_metadata = true;
1496 			sector->generation = extent_gen;
1497 		}
1498 	}
1499 }
1500 
scrub_stripe_reset_bitmaps(struct scrub_stripe * stripe)1501 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1502 {
1503 	stripe->extent_sector_bitmap = 0;
1504 	stripe->init_error_bitmap = 0;
1505 	stripe->init_nr_io_errors = 0;
1506 	stripe->init_nr_csum_errors = 0;
1507 	stripe->init_nr_meta_errors = 0;
1508 	stripe->error_bitmap = 0;
1509 	stripe->io_error_bitmap = 0;
1510 	stripe->csum_error_bitmap = 0;
1511 	stripe->meta_error_bitmap = 0;
1512 }
1513 
1514 /*
1515  * Locate one stripe which has at least one extent in its range.
1516  *
1517  * Return 0 if found such stripe, and store its info into @stripe.
1518  * Return >0 if there is no such stripe in the specified range.
1519  * Return <0 for error.
1520  */
scrub_find_fill_first_stripe(struct btrfs_block_group * bg,struct btrfs_path * extent_path,struct btrfs_path * csum_path,struct btrfs_device * dev,u64 physical,int mirror_num,u64 logical_start,u32 logical_len,struct scrub_stripe * stripe)1521 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1522 					struct btrfs_path *extent_path,
1523 					struct btrfs_path *csum_path,
1524 					struct btrfs_device *dev, u64 physical,
1525 					int mirror_num, u64 logical_start,
1526 					u32 logical_len,
1527 					struct scrub_stripe *stripe)
1528 {
1529 	struct btrfs_fs_info *fs_info = bg->fs_info;
1530 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1531 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1532 	const u64 logical_end = logical_start + logical_len;
1533 	u64 cur_logical = logical_start;
1534 	u64 stripe_end;
1535 	u64 extent_start;
1536 	u64 extent_len;
1537 	u64 extent_flags;
1538 	u64 extent_gen;
1539 	int ret;
1540 
1541 	if (unlikely(!extent_root)) {
1542 		btrfs_err(fs_info, "no valid extent root for scrub");
1543 		return -EUCLEAN;
1544 	}
1545 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1546 				   stripe->nr_sectors);
1547 	scrub_stripe_reset_bitmaps(stripe);
1548 
1549 	/* The range must be inside the bg. */
1550 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1551 
1552 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1553 				     logical_len);
1554 	/* Either error or not found. */
1555 	if (ret)
1556 		goto out;
1557 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1558 			&extent_gen);
1559 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1560 		stripe->nr_meta_extents++;
1561 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1562 		stripe->nr_data_extents++;
1563 	cur_logical = max(extent_start, cur_logical);
1564 
1565 	/*
1566 	 * Round down to stripe boundary.
1567 	 *
1568 	 * The extra calculation against bg->start is to handle block groups
1569 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1570 	 */
1571 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1572 			  bg->start;
1573 	stripe->physical = physical + stripe->logical - logical_start;
1574 	stripe->dev = dev;
1575 	stripe->bg = bg;
1576 	stripe->mirror_num = mirror_num;
1577 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1578 
1579 	/* Fill the first extent info into stripe->sectors[] array. */
1580 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1581 			     extent_flags, extent_gen);
1582 	cur_logical = extent_start + extent_len;
1583 
1584 	/* Fill the extent info for the remaining sectors. */
1585 	while (cur_logical <= stripe_end) {
1586 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1587 					     stripe_end - cur_logical + 1);
1588 		if (ret < 0)
1589 			goto out;
1590 		if (ret > 0) {
1591 			ret = 0;
1592 			break;
1593 		}
1594 		get_extent_info(extent_path, &extent_start, &extent_len,
1595 				&extent_flags, &extent_gen);
1596 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1597 			stripe->nr_meta_extents++;
1598 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1599 			stripe->nr_data_extents++;
1600 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1601 				     extent_flags, extent_gen);
1602 		cur_logical = extent_start + extent_len;
1603 	}
1604 
1605 	/* Now fill the data csum. */
1606 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1607 		int sector_nr;
1608 		unsigned long csum_bitmap = 0;
1609 
1610 		/* Csum space should have already been allocated. */
1611 		ASSERT(stripe->csums);
1612 
1613 		/*
1614 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1615 		 * should contain at most 16 sectors.
1616 		 */
1617 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1618 
1619 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1620 						stripe->logical, stripe_end,
1621 						stripe->csums, &csum_bitmap);
1622 		if (ret < 0)
1623 			goto out;
1624 		if (ret > 0)
1625 			ret = 0;
1626 
1627 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1628 			stripe->sectors[sector_nr].csum = stripe->csums +
1629 				sector_nr * fs_info->csum_size;
1630 		}
1631 	}
1632 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1633 out:
1634 	return ret;
1635 }
1636 
scrub_reset_stripe(struct scrub_stripe * stripe)1637 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1638 {
1639 	scrub_stripe_reset_bitmaps(stripe);
1640 
1641 	stripe->nr_meta_extents = 0;
1642 	stripe->nr_data_extents = 0;
1643 	stripe->state = 0;
1644 
1645 	for (int i = 0; i < stripe->nr_sectors; i++) {
1646 		stripe->sectors[i].is_metadata = false;
1647 		stripe->sectors[i].csum = NULL;
1648 		stripe->sectors[i].generation = 0;
1649 	}
1650 }
1651 
scrub_submit_initial_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1652 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1653 				      struct scrub_stripe *stripe)
1654 {
1655 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1656 	struct btrfs_bio *bbio;
1657 	unsigned int nr_sectors = min_t(u64, BTRFS_STRIPE_LEN, stripe->bg->start +
1658 				      stripe->bg->length - stripe->logical) >>
1659 				  fs_info->sectorsize_bits;
1660 	int mirror = stripe->mirror_num;
1661 
1662 	ASSERT(stripe->bg);
1663 	ASSERT(stripe->mirror_num > 0);
1664 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1665 
1666 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1667 			       scrub_read_endio, stripe);
1668 
1669 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1670 	/* Read the whole range inside the chunk boundary. */
1671 	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1672 		struct page *page = scrub_stripe_get_page(stripe, cur);
1673 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1674 		int ret;
1675 
1676 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1677 		/* We should have allocated enough bio vectors. */
1678 		ASSERT(ret == fs_info->sectorsize);
1679 	}
1680 	atomic_inc(&stripe->pending_io);
1681 
1682 	/*
1683 	 * For dev-replace, either user asks to avoid the source dev, or
1684 	 * the device is missing, we try the next mirror instead.
1685 	 */
1686 	if (sctx->is_dev_replace &&
1687 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1688 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1689 	     !stripe->dev->bdev)) {
1690 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1691 						  stripe->bg->length);
1692 
1693 		mirror = calc_next_mirror(mirror, num_copies);
1694 	}
1695 	btrfs_submit_bio(bbio, mirror);
1696 }
1697 
stripe_has_metadata_error(struct scrub_stripe * stripe)1698 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1699 {
1700 	int i;
1701 
1702 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1703 		if (stripe->sectors[i].is_metadata) {
1704 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1705 
1706 			btrfs_err(fs_info,
1707 			"stripe %llu has unrepaired metadata sector at %llu",
1708 				  stripe->logical,
1709 				  stripe->logical + (i << fs_info->sectorsize_bits));
1710 			return true;
1711 		}
1712 	}
1713 	return false;
1714 }
1715 
submit_initial_group_read(struct scrub_ctx * sctx,unsigned int first_slot,unsigned int nr_stripes)1716 static void submit_initial_group_read(struct scrub_ctx *sctx,
1717 				      unsigned int first_slot,
1718 				      unsigned int nr_stripes)
1719 {
1720 	struct blk_plug plug;
1721 
1722 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1723 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1724 
1725 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1726 			      btrfs_stripe_nr_to_offset(nr_stripes));
1727 	blk_start_plug(&plug);
1728 	for (int i = 0; i < nr_stripes; i++) {
1729 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1730 
1731 		/* Those stripes should be initialized. */
1732 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1733 		scrub_submit_initial_read(sctx, stripe);
1734 	}
1735 	blk_finish_plug(&plug);
1736 }
1737 
flush_scrub_stripes(struct scrub_ctx * sctx)1738 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1739 {
1740 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1741 	struct scrub_stripe *stripe;
1742 	const int nr_stripes = sctx->cur_stripe;
1743 	int ret = 0;
1744 
1745 	if (!nr_stripes)
1746 		return 0;
1747 
1748 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1749 
1750 	/* Submit the stripes which are populated but not submitted. */
1751 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1752 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1753 
1754 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1755 	}
1756 
1757 	for (int i = 0; i < nr_stripes; i++) {
1758 		stripe = &sctx->stripes[i];
1759 
1760 		wait_event(stripe->repair_wait,
1761 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1762 	}
1763 
1764 	/* Submit for dev-replace. */
1765 	if (sctx->is_dev_replace) {
1766 		/*
1767 		 * For dev-replace, if we know there is something wrong with
1768 		 * metadata, we should immedately abort.
1769 		 */
1770 		for (int i = 0; i < nr_stripes; i++) {
1771 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1772 				ret = -EIO;
1773 				goto out;
1774 			}
1775 		}
1776 		for (int i = 0; i < nr_stripes; i++) {
1777 			unsigned long good;
1778 
1779 			stripe = &sctx->stripes[i];
1780 
1781 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1782 
1783 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1784 				      &stripe->error_bitmap, stripe->nr_sectors);
1785 			scrub_write_sectors(sctx, stripe, good, true);
1786 		}
1787 	}
1788 
1789 	/* Wait for the above writebacks to finish. */
1790 	for (int i = 0; i < nr_stripes; i++) {
1791 		stripe = &sctx->stripes[i];
1792 
1793 		wait_scrub_stripe_io(stripe);
1794 		scrub_reset_stripe(stripe);
1795 	}
1796 out:
1797 	sctx->cur_stripe = 0;
1798 	return ret;
1799 }
1800 
raid56_scrub_wait_endio(struct bio * bio)1801 static void raid56_scrub_wait_endio(struct bio *bio)
1802 {
1803 	complete(bio->bi_private);
1804 }
1805 
queue_scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * dev,int mirror_num,u64 logical,u32 length,u64 physical,u64 * found_logical_ret)1806 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1807 			      struct btrfs_device *dev, int mirror_num,
1808 			      u64 logical, u32 length, u64 physical,
1809 			      u64 *found_logical_ret)
1810 {
1811 	struct scrub_stripe *stripe;
1812 	int ret;
1813 
1814 	/*
1815 	 * There should always be one slot left, as caller filling the last
1816 	 * slot should flush them all.
1817 	 */
1818 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1819 
1820 	/* @found_logical_ret must be specified. */
1821 	ASSERT(found_logical_ret);
1822 
1823 	stripe = &sctx->stripes[sctx->cur_stripe];
1824 	scrub_reset_stripe(stripe);
1825 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1826 					   &sctx->csum_path, dev, physical,
1827 					   mirror_num, logical, length, stripe);
1828 	/* Either >0 as no more extents or <0 for error. */
1829 	if (ret)
1830 		return ret;
1831 	*found_logical_ret = stripe->logical;
1832 	sctx->cur_stripe++;
1833 
1834 	/* We filled one group, submit it. */
1835 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1836 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1837 
1838 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1839 	}
1840 
1841 	/* Last slot used, flush them all. */
1842 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1843 		return flush_scrub_stripes(sctx);
1844 	return 0;
1845 }
1846 
scrub_raid56_parity_stripe(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_block_group * bg,struct map_lookup * map,u64 full_stripe_start)1847 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1848 				      struct btrfs_device *scrub_dev,
1849 				      struct btrfs_block_group *bg,
1850 				      struct map_lookup *map,
1851 				      u64 full_stripe_start)
1852 {
1853 	DECLARE_COMPLETION_ONSTACK(io_done);
1854 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1855 	struct btrfs_raid_bio *rbio;
1856 	struct btrfs_io_context *bioc = NULL;
1857 	struct btrfs_path extent_path = { 0 };
1858 	struct btrfs_path csum_path = { 0 };
1859 	struct bio *bio;
1860 	struct scrub_stripe *stripe;
1861 	bool all_empty = true;
1862 	const int data_stripes = nr_data_stripes(map);
1863 	unsigned long extent_bitmap = 0;
1864 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1865 	int ret;
1866 
1867 	ASSERT(sctx->raid56_data_stripes);
1868 
1869 	/*
1870 	 * For data stripe search, we cannot re-use the same extent/csum paths,
1871 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1872 	 * we have to use our own extent/csum paths.
1873 	 */
1874 	extent_path.search_commit_root = 1;
1875 	extent_path.skip_locking = 1;
1876 	csum_path.search_commit_root = 1;
1877 	csum_path.skip_locking = 1;
1878 
1879 	for (int i = 0; i < data_stripes; i++) {
1880 		int stripe_index;
1881 		int rot;
1882 		u64 physical;
1883 
1884 		stripe = &sctx->raid56_data_stripes[i];
1885 		rot = div_u64(full_stripe_start - bg->start,
1886 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1887 		stripe_index = (i + rot) % map->num_stripes;
1888 		physical = map->stripes[stripe_index].physical +
1889 			   btrfs_stripe_nr_to_offset(rot);
1890 
1891 		scrub_reset_stripe(stripe);
1892 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1893 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1894 				map->stripes[stripe_index].dev, physical, 1,
1895 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1896 				BTRFS_STRIPE_LEN, stripe);
1897 		if (ret < 0)
1898 			goto out;
1899 		/*
1900 		 * No extent in this data stripe, need to manually mark them
1901 		 * initialized to make later read submission happy.
1902 		 */
1903 		if (ret > 0) {
1904 			stripe->logical = full_stripe_start +
1905 					  btrfs_stripe_nr_to_offset(i);
1906 			stripe->dev = map->stripes[stripe_index].dev;
1907 			stripe->mirror_num = 1;
1908 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1909 		}
1910 	}
1911 
1912 	/* Check if all data stripes are empty. */
1913 	for (int i = 0; i < data_stripes; i++) {
1914 		stripe = &sctx->raid56_data_stripes[i];
1915 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1916 			all_empty = false;
1917 			break;
1918 		}
1919 	}
1920 	if (all_empty) {
1921 		ret = 0;
1922 		goto out;
1923 	}
1924 
1925 	for (int i = 0; i < data_stripes; i++) {
1926 		stripe = &sctx->raid56_data_stripes[i];
1927 		scrub_submit_initial_read(sctx, stripe);
1928 	}
1929 	for (int i = 0; i < data_stripes; i++) {
1930 		stripe = &sctx->raid56_data_stripes[i];
1931 
1932 		wait_event(stripe->repair_wait,
1933 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1934 	}
1935 	/* For now, no zoned support for RAID56. */
1936 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1937 
1938 	/*
1939 	 * Now all data stripes are properly verified. Check if we have any
1940 	 * unrepaired, if so abort immediately or we could further corrupt the
1941 	 * P/Q stripes.
1942 	 *
1943 	 * During the loop, also populate extent_bitmap.
1944 	 */
1945 	for (int i = 0; i < data_stripes; i++) {
1946 		unsigned long error;
1947 
1948 		stripe = &sctx->raid56_data_stripes[i];
1949 
1950 		/*
1951 		 * We should only check the errors where there is an extent.
1952 		 * As we may hit an empty data stripe while it's missing.
1953 		 */
1954 		bitmap_and(&error, &stripe->error_bitmap,
1955 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
1956 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
1957 			btrfs_err(fs_info,
1958 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1959 				  full_stripe_start, i, stripe->nr_sectors,
1960 				  &error);
1961 			ret = -EIO;
1962 			goto out;
1963 		}
1964 		bitmap_or(&extent_bitmap, &extent_bitmap,
1965 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
1966 	}
1967 
1968 	/* Now we can check and regenerate the P/Q stripe. */
1969 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1970 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1971 	bio->bi_private = &io_done;
1972 	bio->bi_end_io = raid56_scrub_wait_endio;
1973 
1974 	btrfs_bio_counter_inc_blocked(fs_info);
1975 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
1976 			      &length, &bioc, NULL, NULL, 1);
1977 	if (ret < 0) {
1978 		btrfs_put_bioc(bioc);
1979 		btrfs_bio_counter_dec(fs_info);
1980 		goto out;
1981 	}
1982 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
1983 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1984 	btrfs_put_bioc(bioc);
1985 	if (!rbio) {
1986 		ret = -ENOMEM;
1987 		btrfs_bio_counter_dec(fs_info);
1988 		goto out;
1989 	}
1990 	/* Use the recovered stripes as cache to avoid read them from disk again. */
1991 	for (int i = 0; i < data_stripes; i++) {
1992 		stripe = &sctx->raid56_data_stripes[i];
1993 
1994 		raid56_parity_cache_data_pages(rbio, stripe->pages,
1995 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
1996 	}
1997 	raid56_parity_submit_scrub_rbio(rbio);
1998 	wait_for_completion_io(&io_done);
1999 	ret = blk_status_to_errno(bio->bi_status);
2000 	bio_put(bio);
2001 	btrfs_bio_counter_dec(fs_info);
2002 
2003 	btrfs_release_path(&extent_path);
2004 	btrfs_release_path(&csum_path);
2005 out:
2006 	return ret;
2007 }
2008 
2009 /*
2010  * Scrub one range which can only has simple mirror based profile.
2011  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2012  *  RAID0/RAID10).
2013  *
2014  * Since we may need to handle a subset of block group, we need @logical_start
2015  * and @logical_length parameter.
2016  */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct map_lookup * map,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)2017 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2018 			       struct btrfs_block_group *bg,
2019 			       struct map_lookup *map,
2020 			       u64 logical_start, u64 logical_length,
2021 			       struct btrfs_device *device,
2022 			       u64 physical, int mirror_num)
2023 {
2024 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2025 	const u64 logical_end = logical_start + logical_length;
2026 	u64 cur_logical = logical_start;
2027 	int ret = 0;
2028 
2029 	/* The range must be inside the bg */
2030 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2031 
2032 	/* Go through each extent items inside the logical range */
2033 	while (cur_logical < logical_end) {
2034 		u64 found_logical = U64_MAX;
2035 		u64 cur_physical = physical + cur_logical - logical_start;
2036 
2037 		/* Canceled? */
2038 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2039 		    atomic_read(&sctx->cancel_req)) {
2040 			ret = -ECANCELED;
2041 			break;
2042 		}
2043 		/* Paused? */
2044 		if (atomic_read(&fs_info->scrub_pause_req)) {
2045 			/* Push queued extents */
2046 			scrub_blocked_if_needed(fs_info);
2047 		}
2048 		/* Block group removed? */
2049 		spin_lock(&bg->lock);
2050 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2051 			spin_unlock(&bg->lock);
2052 			ret = 0;
2053 			break;
2054 		}
2055 		spin_unlock(&bg->lock);
2056 
2057 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2058 					 cur_logical, logical_end - cur_logical,
2059 					 cur_physical, &found_logical);
2060 		if (ret > 0) {
2061 			/* No more extent, just update the accounting */
2062 			sctx->stat.last_physical = physical + logical_length;
2063 			ret = 0;
2064 			break;
2065 		}
2066 		if (ret < 0)
2067 			break;
2068 
2069 		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2070 		ASSERT(found_logical != U64_MAX);
2071 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2072 
2073 		/* Don't hold CPU for too long time */
2074 		cond_resched();
2075 	}
2076 	return ret;
2077 }
2078 
2079 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct map_lookup * map)2080 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2081 {
2082 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2083 			    BTRFS_BLOCK_GROUP_RAID10));
2084 
2085 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2086 }
2087 
2088 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct map_lookup * map,struct btrfs_block_group * bg,int stripe_index)2089 static u64 simple_stripe_get_logical(struct map_lookup *map,
2090 				     struct btrfs_block_group *bg,
2091 				     int stripe_index)
2092 {
2093 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2094 			    BTRFS_BLOCK_GROUP_RAID10));
2095 	ASSERT(stripe_index < map->num_stripes);
2096 
2097 	/*
2098 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2099 	 * skip.
2100 	 */
2101 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2102 	       bg->start;
2103 }
2104 
2105 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct map_lookup * map,int stripe_index)2106 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2107 {
2108 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2109 			    BTRFS_BLOCK_GROUP_RAID10));
2110 	ASSERT(stripe_index < map->num_stripes);
2111 
2112 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2113 	return stripe_index % map->sub_stripes + 1;
2114 }
2115 
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct map_lookup * map,struct btrfs_device * device,int stripe_index)2116 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2117 			       struct btrfs_block_group *bg,
2118 			       struct map_lookup *map,
2119 			       struct btrfs_device *device,
2120 			       int stripe_index)
2121 {
2122 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2123 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2124 	const u64 orig_physical = map->stripes[stripe_index].physical;
2125 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2126 	u64 cur_logical = orig_logical;
2127 	u64 cur_physical = orig_physical;
2128 	int ret = 0;
2129 
2130 	while (cur_logical < bg->start + bg->length) {
2131 		/*
2132 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2133 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2134 		 * this stripe.
2135 		 */
2136 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2137 					  BTRFS_STRIPE_LEN, device, cur_physical,
2138 					  mirror_num);
2139 		if (ret)
2140 			return ret;
2141 		/* Skip to next stripe which belongs to the target device */
2142 		cur_logical += logical_increment;
2143 		/* For physical offset, we just go to next stripe */
2144 		cur_physical += BTRFS_STRIPE_LEN;
2145 	}
2146 	return ret;
2147 }
2148 
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct extent_map * em,struct btrfs_device * scrub_dev,int stripe_index)2149 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2150 					   struct btrfs_block_group *bg,
2151 					   struct extent_map *em,
2152 					   struct btrfs_device *scrub_dev,
2153 					   int stripe_index)
2154 {
2155 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2156 	struct map_lookup *map = em->map_lookup;
2157 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2158 	const u64 chunk_logical = bg->start;
2159 	int ret;
2160 	int ret2;
2161 	u64 physical = map->stripes[stripe_index].physical;
2162 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2163 	const u64 physical_end = physical + dev_stripe_len;
2164 	u64 logical;
2165 	u64 logic_end;
2166 	/* The logical increment after finishing one stripe */
2167 	u64 increment;
2168 	/* Offset inside the chunk */
2169 	u64 offset;
2170 	u64 stripe_logical;
2171 	int stop_loop = 0;
2172 
2173 	/* Extent_path should be released by now. */
2174 	ASSERT(sctx->extent_path.nodes[0] == NULL);
2175 
2176 	scrub_blocked_if_needed(fs_info);
2177 
2178 	if (sctx->is_dev_replace &&
2179 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2180 		mutex_lock(&sctx->wr_lock);
2181 		sctx->write_pointer = physical;
2182 		mutex_unlock(&sctx->wr_lock);
2183 	}
2184 
2185 	/* Prepare the extra data stripes used by RAID56. */
2186 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2187 		ASSERT(sctx->raid56_data_stripes == NULL);
2188 
2189 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2190 						    sizeof(struct scrub_stripe),
2191 						    GFP_KERNEL);
2192 		if (!sctx->raid56_data_stripes) {
2193 			ret = -ENOMEM;
2194 			goto out;
2195 		}
2196 		for (int i = 0; i < nr_data_stripes(map); i++) {
2197 			ret = init_scrub_stripe(fs_info,
2198 						&sctx->raid56_data_stripes[i]);
2199 			if (ret < 0)
2200 				goto out;
2201 			sctx->raid56_data_stripes[i].bg = bg;
2202 			sctx->raid56_data_stripes[i].sctx = sctx;
2203 		}
2204 	}
2205 	/*
2206 	 * There used to be a big double loop to handle all profiles using the
2207 	 * same routine, which grows larger and more gross over time.
2208 	 *
2209 	 * So here we handle each profile differently, so simpler profiles
2210 	 * have simpler scrubbing function.
2211 	 */
2212 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2213 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2214 		/*
2215 		 * Above check rules out all complex profile, the remaining
2216 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2217 		 * mirrored duplication without stripe.
2218 		 *
2219 		 * Only @physical and @mirror_num needs to calculated using
2220 		 * @stripe_index.
2221 		 */
2222 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2223 				scrub_dev, map->stripes[stripe_index].physical,
2224 				stripe_index + 1);
2225 		offset = 0;
2226 		goto out;
2227 	}
2228 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2229 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2230 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2231 		goto out;
2232 	}
2233 
2234 	/* Only RAID56 goes through the old code */
2235 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2236 	ret = 0;
2237 
2238 	/* Calculate the logical end of the stripe */
2239 	get_raid56_logic_offset(physical_end, stripe_index,
2240 				map, &logic_end, NULL);
2241 	logic_end += chunk_logical;
2242 
2243 	/* Initialize @offset in case we need to go to out: label */
2244 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2245 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2246 
2247 	/*
2248 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2249 	 * using their physical offset.
2250 	 */
2251 	while (physical < physical_end) {
2252 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2253 					      &logical, &stripe_logical);
2254 		logical += chunk_logical;
2255 		if (ret) {
2256 			/* it is parity strip */
2257 			stripe_logical += chunk_logical;
2258 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2259 							 map, stripe_logical);
2260 			if (ret)
2261 				goto out;
2262 			goto next;
2263 		}
2264 
2265 		/*
2266 		 * Now we're at a data stripe, scrub each extents in the range.
2267 		 *
2268 		 * At this stage, if we ignore the repair part, inside each data
2269 		 * stripe it is no different than SINGLE profile.
2270 		 * We can reuse scrub_simple_mirror() here, as the repair part
2271 		 * is still based on @mirror_num.
2272 		 */
2273 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2274 					  scrub_dev, physical, 1);
2275 		if (ret < 0)
2276 			goto out;
2277 next:
2278 		logical += increment;
2279 		physical += BTRFS_STRIPE_LEN;
2280 		spin_lock(&sctx->stat_lock);
2281 		if (stop_loop)
2282 			sctx->stat.last_physical =
2283 				map->stripes[stripe_index].physical + dev_stripe_len;
2284 		else
2285 			sctx->stat.last_physical = physical;
2286 		spin_unlock(&sctx->stat_lock);
2287 		if (stop_loop)
2288 			break;
2289 	}
2290 out:
2291 	ret2 = flush_scrub_stripes(sctx);
2292 	if (!ret)
2293 		ret = ret2;
2294 	btrfs_release_path(&sctx->extent_path);
2295 	btrfs_release_path(&sctx->csum_path);
2296 
2297 	if (sctx->raid56_data_stripes) {
2298 		for (int i = 0; i < nr_data_stripes(map); i++)
2299 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2300 		kfree(sctx->raid56_data_stripes);
2301 		sctx->raid56_data_stripes = NULL;
2302 	}
2303 
2304 	if (sctx->is_dev_replace && ret >= 0) {
2305 		int ret2;
2306 
2307 		ret2 = sync_write_pointer_for_zoned(sctx,
2308 				chunk_logical + offset,
2309 				map->stripes[stripe_index].physical,
2310 				physical_end);
2311 		if (ret2)
2312 			ret = ret2;
2313 	}
2314 
2315 	return ret < 0 ? ret : 0;
2316 }
2317 
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)2318 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2319 					  struct btrfs_block_group *bg,
2320 					  struct btrfs_device *scrub_dev,
2321 					  u64 dev_offset,
2322 					  u64 dev_extent_len)
2323 {
2324 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2325 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2326 	struct map_lookup *map;
2327 	struct extent_map *em;
2328 	int i;
2329 	int ret = 0;
2330 
2331 	read_lock(&map_tree->lock);
2332 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2333 	read_unlock(&map_tree->lock);
2334 
2335 	if (!em) {
2336 		/*
2337 		 * Might have been an unused block group deleted by the cleaner
2338 		 * kthread or relocation.
2339 		 */
2340 		spin_lock(&bg->lock);
2341 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2342 			ret = -EINVAL;
2343 		spin_unlock(&bg->lock);
2344 
2345 		return ret;
2346 	}
2347 	if (em->start != bg->start)
2348 		goto out;
2349 	if (em->len < dev_extent_len)
2350 		goto out;
2351 
2352 	map = em->map_lookup;
2353 	for (i = 0; i < map->num_stripes; ++i) {
2354 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2355 		    map->stripes[i].physical == dev_offset) {
2356 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2357 			if (ret)
2358 				goto out;
2359 		}
2360 	}
2361 out:
2362 	free_extent_map(em);
2363 
2364 	return ret;
2365 }
2366 
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)2367 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2368 					  struct btrfs_block_group *cache)
2369 {
2370 	struct btrfs_fs_info *fs_info = cache->fs_info;
2371 	struct btrfs_trans_handle *trans;
2372 
2373 	if (!btrfs_is_zoned(fs_info))
2374 		return 0;
2375 
2376 	btrfs_wait_block_group_reservations(cache);
2377 	btrfs_wait_nocow_writers(cache);
2378 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2379 
2380 	trans = btrfs_join_transaction(root);
2381 	if (IS_ERR(trans))
2382 		return PTR_ERR(trans);
2383 	return btrfs_commit_transaction(trans);
2384 }
2385 
2386 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)2387 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2388 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2389 {
2390 	struct btrfs_dev_extent *dev_extent = NULL;
2391 	struct btrfs_path *path;
2392 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2393 	struct btrfs_root *root = fs_info->dev_root;
2394 	u64 chunk_offset;
2395 	int ret = 0;
2396 	int ro_set;
2397 	int slot;
2398 	struct extent_buffer *l;
2399 	struct btrfs_key key;
2400 	struct btrfs_key found_key;
2401 	struct btrfs_block_group *cache;
2402 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2403 
2404 	path = btrfs_alloc_path();
2405 	if (!path)
2406 		return -ENOMEM;
2407 
2408 	path->reada = READA_FORWARD;
2409 	path->search_commit_root = 1;
2410 	path->skip_locking = 1;
2411 
2412 	key.objectid = scrub_dev->devid;
2413 	key.offset = 0ull;
2414 	key.type = BTRFS_DEV_EXTENT_KEY;
2415 
2416 	while (1) {
2417 		u64 dev_extent_len;
2418 
2419 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2420 		if (ret < 0)
2421 			break;
2422 		if (ret > 0) {
2423 			if (path->slots[0] >=
2424 			    btrfs_header_nritems(path->nodes[0])) {
2425 				ret = btrfs_next_leaf(root, path);
2426 				if (ret < 0)
2427 					break;
2428 				if (ret > 0) {
2429 					ret = 0;
2430 					break;
2431 				}
2432 			} else {
2433 				ret = 0;
2434 			}
2435 		}
2436 
2437 		l = path->nodes[0];
2438 		slot = path->slots[0];
2439 
2440 		btrfs_item_key_to_cpu(l, &found_key, slot);
2441 
2442 		if (found_key.objectid != scrub_dev->devid)
2443 			break;
2444 
2445 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2446 			break;
2447 
2448 		if (found_key.offset >= end)
2449 			break;
2450 
2451 		if (found_key.offset < key.offset)
2452 			break;
2453 
2454 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2455 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2456 
2457 		if (found_key.offset + dev_extent_len <= start)
2458 			goto skip;
2459 
2460 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2461 
2462 		/*
2463 		 * get a reference on the corresponding block group to prevent
2464 		 * the chunk from going away while we scrub it
2465 		 */
2466 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2467 
2468 		/* some chunks are removed but not committed to disk yet,
2469 		 * continue scrubbing */
2470 		if (!cache)
2471 			goto skip;
2472 
2473 		ASSERT(cache->start <= chunk_offset);
2474 		/*
2475 		 * We are using the commit root to search for device extents, so
2476 		 * that means we could have found a device extent item from a
2477 		 * block group that was deleted in the current transaction. The
2478 		 * logical start offset of the deleted block group, stored at
2479 		 * @chunk_offset, might be part of the logical address range of
2480 		 * a new block group (which uses different physical extents).
2481 		 * In this case btrfs_lookup_block_group() has returned the new
2482 		 * block group, and its start address is less than @chunk_offset.
2483 		 *
2484 		 * We skip such new block groups, because it's pointless to
2485 		 * process them, as we won't find their extents because we search
2486 		 * for them using the commit root of the extent tree. For a device
2487 		 * replace it's also fine to skip it, we won't miss copying them
2488 		 * to the target device because we have the write duplication
2489 		 * setup through the regular write path (by btrfs_map_block()),
2490 		 * and we have committed a transaction when we started the device
2491 		 * replace, right after setting up the device replace state.
2492 		 */
2493 		if (cache->start < chunk_offset) {
2494 			btrfs_put_block_group(cache);
2495 			goto skip;
2496 		}
2497 
2498 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2499 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2500 				btrfs_put_block_group(cache);
2501 				goto skip;
2502 			}
2503 		}
2504 
2505 		/*
2506 		 * Make sure that while we are scrubbing the corresponding block
2507 		 * group doesn't get its logical address and its device extents
2508 		 * reused for another block group, which can possibly be of a
2509 		 * different type and different profile. We do this to prevent
2510 		 * false error detections and crashes due to bogus attempts to
2511 		 * repair extents.
2512 		 */
2513 		spin_lock(&cache->lock);
2514 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2515 			spin_unlock(&cache->lock);
2516 			btrfs_put_block_group(cache);
2517 			goto skip;
2518 		}
2519 		btrfs_freeze_block_group(cache);
2520 		spin_unlock(&cache->lock);
2521 
2522 		/*
2523 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2524 		 * to avoid deadlock caused by:
2525 		 * btrfs_inc_block_group_ro()
2526 		 * -> btrfs_wait_for_commit()
2527 		 * -> btrfs_commit_transaction()
2528 		 * -> btrfs_scrub_pause()
2529 		 */
2530 		scrub_pause_on(fs_info);
2531 
2532 		/*
2533 		 * Don't do chunk preallocation for scrub.
2534 		 *
2535 		 * This is especially important for SYSTEM bgs, or we can hit
2536 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2537 		 * 1. The only SYSTEM bg is marked RO.
2538 		 *    Since SYSTEM bg is small, that's pretty common.
2539 		 * 2. New SYSTEM bg will be allocated
2540 		 *    Due to regular version will allocate new chunk.
2541 		 * 3. New SYSTEM bg is empty and will get cleaned up
2542 		 *    Before cleanup really happens, it's marked RO again.
2543 		 * 4. Empty SYSTEM bg get scrubbed
2544 		 *    We go back to 2.
2545 		 *
2546 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2547 		 * thread can't be triggered fast enough, and use up all space
2548 		 * of btrfs_super_block::sys_chunk_array
2549 		 *
2550 		 * While for dev replace, we need to try our best to mark block
2551 		 * group RO, to prevent race between:
2552 		 * - Write duplication
2553 		 *   Contains latest data
2554 		 * - Scrub copy
2555 		 *   Contains data from commit tree
2556 		 *
2557 		 * If target block group is not marked RO, nocow writes can
2558 		 * be overwritten by scrub copy, causing data corruption.
2559 		 * So for dev-replace, it's not allowed to continue if a block
2560 		 * group is not RO.
2561 		 */
2562 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2563 		if (!ret && sctx->is_dev_replace) {
2564 			ret = finish_extent_writes_for_zoned(root, cache);
2565 			if (ret) {
2566 				btrfs_dec_block_group_ro(cache);
2567 				scrub_pause_off(fs_info);
2568 				btrfs_put_block_group(cache);
2569 				break;
2570 			}
2571 		}
2572 
2573 		if (ret == 0) {
2574 			ro_set = 1;
2575 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2576 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2577 			/*
2578 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2579 			 * failed in creating new chunk for metadata.
2580 			 * It is not a problem for scrub, because
2581 			 * metadata are always cowed, and our scrub paused
2582 			 * commit_transactions.
2583 			 *
2584 			 * For RAID56 chunks, we have to mark them read-only
2585 			 * for scrub, as later we would use our own cache
2586 			 * out of RAID56 realm.
2587 			 * Thus we want the RAID56 bg to be marked RO to
2588 			 * prevent RMW from screwing up out cache.
2589 			 */
2590 			ro_set = 0;
2591 		} else if (ret == -ETXTBSY) {
2592 			btrfs_warn(fs_info,
2593 		   "skipping scrub of block group %llu due to active swapfile",
2594 				   cache->start);
2595 			scrub_pause_off(fs_info);
2596 			ret = 0;
2597 			goto skip_unfreeze;
2598 		} else {
2599 			btrfs_warn(fs_info,
2600 				   "failed setting block group ro: %d", ret);
2601 			btrfs_unfreeze_block_group(cache);
2602 			btrfs_put_block_group(cache);
2603 			scrub_pause_off(fs_info);
2604 			break;
2605 		}
2606 
2607 		/*
2608 		 * Now the target block is marked RO, wait for nocow writes to
2609 		 * finish before dev-replace.
2610 		 * COW is fine, as COW never overwrites extents in commit tree.
2611 		 */
2612 		if (sctx->is_dev_replace) {
2613 			btrfs_wait_nocow_writers(cache);
2614 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2615 					cache->length);
2616 		}
2617 
2618 		scrub_pause_off(fs_info);
2619 		down_write(&dev_replace->rwsem);
2620 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2621 		dev_replace->cursor_left = found_key.offset;
2622 		dev_replace->item_needs_writeback = 1;
2623 		up_write(&dev_replace->rwsem);
2624 
2625 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2626 				  dev_extent_len);
2627 		if (sctx->is_dev_replace &&
2628 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2629 						      cache, found_key.offset))
2630 			ro_set = 0;
2631 
2632 		down_write(&dev_replace->rwsem);
2633 		dev_replace->cursor_left = dev_replace->cursor_right;
2634 		dev_replace->item_needs_writeback = 1;
2635 		up_write(&dev_replace->rwsem);
2636 
2637 		if (ro_set)
2638 			btrfs_dec_block_group_ro(cache);
2639 
2640 		/*
2641 		 * We might have prevented the cleaner kthread from deleting
2642 		 * this block group if it was already unused because we raced
2643 		 * and set it to RO mode first. So add it back to the unused
2644 		 * list, otherwise it might not ever be deleted unless a manual
2645 		 * balance is triggered or it becomes used and unused again.
2646 		 */
2647 		spin_lock(&cache->lock);
2648 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2649 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2650 			spin_unlock(&cache->lock);
2651 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2652 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2653 							 cache);
2654 			else
2655 				btrfs_mark_bg_unused(cache);
2656 		} else {
2657 			spin_unlock(&cache->lock);
2658 		}
2659 skip_unfreeze:
2660 		btrfs_unfreeze_block_group(cache);
2661 		btrfs_put_block_group(cache);
2662 		if (ret)
2663 			break;
2664 		if (sctx->is_dev_replace &&
2665 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2666 			ret = -EIO;
2667 			break;
2668 		}
2669 		if (sctx->stat.malloc_errors > 0) {
2670 			ret = -ENOMEM;
2671 			break;
2672 		}
2673 skip:
2674 		key.offset = found_key.offset + dev_extent_len;
2675 		btrfs_release_path(path);
2676 	}
2677 
2678 	btrfs_free_path(path);
2679 
2680 	return ret;
2681 }
2682 
scrub_one_super(struct scrub_ctx * sctx,struct btrfs_device * dev,struct page * page,u64 physical,u64 generation)2683 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2684 			   struct page *page, u64 physical, u64 generation)
2685 {
2686 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2687 	struct bio_vec bvec;
2688 	struct bio bio;
2689 	struct btrfs_super_block *sb = page_address(page);
2690 	int ret;
2691 
2692 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2693 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2694 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2695 	ret = submit_bio_wait(&bio);
2696 	bio_uninit(&bio);
2697 
2698 	if (ret < 0)
2699 		return ret;
2700 	ret = btrfs_check_super_csum(fs_info, sb);
2701 	if (ret != 0) {
2702 		btrfs_err_rl(fs_info,
2703 			"super block at physical %llu devid %llu has bad csum",
2704 			physical, dev->devid);
2705 		return -EIO;
2706 	}
2707 	if (btrfs_super_generation(sb) != generation) {
2708 		btrfs_err_rl(fs_info,
2709 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2710 			     physical, dev->devid,
2711 			     btrfs_super_generation(sb), generation);
2712 		return -EUCLEAN;
2713 	}
2714 
2715 	return btrfs_validate_super(fs_info, sb, -1);
2716 }
2717 
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)2718 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2719 					   struct btrfs_device *scrub_dev)
2720 {
2721 	int	i;
2722 	u64	bytenr;
2723 	u64	gen;
2724 	int ret = 0;
2725 	struct page *page;
2726 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2727 
2728 	if (BTRFS_FS_ERROR(fs_info))
2729 		return -EROFS;
2730 
2731 	page = alloc_page(GFP_KERNEL);
2732 	if (!page) {
2733 		spin_lock(&sctx->stat_lock);
2734 		sctx->stat.malloc_errors++;
2735 		spin_unlock(&sctx->stat_lock);
2736 		return -ENOMEM;
2737 	}
2738 
2739 	/* Seed devices of a new filesystem has their own generation. */
2740 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2741 		gen = scrub_dev->generation;
2742 	else
2743 		gen = fs_info->last_trans_committed;
2744 
2745 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2746 		ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2747 		if (ret == -ENOENT)
2748 			break;
2749 
2750 		if (ret) {
2751 			spin_lock(&sctx->stat_lock);
2752 			sctx->stat.super_errors++;
2753 			spin_unlock(&sctx->stat_lock);
2754 			continue;
2755 		}
2756 
2757 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2758 		    scrub_dev->commit_total_bytes)
2759 			break;
2760 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2761 			continue;
2762 
2763 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2764 		if (ret) {
2765 			spin_lock(&sctx->stat_lock);
2766 			sctx->stat.super_errors++;
2767 			spin_unlock(&sctx->stat_lock);
2768 		}
2769 	}
2770 	__free_page(page);
2771 	return 0;
2772 }
2773 
scrub_workers_put(struct btrfs_fs_info * fs_info)2774 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2775 {
2776 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2777 					&fs_info->scrub_lock)) {
2778 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2779 
2780 		fs_info->scrub_workers = NULL;
2781 		mutex_unlock(&fs_info->scrub_lock);
2782 
2783 		if (scrub_workers)
2784 			destroy_workqueue(scrub_workers);
2785 	}
2786 }
2787 
2788 /*
2789  * get a reference count on fs_info->scrub_workers. start worker if necessary
2790  */
scrub_workers_get(struct btrfs_fs_info * fs_info)2791 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2792 {
2793 	struct workqueue_struct *scrub_workers = NULL;
2794 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2795 	int max_active = fs_info->thread_pool_size;
2796 	int ret = -ENOMEM;
2797 
2798 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2799 		return 0;
2800 
2801 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2802 	if (!scrub_workers)
2803 		return -ENOMEM;
2804 
2805 	mutex_lock(&fs_info->scrub_lock);
2806 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2807 		ASSERT(fs_info->scrub_workers == NULL);
2808 		fs_info->scrub_workers = scrub_workers;
2809 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2810 		mutex_unlock(&fs_info->scrub_lock);
2811 		return 0;
2812 	}
2813 	/* Other thread raced in and created the workers for us */
2814 	refcount_inc(&fs_info->scrub_workers_refcnt);
2815 	mutex_unlock(&fs_info->scrub_lock);
2816 
2817 	ret = 0;
2818 
2819 	destroy_workqueue(scrub_workers);
2820 	return ret;
2821 }
2822 
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)2823 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2824 		    u64 end, struct btrfs_scrub_progress *progress,
2825 		    int readonly, int is_dev_replace)
2826 {
2827 	struct btrfs_dev_lookup_args args = { .devid = devid };
2828 	struct scrub_ctx *sctx;
2829 	int ret;
2830 	struct btrfs_device *dev;
2831 	unsigned int nofs_flag;
2832 	bool need_commit = false;
2833 
2834 	if (btrfs_fs_closing(fs_info))
2835 		return -EAGAIN;
2836 
2837 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2838 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2839 
2840 	/*
2841 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2842 	 * value (max nodesize / min sectorsize), thus nodesize should always
2843 	 * be fine.
2844 	 */
2845 	ASSERT(fs_info->nodesize <=
2846 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2847 
2848 	/* Allocate outside of device_list_mutex */
2849 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2850 	if (IS_ERR(sctx))
2851 		return PTR_ERR(sctx);
2852 
2853 	ret = scrub_workers_get(fs_info);
2854 	if (ret)
2855 		goto out_free_ctx;
2856 
2857 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2858 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2859 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2860 		     !is_dev_replace)) {
2861 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2862 		ret = -ENODEV;
2863 		goto out;
2864 	}
2865 
2866 	if (!is_dev_replace && !readonly &&
2867 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2868 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2869 		btrfs_err_in_rcu(fs_info,
2870 			"scrub on devid %llu: filesystem on %s is not writable",
2871 				 devid, btrfs_dev_name(dev));
2872 		ret = -EROFS;
2873 		goto out;
2874 	}
2875 
2876 	mutex_lock(&fs_info->scrub_lock);
2877 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2878 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2879 		mutex_unlock(&fs_info->scrub_lock);
2880 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2881 		ret = -EIO;
2882 		goto out;
2883 	}
2884 
2885 	down_read(&fs_info->dev_replace.rwsem);
2886 	if (dev->scrub_ctx ||
2887 	    (!is_dev_replace &&
2888 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2889 		up_read(&fs_info->dev_replace.rwsem);
2890 		mutex_unlock(&fs_info->scrub_lock);
2891 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2892 		ret = -EINPROGRESS;
2893 		goto out;
2894 	}
2895 	up_read(&fs_info->dev_replace.rwsem);
2896 
2897 	sctx->readonly = readonly;
2898 	dev->scrub_ctx = sctx;
2899 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2900 
2901 	/*
2902 	 * checking @scrub_pause_req here, we can avoid
2903 	 * race between committing transaction and scrubbing.
2904 	 */
2905 	__scrub_blocked_if_needed(fs_info);
2906 	atomic_inc(&fs_info->scrubs_running);
2907 	mutex_unlock(&fs_info->scrub_lock);
2908 
2909 	/*
2910 	 * In order to avoid deadlock with reclaim when there is a transaction
2911 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2912 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2913 	 * invoked by our callees. The pausing request is done when the
2914 	 * transaction commit starts, and it blocks the transaction until scrub
2915 	 * is paused (done at specific points at scrub_stripe() or right above
2916 	 * before incrementing fs_info->scrubs_running).
2917 	 */
2918 	nofs_flag = memalloc_nofs_save();
2919 	if (!is_dev_replace) {
2920 		u64 old_super_errors;
2921 
2922 		spin_lock(&sctx->stat_lock);
2923 		old_super_errors = sctx->stat.super_errors;
2924 		spin_unlock(&sctx->stat_lock);
2925 
2926 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2927 		/*
2928 		 * by holding device list mutex, we can
2929 		 * kick off writing super in log tree sync.
2930 		 */
2931 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2932 		ret = scrub_supers(sctx, dev);
2933 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2934 
2935 		spin_lock(&sctx->stat_lock);
2936 		/*
2937 		 * Super block errors found, but we can not commit transaction
2938 		 * at current context, since btrfs_commit_transaction() needs
2939 		 * to pause the current running scrub (hold by ourselves).
2940 		 */
2941 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2942 			need_commit = true;
2943 		spin_unlock(&sctx->stat_lock);
2944 	}
2945 
2946 	if (!ret)
2947 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2948 	memalloc_nofs_restore(nofs_flag);
2949 
2950 	atomic_dec(&fs_info->scrubs_running);
2951 	wake_up(&fs_info->scrub_pause_wait);
2952 
2953 	if (progress)
2954 		memcpy(progress, &sctx->stat, sizeof(*progress));
2955 
2956 	if (!is_dev_replace)
2957 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2958 			ret ? "not finished" : "finished", devid, ret);
2959 
2960 	mutex_lock(&fs_info->scrub_lock);
2961 	dev->scrub_ctx = NULL;
2962 	mutex_unlock(&fs_info->scrub_lock);
2963 
2964 	scrub_workers_put(fs_info);
2965 	scrub_put_ctx(sctx);
2966 
2967 	/*
2968 	 * We found some super block errors before, now try to force a
2969 	 * transaction commit, as scrub has finished.
2970 	 */
2971 	if (need_commit) {
2972 		struct btrfs_trans_handle *trans;
2973 
2974 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
2975 		if (IS_ERR(trans)) {
2976 			ret = PTR_ERR(trans);
2977 			btrfs_err(fs_info,
2978 	"scrub: failed to start transaction to fix super block errors: %d", ret);
2979 			return ret;
2980 		}
2981 		ret = btrfs_commit_transaction(trans);
2982 		if (ret < 0)
2983 			btrfs_err(fs_info,
2984 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
2985 	}
2986 	return ret;
2987 out:
2988 	scrub_workers_put(fs_info);
2989 out_free_ctx:
2990 	scrub_free_ctx(sctx);
2991 
2992 	return ret;
2993 }
2994 
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)2995 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
2996 {
2997 	mutex_lock(&fs_info->scrub_lock);
2998 	atomic_inc(&fs_info->scrub_pause_req);
2999 	while (atomic_read(&fs_info->scrubs_paused) !=
3000 	       atomic_read(&fs_info->scrubs_running)) {
3001 		mutex_unlock(&fs_info->scrub_lock);
3002 		wait_event(fs_info->scrub_pause_wait,
3003 			   atomic_read(&fs_info->scrubs_paused) ==
3004 			   atomic_read(&fs_info->scrubs_running));
3005 		mutex_lock(&fs_info->scrub_lock);
3006 	}
3007 	mutex_unlock(&fs_info->scrub_lock);
3008 }
3009 
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3010 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3011 {
3012 	atomic_dec(&fs_info->scrub_pause_req);
3013 	wake_up(&fs_info->scrub_pause_wait);
3014 }
3015 
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3016 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3017 {
3018 	mutex_lock(&fs_info->scrub_lock);
3019 	if (!atomic_read(&fs_info->scrubs_running)) {
3020 		mutex_unlock(&fs_info->scrub_lock);
3021 		return -ENOTCONN;
3022 	}
3023 
3024 	atomic_inc(&fs_info->scrub_cancel_req);
3025 	while (atomic_read(&fs_info->scrubs_running)) {
3026 		mutex_unlock(&fs_info->scrub_lock);
3027 		wait_event(fs_info->scrub_pause_wait,
3028 			   atomic_read(&fs_info->scrubs_running) == 0);
3029 		mutex_lock(&fs_info->scrub_lock);
3030 	}
3031 	atomic_dec(&fs_info->scrub_cancel_req);
3032 	mutex_unlock(&fs_info->scrub_lock);
3033 
3034 	return 0;
3035 }
3036 
btrfs_scrub_cancel_dev(struct btrfs_device * dev)3037 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3038 {
3039 	struct btrfs_fs_info *fs_info = dev->fs_info;
3040 	struct scrub_ctx *sctx;
3041 
3042 	mutex_lock(&fs_info->scrub_lock);
3043 	sctx = dev->scrub_ctx;
3044 	if (!sctx) {
3045 		mutex_unlock(&fs_info->scrub_lock);
3046 		return -ENOTCONN;
3047 	}
3048 	atomic_inc(&sctx->cancel_req);
3049 	while (dev->scrub_ctx) {
3050 		mutex_unlock(&fs_info->scrub_lock);
3051 		wait_event(fs_info->scrub_pause_wait,
3052 			   dev->scrub_ctx == NULL);
3053 		mutex_lock(&fs_info->scrub_lock);
3054 	}
3055 	mutex_unlock(&fs_info->scrub_lock);
3056 
3057 	return 0;
3058 }
3059 
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3060 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3061 			 struct btrfs_scrub_progress *progress)
3062 {
3063 	struct btrfs_dev_lookup_args args = { .devid = devid };
3064 	struct btrfs_device *dev;
3065 	struct scrub_ctx *sctx = NULL;
3066 
3067 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3068 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3069 	if (dev)
3070 		sctx = dev->scrub_ctx;
3071 	if (sctx)
3072 		memcpy(progress, &sctx->stat, sizeof(*progress));
3073 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3074 
3075 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3076 }
3077