1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 */
6
7 #define pr_fmt(fmt) "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31 #include <asm/efi.h>
32
33 #ifdef CONFIG_ACPI
34 /*
35 * Used while adding mapping for ACPI tables.
36 * Can be reused when other iomem regions need be mapped
37 */
38 struct init_pgtable_data {
39 struct x86_mapping_info *info;
40 pgd_t *level4p;
41 };
42
mem_region_callback(struct resource * res,void * arg)43 static int mem_region_callback(struct resource *res, void *arg)
44 {
45 struct init_pgtable_data *data = arg;
46 unsigned long mstart, mend;
47
48 mstart = res->start;
49 mend = mstart + resource_size(res) - 1;
50
51 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
52 }
53
54 static int
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)55 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
56 {
57 struct init_pgtable_data data;
58 unsigned long flags;
59 int ret;
60
61 data.info = info;
62 data.level4p = level4p;
63 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
64
65 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
66 &data, mem_region_callback);
67 if (ret && ret != -EINVAL)
68 return ret;
69
70 /* ACPI tables could be located in ACPI Non-volatile Storage region */
71 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
72 &data, mem_region_callback);
73 if (ret && ret != -EINVAL)
74 return ret;
75
76 return 0;
77 }
78 #else
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)79 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
80 #endif
81
82 #ifdef CONFIG_KEXEC_FILE
83 const struct kexec_file_ops * const kexec_file_loaders[] = {
84 &kexec_bzImage64_ops,
85 NULL
86 };
87 #endif
88
89 static int
map_efi_systab(struct x86_mapping_info * info,pgd_t * level4p)90 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
91 {
92 #ifdef CONFIG_EFI
93 unsigned long mstart, mend;
94 void *kaddr;
95 int ret;
96
97 if (!efi_enabled(EFI_BOOT))
98 return 0;
99
100 mstart = (boot_params.efi_info.efi_systab |
101 ((u64)boot_params.efi_info.efi_systab_hi<<32));
102
103 if (efi_enabled(EFI_64BIT))
104 mend = mstart + sizeof(efi_system_table_64_t);
105 else
106 mend = mstart + sizeof(efi_system_table_32_t);
107
108 if (!mstart)
109 return 0;
110
111 ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
112 if (ret)
113 return ret;
114
115 kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
116 if (!kaddr) {
117 pr_err("Could not map UEFI system table\n");
118 return -ENOMEM;
119 }
120
121 mstart = efi_config_table;
122
123 if (efi_enabled(EFI_64BIT)) {
124 efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
125
126 mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
127 } else {
128 efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
129
130 mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
131 }
132
133 memunmap(kaddr);
134
135 return kernel_ident_mapping_init(info, level4p, mstart, mend);
136 #endif
137 return 0;
138 }
139
free_transition_pgtable(struct kimage * image)140 static void free_transition_pgtable(struct kimage *image)
141 {
142 free_page((unsigned long)image->arch.p4d);
143 image->arch.p4d = NULL;
144 free_page((unsigned long)image->arch.pud);
145 image->arch.pud = NULL;
146 free_page((unsigned long)image->arch.pmd);
147 image->arch.pmd = NULL;
148 free_page((unsigned long)image->arch.pte);
149 image->arch.pte = NULL;
150 }
151
init_transition_pgtable(struct kimage * image,pgd_t * pgd,unsigned long control_page)152 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd,
153 unsigned long control_page)
154 {
155 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
156 unsigned long vaddr, paddr;
157 int result = -ENOMEM;
158 p4d_t *p4d;
159 pud_t *pud;
160 pmd_t *pmd;
161 pte_t *pte;
162
163 vaddr = (unsigned long)relocate_kernel;
164 paddr = control_page;
165 pgd += pgd_index(vaddr);
166 if (!pgd_present(*pgd)) {
167 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
168 if (!p4d)
169 goto err;
170 image->arch.p4d = p4d;
171 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
172 }
173 p4d = p4d_offset(pgd, vaddr);
174 if (!p4d_present(*p4d)) {
175 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
176 if (!pud)
177 goto err;
178 image->arch.pud = pud;
179 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
180 }
181 pud = pud_offset(p4d, vaddr);
182 if (!pud_present(*pud)) {
183 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
184 if (!pmd)
185 goto err;
186 image->arch.pmd = pmd;
187 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
188 }
189 pmd = pmd_offset(pud, vaddr);
190 if (!pmd_present(*pmd)) {
191 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
192 if (!pte)
193 goto err;
194 image->arch.pte = pte;
195 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
196 }
197 pte = pte_offset_kernel(pmd, vaddr);
198
199 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
200 prot = PAGE_KERNEL_EXEC;
201
202 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
203 return 0;
204 err:
205 return result;
206 }
207
alloc_pgt_page(void * data)208 static void *alloc_pgt_page(void *data)
209 {
210 struct kimage *image = (struct kimage *)data;
211 struct page *page;
212 void *p = NULL;
213
214 page = kimage_alloc_control_pages(image, 0);
215 if (page) {
216 p = page_address(page);
217 clear_page(p);
218 }
219
220 return p;
221 }
222
init_pgtable(struct kimage * image,unsigned long control_page)223 static int init_pgtable(struct kimage *image, unsigned long control_page)
224 {
225 struct x86_mapping_info info = {
226 .alloc_pgt_page = alloc_pgt_page,
227 .context = image,
228 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
229 .kernpg_flag = _KERNPG_TABLE_NOENC,
230 };
231 unsigned long mstart, mend;
232 int result;
233 int i;
234
235 image->arch.pgd = alloc_pgt_page(image);
236 if (!image->arch.pgd)
237 return -ENOMEM;
238
239 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
240 info.page_flag |= _PAGE_ENC;
241 info.kernpg_flag |= _PAGE_ENC;
242 }
243
244 if (direct_gbpages)
245 info.direct_gbpages = true;
246
247 for (i = 0; i < nr_pfn_mapped; i++) {
248 mstart = pfn_mapped[i].start << PAGE_SHIFT;
249 mend = pfn_mapped[i].end << PAGE_SHIFT;
250
251 result = kernel_ident_mapping_init(&info, image->arch.pgd,
252 mstart, mend);
253 if (result)
254 return result;
255 }
256
257 /*
258 * segments's mem ranges could be outside 0 ~ max_pfn,
259 * for example when jump back to original kernel from kexeced kernel.
260 * or first kernel is booted with user mem map, and second kernel
261 * could be loaded out of that range.
262 */
263 for (i = 0; i < image->nr_segments; i++) {
264 mstart = image->segment[i].mem;
265 mend = mstart + image->segment[i].memsz;
266
267 result = kernel_ident_mapping_init(&info, image->arch.pgd,
268 mstart, mend);
269
270 if (result)
271 return result;
272 }
273
274 /*
275 * Prepare EFI systab and ACPI tables for kexec kernel since they are
276 * not covered by pfn_mapped.
277 */
278 result = map_efi_systab(&info, image->arch.pgd);
279 if (result)
280 return result;
281
282 result = map_acpi_tables(&info, image->arch.pgd);
283 if (result)
284 return result;
285
286 /*
287 * This must be last because the intermediate page table pages it
288 * allocates will not be control pages and may overlap the image.
289 */
290 return init_transition_pgtable(image, image->arch.pgd, control_page);
291 }
292
load_segments(void)293 static void load_segments(void)
294 {
295 __asm__ __volatile__ (
296 "\tmovl %0,%%ds\n"
297 "\tmovl %0,%%es\n"
298 "\tmovl %0,%%ss\n"
299 "\tmovl %0,%%fs\n"
300 "\tmovl %0,%%gs\n"
301 : : "a" (__KERNEL_DS) : "memory"
302 );
303 }
304
machine_kexec_prepare(struct kimage * image)305 int machine_kexec_prepare(struct kimage *image)
306 {
307 unsigned long control_page;
308 int result;
309
310 /* Calculate the offsets */
311 control_page = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
312
313 /* Setup the identity mapped 64bit page table */
314 result = init_pgtable(image, control_page);
315 if (result)
316 return result;
317
318 return 0;
319 }
320
machine_kexec_cleanup(struct kimage * image)321 void machine_kexec_cleanup(struct kimage *image)
322 {
323 free_transition_pgtable(image);
324 }
325
326 /*
327 * Do not allocate memory (or fail in any way) in machine_kexec().
328 * We are past the point of no return, committed to rebooting now.
329 */
machine_kexec(struct kimage * image)330 void machine_kexec(struct kimage *image)
331 {
332 unsigned long page_list[PAGES_NR];
333 unsigned int host_mem_enc_active;
334 int save_ftrace_enabled;
335 void *control_page;
336
337 /*
338 * This must be done before load_segments() since if call depth tracking
339 * is used then GS must be valid to make any function calls.
340 */
341 host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
342
343 #ifdef CONFIG_KEXEC_JUMP
344 if (image->preserve_context)
345 save_processor_state();
346 #endif
347
348 save_ftrace_enabled = __ftrace_enabled_save();
349
350 /* Interrupts aren't acceptable while we reboot */
351 local_irq_disable();
352 hw_breakpoint_disable();
353 cet_disable();
354
355 if (image->preserve_context) {
356 #ifdef CONFIG_X86_IO_APIC
357 /*
358 * We need to put APICs in legacy mode so that we can
359 * get timer interrupts in second kernel. kexec/kdump
360 * paths already have calls to restore_boot_irq_mode()
361 * in one form or other. kexec jump path also need one.
362 */
363 clear_IO_APIC();
364 restore_boot_irq_mode();
365 #endif
366 }
367
368 control_page = page_address(image->control_code_page);
369 __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
370
371 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
372 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
373 page_list[PA_TABLE_PAGE] = (unsigned long)__pa(image->arch.pgd);
374
375 if (image->type == KEXEC_TYPE_DEFAULT)
376 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
377 << PAGE_SHIFT);
378
379 /*
380 * The segment registers are funny things, they have both a
381 * visible and an invisible part. Whenever the visible part is
382 * set to a specific selector, the invisible part is loaded
383 * with from a table in memory. At no other time is the
384 * descriptor table in memory accessed.
385 *
386 * I take advantage of this here by force loading the
387 * segments, before I zap the gdt with an invalid value.
388 */
389 load_segments();
390 /*
391 * The gdt & idt are now invalid.
392 * If you want to load them you must set up your own idt & gdt.
393 */
394 native_idt_invalidate();
395 native_gdt_invalidate();
396
397 /* now call it */
398 image->start = relocate_kernel((unsigned long)image->head,
399 (unsigned long)page_list,
400 image->start,
401 image->preserve_context,
402 host_mem_enc_active);
403
404 #ifdef CONFIG_KEXEC_JUMP
405 if (image->preserve_context)
406 restore_processor_state();
407 #endif
408
409 __ftrace_enabled_restore(save_ftrace_enabled);
410 }
411
412 /* arch-dependent functionality related to kexec file-based syscall */
413
414 #ifdef CONFIG_KEXEC_FILE
415 /*
416 * Apply purgatory relocations.
417 *
418 * @pi: Purgatory to be relocated.
419 * @section: Section relocations applying to.
420 * @relsec: Section containing RELAs.
421 * @symtabsec: Corresponding symtab.
422 *
423 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
424 */
arch_kexec_apply_relocations_add(struct purgatory_info * pi,Elf_Shdr * section,const Elf_Shdr * relsec,const Elf_Shdr * symtabsec)425 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
426 Elf_Shdr *section, const Elf_Shdr *relsec,
427 const Elf_Shdr *symtabsec)
428 {
429 unsigned int i;
430 Elf64_Rela *rel;
431 Elf64_Sym *sym;
432 void *location;
433 unsigned long address, sec_base, value;
434 const char *strtab, *name, *shstrtab;
435 const Elf_Shdr *sechdrs;
436
437 /* String & section header string table */
438 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
439 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
440 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
441
442 rel = (void *)pi->ehdr + relsec->sh_offset;
443
444 pr_debug("Applying relocate section %s to %u\n",
445 shstrtab + relsec->sh_name, relsec->sh_info);
446
447 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
448
449 /*
450 * rel[i].r_offset contains byte offset from beginning
451 * of section to the storage unit affected.
452 *
453 * This is location to update. This is temporary buffer
454 * where section is currently loaded. This will finally be
455 * loaded to a different address later, pointed to by
456 * ->sh_addr. kexec takes care of moving it
457 * (kexec_load_segment()).
458 */
459 location = pi->purgatory_buf;
460 location += section->sh_offset;
461 location += rel[i].r_offset;
462
463 /* Final address of the location */
464 address = section->sh_addr + rel[i].r_offset;
465
466 /*
467 * rel[i].r_info contains information about symbol table index
468 * w.r.t which relocation must be made and type of relocation
469 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
470 * these respectively.
471 */
472 sym = (void *)pi->ehdr + symtabsec->sh_offset;
473 sym += ELF64_R_SYM(rel[i].r_info);
474
475 if (sym->st_name)
476 name = strtab + sym->st_name;
477 else
478 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
479
480 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
481 name, sym->st_info, sym->st_shndx, sym->st_value,
482 sym->st_size);
483
484 if (sym->st_shndx == SHN_UNDEF) {
485 pr_err("Undefined symbol: %s\n", name);
486 return -ENOEXEC;
487 }
488
489 if (sym->st_shndx == SHN_COMMON) {
490 pr_err("symbol '%s' in common section\n", name);
491 return -ENOEXEC;
492 }
493
494 if (sym->st_shndx == SHN_ABS)
495 sec_base = 0;
496 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
497 pr_err("Invalid section %d for symbol %s\n",
498 sym->st_shndx, name);
499 return -ENOEXEC;
500 } else
501 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
502
503 value = sym->st_value;
504 value += sec_base;
505 value += rel[i].r_addend;
506
507 switch (ELF64_R_TYPE(rel[i].r_info)) {
508 case R_X86_64_NONE:
509 break;
510 case R_X86_64_64:
511 *(u64 *)location = value;
512 break;
513 case R_X86_64_32:
514 *(u32 *)location = value;
515 if (value != *(u32 *)location)
516 goto overflow;
517 break;
518 case R_X86_64_32S:
519 *(s32 *)location = value;
520 if ((s64)value != *(s32 *)location)
521 goto overflow;
522 break;
523 case R_X86_64_PC32:
524 case R_X86_64_PLT32:
525 value -= (u64)address;
526 *(u32 *)location = value;
527 break;
528 default:
529 pr_err("Unknown rela relocation: %llu\n",
530 ELF64_R_TYPE(rel[i].r_info));
531 return -ENOEXEC;
532 }
533 }
534 return 0;
535
536 overflow:
537 pr_err("Overflow in relocation type %d value 0x%lx\n",
538 (int)ELF64_R_TYPE(rel[i].r_info), value);
539 return -ENOEXEC;
540 }
541
arch_kimage_file_post_load_cleanup(struct kimage * image)542 int arch_kimage_file_post_load_cleanup(struct kimage *image)
543 {
544 vfree(image->elf_headers);
545 image->elf_headers = NULL;
546 image->elf_headers_sz = 0;
547
548 return kexec_image_post_load_cleanup_default(image);
549 }
550 #endif /* CONFIG_KEXEC_FILE */
551
552 static int
kexec_mark_range(unsigned long start,unsigned long end,bool protect)553 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
554 {
555 struct page *page;
556 unsigned int nr_pages;
557
558 /*
559 * For physical range: [start, end]. We must skip the unassigned
560 * crashk resource with zero-valued "end" member.
561 */
562 if (!end || start > end)
563 return 0;
564
565 page = pfn_to_page(start >> PAGE_SHIFT);
566 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
567 if (protect)
568 return set_pages_ro(page, nr_pages);
569 else
570 return set_pages_rw(page, nr_pages);
571 }
572
kexec_mark_crashkres(bool protect)573 static void kexec_mark_crashkres(bool protect)
574 {
575 unsigned long control;
576
577 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
578
579 /* Don't touch the control code page used in crash_kexec().*/
580 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
581 kexec_mark_range(crashk_res.start, control - 1, protect);
582 control += KEXEC_CONTROL_PAGE_SIZE;
583 kexec_mark_range(control, crashk_res.end, protect);
584 }
585
arch_kexec_protect_crashkres(void)586 void arch_kexec_protect_crashkres(void)
587 {
588 kexec_mark_crashkres(true);
589 }
590
arch_kexec_unprotect_crashkres(void)591 void arch_kexec_unprotect_crashkres(void)
592 {
593 kexec_mark_crashkres(false);
594 }
595
596 /*
597 * During a traditional boot under SME, SME will encrypt the kernel,
598 * so the SME kexec kernel also needs to be un-encrypted in order to
599 * replicate a normal SME boot.
600 *
601 * During a traditional boot under SEV, the kernel has already been
602 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
603 * order to replicate a normal SEV boot.
604 */
arch_kexec_post_alloc_pages(void * vaddr,unsigned int pages,gfp_t gfp)605 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
606 {
607 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
608 return 0;
609
610 /*
611 * If host memory encryption is active we need to be sure that kexec
612 * pages are not encrypted because when we boot to the new kernel the
613 * pages won't be accessed encrypted (initially).
614 */
615 return set_memory_decrypted((unsigned long)vaddr, pages);
616 }
617
arch_kexec_pre_free_pages(void * vaddr,unsigned int pages)618 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
619 {
620 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
621 return;
622
623 /*
624 * If host memory encryption is active we need to reset the pages back
625 * to being an encrypted mapping before freeing them.
626 */
627 set_memory_encrypted((unsigned long)vaddr, pages);
628 }
629