xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision c48b07a9fde187540630ff756cbba1101eb17310)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
4  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
5  * (C) Copyright 2008 Armadeus Systems nc
6  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
7  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8  */
9 
10 #include <common.h>
11 #include <dm.h>
12 #include <environment.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <miiphy.h>
16 #include <net.h>
17 #include <netdev.h>
18 #include <power/regulator.h>
19 
20 #include <asm/io.h>
21 #include <linux/errno.h>
22 #include <linux/compiler.h>
23 
24 #include <asm/arch/clock.h>
25 #include <asm/arch/imx-regs.h>
26 #include <asm/mach-imx/sys_proto.h>
27 #include <asm-generic/gpio.h>
28 
29 #include "fec_mxc.h"
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 /*
34  * Timeout the transfer after 5 mS. This is usually a bit more, since
35  * the code in the tightloops this timeout is used in adds some overhead.
36  */
37 #define FEC_XFER_TIMEOUT	5000
38 
39 /*
40  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
41  * 64-byte alignment in the DMA RX FEC buffer.
42  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
43  * satisfies the alignment on other SoCs (32-bytes)
44  */
45 #define FEC_DMA_RX_MINALIGN	64
46 
47 #ifndef CONFIG_MII
48 #error "CONFIG_MII has to be defined!"
49 #endif
50 
51 #ifndef CONFIG_FEC_XCV_TYPE
52 #define CONFIG_FEC_XCV_TYPE MII100
53 #endif
54 
55 /*
56  * The i.MX28 operates with packets in big endian. We need to swap them before
57  * sending and after receiving.
58  */
59 #ifdef CONFIG_MX28
60 #define CONFIG_FEC_MXC_SWAP_PACKET
61 #endif
62 
63 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
64 
65 /* Check various alignment issues at compile time */
66 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
67 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
68 #endif
69 
70 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
71 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
72 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
73 #endif
74 
75 #undef DEBUG
76 
77 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet(uint32_t * packet,int length)78 static void swap_packet(uint32_t *packet, int length)
79 {
80 	int i;
81 
82 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
83 		packet[i] = __swab32(packet[i]);
84 }
85 #endif
86 
87 /* MII-interface related functions */
fec_mdio_read(struct ethernet_regs * eth,uint8_t phyaddr,uint8_t regaddr)88 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
89 		uint8_t regaddr)
90 {
91 	uint32_t reg;		/* convenient holder for the PHY register */
92 	uint32_t phy;		/* convenient holder for the PHY */
93 	uint32_t start;
94 	int val;
95 
96 	/*
97 	 * reading from any PHY's register is done by properly
98 	 * programming the FEC's MII data register.
99 	 */
100 	writel(FEC_IEVENT_MII, &eth->ievent);
101 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
102 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
103 
104 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
105 			phy | reg, &eth->mii_data);
106 
107 	/* wait for the related interrupt */
108 	start = get_timer(0);
109 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
110 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
111 			printf("Read MDIO failed...\n");
112 			return -1;
113 		}
114 	}
115 
116 	/* clear mii interrupt bit */
117 	writel(FEC_IEVENT_MII, &eth->ievent);
118 
119 	/* it's now safe to read the PHY's register */
120 	val = (unsigned short)readl(&eth->mii_data);
121 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
122 	      regaddr, val);
123 	return val;
124 }
125 
fec_get_clk_rate(void * udev,int idx)126 static int fec_get_clk_rate(void *udev, int idx)
127 {
128 #if IS_ENABLED(CONFIG_IMX8)
129 	struct fec_priv *fec;
130 	struct udevice *dev;
131 	int ret;
132 
133 	dev = udev;
134 	if (!dev) {
135 		ret = uclass_get_device(UCLASS_ETH, idx, &dev);
136 		if (ret < 0) {
137 			debug("Can't get FEC udev: %d\n", ret);
138 			return ret;
139 		}
140 	}
141 
142 	fec = dev_get_priv(dev);
143 	if (fec)
144 		return fec->clk_rate;
145 
146 	return -EINVAL;
147 #else
148 	return imx_get_fecclk();
149 #endif
150 }
151 
fec_mii_setspeed(struct ethernet_regs * eth)152 static void fec_mii_setspeed(struct ethernet_regs *eth)
153 {
154 	/*
155 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
156 	 * and do not drop the Preamble.
157 	 *
158 	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
159 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
160 	 * versions are RAZ there, so just ignore the difference and write the
161 	 * register always.
162 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
163 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
164 	 * output.
165 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
166 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
167 	 * holdtime cannot result in a value greater than 3.
168 	 */
169 	u32 pclk;
170 	u32 speed;
171 	u32 hold;
172 	int ret;
173 
174 	ret = fec_get_clk_rate(NULL, 0);
175 	if (ret < 0) {
176 		printf("Can't find FEC0 clk rate: %d\n", ret);
177 		return;
178 	}
179 	pclk = ret;
180 	speed = DIV_ROUND_UP(pclk, 5000000);
181 	hold = DIV_ROUND_UP(pclk, 100000000) - 1;
182 
183 #ifdef FEC_QUIRK_ENET_MAC
184 	speed--;
185 #endif
186 	writel(speed << 1 | hold << 8, &eth->mii_speed);
187 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
188 }
189 
fec_mdio_write(struct ethernet_regs * eth,uint8_t phyaddr,uint8_t regaddr,uint16_t data)190 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
191 		uint8_t regaddr, uint16_t data)
192 {
193 	uint32_t reg;		/* convenient holder for the PHY register */
194 	uint32_t phy;		/* convenient holder for the PHY */
195 	uint32_t start;
196 
197 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
198 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
199 
200 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
201 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
202 
203 	/* wait for the MII interrupt */
204 	start = get_timer(0);
205 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
206 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
207 			printf("Write MDIO failed...\n");
208 			return -1;
209 		}
210 	}
211 
212 	/* clear MII interrupt bit */
213 	writel(FEC_IEVENT_MII, &eth->ievent);
214 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
215 	      regaddr, data);
216 
217 	return 0;
218 }
219 
fec_phy_read(struct mii_dev * bus,int phyaddr,int dev_addr,int regaddr)220 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
221 			int regaddr)
222 {
223 	return fec_mdio_read(bus->priv, phyaddr, regaddr);
224 }
225 
fec_phy_write(struct mii_dev * bus,int phyaddr,int dev_addr,int regaddr,u16 data)226 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
227 			 int regaddr, u16 data)
228 {
229 	return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
230 }
231 
232 #ifndef CONFIG_PHYLIB
miiphy_restart_aneg(struct eth_device * dev)233 static int miiphy_restart_aneg(struct eth_device *dev)
234 {
235 	int ret = 0;
236 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
237 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
238 	struct ethernet_regs *eth = fec->bus->priv;
239 
240 	/*
241 	 * Wake up from sleep if necessary
242 	 * Reset PHY, then delay 300ns
243 	 */
244 #ifdef CONFIG_MX27
245 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
246 #endif
247 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
248 	udelay(1000);
249 
250 	/* Set the auto-negotiation advertisement register bits */
251 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
252 		       LPA_100FULL | LPA_100HALF | LPA_10FULL |
253 		       LPA_10HALF | PHY_ANLPAR_PSB_802_3);
254 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
255 		       BMCR_ANENABLE | BMCR_ANRESTART);
256 
257 	if (fec->mii_postcall)
258 		ret = fec->mii_postcall(fec->phy_id);
259 
260 #endif
261 	return ret;
262 }
263 
264 #ifndef CONFIG_FEC_FIXED_SPEED
miiphy_wait_aneg(struct eth_device * dev)265 static int miiphy_wait_aneg(struct eth_device *dev)
266 {
267 	uint32_t start;
268 	int status;
269 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
270 	struct ethernet_regs *eth = fec->bus->priv;
271 
272 	/* Wait for AN completion */
273 	start = get_timer(0);
274 	do {
275 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
276 			printf("%s: Autonegotiation timeout\n", dev->name);
277 			return -1;
278 		}
279 
280 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
281 		if (status < 0) {
282 			printf("%s: Autonegotiation failed. status: %d\n",
283 			       dev->name, status);
284 			return -1;
285 		}
286 	} while (!(status & BMSR_LSTATUS));
287 
288 	return 0;
289 }
290 #endif /* CONFIG_FEC_FIXED_SPEED */
291 #endif
292 
fec_rx_task_enable(struct fec_priv * fec)293 static int fec_rx_task_enable(struct fec_priv *fec)
294 {
295 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
296 	return 0;
297 }
298 
fec_rx_task_disable(struct fec_priv * fec)299 static int fec_rx_task_disable(struct fec_priv *fec)
300 {
301 	return 0;
302 }
303 
fec_tx_task_enable(struct fec_priv * fec)304 static int fec_tx_task_enable(struct fec_priv *fec)
305 {
306 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
307 	return 0;
308 }
309 
fec_tx_task_disable(struct fec_priv * fec)310 static int fec_tx_task_disable(struct fec_priv *fec)
311 {
312 	return 0;
313 }
314 
315 /**
316  * Initialize receive task's buffer descriptors
317  * @param[in] fec all we know about the device yet
318  * @param[in] count receive buffer count to be allocated
319  * @param[in] dsize desired size of each receive buffer
320  * @return 0 on success
321  *
322  * Init all RX descriptors to default values.
323  */
fec_rbd_init(struct fec_priv * fec,int count,int dsize)324 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
325 {
326 	uint32_t size;
327 	ulong data;
328 	int i;
329 
330 	/*
331 	 * Reload the RX descriptors with default values and wipe
332 	 * the RX buffers.
333 	 */
334 	size = roundup(dsize, ARCH_DMA_MINALIGN);
335 	for (i = 0; i < count; i++) {
336 		data = fec->rbd_base[i].data_pointer;
337 		memset((void *)data, 0, dsize);
338 		flush_dcache_range(data, data + size);
339 
340 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
341 		fec->rbd_base[i].data_length = 0;
342 	}
343 
344 	/* Mark the last RBD to close the ring. */
345 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
346 	fec->rbd_index = 0;
347 
348 	flush_dcache_range((ulong)fec->rbd_base,
349 			   (ulong)fec->rbd_base + size);
350 }
351 
352 /**
353  * Initialize transmit task's buffer descriptors
354  * @param[in] fec all we know about the device yet
355  *
356  * Transmit buffers are created externally. We only have to init the BDs here.\n
357  * Note: There is a race condition in the hardware. When only one BD is in
358  * use it must be marked with the WRAP bit to use it for every transmitt.
359  * This bit in combination with the READY bit results into double transmit
360  * of each data buffer. It seems the state machine checks READY earlier then
361  * resetting it after the first transfer.
362  * Using two BDs solves this issue.
363  */
fec_tbd_init(struct fec_priv * fec)364 static void fec_tbd_init(struct fec_priv *fec)
365 {
366 	ulong addr = (ulong)fec->tbd_base;
367 	unsigned size = roundup(2 * sizeof(struct fec_bd),
368 				ARCH_DMA_MINALIGN);
369 
370 	memset(fec->tbd_base, 0, size);
371 	fec->tbd_base[0].status = 0;
372 	fec->tbd_base[1].status = FEC_TBD_WRAP;
373 	fec->tbd_index = 0;
374 	flush_dcache_range(addr, addr + size);
375 }
376 
377 /**
378  * Mark the given read buffer descriptor as free
379  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
380  * @param[in] prbd buffer descriptor to mark free again
381  */
fec_rbd_clean(int last,struct fec_bd * prbd)382 static void fec_rbd_clean(int last, struct fec_bd *prbd)
383 {
384 	unsigned short flags = FEC_RBD_EMPTY;
385 	if (last)
386 		flags |= FEC_RBD_WRAP;
387 	writew(flags, &prbd->status);
388 	writew(0, &prbd->data_length);
389 }
390 
fec_get_hwaddr(int dev_id,unsigned char * mac)391 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
392 {
393 	imx_get_mac_from_fuse(dev_id, mac);
394 	return !is_valid_ethaddr(mac);
395 }
396 
397 #ifdef CONFIG_DM_ETH
fecmxc_set_hwaddr(struct udevice * dev)398 static int fecmxc_set_hwaddr(struct udevice *dev)
399 #else
400 static int fec_set_hwaddr(struct eth_device *dev)
401 #endif
402 {
403 #ifdef CONFIG_DM_ETH
404 	struct fec_priv *fec = dev_get_priv(dev);
405 	struct eth_pdata *pdata = dev_get_platdata(dev);
406 	uchar *mac = pdata->enetaddr;
407 #else
408 	uchar *mac = dev->enetaddr;
409 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
410 #endif
411 
412 	writel(0, &fec->eth->iaddr1);
413 	writel(0, &fec->eth->iaddr2);
414 	writel(0, &fec->eth->gaddr1);
415 	writel(0, &fec->eth->gaddr2);
416 
417 	/* Set physical address */
418 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
419 	       &fec->eth->paddr1);
420 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
421 
422 	return 0;
423 }
424 
425 /* Do initial configuration of the FEC registers */
fec_reg_setup(struct fec_priv * fec)426 static void fec_reg_setup(struct fec_priv *fec)
427 {
428 	uint32_t rcntrl;
429 
430 	/* Set interrupt mask register */
431 	writel(0x00000000, &fec->eth->imask);
432 
433 	/* Clear FEC-Lite interrupt event register(IEVENT) */
434 	writel(0xffffffff, &fec->eth->ievent);
435 
436 	/* Set FEC-Lite receive control register(R_CNTRL): */
437 
438 	/* Start with frame length = 1518, common for all modes. */
439 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
440 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
441 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
442 	if (fec->xcv_type == RGMII)
443 		rcntrl |= FEC_RCNTRL_RGMII;
444 	else if (fec->xcv_type == RMII)
445 		rcntrl |= FEC_RCNTRL_RMII;
446 
447 	writel(rcntrl, &fec->eth->r_cntrl);
448 }
449 
450 /**
451  * Start the FEC engine
452  * @param[in] dev Our device to handle
453  */
454 #ifdef CONFIG_DM_ETH
fec_open(struct udevice * dev)455 static int fec_open(struct udevice *dev)
456 #else
457 static int fec_open(struct eth_device *edev)
458 #endif
459 {
460 #ifdef CONFIG_DM_ETH
461 	struct fec_priv *fec = dev_get_priv(dev);
462 #else
463 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
464 #endif
465 	int speed;
466 	ulong addr, size;
467 	int i;
468 
469 	debug("fec_open: fec_open(dev)\n");
470 	/* full-duplex, heartbeat disabled */
471 	writel(1 << 2, &fec->eth->x_cntrl);
472 	fec->rbd_index = 0;
473 
474 	/* Invalidate all descriptors */
475 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
476 		fec_rbd_clean(0, &fec->rbd_base[i]);
477 	fec_rbd_clean(1, &fec->rbd_base[i]);
478 
479 	/* Flush the descriptors into RAM */
480 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
481 			ARCH_DMA_MINALIGN);
482 	addr = (ulong)fec->rbd_base;
483 	flush_dcache_range(addr, addr + size);
484 
485 #ifdef FEC_QUIRK_ENET_MAC
486 	/* Enable ENET HW endian SWAP */
487 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
488 	       &fec->eth->ecntrl);
489 	/* Enable ENET store and forward mode */
490 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
491 	       &fec->eth->x_wmrk);
492 #endif
493 	/* Enable FEC-Lite controller */
494 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
495 	       &fec->eth->ecntrl);
496 
497 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
498 	udelay(100);
499 
500 	/* setup the MII gasket for RMII mode */
501 	/* disable the gasket */
502 	writew(0, &fec->eth->miigsk_enr);
503 
504 	/* wait for the gasket to be disabled */
505 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
506 		udelay(2);
507 
508 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
509 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
510 
511 	/* re-enable the gasket */
512 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
513 
514 	/* wait until MII gasket is ready */
515 	int max_loops = 10;
516 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
517 		if (--max_loops <= 0) {
518 			printf("WAIT for MII Gasket ready timed out\n");
519 			break;
520 		}
521 	}
522 #endif
523 
524 #ifdef CONFIG_PHYLIB
525 	{
526 		/* Start up the PHY */
527 		int ret = phy_startup(fec->phydev);
528 
529 		if (ret) {
530 			printf("Could not initialize PHY %s\n",
531 			       fec->phydev->dev->name);
532 			return ret;
533 		}
534 		speed = fec->phydev->speed;
535 	}
536 #elif CONFIG_FEC_FIXED_SPEED
537 	speed = CONFIG_FEC_FIXED_SPEED;
538 #else
539 	miiphy_wait_aneg(edev);
540 	speed = miiphy_speed(edev->name, fec->phy_id);
541 	miiphy_duplex(edev->name, fec->phy_id);
542 #endif
543 
544 #ifdef FEC_QUIRK_ENET_MAC
545 	{
546 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
547 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
548 		if (speed == _1000BASET)
549 			ecr |= FEC_ECNTRL_SPEED;
550 		else if (speed != _100BASET)
551 			rcr |= FEC_RCNTRL_RMII_10T;
552 		writel(ecr, &fec->eth->ecntrl);
553 		writel(rcr, &fec->eth->r_cntrl);
554 	}
555 #endif
556 	debug("%s:Speed=%i\n", __func__, speed);
557 
558 	/* Enable SmartDMA receive task */
559 	fec_rx_task_enable(fec);
560 
561 	udelay(100000);
562 	return 0;
563 }
564 
565 #ifdef CONFIG_DM_ETH
fecmxc_init(struct udevice * dev)566 static int fecmxc_init(struct udevice *dev)
567 #else
568 static int fec_init(struct eth_device *dev, bd_t *bd)
569 #endif
570 {
571 #ifdef CONFIG_DM_ETH
572 	struct fec_priv *fec = dev_get_priv(dev);
573 #else
574 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
575 #endif
576 	u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
577 	u8 *i;
578 	ulong addr;
579 
580 	/* Initialize MAC address */
581 #ifdef CONFIG_DM_ETH
582 	fecmxc_set_hwaddr(dev);
583 #else
584 	fec_set_hwaddr(dev);
585 #endif
586 
587 	/* Setup transmit descriptors, there are two in total. */
588 	fec_tbd_init(fec);
589 
590 	/* Setup receive descriptors. */
591 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
592 
593 	fec_reg_setup(fec);
594 
595 	if (fec->xcv_type != SEVENWIRE)
596 		fec_mii_setspeed(fec->bus->priv);
597 
598 	/* Set Opcode/Pause Duration Register */
599 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
600 	writel(0x2, &fec->eth->x_wmrk);
601 
602 	/* Set multicast address filter */
603 	writel(0x00000000, &fec->eth->gaddr1);
604 	writel(0x00000000, &fec->eth->gaddr2);
605 
606 	/* Do not access reserved register */
607 	if (!is_mx6ul() && !is_mx6ull() && !is_imx8m()) {
608 		/* clear MIB RAM */
609 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
610 			writel(0, i);
611 
612 		/* FIFO receive start register */
613 		writel(0x520, &fec->eth->r_fstart);
614 	}
615 
616 	/* size and address of each buffer */
617 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
618 
619 	addr = (ulong)fec->tbd_base;
620 	writel((uint32_t)addr, &fec->eth->etdsr);
621 
622 	addr = (ulong)fec->rbd_base;
623 	writel((uint32_t)addr, &fec->eth->erdsr);
624 
625 #ifndef CONFIG_PHYLIB
626 	if (fec->xcv_type != SEVENWIRE)
627 		miiphy_restart_aneg(dev);
628 #endif
629 	fec_open(dev);
630 	return 0;
631 }
632 
633 /**
634  * Halt the FEC engine
635  * @param[in] dev Our device to handle
636  */
637 #ifdef CONFIG_DM_ETH
fecmxc_halt(struct udevice * dev)638 static void fecmxc_halt(struct udevice *dev)
639 #else
640 static void fec_halt(struct eth_device *dev)
641 #endif
642 {
643 #ifdef CONFIG_DM_ETH
644 	struct fec_priv *fec = dev_get_priv(dev);
645 #else
646 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
647 #endif
648 	int counter = 0xffff;
649 
650 	/* issue graceful stop command to the FEC transmitter if necessary */
651 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
652 	       &fec->eth->x_cntrl);
653 
654 	debug("eth_halt: wait for stop regs\n");
655 	/* wait for graceful stop to register */
656 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
657 		udelay(1);
658 
659 	/* Disable SmartDMA tasks */
660 	fec_tx_task_disable(fec);
661 	fec_rx_task_disable(fec);
662 
663 	/*
664 	 * Disable the Ethernet Controller
665 	 * Note: this will also reset the BD index counter!
666 	 */
667 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
668 	       &fec->eth->ecntrl);
669 	fec->rbd_index = 0;
670 	fec->tbd_index = 0;
671 	debug("eth_halt: done\n");
672 }
673 
674 /**
675  * Transmit one frame
676  * @param[in] dev Our ethernet device to handle
677  * @param[in] packet Pointer to the data to be transmitted
678  * @param[in] length Data count in bytes
679  * @return 0 on success
680  */
681 #ifdef CONFIG_DM_ETH
fecmxc_send(struct udevice * dev,void * packet,int length)682 static int fecmxc_send(struct udevice *dev, void *packet, int length)
683 #else
684 static int fec_send(struct eth_device *dev, void *packet, int length)
685 #endif
686 {
687 	unsigned int status;
688 	u32 size;
689 	ulong addr, end;
690 	int timeout = FEC_XFER_TIMEOUT;
691 	int ret = 0;
692 
693 	/*
694 	 * This routine transmits one frame.  This routine only accepts
695 	 * 6-byte Ethernet addresses.
696 	 */
697 #ifdef CONFIG_DM_ETH
698 	struct fec_priv *fec = dev_get_priv(dev);
699 #else
700 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
701 #endif
702 
703 	/*
704 	 * Check for valid length of data.
705 	 */
706 	if ((length > 1500) || (length <= 0)) {
707 		printf("Payload (%d) too large\n", length);
708 		return -1;
709 	}
710 
711 	/*
712 	 * Setup the transmit buffer. We are always using the first buffer for
713 	 * transmission, the second will be empty and only used to stop the DMA
714 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
715 	 */
716 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
717 	swap_packet((uint32_t *)packet, length);
718 #endif
719 
720 	addr = (ulong)packet;
721 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
722 	addr &= ~(ARCH_DMA_MINALIGN - 1);
723 	flush_dcache_range(addr, end);
724 
725 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
726 	writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
727 
728 	/*
729 	 * update BD's status now
730 	 * This block:
731 	 * - is always the last in a chain (means no chain)
732 	 * - should transmitt the CRC
733 	 * - might be the last BD in the list, so the address counter should
734 	 *   wrap (-> keep the WRAP flag)
735 	 */
736 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
737 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
738 	writew(status, &fec->tbd_base[fec->tbd_index].status);
739 
740 	/*
741 	 * Flush data cache. This code flushes both TX descriptors to RAM.
742 	 * After this code, the descriptors will be safely in RAM and we
743 	 * can start DMA.
744 	 */
745 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
746 	addr = (ulong)fec->tbd_base;
747 	flush_dcache_range(addr, addr + size);
748 
749 	/*
750 	 * Below we read the DMA descriptor's last four bytes back from the
751 	 * DRAM. This is important in order to make sure that all WRITE
752 	 * operations on the bus that were triggered by previous cache FLUSH
753 	 * have completed.
754 	 *
755 	 * Otherwise, on MX28, it is possible to observe a corruption of the
756 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
757 	 * for the bus structure of MX28. The scenario is as follows:
758 	 *
759 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
760 	 *    to DRAM due to flush_dcache_range()
761 	 * 2) ARM core writes the FEC registers via AHB_ARB2
762 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
763 	 *
764 	 * Note that 2) does sometimes finish before 1) due to reordering of
765 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
766 	 * DMA descriptor is fully written into DRAM. This results in occasional
767 	 * corruption of the DMA descriptor.
768 	 */
769 	readl(addr + size - 4);
770 
771 	/* Enable SmartDMA transmit task */
772 	fec_tx_task_enable(fec);
773 
774 	/*
775 	 * Wait until frame is sent. On each turn of the wait cycle, we must
776 	 * invalidate data cache to see what's really in RAM. Also, we need
777 	 * barrier here.
778 	 */
779 	while (--timeout) {
780 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
781 			break;
782 	}
783 
784 	if (!timeout) {
785 		ret = -EINVAL;
786 		goto out;
787 	}
788 
789 	/*
790 	 * The TDAR bit is cleared when the descriptors are all out from TX
791 	 * but on mx6solox we noticed that the READY bit is still not cleared
792 	 * right after TDAR.
793 	 * These are two distinct signals, and in IC simulation, we found that
794 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
795 	 * cleared.
796 	 * In mx6solox, we use a later version of FEC IP. It looks like that
797 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
798 	 * version.
799 	 *
800 	 * Fix this by polling the READY bit of BD after the TDAR polling,
801 	 * which covers the mx6solox case and does not harm the other SoCs.
802 	 */
803 	timeout = FEC_XFER_TIMEOUT;
804 	while (--timeout) {
805 		invalidate_dcache_range(addr, addr + size);
806 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
807 		    FEC_TBD_READY))
808 			break;
809 	}
810 
811 	if (!timeout)
812 		ret = -EINVAL;
813 
814 out:
815 	debug("fec_send: status 0x%x index %d ret %i\n",
816 	      readw(&fec->tbd_base[fec->tbd_index].status),
817 	      fec->tbd_index, ret);
818 	/* for next transmission use the other buffer */
819 	if (fec->tbd_index)
820 		fec->tbd_index = 0;
821 	else
822 		fec->tbd_index = 1;
823 
824 	return ret;
825 }
826 
827 /**
828  * Pull one frame from the card
829  * @param[in] dev Our ethernet device to handle
830  * @return Length of packet read
831  */
832 #ifdef CONFIG_DM_ETH
fecmxc_recv(struct udevice * dev,int flags,uchar ** packetp)833 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
834 #else
835 static int fec_recv(struct eth_device *dev)
836 #endif
837 {
838 #ifdef CONFIG_DM_ETH
839 	struct fec_priv *fec = dev_get_priv(dev);
840 #else
841 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
842 #endif
843 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
844 	unsigned long ievent;
845 	int frame_length, len = 0;
846 	uint16_t bd_status;
847 	ulong addr, size, end;
848 	int i;
849 
850 #ifdef CONFIG_DM_ETH
851 	*packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
852 	if (*packetp == 0) {
853 		printf("%s: error allocating packetp\n", __func__);
854 		return -ENOMEM;
855 	}
856 #else
857 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
858 #endif
859 
860 	/* Check if any critical events have happened */
861 	ievent = readl(&fec->eth->ievent);
862 	writel(ievent, &fec->eth->ievent);
863 	debug("fec_recv: ievent 0x%lx\n", ievent);
864 	if (ievent & FEC_IEVENT_BABR) {
865 #ifdef CONFIG_DM_ETH
866 		fecmxc_halt(dev);
867 		fecmxc_init(dev);
868 #else
869 		fec_halt(dev);
870 		fec_init(dev, fec->bd);
871 #endif
872 		printf("some error: 0x%08lx\n", ievent);
873 		return 0;
874 	}
875 	if (ievent & FEC_IEVENT_HBERR) {
876 		/* Heartbeat error */
877 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
878 		       &fec->eth->x_cntrl);
879 	}
880 	if (ievent & FEC_IEVENT_GRA) {
881 		/* Graceful stop complete */
882 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
883 #ifdef CONFIG_DM_ETH
884 			fecmxc_halt(dev);
885 #else
886 			fec_halt(dev);
887 #endif
888 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
889 			       &fec->eth->x_cntrl);
890 #ifdef CONFIG_DM_ETH
891 			fecmxc_init(dev);
892 #else
893 			fec_init(dev, fec->bd);
894 #endif
895 		}
896 	}
897 
898 	/*
899 	 * Read the buffer status. Before the status can be read, the data cache
900 	 * must be invalidated, because the data in RAM might have been changed
901 	 * by DMA. The descriptors are properly aligned to cachelines so there's
902 	 * no need to worry they'd overlap.
903 	 *
904 	 * WARNING: By invalidating the descriptor here, we also invalidate
905 	 * the descriptors surrounding this one. Therefore we can NOT change the
906 	 * contents of this descriptor nor the surrounding ones. The problem is
907 	 * that in order to mark the descriptor as processed, we need to change
908 	 * the descriptor. The solution is to mark the whole cache line when all
909 	 * descriptors in the cache line are processed.
910 	 */
911 	addr = (ulong)rbd;
912 	addr &= ~(ARCH_DMA_MINALIGN - 1);
913 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
914 	invalidate_dcache_range(addr, addr + size);
915 
916 	bd_status = readw(&rbd->status);
917 	debug("fec_recv: status 0x%x\n", bd_status);
918 
919 	if (!(bd_status & FEC_RBD_EMPTY)) {
920 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
921 		    ((readw(&rbd->data_length) - 4) > 14)) {
922 			/* Get buffer address and size */
923 			addr = readl(&rbd->data_pointer);
924 			frame_length = readw(&rbd->data_length) - 4;
925 			/* Invalidate data cache over the buffer */
926 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
927 			addr &= ~(ARCH_DMA_MINALIGN - 1);
928 			invalidate_dcache_range(addr, end);
929 
930 			/* Fill the buffer and pass it to upper layers */
931 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
932 			swap_packet((uint32_t *)addr, frame_length);
933 #endif
934 
935 #ifdef CONFIG_DM_ETH
936 			memcpy(*packetp, (char *)addr, frame_length);
937 #else
938 			memcpy(buff, (char *)addr, frame_length);
939 			net_process_received_packet(buff, frame_length);
940 #endif
941 			len = frame_length;
942 		} else {
943 			if (bd_status & FEC_RBD_ERR)
944 				debug("error frame: 0x%08lx 0x%08x\n",
945 				      addr, bd_status);
946 		}
947 
948 		/*
949 		 * Free the current buffer, restart the engine and move forward
950 		 * to the next buffer. Here we check if the whole cacheline of
951 		 * descriptors was already processed and if so, we mark it free
952 		 * as whole.
953 		 */
954 		size = RXDESC_PER_CACHELINE - 1;
955 		if ((fec->rbd_index & size) == size) {
956 			i = fec->rbd_index - size;
957 			addr = (ulong)&fec->rbd_base[i];
958 			for (; i <= fec->rbd_index ; i++) {
959 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
960 					      &fec->rbd_base[i]);
961 			}
962 			flush_dcache_range(addr,
963 					   addr + ARCH_DMA_MINALIGN);
964 		}
965 
966 		fec_rx_task_enable(fec);
967 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
968 	}
969 	debug("fec_recv: stop\n");
970 
971 	return len;
972 }
973 
fec_set_dev_name(char * dest,int dev_id)974 static void fec_set_dev_name(char *dest, int dev_id)
975 {
976 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
977 }
978 
fec_alloc_descs(struct fec_priv * fec)979 static int fec_alloc_descs(struct fec_priv *fec)
980 {
981 	unsigned int size;
982 	int i;
983 	uint8_t *data;
984 	ulong addr;
985 
986 	/* Allocate TX descriptors. */
987 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
988 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
989 	if (!fec->tbd_base)
990 		goto err_tx;
991 
992 	/* Allocate RX descriptors. */
993 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
994 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
995 	if (!fec->rbd_base)
996 		goto err_rx;
997 
998 	memset(fec->rbd_base, 0, size);
999 
1000 	/* Allocate RX buffers. */
1001 
1002 	/* Maximum RX buffer size. */
1003 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
1004 	for (i = 0; i < FEC_RBD_NUM; i++) {
1005 		data = memalign(FEC_DMA_RX_MINALIGN, size);
1006 		if (!data) {
1007 			printf("%s: error allocating rxbuf %d\n", __func__, i);
1008 			goto err_ring;
1009 		}
1010 
1011 		memset(data, 0, size);
1012 
1013 		addr = (ulong)data;
1014 		fec->rbd_base[i].data_pointer = (uint32_t)addr;
1015 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
1016 		fec->rbd_base[i].data_length = 0;
1017 		/* Flush the buffer to memory. */
1018 		flush_dcache_range(addr, addr + size);
1019 	}
1020 
1021 	/* Mark the last RBD to close the ring. */
1022 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
1023 
1024 	fec->rbd_index = 0;
1025 	fec->tbd_index = 0;
1026 
1027 	return 0;
1028 
1029 err_ring:
1030 	for (; i >= 0; i--) {
1031 		addr = fec->rbd_base[i].data_pointer;
1032 		free((void *)addr);
1033 	}
1034 	free(fec->rbd_base);
1035 err_rx:
1036 	free(fec->tbd_base);
1037 err_tx:
1038 	return -ENOMEM;
1039 }
1040 
fec_free_descs(struct fec_priv * fec)1041 static void fec_free_descs(struct fec_priv *fec)
1042 {
1043 	int i;
1044 	ulong addr;
1045 
1046 	for (i = 0; i < FEC_RBD_NUM; i++) {
1047 		addr = fec->rbd_base[i].data_pointer;
1048 		free((void *)addr);
1049 	}
1050 	free(fec->rbd_base);
1051 	free(fec->tbd_base);
1052 }
1053 
fec_get_miibus(ulong base_addr,int dev_id)1054 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
1055 {
1056 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1057 	struct mii_dev *bus;
1058 	int ret;
1059 
1060 	bus = mdio_alloc();
1061 	if (!bus) {
1062 		printf("mdio_alloc failed\n");
1063 		return NULL;
1064 	}
1065 	bus->read = fec_phy_read;
1066 	bus->write = fec_phy_write;
1067 	bus->priv = eth;
1068 	fec_set_dev_name(bus->name, dev_id);
1069 
1070 	ret = mdio_register(bus);
1071 	if (ret) {
1072 		printf("mdio_register failed\n");
1073 		free(bus);
1074 		return NULL;
1075 	}
1076 	fec_mii_setspeed(eth);
1077 	return bus;
1078 }
1079 
1080 #ifndef CONFIG_DM_ETH
1081 #ifdef CONFIG_PHYLIB
fec_probe(bd_t * bd,int dev_id,uint32_t base_addr,struct mii_dev * bus,struct phy_device * phydev)1082 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1083 		struct mii_dev *bus, struct phy_device *phydev)
1084 #else
1085 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1086 		struct mii_dev *bus, int phy_id)
1087 #endif
1088 {
1089 	struct eth_device *edev;
1090 	struct fec_priv *fec;
1091 	unsigned char ethaddr[6];
1092 	char mac[16];
1093 	uint32_t start;
1094 	int ret = 0;
1095 
1096 	/* create and fill edev struct */
1097 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1098 	if (!edev) {
1099 		puts("fec_mxc: not enough malloc memory for eth_device\n");
1100 		ret = -ENOMEM;
1101 		goto err1;
1102 	}
1103 
1104 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1105 	if (!fec) {
1106 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
1107 		ret = -ENOMEM;
1108 		goto err2;
1109 	}
1110 
1111 	memset(edev, 0, sizeof(*edev));
1112 	memset(fec, 0, sizeof(*fec));
1113 
1114 	ret = fec_alloc_descs(fec);
1115 	if (ret)
1116 		goto err3;
1117 
1118 	edev->priv = fec;
1119 	edev->init = fec_init;
1120 	edev->send = fec_send;
1121 	edev->recv = fec_recv;
1122 	edev->halt = fec_halt;
1123 	edev->write_hwaddr = fec_set_hwaddr;
1124 
1125 	fec->eth = (struct ethernet_regs *)(ulong)base_addr;
1126 	fec->bd = bd;
1127 
1128 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1129 
1130 	/* Reset chip. */
1131 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1132 	start = get_timer(0);
1133 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1134 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1135 			printf("FEC MXC: Timeout resetting chip\n");
1136 			goto err4;
1137 		}
1138 		udelay(10);
1139 	}
1140 
1141 	fec_reg_setup(fec);
1142 	fec_set_dev_name(edev->name, dev_id);
1143 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1144 	fec->bus = bus;
1145 	fec_mii_setspeed(bus->priv);
1146 #ifdef CONFIG_PHYLIB
1147 	fec->phydev = phydev;
1148 	phy_connect_dev(phydev, edev);
1149 	/* Configure phy */
1150 	phy_config(phydev);
1151 #else
1152 	fec->phy_id = phy_id;
1153 #endif
1154 	eth_register(edev);
1155 	/* only support one eth device, the index number pointed by dev_id */
1156 	edev->index = fec->dev_id;
1157 
1158 	if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1159 		debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1160 		memcpy(edev->enetaddr, ethaddr, 6);
1161 		if (fec->dev_id)
1162 			sprintf(mac, "eth%daddr", fec->dev_id);
1163 		else
1164 			strcpy(mac, "ethaddr");
1165 		if (!env_get(mac))
1166 			eth_env_set_enetaddr(mac, ethaddr);
1167 	}
1168 	return ret;
1169 err4:
1170 	fec_free_descs(fec);
1171 err3:
1172 	free(fec);
1173 err2:
1174 	free(edev);
1175 err1:
1176 	return ret;
1177 }
1178 
fecmxc_initialize_multi(bd_t * bd,int dev_id,int phy_id,uint32_t addr)1179 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1180 {
1181 	uint32_t base_mii;
1182 	struct mii_dev *bus = NULL;
1183 #ifdef CONFIG_PHYLIB
1184 	struct phy_device *phydev = NULL;
1185 #endif
1186 	int ret;
1187 
1188 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1189 	/*
1190 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1191 	 * Only the first one can access the MDIO bus.
1192 	 */
1193 	base_mii = CONFIG_FEC_MXC_MDIO_BASE;
1194 #else
1195 	base_mii = addr;
1196 #endif
1197 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1198 	bus = fec_get_miibus(base_mii, dev_id);
1199 	if (!bus)
1200 		return -ENOMEM;
1201 #ifdef CONFIG_PHYLIB
1202 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1203 	if (!phydev) {
1204 		mdio_unregister(bus);
1205 		free(bus);
1206 		return -ENOMEM;
1207 	}
1208 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1209 #else
1210 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1211 #endif
1212 	if (ret) {
1213 #ifdef CONFIG_PHYLIB
1214 		free(phydev);
1215 #endif
1216 		mdio_unregister(bus);
1217 		free(bus);
1218 	}
1219 	return ret;
1220 }
1221 
1222 #ifdef CONFIG_FEC_MXC_PHYADDR
fecmxc_initialize(bd_t * bd)1223 int fecmxc_initialize(bd_t *bd)
1224 {
1225 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1226 			IMX_FEC_BASE);
1227 }
1228 #endif
1229 
1230 #ifndef CONFIG_PHYLIB
fecmxc_register_mii_postcall(struct eth_device * dev,int (* cb)(int))1231 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1232 {
1233 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1234 	fec->mii_postcall = cb;
1235 	return 0;
1236 }
1237 #endif
1238 
1239 #else
1240 
fecmxc_read_rom_hwaddr(struct udevice * dev)1241 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1242 {
1243 	struct fec_priv *priv = dev_get_priv(dev);
1244 	struct eth_pdata *pdata = dev_get_platdata(dev);
1245 
1246 	return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1247 }
1248 
fecmxc_free_pkt(struct udevice * dev,uchar * packet,int length)1249 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1250 {
1251 	if (packet)
1252 		free(packet);
1253 
1254 	return 0;
1255 }
1256 
1257 static const struct eth_ops fecmxc_ops = {
1258 	.start			= fecmxc_init,
1259 	.send			= fecmxc_send,
1260 	.recv			= fecmxc_recv,
1261 	.free_pkt		= fecmxc_free_pkt,
1262 	.stop			= fecmxc_halt,
1263 	.write_hwaddr		= fecmxc_set_hwaddr,
1264 	.read_rom_hwaddr	= fecmxc_read_rom_hwaddr,
1265 };
1266 
device_get_phy_addr(struct udevice * dev)1267 static int device_get_phy_addr(struct udevice *dev)
1268 {
1269 	struct ofnode_phandle_args phandle_args;
1270 	int reg;
1271 
1272 	if (dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1273 				       &phandle_args)) {
1274 		debug("Failed to find phy-handle");
1275 		return -ENODEV;
1276 	}
1277 
1278 	reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1279 
1280 	return reg;
1281 }
1282 
fec_phy_init(struct fec_priv * priv,struct udevice * dev)1283 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1284 {
1285 	struct phy_device *phydev;
1286 	int addr;
1287 
1288 	addr = device_get_phy_addr(dev);
1289 #ifdef CONFIG_FEC_MXC_PHYADDR
1290 	addr = CONFIG_FEC_MXC_PHYADDR;
1291 #endif
1292 
1293 	phydev = phy_connect(priv->bus, addr, dev, priv->interface);
1294 	if (!phydev)
1295 		return -ENODEV;
1296 
1297 	priv->phydev = phydev;
1298 	phy_config(phydev);
1299 
1300 	return 0;
1301 }
1302 
1303 #ifdef CONFIG_DM_GPIO
1304 /* FEC GPIO reset */
fec_gpio_reset(struct fec_priv * priv)1305 static void fec_gpio_reset(struct fec_priv *priv)
1306 {
1307 	debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1308 	if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1309 		dm_gpio_set_value(&priv->phy_reset_gpio, 1);
1310 		mdelay(priv->reset_delay);
1311 		dm_gpio_set_value(&priv->phy_reset_gpio, 0);
1312 		if (priv->reset_post_delay)
1313 			mdelay(priv->reset_post_delay);
1314 	}
1315 }
1316 #endif
1317 
fecmxc_probe(struct udevice * dev)1318 static int fecmxc_probe(struct udevice *dev)
1319 {
1320 	struct eth_pdata *pdata = dev_get_platdata(dev);
1321 	struct fec_priv *priv = dev_get_priv(dev);
1322 	struct mii_dev *bus = NULL;
1323 	uint32_t start;
1324 	int ret;
1325 
1326 	if (IS_ENABLED(CONFIG_IMX8)) {
1327 		ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1328 		if (ret < 0) {
1329 			debug("Can't get FEC ipg clk: %d\n", ret);
1330 			return ret;
1331 		}
1332 		ret = clk_enable(&priv->ipg_clk);
1333 		if (ret < 0) {
1334 			debug("Can't enable FEC ipg clk: %d\n", ret);
1335 			return ret;
1336 		}
1337 
1338 		priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1339 	}
1340 
1341 	ret = fec_alloc_descs(priv);
1342 	if (ret)
1343 		return ret;
1344 
1345 #ifdef CONFIG_DM_REGULATOR
1346 	if (priv->phy_supply) {
1347 		ret = regulator_set_enable(priv->phy_supply, true);
1348 		if (ret) {
1349 			printf("%s: Error enabling phy supply\n", dev->name);
1350 			return ret;
1351 		}
1352 	}
1353 #endif
1354 
1355 #ifdef CONFIG_DM_GPIO
1356 	fec_gpio_reset(priv);
1357 #endif
1358 	/* Reset chip. */
1359 	writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1360 	       &priv->eth->ecntrl);
1361 	start = get_timer(0);
1362 	while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1363 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1364 			printf("FEC MXC: Timeout reseting chip\n");
1365 			goto err_timeout;
1366 		}
1367 		udelay(10);
1368 	}
1369 
1370 	fec_reg_setup(priv);
1371 
1372 	priv->dev_id = dev->seq;
1373 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1374 	bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq);
1375 #else
1376 	bus = fec_get_miibus((ulong)priv->eth, dev->seq);
1377 #endif
1378 	if (!bus) {
1379 		ret = -ENOMEM;
1380 		goto err_mii;
1381 	}
1382 
1383 	priv->bus = bus;
1384 	priv->interface = pdata->phy_interface;
1385 	switch (priv->interface) {
1386 	case PHY_INTERFACE_MODE_MII:
1387 		priv->xcv_type = MII100;
1388 		break;
1389 	case PHY_INTERFACE_MODE_RMII:
1390 		priv->xcv_type = RMII;
1391 		break;
1392 	case PHY_INTERFACE_MODE_RGMII:
1393 	case PHY_INTERFACE_MODE_RGMII_ID:
1394 	case PHY_INTERFACE_MODE_RGMII_RXID:
1395 	case PHY_INTERFACE_MODE_RGMII_TXID:
1396 		priv->xcv_type = RGMII;
1397 		break;
1398 	default:
1399 		priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1400 		printf("Unsupported interface type %d defaulting to %d\n",
1401 		       priv->interface, priv->xcv_type);
1402 		break;
1403 	}
1404 
1405 	ret = fec_phy_init(priv, dev);
1406 	if (ret)
1407 		goto err_phy;
1408 
1409 	return 0;
1410 
1411 err_phy:
1412 	mdio_unregister(bus);
1413 	free(bus);
1414 err_mii:
1415 err_timeout:
1416 	fec_free_descs(priv);
1417 	return ret;
1418 }
1419 
fecmxc_remove(struct udevice * dev)1420 static int fecmxc_remove(struct udevice *dev)
1421 {
1422 	struct fec_priv *priv = dev_get_priv(dev);
1423 
1424 	free(priv->phydev);
1425 	fec_free_descs(priv);
1426 	mdio_unregister(priv->bus);
1427 	mdio_free(priv->bus);
1428 
1429 #ifdef CONFIG_DM_REGULATOR
1430 	if (priv->phy_supply)
1431 		regulator_set_enable(priv->phy_supply, false);
1432 #endif
1433 
1434 	return 0;
1435 }
1436 
fecmxc_ofdata_to_platdata(struct udevice * dev)1437 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1438 {
1439 	int ret = 0;
1440 	struct eth_pdata *pdata = dev_get_platdata(dev);
1441 	struct fec_priv *priv = dev_get_priv(dev);
1442 	const char *phy_mode;
1443 
1444 	pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1445 	priv->eth = (struct ethernet_regs *)pdata->iobase;
1446 
1447 	pdata->phy_interface = -1;
1448 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1449 			       NULL);
1450 	if (phy_mode)
1451 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1452 	if (pdata->phy_interface == -1) {
1453 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1454 		return -EINVAL;
1455 	}
1456 
1457 #ifdef CONFIG_DM_REGULATOR
1458 	device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1459 #endif
1460 
1461 #ifdef CONFIG_DM_GPIO
1462 	ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
1463 				   &priv->phy_reset_gpio, GPIOD_IS_OUT);
1464 	if (ret < 0)
1465 		return 0; /* property is optional, don't return error! */
1466 
1467 	priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
1468 	if (priv->reset_delay > 1000) {
1469 		printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1470 		/* property value wrong, use default value */
1471 		priv->reset_delay = 1;
1472 	}
1473 
1474 	priv->reset_post_delay = dev_read_u32_default(dev,
1475 						      "phy-reset-post-delay",
1476 						      0);
1477 	if (priv->reset_post_delay > 1000) {
1478 		printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1479 		/* property value wrong, use default value */
1480 		priv->reset_post_delay = 0;
1481 	}
1482 #endif
1483 
1484 	return 0;
1485 }
1486 
1487 static const struct udevice_id fecmxc_ids[] = {
1488 	{ .compatible = "fsl,imx6q-fec" },
1489 	{ .compatible = "fsl,imx6sl-fec" },
1490 	{ .compatible = "fsl,imx6sx-fec" },
1491 	{ .compatible = "fsl,imx6ul-fec" },
1492 	{ .compatible = "fsl,imx53-fec" },
1493 	{ .compatible = "fsl,imx7d-fec" },
1494 	{ }
1495 };
1496 
1497 U_BOOT_DRIVER(fecmxc_gem) = {
1498 	.name	= "fecmxc",
1499 	.id	= UCLASS_ETH,
1500 	.of_match = fecmxc_ids,
1501 	.ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1502 	.probe	= fecmxc_probe,
1503 	.remove	= fecmxc_remove,
1504 	.ops	= &fecmxc_ops,
1505 	.priv_auto_alloc_size = sizeof(struct fec_priv),
1506 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1507 };
1508 #endif
1509