xref: /openbmc/linux/drivers/counter/stm32-timer-cnt.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * STM32 Timer Encoder and Counter driver
4  *
5  * Copyright (C) STMicroelectronics 2018
6  *
7  * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
8  *
9  */
10 #include <linux/counter.h>
11 #include <linux/mfd/stm32-timers.h>
12 #include <linux/mod_devicetable.h>
13 #include <linux/module.h>
14 #include <linux/pinctrl/consumer.h>
15 #include <linux/platform_device.h>
16 #include <linux/types.h>
17 
18 #define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
19 #define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
20 			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
21 #define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
22 			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
23 
24 struct stm32_timer_regs {
25 	u32 cr1;
26 	u32 cnt;
27 	u32 smcr;
28 	u32 arr;
29 };
30 
31 struct stm32_timer_cnt {
32 	struct regmap *regmap;
33 	struct clk *clk;
34 	u32 max_arr;
35 	bool enabled;
36 	struct stm32_timer_regs bak;
37 };
38 
39 static const enum counter_function stm32_count_functions[] = {
40 	COUNTER_FUNCTION_INCREASE,
41 	COUNTER_FUNCTION_QUADRATURE_X2_A,
42 	COUNTER_FUNCTION_QUADRATURE_X2_B,
43 	COUNTER_FUNCTION_QUADRATURE_X4,
44 };
45 
stm32_count_read(struct counter_device * counter,struct counter_count * count,u64 * val)46 static int stm32_count_read(struct counter_device *counter,
47 			    struct counter_count *count, u64 *val)
48 {
49 	struct stm32_timer_cnt *const priv = counter_priv(counter);
50 	u32 cnt;
51 
52 	regmap_read(priv->regmap, TIM_CNT, &cnt);
53 	*val = cnt;
54 
55 	return 0;
56 }
57 
stm32_count_write(struct counter_device * counter,struct counter_count * count,const u64 val)58 static int stm32_count_write(struct counter_device *counter,
59 			     struct counter_count *count, const u64 val)
60 {
61 	struct stm32_timer_cnt *const priv = counter_priv(counter);
62 	u32 ceiling;
63 
64 	regmap_read(priv->regmap, TIM_ARR, &ceiling);
65 	if (val > ceiling)
66 		return -EINVAL;
67 
68 	return regmap_write(priv->regmap, TIM_CNT, val);
69 }
70 
stm32_count_function_read(struct counter_device * counter,struct counter_count * count,enum counter_function * function)71 static int stm32_count_function_read(struct counter_device *counter,
72 				     struct counter_count *count,
73 				     enum counter_function *function)
74 {
75 	struct stm32_timer_cnt *const priv = counter_priv(counter);
76 	u32 smcr;
77 
78 	regmap_read(priv->regmap, TIM_SMCR, &smcr);
79 
80 	switch (smcr & TIM_SMCR_SMS) {
81 	case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
82 		*function = COUNTER_FUNCTION_INCREASE;
83 		return 0;
84 	case TIM_SMCR_SMS_ENCODER_MODE_1:
85 		*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
86 		return 0;
87 	case TIM_SMCR_SMS_ENCODER_MODE_2:
88 		*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
89 		return 0;
90 	case TIM_SMCR_SMS_ENCODER_MODE_3:
91 		*function = COUNTER_FUNCTION_QUADRATURE_X4;
92 		return 0;
93 	default:
94 		return -EINVAL;
95 	}
96 }
97 
stm32_count_function_write(struct counter_device * counter,struct counter_count * count,enum counter_function function)98 static int stm32_count_function_write(struct counter_device *counter,
99 				      struct counter_count *count,
100 				      enum counter_function function)
101 {
102 	struct stm32_timer_cnt *const priv = counter_priv(counter);
103 	u32 cr1, sms;
104 
105 	switch (function) {
106 	case COUNTER_FUNCTION_INCREASE:
107 		sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
108 		break;
109 	case COUNTER_FUNCTION_QUADRATURE_X2_A:
110 		sms = TIM_SMCR_SMS_ENCODER_MODE_1;
111 		break;
112 	case COUNTER_FUNCTION_QUADRATURE_X2_B:
113 		sms = TIM_SMCR_SMS_ENCODER_MODE_2;
114 		break;
115 	case COUNTER_FUNCTION_QUADRATURE_X4:
116 		sms = TIM_SMCR_SMS_ENCODER_MODE_3;
117 		break;
118 	default:
119 		return -EINVAL;
120 	}
121 
122 	/* Store enable status */
123 	regmap_read(priv->regmap, TIM_CR1, &cr1);
124 
125 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
126 
127 	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
128 
129 	/* Make sure that registers are updated */
130 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
131 
132 	/* Restore the enable status */
133 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
134 
135 	return 0;
136 }
137 
stm32_count_direction_read(struct counter_device * counter,struct counter_count * count,enum counter_count_direction * direction)138 static int stm32_count_direction_read(struct counter_device *counter,
139 				      struct counter_count *count,
140 				      enum counter_count_direction *direction)
141 {
142 	struct stm32_timer_cnt *const priv = counter_priv(counter);
143 	u32 cr1;
144 
145 	regmap_read(priv->regmap, TIM_CR1, &cr1);
146 	*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
147 		COUNTER_COUNT_DIRECTION_FORWARD;
148 
149 	return 0;
150 }
151 
stm32_count_ceiling_read(struct counter_device * counter,struct counter_count * count,u64 * ceiling)152 static int stm32_count_ceiling_read(struct counter_device *counter,
153 				    struct counter_count *count, u64 *ceiling)
154 {
155 	struct stm32_timer_cnt *const priv = counter_priv(counter);
156 	u32 arr;
157 
158 	regmap_read(priv->regmap, TIM_ARR, &arr);
159 
160 	*ceiling = arr;
161 
162 	return 0;
163 }
164 
stm32_count_ceiling_write(struct counter_device * counter,struct counter_count * count,u64 ceiling)165 static int stm32_count_ceiling_write(struct counter_device *counter,
166 				     struct counter_count *count, u64 ceiling)
167 {
168 	struct stm32_timer_cnt *const priv = counter_priv(counter);
169 
170 	if (ceiling > priv->max_arr)
171 		return -ERANGE;
172 
173 	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
174 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
175 	regmap_write(priv->regmap, TIM_ARR, ceiling);
176 
177 	return 0;
178 }
179 
stm32_count_enable_read(struct counter_device * counter,struct counter_count * count,u8 * enable)180 static int stm32_count_enable_read(struct counter_device *counter,
181 				   struct counter_count *count, u8 *enable)
182 {
183 	struct stm32_timer_cnt *const priv = counter_priv(counter);
184 	u32 cr1;
185 
186 	regmap_read(priv->regmap, TIM_CR1, &cr1);
187 
188 	*enable = cr1 & TIM_CR1_CEN;
189 
190 	return 0;
191 }
192 
stm32_count_enable_write(struct counter_device * counter,struct counter_count * count,u8 enable)193 static int stm32_count_enable_write(struct counter_device *counter,
194 				    struct counter_count *count, u8 enable)
195 {
196 	struct stm32_timer_cnt *const priv = counter_priv(counter);
197 	u32 cr1;
198 	int ret;
199 
200 	if (enable) {
201 		regmap_read(priv->regmap, TIM_CR1, &cr1);
202 		if (!(cr1 & TIM_CR1_CEN)) {
203 			ret = clk_enable(priv->clk);
204 			if (ret) {
205 				dev_err(counter->parent, "Cannot enable clock %d\n", ret);
206 				return ret;
207 			}
208 		}
209 
210 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
211 				   TIM_CR1_CEN);
212 	} else {
213 		regmap_read(priv->regmap, TIM_CR1, &cr1);
214 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
215 		if (cr1 & TIM_CR1_CEN)
216 			clk_disable(priv->clk);
217 	}
218 
219 	/* Keep enabled state to properly handle low power states */
220 	priv->enabled = enable;
221 
222 	return 0;
223 }
224 
225 static struct counter_comp stm32_count_ext[] = {
226 	COUNTER_COMP_DIRECTION(stm32_count_direction_read),
227 	COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
228 	COUNTER_COMP_CEILING(stm32_count_ceiling_read,
229 			     stm32_count_ceiling_write),
230 };
231 
232 static const enum counter_synapse_action stm32_synapse_actions[] = {
233 	COUNTER_SYNAPSE_ACTION_NONE,
234 	COUNTER_SYNAPSE_ACTION_BOTH_EDGES
235 };
236 
stm32_action_read(struct counter_device * counter,struct counter_count * count,struct counter_synapse * synapse,enum counter_synapse_action * action)237 static int stm32_action_read(struct counter_device *counter,
238 			     struct counter_count *count,
239 			     struct counter_synapse *synapse,
240 			     enum counter_synapse_action *action)
241 {
242 	enum counter_function function;
243 	int err;
244 
245 	err = stm32_count_function_read(counter, count, &function);
246 	if (err)
247 		return err;
248 
249 	switch (function) {
250 	case COUNTER_FUNCTION_INCREASE:
251 		/* counts on internal clock when CEN=1 */
252 		*action = COUNTER_SYNAPSE_ACTION_NONE;
253 		return 0;
254 	case COUNTER_FUNCTION_QUADRATURE_X2_A:
255 		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
256 		if (synapse->signal->id == count->synapses[0].signal->id)
257 			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
258 		else
259 			*action = COUNTER_SYNAPSE_ACTION_NONE;
260 		return 0;
261 	case COUNTER_FUNCTION_QUADRATURE_X2_B:
262 		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
263 		if (synapse->signal->id == count->synapses[1].signal->id)
264 			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
265 		else
266 			*action = COUNTER_SYNAPSE_ACTION_NONE;
267 		return 0;
268 	case COUNTER_FUNCTION_QUADRATURE_X4:
269 		/* counts up/down on both TI1FP1 and TI2FP2 edges */
270 		*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
271 		return 0;
272 	default:
273 		return -EINVAL;
274 	}
275 }
276 
277 static const struct counter_ops stm32_timer_cnt_ops = {
278 	.count_read = stm32_count_read,
279 	.count_write = stm32_count_write,
280 	.function_read = stm32_count_function_read,
281 	.function_write = stm32_count_function_write,
282 	.action_read = stm32_action_read,
283 };
284 
285 static struct counter_signal stm32_signals[] = {
286 	{
287 		.id = 0,
288 		.name = "Channel 1 Quadrature A"
289 	},
290 	{
291 		.id = 1,
292 		.name = "Channel 1 Quadrature B"
293 	}
294 };
295 
296 static struct counter_synapse stm32_count_synapses[] = {
297 	{
298 		.actions_list = stm32_synapse_actions,
299 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
300 		.signal = &stm32_signals[0]
301 	},
302 	{
303 		.actions_list = stm32_synapse_actions,
304 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
305 		.signal = &stm32_signals[1]
306 	}
307 };
308 
309 static struct counter_count stm32_counts = {
310 	.id = 0,
311 	.name = "Channel 1 Count",
312 	.functions_list = stm32_count_functions,
313 	.num_functions = ARRAY_SIZE(stm32_count_functions),
314 	.synapses = stm32_count_synapses,
315 	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
316 	.ext = stm32_count_ext,
317 	.num_ext = ARRAY_SIZE(stm32_count_ext)
318 };
319 
stm32_timer_cnt_probe(struct platform_device * pdev)320 static int stm32_timer_cnt_probe(struct platform_device *pdev)
321 {
322 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
323 	struct device *dev = &pdev->dev;
324 	struct stm32_timer_cnt *priv;
325 	struct counter_device *counter;
326 	int ret;
327 
328 	if (IS_ERR_OR_NULL(ddata))
329 		return -EINVAL;
330 
331 	counter = devm_counter_alloc(dev, sizeof(*priv));
332 	if (!counter)
333 		return -ENOMEM;
334 
335 	priv = counter_priv(counter);
336 
337 	priv->regmap = ddata->regmap;
338 	priv->clk = ddata->clk;
339 	priv->max_arr = ddata->max_arr;
340 
341 	counter->name = dev_name(dev);
342 	counter->parent = dev;
343 	counter->ops = &stm32_timer_cnt_ops;
344 	counter->counts = &stm32_counts;
345 	counter->num_counts = 1;
346 	counter->signals = stm32_signals;
347 	counter->num_signals = ARRAY_SIZE(stm32_signals);
348 
349 	platform_set_drvdata(pdev, priv);
350 
351 	/* Reset input selector to its default input */
352 	regmap_write(priv->regmap, TIM_TISEL, 0x0);
353 
354 	/* Register Counter device */
355 	ret = devm_counter_add(dev, counter);
356 	if (ret < 0)
357 		dev_err_probe(dev, ret, "Failed to add counter\n");
358 
359 	return ret;
360 }
361 
stm32_timer_cnt_suspend(struct device * dev)362 static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
363 {
364 	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
365 
366 	/* Only take care of enabled counter: don't disturb other MFD child */
367 	if (priv->enabled) {
368 		/* Backup registers that may get lost in low power mode */
369 		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
370 		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
371 		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
372 		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
373 
374 		/* Disable the counter */
375 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
376 		clk_disable(priv->clk);
377 	}
378 
379 	return pinctrl_pm_select_sleep_state(dev);
380 }
381 
stm32_timer_cnt_resume(struct device * dev)382 static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
383 {
384 	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
385 	int ret;
386 
387 	ret = pinctrl_pm_select_default_state(dev);
388 	if (ret)
389 		return ret;
390 
391 	if (priv->enabled) {
392 		ret = clk_enable(priv->clk);
393 		if (ret) {
394 			dev_err(dev, "Cannot enable clock %d\n", ret);
395 			return ret;
396 		}
397 
398 		/* Restore registers that may have been lost */
399 		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
400 		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
401 		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
402 
403 		/* Also re-enables the counter */
404 		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
405 	}
406 
407 	return 0;
408 }
409 
410 static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
411 			 stm32_timer_cnt_resume);
412 
413 static const struct of_device_id stm32_timer_cnt_of_match[] = {
414 	{ .compatible = "st,stm32-timer-counter", },
415 	{},
416 };
417 MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
418 
419 static struct platform_driver stm32_timer_cnt_driver = {
420 	.probe = stm32_timer_cnt_probe,
421 	.driver = {
422 		.name = "stm32-timer-counter",
423 		.of_match_table = stm32_timer_cnt_of_match,
424 		.pm = &stm32_timer_cnt_pm_ops,
425 	},
426 };
427 module_platform_driver(stm32_timer_cnt_driver);
428 
429 MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
430 MODULE_ALIAS("platform:stm32-timer-counter");
431 MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
432 MODULE_LICENSE("GPL v2");
433 MODULE_IMPORT_NS(COUNTER);
434