xref: /openbmc/qemu/hw/arm/musca.c (revision 4f2fdb10b5f78ba95300648fce74c42d3e4511c7)
1 /*
2  * Arm Musca-B1 test chip board emulation
3  *
4  * Copyright (c) 2019 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /*
13  * The Musca boards are a reference implementation of a system using
14  * the SSE-200 subsystem for embedded:
15  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17  * We model the A and B1 variants of this board, as described in the TRMs:
18  * https://developer.arm.com/documentation/101107/latest/
19  * https://developer.arm.com/documentation/101312/latest/
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
36 #include "hw/qdev-clock.h"
37 #include "qom/object.h"
38 
39 #define MUSCA_NUMIRQ_MAX 96
40 #define MUSCA_PPC_MAX 3
41 #define MUSCA_MPC_MAX 5
42 
43 typedef struct MPCInfo MPCInfo;
44 
45 typedef enum MuscaType {
46     MUSCA_A,
47     MUSCA_B1,
48 } MuscaType;
49 
50 struct MuscaMachineClass {
51     MachineClass parent;
52     MuscaType type;
53     uint32_t init_svtor;
54     int sram_addr_width;
55     int num_irqs;
56     const MPCInfo *mpc_info;
57     int num_mpcs;
58 };
59 
60 struct MuscaMachineState {
61     MachineState parent;
62 
63     ARMSSE sse;
64     /* RAM and flash */
65     MemoryRegion ram[MUSCA_MPC_MAX];
66     SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
67     SplitIRQ sec_resp_splitter;
68     TZPPC ppc[MUSCA_PPC_MAX];
69     MemoryRegion container;
70     UnimplementedDeviceState eflash[2];
71     UnimplementedDeviceState qspi;
72     TZMPC mpc[MUSCA_MPC_MAX];
73     UnimplementedDeviceState mhu[2];
74     UnimplementedDeviceState pwm[3];
75     UnimplementedDeviceState i2s;
76     PL011State uart[2];
77     UnimplementedDeviceState i2c[2];
78     UnimplementedDeviceState spi;
79     UnimplementedDeviceState scc;
80     UnimplementedDeviceState timer;
81     PL031State rtc;
82     UnimplementedDeviceState pvt;
83     UnimplementedDeviceState sdio;
84     UnimplementedDeviceState gpio;
85     UnimplementedDeviceState cryptoisland;
86     Clock *sysclk;
87     Clock *s32kclk;
88 };
89 
90 #define TYPE_MUSCA_MACHINE "musca"
91 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
92 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
93 
OBJECT_DECLARE_TYPE(MuscaMachineState,MuscaMachineClass,MUSCA_MACHINE)94 OBJECT_DECLARE_TYPE(MuscaMachineState, MuscaMachineClass, MUSCA_MACHINE)
95 
96 /*
97  * Main SYSCLK frequency in Hz
98  * TODO this should really be different for the two cores, but we
99  * don't model that in our SSE-200 model yet.
100  */
101 #define SYSCLK_FRQ 40000000
102 /* Slow 32Khz S32KCLK frequency in Hz */
103 #define S32KCLK_FRQ (32 * 1000)
104 
105 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
106 {
107     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
108     assert(irqno < MUSCA_NUMIRQ_MAX);
109 
110     return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
111 }
112 
113 /*
114  * Most of the devices in the Musca board sit behind Peripheral Protection
115  * Controllers. These data structures define the layout of which devices
116  * sit behind which PPCs.
117  * The devfn for each port is a function which creates, configures
118  * and initializes the device, returning the MemoryRegion which
119  * needs to be plugged into the downstream end of the PPC port.
120  */
121 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
122                                 const char *name, hwaddr size);
123 
124 typedef struct PPCPortInfo {
125     const char *name;
126     MakeDevFn *devfn;
127     void *opaque;
128     hwaddr addr;
129     hwaddr size;
130 } PPCPortInfo;
131 
132 typedef struct PPCInfo {
133     const char *name;
134     PPCPortInfo ports[TZ_NUM_PORTS];
135 } PPCInfo;
136 
make_unimp_dev(MuscaMachineState * mms,void * opaque,const char * name,hwaddr size)137 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
138                                     void *opaque, const char *name, hwaddr size)
139 {
140     /*
141      * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
142      * and return a pointer to its MemoryRegion.
143      */
144     UnimplementedDeviceState *uds = opaque;
145 
146     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
147     qdev_prop_set_string(DEVICE(uds), "name", name);
148     qdev_prop_set_uint64(DEVICE(uds), "size", size);
149     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
150     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
151 }
152 
153 typedef enum MPCInfoType {
154     MPC_RAM,
155     MPC_ROM,
156     MPC_CRYPTOISLAND,
157 } MPCInfoType;
158 
159 struct MPCInfo {
160     const char *name;
161     hwaddr addr;
162     hwaddr size;
163     MPCInfoType type;
164 };
165 
166 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
167 static const MPCInfo a_mpc_info[] = { {
168         .name = "qspi",
169         .type = MPC_ROM,
170         .addr = 0x00200000,
171         .size = 0x00800000,
172     }, {
173         .name = "sram",
174         .type = MPC_RAM,
175         .addr = 0x00000000,
176         .size = 0x00200000,
177     }
178 };
179 
180 static const MPCInfo b1_mpc_info[] = { {
181         .name = "qspi",
182         .type = MPC_ROM,
183         .addr = 0x00000000,
184         .size = 0x02000000,
185     }, {
186         .name = "sram",
187         .type = MPC_RAM,
188         .addr = 0x0a400000,
189         .size = 0x00080000,
190     }, {
191         .name = "eflash0",
192         .type = MPC_ROM,
193         .addr = 0x0a000000,
194         .size = 0x00200000,
195     }, {
196         .name = "eflash1",
197         .type = MPC_ROM,
198         .addr = 0x0a200000,
199         .size = 0x00200000,
200     }, {
201         .name = "cryptoisland",
202         .type = MPC_CRYPTOISLAND,
203         .addr = 0x0a000000,
204         .size = 0x00200000,
205     }
206 };
207 
make_mpc(MuscaMachineState * mms,void * opaque,const char * name,hwaddr size)208 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
209                               const char *name, hwaddr size)
210 {
211     /*
212      * Create an MPC and the RAM or flash behind it.
213      * MPC 0: eFlash 0
214      * MPC 1: eFlash 1
215      * MPC 2: SRAM
216      * MPC 3: QSPI flash
217      * MPC 4: CryptoIsland
218      * For now we implement the flash regions as ROM (ie not programmable)
219      * (with their control interface memory regions being unimplemented
220      * stubs behind the PPCs).
221      * The whole CryptoIsland region behind its MPC is an unimplemented stub.
222      */
223     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
224     TZMPC *mpc = opaque;
225     int i = mpc - &mms->mpc[0];
226     MemoryRegion *downstream;
227     MemoryRegion *upstream;
228     UnimplementedDeviceState *uds;
229     char *mpcname;
230     const MPCInfo *mpcinfo = mmc->mpc_info;
231 
232     mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
233 
234     switch (mpcinfo[i].type) {
235     case MPC_ROM:
236         downstream = &mms->ram[i];
237         memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
238                                mpcinfo[i].size, &error_fatal);
239         break;
240     case MPC_RAM:
241         downstream = &mms->ram[i];
242         memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
243                                mpcinfo[i].size, &error_fatal);
244         break;
245     case MPC_CRYPTOISLAND:
246         /* We don't implement the CryptoIsland yet */
247         uds = &mms->cryptoisland;
248         object_initialize_child(OBJECT(mms), name, uds,
249                                 TYPE_UNIMPLEMENTED_DEVICE);
250         qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
251         qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
252         sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
253         downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
254         break;
255     default:
256         g_assert_not_reached();
257     }
258 
259     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
260     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
261                              &error_fatal);
262     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
263     /* Map the upstream end of the MPC into system memory */
264     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
265     memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
266     /* and connect its interrupt to the SSE-200 */
267     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
268                                 qdev_get_gpio_in_named(DEVICE(&mms->sse),
269                                                        "mpcexp_status", i));
270 
271     g_free(mpcname);
272     /* Return the register interface MR for our caller to map behind the PPC */
273     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
274 }
275 
make_rtc(MuscaMachineState * mms,void * opaque,const char * name,hwaddr size)276 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
277                               const char *name, hwaddr size)
278 {
279     PL031State *rtc = opaque;
280 
281     object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
282     sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
283     sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
284     return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
285 }
286 
make_uart(MuscaMachineState * mms,void * opaque,const char * name,hwaddr size)287 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
288                                const char *name, hwaddr size)
289 {
290     PL011State *uart = opaque;
291     int i = uart - &mms->uart[0];
292     int irqbase = 7 + i * 6;
293     SysBusDevice *s;
294 
295     object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
296     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
297     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
298     s = SYS_BUS_DEVICE(uart);
299     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
300     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
301     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
302     sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
303     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
304     sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
305     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
306 }
307 
make_musca_a_devs(MuscaMachineState * mms,void * opaque,const char * name,hwaddr size)308 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
309                                        const char *name, hwaddr size)
310 {
311     /*
312      * Create the container MemoryRegion for all the devices that live
313      * behind the Musca-A PPC's single port. These devices don't have a PPC
314      * port each, but we use the PPCPortInfo struct as a convenient way
315      * to describe them. Note that addresses here are relative to the base
316      * address of the PPC port region: 0x40100000, and devices appear both
317      * at the 0x4... NS region and the 0x5... S region.
318      */
319     int i;
320     MemoryRegion *container = &mms->container;
321 
322     const PPCPortInfo devices[] = {
323         { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
324         { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
325         { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
326         { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
327         { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
328         { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
329         { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
330         { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
331         { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
332         { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
333         { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
334         { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
335         { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
336         { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
337         { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
338         { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
339     };
340 
341     memory_region_init(container, OBJECT(mms), "musca-device-container", size);
342 
343     for (i = 0; i < ARRAY_SIZE(devices); i++) {
344         const PPCPortInfo *pinfo = &devices[i];
345         MemoryRegion *mr;
346 
347         mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
348         memory_region_add_subregion(container, pinfo->addr, mr);
349     }
350 
351     return &mms->container;
352 }
353 
musca_init(MachineState * machine)354 static void musca_init(MachineState *machine)
355 {
356     MuscaMachineState *mms = MUSCA_MACHINE(machine);
357     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
358     MemoryRegion *system_memory = get_system_memory();
359     DeviceState *ssedev;
360     DeviceState *dev_splitter;
361     const PPCInfo *ppcs;
362     int num_ppcs;
363     int i;
364 
365     assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
366     assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
367 
368     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
369     clock_set_hz(mms->sysclk, SYSCLK_FRQ);
370     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
371     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
372 
373     object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
374                             TYPE_SSE200);
375     ssedev = DEVICE(&mms->sse);
376     object_property_set_link(OBJECT(&mms->sse), "memory",
377                              OBJECT(system_memory), &error_fatal);
378     qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
379     qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
380     qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
381     qdev_connect_clock_in(ssedev, "MAINCLK", mms->sysclk);
382     qdev_connect_clock_in(ssedev, "S32KCLK", mms->s32kclk);
383     /*
384      * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
385      * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
386      */
387     if (mmc->type == MUSCA_B1) {
388         qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
389         qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
390     }
391     sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
392 
393     /*
394      * We need to create splitters to feed the IRQ inputs
395      * for each CPU in the SSE-200 from each device in the board.
396      */
397     for (i = 0; i < mmc->num_irqs; i++) {
398         char *name = g_strdup_printf("musca-irq-splitter%d", i);
399         SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
400 
401         object_initialize_child_with_props(OBJECT(machine), name, splitter,
402                                            sizeof(*splitter), TYPE_SPLIT_IRQ,
403                                            &error_fatal, NULL);
404         g_free(name);
405 
406         object_property_set_int(OBJECT(splitter), "num-lines", 2,
407                                 &error_fatal);
408         qdev_realize(DEVICE(splitter), NULL, &error_fatal);
409         qdev_connect_gpio_out(DEVICE(splitter), 0,
410                               qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
411         qdev_connect_gpio_out(DEVICE(splitter), 1,
412                               qdev_get_gpio_in_named(ssedev,
413                                                      "EXP_CPU1_IRQ", i));
414     }
415 
416     /*
417      * The sec_resp_cfg output from the SSE-200 must be split into multiple
418      * lines, one for each of the PPCs we create here.
419      */
420     object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
421                                        &mms->sec_resp_splitter,
422                                        sizeof(mms->sec_resp_splitter),
423                                        TYPE_SPLIT_IRQ, &error_fatal, NULL);
424 
425     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
426                             ARRAY_SIZE(mms->ppc), &error_fatal);
427     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
428     dev_splitter = DEVICE(&mms->sec_resp_splitter);
429     qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
430                                 qdev_get_gpio_in(dev_splitter, 0));
431 
432     /*
433      * Most of the devices in the board are behind Peripheral Protection
434      * Controllers. The required order for initializing things is:
435      *  + initialize the PPC
436      *  + initialize, configure and realize downstream devices
437      *  + connect downstream device MemoryRegions to the PPC
438      *  + realize the PPC
439      *  + map the PPC's MemoryRegions to the places in the address map
440      *    where the downstream devices should appear
441      *  + wire up the PPC's control lines to the SSE object
442      *
443      * The PPC mapping differs for the -A and -B1 variants; the -A version
444      * is much simpler, using only a single port of a single PPC and putting
445      * all the devices behind that.
446      */
447     const PPCInfo a_ppcs[] = { {
448             .name = "ahb_ppcexp0",
449             .ports = {
450                 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
451             },
452         },
453     };
454 
455     /*
456      * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
457      * and the 0x5.. S region. Devices listed with an 0x5.. address appear
458      * only in the S region.
459      */
460     const PPCInfo b1_ppcs[] = { {
461             .name = "apb_ppcexp0",
462             .ports = {
463                 { "eflash0", make_unimp_dev, &mms->eflash[0],
464                   0x52400000, 0x1000 },
465                 { "eflash1", make_unimp_dev, &mms->eflash[1],
466                   0x52500000, 0x1000 },
467                 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
468                 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
469                 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
470                 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
471                 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
472                 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
473                 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
474                 { }, /* port 9: unused */
475                 { }, /* port 10: unused */
476                 { }, /* port 11: unused */
477                 { }, /* port 12: unused */
478                 { }, /* port 13: unused */
479                 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
480             },
481         }, {
482             .name = "apb_ppcexp1",
483             .ports = {
484                 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
485                 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
486                 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
487                 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
488                 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
489                 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
490                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
491                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
492                 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
493                 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
494                 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
495                 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
496                 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
497                 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
498             },
499         }, {
500             .name = "ahb_ppcexp0",
501             .ports = {
502                 { }, /* port 0: unused */
503                 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
504             },
505         },
506     };
507 
508     switch (mmc->type) {
509     case MUSCA_A:
510         ppcs = a_ppcs;
511         num_ppcs = ARRAY_SIZE(a_ppcs);
512         break;
513     case MUSCA_B1:
514         ppcs = b1_ppcs;
515         num_ppcs = ARRAY_SIZE(b1_ppcs);
516         break;
517     default:
518         g_assert_not_reached();
519     }
520     assert(num_ppcs <= MUSCA_PPC_MAX);
521 
522     for (i = 0; i < num_ppcs; i++) {
523         const PPCInfo *ppcinfo = &ppcs[i];
524         TZPPC *ppc = &mms->ppc[i];
525         DeviceState *ppcdev;
526         int port;
527         char *gpioname;
528 
529         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
530                                 TYPE_TZ_PPC);
531         ppcdev = DEVICE(ppc);
532 
533         for (port = 0; port < TZ_NUM_PORTS; port++) {
534             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
535             MemoryRegion *mr;
536             char *portname;
537 
538             if (!pinfo->devfn) {
539                 continue;
540             }
541 
542             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
543             portname = g_strdup_printf("port[%d]", port);
544             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
545                                      &error_fatal);
546             g_free(portname);
547         }
548 
549         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
550 
551         for (port = 0; port < TZ_NUM_PORTS; port++) {
552             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
553 
554             if (!pinfo->devfn) {
555                 continue;
556             }
557             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
558 
559             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
560             qdev_connect_gpio_out_named(ssedev, gpioname, port,
561                                         qdev_get_gpio_in_named(ppcdev,
562                                                                "cfg_nonsec",
563                                                                port));
564             g_free(gpioname);
565             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
566             qdev_connect_gpio_out_named(ssedev, gpioname, port,
567                                         qdev_get_gpio_in_named(ppcdev,
568                                                                "cfg_ap", port));
569             g_free(gpioname);
570         }
571 
572         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
573         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
574                                     qdev_get_gpio_in_named(ppcdev,
575                                                            "irq_enable", 0));
576         g_free(gpioname);
577         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
578         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
579                                     qdev_get_gpio_in_named(ppcdev,
580                                                            "irq_clear", 0));
581         g_free(gpioname);
582         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
583         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
584                                     qdev_get_gpio_in_named(ssedev,
585                                                            gpioname, 0));
586         g_free(gpioname);
587 
588         qdev_connect_gpio_out(dev_splitter, i,
589                               qdev_get_gpio_in_named(ppcdev,
590                                                      "cfg_sec_resp", 0));
591     }
592 
593     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
594                        0, 0x2000000);
595 }
596 
musca_class_init(ObjectClass * oc,void * data)597 static void musca_class_init(ObjectClass *oc, void *data)
598 {
599     MachineClass *mc = MACHINE_CLASS(oc);
600     static const char * const valid_cpu_types[] = {
601         ARM_CPU_TYPE_NAME("cortex-m33"),
602         NULL
603     };
604 
605     mc->default_cpus = 2;
606     mc->min_cpus = mc->default_cpus;
607     mc->max_cpus = mc->default_cpus;
608     mc->valid_cpu_types = valid_cpu_types;
609     mc->init = musca_init;
610 }
611 
musca_a_class_init(ObjectClass * oc,void * data)612 static void musca_a_class_init(ObjectClass *oc, void *data)
613 {
614     MachineClass *mc = MACHINE_CLASS(oc);
615     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
616 
617     mc->desc = "ARM Musca-A board (dual Cortex-M33)";
618     mmc->type = MUSCA_A;
619     mmc->init_svtor = 0x10200000;
620     mmc->sram_addr_width = 15;
621     mmc->num_irqs = 64;
622     mmc->mpc_info = a_mpc_info;
623     mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
624 }
625 
musca_b1_class_init(ObjectClass * oc,void * data)626 static void musca_b1_class_init(ObjectClass *oc, void *data)
627 {
628     MachineClass *mc = MACHINE_CLASS(oc);
629     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
630 
631     mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
632     mmc->type = MUSCA_B1;
633     /*
634      * This matches the DAPlink firmware which boots from QSPI. There
635      * is also a firmware blob which boots from the eFlash, which
636      * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
637      * though we could in theory expose a machine property on the command
638      * line to allow the user to request eFlash boot.
639      */
640     mmc->init_svtor = 0x10000000;
641     mmc->sram_addr_width = 17;
642     mmc->num_irqs = 96;
643     mmc->mpc_info = b1_mpc_info;
644     mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
645 }
646 
647 static const TypeInfo musca_info = {
648     .name = TYPE_MUSCA_MACHINE,
649     .parent = TYPE_MACHINE,
650     .abstract = true,
651     .instance_size = sizeof(MuscaMachineState),
652     .class_size = sizeof(MuscaMachineClass),
653     .class_init = musca_class_init,
654 };
655 
656 static const TypeInfo musca_a_info = {
657     .name = TYPE_MUSCA_A_MACHINE,
658     .parent = TYPE_MUSCA_MACHINE,
659     .class_init = musca_a_class_init,
660 };
661 
662 static const TypeInfo musca_b1_info = {
663     .name = TYPE_MUSCA_B1_MACHINE,
664     .parent = TYPE_MUSCA_MACHINE,
665     .class_init = musca_b1_class_init,
666 };
667 
musca_machine_init(void)668 static void musca_machine_init(void)
669 {
670     type_register_static(&musca_info);
671     type_register_static(&musca_a_info);
672     type_register_static(&musca_b1_info);
673 }
674 
675 type_init(musca_machine_init);
676