xref: /openbmc/linux/arch/powerpc/kernel/fadump.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36 
37 /*
38  * The CPU who acquired the lock to trigger the fadump crash should
39  * wait for other CPUs to enter.
40  *
41  * The timeout is in milliseconds.
42  */
43 #define CRASH_TIMEOUT		500
44 
45 static struct fw_dump fw_dump;
46 
47 static void __init fadump_reserve_crash_area(u64 base);
48 
49 #ifndef CONFIG_PRESERVE_FA_DUMP
50 
51 static struct kobject *fadump_kobj;
52 
53 static atomic_t cpus_in_fadump;
54 static DEFINE_MUTEX(fadump_mutex);
55 
56 static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
57 
58 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
59 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
60 				 sizeof(struct fadump_memory_range))
61 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
62 static struct fadump_mrange_info
63 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
64 
65 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
66 
67 #ifdef CONFIG_CMA
68 static struct cma *fadump_cma;
69 
70 /*
71  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
72  *
73  * This function initializes CMA area from fadump reserved memory.
74  * The total size of fadump reserved memory covers for boot memory size
75  * + cpu data size + hpte size and metadata.
76  * Initialize only the area equivalent to boot memory size for CMA use.
77  * The remaining portion of fadump reserved memory will be not given
78  * to CMA and pages for those will stay reserved. boot memory size is
79  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
80  * But for some reason even if it fails we still have the memory reservation
81  * with us and we can still continue doing fadump.
82  */
fadump_cma_init(void)83 void __init fadump_cma_init(void)
84 {
85 	unsigned long long base, size;
86 	int rc;
87 
88 	if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
89 			fw_dump.dump_active)
90 		return;
91 	/*
92 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
93 	 */
94 	if (fw_dump.nocma || !fw_dump.boot_memory_size)
95 		return;
96 
97 	base = fw_dump.reserve_dump_area_start;
98 	size = fw_dump.boot_memory_size;
99 
100 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
101 	if (rc) {
102 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
103 		/*
104 		 * Though the CMA init has failed we still have memory
105 		 * reservation with us. The reserved memory will be
106 		 * blocked from production system usage.  Hence return 1,
107 		 * so that we can continue with fadump.
108 		 */
109 		return;
110 	}
111 
112 	/*
113 	 *  If CMA activation fails, keep the pages reserved, instead of
114 	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
115 	 */
116 	cma_reserve_pages_on_error(fadump_cma);
117 
118 	/*
119 	 * So we now have successfully initialized cma area for fadump.
120 	 */
121 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
122 		"bytes of memory reserved for firmware-assisted dump\n",
123 		cma_get_size(fadump_cma),
124 		(unsigned long)cma_get_base(fadump_cma) >> 20,
125 		fw_dump.reserve_dump_area_size);
126 }
127 #endif /* CONFIG_CMA */
128 
129 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)130 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
131 				      int depth, void *data)
132 {
133 	if (depth == 0) {
134 		early_init_dt_scan_reserved_ranges(node);
135 		return 0;
136 	}
137 
138 	if (depth != 1)
139 		return 0;
140 
141 	if (strcmp(uname, "rtas") == 0) {
142 		rtas_fadump_dt_scan(&fw_dump, node);
143 		return 1;
144 	}
145 
146 	if (strcmp(uname, "ibm,opal") == 0) {
147 		opal_fadump_dt_scan(&fw_dump, node);
148 		return 1;
149 	}
150 
151 	return 0;
152 }
153 
154 /*
155  * If fadump is registered, check if the memory provided
156  * falls within boot memory area and reserved memory area.
157  */
is_fadump_memory_area(u64 addr,unsigned long size)158 int is_fadump_memory_area(u64 addr, unsigned long size)
159 {
160 	u64 d_start, d_end;
161 
162 	if (!fw_dump.dump_registered)
163 		return 0;
164 
165 	if (!size)
166 		return 0;
167 
168 	d_start = fw_dump.reserve_dump_area_start;
169 	d_end = d_start + fw_dump.reserve_dump_area_size;
170 	if (((addr + size) > d_start) && (addr <= d_end))
171 		return 1;
172 
173 	return (addr <= fw_dump.boot_mem_top);
174 }
175 
should_fadump_crash(void)176 int should_fadump_crash(void)
177 {
178 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
179 		return 0;
180 	return 1;
181 }
182 
is_fadump_active(void)183 int is_fadump_active(void)
184 {
185 	return fw_dump.dump_active;
186 }
187 
188 /*
189  * Returns true, if there are no holes in memory area between d_start to d_end,
190  * false otherwise.
191  */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)192 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
193 {
194 	phys_addr_t reg_start, reg_end;
195 	bool ret = false;
196 	u64 i, start, end;
197 
198 	for_each_mem_range(i, &reg_start, &reg_end) {
199 		start = max_t(u64, d_start, reg_start);
200 		end = min_t(u64, d_end, reg_end);
201 		if (d_start < end) {
202 			/* Memory hole from d_start to start */
203 			if (start > d_start)
204 				break;
205 
206 			if (end == d_end) {
207 				ret = true;
208 				break;
209 			}
210 
211 			d_start = end + 1;
212 		}
213 	}
214 
215 	return ret;
216 }
217 
218 /*
219  * Returns true, if there are no holes in boot memory area,
220  * false otherwise.
221  */
is_fadump_boot_mem_contiguous(void)222 bool is_fadump_boot_mem_contiguous(void)
223 {
224 	unsigned long d_start, d_end;
225 	bool ret = false;
226 	int i;
227 
228 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
229 		d_start = fw_dump.boot_mem_addr[i];
230 		d_end   = d_start + fw_dump.boot_mem_sz[i];
231 
232 		ret = is_fadump_mem_area_contiguous(d_start, d_end);
233 		if (!ret)
234 			break;
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Returns true, if there are no holes in reserved memory area,
242  * false otherwise.
243  */
is_fadump_reserved_mem_contiguous(void)244 bool is_fadump_reserved_mem_contiguous(void)
245 {
246 	u64 d_start, d_end;
247 
248 	d_start	= fw_dump.reserve_dump_area_start;
249 	d_end	= d_start + fw_dump.reserve_dump_area_size;
250 	return is_fadump_mem_area_contiguous(d_start, d_end);
251 }
252 
253 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)254 static void __init fadump_show_config(void)
255 {
256 	int i;
257 
258 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
259 			(fw_dump.fadump_supported ? "present" : "no support"));
260 
261 	if (!fw_dump.fadump_supported)
262 		return;
263 
264 	pr_debug("Fadump enabled    : %s\n",
265 				(fw_dump.fadump_enabled ? "yes" : "no"));
266 	pr_debug("Dump Active       : %s\n",
267 				(fw_dump.dump_active ? "yes" : "no"));
268 	pr_debug("Dump section sizes:\n");
269 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
270 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
271 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
272 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
273 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
274 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
275 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
276 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
277 	}
278 }
279 
280 /**
281  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
282  *
283  * Function to find the largest memory size we need to reserve during early
284  * boot process. This will be the size of the memory that is required for a
285  * kernel to boot successfully.
286  *
287  * This function has been taken from phyp-assisted dump feature implementation.
288  *
289  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
290  *
291  * TODO: Come up with better approach to find out more accurate memory size
292  * that is required for a kernel to boot successfully.
293  *
294  */
fadump_calculate_reserve_size(void)295 static __init u64 fadump_calculate_reserve_size(void)
296 {
297 	u64 base, size, bootmem_min;
298 	int ret;
299 
300 	if (fw_dump.reserve_bootvar)
301 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
302 
303 	/*
304 	 * Check if the size is specified through crashkernel= cmdline
305 	 * option. If yes, then use that but ignore base as fadump reserves
306 	 * memory at a predefined offset.
307 	 */
308 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
309 				&size, &base);
310 	if (ret == 0 && size > 0) {
311 		unsigned long max_size;
312 
313 		if (fw_dump.reserve_bootvar)
314 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
315 
316 		fw_dump.reserve_bootvar = (unsigned long)size;
317 
318 		/*
319 		 * Adjust if the boot memory size specified is above
320 		 * the upper limit.
321 		 */
322 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
323 		if (fw_dump.reserve_bootvar > max_size) {
324 			fw_dump.reserve_bootvar = max_size;
325 			pr_info("Adjusted boot memory size to %luMB\n",
326 				(fw_dump.reserve_bootvar >> 20));
327 		}
328 
329 		return fw_dump.reserve_bootvar;
330 	} else if (fw_dump.reserve_bootvar) {
331 		/*
332 		 * 'fadump_reserve_mem=' is being used to reserve memory
333 		 * for firmware-assisted dump.
334 		 */
335 		return fw_dump.reserve_bootvar;
336 	}
337 
338 	/* divide by 20 to get 5% of value */
339 	size = memblock_phys_mem_size() / 20;
340 
341 	/* round it down in multiples of 256 */
342 	size = size & ~0x0FFFFFFFUL;
343 
344 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
345 	if (memory_limit && size > memory_limit)
346 		size = memory_limit;
347 
348 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
349 	return (size > bootmem_min ? size : bootmem_min);
350 }
351 
352 /*
353  * Calculate the total memory size required to be reserved for
354  * firmware-assisted dump registration.
355  */
get_fadump_area_size(void)356 static unsigned long __init get_fadump_area_size(void)
357 {
358 	unsigned long size = 0;
359 
360 	size += fw_dump.cpu_state_data_size;
361 	size += fw_dump.hpte_region_size;
362 	/*
363 	 * Account for pagesize alignment of boot memory area destination address.
364 	 * This faciliates in mmap reading of first kernel's memory.
365 	 */
366 	size = PAGE_ALIGN(size);
367 	size += fw_dump.boot_memory_size;
368 	size += sizeof(struct fadump_crash_info_header);
369 	size += sizeof(struct elfhdr); /* ELF core header.*/
370 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
371 	/* Program headers for crash memory regions. */
372 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
373 
374 	size = PAGE_ALIGN(size);
375 
376 	/* This is to hold kernel metadata on platforms that support it */
377 	size += (fw_dump.ops->fadump_get_metadata_size ?
378 		 fw_dump.ops->fadump_get_metadata_size() : 0);
379 	return size;
380 }
381 
add_boot_mem_region(unsigned long rstart,unsigned long rsize)382 static int __init add_boot_mem_region(unsigned long rstart,
383 				      unsigned long rsize)
384 {
385 	int i = fw_dump.boot_mem_regs_cnt++;
386 
387 	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
388 		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
389 		return 0;
390 	}
391 
392 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
393 		 i, rstart, (rstart + rsize));
394 	fw_dump.boot_mem_addr[i] = rstart;
395 	fw_dump.boot_mem_sz[i] = rsize;
396 	return 1;
397 }
398 
399 /*
400  * Firmware usually has a hard limit on the data it can copy per region.
401  * Honour that by splitting a memory range into multiple regions.
402  */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)403 static int __init add_boot_mem_regions(unsigned long mstart,
404 				       unsigned long msize)
405 {
406 	unsigned long rstart, rsize, max_size;
407 	int ret = 1;
408 
409 	rstart = mstart;
410 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
411 	while (msize) {
412 		if (msize > max_size)
413 			rsize = max_size;
414 		else
415 			rsize = msize;
416 
417 		ret = add_boot_mem_region(rstart, rsize);
418 		if (!ret)
419 			break;
420 
421 		msize -= rsize;
422 		rstart += rsize;
423 	}
424 
425 	return ret;
426 }
427 
fadump_get_boot_mem_regions(void)428 static int __init fadump_get_boot_mem_regions(void)
429 {
430 	unsigned long size, cur_size, hole_size, last_end;
431 	unsigned long mem_size = fw_dump.boot_memory_size;
432 	phys_addr_t reg_start, reg_end;
433 	int ret = 1;
434 	u64 i;
435 
436 	fw_dump.boot_mem_regs_cnt = 0;
437 
438 	last_end = 0;
439 	hole_size = 0;
440 	cur_size = 0;
441 	for_each_mem_range(i, &reg_start, &reg_end) {
442 		size = reg_end - reg_start;
443 		hole_size += (reg_start - last_end);
444 
445 		if ((cur_size + size) >= mem_size) {
446 			size = (mem_size - cur_size);
447 			ret = add_boot_mem_regions(reg_start, size);
448 			break;
449 		}
450 
451 		mem_size -= size;
452 		cur_size += size;
453 		ret = add_boot_mem_regions(reg_start, size);
454 		if (!ret)
455 			break;
456 
457 		last_end = reg_end;
458 	}
459 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
460 
461 	return ret;
462 }
463 
464 /*
465  * Returns true, if the given range overlaps with reserved memory ranges
466  * starting at idx. Also, updates idx to index of overlapping memory range
467  * with the given memory range.
468  * False, otherwise.
469  */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)470 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
471 {
472 	bool ret = false;
473 	int i;
474 
475 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
476 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
477 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
478 
479 		if (end <= rbase)
480 			break;
481 
482 		if ((end > rbase) &&  (base < rend)) {
483 			*idx = i;
484 			ret = true;
485 			break;
486 		}
487 	}
488 
489 	return ret;
490 }
491 
492 /*
493  * Locate a suitable memory area to reserve memory for FADump. While at it,
494  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
495  */
fadump_locate_reserve_mem(u64 base,u64 size)496 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
497 {
498 	struct fadump_memory_range *mrngs;
499 	phys_addr_t mstart, mend;
500 	int idx = 0;
501 	u64 i, ret = 0;
502 
503 	mrngs = reserved_mrange_info.mem_ranges;
504 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
505 				&mstart, &mend, NULL) {
506 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
507 			 i, mstart, mend, base);
508 
509 		if (mstart > base)
510 			base = PAGE_ALIGN(mstart);
511 
512 		while ((mend > base) && ((mend - base) >= size)) {
513 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
514 				ret = base;
515 				goto out;
516 			}
517 
518 			base = mrngs[idx].base + mrngs[idx].size;
519 			base = PAGE_ALIGN(base);
520 		}
521 	}
522 
523 out:
524 	return ret;
525 }
526 
fadump_reserve_mem(void)527 int __init fadump_reserve_mem(void)
528 {
529 	u64 base, size, mem_boundary, bootmem_min;
530 	int ret = 1;
531 
532 	if (!fw_dump.fadump_enabled)
533 		return 0;
534 
535 	if (!fw_dump.fadump_supported) {
536 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
537 		goto error_out;
538 	}
539 
540 	/*
541 	 * Initialize boot memory size
542 	 * If dump is active then we have already calculated the size during
543 	 * first kernel.
544 	 */
545 	if (!fw_dump.dump_active) {
546 		fw_dump.boot_memory_size =
547 			PAGE_ALIGN(fadump_calculate_reserve_size());
548 #ifdef CONFIG_CMA
549 		if (!fw_dump.nocma) {
550 			fw_dump.boot_memory_size =
551 				ALIGN(fw_dump.boot_memory_size,
552 				      CMA_MIN_ALIGNMENT_BYTES);
553 		}
554 #endif
555 
556 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
557 		if (fw_dump.boot_memory_size < bootmem_min) {
558 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
559 			       fw_dump.boot_memory_size, bootmem_min);
560 			goto error_out;
561 		}
562 
563 		if (!fadump_get_boot_mem_regions()) {
564 			pr_err("Too many holes in boot memory area to enable fadump\n");
565 			goto error_out;
566 		}
567 	}
568 
569 	/*
570 	 * Calculate the memory boundary.
571 	 * If memory_limit is less than actual memory boundary then reserve
572 	 * the memory for fadump beyond the memory_limit and adjust the
573 	 * memory_limit accordingly, so that the running kernel can run with
574 	 * specified memory_limit.
575 	 */
576 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
577 		size = get_fadump_area_size();
578 		if ((memory_limit + size) < memblock_end_of_DRAM())
579 			memory_limit += size;
580 		else
581 			memory_limit = memblock_end_of_DRAM();
582 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
583 				" dump, now %#016llx\n", memory_limit);
584 	}
585 	if (memory_limit)
586 		mem_boundary = memory_limit;
587 	else
588 		mem_boundary = memblock_end_of_DRAM();
589 
590 	base = fw_dump.boot_mem_top;
591 	size = get_fadump_area_size();
592 	fw_dump.reserve_dump_area_size = size;
593 	if (fw_dump.dump_active) {
594 		pr_info("Firmware-assisted dump is active.\n");
595 
596 #ifdef CONFIG_HUGETLB_PAGE
597 		/*
598 		 * FADump capture kernel doesn't care much about hugepages.
599 		 * In fact, handling hugepages in capture kernel is asking for
600 		 * trouble. So, disable HugeTLB support when fadump is active.
601 		 */
602 		hugetlb_disabled = true;
603 #endif
604 		/*
605 		 * If last boot has crashed then reserve all the memory
606 		 * above boot memory size so that we don't touch it until
607 		 * dump is written to disk by userspace tool. This memory
608 		 * can be released for general use by invalidating fadump.
609 		 */
610 		fadump_reserve_crash_area(base);
611 
612 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
613 		pr_debug("Reserve dump area start address: 0x%lx\n",
614 			 fw_dump.reserve_dump_area_start);
615 	} else {
616 		/*
617 		 * Reserve memory at an offset closer to bottom of the RAM to
618 		 * minimize the impact of memory hot-remove operation.
619 		 */
620 		base = fadump_locate_reserve_mem(base, size);
621 
622 		if (!base || (base + size > mem_boundary)) {
623 			pr_err("Failed to find memory chunk for reservation!\n");
624 			goto error_out;
625 		}
626 		fw_dump.reserve_dump_area_start = base;
627 
628 		/*
629 		 * Calculate the kernel metadata address and register it with
630 		 * f/w if the platform supports.
631 		 */
632 		if (fw_dump.ops->fadump_setup_metadata &&
633 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
634 			goto error_out;
635 
636 		if (memblock_reserve(base, size)) {
637 			pr_err("Failed to reserve memory!\n");
638 			goto error_out;
639 		}
640 
641 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
642 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
643 	}
644 
645 	return ret;
646 error_out:
647 	fw_dump.fadump_enabled = 0;
648 	fw_dump.reserve_dump_area_size = 0;
649 	return 0;
650 }
651 
652 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)653 static int __init early_fadump_param(char *p)
654 {
655 	if (!p)
656 		return 1;
657 
658 	if (strncmp(p, "on", 2) == 0)
659 		fw_dump.fadump_enabled = 1;
660 	else if (strncmp(p, "off", 3) == 0)
661 		fw_dump.fadump_enabled = 0;
662 	else if (strncmp(p, "nocma", 5) == 0) {
663 		fw_dump.fadump_enabled = 1;
664 		fw_dump.nocma = 1;
665 	}
666 
667 	return 0;
668 }
669 early_param("fadump", early_fadump_param);
670 
671 /*
672  * Look for fadump_reserve_mem= cmdline option
673  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
674  *       the sooner 'crashkernel=' parameter is accustomed to.
675  */
early_fadump_reserve_mem(char * p)676 static int __init early_fadump_reserve_mem(char *p)
677 {
678 	if (p)
679 		fw_dump.reserve_bootvar = memparse(p, &p);
680 	return 0;
681 }
682 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
683 
crash_fadump(struct pt_regs * regs,const char * str)684 void crash_fadump(struct pt_regs *regs, const char *str)
685 {
686 	unsigned int msecs;
687 	struct fadump_crash_info_header *fdh = NULL;
688 	int old_cpu, this_cpu;
689 	/* Do not include first CPU */
690 	unsigned int ncpus = num_online_cpus() - 1;
691 
692 	if (!should_fadump_crash())
693 		return;
694 
695 	/*
696 	 * old_cpu == -1 means this is the first CPU which has come here,
697 	 * go ahead and trigger fadump.
698 	 *
699 	 * old_cpu != -1 means some other CPU has already on it's way
700 	 * to trigger fadump, just keep looping here.
701 	 */
702 	this_cpu = smp_processor_id();
703 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
704 
705 	if (old_cpu != -1) {
706 		atomic_inc(&cpus_in_fadump);
707 
708 		/*
709 		 * We can't loop here indefinitely. Wait as long as fadump
710 		 * is in force. If we race with fadump un-registration this
711 		 * loop will break and then we go down to normal panic path
712 		 * and reboot. If fadump is in force the first crashing
713 		 * cpu will definitely trigger fadump.
714 		 */
715 		while (fw_dump.dump_registered)
716 			cpu_relax();
717 		return;
718 	}
719 
720 	fdh = __va(fw_dump.fadumphdr_addr);
721 	fdh->crashing_cpu = crashing_cpu;
722 	crash_save_vmcoreinfo();
723 
724 	if (regs)
725 		fdh->regs = *regs;
726 	else
727 		ppc_save_regs(&fdh->regs);
728 
729 	fdh->cpu_mask = *cpu_online_mask;
730 
731 	/*
732 	 * If we came in via system reset, wait a while for the secondary
733 	 * CPUs to enter.
734 	 */
735 	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
736 		msecs = CRASH_TIMEOUT;
737 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
738 			mdelay(1);
739 	}
740 
741 	fw_dump.ops->fadump_trigger(fdh, str);
742 }
743 
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)744 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
745 {
746 	struct elf_prstatus prstatus;
747 
748 	memset(&prstatus, 0, sizeof(prstatus));
749 	/*
750 	 * FIXME: How do i get PID? Do I really need it?
751 	 * prstatus.pr_pid = ????
752 	 */
753 	elf_core_copy_regs(&prstatus.pr_reg, regs);
754 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
755 			      &prstatus, sizeof(prstatus));
756 	return buf;
757 }
758 
fadump_update_elfcore_header(char * bufp)759 void __init fadump_update_elfcore_header(char *bufp)
760 {
761 	struct elf_phdr *phdr;
762 
763 	bufp += sizeof(struct elfhdr);
764 
765 	/* First note is a place holder for cpu notes info. */
766 	phdr = (struct elf_phdr *)bufp;
767 
768 	if (phdr->p_type == PT_NOTE) {
769 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
770 		phdr->p_offset	= phdr->p_paddr;
771 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
772 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
773 	}
774 	return;
775 }
776 
fadump_alloc_buffer(unsigned long size)777 static void *__init fadump_alloc_buffer(unsigned long size)
778 {
779 	unsigned long count, i;
780 	struct page *page;
781 	void *vaddr;
782 
783 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
784 	if (!vaddr)
785 		return NULL;
786 
787 	count = PAGE_ALIGN(size) / PAGE_SIZE;
788 	page = virt_to_page(vaddr);
789 	for (i = 0; i < count; i++)
790 		mark_page_reserved(page + i);
791 	return vaddr;
792 }
793 
fadump_free_buffer(unsigned long vaddr,unsigned long size)794 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
795 {
796 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
797 }
798 
fadump_setup_cpu_notes_buf(u32 num_cpus)799 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
800 {
801 	/* Allocate buffer to hold cpu crash notes. */
802 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
803 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
804 	fw_dump.cpu_notes_buf_vaddr =
805 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
806 	if (!fw_dump.cpu_notes_buf_vaddr) {
807 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
808 		       fw_dump.cpu_notes_buf_size);
809 		return -ENOMEM;
810 	}
811 
812 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
813 		 fw_dump.cpu_notes_buf_size,
814 		 fw_dump.cpu_notes_buf_vaddr);
815 	return 0;
816 }
817 
fadump_free_cpu_notes_buf(void)818 void fadump_free_cpu_notes_buf(void)
819 {
820 	if (!fw_dump.cpu_notes_buf_vaddr)
821 		return;
822 
823 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
824 			   fw_dump.cpu_notes_buf_size);
825 	fw_dump.cpu_notes_buf_vaddr = 0;
826 	fw_dump.cpu_notes_buf_size = 0;
827 }
828 
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)829 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
830 {
831 	if (mrange_info->is_static) {
832 		mrange_info->mem_range_cnt = 0;
833 		return;
834 	}
835 
836 	kfree(mrange_info->mem_ranges);
837 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
838 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
839 }
840 
841 /*
842  * Allocate or reallocate mem_ranges array in incremental units
843  * of PAGE_SIZE.
844  */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)845 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
846 {
847 	struct fadump_memory_range *new_array;
848 	u64 new_size;
849 
850 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
851 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
852 		 new_size, mrange_info->name);
853 
854 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
855 	if (new_array == NULL) {
856 		pr_err("Insufficient memory for setting up %s memory ranges\n",
857 		       mrange_info->name);
858 		fadump_free_mem_ranges(mrange_info);
859 		return -ENOMEM;
860 	}
861 
862 	mrange_info->mem_ranges = new_array;
863 	mrange_info->mem_ranges_sz = new_size;
864 	mrange_info->max_mem_ranges = (new_size /
865 				       sizeof(struct fadump_memory_range));
866 	return 0;
867 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)868 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
869 				       u64 base, u64 end)
870 {
871 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
872 	bool is_adjacent = false;
873 	u64 start, size;
874 
875 	if (base == end)
876 		return 0;
877 
878 	/*
879 	 * Fold adjacent memory ranges to bring down the memory ranges/
880 	 * PT_LOAD segments count.
881 	 */
882 	if (mrange_info->mem_range_cnt) {
883 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
884 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
885 
886 		/*
887 		 * Boot memory area needs separate PT_LOAD segment(s) as it
888 		 * is moved to a different location at the time of crash.
889 		 * So, fold only if the region is not boot memory area.
890 		 */
891 		if ((start + size) == base && start >= fw_dump.boot_mem_top)
892 			is_adjacent = true;
893 	}
894 	if (!is_adjacent) {
895 		/* resize the array on reaching the limit */
896 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
897 			int ret;
898 
899 			if (mrange_info->is_static) {
900 				pr_err("Reached array size limit for %s memory ranges\n",
901 				       mrange_info->name);
902 				return -ENOSPC;
903 			}
904 
905 			ret = fadump_alloc_mem_ranges(mrange_info);
906 			if (ret)
907 				return ret;
908 
909 			/* Update to the new resized array */
910 			mem_ranges = mrange_info->mem_ranges;
911 		}
912 
913 		start = base;
914 		mem_ranges[mrange_info->mem_range_cnt].base = start;
915 		mrange_info->mem_range_cnt++;
916 	}
917 
918 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
919 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
920 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
921 		 start, end - 1, (end - start));
922 	return 0;
923 }
924 
fadump_exclude_reserved_area(u64 start,u64 end)925 static int fadump_exclude_reserved_area(u64 start, u64 end)
926 {
927 	u64 ra_start, ra_end;
928 	int ret = 0;
929 
930 	ra_start = fw_dump.reserve_dump_area_start;
931 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
932 
933 	if ((ra_start < end) && (ra_end > start)) {
934 		if ((start < ra_start) && (end > ra_end)) {
935 			ret = fadump_add_mem_range(&crash_mrange_info,
936 						   start, ra_start);
937 			if (ret)
938 				return ret;
939 
940 			ret = fadump_add_mem_range(&crash_mrange_info,
941 						   ra_end, end);
942 		} else if (start < ra_start) {
943 			ret = fadump_add_mem_range(&crash_mrange_info,
944 						   start, ra_start);
945 		} else if (ra_end < end) {
946 			ret = fadump_add_mem_range(&crash_mrange_info,
947 						   ra_end, end);
948 		}
949 	} else
950 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
951 
952 	return ret;
953 }
954 
fadump_init_elfcore_header(char * bufp)955 static int fadump_init_elfcore_header(char *bufp)
956 {
957 	struct elfhdr *elf;
958 
959 	elf = (struct elfhdr *) bufp;
960 	bufp += sizeof(struct elfhdr);
961 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
962 	elf->e_ident[EI_CLASS] = ELF_CLASS;
963 	elf->e_ident[EI_DATA] = ELF_DATA;
964 	elf->e_ident[EI_VERSION] = EV_CURRENT;
965 	elf->e_ident[EI_OSABI] = ELF_OSABI;
966 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
967 	elf->e_type = ET_CORE;
968 	elf->e_machine = ELF_ARCH;
969 	elf->e_version = EV_CURRENT;
970 	elf->e_entry = 0;
971 	elf->e_phoff = sizeof(struct elfhdr);
972 	elf->e_shoff = 0;
973 
974 	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
975 		elf->e_flags = 2;
976 	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
977 		elf->e_flags = 1;
978 	else
979 		elf->e_flags = 0;
980 
981 	elf->e_ehsize = sizeof(struct elfhdr);
982 	elf->e_phentsize = sizeof(struct elf_phdr);
983 	elf->e_phnum = 0;
984 	elf->e_shentsize = 0;
985 	elf->e_shnum = 0;
986 	elf->e_shstrndx = 0;
987 
988 	return 0;
989 }
990 
991 /*
992  * Traverse through memblock structure and setup crash memory ranges. These
993  * ranges will be used create PT_LOAD program headers in elfcore header.
994  */
fadump_setup_crash_memory_ranges(void)995 static int fadump_setup_crash_memory_ranges(void)
996 {
997 	u64 i, start, end;
998 	int ret;
999 
1000 	pr_debug("Setup crash memory ranges.\n");
1001 	crash_mrange_info.mem_range_cnt = 0;
1002 
1003 	/*
1004 	 * Boot memory region(s) registered with firmware are moved to
1005 	 * different location at the time of crash. Create separate program
1006 	 * header(s) for this memory chunk(s) with the correct offset.
1007 	 */
1008 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1009 		start = fw_dump.boot_mem_addr[i];
1010 		end = start + fw_dump.boot_mem_sz[i];
1011 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1012 		if (ret)
1013 			return ret;
1014 	}
1015 
1016 	for_each_mem_range(i, &start, &end) {
1017 		/*
1018 		 * skip the memory chunk that is already added
1019 		 * (0 through boot_memory_top).
1020 		 */
1021 		if (start < fw_dump.boot_mem_top) {
1022 			if (end > fw_dump.boot_mem_top)
1023 				start = fw_dump.boot_mem_top;
1024 			else
1025 				continue;
1026 		}
1027 
1028 		/* add this range excluding the reserved dump area. */
1029 		ret = fadump_exclude_reserved_area(start, end);
1030 		if (ret)
1031 			return ret;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 /*
1038  * If the given physical address falls within the boot memory region then
1039  * return the relocated address that points to the dump region reserved
1040  * for saving initial boot memory contents.
1041  */
fadump_relocate(unsigned long paddr)1042 static inline unsigned long fadump_relocate(unsigned long paddr)
1043 {
1044 	unsigned long raddr, rstart, rend, rlast, hole_size;
1045 	int i;
1046 
1047 	hole_size = 0;
1048 	rlast = 0;
1049 	raddr = paddr;
1050 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1051 		rstart = fw_dump.boot_mem_addr[i];
1052 		rend = rstart + fw_dump.boot_mem_sz[i];
1053 		hole_size += (rstart - rlast);
1054 
1055 		if (paddr >= rstart && paddr < rend) {
1056 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1057 			break;
1058 		}
1059 
1060 		rlast = rend;
1061 	}
1062 
1063 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1064 	return raddr;
1065 }
1066 
fadump_create_elfcore_headers(char * bufp)1067 static int fadump_create_elfcore_headers(char *bufp)
1068 {
1069 	unsigned long long raddr, offset;
1070 	struct elf_phdr *phdr;
1071 	struct elfhdr *elf;
1072 	int i, j;
1073 
1074 	fadump_init_elfcore_header(bufp);
1075 	elf = (struct elfhdr *)bufp;
1076 	bufp += sizeof(struct elfhdr);
1077 
1078 	/*
1079 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1080 	 * will be populated during second kernel boot after crash. Hence
1081 	 * this PT_NOTE will always be the first elf note.
1082 	 *
1083 	 * NOTE: Any new ELF note addition should be placed after this note.
1084 	 */
1085 	phdr = (struct elf_phdr *)bufp;
1086 	bufp += sizeof(struct elf_phdr);
1087 	phdr->p_type = PT_NOTE;
1088 	phdr->p_flags = 0;
1089 	phdr->p_vaddr = 0;
1090 	phdr->p_align = 0;
1091 
1092 	phdr->p_offset = 0;
1093 	phdr->p_paddr = 0;
1094 	phdr->p_filesz = 0;
1095 	phdr->p_memsz = 0;
1096 
1097 	(elf->e_phnum)++;
1098 
1099 	/* setup ELF PT_NOTE for vmcoreinfo */
1100 	phdr = (struct elf_phdr *)bufp;
1101 	bufp += sizeof(struct elf_phdr);
1102 	phdr->p_type	= PT_NOTE;
1103 	phdr->p_flags	= 0;
1104 	phdr->p_vaddr	= 0;
1105 	phdr->p_align	= 0;
1106 
1107 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1108 	phdr->p_offset	= phdr->p_paddr;
1109 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1110 
1111 	/* Increment number of program headers. */
1112 	(elf->e_phnum)++;
1113 
1114 	/* setup PT_LOAD sections. */
1115 	j = 0;
1116 	offset = 0;
1117 	raddr = fw_dump.boot_mem_addr[0];
1118 	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1119 		u64 mbase, msize;
1120 
1121 		mbase = crash_mrange_info.mem_ranges[i].base;
1122 		msize = crash_mrange_info.mem_ranges[i].size;
1123 		if (!msize)
1124 			continue;
1125 
1126 		phdr = (struct elf_phdr *)bufp;
1127 		bufp += sizeof(struct elf_phdr);
1128 		phdr->p_type	= PT_LOAD;
1129 		phdr->p_flags	= PF_R|PF_W|PF_X;
1130 		phdr->p_offset	= mbase;
1131 
1132 		if (mbase == raddr) {
1133 			/*
1134 			 * The entire real memory region will be moved by
1135 			 * firmware to the specified destination_address.
1136 			 * Hence set the correct offset.
1137 			 */
1138 			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1139 			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1140 				offset += fw_dump.boot_mem_sz[j];
1141 				raddr = fw_dump.boot_mem_addr[++j];
1142 			}
1143 		}
1144 
1145 		phdr->p_paddr = mbase;
1146 		phdr->p_vaddr = (unsigned long)__va(mbase);
1147 		phdr->p_filesz = msize;
1148 		phdr->p_memsz = msize;
1149 		phdr->p_align = 0;
1150 
1151 		/* Increment number of program headers. */
1152 		(elf->e_phnum)++;
1153 	}
1154 	return 0;
1155 }
1156 
init_fadump_header(unsigned long addr)1157 static unsigned long init_fadump_header(unsigned long addr)
1158 {
1159 	struct fadump_crash_info_header *fdh;
1160 
1161 	if (!addr)
1162 		return 0;
1163 
1164 	fdh = __va(addr);
1165 	addr += sizeof(struct fadump_crash_info_header);
1166 
1167 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1168 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1169 	fdh->elfcorehdr_addr = addr;
1170 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1171 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1172 	/*
1173 	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1174 	 * register data is processed while exporting the vmcore.
1175 	 */
1176 	fdh->cpu_mask = *cpu_possible_mask;
1177 
1178 	return addr;
1179 }
1180 
register_fadump(void)1181 static int register_fadump(void)
1182 {
1183 	unsigned long addr;
1184 	void *vaddr;
1185 	int ret;
1186 
1187 	/*
1188 	 * If no memory is reserved then we can not register for firmware-
1189 	 * assisted dump.
1190 	 */
1191 	if (!fw_dump.reserve_dump_area_size)
1192 		return -ENODEV;
1193 
1194 	ret = fadump_setup_crash_memory_ranges();
1195 	if (ret)
1196 		return ret;
1197 
1198 	addr = fw_dump.fadumphdr_addr;
1199 
1200 	/* Initialize fadump crash info header. */
1201 	addr = init_fadump_header(addr);
1202 	vaddr = __va(addr);
1203 
1204 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1205 	fadump_create_elfcore_headers(vaddr);
1206 
1207 	/* register the future kernel dump with firmware. */
1208 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1209 	return fw_dump.ops->fadump_register(&fw_dump);
1210 }
1211 
fadump_cleanup(void)1212 void fadump_cleanup(void)
1213 {
1214 	if (!fw_dump.fadump_supported)
1215 		return;
1216 
1217 	/* Invalidate the registration only if dump is active. */
1218 	if (fw_dump.dump_active) {
1219 		pr_debug("Invalidating firmware-assisted dump registration\n");
1220 		fw_dump.ops->fadump_invalidate(&fw_dump);
1221 	} else if (fw_dump.dump_registered) {
1222 		/* Un-register Firmware-assisted dump if it was registered. */
1223 		fw_dump.ops->fadump_unregister(&fw_dump);
1224 		fadump_free_mem_ranges(&crash_mrange_info);
1225 	}
1226 
1227 	if (fw_dump.ops->fadump_cleanup)
1228 		fw_dump.ops->fadump_cleanup(&fw_dump);
1229 }
1230 
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1231 static void fadump_free_reserved_memory(unsigned long start_pfn,
1232 					unsigned long end_pfn)
1233 {
1234 	unsigned long pfn;
1235 	unsigned long time_limit = jiffies + HZ;
1236 
1237 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1238 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1239 
1240 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1241 		free_reserved_page(pfn_to_page(pfn));
1242 
1243 		if (time_after(jiffies, time_limit)) {
1244 			cond_resched();
1245 			time_limit = jiffies + HZ;
1246 		}
1247 	}
1248 }
1249 
1250 /*
1251  * Skip memory holes and free memory that was actually reserved.
1252  */
fadump_release_reserved_area(u64 start,u64 end)1253 static void fadump_release_reserved_area(u64 start, u64 end)
1254 {
1255 	unsigned long reg_spfn, reg_epfn;
1256 	u64 tstart, tend, spfn, epfn;
1257 	int i;
1258 
1259 	spfn = PHYS_PFN(start);
1260 	epfn = PHYS_PFN(end);
1261 
1262 	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1263 		tstart = max_t(u64, spfn, reg_spfn);
1264 		tend   = min_t(u64, epfn, reg_epfn);
1265 
1266 		if (tstart < tend) {
1267 			fadump_free_reserved_memory(tstart, tend);
1268 
1269 			if (tend == epfn)
1270 				break;
1271 
1272 			spfn = tend;
1273 		}
1274 	}
1275 }
1276 
1277 /*
1278  * Sort the mem ranges in-place and merge adjacent ranges
1279  * to minimize the memory ranges count.
1280  */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1281 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1282 {
1283 	struct fadump_memory_range *mem_ranges;
1284 	u64 base, size;
1285 	int i, j, idx;
1286 
1287 	if (!reserved_mrange_info.mem_range_cnt)
1288 		return;
1289 
1290 	/* Sort the memory ranges */
1291 	mem_ranges = mrange_info->mem_ranges;
1292 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1293 		idx = i;
1294 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1295 			if (mem_ranges[idx].base > mem_ranges[j].base)
1296 				idx = j;
1297 		}
1298 		if (idx != i)
1299 			swap(mem_ranges[idx], mem_ranges[i]);
1300 	}
1301 
1302 	/* Merge adjacent reserved ranges */
1303 	idx = 0;
1304 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1305 		base = mem_ranges[i-1].base;
1306 		size = mem_ranges[i-1].size;
1307 		if (mem_ranges[i].base == (base + size))
1308 			mem_ranges[idx].size += mem_ranges[i].size;
1309 		else {
1310 			idx++;
1311 			if (i == idx)
1312 				continue;
1313 
1314 			mem_ranges[idx] = mem_ranges[i];
1315 		}
1316 	}
1317 	mrange_info->mem_range_cnt = idx + 1;
1318 }
1319 
1320 /*
1321  * Scan reserved-ranges to consider them while reserving/releasing
1322  * memory for FADump.
1323  */
early_init_dt_scan_reserved_ranges(unsigned long node)1324 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1325 {
1326 	const __be32 *prop;
1327 	int len, ret = -1;
1328 	unsigned long i;
1329 
1330 	/* reserved-ranges already scanned */
1331 	if (reserved_mrange_info.mem_range_cnt != 0)
1332 		return;
1333 
1334 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1335 	if (!prop)
1336 		return;
1337 
1338 	/*
1339 	 * Each reserved range is an (address,size) pair, 2 cells each,
1340 	 * totalling 4 cells per range.
1341 	 */
1342 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1343 		u64 base, size;
1344 
1345 		base = of_read_number(prop + (i * 4) + 0, 2);
1346 		size = of_read_number(prop + (i * 4) + 2, 2);
1347 
1348 		if (size) {
1349 			ret = fadump_add_mem_range(&reserved_mrange_info,
1350 						   base, base + size);
1351 			if (ret < 0) {
1352 				pr_warn("some reserved ranges are ignored!\n");
1353 				break;
1354 			}
1355 		}
1356 	}
1357 
1358 	/* Compact reserved ranges */
1359 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1360 }
1361 
1362 /*
1363  * Release the memory that was reserved during early boot to preserve the
1364  * crash'ed kernel's memory contents except reserved dump area (permanent
1365  * reservation) and reserved ranges used by F/W. The released memory will
1366  * be available for general use.
1367  */
fadump_release_memory(u64 begin,u64 end)1368 static void fadump_release_memory(u64 begin, u64 end)
1369 {
1370 	u64 ra_start, ra_end, tstart;
1371 	int i, ret;
1372 
1373 	ra_start = fw_dump.reserve_dump_area_start;
1374 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1375 
1376 	/*
1377 	 * If reserved ranges array limit is hit, overwrite the last reserved
1378 	 * memory range with reserved dump area to ensure it is excluded from
1379 	 * the memory being released (reused for next FADump registration).
1380 	 */
1381 	if (reserved_mrange_info.mem_range_cnt ==
1382 	    reserved_mrange_info.max_mem_ranges)
1383 		reserved_mrange_info.mem_range_cnt--;
1384 
1385 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1386 	if (ret != 0)
1387 		return;
1388 
1389 	/* Get the reserved ranges list in order first. */
1390 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1391 
1392 	/* Exclude reserved ranges and release remaining memory */
1393 	tstart = begin;
1394 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1395 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1396 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1397 
1398 		if (tstart >= ra_end)
1399 			continue;
1400 
1401 		if (tstart < ra_start)
1402 			fadump_release_reserved_area(tstart, ra_start);
1403 		tstart = ra_end;
1404 	}
1405 
1406 	if (tstart < end)
1407 		fadump_release_reserved_area(tstart, end);
1408 }
1409 
fadump_invalidate_release_mem(void)1410 static void fadump_invalidate_release_mem(void)
1411 {
1412 	mutex_lock(&fadump_mutex);
1413 	if (!fw_dump.dump_active) {
1414 		mutex_unlock(&fadump_mutex);
1415 		return;
1416 	}
1417 
1418 	fadump_cleanup();
1419 	mutex_unlock(&fadump_mutex);
1420 
1421 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1422 	fadump_free_cpu_notes_buf();
1423 
1424 	/*
1425 	 * Setup kernel metadata and initialize the kernel dump
1426 	 * memory structure for FADump re-registration.
1427 	 */
1428 	if (fw_dump.ops->fadump_setup_metadata &&
1429 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1430 		pr_warn("Failed to setup kernel metadata!\n");
1431 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1432 }
1433 
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1434 static ssize_t release_mem_store(struct kobject *kobj,
1435 				 struct kobj_attribute *attr,
1436 				 const char *buf, size_t count)
1437 {
1438 	int input = -1;
1439 
1440 	if (!fw_dump.dump_active)
1441 		return -EPERM;
1442 
1443 	if (kstrtoint(buf, 0, &input))
1444 		return -EINVAL;
1445 
1446 	if (input == 1) {
1447 		/*
1448 		 * Take away the '/proc/vmcore'. We are releasing the dump
1449 		 * memory, hence it will not be valid anymore.
1450 		 */
1451 #ifdef CONFIG_PROC_VMCORE
1452 		vmcore_cleanup();
1453 #endif
1454 		fadump_invalidate_release_mem();
1455 
1456 	} else
1457 		return -EINVAL;
1458 	return count;
1459 }
1460 
1461 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1462 static void __init unregister_fadump(void)
1463 {
1464 	fadump_cleanup();
1465 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1466 			      fw_dump.reserve_dump_area_size);
1467 	fw_dump.fadump_enabled = 0;
1468 	kobject_put(fadump_kobj);
1469 }
1470 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1471 static ssize_t enabled_show(struct kobject *kobj,
1472 			    struct kobj_attribute *attr,
1473 			    char *buf)
1474 {
1475 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1476 }
1477 
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1478 static ssize_t mem_reserved_show(struct kobject *kobj,
1479 				 struct kobj_attribute *attr,
1480 				 char *buf)
1481 {
1482 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1483 }
1484 
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1485 static ssize_t registered_show(struct kobject *kobj,
1486 			       struct kobj_attribute *attr,
1487 			       char *buf)
1488 {
1489 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1490 }
1491 
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1492 static ssize_t registered_store(struct kobject *kobj,
1493 				struct kobj_attribute *attr,
1494 				const char *buf, size_t count)
1495 {
1496 	int ret = 0;
1497 	int input = -1;
1498 
1499 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1500 		return -EPERM;
1501 
1502 	if (kstrtoint(buf, 0, &input))
1503 		return -EINVAL;
1504 
1505 	mutex_lock(&fadump_mutex);
1506 
1507 	switch (input) {
1508 	case 0:
1509 		if (fw_dump.dump_registered == 0) {
1510 			goto unlock_out;
1511 		}
1512 
1513 		/* Un-register Firmware-assisted dump */
1514 		pr_debug("Un-register firmware-assisted dump\n");
1515 		fw_dump.ops->fadump_unregister(&fw_dump);
1516 		break;
1517 	case 1:
1518 		if (fw_dump.dump_registered == 1) {
1519 			/* Un-register Firmware-assisted dump */
1520 			fw_dump.ops->fadump_unregister(&fw_dump);
1521 		}
1522 		/* Register Firmware-assisted dump */
1523 		ret = register_fadump();
1524 		break;
1525 	default:
1526 		ret = -EINVAL;
1527 		break;
1528 	}
1529 
1530 unlock_out:
1531 	mutex_unlock(&fadump_mutex);
1532 	return ret < 0 ? ret : count;
1533 }
1534 
fadump_region_show(struct seq_file * m,void * private)1535 static int fadump_region_show(struct seq_file *m, void *private)
1536 {
1537 	if (!fw_dump.fadump_enabled)
1538 		return 0;
1539 
1540 	mutex_lock(&fadump_mutex);
1541 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1542 	mutex_unlock(&fadump_mutex);
1543 	return 0;
1544 }
1545 
1546 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1547 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1548 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1549 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1550 
1551 static struct attribute *fadump_attrs[] = {
1552 	&enable_attr.attr,
1553 	&register_attr.attr,
1554 	&mem_reserved_attr.attr,
1555 	NULL,
1556 };
1557 
1558 ATTRIBUTE_GROUPS(fadump);
1559 
1560 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1561 
fadump_init_files(void)1562 static void __init fadump_init_files(void)
1563 {
1564 	int rc = 0;
1565 
1566 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1567 	if (!fadump_kobj) {
1568 		pr_err("failed to create fadump kobject\n");
1569 		return;
1570 	}
1571 
1572 	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1573 			    &fadump_region_fops);
1574 
1575 	if (fw_dump.dump_active) {
1576 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1577 		if (rc)
1578 			pr_err("unable to create release_mem sysfs file (%d)\n",
1579 			       rc);
1580 	}
1581 
1582 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1583 	if (rc) {
1584 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1585 		       rc);
1586 		unregister_fadump();
1587 		return;
1588 	}
1589 
1590 	/*
1591 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1592 	 * create symlink at old location to maintain backward compatibility.
1593 	 *
1594 	 *      - fadump_enabled -> fadump/enabled
1595 	 *      - fadump_registered -> fadump/registered
1596 	 *      - fadump_release_mem -> fadump/release_mem
1597 	 */
1598 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1599 						  "enabled", "fadump_enabled");
1600 	if (rc) {
1601 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1602 		return;
1603 	}
1604 
1605 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1606 						  "registered",
1607 						  "fadump_registered");
1608 	if (rc) {
1609 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1610 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1611 		return;
1612 	}
1613 
1614 	if (fw_dump.dump_active) {
1615 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1616 							  fadump_kobj,
1617 							  "release_mem",
1618 							  "fadump_release_mem");
1619 		if (rc)
1620 			pr_err("unable to create fadump_release_mem symlink (%d)",
1621 			       rc);
1622 	}
1623 	return;
1624 }
1625 
1626 /*
1627  * Prepare for firmware-assisted dump.
1628  */
setup_fadump(void)1629 int __init setup_fadump(void)
1630 {
1631 	if (!fw_dump.fadump_supported)
1632 		return 0;
1633 
1634 	fadump_init_files();
1635 	fadump_show_config();
1636 
1637 	if (!fw_dump.fadump_enabled)
1638 		return 1;
1639 
1640 	/*
1641 	 * If dump data is available then see if it is valid and prepare for
1642 	 * saving it to the disk.
1643 	 */
1644 	if (fw_dump.dump_active) {
1645 		/*
1646 		 * if dump process fails then invalidate the registration
1647 		 * and release memory before proceeding for re-registration.
1648 		 */
1649 		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1650 			fadump_invalidate_release_mem();
1651 	}
1652 	/* Initialize the kernel dump memory structure and register with f/w */
1653 	else if (fw_dump.reserve_dump_area_size) {
1654 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1655 		register_fadump();
1656 	}
1657 
1658 	/*
1659 	 * In case of panic, fadump is triggered via ppc_panic_event()
1660 	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1661 	 * lets panic() function take crash friendly path before panic
1662 	 * notifiers are invoked.
1663 	 */
1664 	crash_kexec_post_notifiers = true;
1665 
1666 	return 1;
1667 }
1668 /*
1669  * Use subsys_initcall_sync() here because there is dependency with
1670  * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1671  * is done before registering with f/w.
1672  */
1673 subsys_initcall_sync(setup_fadump);
1674 #else /* !CONFIG_PRESERVE_FA_DUMP */
1675 
1676 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1677 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1678 				      int depth, void *data)
1679 {
1680 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1681 		return 0;
1682 
1683 	opal_fadump_dt_scan(&fw_dump, node);
1684 	return 1;
1685 }
1686 
1687 /*
1688  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1689  * preserve crash data. The subsequent memory preserving kernel boot
1690  * is likely to process this crash data.
1691  */
fadump_reserve_mem(void)1692 int __init fadump_reserve_mem(void)
1693 {
1694 	if (fw_dump.dump_active) {
1695 		/*
1696 		 * If last boot has crashed then reserve all the memory
1697 		 * above boot memory to preserve crash data.
1698 		 */
1699 		pr_info("Preserving crash data for processing in next boot.\n");
1700 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1701 	} else
1702 		pr_debug("FADump-aware kernel..\n");
1703 
1704 	return 1;
1705 }
1706 #endif /* CONFIG_PRESERVE_FA_DUMP */
1707 
1708 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1709 static void __init fadump_reserve_crash_area(u64 base)
1710 {
1711 	u64 i, mstart, mend, msize;
1712 
1713 	for_each_mem_range(i, &mstart, &mend) {
1714 		msize  = mend - mstart;
1715 
1716 		if ((mstart + msize) < base)
1717 			continue;
1718 
1719 		if (mstart < base) {
1720 			msize -= (base - mstart);
1721 			mstart = base;
1722 		}
1723 
1724 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1725 			(msize >> 20), mstart);
1726 		memblock_reserve(mstart, msize);
1727 	}
1728 }
1729 
arch_reserved_kernel_pages(void)1730 unsigned long __init arch_reserved_kernel_pages(void)
1731 {
1732 	return memblock_reserved_size() / PAGE_SIZE;
1733 }
1734