1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4 * dump with assistance from firmware. This approach does not use kexec,
5 * instead firmware assists in booting the kdump kernel while preserving
6 * memory contents. The most of the code implementation has been adapted
7 * from phyp assisted dump implementation written by Linas Vepstas and
8 * Manish Ahuja
9 *
10 * Copyright 2011 IBM Corporation
11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12 */
13
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36
37 /*
38 * The CPU who acquired the lock to trigger the fadump crash should
39 * wait for other CPUs to enter.
40 *
41 * The timeout is in milliseconds.
42 */
43 #define CRASH_TIMEOUT 500
44
45 static struct fw_dump fw_dump;
46
47 static void __init fadump_reserve_crash_area(u64 base);
48
49 #ifndef CONFIG_PRESERVE_FA_DUMP
50
51 static struct kobject *fadump_kobj;
52
53 static atomic_t cpus_in_fadump;
54 static DEFINE_MUTEX(fadump_mutex);
55
56 static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
57
58 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
59 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
60 sizeof(struct fadump_memory_range))
61 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
62 static struct fadump_mrange_info
63 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
64
65 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
66
67 #ifdef CONFIG_CMA
68 static struct cma *fadump_cma;
69
70 /*
71 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
72 *
73 * This function initializes CMA area from fadump reserved memory.
74 * The total size of fadump reserved memory covers for boot memory size
75 * + cpu data size + hpte size and metadata.
76 * Initialize only the area equivalent to boot memory size for CMA use.
77 * The remaining portion of fadump reserved memory will be not given
78 * to CMA and pages for those will stay reserved. boot memory size is
79 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
80 * But for some reason even if it fails we still have the memory reservation
81 * with us and we can still continue doing fadump.
82 */
fadump_cma_init(void)83 void __init fadump_cma_init(void)
84 {
85 unsigned long long base, size;
86 int rc;
87
88 if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
89 fw_dump.dump_active)
90 return;
91 /*
92 * Do not use CMA if user has provided fadump=nocma kernel parameter.
93 */
94 if (fw_dump.nocma || !fw_dump.boot_memory_size)
95 return;
96
97 base = fw_dump.reserve_dump_area_start;
98 size = fw_dump.boot_memory_size;
99
100 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
101 if (rc) {
102 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
103 /*
104 * Though the CMA init has failed we still have memory
105 * reservation with us. The reserved memory will be
106 * blocked from production system usage. Hence return 1,
107 * so that we can continue with fadump.
108 */
109 return;
110 }
111
112 /*
113 * If CMA activation fails, keep the pages reserved, instead of
114 * exposing them to buddy allocator. Same as 'fadump=nocma' case.
115 */
116 cma_reserve_pages_on_error(fadump_cma);
117
118 /*
119 * So we now have successfully initialized cma area for fadump.
120 */
121 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
122 "bytes of memory reserved for firmware-assisted dump\n",
123 cma_get_size(fadump_cma),
124 (unsigned long)cma_get_base(fadump_cma) >> 20,
125 fw_dump.reserve_dump_area_size);
126 }
127 #endif /* CONFIG_CMA */
128
129 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)130 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
131 int depth, void *data)
132 {
133 if (depth == 0) {
134 early_init_dt_scan_reserved_ranges(node);
135 return 0;
136 }
137
138 if (depth != 1)
139 return 0;
140
141 if (strcmp(uname, "rtas") == 0) {
142 rtas_fadump_dt_scan(&fw_dump, node);
143 return 1;
144 }
145
146 if (strcmp(uname, "ibm,opal") == 0) {
147 opal_fadump_dt_scan(&fw_dump, node);
148 return 1;
149 }
150
151 return 0;
152 }
153
154 /*
155 * If fadump is registered, check if the memory provided
156 * falls within boot memory area and reserved memory area.
157 */
is_fadump_memory_area(u64 addr,unsigned long size)158 int is_fadump_memory_area(u64 addr, unsigned long size)
159 {
160 u64 d_start, d_end;
161
162 if (!fw_dump.dump_registered)
163 return 0;
164
165 if (!size)
166 return 0;
167
168 d_start = fw_dump.reserve_dump_area_start;
169 d_end = d_start + fw_dump.reserve_dump_area_size;
170 if (((addr + size) > d_start) && (addr <= d_end))
171 return 1;
172
173 return (addr <= fw_dump.boot_mem_top);
174 }
175
should_fadump_crash(void)176 int should_fadump_crash(void)
177 {
178 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
179 return 0;
180 return 1;
181 }
182
is_fadump_active(void)183 int is_fadump_active(void)
184 {
185 return fw_dump.dump_active;
186 }
187
188 /*
189 * Returns true, if there are no holes in memory area between d_start to d_end,
190 * false otherwise.
191 */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)192 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
193 {
194 phys_addr_t reg_start, reg_end;
195 bool ret = false;
196 u64 i, start, end;
197
198 for_each_mem_range(i, ®_start, ®_end) {
199 start = max_t(u64, d_start, reg_start);
200 end = min_t(u64, d_end, reg_end);
201 if (d_start < end) {
202 /* Memory hole from d_start to start */
203 if (start > d_start)
204 break;
205
206 if (end == d_end) {
207 ret = true;
208 break;
209 }
210
211 d_start = end + 1;
212 }
213 }
214
215 return ret;
216 }
217
218 /*
219 * Returns true, if there are no holes in boot memory area,
220 * false otherwise.
221 */
is_fadump_boot_mem_contiguous(void)222 bool is_fadump_boot_mem_contiguous(void)
223 {
224 unsigned long d_start, d_end;
225 bool ret = false;
226 int i;
227
228 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
229 d_start = fw_dump.boot_mem_addr[i];
230 d_end = d_start + fw_dump.boot_mem_sz[i];
231
232 ret = is_fadump_mem_area_contiguous(d_start, d_end);
233 if (!ret)
234 break;
235 }
236
237 return ret;
238 }
239
240 /*
241 * Returns true, if there are no holes in reserved memory area,
242 * false otherwise.
243 */
is_fadump_reserved_mem_contiguous(void)244 bool is_fadump_reserved_mem_contiguous(void)
245 {
246 u64 d_start, d_end;
247
248 d_start = fw_dump.reserve_dump_area_start;
249 d_end = d_start + fw_dump.reserve_dump_area_size;
250 return is_fadump_mem_area_contiguous(d_start, d_end);
251 }
252
253 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)254 static void __init fadump_show_config(void)
255 {
256 int i;
257
258 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
259 (fw_dump.fadump_supported ? "present" : "no support"));
260
261 if (!fw_dump.fadump_supported)
262 return;
263
264 pr_debug("Fadump enabled : %s\n",
265 (fw_dump.fadump_enabled ? "yes" : "no"));
266 pr_debug("Dump Active : %s\n",
267 (fw_dump.dump_active ? "yes" : "no"));
268 pr_debug("Dump section sizes:\n");
269 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
270 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
271 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
272 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
273 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
274 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
275 pr_debug("[%03d] base = %llx, size = %llx\n", i,
276 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
277 }
278 }
279
280 /**
281 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
282 *
283 * Function to find the largest memory size we need to reserve during early
284 * boot process. This will be the size of the memory that is required for a
285 * kernel to boot successfully.
286 *
287 * This function has been taken from phyp-assisted dump feature implementation.
288 *
289 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
290 *
291 * TODO: Come up with better approach to find out more accurate memory size
292 * that is required for a kernel to boot successfully.
293 *
294 */
fadump_calculate_reserve_size(void)295 static __init u64 fadump_calculate_reserve_size(void)
296 {
297 u64 base, size, bootmem_min;
298 int ret;
299
300 if (fw_dump.reserve_bootvar)
301 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
302
303 /*
304 * Check if the size is specified through crashkernel= cmdline
305 * option. If yes, then use that but ignore base as fadump reserves
306 * memory at a predefined offset.
307 */
308 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
309 &size, &base);
310 if (ret == 0 && size > 0) {
311 unsigned long max_size;
312
313 if (fw_dump.reserve_bootvar)
314 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
315
316 fw_dump.reserve_bootvar = (unsigned long)size;
317
318 /*
319 * Adjust if the boot memory size specified is above
320 * the upper limit.
321 */
322 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
323 if (fw_dump.reserve_bootvar > max_size) {
324 fw_dump.reserve_bootvar = max_size;
325 pr_info("Adjusted boot memory size to %luMB\n",
326 (fw_dump.reserve_bootvar >> 20));
327 }
328
329 return fw_dump.reserve_bootvar;
330 } else if (fw_dump.reserve_bootvar) {
331 /*
332 * 'fadump_reserve_mem=' is being used to reserve memory
333 * for firmware-assisted dump.
334 */
335 return fw_dump.reserve_bootvar;
336 }
337
338 /* divide by 20 to get 5% of value */
339 size = memblock_phys_mem_size() / 20;
340
341 /* round it down in multiples of 256 */
342 size = size & ~0x0FFFFFFFUL;
343
344 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
345 if (memory_limit && size > memory_limit)
346 size = memory_limit;
347
348 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
349 return (size > bootmem_min ? size : bootmem_min);
350 }
351
352 /*
353 * Calculate the total memory size required to be reserved for
354 * firmware-assisted dump registration.
355 */
get_fadump_area_size(void)356 static unsigned long __init get_fadump_area_size(void)
357 {
358 unsigned long size = 0;
359
360 size += fw_dump.cpu_state_data_size;
361 size += fw_dump.hpte_region_size;
362 /*
363 * Account for pagesize alignment of boot memory area destination address.
364 * This faciliates in mmap reading of first kernel's memory.
365 */
366 size = PAGE_ALIGN(size);
367 size += fw_dump.boot_memory_size;
368 size += sizeof(struct fadump_crash_info_header);
369 size += sizeof(struct elfhdr); /* ELF core header.*/
370 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
371 /* Program headers for crash memory regions. */
372 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
373
374 size = PAGE_ALIGN(size);
375
376 /* This is to hold kernel metadata on platforms that support it */
377 size += (fw_dump.ops->fadump_get_metadata_size ?
378 fw_dump.ops->fadump_get_metadata_size() : 0);
379 return size;
380 }
381
add_boot_mem_region(unsigned long rstart,unsigned long rsize)382 static int __init add_boot_mem_region(unsigned long rstart,
383 unsigned long rsize)
384 {
385 int i = fw_dump.boot_mem_regs_cnt++;
386
387 if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
388 fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
389 return 0;
390 }
391
392 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
393 i, rstart, (rstart + rsize));
394 fw_dump.boot_mem_addr[i] = rstart;
395 fw_dump.boot_mem_sz[i] = rsize;
396 return 1;
397 }
398
399 /*
400 * Firmware usually has a hard limit on the data it can copy per region.
401 * Honour that by splitting a memory range into multiple regions.
402 */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)403 static int __init add_boot_mem_regions(unsigned long mstart,
404 unsigned long msize)
405 {
406 unsigned long rstart, rsize, max_size;
407 int ret = 1;
408
409 rstart = mstart;
410 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
411 while (msize) {
412 if (msize > max_size)
413 rsize = max_size;
414 else
415 rsize = msize;
416
417 ret = add_boot_mem_region(rstart, rsize);
418 if (!ret)
419 break;
420
421 msize -= rsize;
422 rstart += rsize;
423 }
424
425 return ret;
426 }
427
fadump_get_boot_mem_regions(void)428 static int __init fadump_get_boot_mem_regions(void)
429 {
430 unsigned long size, cur_size, hole_size, last_end;
431 unsigned long mem_size = fw_dump.boot_memory_size;
432 phys_addr_t reg_start, reg_end;
433 int ret = 1;
434 u64 i;
435
436 fw_dump.boot_mem_regs_cnt = 0;
437
438 last_end = 0;
439 hole_size = 0;
440 cur_size = 0;
441 for_each_mem_range(i, ®_start, ®_end) {
442 size = reg_end - reg_start;
443 hole_size += (reg_start - last_end);
444
445 if ((cur_size + size) >= mem_size) {
446 size = (mem_size - cur_size);
447 ret = add_boot_mem_regions(reg_start, size);
448 break;
449 }
450
451 mem_size -= size;
452 cur_size += size;
453 ret = add_boot_mem_regions(reg_start, size);
454 if (!ret)
455 break;
456
457 last_end = reg_end;
458 }
459 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
460
461 return ret;
462 }
463
464 /*
465 * Returns true, if the given range overlaps with reserved memory ranges
466 * starting at idx. Also, updates idx to index of overlapping memory range
467 * with the given memory range.
468 * False, otherwise.
469 */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)470 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
471 {
472 bool ret = false;
473 int i;
474
475 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
476 u64 rbase = reserved_mrange_info.mem_ranges[i].base;
477 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
478
479 if (end <= rbase)
480 break;
481
482 if ((end > rbase) && (base < rend)) {
483 *idx = i;
484 ret = true;
485 break;
486 }
487 }
488
489 return ret;
490 }
491
492 /*
493 * Locate a suitable memory area to reserve memory for FADump. While at it,
494 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
495 */
fadump_locate_reserve_mem(u64 base,u64 size)496 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
497 {
498 struct fadump_memory_range *mrngs;
499 phys_addr_t mstart, mend;
500 int idx = 0;
501 u64 i, ret = 0;
502
503 mrngs = reserved_mrange_info.mem_ranges;
504 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
505 &mstart, &mend, NULL) {
506 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
507 i, mstart, mend, base);
508
509 if (mstart > base)
510 base = PAGE_ALIGN(mstart);
511
512 while ((mend > base) && ((mend - base) >= size)) {
513 if (!overlaps_reserved_ranges(base, base+size, &idx)) {
514 ret = base;
515 goto out;
516 }
517
518 base = mrngs[idx].base + mrngs[idx].size;
519 base = PAGE_ALIGN(base);
520 }
521 }
522
523 out:
524 return ret;
525 }
526
fadump_reserve_mem(void)527 int __init fadump_reserve_mem(void)
528 {
529 u64 base, size, mem_boundary, bootmem_min;
530 int ret = 1;
531
532 if (!fw_dump.fadump_enabled)
533 return 0;
534
535 if (!fw_dump.fadump_supported) {
536 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
537 goto error_out;
538 }
539
540 /*
541 * Initialize boot memory size
542 * If dump is active then we have already calculated the size during
543 * first kernel.
544 */
545 if (!fw_dump.dump_active) {
546 fw_dump.boot_memory_size =
547 PAGE_ALIGN(fadump_calculate_reserve_size());
548 #ifdef CONFIG_CMA
549 if (!fw_dump.nocma) {
550 fw_dump.boot_memory_size =
551 ALIGN(fw_dump.boot_memory_size,
552 CMA_MIN_ALIGNMENT_BYTES);
553 }
554 #endif
555
556 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
557 if (fw_dump.boot_memory_size < bootmem_min) {
558 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
559 fw_dump.boot_memory_size, bootmem_min);
560 goto error_out;
561 }
562
563 if (!fadump_get_boot_mem_regions()) {
564 pr_err("Too many holes in boot memory area to enable fadump\n");
565 goto error_out;
566 }
567 }
568
569 /*
570 * Calculate the memory boundary.
571 * If memory_limit is less than actual memory boundary then reserve
572 * the memory for fadump beyond the memory_limit and adjust the
573 * memory_limit accordingly, so that the running kernel can run with
574 * specified memory_limit.
575 */
576 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
577 size = get_fadump_area_size();
578 if ((memory_limit + size) < memblock_end_of_DRAM())
579 memory_limit += size;
580 else
581 memory_limit = memblock_end_of_DRAM();
582 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
583 " dump, now %#016llx\n", memory_limit);
584 }
585 if (memory_limit)
586 mem_boundary = memory_limit;
587 else
588 mem_boundary = memblock_end_of_DRAM();
589
590 base = fw_dump.boot_mem_top;
591 size = get_fadump_area_size();
592 fw_dump.reserve_dump_area_size = size;
593 if (fw_dump.dump_active) {
594 pr_info("Firmware-assisted dump is active.\n");
595
596 #ifdef CONFIG_HUGETLB_PAGE
597 /*
598 * FADump capture kernel doesn't care much about hugepages.
599 * In fact, handling hugepages in capture kernel is asking for
600 * trouble. So, disable HugeTLB support when fadump is active.
601 */
602 hugetlb_disabled = true;
603 #endif
604 /*
605 * If last boot has crashed then reserve all the memory
606 * above boot memory size so that we don't touch it until
607 * dump is written to disk by userspace tool. This memory
608 * can be released for general use by invalidating fadump.
609 */
610 fadump_reserve_crash_area(base);
611
612 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
613 pr_debug("Reserve dump area start address: 0x%lx\n",
614 fw_dump.reserve_dump_area_start);
615 } else {
616 /*
617 * Reserve memory at an offset closer to bottom of the RAM to
618 * minimize the impact of memory hot-remove operation.
619 */
620 base = fadump_locate_reserve_mem(base, size);
621
622 if (!base || (base + size > mem_boundary)) {
623 pr_err("Failed to find memory chunk for reservation!\n");
624 goto error_out;
625 }
626 fw_dump.reserve_dump_area_start = base;
627
628 /*
629 * Calculate the kernel metadata address and register it with
630 * f/w if the platform supports.
631 */
632 if (fw_dump.ops->fadump_setup_metadata &&
633 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
634 goto error_out;
635
636 if (memblock_reserve(base, size)) {
637 pr_err("Failed to reserve memory!\n");
638 goto error_out;
639 }
640
641 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
642 (size >> 20), base, (memblock_phys_mem_size() >> 20));
643 }
644
645 return ret;
646 error_out:
647 fw_dump.fadump_enabled = 0;
648 fw_dump.reserve_dump_area_size = 0;
649 return 0;
650 }
651
652 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)653 static int __init early_fadump_param(char *p)
654 {
655 if (!p)
656 return 1;
657
658 if (strncmp(p, "on", 2) == 0)
659 fw_dump.fadump_enabled = 1;
660 else if (strncmp(p, "off", 3) == 0)
661 fw_dump.fadump_enabled = 0;
662 else if (strncmp(p, "nocma", 5) == 0) {
663 fw_dump.fadump_enabled = 1;
664 fw_dump.nocma = 1;
665 }
666
667 return 0;
668 }
669 early_param("fadump", early_fadump_param);
670
671 /*
672 * Look for fadump_reserve_mem= cmdline option
673 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
674 * the sooner 'crashkernel=' parameter is accustomed to.
675 */
early_fadump_reserve_mem(char * p)676 static int __init early_fadump_reserve_mem(char *p)
677 {
678 if (p)
679 fw_dump.reserve_bootvar = memparse(p, &p);
680 return 0;
681 }
682 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
683
crash_fadump(struct pt_regs * regs,const char * str)684 void crash_fadump(struct pt_regs *regs, const char *str)
685 {
686 unsigned int msecs;
687 struct fadump_crash_info_header *fdh = NULL;
688 int old_cpu, this_cpu;
689 /* Do not include first CPU */
690 unsigned int ncpus = num_online_cpus() - 1;
691
692 if (!should_fadump_crash())
693 return;
694
695 /*
696 * old_cpu == -1 means this is the first CPU which has come here,
697 * go ahead and trigger fadump.
698 *
699 * old_cpu != -1 means some other CPU has already on it's way
700 * to trigger fadump, just keep looping here.
701 */
702 this_cpu = smp_processor_id();
703 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
704
705 if (old_cpu != -1) {
706 atomic_inc(&cpus_in_fadump);
707
708 /*
709 * We can't loop here indefinitely. Wait as long as fadump
710 * is in force. If we race with fadump un-registration this
711 * loop will break and then we go down to normal panic path
712 * and reboot. If fadump is in force the first crashing
713 * cpu will definitely trigger fadump.
714 */
715 while (fw_dump.dump_registered)
716 cpu_relax();
717 return;
718 }
719
720 fdh = __va(fw_dump.fadumphdr_addr);
721 fdh->crashing_cpu = crashing_cpu;
722 crash_save_vmcoreinfo();
723
724 if (regs)
725 fdh->regs = *regs;
726 else
727 ppc_save_regs(&fdh->regs);
728
729 fdh->cpu_mask = *cpu_online_mask;
730
731 /*
732 * If we came in via system reset, wait a while for the secondary
733 * CPUs to enter.
734 */
735 if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
736 msecs = CRASH_TIMEOUT;
737 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
738 mdelay(1);
739 }
740
741 fw_dump.ops->fadump_trigger(fdh, str);
742 }
743
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)744 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
745 {
746 struct elf_prstatus prstatus;
747
748 memset(&prstatus, 0, sizeof(prstatus));
749 /*
750 * FIXME: How do i get PID? Do I really need it?
751 * prstatus.pr_pid = ????
752 */
753 elf_core_copy_regs(&prstatus.pr_reg, regs);
754 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
755 &prstatus, sizeof(prstatus));
756 return buf;
757 }
758
fadump_update_elfcore_header(char * bufp)759 void __init fadump_update_elfcore_header(char *bufp)
760 {
761 struct elf_phdr *phdr;
762
763 bufp += sizeof(struct elfhdr);
764
765 /* First note is a place holder for cpu notes info. */
766 phdr = (struct elf_phdr *)bufp;
767
768 if (phdr->p_type == PT_NOTE) {
769 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
770 phdr->p_offset = phdr->p_paddr;
771 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
772 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
773 }
774 return;
775 }
776
fadump_alloc_buffer(unsigned long size)777 static void *__init fadump_alloc_buffer(unsigned long size)
778 {
779 unsigned long count, i;
780 struct page *page;
781 void *vaddr;
782
783 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
784 if (!vaddr)
785 return NULL;
786
787 count = PAGE_ALIGN(size) / PAGE_SIZE;
788 page = virt_to_page(vaddr);
789 for (i = 0; i < count; i++)
790 mark_page_reserved(page + i);
791 return vaddr;
792 }
793
fadump_free_buffer(unsigned long vaddr,unsigned long size)794 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
795 {
796 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
797 }
798
fadump_setup_cpu_notes_buf(u32 num_cpus)799 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
800 {
801 /* Allocate buffer to hold cpu crash notes. */
802 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
803 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
804 fw_dump.cpu_notes_buf_vaddr =
805 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
806 if (!fw_dump.cpu_notes_buf_vaddr) {
807 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
808 fw_dump.cpu_notes_buf_size);
809 return -ENOMEM;
810 }
811
812 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
813 fw_dump.cpu_notes_buf_size,
814 fw_dump.cpu_notes_buf_vaddr);
815 return 0;
816 }
817
fadump_free_cpu_notes_buf(void)818 void fadump_free_cpu_notes_buf(void)
819 {
820 if (!fw_dump.cpu_notes_buf_vaddr)
821 return;
822
823 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
824 fw_dump.cpu_notes_buf_size);
825 fw_dump.cpu_notes_buf_vaddr = 0;
826 fw_dump.cpu_notes_buf_size = 0;
827 }
828
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)829 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
830 {
831 if (mrange_info->is_static) {
832 mrange_info->mem_range_cnt = 0;
833 return;
834 }
835
836 kfree(mrange_info->mem_ranges);
837 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
838 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
839 }
840
841 /*
842 * Allocate or reallocate mem_ranges array in incremental units
843 * of PAGE_SIZE.
844 */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)845 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
846 {
847 struct fadump_memory_range *new_array;
848 u64 new_size;
849
850 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
851 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
852 new_size, mrange_info->name);
853
854 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
855 if (new_array == NULL) {
856 pr_err("Insufficient memory for setting up %s memory ranges\n",
857 mrange_info->name);
858 fadump_free_mem_ranges(mrange_info);
859 return -ENOMEM;
860 }
861
862 mrange_info->mem_ranges = new_array;
863 mrange_info->mem_ranges_sz = new_size;
864 mrange_info->max_mem_ranges = (new_size /
865 sizeof(struct fadump_memory_range));
866 return 0;
867 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)868 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
869 u64 base, u64 end)
870 {
871 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
872 bool is_adjacent = false;
873 u64 start, size;
874
875 if (base == end)
876 return 0;
877
878 /*
879 * Fold adjacent memory ranges to bring down the memory ranges/
880 * PT_LOAD segments count.
881 */
882 if (mrange_info->mem_range_cnt) {
883 start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
884 size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
885
886 /*
887 * Boot memory area needs separate PT_LOAD segment(s) as it
888 * is moved to a different location at the time of crash.
889 * So, fold only if the region is not boot memory area.
890 */
891 if ((start + size) == base && start >= fw_dump.boot_mem_top)
892 is_adjacent = true;
893 }
894 if (!is_adjacent) {
895 /* resize the array on reaching the limit */
896 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
897 int ret;
898
899 if (mrange_info->is_static) {
900 pr_err("Reached array size limit for %s memory ranges\n",
901 mrange_info->name);
902 return -ENOSPC;
903 }
904
905 ret = fadump_alloc_mem_ranges(mrange_info);
906 if (ret)
907 return ret;
908
909 /* Update to the new resized array */
910 mem_ranges = mrange_info->mem_ranges;
911 }
912
913 start = base;
914 mem_ranges[mrange_info->mem_range_cnt].base = start;
915 mrange_info->mem_range_cnt++;
916 }
917
918 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
919 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
920 mrange_info->name, (mrange_info->mem_range_cnt - 1),
921 start, end - 1, (end - start));
922 return 0;
923 }
924
fadump_exclude_reserved_area(u64 start,u64 end)925 static int fadump_exclude_reserved_area(u64 start, u64 end)
926 {
927 u64 ra_start, ra_end;
928 int ret = 0;
929
930 ra_start = fw_dump.reserve_dump_area_start;
931 ra_end = ra_start + fw_dump.reserve_dump_area_size;
932
933 if ((ra_start < end) && (ra_end > start)) {
934 if ((start < ra_start) && (end > ra_end)) {
935 ret = fadump_add_mem_range(&crash_mrange_info,
936 start, ra_start);
937 if (ret)
938 return ret;
939
940 ret = fadump_add_mem_range(&crash_mrange_info,
941 ra_end, end);
942 } else if (start < ra_start) {
943 ret = fadump_add_mem_range(&crash_mrange_info,
944 start, ra_start);
945 } else if (ra_end < end) {
946 ret = fadump_add_mem_range(&crash_mrange_info,
947 ra_end, end);
948 }
949 } else
950 ret = fadump_add_mem_range(&crash_mrange_info, start, end);
951
952 return ret;
953 }
954
fadump_init_elfcore_header(char * bufp)955 static int fadump_init_elfcore_header(char *bufp)
956 {
957 struct elfhdr *elf;
958
959 elf = (struct elfhdr *) bufp;
960 bufp += sizeof(struct elfhdr);
961 memcpy(elf->e_ident, ELFMAG, SELFMAG);
962 elf->e_ident[EI_CLASS] = ELF_CLASS;
963 elf->e_ident[EI_DATA] = ELF_DATA;
964 elf->e_ident[EI_VERSION] = EV_CURRENT;
965 elf->e_ident[EI_OSABI] = ELF_OSABI;
966 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
967 elf->e_type = ET_CORE;
968 elf->e_machine = ELF_ARCH;
969 elf->e_version = EV_CURRENT;
970 elf->e_entry = 0;
971 elf->e_phoff = sizeof(struct elfhdr);
972 elf->e_shoff = 0;
973
974 if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
975 elf->e_flags = 2;
976 else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
977 elf->e_flags = 1;
978 else
979 elf->e_flags = 0;
980
981 elf->e_ehsize = sizeof(struct elfhdr);
982 elf->e_phentsize = sizeof(struct elf_phdr);
983 elf->e_phnum = 0;
984 elf->e_shentsize = 0;
985 elf->e_shnum = 0;
986 elf->e_shstrndx = 0;
987
988 return 0;
989 }
990
991 /*
992 * Traverse through memblock structure and setup crash memory ranges. These
993 * ranges will be used create PT_LOAD program headers in elfcore header.
994 */
fadump_setup_crash_memory_ranges(void)995 static int fadump_setup_crash_memory_ranges(void)
996 {
997 u64 i, start, end;
998 int ret;
999
1000 pr_debug("Setup crash memory ranges.\n");
1001 crash_mrange_info.mem_range_cnt = 0;
1002
1003 /*
1004 * Boot memory region(s) registered with firmware are moved to
1005 * different location at the time of crash. Create separate program
1006 * header(s) for this memory chunk(s) with the correct offset.
1007 */
1008 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1009 start = fw_dump.boot_mem_addr[i];
1010 end = start + fw_dump.boot_mem_sz[i];
1011 ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1012 if (ret)
1013 return ret;
1014 }
1015
1016 for_each_mem_range(i, &start, &end) {
1017 /*
1018 * skip the memory chunk that is already added
1019 * (0 through boot_memory_top).
1020 */
1021 if (start < fw_dump.boot_mem_top) {
1022 if (end > fw_dump.boot_mem_top)
1023 start = fw_dump.boot_mem_top;
1024 else
1025 continue;
1026 }
1027
1028 /* add this range excluding the reserved dump area. */
1029 ret = fadump_exclude_reserved_area(start, end);
1030 if (ret)
1031 return ret;
1032 }
1033
1034 return 0;
1035 }
1036
1037 /*
1038 * If the given physical address falls within the boot memory region then
1039 * return the relocated address that points to the dump region reserved
1040 * for saving initial boot memory contents.
1041 */
fadump_relocate(unsigned long paddr)1042 static inline unsigned long fadump_relocate(unsigned long paddr)
1043 {
1044 unsigned long raddr, rstart, rend, rlast, hole_size;
1045 int i;
1046
1047 hole_size = 0;
1048 rlast = 0;
1049 raddr = paddr;
1050 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1051 rstart = fw_dump.boot_mem_addr[i];
1052 rend = rstart + fw_dump.boot_mem_sz[i];
1053 hole_size += (rstart - rlast);
1054
1055 if (paddr >= rstart && paddr < rend) {
1056 raddr += fw_dump.boot_mem_dest_addr - hole_size;
1057 break;
1058 }
1059
1060 rlast = rend;
1061 }
1062
1063 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1064 return raddr;
1065 }
1066
fadump_create_elfcore_headers(char * bufp)1067 static int fadump_create_elfcore_headers(char *bufp)
1068 {
1069 unsigned long long raddr, offset;
1070 struct elf_phdr *phdr;
1071 struct elfhdr *elf;
1072 int i, j;
1073
1074 fadump_init_elfcore_header(bufp);
1075 elf = (struct elfhdr *)bufp;
1076 bufp += sizeof(struct elfhdr);
1077
1078 /*
1079 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1080 * will be populated during second kernel boot after crash. Hence
1081 * this PT_NOTE will always be the first elf note.
1082 *
1083 * NOTE: Any new ELF note addition should be placed after this note.
1084 */
1085 phdr = (struct elf_phdr *)bufp;
1086 bufp += sizeof(struct elf_phdr);
1087 phdr->p_type = PT_NOTE;
1088 phdr->p_flags = 0;
1089 phdr->p_vaddr = 0;
1090 phdr->p_align = 0;
1091
1092 phdr->p_offset = 0;
1093 phdr->p_paddr = 0;
1094 phdr->p_filesz = 0;
1095 phdr->p_memsz = 0;
1096
1097 (elf->e_phnum)++;
1098
1099 /* setup ELF PT_NOTE for vmcoreinfo */
1100 phdr = (struct elf_phdr *)bufp;
1101 bufp += sizeof(struct elf_phdr);
1102 phdr->p_type = PT_NOTE;
1103 phdr->p_flags = 0;
1104 phdr->p_vaddr = 0;
1105 phdr->p_align = 0;
1106
1107 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
1108 phdr->p_offset = phdr->p_paddr;
1109 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1110
1111 /* Increment number of program headers. */
1112 (elf->e_phnum)++;
1113
1114 /* setup PT_LOAD sections. */
1115 j = 0;
1116 offset = 0;
1117 raddr = fw_dump.boot_mem_addr[0];
1118 for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1119 u64 mbase, msize;
1120
1121 mbase = crash_mrange_info.mem_ranges[i].base;
1122 msize = crash_mrange_info.mem_ranges[i].size;
1123 if (!msize)
1124 continue;
1125
1126 phdr = (struct elf_phdr *)bufp;
1127 bufp += sizeof(struct elf_phdr);
1128 phdr->p_type = PT_LOAD;
1129 phdr->p_flags = PF_R|PF_W|PF_X;
1130 phdr->p_offset = mbase;
1131
1132 if (mbase == raddr) {
1133 /*
1134 * The entire real memory region will be moved by
1135 * firmware to the specified destination_address.
1136 * Hence set the correct offset.
1137 */
1138 phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1139 if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1140 offset += fw_dump.boot_mem_sz[j];
1141 raddr = fw_dump.boot_mem_addr[++j];
1142 }
1143 }
1144
1145 phdr->p_paddr = mbase;
1146 phdr->p_vaddr = (unsigned long)__va(mbase);
1147 phdr->p_filesz = msize;
1148 phdr->p_memsz = msize;
1149 phdr->p_align = 0;
1150
1151 /* Increment number of program headers. */
1152 (elf->e_phnum)++;
1153 }
1154 return 0;
1155 }
1156
init_fadump_header(unsigned long addr)1157 static unsigned long init_fadump_header(unsigned long addr)
1158 {
1159 struct fadump_crash_info_header *fdh;
1160
1161 if (!addr)
1162 return 0;
1163
1164 fdh = __va(addr);
1165 addr += sizeof(struct fadump_crash_info_header);
1166
1167 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1168 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1169 fdh->elfcorehdr_addr = addr;
1170 /* We will set the crashing cpu id in crash_fadump() during crash. */
1171 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1172 /*
1173 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1174 * register data is processed while exporting the vmcore.
1175 */
1176 fdh->cpu_mask = *cpu_possible_mask;
1177
1178 return addr;
1179 }
1180
register_fadump(void)1181 static int register_fadump(void)
1182 {
1183 unsigned long addr;
1184 void *vaddr;
1185 int ret;
1186
1187 /*
1188 * If no memory is reserved then we can not register for firmware-
1189 * assisted dump.
1190 */
1191 if (!fw_dump.reserve_dump_area_size)
1192 return -ENODEV;
1193
1194 ret = fadump_setup_crash_memory_ranges();
1195 if (ret)
1196 return ret;
1197
1198 addr = fw_dump.fadumphdr_addr;
1199
1200 /* Initialize fadump crash info header. */
1201 addr = init_fadump_header(addr);
1202 vaddr = __va(addr);
1203
1204 pr_debug("Creating ELF core headers at %#016lx\n", addr);
1205 fadump_create_elfcore_headers(vaddr);
1206
1207 /* register the future kernel dump with firmware. */
1208 pr_debug("Registering for firmware-assisted kernel dump...\n");
1209 return fw_dump.ops->fadump_register(&fw_dump);
1210 }
1211
fadump_cleanup(void)1212 void fadump_cleanup(void)
1213 {
1214 if (!fw_dump.fadump_supported)
1215 return;
1216
1217 /* Invalidate the registration only if dump is active. */
1218 if (fw_dump.dump_active) {
1219 pr_debug("Invalidating firmware-assisted dump registration\n");
1220 fw_dump.ops->fadump_invalidate(&fw_dump);
1221 } else if (fw_dump.dump_registered) {
1222 /* Un-register Firmware-assisted dump if it was registered. */
1223 fw_dump.ops->fadump_unregister(&fw_dump);
1224 fadump_free_mem_ranges(&crash_mrange_info);
1225 }
1226
1227 if (fw_dump.ops->fadump_cleanup)
1228 fw_dump.ops->fadump_cleanup(&fw_dump);
1229 }
1230
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1231 static void fadump_free_reserved_memory(unsigned long start_pfn,
1232 unsigned long end_pfn)
1233 {
1234 unsigned long pfn;
1235 unsigned long time_limit = jiffies + HZ;
1236
1237 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1238 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1239
1240 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1241 free_reserved_page(pfn_to_page(pfn));
1242
1243 if (time_after(jiffies, time_limit)) {
1244 cond_resched();
1245 time_limit = jiffies + HZ;
1246 }
1247 }
1248 }
1249
1250 /*
1251 * Skip memory holes and free memory that was actually reserved.
1252 */
fadump_release_reserved_area(u64 start,u64 end)1253 static void fadump_release_reserved_area(u64 start, u64 end)
1254 {
1255 unsigned long reg_spfn, reg_epfn;
1256 u64 tstart, tend, spfn, epfn;
1257 int i;
1258
1259 spfn = PHYS_PFN(start);
1260 epfn = PHYS_PFN(end);
1261
1262 for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) {
1263 tstart = max_t(u64, spfn, reg_spfn);
1264 tend = min_t(u64, epfn, reg_epfn);
1265
1266 if (tstart < tend) {
1267 fadump_free_reserved_memory(tstart, tend);
1268
1269 if (tend == epfn)
1270 break;
1271
1272 spfn = tend;
1273 }
1274 }
1275 }
1276
1277 /*
1278 * Sort the mem ranges in-place and merge adjacent ranges
1279 * to minimize the memory ranges count.
1280 */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1281 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1282 {
1283 struct fadump_memory_range *mem_ranges;
1284 u64 base, size;
1285 int i, j, idx;
1286
1287 if (!reserved_mrange_info.mem_range_cnt)
1288 return;
1289
1290 /* Sort the memory ranges */
1291 mem_ranges = mrange_info->mem_ranges;
1292 for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1293 idx = i;
1294 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1295 if (mem_ranges[idx].base > mem_ranges[j].base)
1296 idx = j;
1297 }
1298 if (idx != i)
1299 swap(mem_ranges[idx], mem_ranges[i]);
1300 }
1301
1302 /* Merge adjacent reserved ranges */
1303 idx = 0;
1304 for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1305 base = mem_ranges[i-1].base;
1306 size = mem_ranges[i-1].size;
1307 if (mem_ranges[i].base == (base + size))
1308 mem_ranges[idx].size += mem_ranges[i].size;
1309 else {
1310 idx++;
1311 if (i == idx)
1312 continue;
1313
1314 mem_ranges[idx] = mem_ranges[i];
1315 }
1316 }
1317 mrange_info->mem_range_cnt = idx + 1;
1318 }
1319
1320 /*
1321 * Scan reserved-ranges to consider them while reserving/releasing
1322 * memory for FADump.
1323 */
early_init_dt_scan_reserved_ranges(unsigned long node)1324 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1325 {
1326 const __be32 *prop;
1327 int len, ret = -1;
1328 unsigned long i;
1329
1330 /* reserved-ranges already scanned */
1331 if (reserved_mrange_info.mem_range_cnt != 0)
1332 return;
1333
1334 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1335 if (!prop)
1336 return;
1337
1338 /*
1339 * Each reserved range is an (address,size) pair, 2 cells each,
1340 * totalling 4 cells per range.
1341 */
1342 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1343 u64 base, size;
1344
1345 base = of_read_number(prop + (i * 4) + 0, 2);
1346 size = of_read_number(prop + (i * 4) + 2, 2);
1347
1348 if (size) {
1349 ret = fadump_add_mem_range(&reserved_mrange_info,
1350 base, base + size);
1351 if (ret < 0) {
1352 pr_warn("some reserved ranges are ignored!\n");
1353 break;
1354 }
1355 }
1356 }
1357
1358 /* Compact reserved ranges */
1359 sort_and_merge_mem_ranges(&reserved_mrange_info);
1360 }
1361
1362 /*
1363 * Release the memory that was reserved during early boot to preserve the
1364 * crash'ed kernel's memory contents except reserved dump area (permanent
1365 * reservation) and reserved ranges used by F/W. The released memory will
1366 * be available for general use.
1367 */
fadump_release_memory(u64 begin,u64 end)1368 static void fadump_release_memory(u64 begin, u64 end)
1369 {
1370 u64 ra_start, ra_end, tstart;
1371 int i, ret;
1372
1373 ra_start = fw_dump.reserve_dump_area_start;
1374 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1375
1376 /*
1377 * If reserved ranges array limit is hit, overwrite the last reserved
1378 * memory range with reserved dump area to ensure it is excluded from
1379 * the memory being released (reused for next FADump registration).
1380 */
1381 if (reserved_mrange_info.mem_range_cnt ==
1382 reserved_mrange_info.max_mem_ranges)
1383 reserved_mrange_info.mem_range_cnt--;
1384
1385 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1386 if (ret != 0)
1387 return;
1388
1389 /* Get the reserved ranges list in order first. */
1390 sort_and_merge_mem_ranges(&reserved_mrange_info);
1391
1392 /* Exclude reserved ranges and release remaining memory */
1393 tstart = begin;
1394 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1395 ra_start = reserved_mrange_info.mem_ranges[i].base;
1396 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1397
1398 if (tstart >= ra_end)
1399 continue;
1400
1401 if (tstart < ra_start)
1402 fadump_release_reserved_area(tstart, ra_start);
1403 tstart = ra_end;
1404 }
1405
1406 if (tstart < end)
1407 fadump_release_reserved_area(tstart, end);
1408 }
1409
fadump_invalidate_release_mem(void)1410 static void fadump_invalidate_release_mem(void)
1411 {
1412 mutex_lock(&fadump_mutex);
1413 if (!fw_dump.dump_active) {
1414 mutex_unlock(&fadump_mutex);
1415 return;
1416 }
1417
1418 fadump_cleanup();
1419 mutex_unlock(&fadump_mutex);
1420
1421 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1422 fadump_free_cpu_notes_buf();
1423
1424 /*
1425 * Setup kernel metadata and initialize the kernel dump
1426 * memory structure for FADump re-registration.
1427 */
1428 if (fw_dump.ops->fadump_setup_metadata &&
1429 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1430 pr_warn("Failed to setup kernel metadata!\n");
1431 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1432 }
1433
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1434 static ssize_t release_mem_store(struct kobject *kobj,
1435 struct kobj_attribute *attr,
1436 const char *buf, size_t count)
1437 {
1438 int input = -1;
1439
1440 if (!fw_dump.dump_active)
1441 return -EPERM;
1442
1443 if (kstrtoint(buf, 0, &input))
1444 return -EINVAL;
1445
1446 if (input == 1) {
1447 /*
1448 * Take away the '/proc/vmcore'. We are releasing the dump
1449 * memory, hence it will not be valid anymore.
1450 */
1451 #ifdef CONFIG_PROC_VMCORE
1452 vmcore_cleanup();
1453 #endif
1454 fadump_invalidate_release_mem();
1455
1456 } else
1457 return -EINVAL;
1458 return count;
1459 }
1460
1461 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1462 static void __init unregister_fadump(void)
1463 {
1464 fadump_cleanup();
1465 fadump_release_memory(fw_dump.reserve_dump_area_start,
1466 fw_dump.reserve_dump_area_size);
1467 fw_dump.fadump_enabled = 0;
1468 kobject_put(fadump_kobj);
1469 }
1470
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1471 static ssize_t enabled_show(struct kobject *kobj,
1472 struct kobj_attribute *attr,
1473 char *buf)
1474 {
1475 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1476 }
1477
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1478 static ssize_t mem_reserved_show(struct kobject *kobj,
1479 struct kobj_attribute *attr,
1480 char *buf)
1481 {
1482 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1483 }
1484
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1485 static ssize_t registered_show(struct kobject *kobj,
1486 struct kobj_attribute *attr,
1487 char *buf)
1488 {
1489 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1490 }
1491
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1492 static ssize_t registered_store(struct kobject *kobj,
1493 struct kobj_attribute *attr,
1494 const char *buf, size_t count)
1495 {
1496 int ret = 0;
1497 int input = -1;
1498
1499 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1500 return -EPERM;
1501
1502 if (kstrtoint(buf, 0, &input))
1503 return -EINVAL;
1504
1505 mutex_lock(&fadump_mutex);
1506
1507 switch (input) {
1508 case 0:
1509 if (fw_dump.dump_registered == 0) {
1510 goto unlock_out;
1511 }
1512
1513 /* Un-register Firmware-assisted dump */
1514 pr_debug("Un-register firmware-assisted dump\n");
1515 fw_dump.ops->fadump_unregister(&fw_dump);
1516 break;
1517 case 1:
1518 if (fw_dump.dump_registered == 1) {
1519 /* Un-register Firmware-assisted dump */
1520 fw_dump.ops->fadump_unregister(&fw_dump);
1521 }
1522 /* Register Firmware-assisted dump */
1523 ret = register_fadump();
1524 break;
1525 default:
1526 ret = -EINVAL;
1527 break;
1528 }
1529
1530 unlock_out:
1531 mutex_unlock(&fadump_mutex);
1532 return ret < 0 ? ret : count;
1533 }
1534
fadump_region_show(struct seq_file * m,void * private)1535 static int fadump_region_show(struct seq_file *m, void *private)
1536 {
1537 if (!fw_dump.fadump_enabled)
1538 return 0;
1539
1540 mutex_lock(&fadump_mutex);
1541 fw_dump.ops->fadump_region_show(&fw_dump, m);
1542 mutex_unlock(&fadump_mutex);
1543 return 0;
1544 }
1545
1546 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1547 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1548 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1549 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1550
1551 static struct attribute *fadump_attrs[] = {
1552 &enable_attr.attr,
1553 ®ister_attr.attr,
1554 &mem_reserved_attr.attr,
1555 NULL,
1556 };
1557
1558 ATTRIBUTE_GROUPS(fadump);
1559
1560 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1561
fadump_init_files(void)1562 static void __init fadump_init_files(void)
1563 {
1564 int rc = 0;
1565
1566 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1567 if (!fadump_kobj) {
1568 pr_err("failed to create fadump kobject\n");
1569 return;
1570 }
1571
1572 debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1573 &fadump_region_fops);
1574
1575 if (fw_dump.dump_active) {
1576 rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1577 if (rc)
1578 pr_err("unable to create release_mem sysfs file (%d)\n",
1579 rc);
1580 }
1581
1582 rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1583 if (rc) {
1584 pr_err("sysfs group creation failed (%d), unregistering FADump",
1585 rc);
1586 unregister_fadump();
1587 return;
1588 }
1589
1590 /*
1591 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1592 * create symlink at old location to maintain backward compatibility.
1593 *
1594 * - fadump_enabled -> fadump/enabled
1595 * - fadump_registered -> fadump/registered
1596 * - fadump_release_mem -> fadump/release_mem
1597 */
1598 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1599 "enabled", "fadump_enabled");
1600 if (rc) {
1601 pr_err("unable to create fadump_enabled symlink (%d)", rc);
1602 return;
1603 }
1604
1605 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1606 "registered",
1607 "fadump_registered");
1608 if (rc) {
1609 pr_err("unable to create fadump_registered symlink (%d)", rc);
1610 sysfs_remove_link(kernel_kobj, "fadump_enabled");
1611 return;
1612 }
1613
1614 if (fw_dump.dump_active) {
1615 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1616 fadump_kobj,
1617 "release_mem",
1618 "fadump_release_mem");
1619 if (rc)
1620 pr_err("unable to create fadump_release_mem symlink (%d)",
1621 rc);
1622 }
1623 return;
1624 }
1625
1626 /*
1627 * Prepare for firmware-assisted dump.
1628 */
setup_fadump(void)1629 int __init setup_fadump(void)
1630 {
1631 if (!fw_dump.fadump_supported)
1632 return 0;
1633
1634 fadump_init_files();
1635 fadump_show_config();
1636
1637 if (!fw_dump.fadump_enabled)
1638 return 1;
1639
1640 /*
1641 * If dump data is available then see if it is valid and prepare for
1642 * saving it to the disk.
1643 */
1644 if (fw_dump.dump_active) {
1645 /*
1646 * if dump process fails then invalidate the registration
1647 * and release memory before proceeding for re-registration.
1648 */
1649 if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1650 fadump_invalidate_release_mem();
1651 }
1652 /* Initialize the kernel dump memory structure and register with f/w */
1653 else if (fw_dump.reserve_dump_area_size) {
1654 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1655 register_fadump();
1656 }
1657
1658 /*
1659 * In case of panic, fadump is triggered via ppc_panic_event()
1660 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1661 * lets panic() function take crash friendly path before panic
1662 * notifiers are invoked.
1663 */
1664 crash_kexec_post_notifiers = true;
1665
1666 return 1;
1667 }
1668 /*
1669 * Use subsys_initcall_sync() here because there is dependency with
1670 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1671 * is done before registering with f/w.
1672 */
1673 subsys_initcall_sync(setup_fadump);
1674 #else /* !CONFIG_PRESERVE_FA_DUMP */
1675
1676 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1677 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1678 int depth, void *data)
1679 {
1680 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1681 return 0;
1682
1683 opal_fadump_dt_scan(&fw_dump, node);
1684 return 1;
1685 }
1686
1687 /*
1688 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1689 * preserve crash data. The subsequent memory preserving kernel boot
1690 * is likely to process this crash data.
1691 */
fadump_reserve_mem(void)1692 int __init fadump_reserve_mem(void)
1693 {
1694 if (fw_dump.dump_active) {
1695 /*
1696 * If last boot has crashed then reserve all the memory
1697 * above boot memory to preserve crash data.
1698 */
1699 pr_info("Preserving crash data for processing in next boot.\n");
1700 fadump_reserve_crash_area(fw_dump.boot_mem_top);
1701 } else
1702 pr_debug("FADump-aware kernel..\n");
1703
1704 return 1;
1705 }
1706 #endif /* CONFIG_PRESERVE_FA_DUMP */
1707
1708 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1709 static void __init fadump_reserve_crash_area(u64 base)
1710 {
1711 u64 i, mstart, mend, msize;
1712
1713 for_each_mem_range(i, &mstart, &mend) {
1714 msize = mend - mstart;
1715
1716 if ((mstart + msize) < base)
1717 continue;
1718
1719 if (mstart < base) {
1720 msize -= (base - mstart);
1721 mstart = base;
1722 }
1723
1724 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1725 (msize >> 20), mstart);
1726 memblock_reserve(mstart, msize);
1727 }
1728 }
1729
arch_reserved_kernel_pages(void)1730 unsigned long __init arch_reserved_kernel_pages(void)
1731 {
1732 return memblock_reserved_size() / PAGE_SIZE;
1733 }
1734