1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/pm.h>
18 #include <linux/bitops.h>
19 #include <linux/ctype.h>
20 #include <linux/slab.h>
21 #include <sound/core.h>
22 #include <sound/jack.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dpcm.h>
27 #include <sound/initval.h>
28
29 /**
30 * snd_soc_info_enum_double - enumerated double mixer info callback
31 * @kcontrol: mixer control
32 * @uinfo: control element information
33 *
34 * Callback to provide information about a double enumerated
35 * mixer control.
36 *
37 * Returns 0 for success.
38 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)39 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
40 struct snd_ctl_elem_info *uinfo)
41 {
42 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
43
44 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
45 e->items, e->texts);
46 }
47 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
48
49 /**
50 * snd_soc_get_enum_double - enumerated double mixer get callback
51 * @kcontrol: mixer control
52 * @ucontrol: control element information
53 *
54 * Callback to get the value of a double enumerated mixer.
55 *
56 * Returns 0 for success.
57 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)58 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
59 struct snd_ctl_elem_value *ucontrol)
60 {
61 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
62 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
63 unsigned int val, item;
64 unsigned int reg_val;
65
66 reg_val = snd_soc_component_read(component, e->reg);
67 val = (reg_val >> e->shift_l) & e->mask;
68 item = snd_soc_enum_val_to_item(e, val);
69 ucontrol->value.enumerated.item[0] = item;
70 if (e->shift_l != e->shift_r) {
71 val = (reg_val >> e->shift_r) & e->mask;
72 item = snd_soc_enum_val_to_item(e, val);
73 ucontrol->value.enumerated.item[1] = item;
74 }
75
76 return 0;
77 }
78 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
79
80 /**
81 * snd_soc_put_enum_double - enumerated double mixer put callback
82 * @kcontrol: mixer control
83 * @ucontrol: control element information
84 *
85 * Callback to set the value of a double enumerated mixer.
86 *
87 * Returns 0 for success.
88 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)89 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
90 struct snd_ctl_elem_value *ucontrol)
91 {
92 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
93 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
94 unsigned int *item = ucontrol->value.enumerated.item;
95 unsigned int val;
96 unsigned int mask;
97
98 if (item[0] >= e->items)
99 return -EINVAL;
100 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
101 mask = e->mask << e->shift_l;
102 if (e->shift_l != e->shift_r) {
103 if (item[1] >= e->items)
104 return -EINVAL;
105 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
106 mask |= e->mask << e->shift_r;
107 }
108
109 return snd_soc_component_update_bits(component, e->reg, mask, val);
110 }
111 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
112
113 /**
114 * snd_soc_read_signed - Read a codec register and interpret as signed value
115 * @component: component
116 * @reg: Register to read
117 * @mask: Mask to use after shifting the register value
118 * @shift: Right shift of register value
119 * @sign_bit: Bit that describes if a number is negative or not.
120 * @signed_val: Pointer to where the read value should be stored
121 *
122 * This functions reads a codec register. The register value is shifted right
123 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
124 * the given registervalue into a signed integer if sign_bit is non-zero.
125 *
126 * Returns 0 on sucess, otherwise an error value
127 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)128 static int snd_soc_read_signed(struct snd_soc_component *component,
129 unsigned int reg, unsigned int mask, unsigned int shift,
130 unsigned int sign_bit, int *signed_val)
131 {
132 int ret;
133 unsigned int val;
134
135 val = snd_soc_component_read(component, reg);
136 val = (val >> shift) & mask;
137
138 if (!sign_bit) {
139 *signed_val = val;
140 return 0;
141 }
142
143 /* non-negative number */
144 if (!(val & BIT(sign_bit))) {
145 *signed_val = val;
146 return 0;
147 }
148
149 ret = val;
150
151 /*
152 * The register most probably does not contain a full-sized int.
153 * Instead we have an arbitrary number of bits in a signed
154 * representation which has to be translated into a full-sized int.
155 * This is done by filling up all bits above the sign-bit.
156 */
157 ret |= ~((int)(BIT(sign_bit) - 1));
158
159 *signed_val = ret;
160
161 return 0;
162 }
163
164 /**
165 * snd_soc_info_volsw - single mixer info callback
166 * @kcontrol: mixer control
167 * @uinfo: control element information
168 *
169 * Callback to provide information about a single mixer control, or a double
170 * mixer control that spans 2 registers.
171 *
172 * Returns 0 for success.
173 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)174 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
175 struct snd_ctl_elem_info *uinfo)
176 {
177 struct soc_mixer_control *mc =
178 (struct soc_mixer_control *)kcontrol->private_value;
179 const char *vol_string = NULL;
180 int max;
181
182 max = uinfo->value.integer.max = mc->max - mc->min;
183 if (mc->platform_max && mc->platform_max < max)
184 max = mc->platform_max;
185
186 if (max == 1) {
187 /* Even two value controls ending in Volume should always be integer */
188 vol_string = strstr(kcontrol->id.name, " Volume");
189 if (vol_string && !strcmp(vol_string, " Volume"))
190 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
191 else
192 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
193 } else {
194 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
195 }
196
197 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198 uinfo->value.integer.min = 0;
199 uinfo->value.integer.max = max;
200
201 return 0;
202 }
203 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
204
205 /**
206 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
207 * @kcontrol: mixer control
208 * @uinfo: control element information
209 *
210 * Callback to provide information about a single mixer control, or a double
211 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
212 * have a range that represents both positive and negative values either side
213 * of zero but without a sign bit. min is the minimum register value, max is
214 * the number of steps.
215 *
216 * Returns 0 for success.
217 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)218 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
219 struct snd_ctl_elem_info *uinfo)
220 {
221 struct soc_mixer_control *mc =
222 (struct soc_mixer_control *)kcontrol->private_value;
223 int max;
224
225 if (mc->platform_max)
226 max = mc->platform_max;
227 else
228 max = mc->max;
229
230 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
231 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
232 else
233 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
234
235 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
236 uinfo->value.integer.min = 0;
237 uinfo->value.integer.max = max;
238
239 return 0;
240 }
241 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
242
243 /**
244 * snd_soc_get_volsw - single mixer get callback
245 * @kcontrol: mixer control
246 * @ucontrol: control element information
247 *
248 * Callback to get the value of a single mixer control, or a double mixer
249 * control that spans 2 registers.
250 *
251 * Returns 0 for success.
252 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)253 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
254 struct snd_ctl_elem_value *ucontrol)
255 {
256 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
257 struct soc_mixer_control *mc =
258 (struct soc_mixer_control *)kcontrol->private_value;
259 unsigned int reg = mc->reg;
260 unsigned int reg2 = mc->rreg;
261 unsigned int shift = mc->shift;
262 unsigned int rshift = mc->rshift;
263 int max = mc->max;
264 int min = mc->min;
265 int sign_bit = mc->sign_bit;
266 unsigned int mask = (1ULL << fls(max)) - 1;
267 unsigned int invert = mc->invert;
268 int val;
269 int ret;
270
271 if (sign_bit)
272 mask = BIT(sign_bit + 1) - 1;
273
274 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
275 if (ret)
276 return ret;
277
278 ucontrol->value.integer.value[0] = val - min;
279 if (invert)
280 ucontrol->value.integer.value[0] =
281 max - ucontrol->value.integer.value[0];
282
283 if (snd_soc_volsw_is_stereo(mc)) {
284 if (reg == reg2)
285 ret = snd_soc_read_signed(component, reg, mask, rshift,
286 sign_bit, &val);
287 else
288 ret = snd_soc_read_signed(component, reg2, mask, shift,
289 sign_bit, &val);
290 if (ret)
291 return ret;
292
293 ucontrol->value.integer.value[1] = val - min;
294 if (invert)
295 ucontrol->value.integer.value[1] =
296 max - ucontrol->value.integer.value[1];
297 }
298
299 return 0;
300 }
301 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
302
303 /**
304 * snd_soc_put_volsw - single mixer put callback
305 * @kcontrol: mixer control
306 * @ucontrol: control element information
307 *
308 * Callback to set the value of a single mixer control, or a double mixer
309 * control that spans 2 registers.
310 *
311 * Returns 0 for success.
312 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)313 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
314 struct snd_ctl_elem_value *ucontrol)
315 {
316 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
317 struct soc_mixer_control *mc =
318 (struct soc_mixer_control *)kcontrol->private_value;
319 unsigned int reg = mc->reg;
320 unsigned int reg2 = mc->rreg;
321 unsigned int shift = mc->shift;
322 unsigned int rshift = mc->rshift;
323 int max = mc->max;
324 int min = mc->min;
325 unsigned int sign_bit = mc->sign_bit;
326 unsigned int mask = (1 << fls(max)) - 1;
327 unsigned int invert = mc->invert;
328 int err, ret;
329 bool type_2r = false;
330 unsigned int val2 = 0;
331 unsigned int val, val_mask;
332
333 if (sign_bit)
334 mask = BIT(sign_bit + 1) - 1;
335
336 if (ucontrol->value.integer.value[0] < 0)
337 return -EINVAL;
338 val = ucontrol->value.integer.value[0];
339 if (mc->platform_max && val > mc->platform_max)
340 return -EINVAL;
341 if (val > max - min)
342 return -EINVAL;
343 val = (val + min) & mask;
344 if (invert)
345 val = max - val;
346 val_mask = mask << shift;
347 val = val << shift;
348 if (snd_soc_volsw_is_stereo(mc)) {
349 if (ucontrol->value.integer.value[1] < 0)
350 return -EINVAL;
351 val2 = ucontrol->value.integer.value[1];
352 if (mc->platform_max && val2 > mc->platform_max)
353 return -EINVAL;
354 if (val2 > max - min)
355 return -EINVAL;
356 val2 = (val2 + min) & mask;
357 if (invert)
358 val2 = max - val2;
359 if (reg == reg2) {
360 val_mask |= mask << rshift;
361 val |= val2 << rshift;
362 } else {
363 val2 = val2 << shift;
364 type_2r = true;
365 }
366 }
367 err = snd_soc_component_update_bits(component, reg, val_mask, val);
368 if (err < 0)
369 return err;
370 ret = err;
371
372 if (type_2r) {
373 err = snd_soc_component_update_bits(component, reg2, val_mask,
374 val2);
375 /* Don't discard any error code or drop change flag */
376 if (ret == 0 || err < 0) {
377 ret = err;
378 }
379 }
380
381 return ret;
382 }
383 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
384
385 /**
386 * snd_soc_get_volsw_sx - single mixer get callback
387 * @kcontrol: mixer control
388 * @ucontrol: control element information
389 *
390 * Callback to get the value of a single mixer control, or a double mixer
391 * control that spans 2 registers.
392 *
393 * Returns 0 for success.
394 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)395 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
396 struct snd_ctl_elem_value *ucontrol)
397 {
398 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
399 struct soc_mixer_control *mc =
400 (struct soc_mixer_control *)kcontrol->private_value;
401 unsigned int reg = mc->reg;
402 unsigned int reg2 = mc->rreg;
403 unsigned int shift = mc->shift;
404 unsigned int rshift = mc->rshift;
405 int max = mc->max;
406 int min = mc->min;
407 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
408 unsigned int val;
409
410 val = snd_soc_component_read(component, reg);
411 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
412
413 if (snd_soc_volsw_is_stereo(mc)) {
414 val = snd_soc_component_read(component, reg2);
415 val = ((val >> rshift) - min) & mask;
416 ucontrol->value.integer.value[1] = val;
417 }
418
419 return 0;
420 }
421 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
422
423 /**
424 * snd_soc_put_volsw_sx - double mixer set callback
425 * @kcontrol: mixer control
426 * @ucontrol: control element information
427 *
428 * Callback to set the value of a double mixer control that spans 2 registers.
429 *
430 * Returns 0 for success.
431 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)432 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
433 struct snd_ctl_elem_value *ucontrol)
434 {
435 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
436 struct soc_mixer_control *mc =
437 (struct soc_mixer_control *)kcontrol->private_value;
438
439 unsigned int reg = mc->reg;
440 unsigned int reg2 = mc->rreg;
441 unsigned int shift = mc->shift;
442 unsigned int rshift = mc->rshift;
443 int max = mc->max;
444 int min = mc->min;
445 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
446 int err = 0;
447 int ret;
448 unsigned int val, val_mask;
449
450 if (ucontrol->value.integer.value[0] < 0)
451 return -EINVAL;
452 val = ucontrol->value.integer.value[0];
453 if (mc->platform_max && val > mc->platform_max)
454 return -EINVAL;
455 if (val > max)
456 return -EINVAL;
457 val_mask = mask << shift;
458 val = (val + min) & mask;
459 val = val << shift;
460
461 err = snd_soc_component_update_bits(component, reg, val_mask, val);
462 if (err < 0)
463 return err;
464 ret = err;
465
466 if (snd_soc_volsw_is_stereo(mc)) {
467 unsigned int val2 = ucontrol->value.integer.value[1];
468
469 if (mc->platform_max && val2 > mc->platform_max)
470 return -EINVAL;
471 if (val2 > max)
472 return -EINVAL;
473
474 val_mask = mask << rshift;
475 val2 = (val2 + min) & mask;
476 val2 = val2 << rshift;
477
478 err = snd_soc_component_update_bits(component, reg2, val_mask,
479 val2);
480
481 /* Don't discard any error code or drop change flag */
482 if (ret == 0 || err < 0) {
483 ret = err;
484 }
485 }
486 return ret;
487 }
488 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
489
490 /**
491 * snd_soc_info_volsw_range - single mixer info callback with range.
492 * @kcontrol: mixer control
493 * @uinfo: control element information
494 *
495 * Callback to provide information, within a range, about a single
496 * mixer control.
497 *
498 * returns 0 for success.
499 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)500 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
501 struct snd_ctl_elem_info *uinfo)
502 {
503 struct soc_mixer_control *mc =
504 (struct soc_mixer_control *)kcontrol->private_value;
505 int max;
506
507 max = mc->max - mc->min;
508 if (mc->platform_max && mc->platform_max < max)
509 max = mc->platform_max;
510
511 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
512 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
513 uinfo->value.integer.min = 0;
514 uinfo->value.integer.max = max;
515
516 return 0;
517 }
518 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
519
520 /**
521 * snd_soc_put_volsw_range - single mixer put value callback with range.
522 * @kcontrol: mixer control
523 * @ucontrol: control element information
524 *
525 * Callback to set the value, within a range, for a single mixer control.
526 *
527 * Returns 0 for success.
528 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)529 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
530 struct snd_ctl_elem_value *ucontrol)
531 {
532 struct soc_mixer_control *mc =
533 (struct soc_mixer_control *)kcontrol->private_value;
534 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
535 unsigned int reg = mc->reg;
536 unsigned int rreg = mc->rreg;
537 unsigned int shift = mc->shift;
538 int min = mc->min;
539 int max = mc->max;
540 unsigned int mask = (1 << fls(max)) - 1;
541 unsigned int invert = mc->invert;
542 unsigned int val, val_mask;
543 int err, ret, tmp;
544
545 tmp = ucontrol->value.integer.value[0];
546 if (tmp < 0)
547 return -EINVAL;
548 if (mc->platform_max && tmp > mc->platform_max)
549 return -EINVAL;
550 if (tmp > mc->max - mc->min)
551 return -EINVAL;
552
553 if (invert)
554 val = (max - ucontrol->value.integer.value[0]) & mask;
555 else
556 val = ((ucontrol->value.integer.value[0] + min) & mask);
557 val_mask = mask << shift;
558 val = val << shift;
559
560 err = snd_soc_component_update_bits(component, reg, val_mask, val);
561 if (err < 0)
562 return err;
563 ret = err;
564
565 if (snd_soc_volsw_is_stereo(mc)) {
566 tmp = ucontrol->value.integer.value[1];
567 if (tmp < 0)
568 return -EINVAL;
569 if (mc->platform_max && tmp > mc->platform_max)
570 return -EINVAL;
571 if (tmp > mc->max - mc->min)
572 return -EINVAL;
573
574 if (invert)
575 val = (max - ucontrol->value.integer.value[1]) & mask;
576 else
577 val = ((ucontrol->value.integer.value[1] + min) & mask);
578 val_mask = mask << shift;
579 val = val << shift;
580
581 err = snd_soc_component_update_bits(component, rreg, val_mask,
582 val);
583 /* Don't discard any error code or drop change flag */
584 if (ret == 0 || err < 0) {
585 ret = err;
586 }
587 }
588
589 return ret;
590 }
591 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
592
593 /**
594 * snd_soc_get_volsw_range - single mixer get callback with range
595 * @kcontrol: mixer control
596 * @ucontrol: control element information
597 *
598 * Callback to get the value, within a range, of a single mixer control.
599 *
600 * Returns 0 for success.
601 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)602 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
603 struct snd_ctl_elem_value *ucontrol)
604 {
605 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
606 struct soc_mixer_control *mc =
607 (struct soc_mixer_control *)kcontrol->private_value;
608 unsigned int reg = mc->reg;
609 unsigned int rreg = mc->rreg;
610 unsigned int shift = mc->shift;
611 int min = mc->min;
612 int max = mc->max;
613 unsigned int mask = (1 << fls(max)) - 1;
614 unsigned int invert = mc->invert;
615 unsigned int val;
616
617 val = snd_soc_component_read(component, reg);
618 ucontrol->value.integer.value[0] = (val >> shift) & mask;
619 if (invert)
620 ucontrol->value.integer.value[0] =
621 max - ucontrol->value.integer.value[0];
622 else
623 ucontrol->value.integer.value[0] =
624 ucontrol->value.integer.value[0] - min;
625
626 if (snd_soc_volsw_is_stereo(mc)) {
627 val = snd_soc_component_read(component, rreg);
628 ucontrol->value.integer.value[1] = (val >> shift) & mask;
629 if (invert)
630 ucontrol->value.integer.value[1] =
631 max - ucontrol->value.integer.value[1];
632 else
633 ucontrol->value.integer.value[1] =
634 ucontrol->value.integer.value[1] - min;
635 }
636
637 return 0;
638 }
639 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
640
641 /**
642 * snd_soc_limit_volume - Set new limit to an existing volume control.
643 *
644 * @card: where to look for the control
645 * @name: Name of the control
646 * @max: new maximum limit
647 *
648 * Return 0 for success, else error.
649 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)650 int snd_soc_limit_volume(struct snd_soc_card *card,
651 const char *name, int max)
652 {
653 struct snd_kcontrol *kctl;
654 int ret = -EINVAL;
655
656 /* Sanity check for name and max */
657 if (unlikely(!name || max <= 0))
658 return -EINVAL;
659
660 kctl = snd_soc_card_get_kcontrol(card, name);
661 if (kctl) {
662 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
663 if (max <= mc->max - mc->min) {
664 mc->platform_max = max;
665 ret = 0;
666 }
667 }
668 return ret;
669 }
670 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
671
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)672 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
673 struct snd_ctl_elem_info *uinfo)
674 {
675 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
676 struct soc_bytes *params = (void *)kcontrol->private_value;
677
678 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
679 uinfo->count = params->num_regs * component->val_bytes;
680
681 return 0;
682 }
683 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
684
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)685 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
686 struct snd_ctl_elem_value *ucontrol)
687 {
688 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
689 struct soc_bytes *params = (void *)kcontrol->private_value;
690 int ret;
691
692 if (component->regmap)
693 ret = regmap_raw_read(component->regmap, params->base,
694 ucontrol->value.bytes.data,
695 params->num_regs * component->val_bytes);
696 else
697 ret = -EINVAL;
698
699 /* Hide any masked bytes to ensure consistent data reporting */
700 if (ret == 0 && params->mask) {
701 switch (component->val_bytes) {
702 case 1:
703 ucontrol->value.bytes.data[0] &= ~params->mask;
704 break;
705 case 2:
706 ((u16 *)(&ucontrol->value.bytes.data))[0]
707 &= cpu_to_be16(~params->mask);
708 break;
709 case 4:
710 ((u32 *)(&ucontrol->value.bytes.data))[0]
711 &= cpu_to_be32(~params->mask);
712 break;
713 default:
714 return -EINVAL;
715 }
716 }
717
718 return ret;
719 }
720 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
721
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)722 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
723 struct snd_ctl_elem_value *ucontrol)
724 {
725 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
726 struct soc_bytes *params = (void *)kcontrol->private_value;
727 int ret, len;
728 unsigned int val, mask;
729 void *data;
730
731 if (!component->regmap || !params->num_regs)
732 return -EINVAL;
733
734 len = params->num_regs * component->val_bytes;
735
736 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
737 if (!data)
738 return -ENOMEM;
739
740 /*
741 * If we've got a mask then we need to preserve the register
742 * bits. We shouldn't modify the incoming data so take a
743 * copy.
744 */
745 if (params->mask) {
746 ret = regmap_read(component->regmap, params->base, &val);
747 if (ret != 0)
748 goto out;
749
750 val &= params->mask;
751
752 switch (component->val_bytes) {
753 case 1:
754 ((u8 *)data)[0] &= ~params->mask;
755 ((u8 *)data)[0] |= val;
756 break;
757 case 2:
758 mask = ~params->mask;
759 ret = regmap_parse_val(component->regmap,
760 &mask, &mask);
761 if (ret != 0)
762 goto out;
763
764 ((u16 *)data)[0] &= mask;
765
766 ret = regmap_parse_val(component->regmap,
767 &val, &val);
768 if (ret != 0)
769 goto out;
770
771 ((u16 *)data)[0] |= val;
772 break;
773 case 4:
774 mask = ~params->mask;
775 ret = regmap_parse_val(component->regmap,
776 &mask, &mask);
777 if (ret != 0)
778 goto out;
779
780 ((u32 *)data)[0] &= mask;
781
782 ret = regmap_parse_val(component->regmap,
783 &val, &val);
784 if (ret != 0)
785 goto out;
786
787 ((u32 *)data)[0] |= val;
788 break;
789 default:
790 ret = -EINVAL;
791 goto out;
792 }
793 }
794
795 ret = regmap_raw_write(component->regmap, params->base,
796 data, len);
797
798 out:
799 kfree(data);
800
801 return ret;
802 }
803 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
804
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)805 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
806 struct snd_ctl_elem_info *ucontrol)
807 {
808 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
809
810 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
811 ucontrol->count = params->max;
812
813 return 0;
814 }
815 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
816
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)817 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
818 unsigned int size, unsigned int __user *tlv)
819 {
820 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
821 unsigned int count = size < params->max ? size : params->max;
822 int ret = -ENXIO;
823
824 switch (op_flag) {
825 case SNDRV_CTL_TLV_OP_READ:
826 if (params->get)
827 ret = params->get(kcontrol, tlv, count);
828 break;
829 case SNDRV_CTL_TLV_OP_WRITE:
830 if (params->put)
831 ret = params->put(kcontrol, tlv, count);
832 break;
833 }
834 return ret;
835 }
836 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
837
838 /**
839 * snd_soc_info_xr_sx - signed multi register info callback
840 * @kcontrol: mreg control
841 * @uinfo: control element information
842 *
843 * Callback to provide information of a control that can
844 * span multiple codec registers which together
845 * forms a single signed value in a MSB/LSB manner.
846 *
847 * Returns 0 for success.
848 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)849 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
850 struct snd_ctl_elem_info *uinfo)
851 {
852 struct soc_mreg_control *mc =
853 (struct soc_mreg_control *)kcontrol->private_value;
854 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
855 uinfo->count = 1;
856 uinfo->value.integer.min = mc->min;
857 uinfo->value.integer.max = mc->max;
858
859 return 0;
860 }
861 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
862
863 /**
864 * snd_soc_get_xr_sx - signed multi register get callback
865 * @kcontrol: mreg control
866 * @ucontrol: control element information
867 *
868 * Callback to get the value of a control that can span
869 * multiple codec registers which together forms a single
870 * signed value in a MSB/LSB manner. The control supports
871 * specifying total no of bits used to allow for bitfields
872 * across the multiple codec registers.
873 *
874 * Returns 0 for success.
875 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)876 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
877 struct snd_ctl_elem_value *ucontrol)
878 {
879 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
880 struct soc_mreg_control *mc =
881 (struct soc_mreg_control *)kcontrol->private_value;
882 unsigned int regbase = mc->regbase;
883 unsigned int regcount = mc->regcount;
884 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
885 unsigned int regwmask = (1UL<<regwshift)-1;
886 unsigned int invert = mc->invert;
887 unsigned long mask = (1UL<<mc->nbits)-1;
888 long min = mc->min;
889 long max = mc->max;
890 long val = 0;
891 unsigned int i;
892
893 for (i = 0; i < regcount; i++) {
894 unsigned int regval = snd_soc_component_read(component, regbase+i);
895 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
896 }
897 val &= mask;
898 if (min < 0 && val > max)
899 val |= ~mask;
900 if (invert)
901 val = max - val;
902 ucontrol->value.integer.value[0] = val;
903
904 return 0;
905 }
906 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
907
908 /**
909 * snd_soc_put_xr_sx - signed multi register get callback
910 * @kcontrol: mreg control
911 * @ucontrol: control element information
912 *
913 * Callback to set the value of a control that can span
914 * multiple codec registers which together forms a single
915 * signed value in a MSB/LSB manner. The control supports
916 * specifying total no of bits used to allow for bitfields
917 * across the multiple codec registers.
918 *
919 * Returns 0 for success.
920 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)921 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
922 struct snd_ctl_elem_value *ucontrol)
923 {
924 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
925 struct soc_mreg_control *mc =
926 (struct soc_mreg_control *)kcontrol->private_value;
927 unsigned int regbase = mc->regbase;
928 unsigned int regcount = mc->regcount;
929 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
930 unsigned int regwmask = (1UL<<regwshift)-1;
931 unsigned int invert = mc->invert;
932 unsigned long mask = (1UL<<mc->nbits)-1;
933 long max = mc->max;
934 long val = ucontrol->value.integer.value[0];
935 int ret = 0;
936 unsigned int i;
937
938 if (val < mc->min || val > mc->max)
939 return -EINVAL;
940 if (invert)
941 val = max - val;
942 val &= mask;
943 for (i = 0; i < regcount; i++) {
944 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
945 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
946 int err = snd_soc_component_update_bits(component, regbase+i,
947 regmask, regval);
948 if (err < 0)
949 return err;
950 if (err > 0)
951 ret = err;
952 }
953
954 return ret;
955 }
956 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
957
958 /**
959 * snd_soc_get_strobe - strobe get callback
960 * @kcontrol: mixer control
961 * @ucontrol: control element information
962 *
963 * Callback get the value of a strobe mixer control.
964 *
965 * Returns 0 for success.
966 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)967 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
968 struct snd_ctl_elem_value *ucontrol)
969 {
970 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
971 struct soc_mixer_control *mc =
972 (struct soc_mixer_control *)kcontrol->private_value;
973 unsigned int reg = mc->reg;
974 unsigned int shift = mc->shift;
975 unsigned int mask = 1 << shift;
976 unsigned int invert = mc->invert != 0;
977 unsigned int val;
978
979 val = snd_soc_component_read(component, reg);
980 val &= mask;
981
982 if (shift != 0 && val != 0)
983 val = val >> shift;
984 ucontrol->value.enumerated.item[0] = val ^ invert;
985
986 return 0;
987 }
988 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
989
990 /**
991 * snd_soc_put_strobe - strobe put callback
992 * @kcontrol: mixer control
993 * @ucontrol: control element information
994 *
995 * Callback strobe a register bit to high then low (or the inverse)
996 * in one pass of a single mixer enum control.
997 *
998 * Returns 1 for success.
999 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1000 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
1001 struct snd_ctl_elem_value *ucontrol)
1002 {
1003 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1004 struct soc_mixer_control *mc =
1005 (struct soc_mixer_control *)kcontrol->private_value;
1006 unsigned int reg = mc->reg;
1007 unsigned int shift = mc->shift;
1008 unsigned int mask = 1 << shift;
1009 unsigned int invert = mc->invert != 0;
1010 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1011 unsigned int val1 = (strobe ^ invert) ? mask : 0;
1012 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1013 int err;
1014
1015 err = snd_soc_component_update_bits(component, reg, mask, val1);
1016 if (err < 0)
1017 return err;
1018
1019 return snd_soc_component_update_bits(component, reg, mask, val2);
1020 }
1021 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1022