1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/pm.h>
18 #include <linux/bitops.h>
19 #include <linux/ctype.h>
20 #include <linux/slab.h>
21 #include <sound/core.h>
22 #include <sound/jack.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dpcm.h>
27 #include <sound/initval.h>
28
29 /**
30 * snd_soc_info_enum_double - enumerated double mixer info callback
31 * @kcontrol: mixer control
32 * @uinfo: control element information
33 *
34 * Callback to provide information about a double enumerated
35 * mixer control.
36 *
37 * Returns 0 for success.
38 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)39 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
40 struct snd_ctl_elem_info *uinfo)
41 {
42 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
43
44 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
45 e->items, e->texts);
46 }
47 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
48
49 /**
50 * snd_soc_get_enum_double - enumerated double mixer get callback
51 * @kcontrol: mixer control
52 * @ucontrol: control element information
53 *
54 * Callback to get the value of a double enumerated mixer.
55 *
56 * Returns 0 for success.
57 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)58 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
59 struct snd_ctl_elem_value *ucontrol)
60 {
61 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
62 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
63 unsigned int val, item;
64 unsigned int reg_val;
65
66 reg_val = snd_soc_component_read(component, e->reg);
67 val = (reg_val >> e->shift_l) & e->mask;
68 item = snd_soc_enum_val_to_item(e, val);
69 ucontrol->value.enumerated.item[0] = item;
70 if (e->shift_l != e->shift_r) {
71 val = (reg_val >> e->shift_r) & e->mask;
72 item = snd_soc_enum_val_to_item(e, val);
73 ucontrol->value.enumerated.item[1] = item;
74 }
75
76 return 0;
77 }
78 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
79
80 /**
81 * snd_soc_put_enum_double - enumerated double mixer put callback
82 * @kcontrol: mixer control
83 * @ucontrol: control element information
84 *
85 * Callback to set the value of a double enumerated mixer.
86 *
87 * Returns 0 for success.
88 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)89 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
90 struct snd_ctl_elem_value *ucontrol)
91 {
92 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
93 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
94 unsigned int *item = ucontrol->value.enumerated.item;
95 unsigned int val;
96 unsigned int mask;
97
98 if (item[0] >= e->items)
99 return -EINVAL;
100 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
101 mask = e->mask << e->shift_l;
102 if (e->shift_l != e->shift_r) {
103 if (item[1] >= e->items)
104 return -EINVAL;
105 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
106 mask |= e->mask << e->shift_r;
107 }
108
109 return snd_soc_component_update_bits(component, e->reg, mask, val);
110 }
111 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
112
113 /**
114 * snd_soc_read_signed - Read a codec register and interpret as signed value
115 * @component: component
116 * @reg: Register to read
117 * @mask: Mask to use after shifting the register value
118 * @shift: Right shift of register value
119 * @sign_bit: Bit that describes if a number is negative or not.
120 * @signed_val: Pointer to where the read value should be stored
121 *
122 * This functions reads a codec register. The register value is shifted right
123 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
124 * the given registervalue into a signed integer if sign_bit is non-zero.
125 *
126 * Returns 0 on sucess, otherwise an error value
127 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)128 static int snd_soc_read_signed(struct snd_soc_component *component,
129 unsigned int reg, unsigned int mask, unsigned int shift,
130 unsigned int sign_bit, int *signed_val)
131 {
132 int ret;
133 unsigned int val;
134
135 val = snd_soc_component_read(component, reg);
136 val = (val >> shift) & mask;
137
138 if (!sign_bit) {
139 *signed_val = val;
140 return 0;
141 }
142
143 /* non-negative number */
144 if (!(val & BIT(sign_bit))) {
145 *signed_val = val;
146 return 0;
147 }
148
149 ret = val;
150
151 /*
152 * The register most probably does not contain a full-sized int.
153 * Instead we have an arbitrary number of bits in a signed
154 * representation which has to be translated into a full-sized int.
155 * This is done by filling up all bits above the sign-bit.
156 */
157 ret |= ~((int)(BIT(sign_bit) - 1));
158
159 *signed_val = ret;
160
161 return 0;
162 }
163
164 /**
165 * snd_soc_info_volsw - single mixer info callback
166 * @kcontrol: mixer control
167 * @uinfo: control element information
168 *
169 * Callback to provide information about a single mixer control, or a double
170 * mixer control that spans 2 registers.
171 *
172 * Returns 0 for success.
173 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)174 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
175 struct snd_ctl_elem_info *uinfo)
176 {
177 struct soc_mixer_control *mc =
178 (struct soc_mixer_control *)kcontrol->private_value;
179 const char *vol_string = NULL;
180 int max;
181
182 max = uinfo->value.integer.max = mc->max - mc->min;
183 if (mc->platform_max && mc->platform_max < max)
184 max = mc->platform_max;
185
186 if (max == 1) {
187 /* Even two value controls ending in Volume should always be integer */
188 vol_string = strstr(kcontrol->id.name, " Volume");
189 if (vol_string && !strcmp(vol_string, " Volume"))
190 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
191 else
192 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
193 } else {
194 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
195 }
196
197 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198 uinfo->value.integer.min = 0;
199 uinfo->value.integer.max = max;
200
201 return 0;
202 }
203 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
204
205 /**
206 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
207 * @kcontrol: mixer control
208 * @uinfo: control element information
209 *
210 * Callback to provide information about a single mixer control, or a double
211 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
212 * have a range that represents both positive and negative values either side
213 * of zero but without a sign bit. min is the minimum register value, max is
214 * the number of steps.
215 *
216 * Returns 0 for success.
217 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)218 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
219 struct snd_ctl_elem_info *uinfo)
220 {
221 struct soc_mixer_control *mc =
222 (struct soc_mixer_control *)kcontrol->private_value;
223 int max;
224
225 if (mc->platform_max)
226 max = mc->platform_max;
227 else
228 max = mc->max;
229
230 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
231 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
232 else
233 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
234
235 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
236 uinfo->value.integer.min = 0;
237 uinfo->value.integer.max = max;
238
239 return 0;
240 }
241 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
242
243 /**
244 * snd_soc_get_volsw - single mixer get callback
245 * @kcontrol: mixer control
246 * @ucontrol: control element information
247 *
248 * Callback to get the value of a single mixer control, or a double mixer
249 * control that spans 2 registers.
250 *
251 * Returns 0 for success.
252 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)253 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
254 struct snd_ctl_elem_value *ucontrol)
255 {
256 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
257 struct soc_mixer_control *mc =
258 (struct soc_mixer_control *)kcontrol->private_value;
259 unsigned int reg = mc->reg;
260 unsigned int reg2 = mc->rreg;
261 unsigned int shift = mc->shift;
262 unsigned int rshift = mc->rshift;
263 int max = mc->max;
264 int min = mc->min;
265 int sign_bit = mc->sign_bit;
266 unsigned int mask = (1ULL << fls(max)) - 1;
267 unsigned int invert = mc->invert;
268 int val;
269 int ret;
270
271 if (sign_bit)
272 mask = BIT(sign_bit + 1) - 1;
273
274 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
275 if (ret)
276 return ret;
277
278 ucontrol->value.integer.value[0] = val - min;
279 if (invert)
280 ucontrol->value.integer.value[0] =
281 max - ucontrol->value.integer.value[0];
282
283 if (snd_soc_volsw_is_stereo(mc)) {
284 if (reg == reg2)
285 ret = snd_soc_read_signed(component, reg, mask, rshift,
286 sign_bit, &val);
287 else
288 ret = snd_soc_read_signed(component, reg2, mask, shift,
289 sign_bit, &val);
290 if (ret)
291 return ret;
292
293 ucontrol->value.integer.value[1] = val - min;
294 if (invert)
295 ucontrol->value.integer.value[1] =
296 max - ucontrol->value.integer.value[1];
297 }
298
299 return 0;
300 }
301 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
302
303 /**
304 * snd_soc_put_volsw - single mixer put callback
305 * @kcontrol: mixer control
306 * @ucontrol: control element information
307 *
308 * Callback to set the value of a single mixer control, or a double mixer
309 * control that spans 2 registers.
310 *
311 * Returns 0 for success.
312 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)313 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
314 struct snd_ctl_elem_value *ucontrol)
315 {
316 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
317 struct soc_mixer_control *mc =
318 (struct soc_mixer_control *)kcontrol->private_value;
319 unsigned int reg = mc->reg;
320 unsigned int reg2 = mc->rreg;
321 unsigned int shift = mc->shift;
322 unsigned int rshift = mc->rshift;
323 int max = mc->max;
324 int min = mc->min;
325 unsigned int sign_bit = mc->sign_bit;
326 unsigned int mask = (1 << fls(max)) - 1;
327 unsigned int invert = mc->invert;
328 int err, ret;
329 bool type_2r = false;
330 unsigned int val2 = 0;
331 unsigned int val, val_mask;
332
333 if (sign_bit)
334 mask = BIT(sign_bit + 1) - 1;
335
336 if (ucontrol->value.integer.value[0] < 0)
337 return -EINVAL;
338 val = ucontrol->value.integer.value[0];
339 if (mc->platform_max && val > mc->platform_max)
340 return -EINVAL;
341 if (val > max - min)
342 return -EINVAL;
343 val = (val + min) & mask;
344 if (invert)
345 val = max - val;
346 val_mask = mask << shift;
347 val = val << shift;
348 if (snd_soc_volsw_is_stereo(mc)) {
349 if (ucontrol->value.integer.value[1] < 0)
350 return -EINVAL;
351 val2 = ucontrol->value.integer.value[1];
352 if (mc->platform_max && val2 > mc->platform_max)
353 return -EINVAL;
354 if (val2 > max - min)
355 return -EINVAL;
356 val2 = (val2 + min) & mask;
357 if (invert)
358 val2 = max - val2;
359 if (reg == reg2) {
360 val_mask |= mask << rshift;
361 val |= val2 << rshift;
362 } else {
363 val2 = val2 << shift;
364 type_2r = true;
365 }
366 }
367 err = snd_soc_component_update_bits(component, reg, val_mask, val);
368 if (err < 0)
369 return err;
370 ret = err;
371
372 if (type_2r) {
373 err = snd_soc_component_update_bits(component, reg2, val_mask,
374 val2);
375 /* Don't discard any error code or drop change flag */
376 if (ret == 0 || err < 0) {
377 ret = err;
378 }
379 }
380
381 return ret;
382 }
383 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
384
385 /**
386 * snd_soc_get_volsw_sx - single mixer get callback
387 * @kcontrol: mixer control
388 * @ucontrol: control element information
389 *
390 * Callback to get the value of a single mixer control, or a double mixer
391 * control that spans 2 registers.
392 *
393 * Returns 0 for success.
394 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)395 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
396 struct snd_ctl_elem_value *ucontrol)
397 {
398 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
399 struct soc_mixer_control *mc =
400 (struct soc_mixer_control *)kcontrol->private_value;
401 unsigned int reg = mc->reg;
402 unsigned int reg2 = mc->rreg;
403 unsigned int shift = mc->shift;
404 unsigned int rshift = mc->rshift;
405 int max = mc->max;
406 int min = mc->min;
407 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
408 unsigned int val;
409
410 val = snd_soc_component_read(component, reg);
411 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
412
413 if (snd_soc_volsw_is_stereo(mc)) {
414 val = snd_soc_component_read(component, reg2);
415 val = ((val >> rshift) - min) & mask;
416 ucontrol->value.integer.value[1] = val;
417 }
418
419 return 0;
420 }
421 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
422
423 /**
424 * snd_soc_put_volsw_sx - double mixer set callback
425 * @kcontrol: mixer control
426 * @ucontrol: control element information
427 *
428 * Callback to set the value of a double mixer control that spans 2 registers.
429 *
430 * Returns 0 for success.
431 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)432 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
433 struct snd_ctl_elem_value *ucontrol)
434 {
435 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
436 struct soc_mixer_control *mc =
437 (struct soc_mixer_control *)kcontrol->private_value;
438
439 unsigned int reg = mc->reg;
440 unsigned int reg2 = mc->rreg;
441 unsigned int shift = mc->shift;
442 unsigned int rshift = mc->rshift;
443 int max = mc->max;
444 int min = mc->min;
445 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
446 int err = 0;
447 int ret;
448 unsigned int val, val_mask;
449
450 if (ucontrol->value.integer.value[0] < 0)
451 return -EINVAL;
452 val = ucontrol->value.integer.value[0];
453 if (mc->platform_max && val > mc->platform_max)
454 return -EINVAL;
455 if (val > max)
456 return -EINVAL;
457 val_mask = mask << shift;
458 val = (val + min) & mask;
459 val = val << shift;
460
461 err = snd_soc_component_update_bits(component, reg, val_mask, val);
462 if (err < 0)
463 return err;
464 ret = err;
465
466 if (snd_soc_volsw_is_stereo(mc)) {
467 unsigned int val2 = ucontrol->value.integer.value[1];
468
469 if (mc->platform_max && val2 > mc->platform_max)
470 return -EINVAL;
471 if (val2 > max)
472 return -EINVAL;
473
474 val_mask = mask << rshift;
475 val2 = (val2 + min) & mask;
476 val2 = val2 << rshift;
477
478 err = snd_soc_component_update_bits(component, reg2, val_mask,
479 val2);
480
481 /* Don't discard any error code or drop change flag */
482 if (ret == 0 || err < 0) {
483 ret = err;
484 }
485 }
486 return ret;
487 }
488 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
489
490 /**
491 * snd_soc_info_volsw_range - single mixer info callback with range.
492 * @kcontrol: mixer control
493 * @uinfo: control element information
494 *
495 * Callback to provide information, within a range, about a single
496 * mixer control.
497 *
498 * returns 0 for success.
499 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)500 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
501 struct snd_ctl_elem_info *uinfo)
502 {
503 struct soc_mixer_control *mc =
504 (struct soc_mixer_control *)kcontrol->private_value;
505 int max;
506
507 max = mc->max - mc->min;
508 if (mc->platform_max && mc->platform_max < max)
509 max = mc->platform_max;
510
511 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
512 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
513 uinfo->value.integer.min = 0;
514 uinfo->value.integer.max = max;
515
516 return 0;
517 }
518 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
519
520 /**
521 * snd_soc_put_volsw_range - single mixer put value callback with range.
522 * @kcontrol: mixer control
523 * @ucontrol: control element information
524 *
525 * Callback to set the value, within a range, for a single mixer control.
526 *
527 * Returns 0 for success.
528 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)529 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
530 struct snd_ctl_elem_value *ucontrol)
531 {
532 struct soc_mixer_control *mc =
533 (struct soc_mixer_control *)kcontrol->private_value;
534 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
535 unsigned int reg = mc->reg;
536 unsigned int rreg = mc->rreg;
537 unsigned int shift = mc->shift;
538 int min = mc->min;
539 int max = mc->max;
540 unsigned int mask = (1 << fls(max)) - 1;
541 unsigned int invert = mc->invert;
542 unsigned int val, val_mask;
543 int err, ret, tmp;
544
545 tmp = ucontrol->value.integer.value[0];
546 if (tmp < 0)
547 return -EINVAL;
548 if (mc->platform_max && tmp > mc->platform_max)
549 return -EINVAL;
550 if (tmp > mc->max - mc->min)
551 return -EINVAL;
552
553 if (invert)
554 val = (max - ucontrol->value.integer.value[0]) & mask;
555 else
556 val = ((ucontrol->value.integer.value[0] + min) & mask);
557 val_mask = mask << shift;
558 val = val << shift;
559
560 err = snd_soc_component_update_bits(component, reg, val_mask, val);
561 if (err < 0)
562 return err;
563 ret = err;
564
565 if (snd_soc_volsw_is_stereo(mc)) {
566 tmp = ucontrol->value.integer.value[1];
567 if (tmp < 0)
568 return -EINVAL;
569 if (mc->platform_max && tmp > mc->platform_max)
570 return -EINVAL;
571 if (tmp > mc->max - mc->min)
572 return -EINVAL;
573
574 if (invert)
575 val = (max - ucontrol->value.integer.value[1]) & mask;
576 else
577 val = ((ucontrol->value.integer.value[1] + min) & mask);
578 val_mask = mask << shift;
579 val = val << shift;
580
581 err = snd_soc_component_update_bits(component, rreg, val_mask,
582 val);
583 /* Don't discard any error code or drop change flag */
584 if (ret == 0 || err < 0) {
585 ret = err;
586 }
587 }
588
589 return ret;
590 }
591 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
592
593 /**
594 * snd_soc_get_volsw_range - single mixer get callback with range
595 * @kcontrol: mixer control
596 * @ucontrol: control element information
597 *
598 * Callback to get the value, within a range, of a single mixer control.
599 *
600 * Returns 0 for success.
601 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)602 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
603 struct snd_ctl_elem_value *ucontrol)
604 {
605 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
606 struct soc_mixer_control *mc =
607 (struct soc_mixer_control *)kcontrol->private_value;
608 unsigned int reg = mc->reg;
609 unsigned int rreg = mc->rreg;
610 unsigned int shift = mc->shift;
611 int min = mc->min;
612 int max = mc->max;
613 unsigned int mask = (1 << fls(max)) - 1;
614 unsigned int invert = mc->invert;
615 unsigned int val;
616
617 val = snd_soc_component_read(component, reg);
618 ucontrol->value.integer.value[0] = (val >> shift) & mask;
619 if (invert)
620 ucontrol->value.integer.value[0] =
621 max - ucontrol->value.integer.value[0];
622 else
623 ucontrol->value.integer.value[0] =
624 ucontrol->value.integer.value[0] - min;
625
626 if (snd_soc_volsw_is_stereo(mc)) {
627 val = snd_soc_component_read(component, rreg);
628 ucontrol->value.integer.value[1] = (val >> shift) & mask;
629 if (invert)
630 ucontrol->value.integer.value[1] =
631 max - ucontrol->value.integer.value[1];
632 else
633 ucontrol->value.integer.value[1] =
634 ucontrol->value.integer.value[1] - min;
635 }
636
637 return 0;
638 }
639 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
640
snd_soc_clip_to_platform_max(struct snd_kcontrol * kctl)641 static int snd_soc_clip_to_platform_max(struct snd_kcontrol *kctl)
642 {
643 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
644 struct snd_ctl_elem_value uctl;
645 int ret;
646
647 if (!mc->platform_max)
648 return 0;
649
650 ret = kctl->get(kctl, &uctl);
651 if (ret < 0)
652 return ret;
653
654 if (uctl.value.integer.value[0] > mc->platform_max)
655 uctl.value.integer.value[0] = mc->platform_max;
656
657 if (snd_soc_volsw_is_stereo(mc) &&
658 uctl.value.integer.value[1] > mc->platform_max)
659 uctl.value.integer.value[1] = mc->platform_max;
660
661 ret = kctl->put(kctl, &uctl);
662 if (ret < 0)
663 return ret;
664
665 return 0;
666 }
667
668 /**
669 * snd_soc_limit_volume - Set new limit to an existing volume control.
670 *
671 * @card: where to look for the control
672 * @name: Name of the control
673 * @max: new maximum limit
674 *
675 * Return 0 for success, else error.
676 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)677 int snd_soc_limit_volume(struct snd_soc_card *card,
678 const char *name, int max)
679 {
680 struct snd_kcontrol *kctl;
681 int ret = -EINVAL;
682
683 /* Sanity check for name and max */
684 if (unlikely(!name || max <= 0))
685 return -EINVAL;
686
687 kctl = snd_soc_card_get_kcontrol(card, name);
688 if (kctl) {
689 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
690 if (max <= mc->max - mc->min) {
691 mc->platform_max = max;
692 ret = snd_soc_clip_to_platform_max(kctl);
693 }
694 }
695 return ret;
696 }
697 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
698
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)699 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
700 struct snd_ctl_elem_info *uinfo)
701 {
702 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
703 struct soc_bytes *params = (void *)kcontrol->private_value;
704
705 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
706 uinfo->count = params->num_regs * component->val_bytes;
707
708 return 0;
709 }
710 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
711
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)712 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
713 struct snd_ctl_elem_value *ucontrol)
714 {
715 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
716 struct soc_bytes *params = (void *)kcontrol->private_value;
717 int ret;
718
719 if (component->regmap)
720 ret = regmap_raw_read(component->regmap, params->base,
721 ucontrol->value.bytes.data,
722 params->num_regs * component->val_bytes);
723 else
724 ret = -EINVAL;
725
726 /* Hide any masked bytes to ensure consistent data reporting */
727 if (ret == 0 && params->mask) {
728 switch (component->val_bytes) {
729 case 1:
730 ucontrol->value.bytes.data[0] &= ~params->mask;
731 break;
732 case 2:
733 ((u16 *)(&ucontrol->value.bytes.data))[0]
734 &= cpu_to_be16(~params->mask);
735 break;
736 case 4:
737 ((u32 *)(&ucontrol->value.bytes.data))[0]
738 &= cpu_to_be32(~params->mask);
739 break;
740 default:
741 return -EINVAL;
742 }
743 }
744
745 return ret;
746 }
747 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
748
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)749 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
750 struct snd_ctl_elem_value *ucontrol)
751 {
752 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
753 struct soc_bytes *params = (void *)kcontrol->private_value;
754 int ret, len;
755 unsigned int val, mask;
756 void *data;
757
758 if (!component->regmap || !params->num_regs)
759 return -EINVAL;
760
761 len = params->num_regs * component->val_bytes;
762
763 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
764 if (!data)
765 return -ENOMEM;
766
767 /*
768 * If we've got a mask then we need to preserve the register
769 * bits. We shouldn't modify the incoming data so take a
770 * copy.
771 */
772 if (params->mask) {
773 ret = regmap_read(component->regmap, params->base, &val);
774 if (ret != 0)
775 goto out;
776
777 val &= params->mask;
778
779 switch (component->val_bytes) {
780 case 1:
781 ((u8 *)data)[0] &= ~params->mask;
782 ((u8 *)data)[0] |= val;
783 break;
784 case 2:
785 mask = ~params->mask;
786 ret = regmap_parse_val(component->regmap,
787 &mask, &mask);
788 if (ret != 0)
789 goto out;
790
791 ((u16 *)data)[0] &= mask;
792
793 ret = regmap_parse_val(component->regmap,
794 &val, &val);
795 if (ret != 0)
796 goto out;
797
798 ((u16 *)data)[0] |= val;
799 break;
800 case 4:
801 mask = ~params->mask;
802 ret = regmap_parse_val(component->regmap,
803 &mask, &mask);
804 if (ret != 0)
805 goto out;
806
807 ((u32 *)data)[0] &= mask;
808
809 ret = regmap_parse_val(component->regmap,
810 &val, &val);
811 if (ret != 0)
812 goto out;
813
814 ((u32 *)data)[0] |= val;
815 break;
816 default:
817 ret = -EINVAL;
818 goto out;
819 }
820 }
821
822 ret = regmap_raw_write(component->regmap, params->base,
823 data, len);
824
825 out:
826 kfree(data);
827
828 return ret;
829 }
830 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
831
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)832 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
833 struct snd_ctl_elem_info *ucontrol)
834 {
835 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
836
837 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
838 ucontrol->count = params->max;
839
840 return 0;
841 }
842 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
843
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)844 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
845 unsigned int size, unsigned int __user *tlv)
846 {
847 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
848 unsigned int count = size < params->max ? size : params->max;
849 int ret = -ENXIO;
850
851 switch (op_flag) {
852 case SNDRV_CTL_TLV_OP_READ:
853 if (params->get)
854 ret = params->get(kcontrol, tlv, count);
855 break;
856 case SNDRV_CTL_TLV_OP_WRITE:
857 if (params->put)
858 ret = params->put(kcontrol, tlv, count);
859 break;
860 }
861 return ret;
862 }
863 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
864
865 /**
866 * snd_soc_info_xr_sx - signed multi register info callback
867 * @kcontrol: mreg control
868 * @uinfo: control element information
869 *
870 * Callback to provide information of a control that can
871 * span multiple codec registers which together
872 * forms a single signed value in a MSB/LSB manner.
873 *
874 * Returns 0 for success.
875 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)876 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
877 struct snd_ctl_elem_info *uinfo)
878 {
879 struct soc_mreg_control *mc =
880 (struct soc_mreg_control *)kcontrol->private_value;
881 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
882 uinfo->count = 1;
883 uinfo->value.integer.min = mc->min;
884 uinfo->value.integer.max = mc->max;
885
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
889
890 /**
891 * snd_soc_get_xr_sx - signed multi register get callback
892 * @kcontrol: mreg control
893 * @ucontrol: control element information
894 *
895 * Callback to get the value of a control that can span
896 * multiple codec registers which together forms a single
897 * signed value in a MSB/LSB manner. The control supports
898 * specifying total no of bits used to allow for bitfields
899 * across the multiple codec registers.
900 *
901 * Returns 0 for success.
902 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)903 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
904 struct snd_ctl_elem_value *ucontrol)
905 {
906 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
907 struct soc_mreg_control *mc =
908 (struct soc_mreg_control *)kcontrol->private_value;
909 unsigned int regbase = mc->regbase;
910 unsigned int regcount = mc->regcount;
911 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
912 unsigned int regwmask = (1UL<<regwshift)-1;
913 unsigned int invert = mc->invert;
914 unsigned long mask = (1UL<<mc->nbits)-1;
915 long min = mc->min;
916 long max = mc->max;
917 long val = 0;
918 unsigned int i;
919
920 for (i = 0; i < regcount; i++) {
921 unsigned int regval = snd_soc_component_read(component, regbase+i);
922 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
923 }
924 val &= mask;
925 if (min < 0 && val > max)
926 val |= ~mask;
927 if (invert)
928 val = max - val;
929 ucontrol->value.integer.value[0] = val;
930
931 return 0;
932 }
933 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
934
935 /**
936 * snd_soc_put_xr_sx - signed multi register get callback
937 * @kcontrol: mreg control
938 * @ucontrol: control element information
939 *
940 * Callback to set the value of a control that can span
941 * multiple codec registers which together forms a single
942 * signed value in a MSB/LSB manner. The control supports
943 * specifying total no of bits used to allow for bitfields
944 * across the multiple codec registers.
945 *
946 * Returns 0 for success.
947 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)948 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
949 struct snd_ctl_elem_value *ucontrol)
950 {
951 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
952 struct soc_mreg_control *mc =
953 (struct soc_mreg_control *)kcontrol->private_value;
954 unsigned int regbase = mc->regbase;
955 unsigned int regcount = mc->regcount;
956 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
957 unsigned int regwmask = (1UL<<regwshift)-1;
958 unsigned int invert = mc->invert;
959 unsigned long mask = (1UL<<mc->nbits)-1;
960 long max = mc->max;
961 long val = ucontrol->value.integer.value[0];
962 int ret = 0;
963 unsigned int i;
964
965 if (val < mc->min || val > mc->max)
966 return -EINVAL;
967 if (invert)
968 val = max - val;
969 val &= mask;
970 for (i = 0; i < regcount; i++) {
971 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
972 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
973 int err = snd_soc_component_update_bits(component, regbase+i,
974 regmask, regval);
975 if (err < 0)
976 return err;
977 if (err > 0)
978 ret = err;
979 }
980
981 return ret;
982 }
983 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
984
985 /**
986 * snd_soc_get_strobe - strobe get callback
987 * @kcontrol: mixer control
988 * @ucontrol: control element information
989 *
990 * Callback get the value of a strobe mixer control.
991 *
992 * Returns 0 for success.
993 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)994 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
995 struct snd_ctl_elem_value *ucontrol)
996 {
997 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
998 struct soc_mixer_control *mc =
999 (struct soc_mixer_control *)kcontrol->private_value;
1000 unsigned int reg = mc->reg;
1001 unsigned int shift = mc->shift;
1002 unsigned int mask = 1 << shift;
1003 unsigned int invert = mc->invert != 0;
1004 unsigned int val;
1005
1006 val = snd_soc_component_read(component, reg);
1007 val &= mask;
1008
1009 if (shift != 0 && val != 0)
1010 val = val >> shift;
1011 ucontrol->value.enumerated.item[0] = val ^ invert;
1012
1013 return 0;
1014 }
1015 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
1016
1017 /**
1018 * snd_soc_put_strobe - strobe put callback
1019 * @kcontrol: mixer control
1020 * @ucontrol: control element information
1021 *
1022 * Callback strobe a register bit to high then low (or the inverse)
1023 * in one pass of a single mixer enum control.
1024 *
1025 * Returns 1 for success.
1026 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1027 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
1028 struct snd_ctl_elem_value *ucontrol)
1029 {
1030 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1031 struct soc_mixer_control *mc =
1032 (struct soc_mixer_control *)kcontrol->private_value;
1033 unsigned int reg = mc->reg;
1034 unsigned int shift = mc->shift;
1035 unsigned int mask = 1 << shift;
1036 unsigned int invert = mc->invert != 0;
1037 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1038 unsigned int val1 = (strobe ^ invert) ? mask : 0;
1039 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1040 int err;
1041
1042 err = snd_soc_component_update_bits(component, reg, mask, val1);
1043 if (err < 0)
1044 return err;
1045
1046 return snd_soc_component_update_bits(component, reg, mask, val2);
1047 }
1048 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1049