1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
29 #include "qemu/cutils.h"
30 #include "qemu/guest-random.h"
31 #include "hw/clock.h"
32 #include "hw/southbridge/piix.h"
33 #include "hw/isa/superio.h"
34 #include "hw/char/serial-mm.h"
35 #include "net/net.h"
36 #include "hw/boards.h"
37 #include "hw/i2c/smbus_eeprom.h"
38 #include "hw/block/flash.h"
39 #include "hw/mips/mips.h"
40 #include "hw/mips/bootloader.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/pci_bus.h"
43 #include "qemu/log.h"
44 #include "hw/ide/pci.h"
45 #include "hw/irq.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "qom/object.h"
49 #include "hw/sysbus.h" /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/runstate.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "sysemu/kvm.h"
57 #include "semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 #include "hw/qdev-clock.h"
60 #include "target/mips/internal.h"
61 #include "trace.h"
62 #include "cpu.h"
63
64 #define ENVP_PADDR 0x2000
65 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
66 #define ENVP_NB_ENTRIES 16
67 #define ENVP_ENTRY_SIZE 256
68
69 /* Hardware addresses */
70 #define FLASH_ADDRESS 0x1e000000ULL
71 #define FPGA_ADDRESS 0x1f000000ULL
72 #define RESET_ADDRESS 0x1fc00000ULL
73
74 #define FLASH_SIZE 0x400000
75 #define BIOS_SIZE (4 * MiB)
76
77 #define PIIX4_PCI_DEVFN PCI_DEVFN(10, 0)
78
79 typedef struct {
80 MemoryRegion iomem;
81 MemoryRegion iomem_lo; /* 0 - 0x900 */
82 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
83 uint32_t leds;
84 uint32_t brk;
85 uint32_t gpout;
86 uint32_t i2cin;
87 uint32_t i2coe;
88 uint32_t i2cout;
89 uint32_t i2csel;
90 CharBackend display;
91 char display_text[9];
92 SerialMM *uart;
93 bool display_inited;
94 } MaltaFPGAState;
95
96 #if TARGET_BIG_ENDIAN
97 #define BIOS_FILENAME "mips_bios.bin"
98 #else
99 #define BIOS_FILENAME "mipsel_bios.bin"
100 #endif
101
102 #define TYPE_MIPS_MALTA "mips-malta"
103 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
104
105 struct MaltaState {
106 SysBusDevice parent_obj;
107
108 Clock *cpuclk;
109 MIPSCPSState cps;
110 };
111
112 static struct _loaderparams {
113 int ram_size, ram_low_size;
114 const char *kernel_filename;
115 const char *kernel_cmdline;
116 const char *initrd_filename;
117 } loaderparams;
118
119 /* Malta FPGA */
malta_fpga_update_display_leds(MaltaFPGAState * s)120 static void malta_fpga_update_display_leds(MaltaFPGAState *s)
121 {
122 char leds_text[9];
123 int i;
124
125 for (i = 7 ; i >= 0 ; i--) {
126 if (s->leds & (1 << i)) {
127 leds_text[i] = '#';
128 } else {
129 leds_text[i] = ' ';
130 }
131 }
132 leds_text[8] = '\0';
133
134 trace_malta_fpga_leds(leds_text);
135 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
136 leds_text);
137 }
138
malta_fpga_update_display_ascii(MaltaFPGAState * s)139 static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
140 {
141 trace_malta_fpga_display(s->display_text);
142 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
143 s->display_text);
144 }
145
146 /*
147 * EEPROM 24C01 / 24C02 emulation.
148 *
149 * Emulation for serial EEPROMs:
150 * 24C01 - 1024 bit (128 x 8)
151 * 24C02 - 2048 bit (256 x 8)
152 *
153 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
154 */
155
156 #if defined(DEBUG)
157 # define logout(fmt, ...) \
158 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
159 #else
160 # define logout(fmt, ...) ((void)0)
161 #endif
162
163 struct _eeprom24c0x_t {
164 uint8_t tick;
165 uint8_t address;
166 uint8_t command;
167 uint8_t ack;
168 uint8_t scl;
169 uint8_t sda;
170 uint8_t data;
171 /* uint16_t size; */
172 uint8_t contents[256];
173 };
174
175 typedef struct _eeprom24c0x_t eeprom24c0x_t;
176
177 static eeprom24c0x_t spd_eeprom = {
178 .contents = {
179 /* 00000000: */
180 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
181 /* 00000008: */
182 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
183 /* 00000010: */
184 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
185 /* 00000018: */
186 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
187 /* 00000020: */
188 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
189 /* 00000028: */
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191 /* 00000030: */
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193 /* 00000038: */
194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
195 /* 00000040: */
196 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
197 /* 00000048: */
198 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
199 /* 00000050: */
200 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
201 /* 00000058: */
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
203 /* 00000060: */
204 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
205 /* 00000068: */
206 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
207 /* 00000070: */
208 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
209 /* 00000078: */
210 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
211 },
212 };
213
generate_eeprom_spd(uint8_t * eeprom,ram_addr_t ram_size)214 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
215 {
216 enum sdram_type type;
217 uint8_t *spd = spd_eeprom.contents;
218 uint8_t nbanks = 0;
219 uint16_t density = 0;
220 int i;
221
222 /* work in terms of MB */
223 ram_size /= MiB;
224
225 while ((ram_size >= 4) && (nbanks <= 2)) {
226 int sz_log2 = MIN(31 - clz32(ram_size), 14);
227 nbanks++;
228 density |= 1 << (sz_log2 - 2);
229 ram_size -= 1 << sz_log2;
230 }
231
232 /* split to 2 banks if possible */
233 if ((nbanks == 1) && (density > 1)) {
234 nbanks++;
235 density >>= 1;
236 }
237
238 if (density & 0xff00) {
239 density = (density & 0xe0) | ((density >> 8) & 0x1f);
240 type = DDR2;
241 } else if (!(density & 0x1f)) {
242 type = DDR2;
243 } else {
244 type = SDR;
245 }
246
247 if (ram_size) {
248 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
249 " of SDRAM", ram_size);
250 }
251
252 /* fill in SPD memory information */
253 spd[2] = type;
254 spd[5] = nbanks;
255 spd[31] = density;
256
257 /* checksum */
258 spd[63] = 0;
259 for (i = 0; i < 63; i++) {
260 spd[63] += spd[i];
261 }
262
263 /* copy for SMBUS */
264 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
265 }
266
generate_eeprom_serial(uint8_t * eeprom)267 static void generate_eeprom_serial(uint8_t *eeprom)
268 {
269 int i, pos = 0;
270 uint8_t mac[6] = { 0x00 };
271 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
272
273 /* version */
274 eeprom[pos++] = 0x01;
275
276 /* count */
277 eeprom[pos++] = 0x02;
278
279 /* MAC address */
280 eeprom[pos++] = 0x01; /* MAC */
281 eeprom[pos++] = 0x06; /* length */
282 memcpy(&eeprom[pos], mac, sizeof(mac));
283 pos += sizeof(mac);
284
285 /* serial number */
286 eeprom[pos++] = 0x02; /* serial */
287 eeprom[pos++] = 0x05; /* length */
288 memcpy(&eeprom[pos], sn, sizeof(sn));
289 pos += sizeof(sn);
290
291 /* checksum */
292 eeprom[pos] = 0;
293 for (i = 0; i < pos; i++) {
294 eeprom[pos] += eeprom[i];
295 }
296 }
297
eeprom24c0x_read(eeprom24c0x_t * eeprom)298 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
299 {
300 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
301 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
302 return eeprom->sda;
303 }
304
eeprom24c0x_write(eeprom24c0x_t * eeprom,int scl,int sda)305 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
306 {
307 if (eeprom->scl && scl && (eeprom->sda != sda)) {
308 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
309 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
310 sda ? "stop" : "start");
311 if (!sda) {
312 eeprom->tick = 1;
313 eeprom->command = 0;
314 }
315 } else if (eeprom->tick == 0 && !eeprom->ack) {
316 /* Waiting for start. */
317 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
318 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
319 } else if (!eeprom->scl && scl) {
320 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
321 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
322 if (eeprom->ack) {
323 logout("\ti2c ack bit = 0\n");
324 sda = 0;
325 eeprom->ack = 0;
326 } else if (eeprom->sda == sda) {
327 uint8_t bit = (sda != 0);
328 logout("\ti2c bit = %d\n", bit);
329 if (eeprom->tick < 9) {
330 eeprom->command <<= 1;
331 eeprom->command += bit;
332 eeprom->tick++;
333 if (eeprom->tick == 9) {
334 logout("\tcommand 0x%04x, %s\n", eeprom->command,
335 bit ? "read" : "write");
336 eeprom->ack = 1;
337 }
338 } else if (eeprom->tick < 17) {
339 if (eeprom->command & 1) {
340 sda = ((eeprom->data & 0x80) != 0);
341 }
342 eeprom->address <<= 1;
343 eeprom->address += bit;
344 eeprom->tick++;
345 eeprom->data <<= 1;
346 if (eeprom->tick == 17) {
347 eeprom->data = eeprom->contents[eeprom->address];
348 logout("\taddress 0x%04x, data 0x%02x\n",
349 eeprom->address, eeprom->data);
350 eeprom->ack = 1;
351 eeprom->tick = 0;
352 }
353 } else if (eeprom->tick >= 17) {
354 sda = 0;
355 }
356 } else {
357 logout("\tsda changed with raising scl\n");
358 }
359 } else {
360 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
361 scl, eeprom->sda, sda);
362 }
363 eeprom->scl = scl;
364 eeprom->sda = sda;
365 }
366
malta_fpga_read(void * opaque,hwaddr addr,unsigned size)367 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
368 unsigned size)
369 {
370 MaltaFPGAState *s = opaque;
371 uint32_t val = 0;
372 uint32_t saddr;
373
374 saddr = (addr & 0xfffff);
375
376 switch (saddr) {
377
378 /* SWITCH Register */
379 case 0x00200:
380 val = 0x00000000;
381 break;
382
383 /* STATUS Register */
384 case 0x00208:
385 #if TARGET_BIG_ENDIAN
386 val = 0x00000012;
387 #else
388 val = 0x00000010;
389 #endif
390 break;
391
392 /* JMPRS Register */
393 case 0x00210:
394 val = 0x00;
395 break;
396
397 /* LEDBAR Register */
398 case 0x00408:
399 val = s->leds;
400 break;
401
402 /* BRKRES Register */
403 case 0x00508:
404 val = s->brk;
405 break;
406
407 /* UART Registers are handled directly by the serial device */
408
409 /* GPOUT Register */
410 case 0x00a00:
411 val = s->gpout;
412 break;
413
414 /* XXX: implement a real I2C controller */
415
416 /* GPINP Register */
417 case 0x00a08:
418 /* IN = OUT until a real I2C control is implemented */
419 if (s->i2csel) {
420 val = s->i2cout;
421 } else {
422 val = 0x00;
423 }
424 break;
425
426 /* I2CINP Register */
427 case 0x00b00:
428 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
429 break;
430
431 /* I2COE Register */
432 case 0x00b08:
433 val = s->i2coe;
434 break;
435
436 /* I2COUT Register */
437 case 0x00b10:
438 val = s->i2cout;
439 break;
440
441 /* I2CSEL Register */
442 case 0x00b18:
443 val = s->i2csel;
444 break;
445
446 default:
447 qemu_log_mask(LOG_GUEST_ERROR,
448 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
449 addr);
450 break;
451 }
452 return val;
453 }
454
malta_fpga_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)455 static void malta_fpga_write(void *opaque, hwaddr addr,
456 uint64_t val, unsigned size)
457 {
458 MaltaFPGAState *s = opaque;
459 uint32_t saddr;
460
461 saddr = (addr & 0xfffff);
462
463 switch (saddr) {
464
465 /* SWITCH Register */
466 case 0x00200:
467 break;
468
469 /* JMPRS Register */
470 case 0x00210:
471 break;
472
473 /* LEDBAR Register */
474 case 0x00408:
475 s->leds = val & 0xff;
476 malta_fpga_update_display_leds(s);
477 break;
478
479 /* ASCIIWORD Register */
480 case 0x00410:
481 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
482 malta_fpga_update_display_ascii(s);
483 break;
484
485 /* ASCIIPOS0 to ASCIIPOS7 Registers */
486 case 0x00418:
487 case 0x00420:
488 case 0x00428:
489 case 0x00430:
490 case 0x00438:
491 case 0x00440:
492 case 0x00448:
493 case 0x00450:
494 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
495 malta_fpga_update_display_ascii(s);
496 break;
497
498 /* SOFTRES Register */
499 case 0x00500:
500 if (val == 0x42) {
501 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
502 }
503 break;
504
505 /* BRKRES Register */
506 case 0x00508:
507 s->brk = val & 0xff;
508 break;
509
510 /* UART Registers are handled directly by the serial device */
511
512 /* GPOUT Register */
513 case 0x00a00:
514 s->gpout = val & 0xff;
515 break;
516
517 /* I2COE Register */
518 case 0x00b08:
519 s->i2coe = val & 0x03;
520 break;
521
522 /* I2COUT Register */
523 case 0x00b10:
524 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
525 s->i2cout = val;
526 break;
527
528 /* I2CSEL Register */
529 case 0x00b18:
530 s->i2csel = val & 0x01;
531 break;
532
533 default:
534 qemu_log_mask(LOG_GUEST_ERROR,
535 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
536 addr);
537 break;
538 }
539 }
540
541 static const MemoryRegionOps malta_fpga_ops = {
542 .read = malta_fpga_read,
543 .write = malta_fpga_write,
544 .endianness = DEVICE_NATIVE_ENDIAN,
545 };
546
malta_fpga_reset(void * opaque)547 static void malta_fpga_reset(void *opaque)
548 {
549 MaltaFPGAState *s = opaque;
550
551 s->leds = 0x00;
552 s->brk = 0x0a;
553 s->gpout = 0x00;
554 s->i2cin = 0x3;
555 s->i2coe = 0x0;
556 s->i2cout = 0x3;
557 s->i2csel = 0x1;
558
559 s->display_text[8] = '\0';
560 snprintf(s->display_text, 9, " ");
561 }
562
malta_fgpa_display_event(void * opaque,QEMUChrEvent event)563 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
564 {
565 MaltaFPGAState *s = opaque;
566
567 if (event == CHR_EVENT_OPENED && !s->display_inited) {
568 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
569 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
570 qemu_chr_fe_printf(&s->display, "+ +\r\n");
571 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
572 qemu_chr_fe_printf(&s->display, "\n");
573 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
574 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
575 qemu_chr_fe_printf(&s->display, "+ +\r\n");
576 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
577 s->display_inited = true;
578 }
579 }
580
malta_fpga_init(MemoryRegion * address_space,hwaddr base,qemu_irq uart_irq,Chardev * uart_chr)581 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
582 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
583 {
584 MaltaFPGAState *s;
585 Chardev *chr;
586
587 s = g_new0(MaltaFPGAState, 1);
588
589 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
590 "malta-fpga", 0x100000);
591 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
592 &s->iomem, 0, 0x900);
593 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
594 &s->iomem, 0xa00, 0x100000 - 0xa00);
595
596 memory_region_add_subregion(address_space, base, &s->iomem_lo);
597 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
598
599 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
600 qemu_chr_fe_init(&s->display, chr, NULL);
601 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
602 malta_fgpa_display_event, NULL, s, NULL, true);
603
604 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
605 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
606
607 malta_fpga_reset(s);
608 qemu_register_reset(malta_fpga_reset, s);
609
610 return s;
611 }
612
613 /* Network support */
network_init(PCIBus * pci_bus)614 static void network_init(PCIBus *pci_bus)
615 {
616 /* The malta board has a PCNet card using PCI SLOT 11 */
617 pci_init_nic_in_slot(pci_bus, "pcnet", NULL, "0b");
618 pci_init_nic_devices(pci_bus, "pcnet");
619 }
620
bl_setup_gt64120_jump_kernel(void ** p,uint64_t run_addr,uint64_t kernel_entry)621 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
622 uint64_t kernel_entry)
623 {
624 static const char pci_pins_cfg[PCI_NUM_PINS] = {
625 10, 10, 11, 11 /* PIIX IRQRC[A:D] */
626 };
627
628 /* Bus endianness is always reversed */
629 #if TARGET_BIG_ENDIAN
630 #define cpu_to_gt32(x) (x)
631 #else
632 #define cpu_to_gt32(x) bswap32(x)
633 #endif
634
635 /* setup MEM-to-PCI0 mapping as done by YAMON */
636
637 /* move GT64120 registers from 0x14000000 to 0x1be00000 */
638 bl_gen_write_u32(p, /* GT_ISD */
639 cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
640 cpu_to_gt32(0x1be00000 << 3));
641
642 /* setup PCI0 io window to 0x18000000-0x181fffff */
643 bl_gen_write_u32(p, /* GT_PCI0IOLD */
644 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
645 cpu_to_gt32(0x18000000 << 3));
646 bl_gen_write_u32(p, /* GT_PCI0IOHD */
647 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
648 cpu_to_gt32(0x08000000 << 3));
649
650 /* setup PCI0 mem windows */
651 bl_gen_write_u32(p, /* GT_PCI0M0LD */
652 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
653 cpu_to_gt32(0x10000000 << 3));
654 bl_gen_write_u32(p, /* GT_PCI0M0HD */
655 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
656 cpu_to_gt32(0x07e00000 << 3));
657 bl_gen_write_u32(p, /* GT_PCI0M1LD */
658 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
659 cpu_to_gt32(0x18200000 << 3));
660 bl_gen_write_u32(p, /* GT_PCI0M1HD */
661 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
662 cpu_to_gt32(0x0bc00000 << 3));
663
664 #undef cpu_to_gt32
665
666 /*
667 * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
668 * Load the PIIX IRQC[A:D] routing config address, then
669 * write routing configuration to the config data register.
670 */
671 bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
672 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
673 tswap32((1 << 31) /* ConfigEn */
674 | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
675 | PIIX_PIRQCA));
676 bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
677 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
678 tswap32(ldl_be_p(pci_pins_cfg)));
679
680 bl_gen_jump_kernel(p,
681 true, ENVP_VADDR - 64,
682 /*
683 * If semihosting is used, arguments have already
684 * been passed, so we preserve $a0.
685 */
686 !semihosting_get_argc(), 2,
687 true, ENVP_VADDR,
688 true, ENVP_VADDR + 8,
689 true, loaderparams.ram_low_size,
690 kernel_entry);
691 }
692
write_bootloader_nanomips(uint8_t * base,uint64_t run_addr,uint64_t kernel_entry)693 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
694 uint64_t kernel_entry)
695 {
696 uint16_t *p;
697
698 /* Small bootloader */
699 p = (uint16_t *)base;
700
701 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
702 /* bc to_here */
703 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
704 /* nop */
705 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
706 /* nop */
707 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
708 /* nop */
709 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
710 /* nop */
711 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
712 /* nop */
713 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
714 /* nop */
715 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
716 /* nop */
717
718 /* to_here: */
719
720 bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
721 }
722
723 /*
724 * ROM and pseudo bootloader
725 *
726 * The following code implements a very very simple bootloader. It first
727 * loads the registers a0 to a3 to the values expected by the OS, and
728 * then jump at the kernel address.
729 *
730 * The bootloader should pass the locations of the kernel arguments and
731 * environment variables tables. Those tables contain the 32-bit address
732 * of NULL terminated strings. The environment variables table should be
733 * terminated by a NULL address.
734 *
735 * For a simpler implementation, the number of kernel arguments is fixed
736 * to two (the name of the kernel and the command line), and the two
737 * tables are actually the same one.
738 *
739 * The registers a0 to a3 should contain the following values:
740 * a0 - number of kernel arguments
741 * a1 - 32-bit address of the kernel arguments table
742 * a2 - 32-bit address of the environment variables table
743 * a3 - RAM size in bytes
744 */
write_bootloader(uint8_t * base,uint64_t run_addr,uint64_t kernel_entry)745 static void write_bootloader(uint8_t *base, uint64_t run_addr,
746 uint64_t kernel_entry)
747 {
748 uint32_t *p;
749
750 /* Small bootloader */
751 p = (uint32_t *)base;
752
753 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
754 ((run_addr + 0x580) & 0x0fffffff) >> 2);
755 stl_p(p++, 0x00000000); /* nop */
756
757 /* YAMON service vector */
758 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
759 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
760 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
761 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
762 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
763 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
764 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
765 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
766 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
767 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
768 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
769 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
770 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
771
772
773 /* Second part of the bootloader */
774 p = (uint32_t *) (base + 0x580);
775
776 /*
777 * Load BAR registers as done by YAMON:
778 *
779 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
780 * - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
781 * - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
782 *
783 */
784
785 bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
786
787 /* YAMON subroutines */
788 p = (uint32_t *) (base + 0x800);
789 stl_p(p++, 0x03e00009); /* jalr ra */
790 stl_p(p++, 0x24020000); /* li v0,0 */
791 /* 808 YAMON print */
792 stl_p(p++, 0x03e06821); /* move t5,ra */
793 stl_p(p++, 0x00805821); /* move t3,a0 */
794 stl_p(p++, 0x00a05021); /* move t2,a1 */
795 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
796 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
797 stl_p(p++, 0x10800005); /* beqz a0,834 */
798 stl_p(p++, 0x00000000); /* nop */
799 stl_p(p++, 0x0ff0021c); /* jal 870 */
800 stl_p(p++, 0x00000000); /* nop */
801 stl_p(p++, 0x1000fff9); /* b 814 */
802 stl_p(p++, 0x00000000); /* nop */
803 stl_p(p++, 0x01a00009); /* jalr t5 */
804 stl_p(p++, 0x01602021); /* move a0,t3 */
805 /* 0x83c YAMON print_count */
806 stl_p(p++, 0x03e06821); /* move t5,ra */
807 stl_p(p++, 0x00805821); /* move t3,a0 */
808 stl_p(p++, 0x00a05021); /* move t2,a1 */
809 stl_p(p++, 0x00c06021); /* move t4,a2 */
810 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
811 stl_p(p++, 0x0ff0021c); /* jal 870 */
812 stl_p(p++, 0x00000000); /* nop */
813 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
814 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
815 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
816 stl_p(p++, 0x00000000); /* nop */
817 stl_p(p++, 0x01a00009); /* jalr t5 */
818 stl_p(p++, 0x01602021); /* move a0,t3 */
819 /* 0x870 */
820 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
821 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
822 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
823 stl_p(p++, 0x00000000); /* nop */
824 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
825 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
826 stl_p(p++, 0x00000000); /* nop */
827 stl_p(p++, 0x03e00009); /* jalr ra */
828 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
829 }
830
prom_set(uint32_t * prom_buf,int index,const char * string,...)831 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
832 const char *string, ...)
833 {
834 va_list ap;
835 uint32_t table_addr;
836
837 if (index >= ENVP_NB_ENTRIES) {
838 return;
839 }
840
841 if (string == NULL) {
842 prom_buf[index] = 0;
843 return;
844 }
845
846 table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
847 prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
848
849 va_start(ap, string);
850 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
851 va_end(ap);
852 }
853
rng_seed_hex_new(void)854 static GString *rng_seed_hex_new(void)
855 {
856 uint8_t rng_seed[32];
857
858 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
859 return qemu_hexdump_line(NULL, rng_seed, sizeof(rng_seed), 0, 0);
860 }
861
reinitialize_rng_seed(void * opaque)862 static void reinitialize_rng_seed(void *opaque)
863 {
864 g_autoptr(GString) hex = rng_seed_hex_new();
865 memcpy(opaque, hex->str, hex->len);
866 }
867
868 /* Kernel */
load_kernel(void)869 static uint64_t load_kernel(void)
870 {
871 uint64_t kernel_entry, kernel_high, initrd_size;
872 long kernel_size;
873 ram_addr_t initrd_offset;
874 uint32_t *prom_buf;
875 long prom_size;
876 int prom_index = 0;
877 size_t rng_seed_prom_offset;
878
879 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
880 cpu_mips_kseg0_to_phys, NULL,
881 &kernel_entry, NULL,
882 &kernel_high, NULL, TARGET_BIG_ENDIAN, EM_MIPS,
883 1, 0);
884 if (kernel_size < 0) {
885 error_report("could not load kernel '%s': %s",
886 loaderparams.kernel_filename,
887 load_elf_strerror(kernel_size));
888 exit(1);
889 }
890
891 /* Check where the kernel has been linked */
892 if (kernel_entry <= USEG_LIMIT) {
893 error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
894 " are not supported");
895 exit(1);
896 }
897
898 /* load initrd */
899 initrd_size = 0;
900 initrd_offset = 0;
901 if (loaderparams.initrd_filename) {
902 initrd_size = get_image_size(loaderparams.initrd_filename);
903 if (initrd_size > 0) {
904 /*
905 * The kernel allocates the bootmap memory in the low memory after
906 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
907 * pages.
908 */
909 initrd_offset = ROUND_UP(loaderparams.ram_low_size
910 - (initrd_size + 128 * KiB),
911 INITRD_PAGE_SIZE);
912 if (kernel_high >= initrd_offset) {
913 error_report("memory too small for initial ram disk '%s'",
914 loaderparams.initrd_filename);
915 exit(1);
916 }
917 initrd_size = load_image_targphys(loaderparams.initrd_filename,
918 initrd_offset,
919 loaderparams.ram_size - initrd_offset);
920 }
921 if (initrd_size == (target_ulong) -1) {
922 error_report("could not load initial ram disk '%s'",
923 loaderparams.initrd_filename);
924 exit(1);
925 }
926 }
927
928 /* Setup prom parameters. */
929 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
930 prom_buf = g_malloc(prom_size);
931
932 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
933 if (initrd_size > 0) {
934 prom_set(prom_buf, prom_index++,
935 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
936 cpu_mips_phys_to_kseg0(NULL, initrd_offset),
937 initrd_size, loaderparams.kernel_cmdline);
938 } else {
939 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
940 }
941
942 prom_set(prom_buf, prom_index++, "memsize");
943 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
944
945 prom_set(prom_buf, prom_index++, "ememsize");
946 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
947
948 prom_set(prom_buf, prom_index++, "modetty0");
949 prom_set(prom_buf, prom_index++, "38400n8r");
950
951 prom_set(prom_buf, prom_index++, "rngseed");
952 rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
953 sizeof(uint32_t) * ENVP_NB_ENTRIES;
954 {
955 g_autoptr(GString) hex = rng_seed_hex_new();
956 prom_set(prom_buf, prom_index++, "%s", hex->str);
957 }
958
959 prom_set(prom_buf, prom_index++, NULL);
960
961 rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
962 qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
963 rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
964
965 g_free(prom_buf);
966 return kernel_entry;
967 }
968
malta_mips_config(MIPSCPU * cpu)969 static void malta_mips_config(MIPSCPU *cpu)
970 {
971 MachineState *ms = MACHINE(qdev_get_machine());
972 unsigned int smp_cpus = ms->smp.cpus;
973 CPUMIPSState *env = &cpu->env;
974 CPUState *cs = CPU(cpu);
975
976 if (ase_mt_available(env)) {
977 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
978 CP0MVPC0_PTC, 8,
979 smp_cpus * cs->nr_threads - 1);
980 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
981 CP0MVPC0_PVPE, 4, smp_cpus - 1);
982 }
983 }
984
malta_pci_slot_get_pirq(PCIDevice * pci_dev,int irq_num)985 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
986 {
987 int slot;
988
989 slot = PCI_SLOT(pci_dev->devfn);
990
991 switch (slot) {
992 /* PIIX4 USB */
993 case 10:
994 return 3;
995 /* AMD 79C973 Ethernet */
996 case 11:
997 return 1;
998 /* Crystal 4281 Sound */
999 case 12:
1000 return 2;
1001 /* PCI slot 1 to 4 */
1002 case 18 ... 21:
1003 return ((slot - 18) + irq_num) & 0x03;
1004 /* Unknown device, don't do any translation */
1005 default:
1006 return irq_num;
1007 }
1008 }
1009
main_cpu_reset(void * opaque)1010 static void main_cpu_reset(void *opaque)
1011 {
1012 MIPSCPU *cpu = opaque;
1013 CPUMIPSState *env = &cpu->env;
1014
1015 cpu_reset(CPU(cpu));
1016
1017 /*
1018 * The bootloader does not need to be rewritten as it is located in a
1019 * read only location. The kernel location and the arguments table
1020 * location does not change.
1021 */
1022 if (loaderparams.kernel_filename) {
1023 env->CP0_Status &= ~(1 << CP0St_ERL);
1024 }
1025
1026 malta_mips_config(cpu);
1027 }
1028
create_cpu_without_cps(MachineState * ms,MaltaState * s,qemu_irq * cbus_irq,qemu_irq * i8259_irq)1029 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1030 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1031 {
1032 CPUMIPSState *env;
1033 MIPSCPU *cpu;
1034 int i;
1035
1036 for (i = 0; i < ms->smp.cpus; i++) {
1037 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk,
1038 TARGET_BIG_ENDIAN);
1039
1040 /* Init internal devices */
1041 cpu_mips_irq_init_cpu(cpu);
1042 cpu_mips_clock_init(cpu);
1043 qemu_register_reset(main_cpu_reset, cpu);
1044 }
1045
1046 cpu = MIPS_CPU(first_cpu);
1047 env = &cpu->env;
1048 *i8259_irq = env->irq[2];
1049 *cbus_irq = env->irq[4];
1050 }
1051
create_cps(MachineState * ms,MaltaState * s,qemu_irq * cbus_irq,qemu_irq * i8259_irq)1052 static void create_cps(MachineState *ms, MaltaState *s,
1053 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1054 {
1055 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1056 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1057 &error_fatal);
1058 object_property_set_bool(OBJECT(&s->cps), "cpu-big-endian",
1059 TARGET_BIG_ENDIAN, &error_abort);
1060 object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1061 &error_fatal);
1062 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1063 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1064
1065 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1066
1067 *i8259_irq = get_cps_irq(&s->cps, 3);
1068 *cbus_irq = NULL;
1069 }
1070
mips_create_cpu(MachineState * ms,MaltaState * s,qemu_irq * cbus_irq,qemu_irq * i8259_irq)1071 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1072 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1073 {
1074 if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1075 create_cps(ms, s, cbus_irq, i8259_irq);
1076 } else {
1077 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1078 }
1079 }
1080
1081 static
mips_malta_init(MachineState * machine)1082 void mips_malta_init(MachineState *machine)
1083 {
1084 ram_addr_t ram_size = machine->ram_size;
1085 ram_addr_t ram_low_size;
1086 const char *kernel_filename = machine->kernel_filename;
1087 const char *kernel_cmdline = machine->kernel_cmdline;
1088 const char *initrd_filename = machine->initrd_filename;
1089 char *filename;
1090 PFlashCFI01 *fl;
1091 MemoryRegion *system_memory = get_system_memory();
1092 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1093 MemoryRegion *ram_low_postio;
1094 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1095 const size_t smbus_eeprom_size = 8 * 256;
1096 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1097 uint64_t kernel_entry, bootloader_run_addr;
1098 PCIBus *pci_bus;
1099 ISABus *isa_bus;
1100 qemu_irq cbus_irq, i8259_irq;
1101 I2CBus *smbus;
1102 DriveInfo *dinfo;
1103 int fl_idx = 0;
1104 MaltaState *s;
1105 PCIDevice *piix4;
1106 DeviceState *dev;
1107
1108 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1109 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1110
1111 /* create CPU */
1112 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1113
1114 /* allocate RAM */
1115 if (ram_size > 2 * GiB) {
1116 error_report("Too much memory for this machine: %" PRId64 "MB,"
1117 " maximum 2048MB", ram_size / MiB);
1118 exit(1);
1119 }
1120
1121 /* register RAM at high address where it is undisturbed by IO */
1122 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1123
1124 /* alias for pre IO hole access */
1125 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1126 machine->ram, 0, MIN(ram_size, 256 * MiB));
1127 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1128
1129 /* alias for post IO hole access, if there is enough RAM */
1130 if (ram_size > 512 * MiB) {
1131 ram_low_postio = g_new(MemoryRegion, 1);
1132 memory_region_init_alias(ram_low_postio, NULL,
1133 "mips_malta_low_postio.ram",
1134 machine->ram, 512 * MiB,
1135 ram_size - 512 * MiB);
1136 memory_region_add_subregion(system_memory, 512 * MiB,
1137 ram_low_postio);
1138 }
1139
1140 /* FPGA */
1141
1142 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1143 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1144
1145 /* Load firmware in flash / BIOS. */
1146 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1147 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1148 FLASH_SIZE,
1149 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1150 65536,
1151 4, 0x0000, 0x0000, 0x0000, 0x0000,
1152 TARGET_BIG_ENDIAN);
1153 bios = pflash_cfi01_get_memory(fl);
1154 fl_idx++;
1155 if (kernel_filename) {
1156 ram_low_size = MIN(ram_size, 256 * MiB);
1157 bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1158
1159 /* Write a small bootloader to the flash location. */
1160 loaderparams.ram_size = ram_size;
1161 loaderparams.ram_low_size = ram_low_size;
1162 loaderparams.kernel_filename = kernel_filename;
1163 loaderparams.kernel_cmdline = kernel_cmdline;
1164 loaderparams.initrd_filename = initrd_filename;
1165 kernel_entry = load_kernel();
1166
1167 if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1168 write_bootloader(memory_region_get_ram_ptr(bios),
1169 bootloader_run_addr, kernel_entry);
1170 } else {
1171 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1172 bootloader_run_addr, kernel_entry);
1173 }
1174 } else {
1175 target_long bios_size = FLASH_SIZE;
1176 /* Load firmware from flash. */
1177 if (!dinfo) {
1178 /* Load a BIOS image. */
1179 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1180 machine->firmware ?: BIOS_FILENAME);
1181 if (filename) {
1182 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1183 BIOS_SIZE);
1184 g_free(filename);
1185 } else {
1186 bios_size = -1;
1187 }
1188 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1189 machine->firmware && !qtest_enabled()) {
1190 error_report("Could not load MIPS bios '%s'", machine->firmware);
1191 exit(1);
1192 }
1193 }
1194 /*
1195 * In little endian mode the 32bit words in the bios are swapped,
1196 * a neat trick which allows bi-endian firmware.
1197 */
1198 #if !TARGET_BIG_ENDIAN
1199 {
1200 uint32_t *end, *addr;
1201 const size_t swapsize = MIN(bios_size, 0x3e0000);
1202 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1203 if (!addr) {
1204 addr = memory_region_get_ram_ptr(bios);
1205 }
1206 end = (void *)addr + swapsize;
1207 while (addr < end) {
1208 bswap32s(addr);
1209 addr++;
1210 }
1211 }
1212 #endif
1213 }
1214
1215 /*
1216 * Map the BIOS at a 2nd physical location, as on the real board.
1217 * Copy it so that we can patch in the MIPS revision, which cannot be
1218 * handled by an overlapping region as the resulting ROM code subpage
1219 * regions are not executable.
1220 */
1221 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1222 &error_fatal);
1223 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1224 FLASH_ADDRESS, BIOS_SIZE)) {
1225 memcpy(memory_region_get_ram_ptr(bios_copy),
1226 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1227 }
1228 memory_region_set_readonly(bios_copy, true);
1229 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1230
1231 /* Board ID = 0x420 (Malta Board with CoreLV) */
1232 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1233
1234 /* Northbridge */
1235 dev = qdev_new("gt64120");
1236 qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN);
1237 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1238 pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1239 pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
1240
1241 /* Southbridge */
1242 piix4 = pci_new_multifunction(PIIX4_PCI_DEVFN, TYPE_PIIX4_PCI_DEVICE);
1243 qdev_prop_set_uint32(DEVICE(piix4), "smb_io_base", 0x1100);
1244 pci_realize_and_unref(piix4, pci_bus, &error_fatal);
1245 isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1246
1247 dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1248 pci_ide_create_devs(PCI_DEVICE(dev));
1249
1250 /* Interrupt controller */
1251 qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1252
1253 /* generate SPD EEPROM data */
1254 dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1255 smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1256 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1257 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1258 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1259 g_free(smbus_eeprom_buf);
1260
1261 /* Super I/O: SMS FDC37M817 */
1262 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1263
1264 /* Network card */
1265 network_init(pci_bus);
1266
1267 /* Optional PCI video card */
1268 pci_vga_init(pci_bus);
1269 }
1270
mips_malta_instance_init(Object * obj)1271 static void mips_malta_instance_init(Object *obj)
1272 {
1273 MaltaState *s = MIPS_MALTA(obj);
1274
1275 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1276 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1277 }
1278
1279 static const TypeInfo mips_malta_device = {
1280 .name = TYPE_MIPS_MALTA,
1281 .parent = TYPE_SYS_BUS_DEVICE,
1282 .instance_size = sizeof(MaltaState),
1283 .instance_init = mips_malta_instance_init,
1284 };
1285
1286 GlobalProperty malta_compat[] = {
1287 { "PIIX4_PM", "memory-hotplug-support", "off" },
1288 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1289 { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1290 { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1291 };
1292 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1293
mips_malta_machine_init(MachineClass * mc)1294 static void mips_malta_machine_init(MachineClass *mc)
1295 {
1296 mc->desc = "MIPS Malta Core LV";
1297 mc->init = mips_malta_init;
1298 mc->block_default_type = IF_IDE;
1299 mc->max_cpus = 16;
1300 mc->is_default = true;
1301 #ifdef TARGET_MIPS64
1302 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1303 #else
1304 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1305 #endif
1306 mc->default_ram_id = "mips_malta.ram";
1307 compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1308 }
1309
1310 DEFINE_MACHINE("malta", mips_malta_machine_init)
1311
mips_malta_register_types(void)1312 static void mips_malta_register_types(void)
1313 {
1314 type_register_static(&mips_malta_device);
1315 }
1316
1317 type_init(mips_malta_register_types)
1318