1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40
41 /**
42 * DOC: skb checksums
43 *
44 * The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * IP checksum related features
48 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
49 *
50 * Drivers advertise checksum offload capabilities in the features of a device.
51 * From the stack's point of view these are capabilities offered by the driver.
52 * A driver typically only advertises features that it is capable of offloading
53 * to its device.
54 *
55 * .. flat-table:: Checksum related device features
56 * :widths: 1 10
57 *
58 * * - %NETIF_F_HW_CSUM
59 * - The driver (or its device) is able to compute one
60 * IP (one's complement) checksum for any combination
61 * of protocols or protocol layering. The checksum is
62 * computed and set in a packet per the CHECKSUM_PARTIAL
63 * interface (see below).
64 *
65 * * - %NETIF_F_IP_CSUM
66 * - Driver (device) is only able to checksum plain
67 * TCP or UDP packets over IPv4. These are specifically
68 * unencapsulated packets of the form IPv4|TCP or
69 * IPv4|UDP where the Protocol field in the IPv4 header
70 * is TCP or UDP. The IPv4 header may contain IP options.
71 * This feature cannot be set in features for a device
72 * with NETIF_F_HW_CSUM also set. This feature is being
73 * DEPRECATED (see below).
74 *
75 * * - %NETIF_F_IPV6_CSUM
76 * - Driver (device) is only able to checksum plain
77 * TCP or UDP packets over IPv6. These are specifically
78 * unencapsulated packets of the form IPv6|TCP or
79 * IPv6|UDP where the Next Header field in the IPv6
80 * header is either TCP or UDP. IPv6 extension headers
81 * are not supported with this feature. This feature
82 * cannot be set in features for a device with
83 * NETIF_F_HW_CSUM also set. This feature is being
84 * DEPRECATED (see below).
85 *
86 * * - %NETIF_F_RXCSUM
87 * - Driver (device) performs receive checksum offload.
88 * This flag is only used to disable the RX checksum
89 * feature for a device. The stack will accept receive
90 * checksum indication in packets received on a device
91 * regardless of whether NETIF_F_RXCSUM is set.
92 *
93 * Checksumming of received packets by device
94 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95 *
96 * Indication of checksum verification is set in &sk_buff.ip_summed.
97 * Possible values are:
98 *
99 * - %CHECKSUM_NONE
100 *
101 * Device did not checksum this packet e.g. due to lack of capabilities.
102 * The packet contains full (though not verified) checksum in packet but
103 * not in skb->csum. Thus, skb->csum is undefined in this case.
104 *
105 * - %CHECKSUM_UNNECESSARY
106 *
107 * The hardware you're dealing with doesn't calculate the full checksum
108 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
109 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
110 * if their checksums are okay. &sk_buff.csum is still undefined in this case
111 * though. A driver or device must never modify the checksum field in the
112 * packet even if checksum is verified.
113 *
114 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
115 *
116 * - TCP: IPv6 and IPv4.
117 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
118 * zero UDP checksum for either IPv4 or IPv6, the networking stack
119 * may perform further validation in this case.
120 * - GRE: only if the checksum is present in the header.
121 * - SCTP: indicates the CRC in SCTP header has been validated.
122 * - FCOE: indicates the CRC in FC frame has been validated.
123 *
124 * &sk_buff.csum_level indicates the number of consecutive checksums found in
125 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
126 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
127 * and a device is able to verify the checksums for UDP (possibly zero),
128 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
129 * two. If the device were only able to verify the UDP checksum and not
130 * GRE, either because it doesn't support GRE checksum or because GRE
131 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
132 * not considered in this case).
133 *
134 * - %CHECKSUM_COMPLETE
135 *
136 * This is the most generic way. The device supplied checksum of the _whole_
137 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
138 * hardware doesn't need to parse L3/L4 headers to implement this.
139 *
140 * Notes:
141 *
142 * - Even if device supports only some protocols, but is able to produce
143 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
144 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
145 *
146 * - %CHECKSUM_PARTIAL
147 *
148 * A checksum is set up to be offloaded to a device as described in the
149 * output description for CHECKSUM_PARTIAL. This may occur on a packet
150 * received directly from another Linux OS, e.g., a virtualized Linux kernel
151 * on the same host, or it may be set in the input path in GRO or remote
152 * checksum offload. For the purposes of checksum verification, the checksum
153 * referred to by skb->csum_start + skb->csum_offset and any preceding
154 * checksums in the packet are considered verified. Any checksums in the
155 * packet that are after the checksum being offloaded are not considered to
156 * be verified.
157 *
158 * Checksumming on transmit for non-GSO
159 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160 *
161 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
162 * Values are:
163 *
164 * - %CHECKSUM_PARTIAL
165 *
166 * The driver is required to checksum the packet as seen by hard_start_xmit()
167 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
168 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
169 * A driver may verify that the
170 * csum_start and csum_offset values are valid values given the length and
171 * offset of the packet, but it should not attempt to validate that the
172 * checksum refers to a legitimate transport layer checksum -- it is the
173 * purview of the stack to validate that csum_start and csum_offset are set
174 * correctly.
175 *
176 * When the stack requests checksum offload for a packet, the driver MUST
177 * ensure that the checksum is set correctly. A driver can either offload the
178 * checksum calculation to the device, or call skb_checksum_help (in the case
179 * that the device does not support offload for a particular checksum).
180 *
181 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
182 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
183 * checksum offload capability.
184 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
185 * on network device checksumming capabilities: if a packet does not match
186 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
187 * &sk_buff.csum_not_inet, see :ref:`crc`)
188 * is called to resolve the checksum.
189 *
190 * - %CHECKSUM_NONE
191 *
192 * The skb was already checksummed by the protocol, or a checksum is not
193 * required.
194 *
195 * - %CHECKSUM_UNNECESSARY
196 *
197 * This has the same meaning as CHECKSUM_NONE for checksum offload on
198 * output.
199 *
200 * - %CHECKSUM_COMPLETE
201 *
202 * Not used in checksum output. If a driver observes a packet with this value
203 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
204 *
205 * .. _crc:
206 *
207 * Non-IP checksum (CRC) offloads
208 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
209 *
210 * .. flat-table::
211 * :widths: 1 10
212 *
213 * * - %NETIF_F_SCTP_CRC
214 * - This feature indicates that a device is capable of
215 * offloading the SCTP CRC in a packet. To perform this offload the stack
216 * will set csum_start and csum_offset accordingly, set ip_summed to
217 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
218 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
219 * A driver that supports both IP checksum offload and SCTP CRC32c offload
220 * must verify which offload is configured for a packet by testing the
221 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
222 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
223 *
224 * * - %NETIF_F_FCOE_CRC
225 * - This feature indicates that a device is capable of offloading the FCOE
226 * CRC in a packet. To perform this offload the stack will set ip_summed
227 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
228 * accordingly. Note that there is no indication in the skbuff that the
229 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
230 * both IP checksum offload and FCOE CRC offload must verify which offload
231 * is configured for a packet, presumably by inspecting packet headers.
232 *
233 * Checksumming on output with GSO
234 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
235 *
236 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
237 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
238 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
239 * part of the GSO operation is implied. If a checksum is being offloaded
240 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
241 * csum_offset are set to refer to the outermost checksum being offloaded
242 * (two offloaded checksums are possible with UDP encapsulation).
243 */
244
245 /* Don't change this without changing skb_csum_unnecessary! */
246 #define CHECKSUM_NONE 0
247 #define CHECKSUM_UNNECESSARY 1
248 #define CHECKSUM_COMPLETE 2
249 #define CHECKSUM_PARTIAL 3
250
251 /* Maximum value in skb->csum_level */
252 #define SKB_MAX_CSUM_LEVEL 3
253
254 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
255 #define SKB_WITH_OVERHEAD(X) \
256 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
257
258 /* For X bytes available in skb->head, what is the minimal
259 * allocation needed, knowing struct skb_shared_info needs
260 * to be aligned.
261 */
262 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
263 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264
265 #define SKB_MAX_ORDER(X, ORDER) \
266 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
267 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
268 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
269
270 /* return minimum truesize of one skb containing X bytes of data */
271 #define SKB_TRUESIZE(X) ((X) + \
272 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
273 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
274
275 struct ahash_request;
276 struct net_device;
277 struct scatterlist;
278 struct pipe_inode_info;
279 struct iov_iter;
280 struct napi_struct;
281 struct bpf_prog;
282 union bpf_attr;
283 struct skb_ext;
284 struct ts_config;
285
286 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
287 struct nf_bridge_info {
288 enum {
289 BRNF_PROTO_UNCHANGED,
290 BRNF_PROTO_8021Q,
291 BRNF_PROTO_PPPOE
292 } orig_proto:8;
293 u8 pkt_otherhost:1;
294 u8 in_prerouting:1;
295 u8 bridged_dnat:1;
296 u8 sabotage_in_done:1;
297 __u16 frag_max_size;
298 int physinif;
299
300 /* always valid & non-NULL from FORWARD on, for physdev match */
301 struct net_device *physoutdev;
302 union {
303 /* prerouting: detect dnat in orig/reply direction */
304 __be32 ipv4_daddr;
305 struct in6_addr ipv6_daddr;
306
307 /* after prerouting + nat detected: store original source
308 * mac since neigh resolution overwrites it, only used while
309 * skb is out in neigh layer.
310 */
311 char neigh_header[8];
312 };
313 };
314 #endif
315
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318 * ovs recirc_id. It will be set to the current chain by tc
319 * and read by ovs to recirc_id.
320 */
321 struct tc_skb_ext {
322 union {
323 u64 act_miss_cookie;
324 __u32 chain;
325 };
326 __u16 mru;
327 __u16 zone;
328 u8 post_ct:1;
329 u8 post_ct_snat:1;
330 u8 post_ct_dnat:1;
331 u8 act_miss:1; /* Set if act_miss_cookie is used */
332 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
333 };
334 #endif
335
336 struct sk_buff_head {
337 /* These two members must be first to match sk_buff. */
338 struct_group_tagged(sk_buff_list, list,
339 struct sk_buff *next;
340 struct sk_buff *prev;
341 );
342
343 __u32 qlen;
344 spinlock_t lock;
345 };
346
347 struct sk_buff;
348
349 #ifndef CONFIG_MAX_SKB_FRAGS
350 # define CONFIG_MAX_SKB_FRAGS 17
351 #endif
352
353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
354
355 extern int sysctl_max_skb_frags;
356
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358 * segment using its current segmentation instead.
359 */
360 #define GSO_BY_FRAGS 0xFFFF
361
362 typedef struct bio_vec skb_frag_t;
363
364 /**
365 * skb_frag_size() - Returns the size of a skb fragment
366 * @frag: skb fragment
367 */
skb_frag_size(const skb_frag_t * frag)368 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
369 {
370 return frag->bv_len;
371 }
372
373 /**
374 * skb_frag_size_set() - Sets the size of a skb fragment
375 * @frag: skb fragment
376 * @size: size of fragment
377 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
379 {
380 frag->bv_len = size;
381 }
382
383 /**
384 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385 * @frag: skb fragment
386 * @delta: value to add
387 */
skb_frag_size_add(skb_frag_t * frag,int delta)388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
389 {
390 frag->bv_len += delta;
391 }
392
393 /**
394 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395 * @frag: skb fragment
396 * @delta: value to subtract
397 */
skb_frag_size_sub(skb_frag_t * frag,int delta)398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
399 {
400 frag->bv_len -= delta;
401 }
402
403 /**
404 * skb_frag_must_loop - Test if %p is a high memory page
405 * @p: fragment's page
406 */
skb_frag_must_loop(struct page * p)407 static inline bool skb_frag_must_loop(struct page *p)
408 {
409 #if defined(CONFIG_HIGHMEM)
410 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
411 return true;
412 #endif
413 return false;
414 }
415
416 /**
417 * skb_frag_foreach_page - loop over pages in a fragment
418 *
419 * @f: skb frag to operate on
420 * @f_off: offset from start of f->bv_page
421 * @f_len: length from f_off to loop over
422 * @p: (temp var) current page
423 * @p_off: (temp var) offset from start of current page,
424 * non-zero only on first page.
425 * @p_len: (temp var) length in current page,
426 * < PAGE_SIZE only on first and last page.
427 * @copied: (temp var) length so far, excluding current p_len.
428 *
429 * A fragment can hold a compound page, in which case per-page
430 * operations, notably kmap_atomic, must be called for each
431 * regular page.
432 */
433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
434 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
435 p_off = (f_off) & (PAGE_SIZE - 1), \
436 p_len = skb_frag_must_loop(p) ? \
437 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
438 copied = 0; \
439 copied < f_len; \
440 copied += p_len, p++, p_off = 0, \
441 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
442
443 /**
444 * struct skb_shared_hwtstamps - hardware time stamps
445 * @hwtstamp: hardware time stamp transformed into duration
446 * since arbitrary point in time
447 * @netdev_data: address/cookie of network device driver used as
448 * reference to actual hardware time stamp
449 *
450 * Software time stamps generated by ktime_get_real() are stored in
451 * skb->tstamp.
452 *
453 * hwtstamps can only be compared against other hwtstamps from
454 * the same device.
455 *
456 * This structure is attached to packets as part of the
457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458 */
459 struct skb_shared_hwtstamps {
460 union {
461 ktime_t hwtstamp;
462 void *netdev_data;
463 };
464 };
465
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 /* generate hardware time stamp */
469 SKBTX_HW_TSTAMP = 1 << 0,
470
471 /* generate software time stamp when queueing packet to NIC */
472 SKBTX_SW_TSTAMP = 1 << 1,
473
474 /* device driver is going to provide hardware time stamp */
475 SKBTX_IN_PROGRESS = 1 << 2,
476
477 /* generate hardware time stamp based on cycles if supported */
478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479
480 /* generate wifi status information (where possible) */
481 SKBTX_WIFI_STATUS = 1 << 4,
482
483 /* determine hardware time stamp based on time or cycles */
484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485
486 /* generate software time stamp when entering packet scheduling */
487 SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489
490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
491 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
493 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 SKBTX_ANY_SW_TSTAMP)
495
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 /* use zcopy routines */
499 SKBFL_ZEROCOPY_ENABLE = BIT(0),
500
501 /* This indicates at least one fragment might be overwritten
502 * (as in vmsplice(), sendfile() ...)
503 * If we need to compute a TX checksum, we'll need to copy
504 * all frags to avoid possible bad checksum
505 */
506 SKBFL_SHARED_FRAG = BIT(1),
507
508 /* segment contains only zerocopy data and should not be
509 * charged to the kernel memory.
510 */
511 SKBFL_PURE_ZEROCOPY = BIT(2),
512
513 SKBFL_DONT_ORPHAN = BIT(3),
514
515 /* page references are managed by the ubuf_info, so it's safe to
516 * use frags only up until ubuf_info is released
517 */
518 SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520
521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524
525 /*
526 * The callback notifies userspace to release buffers when skb DMA is done in
527 * lower device, the skb last reference should be 0 when calling this.
528 * The zerocopy_success argument is true if zero copy transmit occurred,
529 * false on data copy or out of memory error caused by data copy attempt.
530 * The ctx field is used to track device context.
531 * The desc field is used to track userspace buffer index.
532 */
533 struct ubuf_info {
534 void (*callback)(struct sk_buff *, struct ubuf_info *,
535 bool zerocopy_success);
536 refcount_t refcnt;
537 u8 flags;
538 };
539
540 struct ubuf_info_msgzc {
541 struct ubuf_info ubuf;
542
543 union {
544 struct {
545 unsigned long desc;
546 void *ctx;
547 };
548 struct {
549 u32 id;
550 u16 len;
551 u16 zerocopy:1;
552 u32 bytelen;
553 };
554 };
555
556 struct mmpin {
557 struct user_struct *user;
558 unsigned int num_pg;
559 } mmp;
560 };
561
562 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 ubuf)
565
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568
569 /* This data is invariant across clones and lives at
570 * the end of the header data, ie. at skb->end.
571 */
572 struct skb_shared_info {
573 __u8 flags;
574 __u8 meta_len;
575 __u8 nr_frags;
576 __u8 tx_flags;
577 unsigned short gso_size;
578 /* Warning: this field is not always filled in (UFO)! */
579 unsigned short gso_segs;
580 struct sk_buff *frag_list;
581 struct skb_shared_hwtstamps hwtstamps;
582 unsigned int gso_type;
583 u32 tskey;
584
585 /*
586 * Warning : all fields before dataref are cleared in __alloc_skb()
587 */
588 atomic_t dataref;
589 unsigned int xdp_frags_size;
590
591 /* Intermediate layers must ensure that destructor_arg
592 * remains valid until skb destructor */
593 void * destructor_arg;
594
595 /* must be last field, see pskb_expand_head() */
596 skb_frag_t frags[MAX_SKB_FRAGS];
597 };
598
599 /**
600 * DOC: dataref and headerless skbs
601 *
602 * Transport layers send out clones of payload skbs they hold for
603 * retransmissions. To allow lower layers of the stack to prepend their headers
604 * we split &skb_shared_info.dataref into two halves.
605 * The lower 16 bits count the overall number of references.
606 * The higher 16 bits indicate how many of the references are payload-only.
607 * skb_header_cloned() checks if skb is allowed to add / write the headers.
608 *
609 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
610 * (via __skb_header_release()). Any clone created from marked skb will get
611 * &sk_buff.hdr_len populated with the available headroom.
612 * If there's the only clone in existence it's able to modify the headroom
613 * at will. The sequence of calls inside the transport layer is::
614 *
615 * <alloc skb>
616 * skb_reserve()
617 * __skb_header_release()
618 * skb_clone()
619 * // send the clone down the stack
620 *
621 * This is not a very generic construct and it depends on the transport layers
622 * doing the right thing. In practice there's usually only one payload-only skb.
623 * Having multiple payload-only skbs with different lengths of hdr_len is not
624 * possible. The payload-only skbs should never leave their owner.
625 */
626 #define SKB_DATAREF_SHIFT 16
627 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
628
629
630 enum {
631 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
632 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
633 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
634 };
635
636 enum {
637 SKB_GSO_TCPV4 = 1 << 0,
638
639 /* This indicates the skb is from an untrusted source. */
640 SKB_GSO_DODGY = 1 << 1,
641
642 /* This indicates the tcp segment has CWR set. */
643 SKB_GSO_TCP_ECN = 1 << 2,
644
645 SKB_GSO_TCP_FIXEDID = 1 << 3,
646
647 SKB_GSO_TCPV6 = 1 << 4,
648
649 SKB_GSO_FCOE = 1 << 5,
650
651 SKB_GSO_GRE = 1 << 6,
652
653 SKB_GSO_GRE_CSUM = 1 << 7,
654
655 SKB_GSO_IPXIP4 = 1 << 8,
656
657 SKB_GSO_IPXIP6 = 1 << 9,
658
659 SKB_GSO_UDP_TUNNEL = 1 << 10,
660
661 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
662
663 SKB_GSO_PARTIAL = 1 << 12,
664
665 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
666
667 SKB_GSO_SCTP = 1 << 14,
668
669 SKB_GSO_ESP = 1 << 15,
670
671 SKB_GSO_UDP = 1 << 16,
672
673 SKB_GSO_UDP_L4 = 1 << 17,
674
675 SKB_GSO_FRAGLIST = 1 << 18,
676 };
677
678 #if BITS_PER_LONG > 32
679 #define NET_SKBUFF_DATA_USES_OFFSET 1
680 #endif
681
682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
683 typedef unsigned int sk_buff_data_t;
684 #else
685 typedef unsigned char *sk_buff_data_t;
686 #endif
687
688 enum skb_tstamp_type {
689 SKB_CLOCK_REALTIME,
690 SKB_CLOCK_MONOTONIC,
691 };
692
693 /**
694 * DOC: Basic sk_buff geometry
695 *
696 * struct sk_buff itself is a metadata structure and does not hold any packet
697 * data. All the data is held in associated buffers.
698 *
699 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
700 * into two parts:
701 *
702 * - data buffer, containing headers and sometimes payload;
703 * this is the part of the skb operated on by the common helpers
704 * such as skb_put() or skb_pull();
705 * - shared info (struct skb_shared_info) which holds an array of pointers
706 * to read-only data in the (page, offset, length) format.
707 *
708 * Optionally &skb_shared_info.frag_list may point to another skb.
709 *
710 * Basic diagram may look like this::
711 *
712 * ---------------
713 * | sk_buff |
714 * ---------------
715 * ,--------------------------- + head
716 * / ,----------------- + data
717 * / / ,----------- + tail
718 * | | | , + end
719 * | | | |
720 * v v v v
721 * -----------------------------------------------
722 * | headroom | data | tailroom | skb_shared_info |
723 * -----------------------------------------------
724 * + [page frag]
725 * + [page frag]
726 * + [page frag]
727 * + [page frag] ---------
728 * + frag_list --> | sk_buff |
729 * ---------
730 *
731 */
732
733 /**
734 * struct sk_buff - socket buffer
735 * @next: Next buffer in list
736 * @prev: Previous buffer in list
737 * @tstamp: Time we arrived/left
738 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
739 * for retransmit timer
740 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
741 * @list: queue head
742 * @ll_node: anchor in an llist (eg socket defer_list)
743 * @sk: Socket we are owned by
744 * @dev: Device we arrived on/are leaving by
745 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
746 * @cb: Control buffer. Free for use by every layer. Put private vars here
747 * @_skb_refdst: destination entry (with norefcount bit)
748 * @sp: the security path, used for xfrm
749 * @len: Length of actual data
750 * @data_len: Data length
751 * @mac_len: Length of link layer header
752 * @hdr_len: writable header length of cloned skb
753 * @csum: Checksum (must include start/offset pair)
754 * @csum_start: Offset from skb->head where checksumming should start
755 * @csum_offset: Offset from csum_start where checksum should be stored
756 * @priority: Packet queueing priority
757 * @ignore_df: allow local fragmentation
758 * @cloned: Head may be cloned (check refcnt to be sure)
759 * @ip_summed: Driver fed us an IP checksum
760 * @nohdr: Payload reference only, must not modify header
761 * @pkt_type: Packet class
762 * @fclone: skbuff clone status
763 * @ipvs_property: skbuff is owned by ipvs
764 * @inner_protocol_type: whether the inner protocol is
765 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
766 * @remcsum_offload: remote checksum offload is enabled
767 * @offload_fwd_mark: Packet was L2-forwarded in hardware
768 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
769 * @tc_skip_classify: do not classify packet. set by IFB device
770 * @tc_at_ingress: used within tc_classify to distinguish in/egress
771 * @redirected: packet was redirected by packet classifier
772 * @from_ingress: packet was redirected from the ingress path
773 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
774 * @peeked: this packet has been seen already, so stats have been
775 * done for it, don't do them again
776 * @nf_trace: netfilter packet trace flag
777 * @protocol: Packet protocol from driver
778 * @destructor: Destruct function
779 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
780 * @_sk_redir: socket redirection information for skmsg
781 * @_nfct: Associated connection, if any (with nfctinfo bits)
782 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
783 * @skb_iif: ifindex of device we arrived on
784 * @tc_index: Traffic control index
785 * @hash: the packet hash
786 * @queue_mapping: Queue mapping for multiqueue devices
787 * @head_frag: skb was allocated from page fragments,
788 * not allocated by kmalloc() or vmalloc().
789 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
790 * @pp_recycle: mark the packet for recycling instead of freeing (implies
791 * page_pool support on driver)
792 * @active_extensions: active extensions (skb_ext_id types)
793 * @ndisc_nodetype: router type (from link layer)
794 * @ooo_okay: allow the mapping of a socket to a queue to be changed
795 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
796 * ports.
797 * @sw_hash: indicates hash was computed in software stack
798 * @wifi_acked_valid: wifi_acked was set
799 * @wifi_acked: whether frame was acked on wifi or not
800 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
801 * @encapsulation: indicates the inner headers in the skbuff are valid
802 * @encap_hdr_csum: software checksum is needed
803 * @csum_valid: checksum is already valid
804 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
805 * @csum_complete_sw: checksum was completed by software
806 * @csum_level: indicates the number of consecutive checksums found in
807 * the packet minus one that have been verified as
808 * CHECKSUM_UNNECESSARY (max 3)
809 * @dst_pending_confirm: need to confirm neighbour
810 * @decrypted: Decrypted SKB
811 * @slow_gro: state present at GRO time, slower prepare step required
812 * @tstamp_type: When set, skb->tstamp has the
813 * delivery_time clock base of skb->tstamp.
814 * @napi_id: id of the NAPI struct this skb came from
815 * @sender_cpu: (aka @napi_id) source CPU in XPS
816 * @alloc_cpu: CPU which did the skb allocation.
817 * @secmark: security marking
818 * @mark: Generic packet mark
819 * @reserved_tailroom: (aka @mark) number of bytes of free space available
820 * at the tail of an sk_buff
821 * @vlan_all: vlan fields (proto & tci)
822 * @vlan_proto: vlan encapsulation protocol
823 * @vlan_tci: vlan tag control information
824 * @inner_protocol: Protocol (encapsulation)
825 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
826 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
827 * @inner_transport_header: Inner transport layer header (encapsulation)
828 * @inner_network_header: Network layer header (encapsulation)
829 * @inner_mac_header: Link layer header (encapsulation)
830 * @transport_header: Transport layer header
831 * @network_header: Network layer header
832 * @mac_header: Link layer header
833 * @kcov_handle: KCOV remote handle for remote coverage collection
834 * @tail: Tail pointer
835 * @end: End pointer
836 * @head: Head of buffer
837 * @data: Data head pointer
838 * @truesize: Buffer size
839 * @users: User count - see {datagram,tcp}.c
840 * @extensions: allocated extensions, valid if active_extensions is nonzero
841 */
842
843 struct sk_buff {
844 union {
845 struct {
846 /* These two members must be first to match sk_buff_head. */
847 struct sk_buff *next;
848 struct sk_buff *prev;
849
850 union {
851 struct net_device *dev;
852 /* Some protocols might use this space to store information,
853 * while device pointer would be NULL.
854 * UDP receive path is one user.
855 */
856 unsigned long dev_scratch;
857 };
858 };
859 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
860 struct list_head list;
861 struct llist_node ll_node;
862 };
863
864 struct sock *sk;
865
866 union {
867 ktime_t tstamp;
868 u64 skb_mstamp_ns; /* earliest departure time */
869 };
870 /*
871 * This is the control buffer. It is free to use for every
872 * layer. Please put your private variables there. If you
873 * want to keep them across layers you have to do a skb_clone()
874 * first. This is owned by whoever has the skb queued ATM.
875 */
876 char cb[48] __aligned(8);
877
878 union {
879 struct {
880 unsigned long _skb_refdst;
881 void (*destructor)(struct sk_buff *skb);
882 };
883 struct list_head tcp_tsorted_anchor;
884 #ifdef CONFIG_NET_SOCK_MSG
885 unsigned long _sk_redir;
886 #endif
887 };
888
889 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
890 unsigned long _nfct;
891 #endif
892 unsigned int len,
893 data_len;
894 __u16 mac_len,
895 hdr_len;
896
897 /* Following fields are _not_ copied in __copy_skb_header()
898 * Note that queue_mapping is here mostly to fill a hole.
899 */
900 __u16 queue_mapping;
901
902 /* if you move cloned around you also must adapt those constants */
903 #ifdef __BIG_ENDIAN_BITFIELD
904 #define CLONED_MASK (1 << 7)
905 #else
906 #define CLONED_MASK 1
907 #endif
908 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
909
910 /* private: */
911 __u8 __cloned_offset[0];
912 /* public: */
913 __u8 cloned:1,
914 nohdr:1,
915 fclone:2,
916 peeked:1,
917 head_frag:1,
918 pfmemalloc:1,
919 pp_recycle:1; /* page_pool recycle indicator */
920 #ifdef CONFIG_SKB_EXTENSIONS
921 __u8 active_extensions;
922 #endif
923
924 /* Fields enclosed in headers group are copied
925 * using a single memcpy() in __copy_skb_header()
926 */
927 struct_group(headers,
928
929 /* private: */
930 __u8 __pkt_type_offset[0];
931 /* public: */
932 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
933 __u8 ignore_df:1;
934 __u8 dst_pending_confirm:1;
935 __u8 ip_summed:2;
936 __u8 ooo_okay:1;
937
938 /* private: */
939 __u8 __mono_tc_offset[0];
940 /* public: */
941 __u8 tstamp_type:1; /* See skb_tstamp_type */
942 #ifdef CONFIG_NET_XGRESS
943 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
944 __u8 tc_skip_classify:1;
945 #endif
946 __u8 remcsum_offload:1;
947 __u8 csum_complete_sw:1;
948 __u8 csum_level:2;
949 __u8 inner_protocol_type:1;
950
951 __u8 l4_hash:1;
952 __u8 sw_hash:1;
953 #ifdef CONFIG_WIRELESS
954 __u8 wifi_acked_valid:1;
955 __u8 wifi_acked:1;
956 #endif
957 __u8 no_fcs:1;
958 /* Indicates the inner headers are valid in the skbuff. */
959 __u8 encapsulation:1;
960 __u8 encap_hdr_csum:1;
961 __u8 csum_valid:1;
962 #ifdef CONFIG_IPV6_NDISC_NODETYPE
963 __u8 ndisc_nodetype:2;
964 #endif
965
966 #if IS_ENABLED(CONFIG_IP_VS)
967 __u8 ipvs_property:1;
968 #endif
969 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
970 __u8 nf_trace:1;
971 #endif
972 #ifdef CONFIG_NET_SWITCHDEV
973 __u8 offload_fwd_mark:1;
974 __u8 offload_l3_fwd_mark:1;
975 #endif
976 __u8 redirected:1;
977 #ifdef CONFIG_NET_REDIRECT
978 __u8 from_ingress:1;
979 #endif
980 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
981 __u8 nf_skip_egress:1;
982 #endif
983 #ifdef CONFIG_TLS_DEVICE
984 __u8 decrypted:1;
985 #endif
986 __u8 slow_gro:1;
987 #if IS_ENABLED(CONFIG_IP_SCTP)
988 __u8 csum_not_inet:1;
989 #endif
990
991 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
992 __u16 tc_index; /* traffic control index */
993 #endif
994
995 u16 alloc_cpu;
996
997 union {
998 __wsum csum;
999 struct {
1000 __u16 csum_start;
1001 __u16 csum_offset;
1002 };
1003 };
1004 __u32 priority;
1005 int skb_iif;
1006 __u32 hash;
1007 union {
1008 u32 vlan_all;
1009 struct {
1010 __be16 vlan_proto;
1011 __u16 vlan_tci;
1012 };
1013 };
1014 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1015 union {
1016 unsigned int napi_id;
1017 unsigned int sender_cpu;
1018 };
1019 #endif
1020 #ifdef CONFIG_NETWORK_SECMARK
1021 __u32 secmark;
1022 #endif
1023
1024 union {
1025 __u32 mark;
1026 __u32 reserved_tailroom;
1027 };
1028
1029 union {
1030 __be16 inner_protocol;
1031 __u8 inner_ipproto;
1032 };
1033
1034 __u16 inner_transport_header;
1035 __u16 inner_network_header;
1036 __u16 inner_mac_header;
1037
1038 __be16 protocol;
1039 __u16 transport_header;
1040 __u16 network_header;
1041 __u16 mac_header;
1042
1043 #ifdef CONFIG_KCOV
1044 u64 kcov_handle;
1045 #endif
1046
1047 ); /* end headers group */
1048
1049 /* These elements must be at the end, see alloc_skb() for details. */
1050 sk_buff_data_t tail;
1051 sk_buff_data_t end;
1052 unsigned char *head,
1053 *data;
1054 unsigned int truesize;
1055 refcount_t users;
1056
1057 #ifdef CONFIG_SKB_EXTENSIONS
1058 /* only useable after checking ->active_extensions != 0 */
1059 struct skb_ext *extensions;
1060 #endif
1061 };
1062
1063 /* if you move pkt_type around you also must adapt those constants */
1064 #ifdef __BIG_ENDIAN_BITFIELD
1065 #define PKT_TYPE_MAX (7 << 5)
1066 #else
1067 #define PKT_TYPE_MAX 7
1068 #endif
1069 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1070
1071 /* if you move tc_at_ingress or mono_delivery_time
1072 * around, you also must adapt these constants.
1073 */
1074 #ifdef __BIG_ENDIAN_BITFIELD
1075 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7)
1076 #define TC_AT_INGRESS_MASK (1 << 6)
1077 #else
1078 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0)
1079 #define TC_AT_INGRESS_MASK (1 << 1)
1080 #endif
1081 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset)
1082
1083 #ifdef __KERNEL__
1084 /*
1085 * Handling routines are only of interest to the kernel
1086 */
1087
1088 #define SKB_ALLOC_FCLONE 0x01
1089 #define SKB_ALLOC_RX 0x02
1090 #define SKB_ALLOC_NAPI 0x04
1091
1092 /**
1093 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1094 * @skb: buffer
1095 */
skb_pfmemalloc(const struct sk_buff * skb)1096 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1097 {
1098 return unlikely(skb->pfmemalloc);
1099 }
1100
1101 /*
1102 * skb might have a dst pointer attached, refcounted or not.
1103 * _skb_refdst low order bit is set if refcount was _not_ taken
1104 */
1105 #define SKB_DST_NOREF 1UL
1106 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1107
1108 /**
1109 * skb_dst - returns skb dst_entry
1110 * @skb: buffer
1111 *
1112 * Returns skb dst_entry, regardless of reference taken or not.
1113 */
skb_dst(const struct sk_buff * skb)1114 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1115 {
1116 /* If refdst was not refcounted, check we still are in a
1117 * rcu_read_lock section
1118 */
1119 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1120 !rcu_read_lock_held() &&
1121 !rcu_read_lock_bh_held());
1122 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1123 }
1124
1125 /**
1126 * skb_dst_set - sets skb dst
1127 * @skb: buffer
1128 * @dst: dst entry
1129 *
1130 * Sets skb dst, assuming a reference was taken on dst and should
1131 * be released by skb_dst_drop()
1132 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1133 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1134 {
1135 skb->slow_gro |= !!dst;
1136 skb->_skb_refdst = (unsigned long)dst;
1137 }
1138
1139 /**
1140 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1141 * @skb: buffer
1142 * @dst: dst entry
1143 *
1144 * Sets skb dst, assuming a reference was not taken on dst.
1145 * If dst entry is cached, we do not take reference and dst_release
1146 * will be avoided by refdst_drop. If dst entry is not cached, we take
1147 * reference, so that last dst_release can destroy the dst immediately.
1148 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1149 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1150 {
1151 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1152 skb->slow_gro |= !!dst;
1153 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1154 }
1155
1156 /**
1157 * skb_dst_is_noref - Test if skb dst isn't refcounted
1158 * @skb: buffer
1159 */
skb_dst_is_noref(const struct sk_buff * skb)1160 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1161 {
1162 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1163 }
1164
1165 /**
1166 * skb_rtable - Returns the skb &rtable
1167 * @skb: buffer
1168 */
skb_rtable(const struct sk_buff * skb)1169 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1170 {
1171 return (struct rtable *)skb_dst(skb);
1172 }
1173
1174 /* For mangling skb->pkt_type from user space side from applications
1175 * such as nft, tc, etc, we only allow a conservative subset of
1176 * possible pkt_types to be set.
1177 */
skb_pkt_type_ok(u32 ptype)1178 static inline bool skb_pkt_type_ok(u32 ptype)
1179 {
1180 return ptype <= PACKET_OTHERHOST;
1181 }
1182
1183 /**
1184 * skb_napi_id - Returns the skb's NAPI id
1185 * @skb: buffer
1186 */
skb_napi_id(const struct sk_buff * skb)1187 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1188 {
1189 #ifdef CONFIG_NET_RX_BUSY_POLL
1190 return skb->napi_id;
1191 #else
1192 return 0;
1193 #endif
1194 }
1195
skb_wifi_acked_valid(const struct sk_buff * skb)1196 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1197 {
1198 #ifdef CONFIG_WIRELESS
1199 return skb->wifi_acked_valid;
1200 #else
1201 return 0;
1202 #endif
1203 }
1204
1205 /**
1206 * skb_unref - decrement the skb's reference count
1207 * @skb: buffer
1208 *
1209 * Returns true if we can free the skb.
1210 */
skb_unref(struct sk_buff * skb)1211 static inline bool skb_unref(struct sk_buff *skb)
1212 {
1213 if (unlikely(!skb))
1214 return false;
1215 if (likely(refcount_read(&skb->users) == 1))
1216 smp_rmb();
1217 else if (likely(!refcount_dec_and_test(&skb->users)))
1218 return false;
1219
1220 return true;
1221 }
1222
1223 void __fix_address
1224 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1225
1226 /**
1227 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1228 * @skb: buffer to free
1229 */
kfree_skb(struct sk_buff * skb)1230 static inline void kfree_skb(struct sk_buff *skb)
1231 {
1232 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1233 }
1234
1235 void skb_release_head_state(struct sk_buff *skb);
1236 void kfree_skb_list_reason(struct sk_buff *segs,
1237 enum skb_drop_reason reason);
1238 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1239 void skb_tx_error(struct sk_buff *skb);
1240
kfree_skb_list(struct sk_buff * segs)1241 static inline void kfree_skb_list(struct sk_buff *segs)
1242 {
1243 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1244 }
1245
1246 #ifdef CONFIG_TRACEPOINTS
1247 void consume_skb(struct sk_buff *skb);
1248 #else
consume_skb(struct sk_buff * skb)1249 static inline void consume_skb(struct sk_buff *skb)
1250 {
1251 return kfree_skb(skb);
1252 }
1253 #endif
1254
1255 void __consume_stateless_skb(struct sk_buff *skb);
1256 void __kfree_skb(struct sk_buff *skb);
1257 extern struct kmem_cache *skbuff_cache;
1258
1259 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1260 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1261 bool *fragstolen, int *delta_truesize);
1262
1263 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1264 int node);
1265 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1266 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1267 struct sk_buff *build_skb_around(struct sk_buff *skb,
1268 void *data, unsigned int frag_size);
1269 void skb_attempt_defer_free(struct sk_buff *skb);
1270
1271 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1272 struct sk_buff *slab_build_skb(void *data);
1273
1274 /**
1275 * alloc_skb - allocate a network buffer
1276 * @size: size to allocate
1277 * @priority: allocation mask
1278 *
1279 * This function is a convenient wrapper around __alloc_skb().
1280 */
alloc_skb(unsigned int size,gfp_t priority)1281 static inline struct sk_buff *alloc_skb(unsigned int size,
1282 gfp_t priority)
1283 {
1284 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1285 }
1286
1287 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1288 unsigned long data_len,
1289 int max_page_order,
1290 int *errcode,
1291 gfp_t gfp_mask);
1292 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1293
1294 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1295 struct sk_buff_fclones {
1296 struct sk_buff skb1;
1297
1298 struct sk_buff skb2;
1299
1300 refcount_t fclone_ref;
1301 };
1302
1303 /**
1304 * skb_fclone_busy - check if fclone is busy
1305 * @sk: socket
1306 * @skb: buffer
1307 *
1308 * Returns true if skb is a fast clone, and its clone is not freed.
1309 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1310 * so we also check that didn't happen.
1311 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1312 static inline bool skb_fclone_busy(const struct sock *sk,
1313 const struct sk_buff *skb)
1314 {
1315 const struct sk_buff_fclones *fclones;
1316
1317 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1318
1319 return skb->fclone == SKB_FCLONE_ORIG &&
1320 refcount_read(&fclones->fclone_ref) > 1 &&
1321 READ_ONCE(fclones->skb2.sk) == sk;
1322 }
1323
1324 /**
1325 * alloc_skb_fclone - allocate a network buffer from fclone cache
1326 * @size: size to allocate
1327 * @priority: allocation mask
1328 *
1329 * This function is a convenient wrapper around __alloc_skb().
1330 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1331 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1332 gfp_t priority)
1333 {
1334 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1335 }
1336
1337 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1338 void skb_headers_offset_update(struct sk_buff *skb, int off);
1339 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1340 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1341 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1342 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1343 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1344 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1345 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1346 gfp_t gfp_mask)
1347 {
1348 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1349 }
1350
1351 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1352 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1353 unsigned int headroom);
1354 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1355 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1356 int newtailroom, gfp_t priority);
1357 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1358 int offset, int len);
1359 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1360 int offset, int len);
1361 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1362 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1363
1364 /**
1365 * skb_pad - zero pad the tail of an skb
1366 * @skb: buffer to pad
1367 * @pad: space to pad
1368 *
1369 * Ensure that a buffer is followed by a padding area that is zero
1370 * filled. Used by network drivers which may DMA or transfer data
1371 * beyond the buffer end onto the wire.
1372 *
1373 * May return error in out of memory cases. The skb is freed on error.
1374 */
skb_pad(struct sk_buff * skb,int pad)1375 static inline int skb_pad(struct sk_buff *skb, int pad)
1376 {
1377 return __skb_pad(skb, pad, true);
1378 }
1379 #define dev_kfree_skb(a) consume_skb(a)
1380
1381 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1382 int offset, size_t size, size_t max_frags);
1383
1384 struct skb_seq_state {
1385 __u32 lower_offset;
1386 __u32 upper_offset;
1387 __u32 frag_idx;
1388 __u32 stepped_offset;
1389 struct sk_buff *root_skb;
1390 struct sk_buff *cur_skb;
1391 __u8 *frag_data;
1392 __u32 frag_off;
1393 };
1394
1395 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1396 unsigned int to, struct skb_seq_state *st);
1397 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1398 struct skb_seq_state *st);
1399 void skb_abort_seq_read(struct skb_seq_state *st);
1400
1401 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1402 unsigned int to, struct ts_config *config);
1403
1404 /*
1405 * Packet hash types specify the type of hash in skb_set_hash.
1406 *
1407 * Hash types refer to the protocol layer addresses which are used to
1408 * construct a packet's hash. The hashes are used to differentiate or identify
1409 * flows of the protocol layer for the hash type. Hash types are either
1410 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1411 *
1412 * Properties of hashes:
1413 *
1414 * 1) Two packets in different flows have different hash values
1415 * 2) Two packets in the same flow should have the same hash value
1416 *
1417 * A hash at a higher layer is considered to be more specific. A driver should
1418 * set the most specific hash possible.
1419 *
1420 * A driver cannot indicate a more specific hash than the layer at which a hash
1421 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1422 *
1423 * A driver may indicate a hash level which is less specific than the
1424 * actual layer the hash was computed on. For instance, a hash computed
1425 * at L4 may be considered an L3 hash. This should only be done if the
1426 * driver can't unambiguously determine that the HW computed the hash at
1427 * the higher layer. Note that the "should" in the second property above
1428 * permits this.
1429 */
1430 enum pkt_hash_types {
1431 PKT_HASH_TYPE_NONE, /* Undefined type */
1432 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1433 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1434 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1435 };
1436
skb_clear_hash(struct sk_buff * skb)1437 static inline void skb_clear_hash(struct sk_buff *skb)
1438 {
1439 skb->hash = 0;
1440 skb->sw_hash = 0;
1441 skb->l4_hash = 0;
1442 }
1443
skb_clear_hash_if_not_l4(struct sk_buff * skb)1444 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1445 {
1446 if (!skb->l4_hash)
1447 skb_clear_hash(skb);
1448 }
1449
1450 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1451 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1452 {
1453 skb->l4_hash = is_l4;
1454 skb->sw_hash = is_sw;
1455 skb->hash = hash;
1456 }
1457
1458 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1459 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1460 {
1461 /* Used by drivers to set hash from HW */
1462 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1463 }
1464
1465 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1466 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1467 {
1468 __skb_set_hash(skb, hash, true, is_l4);
1469 }
1470
1471 void __skb_get_hash(struct sk_buff *skb);
1472 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1473 u32 skb_get_poff(const struct sk_buff *skb);
1474 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1475 const struct flow_keys_basic *keys, int hlen);
1476 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1477 const void *data, int hlen_proto);
1478
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1479 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1480 int thoff, u8 ip_proto)
1481 {
1482 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1483 }
1484
1485 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1486 const struct flow_dissector_key *key,
1487 unsigned int key_count);
1488
1489 struct bpf_flow_dissector;
1490 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1491 __be16 proto, int nhoff, int hlen, unsigned int flags);
1492
1493 bool __skb_flow_dissect(const struct net *net,
1494 const struct sk_buff *skb,
1495 struct flow_dissector *flow_dissector,
1496 void *target_container, const void *data,
1497 __be16 proto, int nhoff, int hlen, unsigned int flags);
1498
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1499 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1500 struct flow_dissector *flow_dissector,
1501 void *target_container, unsigned int flags)
1502 {
1503 return __skb_flow_dissect(NULL, skb, flow_dissector,
1504 target_container, NULL, 0, 0, 0, flags);
1505 }
1506
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1507 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1508 struct flow_keys *flow,
1509 unsigned int flags)
1510 {
1511 memset(flow, 0, sizeof(*flow));
1512 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1513 flow, NULL, 0, 0, 0, flags);
1514 }
1515
1516 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1517 skb_flow_dissect_flow_keys_basic(const struct net *net,
1518 const struct sk_buff *skb,
1519 struct flow_keys_basic *flow,
1520 const void *data, __be16 proto,
1521 int nhoff, int hlen, unsigned int flags)
1522 {
1523 memset(flow, 0, sizeof(*flow));
1524 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1525 data, proto, nhoff, hlen, flags);
1526 }
1527
1528 void skb_flow_dissect_meta(const struct sk_buff *skb,
1529 struct flow_dissector *flow_dissector,
1530 void *target_container);
1531
1532 /* Gets a skb connection tracking info, ctinfo map should be a
1533 * map of mapsize to translate enum ip_conntrack_info states
1534 * to user states.
1535 */
1536 void
1537 skb_flow_dissect_ct(const struct sk_buff *skb,
1538 struct flow_dissector *flow_dissector,
1539 void *target_container,
1540 u16 *ctinfo_map, size_t mapsize,
1541 bool post_ct, u16 zone);
1542 void
1543 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1544 struct flow_dissector *flow_dissector,
1545 void *target_container);
1546
1547 void skb_flow_dissect_hash(const struct sk_buff *skb,
1548 struct flow_dissector *flow_dissector,
1549 void *target_container);
1550
skb_get_hash(struct sk_buff * skb)1551 static inline __u32 skb_get_hash(struct sk_buff *skb)
1552 {
1553 if (!skb->l4_hash && !skb->sw_hash)
1554 __skb_get_hash(skb);
1555
1556 return skb->hash;
1557 }
1558
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1559 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1560 {
1561 if (!skb->l4_hash && !skb->sw_hash) {
1562 struct flow_keys keys;
1563 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1564
1565 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1566 }
1567
1568 return skb->hash;
1569 }
1570
1571 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1572 const siphash_key_t *perturb);
1573
skb_get_hash_raw(const struct sk_buff * skb)1574 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1575 {
1576 return skb->hash;
1577 }
1578
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1579 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1580 {
1581 to->hash = from->hash;
1582 to->sw_hash = from->sw_hash;
1583 to->l4_hash = from->l4_hash;
1584 };
1585
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1586 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1587 const struct sk_buff *skb2)
1588 {
1589 #ifdef CONFIG_TLS_DEVICE
1590 return skb2->decrypted - skb1->decrypted;
1591 #else
1592 return 0;
1593 #endif
1594 }
1595
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1596 static inline void skb_copy_decrypted(struct sk_buff *to,
1597 const struct sk_buff *from)
1598 {
1599 #ifdef CONFIG_TLS_DEVICE
1600 to->decrypted = from->decrypted;
1601 #endif
1602 }
1603
1604 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1605 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1606 {
1607 return skb->head + skb->end;
1608 }
1609
skb_end_offset(const struct sk_buff * skb)1610 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1611 {
1612 return skb->end;
1613 }
1614
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1615 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1616 {
1617 skb->end = offset;
1618 }
1619 #else
skb_end_pointer(const struct sk_buff * skb)1620 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1621 {
1622 return skb->end;
1623 }
1624
skb_end_offset(const struct sk_buff * skb)1625 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1626 {
1627 return skb->end - skb->head;
1628 }
1629
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1630 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1631 {
1632 skb->end = skb->head + offset;
1633 }
1634 #endif
1635
1636 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1637 struct ubuf_info *uarg);
1638
1639 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1640
1641 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1642 bool success);
1643
1644 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1645 struct sk_buff *skb, struct iov_iter *from,
1646 size_t length);
1647
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1648 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1649 struct msghdr *msg, int len)
1650 {
1651 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1652 }
1653
1654 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1655 struct msghdr *msg, int len,
1656 struct ubuf_info *uarg);
1657
1658 /* Internal */
1659 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1660
skb_hwtstamps(struct sk_buff * skb)1661 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1662 {
1663 return &skb_shinfo(skb)->hwtstamps;
1664 }
1665
skb_zcopy(struct sk_buff * skb)1666 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1667 {
1668 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1669
1670 return is_zcopy ? skb_uarg(skb) : NULL;
1671 }
1672
skb_zcopy_pure(const struct sk_buff * skb)1673 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1674 {
1675 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1676 }
1677
skb_zcopy_managed(const struct sk_buff * skb)1678 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1679 {
1680 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1681 }
1682
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1683 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1684 const struct sk_buff *skb2)
1685 {
1686 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1687 }
1688
net_zcopy_get(struct ubuf_info * uarg)1689 static inline void net_zcopy_get(struct ubuf_info *uarg)
1690 {
1691 refcount_inc(&uarg->refcnt);
1692 }
1693
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1694 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1695 {
1696 skb_shinfo(skb)->destructor_arg = uarg;
1697 skb_shinfo(skb)->flags |= uarg->flags;
1698 }
1699
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1700 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1701 bool *have_ref)
1702 {
1703 if (skb && uarg && !skb_zcopy(skb)) {
1704 if (unlikely(have_ref && *have_ref))
1705 *have_ref = false;
1706 else
1707 net_zcopy_get(uarg);
1708 skb_zcopy_init(skb, uarg);
1709 }
1710 }
1711
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1712 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1713 {
1714 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1715 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1716 }
1717
skb_zcopy_is_nouarg(struct sk_buff * skb)1718 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1719 {
1720 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1721 }
1722
skb_zcopy_get_nouarg(struct sk_buff * skb)1723 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1724 {
1725 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1726 }
1727
net_zcopy_put(struct ubuf_info * uarg)1728 static inline void net_zcopy_put(struct ubuf_info *uarg)
1729 {
1730 if (uarg)
1731 uarg->callback(NULL, uarg, true);
1732 }
1733
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1734 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1735 {
1736 if (uarg) {
1737 if (uarg->callback == msg_zerocopy_callback)
1738 msg_zerocopy_put_abort(uarg, have_uref);
1739 else if (have_uref)
1740 net_zcopy_put(uarg);
1741 }
1742 }
1743
1744 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1745 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1746 {
1747 struct ubuf_info *uarg = skb_zcopy(skb);
1748
1749 if (uarg) {
1750 if (!skb_zcopy_is_nouarg(skb))
1751 uarg->callback(skb, uarg, zerocopy_success);
1752
1753 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1754 }
1755 }
1756
1757 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1758
skb_zcopy_downgrade_managed(struct sk_buff * skb)1759 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1760 {
1761 if (unlikely(skb_zcopy_managed(skb)))
1762 __skb_zcopy_downgrade_managed(skb);
1763 }
1764
skb_mark_not_on_list(struct sk_buff * skb)1765 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1766 {
1767 skb->next = NULL;
1768 }
1769
skb_poison_list(struct sk_buff * skb)1770 static inline void skb_poison_list(struct sk_buff *skb)
1771 {
1772 #ifdef CONFIG_DEBUG_NET
1773 skb->next = SKB_LIST_POISON_NEXT;
1774 #endif
1775 }
1776
1777 /* Iterate through singly-linked GSO fragments of an skb. */
1778 #define skb_list_walk_safe(first, skb, next_skb) \
1779 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1780 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1781
skb_list_del_init(struct sk_buff * skb)1782 static inline void skb_list_del_init(struct sk_buff *skb)
1783 {
1784 __list_del_entry(&skb->list);
1785 skb_mark_not_on_list(skb);
1786 }
1787
1788 /**
1789 * skb_queue_empty - check if a queue is empty
1790 * @list: queue head
1791 *
1792 * Returns true if the queue is empty, false otherwise.
1793 */
skb_queue_empty(const struct sk_buff_head * list)1794 static inline int skb_queue_empty(const struct sk_buff_head *list)
1795 {
1796 return list->next == (const struct sk_buff *) list;
1797 }
1798
1799 /**
1800 * skb_queue_empty_lockless - check if a queue is empty
1801 * @list: queue head
1802 *
1803 * Returns true if the queue is empty, false otherwise.
1804 * This variant can be used in lockless contexts.
1805 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1806 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1807 {
1808 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1809 }
1810
1811
1812 /**
1813 * skb_queue_is_last - check if skb is the last entry in the queue
1814 * @list: queue head
1815 * @skb: buffer
1816 *
1817 * Returns true if @skb is the last buffer on the list.
1818 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1819 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1820 const struct sk_buff *skb)
1821 {
1822 return skb->next == (const struct sk_buff *) list;
1823 }
1824
1825 /**
1826 * skb_queue_is_first - check if skb is the first entry in the queue
1827 * @list: queue head
1828 * @skb: buffer
1829 *
1830 * Returns true if @skb is the first buffer on the list.
1831 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1832 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1833 const struct sk_buff *skb)
1834 {
1835 return skb->prev == (const struct sk_buff *) list;
1836 }
1837
1838 /**
1839 * skb_queue_next - return the next packet in the queue
1840 * @list: queue head
1841 * @skb: current buffer
1842 *
1843 * Return the next packet in @list after @skb. It is only valid to
1844 * call this if skb_queue_is_last() evaluates to false.
1845 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1846 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1847 const struct sk_buff *skb)
1848 {
1849 /* This BUG_ON may seem severe, but if we just return then we
1850 * are going to dereference garbage.
1851 */
1852 BUG_ON(skb_queue_is_last(list, skb));
1853 return skb->next;
1854 }
1855
1856 /**
1857 * skb_queue_prev - return the prev packet in the queue
1858 * @list: queue head
1859 * @skb: current buffer
1860 *
1861 * Return the prev packet in @list before @skb. It is only valid to
1862 * call this if skb_queue_is_first() evaluates to false.
1863 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1864 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1865 const struct sk_buff *skb)
1866 {
1867 /* This BUG_ON may seem severe, but if we just return then we
1868 * are going to dereference garbage.
1869 */
1870 BUG_ON(skb_queue_is_first(list, skb));
1871 return skb->prev;
1872 }
1873
1874 /**
1875 * skb_get - reference buffer
1876 * @skb: buffer to reference
1877 *
1878 * Makes another reference to a socket buffer and returns a pointer
1879 * to the buffer.
1880 */
skb_get(struct sk_buff * skb)1881 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1882 {
1883 refcount_inc(&skb->users);
1884 return skb;
1885 }
1886
1887 /*
1888 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1889 */
1890
1891 /**
1892 * skb_cloned - is the buffer a clone
1893 * @skb: buffer to check
1894 *
1895 * Returns true if the buffer was generated with skb_clone() and is
1896 * one of multiple shared copies of the buffer. Cloned buffers are
1897 * shared data so must not be written to under normal circumstances.
1898 */
skb_cloned(const struct sk_buff * skb)1899 static inline int skb_cloned(const struct sk_buff *skb)
1900 {
1901 return skb->cloned &&
1902 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1903 }
1904
skb_unclone(struct sk_buff * skb,gfp_t pri)1905 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1906 {
1907 might_sleep_if(gfpflags_allow_blocking(pri));
1908
1909 if (skb_cloned(skb))
1910 return pskb_expand_head(skb, 0, 0, pri);
1911
1912 return 0;
1913 }
1914
1915 /* This variant of skb_unclone() makes sure skb->truesize
1916 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1917 *
1918 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1919 * when various debugging features are in place.
1920 */
1921 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1922 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1923 {
1924 might_sleep_if(gfpflags_allow_blocking(pri));
1925
1926 if (skb_cloned(skb))
1927 return __skb_unclone_keeptruesize(skb, pri);
1928 return 0;
1929 }
1930
1931 /**
1932 * skb_header_cloned - is the header a clone
1933 * @skb: buffer to check
1934 *
1935 * Returns true if modifying the header part of the buffer requires
1936 * the data to be copied.
1937 */
skb_header_cloned(const struct sk_buff * skb)1938 static inline int skb_header_cloned(const struct sk_buff *skb)
1939 {
1940 int dataref;
1941
1942 if (!skb->cloned)
1943 return 0;
1944
1945 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1946 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1947 return dataref != 1;
1948 }
1949
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1950 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1951 {
1952 might_sleep_if(gfpflags_allow_blocking(pri));
1953
1954 if (skb_header_cloned(skb))
1955 return pskb_expand_head(skb, 0, 0, pri);
1956
1957 return 0;
1958 }
1959
1960 /**
1961 * __skb_header_release() - allow clones to use the headroom
1962 * @skb: buffer to operate on
1963 *
1964 * See "DOC: dataref and headerless skbs".
1965 */
__skb_header_release(struct sk_buff * skb)1966 static inline void __skb_header_release(struct sk_buff *skb)
1967 {
1968 skb->nohdr = 1;
1969 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1970 }
1971
1972
1973 /**
1974 * skb_shared - is the buffer shared
1975 * @skb: buffer to check
1976 *
1977 * Returns true if more than one person has a reference to this
1978 * buffer.
1979 */
skb_shared(const struct sk_buff * skb)1980 static inline int skb_shared(const struct sk_buff *skb)
1981 {
1982 return refcount_read(&skb->users) != 1;
1983 }
1984
1985 /**
1986 * skb_share_check - check if buffer is shared and if so clone it
1987 * @skb: buffer to check
1988 * @pri: priority for memory allocation
1989 *
1990 * If the buffer is shared the buffer is cloned and the old copy
1991 * drops a reference. A new clone with a single reference is returned.
1992 * If the buffer is not shared the original buffer is returned. When
1993 * being called from interrupt status or with spinlocks held pri must
1994 * be GFP_ATOMIC.
1995 *
1996 * NULL is returned on a memory allocation failure.
1997 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1998 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1999 {
2000 might_sleep_if(gfpflags_allow_blocking(pri));
2001 if (skb_shared(skb)) {
2002 struct sk_buff *nskb = skb_clone(skb, pri);
2003
2004 if (likely(nskb))
2005 consume_skb(skb);
2006 else
2007 kfree_skb(skb);
2008 skb = nskb;
2009 }
2010 return skb;
2011 }
2012
2013 /*
2014 * Copy shared buffers into a new sk_buff. We effectively do COW on
2015 * packets to handle cases where we have a local reader and forward
2016 * and a couple of other messy ones. The normal one is tcpdumping
2017 * a packet that's being forwarded.
2018 */
2019
2020 /**
2021 * skb_unshare - make a copy of a shared buffer
2022 * @skb: buffer to check
2023 * @pri: priority for memory allocation
2024 *
2025 * If the socket buffer is a clone then this function creates a new
2026 * copy of the data, drops a reference count on the old copy and returns
2027 * the new copy with the reference count at 1. If the buffer is not a clone
2028 * the original buffer is returned. When called with a spinlock held or
2029 * from interrupt state @pri must be %GFP_ATOMIC
2030 *
2031 * %NULL is returned on a memory allocation failure.
2032 */
skb_unshare(struct sk_buff * skb,gfp_t pri)2033 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2034 gfp_t pri)
2035 {
2036 might_sleep_if(gfpflags_allow_blocking(pri));
2037 if (skb_cloned(skb)) {
2038 struct sk_buff *nskb = skb_copy(skb, pri);
2039
2040 /* Free our shared copy */
2041 if (likely(nskb))
2042 consume_skb(skb);
2043 else
2044 kfree_skb(skb);
2045 skb = nskb;
2046 }
2047 return skb;
2048 }
2049
2050 /**
2051 * skb_peek - peek at the head of an &sk_buff_head
2052 * @list_: list to peek at
2053 *
2054 * Peek an &sk_buff. Unlike most other operations you _MUST_
2055 * be careful with this one. A peek leaves the buffer on the
2056 * list and someone else may run off with it. You must hold
2057 * the appropriate locks or have a private queue to do this.
2058 *
2059 * Returns %NULL for an empty list or a pointer to the head element.
2060 * The reference count is not incremented and the reference is therefore
2061 * volatile. Use with caution.
2062 */
skb_peek(const struct sk_buff_head * list_)2063 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2064 {
2065 struct sk_buff *skb = list_->next;
2066
2067 if (skb == (struct sk_buff *)list_)
2068 skb = NULL;
2069 return skb;
2070 }
2071
2072 /**
2073 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2074 * @list_: list to peek at
2075 *
2076 * Like skb_peek(), but the caller knows that the list is not empty.
2077 */
__skb_peek(const struct sk_buff_head * list_)2078 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2079 {
2080 return list_->next;
2081 }
2082
2083 /**
2084 * skb_peek_next - peek skb following the given one from a queue
2085 * @skb: skb to start from
2086 * @list_: list to peek at
2087 *
2088 * Returns %NULL when the end of the list is met or a pointer to the
2089 * next element. The reference count is not incremented and the
2090 * reference is therefore volatile. Use with caution.
2091 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2092 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2093 const struct sk_buff_head *list_)
2094 {
2095 struct sk_buff *next = skb->next;
2096
2097 if (next == (struct sk_buff *)list_)
2098 next = NULL;
2099 return next;
2100 }
2101
2102 /**
2103 * skb_peek_tail - peek at the tail of an &sk_buff_head
2104 * @list_: list to peek at
2105 *
2106 * Peek an &sk_buff. Unlike most other operations you _MUST_
2107 * be careful with this one. A peek leaves the buffer on the
2108 * list and someone else may run off with it. You must hold
2109 * the appropriate locks or have a private queue to do this.
2110 *
2111 * Returns %NULL for an empty list or a pointer to the tail element.
2112 * The reference count is not incremented and the reference is therefore
2113 * volatile. Use with caution.
2114 */
skb_peek_tail(const struct sk_buff_head * list_)2115 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2116 {
2117 struct sk_buff *skb = READ_ONCE(list_->prev);
2118
2119 if (skb == (struct sk_buff *)list_)
2120 skb = NULL;
2121 return skb;
2122
2123 }
2124
2125 /**
2126 * skb_queue_len - get queue length
2127 * @list_: list to measure
2128 *
2129 * Return the length of an &sk_buff queue.
2130 */
skb_queue_len(const struct sk_buff_head * list_)2131 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2132 {
2133 return list_->qlen;
2134 }
2135
2136 /**
2137 * skb_queue_len_lockless - get queue length
2138 * @list_: list to measure
2139 *
2140 * Return the length of an &sk_buff queue.
2141 * This variant can be used in lockless contexts.
2142 */
skb_queue_len_lockless(const struct sk_buff_head * list_)2143 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2144 {
2145 return READ_ONCE(list_->qlen);
2146 }
2147
2148 /**
2149 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2150 * @list: queue to initialize
2151 *
2152 * This initializes only the list and queue length aspects of
2153 * an sk_buff_head object. This allows to initialize the list
2154 * aspects of an sk_buff_head without reinitializing things like
2155 * the spinlock. It can also be used for on-stack sk_buff_head
2156 * objects where the spinlock is known to not be used.
2157 */
__skb_queue_head_init(struct sk_buff_head * list)2158 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2159 {
2160 list->prev = list->next = (struct sk_buff *)list;
2161 list->qlen = 0;
2162 }
2163
2164 /*
2165 * This function creates a split out lock class for each invocation;
2166 * this is needed for now since a whole lot of users of the skb-queue
2167 * infrastructure in drivers have different locking usage (in hardirq)
2168 * than the networking core (in softirq only). In the long run either the
2169 * network layer or drivers should need annotation to consolidate the
2170 * main types of usage into 3 classes.
2171 */
skb_queue_head_init(struct sk_buff_head * list)2172 static inline void skb_queue_head_init(struct sk_buff_head *list)
2173 {
2174 spin_lock_init(&list->lock);
2175 __skb_queue_head_init(list);
2176 }
2177
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2178 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2179 struct lock_class_key *class)
2180 {
2181 skb_queue_head_init(list);
2182 lockdep_set_class(&list->lock, class);
2183 }
2184
2185 /*
2186 * Insert an sk_buff on a list.
2187 *
2188 * The "__skb_xxxx()" functions are the non-atomic ones that
2189 * can only be called with interrupts disabled.
2190 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2191 static inline void __skb_insert(struct sk_buff *newsk,
2192 struct sk_buff *prev, struct sk_buff *next,
2193 struct sk_buff_head *list)
2194 {
2195 /* See skb_queue_empty_lockless() and skb_peek_tail()
2196 * for the opposite READ_ONCE()
2197 */
2198 WRITE_ONCE(newsk->next, next);
2199 WRITE_ONCE(newsk->prev, prev);
2200 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2201 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2202 WRITE_ONCE(list->qlen, list->qlen + 1);
2203 }
2204
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2205 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2206 struct sk_buff *prev,
2207 struct sk_buff *next)
2208 {
2209 struct sk_buff *first = list->next;
2210 struct sk_buff *last = list->prev;
2211
2212 WRITE_ONCE(first->prev, prev);
2213 WRITE_ONCE(prev->next, first);
2214
2215 WRITE_ONCE(last->next, next);
2216 WRITE_ONCE(next->prev, last);
2217 }
2218
2219 /**
2220 * skb_queue_splice - join two skb lists, this is designed for stacks
2221 * @list: the new list to add
2222 * @head: the place to add it in the first list
2223 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2224 static inline void skb_queue_splice(const struct sk_buff_head *list,
2225 struct sk_buff_head *head)
2226 {
2227 if (!skb_queue_empty(list)) {
2228 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2229 head->qlen += list->qlen;
2230 }
2231 }
2232
2233 /**
2234 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2235 * @list: the new list to add
2236 * @head: the place to add it in the first list
2237 *
2238 * The list at @list is reinitialised
2239 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2240 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2241 struct sk_buff_head *head)
2242 {
2243 if (!skb_queue_empty(list)) {
2244 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2245 head->qlen += list->qlen;
2246 __skb_queue_head_init(list);
2247 }
2248 }
2249
2250 /**
2251 * skb_queue_splice_tail - join two skb lists, each list being a queue
2252 * @list: the new list to add
2253 * @head: the place to add it in the first list
2254 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2255 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2256 struct sk_buff_head *head)
2257 {
2258 if (!skb_queue_empty(list)) {
2259 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2260 head->qlen += list->qlen;
2261 }
2262 }
2263
2264 /**
2265 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2266 * @list: the new list to add
2267 * @head: the place to add it in the first list
2268 *
2269 * Each of the lists is a queue.
2270 * The list at @list is reinitialised
2271 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2272 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2273 struct sk_buff_head *head)
2274 {
2275 if (!skb_queue_empty(list)) {
2276 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2277 head->qlen += list->qlen;
2278 __skb_queue_head_init(list);
2279 }
2280 }
2281
2282 /**
2283 * __skb_queue_after - queue a buffer at the list head
2284 * @list: list to use
2285 * @prev: place after this buffer
2286 * @newsk: buffer to queue
2287 *
2288 * Queue a buffer int the middle of a list. This function takes no locks
2289 * and you must therefore hold required locks before calling it.
2290 *
2291 * A buffer cannot be placed on two lists at the same time.
2292 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2293 static inline void __skb_queue_after(struct sk_buff_head *list,
2294 struct sk_buff *prev,
2295 struct sk_buff *newsk)
2296 {
2297 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2298 }
2299
2300 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2301 struct sk_buff_head *list);
2302
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2303 static inline void __skb_queue_before(struct sk_buff_head *list,
2304 struct sk_buff *next,
2305 struct sk_buff *newsk)
2306 {
2307 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2308 }
2309
2310 /**
2311 * __skb_queue_head - queue a buffer at the list head
2312 * @list: list to use
2313 * @newsk: buffer to queue
2314 *
2315 * Queue a buffer at the start of a list. This function takes no locks
2316 * and you must therefore hold required locks before calling it.
2317 *
2318 * A buffer cannot be placed on two lists at the same time.
2319 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2320 static inline void __skb_queue_head(struct sk_buff_head *list,
2321 struct sk_buff *newsk)
2322 {
2323 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2324 }
2325 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2326
2327 /**
2328 * __skb_queue_tail - queue a buffer at the list tail
2329 * @list: list to use
2330 * @newsk: buffer to queue
2331 *
2332 * Queue a buffer at the end of a list. This function takes no locks
2333 * and you must therefore hold required locks before calling it.
2334 *
2335 * A buffer cannot be placed on two lists at the same time.
2336 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2337 static inline void __skb_queue_tail(struct sk_buff_head *list,
2338 struct sk_buff *newsk)
2339 {
2340 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2341 }
2342 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2343
2344 /*
2345 * remove sk_buff from list. _Must_ be called atomically, and with
2346 * the list known..
2347 */
2348 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2349 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2350 {
2351 struct sk_buff *next, *prev;
2352
2353 WRITE_ONCE(list->qlen, list->qlen - 1);
2354 next = skb->next;
2355 prev = skb->prev;
2356 skb->next = skb->prev = NULL;
2357 WRITE_ONCE(next->prev, prev);
2358 WRITE_ONCE(prev->next, next);
2359 }
2360
2361 /**
2362 * __skb_dequeue - remove from the head of the queue
2363 * @list: list to dequeue from
2364 *
2365 * Remove the head of the list. This function does not take any locks
2366 * so must be used with appropriate locks held only. The head item is
2367 * returned or %NULL if the list is empty.
2368 */
__skb_dequeue(struct sk_buff_head * list)2369 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2370 {
2371 struct sk_buff *skb = skb_peek(list);
2372 if (skb)
2373 __skb_unlink(skb, list);
2374 return skb;
2375 }
2376 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2377
2378 /**
2379 * __skb_dequeue_tail - remove from the tail of the queue
2380 * @list: list to dequeue from
2381 *
2382 * Remove the tail of the list. This function does not take any locks
2383 * so must be used with appropriate locks held only. The tail item is
2384 * returned or %NULL if the list is empty.
2385 */
__skb_dequeue_tail(struct sk_buff_head * list)2386 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2387 {
2388 struct sk_buff *skb = skb_peek_tail(list);
2389 if (skb)
2390 __skb_unlink(skb, list);
2391 return skb;
2392 }
2393 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2394
2395
skb_is_nonlinear(const struct sk_buff * skb)2396 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2397 {
2398 return skb->data_len;
2399 }
2400
skb_headlen(const struct sk_buff * skb)2401 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2402 {
2403 return skb->len - skb->data_len;
2404 }
2405
__skb_pagelen(const struct sk_buff * skb)2406 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2407 {
2408 unsigned int i, len = 0;
2409
2410 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2411 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2412 return len;
2413 }
2414
skb_pagelen(const struct sk_buff * skb)2415 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2416 {
2417 return skb_headlen(skb) + __skb_pagelen(skb);
2418 }
2419
skb_frag_fill_page_desc(skb_frag_t * frag,struct page * page,int off,int size)2420 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2421 struct page *page,
2422 int off, int size)
2423 {
2424 frag->bv_page = page;
2425 frag->bv_offset = off;
2426 skb_frag_size_set(frag, size);
2427 }
2428
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2429 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2430 int i, struct page *page,
2431 int off, int size)
2432 {
2433 skb_frag_t *frag = &shinfo->frags[i];
2434
2435 skb_frag_fill_page_desc(frag, page, off, size);
2436 }
2437
2438 /**
2439 * skb_len_add - adds a number to len fields of skb
2440 * @skb: buffer to add len to
2441 * @delta: number of bytes to add
2442 */
skb_len_add(struct sk_buff * skb,int delta)2443 static inline void skb_len_add(struct sk_buff *skb, int delta)
2444 {
2445 skb->len += delta;
2446 skb->data_len += delta;
2447 skb->truesize += delta;
2448 }
2449
2450 /**
2451 * __skb_fill_page_desc - initialise a paged fragment in an skb
2452 * @skb: buffer containing fragment to be initialised
2453 * @i: paged fragment index to initialise
2454 * @page: the page to use for this fragment
2455 * @off: the offset to the data with @page
2456 * @size: the length of the data
2457 *
2458 * Initialises the @i'th fragment of @skb to point to &size bytes at
2459 * offset @off within @page.
2460 *
2461 * Does not take any additional reference on the fragment.
2462 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2463 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2464 struct page *page, int off, int size)
2465 {
2466 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2467
2468 /* Propagate page pfmemalloc to the skb if we can. The problem is
2469 * that not all callers have unique ownership of the page but rely
2470 * on page_is_pfmemalloc doing the right thing(tm).
2471 */
2472 page = compound_head(page);
2473 if (page_is_pfmemalloc(page))
2474 skb->pfmemalloc = true;
2475 }
2476
2477 /**
2478 * skb_fill_page_desc - initialise a paged fragment in an skb
2479 * @skb: buffer containing fragment to be initialised
2480 * @i: paged fragment index to initialise
2481 * @page: the page to use for this fragment
2482 * @off: the offset to the data with @page
2483 * @size: the length of the data
2484 *
2485 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2486 * @skb to point to @size bytes at offset @off within @page. In
2487 * addition updates @skb such that @i is the last fragment.
2488 *
2489 * Does not take any additional reference on the fragment.
2490 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2491 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2492 struct page *page, int off, int size)
2493 {
2494 __skb_fill_page_desc(skb, i, page, off, size);
2495 skb_shinfo(skb)->nr_frags = i + 1;
2496 }
2497
2498 /**
2499 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2500 * @skb: buffer containing fragment to be initialised
2501 * @i: paged fragment index to initialise
2502 * @page: the page to use for this fragment
2503 * @off: the offset to the data with @page
2504 * @size: the length of the data
2505 *
2506 * Variant of skb_fill_page_desc() which does not deal with
2507 * pfmemalloc, if page is not owned by us.
2508 */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2509 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2510 struct page *page, int off,
2511 int size)
2512 {
2513 struct skb_shared_info *shinfo = skb_shinfo(skb);
2514
2515 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2516 shinfo->nr_frags = i + 1;
2517 }
2518
2519 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2520 int size, unsigned int truesize);
2521
2522 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2523 unsigned int truesize);
2524
2525 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2526
2527 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2528 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2529 {
2530 return skb->head + skb->tail;
2531 }
2532
skb_reset_tail_pointer(struct sk_buff * skb)2533 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2534 {
2535 skb->tail = skb->data - skb->head;
2536 }
2537
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2538 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2539 {
2540 skb_reset_tail_pointer(skb);
2541 skb->tail += offset;
2542 }
2543
2544 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2545 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2546 {
2547 return skb->tail;
2548 }
2549
skb_reset_tail_pointer(struct sk_buff * skb)2550 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2551 {
2552 skb->tail = skb->data;
2553 }
2554
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2555 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2556 {
2557 skb->tail = skb->data + offset;
2558 }
2559
2560 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2561
skb_assert_len(struct sk_buff * skb)2562 static inline void skb_assert_len(struct sk_buff *skb)
2563 {
2564 #ifdef CONFIG_DEBUG_NET
2565 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2566 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2567 #endif /* CONFIG_DEBUG_NET */
2568 }
2569
2570 /*
2571 * Add data to an sk_buff
2572 */
2573 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2574 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2575 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2576 {
2577 void *tmp = skb_tail_pointer(skb);
2578 SKB_LINEAR_ASSERT(skb);
2579 skb->tail += len;
2580 skb->len += len;
2581 return tmp;
2582 }
2583
__skb_put_zero(struct sk_buff * skb,unsigned int len)2584 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2585 {
2586 void *tmp = __skb_put(skb, len);
2587
2588 memset(tmp, 0, len);
2589 return tmp;
2590 }
2591
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2592 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2593 unsigned int len)
2594 {
2595 void *tmp = __skb_put(skb, len);
2596
2597 memcpy(tmp, data, len);
2598 return tmp;
2599 }
2600
__skb_put_u8(struct sk_buff * skb,u8 val)2601 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2602 {
2603 *(u8 *)__skb_put(skb, 1) = val;
2604 }
2605
skb_put_zero(struct sk_buff * skb,unsigned int len)2606 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2607 {
2608 void *tmp = skb_put(skb, len);
2609
2610 memset(tmp, 0, len);
2611
2612 return tmp;
2613 }
2614
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2615 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2616 unsigned int len)
2617 {
2618 void *tmp = skb_put(skb, len);
2619
2620 memcpy(tmp, data, len);
2621
2622 return tmp;
2623 }
2624
skb_put_u8(struct sk_buff * skb,u8 val)2625 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2626 {
2627 *(u8 *)skb_put(skb, 1) = val;
2628 }
2629
2630 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2631 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2632 {
2633 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2634
2635 skb->data -= len;
2636 skb->len += len;
2637 return skb->data;
2638 }
2639
2640 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2641 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2642 {
2643 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2644
2645 skb->len -= len;
2646 if (unlikely(skb->len < skb->data_len)) {
2647 #if defined(CONFIG_DEBUG_NET)
2648 skb->len += len;
2649 pr_err("__skb_pull(len=%u)\n", len);
2650 skb_dump(KERN_ERR, skb, false);
2651 #endif
2652 BUG();
2653 }
2654 return skb->data += len;
2655 }
2656
skb_pull_inline(struct sk_buff * skb,unsigned int len)2657 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2658 {
2659 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2660 }
2661
2662 void *skb_pull_data(struct sk_buff *skb, size_t len);
2663
2664 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2665
2666 static inline enum skb_drop_reason
pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2667 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2668 {
2669 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2670
2671 if (likely(len <= skb_headlen(skb)))
2672 return SKB_NOT_DROPPED_YET;
2673
2674 if (unlikely(len > skb->len))
2675 return SKB_DROP_REASON_PKT_TOO_SMALL;
2676
2677 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2678 return SKB_DROP_REASON_NOMEM;
2679
2680 return SKB_NOT_DROPPED_YET;
2681 }
2682
pskb_may_pull(struct sk_buff * skb,unsigned int len)2683 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2684 {
2685 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2686 }
2687
pskb_pull(struct sk_buff * skb,unsigned int len)2688 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2689 {
2690 if (!pskb_may_pull(skb, len))
2691 return NULL;
2692
2693 skb->len -= len;
2694 return skb->data += len;
2695 }
2696
2697 void skb_condense(struct sk_buff *skb);
2698
2699 /**
2700 * skb_headroom - bytes at buffer head
2701 * @skb: buffer to check
2702 *
2703 * Return the number of bytes of free space at the head of an &sk_buff.
2704 */
skb_headroom(const struct sk_buff * skb)2705 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2706 {
2707 return skb->data - skb->head;
2708 }
2709
2710 /**
2711 * skb_tailroom - bytes at buffer end
2712 * @skb: buffer to check
2713 *
2714 * Return the number of bytes of free space at the tail of an sk_buff
2715 */
skb_tailroom(const struct sk_buff * skb)2716 static inline int skb_tailroom(const struct sk_buff *skb)
2717 {
2718 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2719 }
2720
2721 /**
2722 * skb_availroom - bytes at buffer end
2723 * @skb: buffer to check
2724 *
2725 * Return the number of bytes of free space at the tail of an sk_buff
2726 * allocated by sk_stream_alloc()
2727 */
skb_availroom(const struct sk_buff * skb)2728 static inline int skb_availroom(const struct sk_buff *skb)
2729 {
2730 if (skb_is_nonlinear(skb))
2731 return 0;
2732
2733 return skb->end - skb->tail - skb->reserved_tailroom;
2734 }
2735
2736 /**
2737 * skb_reserve - adjust headroom
2738 * @skb: buffer to alter
2739 * @len: bytes to move
2740 *
2741 * Increase the headroom of an empty &sk_buff by reducing the tail
2742 * room. This is only allowed for an empty buffer.
2743 */
skb_reserve(struct sk_buff * skb,int len)2744 static inline void skb_reserve(struct sk_buff *skb, int len)
2745 {
2746 skb->data += len;
2747 skb->tail += len;
2748 }
2749
2750 /**
2751 * skb_tailroom_reserve - adjust reserved_tailroom
2752 * @skb: buffer to alter
2753 * @mtu: maximum amount of headlen permitted
2754 * @needed_tailroom: minimum amount of reserved_tailroom
2755 *
2756 * Set reserved_tailroom so that headlen can be as large as possible but
2757 * not larger than mtu and tailroom cannot be smaller than
2758 * needed_tailroom.
2759 * The required headroom should already have been reserved before using
2760 * this function.
2761 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2762 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2763 unsigned int needed_tailroom)
2764 {
2765 SKB_LINEAR_ASSERT(skb);
2766 if (mtu < skb_tailroom(skb) - needed_tailroom)
2767 /* use at most mtu */
2768 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2769 else
2770 /* use up to all available space */
2771 skb->reserved_tailroom = needed_tailroom;
2772 }
2773
2774 #define ENCAP_TYPE_ETHER 0
2775 #define ENCAP_TYPE_IPPROTO 1
2776
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2777 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2778 __be16 protocol)
2779 {
2780 skb->inner_protocol = protocol;
2781 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2782 }
2783
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2784 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2785 __u8 ipproto)
2786 {
2787 skb->inner_ipproto = ipproto;
2788 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2789 }
2790
skb_reset_inner_headers(struct sk_buff * skb)2791 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2792 {
2793 skb->inner_mac_header = skb->mac_header;
2794 skb->inner_network_header = skb->network_header;
2795 skb->inner_transport_header = skb->transport_header;
2796 }
2797
skb_reset_mac_len(struct sk_buff * skb)2798 static inline void skb_reset_mac_len(struct sk_buff *skb)
2799 {
2800 skb->mac_len = skb->network_header - skb->mac_header;
2801 }
2802
skb_inner_transport_header(const struct sk_buff * skb)2803 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2804 *skb)
2805 {
2806 return skb->head + skb->inner_transport_header;
2807 }
2808
skb_inner_transport_offset(const struct sk_buff * skb)2809 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2810 {
2811 return skb_inner_transport_header(skb) - skb->data;
2812 }
2813
skb_reset_inner_transport_header(struct sk_buff * skb)2814 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2815 {
2816 skb->inner_transport_header = skb->data - skb->head;
2817 }
2818
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2819 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2820 const int offset)
2821 {
2822 skb_reset_inner_transport_header(skb);
2823 skb->inner_transport_header += offset;
2824 }
2825
skb_inner_network_header(const struct sk_buff * skb)2826 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2827 {
2828 return skb->head + skb->inner_network_header;
2829 }
2830
skb_reset_inner_network_header(struct sk_buff * skb)2831 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2832 {
2833 skb->inner_network_header = skb->data - skb->head;
2834 }
2835
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2836 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2837 const int offset)
2838 {
2839 skb_reset_inner_network_header(skb);
2840 skb->inner_network_header += offset;
2841 }
2842
skb_inner_network_header_was_set(const struct sk_buff * skb)2843 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2844 {
2845 return skb->inner_network_header > 0;
2846 }
2847
skb_inner_mac_header(const struct sk_buff * skb)2848 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2849 {
2850 return skb->head + skb->inner_mac_header;
2851 }
2852
skb_reset_inner_mac_header(struct sk_buff * skb)2853 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2854 {
2855 skb->inner_mac_header = skb->data - skb->head;
2856 }
2857
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2858 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2859 const int offset)
2860 {
2861 skb_reset_inner_mac_header(skb);
2862 skb->inner_mac_header += offset;
2863 }
skb_transport_header_was_set(const struct sk_buff * skb)2864 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2865 {
2866 return skb->transport_header != (typeof(skb->transport_header))~0U;
2867 }
2868
skb_transport_header(const struct sk_buff * skb)2869 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2870 {
2871 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2872 return skb->head + skb->transport_header;
2873 }
2874
skb_reset_transport_header(struct sk_buff * skb)2875 static inline void skb_reset_transport_header(struct sk_buff *skb)
2876 {
2877 skb->transport_header = skb->data - skb->head;
2878 }
2879
skb_set_transport_header(struct sk_buff * skb,const int offset)2880 static inline void skb_set_transport_header(struct sk_buff *skb,
2881 const int offset)
2882 {
2883 skb_reset_transport_header(skb);
2884 skb->transport_header += offset;
2885 }
2886
skb_network_header(const struct sk_buff * skb)2887 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2888 {
2889 return skb->head + skb->network_header;
2890 }
2891
skb_reset_network_header(struct sk_buff * skb)2892 static inline void skb_reset_network_header(struct sk_buff *skb)
2893 {
2894 skb->network_header = skb->data - skb->head;
2895 }
2896
skb_set_network_header(struct sk_buff * skb,const int offset)2897 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2898 {
2899 skb_reset_network_header(skb);
2900 skb->network_header += offset;
2901 }
2902
skb_mac_header_was_set(const struct sk_buff * skb)2903 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2904 {
2905 return skb->mac_header != (typeof(skb->mac_header))~0U;
2906 }
2907
skb_mac_header(const struct sk_buff * skb)2908 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2909 {
2910 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2911 return skb->head + skb->mac_header;
2912 }
2913
skb_mac_offset(const struct sk_buff * skb)2914 static inline int skb_mac_offset(const struct sk_buff *skb)
2915 {
2916 return skb_mac_header(skb) - skb->data;
2917 }
2918
skb_mac_header_len(const struct sk_buff * skb)2919 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2920 {
2921 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2922 return skb->network_header - skb->mac_header;
2923 }
2924
skb_unset_mac_header(struct sk_buff * skb)2925 static inline void skb_unset_mac_header(struct sk_buff *skb)
2926 {
2927 skb->mac_header = (typeof(skb->mac_header))~0U;
2928 }
2929
skb_reset_mac_header(struct sk_buff * skb)2930 static inline void skb_reset_mac_header(struct sk_buff *skb)
2931 {
2932 skb->mac_header = skb->data - skb->head;
2933 }
2934
skb_set_mac_header(struct sk_buff * skb,const int offset)2935 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2936 {
2937 skb_reset_mac_header(skb);
2938 skb->mac_header += offset;
2939 }
2940
skb_pop_mac_header(struct sk_buff * skb)2941 static inline void skb_pop_mac_header(struct sk_buff *skb)
2942 {
2943 skb->mac_header = skb->network_header;
2944 }
2945
skb_probe_transport_header(struct sk_buff * skb)2946 static inline void skb_probe_transport_header(struct sk_buff *skb)
2947 {
2948 struct flow_keys_basic keys;
2949
2950 if (skb_transport_header_was_set(skb))
2951 return;
2952
2953 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2954 NULL, 0, 0, 0, 0))
2955 skb_set_transport_header(skb, keys.control.thoff);
2956 }
2957
skb_mac_header_rebuild(struct sk_buff * skb)2958 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2959 {
2960 if (skb_mac_header_was_set(skb)) {
2961 const unsigned char *old_mac = skb_mac_header(skb);
2962
2963 skb_set_mac_header(skb, -skb->mac_len);
2964 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2965 }
2966 }
2967
2968 /* Move the full mac header up to current network_header.
2969 * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
2970 * Must be provided the complete mac header length.
2971 */
skb_mac_header_rebuild_full(struct sk_buff * skb,u32 full_mac_len)2972 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
2973 {
2974 if (skb_mac_header_was_set(skb)) {
2975 const unsigned char *old_mac = skb_mac_header(skb);
2976
2977 skb_set_mac_header(skb, -full_mac_len);
2978 memmove(skb_mac_header(skb), old_mac, full_mac_len);
2979 __skb_push(skb, full_mac_len - skb->mac_len);
2980 }
2981 }
2982
skb_checksum_start_offset(const struct sk_buff * skb)2983 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2984 {
2985 return skb->csum_start - skb_headroom(skb);
2986 }
2987
skb_checksum_start(const struct sk_buff * skb)2988 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2989 {
2990 return skb->head + skb->csum_start;
2991 }
2992
skb_transport_offset(const struct sk_buff * skb)2993 static inline int skb_transport_offset(const struct sk_buff *skb)
2994 {
2995 return skb_transport_header(skb) - skb->data;
2996 }
2997
skb_network_header_len(const struct sk_buff * skb)2998 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2999 {
3000 return skb->transport_header - skb->network_header;
3001 }
3002
skb_inner_network_header_len(const struct sk_buff * skb)3003 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3004 {
3005 return skb->inner_transport_header - skb->inner_network_header;
3006 }
3007
skb_network_offset(const struct sk_buff * skb)3008 static inline int skb_network_offset(const struct sk_buff *skb)
3009 {
3010 return skb_network_header(skb) - skb->data;
3011 }
3012
skb_inner_network_offset(const struct sk_buff * skb)3013 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3014 {
3015 return skb_inner_network_header(skb) - skb->data;
3016 }
3017
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3018 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3019 {
3020 return pskb_may_pull(skb, skb_network_offset(skb) + len);
3021 }
3022
3023 /*
3024 * CPUs often take a performance hit when accessing unaligned memory
3025 * locations. The actual performance hit varies, it can be small if the
3026 * hardware handles it or large if we have to take an exception and fix it
3027 * in software.
3028 *
3029 * Since an ethernet header is 14 bytes network drivers often end up with
3030 * the IP header at an unaligned offset. The IP header can be aligned by
3031 * shifting the start of the packet by 2 bytes. Drivers should do this
3032 * with:
3033 *
3034 * skb_reserve(skb, NET_IP_ALIGN);
3035 *
3036 * The downside to this alignment of the IP header is that the DMA is now
3037 * unaligned. On some architectures the cost of an unaligned DMA is high
3038 * and this cost outweighs the gains made by aligning the IP header.
3039 *
3040 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3041 * to be overridden.
3042 */
3043 #ifndef NET_IP_ALIGN
3044 #define NET_IP_ALIGN 2
3045 #endif
3046
3047 /*
3048 * The networking layer reserves some headroom in skb data (via
3049 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3050 * the header has to grow. In the default case, if the header has to grow
3051 * 32 bytes or less we avoid the reallocation.
3052 *
3053 * Unfortunately this headroom changes the DMA alignment of the resulting
3054 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3055 * on some architectures. An architecture can override this value,
3056 * perhaps setting it to a cacheline in size (since that will maintain
3057 * cacheline alignment of the DMA). It must be a power of 2.
3058 *
3059 * Various parts of the networking layer expect at least 32 bytes of
3060 * headroom, you should not reduce this.
3061 *
3062 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3063 * to reduce average number of cache lines per packet.
3064 * get_rps_cpu() for example only access one 64 bytes aligned block :
3065 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3066 */
3067 #ifndef NET_SKB_PAD
3068 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3069 #endif
3070
3071 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3072
__skb_set_length(struct sk_buff * skb,unsigned int len)3073 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3074 {
3075 if (WARN_ON(skb_is_nonlinear(skb)))
3076 return;
3077 skb->len = len;
3078 skb_set_tail_pointer(skb, len);
3079 }
3080
__skb_trim(struct sk_buff * skb,unsigned int len)3081 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3082 {
3083 __skb_set_length(skb, len);
3084 }
3085
3086 void skb_trim(struct sk_buff *skb, unsigned int len);
3087
__pskb_trim(struct sk_buff * skb,unsigned int len)3088 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3089 {
3090 if (skb->data_len)
3091 return ___pskb_trim(skb, len);
3092 __skb_trim(skb, len);
3093 return 0;
3094 }
3095
pskb_trim(struct sk_buff * skb,unsigned int len)3096 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3097 {
3098 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3099 }
3100
3101 /**
3102 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3103 * @skb: buffer to alter
3104 * @len: new length
3105 *
3106 * This is identical to pskb_trim except that the caller knows that
3107 * the skb is not cloned so we should never get an error due to out-
3108 * of-memory.
3109 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3110 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3111 {
3112 int err = pskb_trim(skb, len);
3113 BUG_ON(err);
3114 }
3115
__skb_grow(struct sk_buff * skb,unsigned int len)3116 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3117 {
3118 unsigned int diff = len - skb->len;
3119
3120 if (skb_tailroom(skb) < diff) {
3121 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3122 GFP_ATOMIC);
3123 if (ret)
3124 return ret;
3125 }
3126 __skb_set_length(skb, len);
3127 return 0;
3128 }
3129
3130 /**
3131 * skb_orphan - orphan a buffer
3132 * @skb: buffer to orphan
3133 *
3134 * If a buffer currently has an owner then we call the owner's
3135 * destructor function and make the @skb unowned. The buffer continues
3136 * to exist but is no longer charged to its former owner.
3137 */
skb_orphan(struct sk_buff * skb)3138 static inline void skb_orphan(struct sk_buff *skb)
3139 {
3140 if (skb->destructor) {
3141 skb->destructor(skb);
3142 skb->destructor = NULL;
3143 skb->sk = NULL;
3144 } else {
3145 BUG_ON(skb->sk);
3146 }
3147 }
3148
3149 /**
3150 * skb_orphan_frags - orphan the frags contained in a buffer
3151 * @skb: buffer to orphan frags from
3152 * @gfp_mask: allocation mask for replacement pages
3153 *
3154 * For each frag in the SKB which needs a destructor (i.e. has an
3155 * owner) create a copy of that frag and release the original
3156 * page by calling the destructor.
3157 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3158 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3159 {
3160 if (likely(!skb_zcopy(skb)))
3161 return 0;
3162 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3163 return 0;
3164 return skb_copy_ubufs(skb, gfp_mask);
3165 }
3166
3167 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3168 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3169 {
3170 if (likely(!skb_zcopy(skb)))
3171 return 0;
3172 return skb_copy_ubufs(skb, gfp_mask);
3173 }
3174
3175 /**
3176 * __skb_queue_purge_reason - empty a list
3177 * @list: list to empty
3178 * @reason: drop reason
3179 *
3180 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3181 * the list and one reference dropped. This function does not take the
3182 * list lock and the caller must hold the relevant locks to use it.
3183 */
__skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3184 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3185 enum skb_drop_reason reason)
3186 {
3187 struct sk_buff *skb;
3188
3189 while ((skb = __skb_dequeue(list)) != NULL)
3190 kfree_skb_reason(skb, reason);
3191 }
3192
__skb_queue_purge(struct sk_buff_head * list)3193 static inline void __skb_queue_purge(struct sk_buff_head *list)
3194 {
3195 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3196 }
3197
3198 void skb_queue_purge_reason(struct sk_buff_head *list,
3199 enum skb_drop_reason reason);
3200
skb_queue_purge(struct sk_buff_head * list)3201 static inline void skb_queue_purge(struct sk_buff_head *list)
3202 {
3203 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3204 }
3205
3206 unsigned int skb_rbtree_purge(struct rb_root *root);
3207 void skb_errqueue_purge(struct sk_buff_head *list);
3208
3209 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3210
3211 /**
3212 * netdev_alloc_frag - allocate a page fragment
3213 * @fragsz: fragment size
3214 *
3215 * Allocates a frag from a page for receive buffer.
3216 * Uses GFP_ATOMIC allocations.
3217 */
netdev_alloc_frag(unsigned int fragsz)3218 static inline void *netdev_alloc_frag(unsigned int fragsz)
3219 {
3220 return __netdev_alloc_frag_align(fragsz, ~0u);
3221 }
3222
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3223 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3224 unsigned int align)
3225 {
3226 WARN_ON_ONCE(!is_power_of_2(align));
3227 return __netdev_alloc_frag_align(fragsz, -align);
3228 }
3229
3230 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3231 gfp_t gfp_mask);
3232
3233 /**
3234 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3235 * @dev: network device to receive on
3236 * @length: length to allocate
3237 *
3238 * Allocate a new &sk_buff and assign it a usage count of one. The
3239 * buffer has unspecified headroom built in. Users should allocate
3240 * the headroom they think they need without accounting for the
3241 * built in space. The built in space is used for optimisations.
3242 *
3243 * %NULL is returned if there is no free memory. Although this function
3244 * allocates memory it can be called from an interrupt.
3245 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3246 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3247 unsigned int length)
3248 {
3249 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3250 }
3251
3252 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3253 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3254 gfp_t gfp_mask)
3255 {
3256 return __netdev_alloc_skb(NULL, length, gfp_mask);
3257 }
3258
3259 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3260 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3261 {
3262 return netdev_alloc_skb(NULL, length);
3263 }
3264
3265
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3266 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3267 unsigned int length, gfp_t gfp)
3268 {
3269 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3270
3271 if (NET_IP_ALIGN && skb)
3272 skb_reserve(skb, NET_IP_ALIGN);
3273 return skb;
3274 }
3275
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3276 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3277 unsigned int length)
3278 {
3279 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3280 }
3281
skb_free_frag(void * addr)3282 static inline void skb_free_frag(void *addr)
3283 {
3284 page_frag_free(addr);
3285 }
3286
3287 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3288
napi_alloc_frag(unsigned int fragsz)3289 static inline void *napi_alloc_frag(unsigned int fragsz)
3290 {
3291 return __napi_alloc_frag_align(fragsz, ~0u);
3292 }
3293
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3294 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3295 unsigned int align)
3296 {
3297 WARN_ON_ONCE(!is_power_of_2(align));
3298 return __napi_alloc_frag_align(fragsz, -align);
3299 }
3300
3301 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3302 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3303 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3304 unsigned int length)
3305 {
3306 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3307 }
3308 void napi_consume_skb(struct sk_buff *skb, int budget);
3309
3310 void napi_skb_free_stolen_head(struct sk_buff *skb);
3311 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3312
3313 /**
3314 * __dev_alloc_pages - allocate page for network Rx
3315 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3316 * @order: size of the allocation
3317 *
3318 * Allocate a new page.
3319 *
3320 * %NULL is returned if there is no free memory.
3321 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3322 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3323 unsigned int order)
3324 {
3325 /* This piece of code contains several assumptions.
3326 * 1. This is for device Rx, therefor a cold page is preferred.
3327 * 2. The expectation is the user wants a compound page.
3328 * 3. If requesting a order 0 page it will not be compound
3329 * due to the check to see if order has a value in prep_new_page
3330 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3331 * code in gfp_to_alloc_flags that should be enforcing this.
3332 */
3333 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3334
3335 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3336 }
3337
dev_alloc_pages(unsigned int order)3338 static inline struct page *dev_alloc_pages(unsigned int order)
3339 {
3340 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3341 }
3342
3343 /**
3344 * __dev_alloc_page - allocate a page for network Rx
3345 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3346 *
3347 * Allocate a new page.
3348 *
3349 * %NULL is returned if there is no free memory.
3350 */
__dev_alloc_page(gfp_t gfp_mask)3351 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3352 {
3353 return __dev_alloc_pages(gfp_mask, 0);
3354 }
3355
dev_alloc_page(void)3356 static inline struct page *dev_alloc_page(void)
3357 {
3358 return dev_alloc_pages(0);
3359 }
3360
3361 /**
3362 * dev_page_is_reusable - check whether a page can be reused for network Rx
3363 * @page: the page to test
3364 *
3365 * A page shouldn't be considered for reusing/recycling if it was allocated
3366 * under memory pressure or at a distant memory node.
3367 *
3368 * Returns false if this page should be returned to page allocator, true
3369 * otherwise.
3370 */
dev_page_is_reusable(const struct page * page)3371 static inline bool dev_page_is_reusable(const struct page *page)
3372 {
3373 return likely(page_to_nid(page) == numa_mem_id() &&
3374 !page_is_pfmemalloc(page));
3375 }
3376
3377 /**
3378 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3379 * @page: The page that was allocated from skb_alloc_page
3380 * @skb: The skb that may need pfmemalloc set
3381 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3382 static inline void skb_propagate_pfmemalloc(const struct page *page,
3383 struct sk_buff *skb)
3384 {
3385 if (page_is_pfmemalloc(page))
3386 skb->pfmemalloc = true;
3387 }
3388
3389 /**
3390 * skb_frag_off() - Returns the offset of a skb fragment
3391 * @frag: the paged fragment
3392 */
skb_frag_off(const skb_frag_t * frag)3393 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3394 {
3395 return frag->bv_offset;
3396 }
3397
3398 /**
3399 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3400 * @frag: skb fragment
3401 * @delta: value to add
3402 */
skb_frag_off_add(skb_frag_t * frag,int delta)3403 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3404 {
3405 frag->bv_offset += delta;
3406 }
3407
3408 /**
3409 * skb_frag_off_set() - Sets the offset of a skb fragment
3410 * @frag: skb fragment
3411 * @offset: offset of fragment
3412 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3413 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3414 {
3415 frag->bv_offset = offset;
3416 }
3417
3418 /**
3419 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3420 * @fragto: skb fragment where offset is set
3421 * @fragfrom: skb fragment offset is copied from
3422 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3423 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3424 const skb_frag_t *fragfrom)
3425 {
3426 fragto->bv_offset = fragfrom->bv_offset;
3427 }
3428
3429 /**
3430 * skb_frag_page - retrieve the page referred to by a paged fragment
3431 * @frag: the paged fragment
3432 *
3433 * Returns the &struct page associated with @frag.
3434 */
skb_frag_page(const skb_frag_t * frag)3435 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3436 {
3437 return frag->bv_page;
3438 }
3439
3440 /**
3441 * __skb_frag_ref - take an addition reference on a paged fragment.
3442 * @frag: the paged fragment
3443 *
3444 * Takes an additional reference on the paged fragment @frag.
3445 */
__skb_frag_ref(skb_frag_t * frag)3446 static inline void __skb_frag_ref(skb_frag_t *frag)
3447 {
3448 get_page(skb_frag_page(frag));
3449 }
3450
3451 /**
3452 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3453 * @skb: the buffer
3454 * @f: the fragment offset.
3455 *
3456 * Takes an additional reference on the @f'th paged fragment of @skb.
3457 */
skb_frag_ref(struct sk_buff * skb,int f)3458 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3459 {
3460 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3461 }
3462
3463 bool napi_pp_put_page(struct page *page, bool napi_safe);
3464
3465 static inline void
skb_page_unref(const struct sk_buff * skb,struct page * page,bool napi_safe)3466 skb_page_unref(const struct sk_buff *skb, struct page *page, bool napi_safe)
3467 {
3468 #ifdef CONFIG_PAGE_POOL
3469 if (skb->pp_recycle && napi_pp_put_page(page, napi_safe))
3470 return;
3471 #endif
3472 put_page(page);
3473 }
3474
3475 static inline void
napi_frag_unref(skb_frag_t * frag,bool recycle,bool napi_safe)3476 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3477 {
3478 struct page *page = skb_frag_page(frag);
3479
3480 #ifdef CONFIG_PAGE_POOL
3481 if (recycle && napi_pp_put_page(page, napi_safe))
3482 return;
3483 #endif
3484 put_page(page);
3485 }
3486
3487 /**
3488 * __skb_frag_unref - release a reference on a paged fragment.
3489 * @frag: the paged fragment
3490 * @recycle: recycle the page if allocated via page_pool
3491 *
3492 * Releases a reference on the paged fragment @frag
3493 * or recycles the page via the page_pool API.
3494 */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3495 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3496 {
3497 napi_frag_unref(frag, recycle, false);
3498 }
3499
3500 /**
3501 * skb_frag_unref - release a reference on a paged fragment of an skb.
3502 * @skb: the buffer
3503 * @f: the fragment offset
3504 *
3505 * Releases a reference on the @f'th paged fragment of @skb.
3506 */
skb_frag_unref(struct sk_buff * skb,int f)3507 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3508 {
3509 struct skb_shared_info *shinfo = skb_shinfo(skb);
3510
3511 if (!skb_zcopy_managed(skb))
3512 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3513 }
3514
3515 /**
3516 * skb_frag_address - gets the address of the data contained in a paged fragment
3517 * @frag: the paged fragment buffer
3518 *
3519 * Returns the address of the data within @frag. The page must already
3520 * be mapped.
3521 */
skb_frag_address(const skb_frag_t * frag)3522 static inline void *skb_frag_address(const skb_frag_t *frag)
3523 {
3524 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3525 }
3526
3527 /**
3528 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3529 * @frag: the paged fragment buffer
3530 *
3531 * Returns the address of the data within @frag. Checks that the page
3532 * is mapped and returns %NULL otherwise.
3533 */
skb_frag_address_safe(const skb_frag_t * frag)3534 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3535 {
3536 void *ptr = page_address(skb_frag_page(frag));
3537 if (unlikely(!ptr))
3538 return NULL;
3539
3540 return ptr + skb_frag_off(frag);
3541 }
3542
3543 /**
3544 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3545 * @fragto: skb fragment where page is set
3546 * @fragfrom: skb fragment page is copied from
3547 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3548 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3549 const skb_frag_t *fragfrom)
3550 {
3551 fragto->bv_page = fragfrom->bv_page;
3552 }
3553
3554 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3555
3556 /**
3557 * skb_frag_dma_map - maps a paged fragment via the DMA API
3558 * @dev: the device to map the fragment to
3559 * @frag: the paged fragment to map
3560 * @offset: the offset within the fragment (starting at the
3561 * fragment's own offset)
3562 * @size: the number of bytes to map
3563 * @dir: the direction of the mapping (``PCI_DMA_*``)
3564 *
3565 * Maps the page associated with @frag to @device.
3566 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3567 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3568 const skb_frag_t *frag,
3569 size_t offset, size_t size,
3570 enum dma_data_direction dir)
3571 {
3572 return dma_map_page(dev, skb_frag_page(frag),
3573 skb_frag_off(frag) + offset, size, dir);
3574 }
3575
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3576 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3577 gfp_t gfp_mask)
3578 {
3579 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3580 }
3581
3582
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3583 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3584 gfp_t gfp_mask)
3585 {
3586 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3587 }
3588
3589
3590 /**
3591 * skb_clone_writable - is the header of a clone writable
3592 * @skb: buffer to check
3593 * @len: length up to which to write
3594 *
3595 * Returns true if modifying the header part of the cloned buffer
3596 * does not requires the data to be copied.
3597 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3598 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3599 {
3600 return !skb_header_cloned(skb) &&
3601 skb_headroom(skb) + len <= skb->hdr_len;
3602 }
3603
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3604 static inline int skb_try_make_writable(struct sk_buff *skb,
3605 unsigned int write_len)
3606 {
3607 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3608 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3609 }
3610
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3611 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3612 int cloned)
3613 {
3614 int delta = 0;
3615
3616 if (headroom > skb_headroom(skb))
3617 delta = headroom - skb_headroom(skb);
3618
3619 if (delta || cloned)
3620 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3621 GFP_ATOMIC);
3622 return 0;
3623 }
3624
3625 /**
3626 * skb_cow - copy header of skb when it is required
3627 * @skb: buffer to cow
3628 * @headroom: needed headroom
3629 *
3630 * If the skb passed lacks sufficient headroom or its data part
3631 * is shared, data is reallocated. If reallocation fails, an error
3632 * is returned and original skb is not changed.
3633 *
3634 * The result is skb with writable area skb->head...skb->tail
3635 * and at least @headroom of space at head.
3636 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3637 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3638 {
3639 return __skb_cow(skb, headroom, skb_cloned(skb));
3640 }
3641
3642 /**
3643 * skb_cow_head - skb_cow but only making the head writable
3644 * @skb: buffer to cow
3645 * @headroom: needed headroom
3646 *
3647 * This function is identical to skb_cow except that we replace the
3648 * skb_cloned check by skb_header_cloned. It should be used when
3649 * you only need to push on some header and do not need to modify
3650 * the data.
3651 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3652 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3653 {
3654 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3655 }
3656
3657 /**
3658 * skb_padto - pad an skbuff up to a minimal size
3659 * @skb: buffer to pad
3660 * @len: minimal length
3661 *
3662 * Pads up a buffer to ensure the trailing bytes exist and are
3663 * blanked. If the buffer already contains sufficient data it
3664 * is untouched. Otherwise it is extended. Returns zero on
3665 * success. The skb is freed on error.
3666 */
skb_padto(struct sk_buff * skb,unsigned int len)3667 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3668 {
3669 unsigned int size = skb->len;
3670 if (likely(size >= len))
3671 return 0;
3672 return skb_pad(skb, len - size);
3673 }
3674
3675 /**
3676 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3677 * @skb: buffer to pad
3678 * @len: minimal length
3679 * @free_on_error: free buffer on error
3680 *
3681 * Pads up a buffer to ensure the trailing bytes exist and are
3682 * blanked. If the buffer already contains sufficient data it
3683 * is untouched. Otherwise it is extended. Returns zero on
3684 * success. The skb is freed on error if @free_on_error is true.
3685 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3686 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3687 unsigned int len,
3688 bool free_on_error)
3689 {
3690 unsigned int size = skb->len;
3691
3692 if (unlikely(size < len)) {
3693 len -= size;
3694 if (__skb_pad(skb, len, free_on_error))
3695 return -ENOMEM;
3696 __skb_put(skb, len);
3697 }
3698 return 0;
3699 }
3700
3701 /**
3702 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3703 * @skb: buffer to pad
3704 * @len: minimal length
3705 *
3706 * Pads up a buffer to ensure the trailing bytes exist and are
3707 * blanked. If the buffer already contains sufficient data it
3708 * is untouched. Otherwise it is extended. Returns zero on
3709 * success. The skb is freed on error.
3710 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3711 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3712 {
3713 return __skb_put_padto(skb, len, true);
3714 }
3715
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3716 static inline int skb_add_data(struct sk_buff *skb,
3717 struct iov_iter *from, int copy)
3718 {
3719 const int off = skb->len;
3720
3721 if (skb->ip_summed == CHECKSUM_NONE) {
3722 __wsum csum = 0;
3723 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3724 &csum, from)) {
3725 skb->csum = csum_block_add(skb->csum, csum, off);
3726 return 0;
3727 }
3728 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3729 return 0;
3730
3731 __skb_trim(skb, off);
3732 return -EFAULT;
3733 }
3734
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3735 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3736 const struct page *page, int off)
3737 {
3738 if (skb_zcopy(skb))
3739 return false;
3740 if (i) {
3741 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3742
3743 return page == skb_frag_page(frag) &&
3744 off == skb_frag_off(frag) + skb_frag_size(frag);
3745 }
3746 return false;
3747 }
3748
__skb_linearize(struct sk_buff * skb)3749 static inline int __skb_linearize(struct sk_buff *skb)
3750 {
3751 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3752 }
3753
3754 /**
3755 * skb_linearize - convert paged skb to linear one
3756 * @skb: buffer to linarize
3757 *
3758 * If there is no free memory -ENOMEM is returned, otherwise zero
3759 * is returned and the old skb data released.
3760 */
skb_linearize(struct sk_buff * skb)3761 static inline int skb_linearize(struct sk_buff *skb)
3762 {
3763 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3764 }
3765
3766 /**
3767 * skb_has_shared_frag - can any frag be overwritten
3768 * @skb: buffer to test
3769 *
3770 * Return true if the skb has at least one frag that might be modified
3771 * by an external entity (as in vmsplice()/sendfile())
3772 */
skb_has_shared_frag(const struct sk_buff * skb)3773 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3774 {
3775 return skb_is_nonlinear(skb) &&
3776 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3777 }
3778
3779 /**
3780 * skb_linearize_cow - make sure skb is linear and writable
3781 * @skb: buffer to process
3782 *
3783 * If there is no free memory -ENOMEM is returned, otherwise zero
3784 * is returned and the old skb data released.
3785 */
skb_linearize_cow(struct sk_buff * skb)3786 static inline int skb_linearize_cow(struct sk_buff *skb)
3787 {
3788 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3789 __skb_linearize(skb) : 0;
3790 }
3791
3792 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3793 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3794 unsigned int off)
3795 {
3796 if (skb->ip_summed == CHECKSUM_COMPLETE)
3797 skb->csum = csum_block_sub(skb->csum,
3798 csum_partial(start, len, 0), off);
3799 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3800 skb_checksum_start_offset(skb) < 0)
3801 skb->ip_summed = CHECKSUM_NONE;
3802 }
3803
3804 /**
3805 * skb_postpull_rcsum - update checksum for received skb after pull
3806 * @skb: buffer to update
3807 * @start: start of data before pull
3808 * @len: length of data pulled
3809 *
3810 * After doing a pull on a received packet, you need to call this to
3811 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3812 * CHECKSUM_NONE so that it can be recomputed from scratch.
3813 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3814 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3815 const void *start, unsigned int len)
3816 {
3817 if (skb->ip_summed == CHECKSUM_COMPLETE)
3818 skb->csum = wsum_negate(csum_partial(start, len,
3819 wsum_negate(skb->csum)));
3820 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3821 skb_checksum_start_offset(skb) < 0)
3822 skb->ip_summed = CHECKSUM_NONE;
3823 }
3824
3825 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3826 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3827 unsigned int off)
3828 {
3829 if (skb->ip_summed == CHECKSUM_COMPLETE)
3830 skb->csum = csum_block_add(skb->csum,
3831 csum_partial(start, len, 0), off);
3832 }
3833
3834 /**
3835 * skb_postpush_rcsum - update checksum for received skb after push
3836 * @skb: buffer to update
3837 * @start: start of data after push
3838 * @len: length of data pushed
3839 *
3840 * After doing a push on a received packet, you need to call this to
3841 * update the CHECKSUM_COMPLETE checksum.
3842 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3843 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3844 const void *start, unsigned int len)
3845 {
3846 __skb_postpush_rcsum(skb, start, len, 0);
3847 }
3848
3849 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3850
3851 /**
3852 * skb_push_rcsum - push skb and update receive checksum
3853 * @skb: buffer to update
3854 * @len: length of data pulled
3855 *
3856 * This function performs an skb_push on the packet and updates
3857 * the CHECKSUM_COMPLETE checksum. It should be used on
3858 * receive path processing instead of skb_push unless you know
3859 * that the checksum difference is zero (e.g., a valid IP header)
3860 * or you are setting ip_summed to CHECKSUM_NONE.
3861 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3862 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3863 {
3864 skb_push(skb, len);
3865 skb_postpush_rcsum(skb, skb->data, len);
3866 return skb->data;
3867 }
3868
3869 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3870 /**
3871 * pskb_trim_rcsum - trim received skb and update checksum
3872 * @skb: buffer to trim
3873 * @len: new length
3874 *
3875 * This is exactly the same as pskb_trim except that it ensures the
3876 * checksum of received packets are still valid after the operation.
3877 * It can change skb pointers.
3878 */
3879
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3880 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3881 {
3882 if (likely(len >= skb->len))
3883 return 0;
3884 return pskb_trim_rcsum_slow(skb, len);
3885 }
3886
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3887 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3888 {
3889 if (skb->ip_summed == CHECKSUM_COMPLETE)
3890 skb->ip_summed = CHECKSUM_NONE;
3891 __skb_trim(skb, len);
3892 return 0;
3893 }
3894
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3895 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3896 {
3897 if (skb->ip_summed == CHECKSUM_COMPLETE)
3898 skb->ip_summed = CHECKSUM_NONE;
3899 return __skb_grow(skb, len);
3900 }
3901
3902 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3903 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3904 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3905 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3906 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3907
3908 #define skb_queue_walk(queue, skb) \
3909 for (skb = (queue)->next; \
3910 skb != (struct sk_buff *)(queue); \
3911 skb = skb->next)
3912
3913 #define skb_queue_walk_safe(queue, skb, tmp) \
3914 for (skb = (queue)->next, tmp = skb->next; \
3915 skb != (struct sk_buff *)(queue); \
3916 skb = tmp, tmp = skb->next)
3917
3918 #define skb_queue_walk_from(queue, skb) \
3919 for (; skb != (struct sk_buff *)(queue); \
3920 skb = skb->next)
3921
3922 #define skb_rbtree_walk(skb, root) \
3923 for (skb = skb_rb_first(root); skb != NULL; \
3924 skb = skb_rb_next(skb))
3925
3926 #define skb_rbtree_walk_from(skb) \
3927 for (; skb != NULL; \
3928 skb = skb_rb_next(skb))
3929
3930 #define skb_rbtree_walk_from_safe(skb, tmp) \
3931 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3932 skb = tmp)
3933
3934 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3935 for (tmp = skb->next; \
3936 skb != (struct sk_buff *)(queue); \
3937 skb = tmp, tmp = skb->next)
3938
3939 #define skb_queue_reverse_walk(queue, skb) \
3940 for (skb = (queue)->prev; \
3941 skb != (struct sk_buff *)(queue); \
3942 skb = skb->prev)
3943
3944 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3945 for (skb = (queue)->prev, tmp = skb->prev; \
3946 skb != (struct sk_buff *)(queue); \
3947 skb = tmp, tmp = skb->prev)
3948
3949 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3950 for (tmp = skb->prev; \
3951 skb != (struct sk_buff *)(queue); \
3952 skb = tmp, tmp = skb->prev)
3953
skb_has_frag_list(const struct sk_buff * skb)3954 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3955 {
3956 return skb_shinfo(skb)->frag_list != NULL;
3957 }
3958
skb_frag_list_init(struct sk_buff * skb)3959 static inline void skb_frag_list_init(struct sk_buff *skb)
3960 {
3961 skb_shinfo(skb)->frag_list = NULL;
3962 }
3963
3964 #define skb_walk_frags(skb, iter) \
3965 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3966
3967
3968 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3969 int *err, long *timeo_p,
3970 const struct sk_buff *skb);
3971 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3972 struct sk_buff_head *queue,
3973 unsigned int flags,
3974 int *off, int *err,
3975 struct sk_buff **last);
3976 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3977 struct sk_buff_head *queue,
3978 unsigned int flags, int *off, int *err,
3979 struct sk_buff **last);
3980 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3981 struct sk_buff_head *sk_queue,
3982 unsigned int flags, int *off, int *err);
3983 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3984 __poll_t datagram_poll(struct file *file, struct socket *sock,
3985 struct poll_table_struct *wait);
3986 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3987 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3988 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3989 struct msghdr *msg, int size)
3990 {
3991 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3992 }
3993 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3994 struct msghdr *msg);
3995 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3996 struct iov_iter *to, int len,
3997 struct ahash_request *hash);
3998 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3999 struct iov_iter *from, int len);
4000 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4001 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4002 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)4003 static inline void skb_free_datagram_locked(struct sock *sk,
4004 struct sk_buff *skb)
4005 {
4006 __skb_free_datagram_locked(sk, skb, 0);
4007 }
4008 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4009 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4010 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4011 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4012 int len);
4013 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4014 struct pipe_inode_info *pipe, unsigned int len,
4015 unsigned int flags);
4016 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4017 int len);
4018 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4019 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4020 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4021 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4022 int len, int hlen);
4023 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4024 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4025 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4026 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4027 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4028 unsigned int offset);
4029 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4030 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4031 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4032 int skb_vlan_pop(struct sk_buff *skb);
4033 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4034 int skb_eth_pop(struct sk_buff *skb);
4035 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4036 const unsigned char *src);
4037 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4038 int mac_len, bool ethernet);
4039 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4040 bool ethernet);
4041 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4042 int skb_mpls_dec_ttl(struct sk_buff *skb);
4043 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4044 gfp_t gfp);
4045
memcpy_from_msg(void * data,struct msghdr * msg,int len)4046 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4047 {
4048 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4049 }
4050
memcpy_to_msg(struct msghdr * msg,void * data,int len)4051 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4052 {
4053 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4054 }
4055
4056 struct skb_checksum_ops {
4057 __wsum (*update)(const void *mem, int len, __wsum wsum);
4058 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4059 };
4060
4061 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4062
4063 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4064 __wsum csum, const struct skb_checksum_ops *ops);
4065 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4066 __wsum csum);
4067
4068 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4069 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4070 const void *data, int hlen, void *buffer)
4071 {
4072 if (likely(hlen - offset >= len))
4073 return (void *)data + offset;
4074
4075 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4076 return NULL;
4077
4078 return buffer;
4079 }
4080
4081 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4082 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4083 {
4084 return __skb_header_pointer(skb, offset, len, skb->data,
4085 skb_headlen(skb), buffer);
4086 }
4087
4088 static inline void * __must_check
skb_pointer_if_linear(const struct sk_buff * skb,int offset,int len)4089 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4090 {
4091 if (likely(skb_headlen(skb) - offset >= len))
4092 return skb->data + offset;
4093 return NULL;
4094 }
4095
4096 /**
4097 * skb_needs_linearize - check if we need to linearize a given skb
4098 * depending on the given device features.
4099 * @skb: socket buffer to check
4100 * @features: net device features
4101 *
4102 * Returns true if either:
4103 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4104 * 2. skb is fragmented and the device does not support SG.
4105 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4106 static inline bool skb_needs_linearize(struct sk_buff *skb,
4107 netdev_features_t features)
4108 {
4109 return skb_is_nonlinear(skb) &&
4110 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4111 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4112 }
4113
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4114 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4115 void *to,
4116 const unsigned int len)
4117 {
4118 memcpy(to, skb->data, len);
4119 }
4120
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4121 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4122 const int offset, void *to,
4123 const unsigned int len)
4124 {
4125 memcpy(to, skb->data + offset, len);
4126 }
4127
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4128 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4129 const void *from,
4130 const unsigned int len)
4131 {
4132 memcpy(skb->data, from, len);
4133 }
4134
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4135 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4136 const int offset,
4137 const void *from,
4138 const unsigned int len)
4139 {
4140 memcpy(skb->data + offset, from, len);
4141 }
4142
4143 void skb_init(void);
4144
skb_get_ktime(const struct sk_buff * skb)4145 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4146 {
4147 return skb->tstamp;
4148 }
4149
4150 /**
4151 * skb_get_timestamp - get timestamp from a skb
4152 * @skb: skb to get stamp from
4153 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4154 *
4155 * Timestamps are stored in the skb as offsets to a base timestamp.
4156 * This function converts the offset back to a struct timeval and stores
4157 * it in stamp.
4158 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4159 static inline void skb_get_timestamp(const struct sk_buff *skb,
4160 struct __kernel_old_timeval *stamp)
4161 {
4162 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4163 }
4164
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4165 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4166 struct __kernel_sock_timeval *stamp)
4167 {
4168 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4169
4170 stamp->tv_sec = ts.tv_sec;
4171 stamp->tv_usec = ts.tv_nsec / 1000;
4172 }
4173
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4174 static inline void skb_get_timestampns(const struct sk_buff *skb,
4175 struct __kernel_old_timespec *stamp)
4176 {
4177 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4178
4179 stamp->tv_sec = ts.tv_sec;
4180 stamp->tv_nsec = ts.tv_nsec;
4181 }
4182
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4183 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4184 struct __kernel_timespec *stamp)
4185 {
4186 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4187
4188 stamp->tv_sec = ts.tv_sec;
4189 stamp->tv_nsec = ts.tv_nsec;
4190 }
4191
__net_timestamp(struct sk_buff * skb)4192 static inline void __net_timestamp(struct sk_buff *skb)
4193 {
4194 skb->tstamp = ktime_get_real();
4195 skb->tstamp_type = SKB_CLOCK_REALTIME;
4196 }
4197
net_timedelta(ktime_t t)4198 static inline ktime_t net_timedelta(ktime_t t)
4199 {
4200 return ktime_sub(ktime_get_real(), t);
4201 }
4202
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,u8 tstamp_type)4203 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4204 u8 tstamp_type)
4205 {
4206 skb->tstamp = kt;
4207
4208 if (kt)
4209 skb->tstamp_type = tstamp_type;
4210 else
4211 skb->tstamp_type = SKB_CLOCK_REALTIME;
4212 }
4213
skb_set_delivery_type_by_clockid(struct sk_buff * skb,ktime_t kt,clockid_t clockid)4214 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4215 ktime_t kt, clockid_t clockid)
4216 {
4217 u8 tstamp_type = SKB_CLOCK_REALTIME;
4218
4219 switch (clockid) {
4220 case CLOCK_REALTIME:
4221 break;
4222 case CLOCK_MONOTONIC:
4223 tstamp_type = SKB_CLOCK_MONOTONIC;
4224 break;
4225 default:
4226 WARN_ON_ONCE(1);
4227 kt = 0;
4228 }
4229
4230 skb_set_delivery_time(skb, kt, tstamp_type);
4231 }
4232
4233 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4234
4235 /* It is used in the ingress path to clear the delivery_time.
4236 * If needed, set the skb->tstamp to the (rcv) timestamp.
4237 */
skb_clear_delivery_time(struct sk_buff * skb)4238 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4239 {
4240 if (skb->tstamp_type) {
4241 skb->tstamp_type = SKB_CLOCK_REALTIME;
4242 if (static_branch_unlikely(&netstamp_needed_key))
4243 skb->tstamp = ktime_get_real();
4244 else
4245 skb->tstamp = 0;
4246 }
4247 }
4248
skb_clear_tstamp(struct sk_buff * skb)4249 static inline void skb_clear_tstamp(struct sk_buff *skb)
4250 {
4251 if (skb->tstamp_type)
4252 return;
4253
4254 skb->tstamp = 0;
4255 }
4256
skb_tstamp(const struct sk_buff * skb)4257 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4258 {
4259 if (skb->tstamp_type)
4260 return 0;
4261
4262 return skb->tstamp;
4263 }
4264
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4265 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4266 {
4267 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4268 return skb->tstamp;
4269
4270 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4271 return ktime_get_real();
4272
4273 return 0;
4274 }
4275
skb_metadata_len(const struct sk_buff * skb)4276 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4277 {
4278 return skb_shinfo(skb)->meta_len;
4279 }
4280
skb_metadata_end(const struct sk_buff * skb)4281 static inline void *skb_metadata_end(const struct sk_buff *skb)
4282 {
4283 return skb_mac_header(skb);
4284 }
4285
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4286 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4287 const struct sk_buff *skb_b,
4288 u8 meta_len)
4289 {
4290 const void *a = skb_metadata_end(skb_a);
4291 const void *b = skb_metadata_end(skb_b);
4292 /* Using more efficient varaiant than plain call to memcmp(). */
4293 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4294 u64 diffs = 0;
4295
4296 switch (meta_len) {
4297 #define __it(x, op) (x -= sizeof(u##op))
4298 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4299 case 32: diffs |= __it_diff(a, b, 64);
4300 fallthrough;
4301 case 24: diffs |= __it_diff(a, b, 64);
4302 fallthrough;
4303 case 16: diffs |= __it_diff(a, b, 64);
4304 fallthrough;
4305 case 8: diffs |= __it_diff(a, b, 64);
4306 break;
4307 case 28: diffs |= __it_diff(a, b, 64);
4308 fallthrough;
4309 case 20: diffs |= __it_diff(a, b, 64);
4310 fallthrough;
4311 case 12: diffs |= __it_diff(a, b, 64);
4312 fallthrough;
4313 case 4: diffs |= __it_diff(a, b, 32);
4314 break;
4315 }
4316 return diffs;
4317 #else
4318 return memcmp(a - meta_len, b - meta_len, meta_len);
4319 #endif
4320 }
4321
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4322 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4323 const struct sk_buff *skb_b)
4324 {
4325 u8 len_a = skb_metadata_len(skb_a);
4326 u8 len_b = skb_metadata_len(skb_b);
4327
4328 if (!(len_a | len_b))
4329 return false;
4330
4331 return len_a != len_b ?
4332 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4333 }
4334
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4335 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4336 {
4337 skb_shinfo(skb)->meta_len = meta_len;
4338 }
4339
skb_metadata_clear(struct sk_buff * skb)4340 static inline void skb_metadata_clear(struct sk_buff *skb)
4341 {
4342 skb_metadata_set(skb, 0);
4343 }
4344
4345 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4346
4347 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4348
4349 void skb_clone_tx_timestamp(struct sk_buff *skb);
4350 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4351
4352 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4353
skb_clone_tx_timestamp(struct sk_buff * skb)4354 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4355 {
4356 }
4357
skb_defer_rx_timestamp(struct sk_buff * skb)4358 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4359 {
4360 return false;
4361 }
4362
4363 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4364
4365 /**
4366 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4367 *
4368 * PHY drivers may accept clones of transmitted packets for
4369 * timestamping via their phy_driver.txtstamp method. These drivers
4370 * must call this function to return the skb back to the stack with a
4371 * timestamp.
4372 *
4373 * @skb: clone of the original outgoing packet
4374 * @hwtstamps: hardware time stamps
4375 *
4376 */
4377 void skb_complete_tx_timestamp(struct sk_buff *skb,
4378 struct skb_shared_hwtstamps *hwtstamps);
4379
4380 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4381 struct skb_shared_hwtstamps *hwtstamps,
4382 struct sock *sk, int tstype);
4383
4384 /**
4385 * skb_tstamp_tx - queue clone of skb with send time stamps
4386 * @orig_skb: the original outgoing packet
4387 * @hwtstamps: hardware time stamps, may be NULL if not available
4388 *
4389 * If the skb has a socket associated, then this function clones the
4390 * skb (thus sharing the actual data and optional structures), stores
4391 * the optional hardware time stamping information (if non NULL) or
4392 * generates a software time stamp (otherwise), then queues the clone
4393 * to the error queue of the socket. Errors are silently ignored.
4394 */
4395 void skb_tstamp_tx(struct sk_buff *orig_skb,
4396 struct skb_shared_hwtstamps *hwtstamps);
4397
4398 /**
4399 * skb_tx_timestamp() - Driver hook for transmit timestamping
4400 *
4401 * Ethernet MAC Drivers should call this function in their hard_xmit()
4402 * function immediately before giving the sk_buff to the MAC hardware.
4403 *
4404 * Specifically, one should make absolutely sure that this function is
4405 * called before TX completion of this packet can trigger. Otherwise
4406 * the packet could potentially already be freed.
4407 *
4408 * @skb: A socket buffer.
4409 */
skb_tx_timestamp(struct sk_buff * skb)4410 static inline void skb_tx_timestamp(struct sk_buff *skb)
4411 {
4412 skb_clone_tx_timestamp(skb);
4413 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4414 skb_tstamp_tx(skb, NULL);
4415 }
4416
4417 /**
4418 * skb_complete_wifi_ack - deliver skb with wifi status
4419 *
4420 * @skb: the original outgoing packet
4421 * @acked: ack status
4422 *
4423 */
4424 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4425
4426 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4427 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4428
skb_csum_unnecessary(const struct sk_buff * skb)4429 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4430 {
4431 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4432 skb->csum_valid ||
4433 (skb->ip_summed == CHECKSUM_PARTIAL &&
4434 skb_checksum_start_offset(skb) >= 0));
4435 }
4436
4437 /**
4438 * skb_checksum_complete - Calculate checksum of an entire packet
4439 * @skb: packet to process
4440 *
4441 * This function calculates the checksum over the entire packet plus
4442 * the value of skb->csum. The latter can be used to supply the
4443 * checksum of a pseudo header as used by TCP/UDP. It returns the
4444 * checksum.
4445 *
4446 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4447 * this function can be used to verify that checksum on received
4448 * packets. In that case the function should return zero if the
4449 * checksum is correct. In particular, this function will return zero
4450 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4451 * hardware has already verified the correctness of the checksum.
4452 */
skb_checksum_complete(struct sk_buff * skb)4453 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4454 {
4455 return skb_csum_unnecessary(skb) ?
4456 0 : __skb_checksum_complete(skb);
4457 }
4458
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4459 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4460 {
4461 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4462 if (skb->csum_level == 0)
4463 skb->ip_summed = CHECKSUM_NONE;
4464 else
4465 skb->csum_level--;
4466 }
4467 }
4468
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4469 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4470 {
4471 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4472 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4473 skb->csum_level++;
4474 } else if (skb->ip_summed == CHECKSUM_NONE) {
4475 skb->ip_summed = CHECKSUM_UNNECESSARY;
4476 skb->csum_level = 0;
4477 }
4478 }
4479
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4480 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4481 {
4482 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4483 skb->ip_summed = CHECKSUM_NONE;
4484 skb->csum_level = 0;
4485 }
4486 }
4487
4488 /* Check if we need to perform checksum complete validation.
4489 *
4490 * Returns true if checksum complete is needed, false otherwise
4491 * (either checksum is unnecessary or zero checksum is allowed).
4492 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4493 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4494 bool zero_okay,
4495 __sum16 check)
4496 {
4497 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4498 skb->csum_valid = 1;
4499 __skb_decr_checksum_unnecessary(skb);
4500 return false;
4501 }
4502
4503 return true;
4504 }
4505
4506 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4507 * in checksum_init.
4508 */
4509 #define CHECKSUM_BREAK 76
4510
4511 /* Unset checksum-complete
4512 *
4513 * Unset checksum complete can be done when packet is being modified
4514 * (uncompressed for instance) and checksum-complete value is
4515 * invalidated.
4516 */
skb_checksum_complete_unset(struct sk_buff * skb)4517 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4518 {
4519 if (skb->ip_summed == CHECKSUM_COMPLETE)
4520 skb->ip_summed = CHECKSUM_NONE;
4521 }
4522
4523 /* Validate (init) checksum based on checksum complete.
4524 *
4525 * Return values:
4526 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4527 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4528 * checksum is stored in skb->csum for use in __skb_checksum_complete
4529 * non-zero: value of invalid checksum
4530 *
4531 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4532 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4533 bool complete,
4534 __wsum psum)
4535 {
4536 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4537 if (!csum_fold(csum_add(psum, skb->csum))) {
4538 skb->csum_valid = 1;
4539 return 0;
4540 }
4541 }
4542
4543 skb->csum = psum;
4544
4545 if (complete || skb->len <= CHECKSUM_BREAK) {
4546 __sum16 csum;
4547
4548 csum = __skb_checksum_complete(skb);
4549 skb->csum_valid = !csum;
4550 return csum;
4551 }
4552
4553 return 0;
4554 }
4555
null_compute_pseudo(struct sk_buff * skb,int proto)4556 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4557 {
4558 return 0;
4559 }
4560
4561 /* Perform checksum validate (init). Note that this is a macro since we only
4562 * want to calculate the pseudo header which is an input function if necessary.
4563 * First we try to validate without any computation (checksum unnecessary) and
4564 * then calculate based on checksum complete calling the function to compute
4565 * pseudo header.
4566 *
4567 * Return values:
4568 * 0: checksum is validated or try to in skb_checksum_complete
4569 * non-zero: value of invalid checksum
4570 */
4571 #define __skb_checksum_validate(skb, proto, complete, \
4572 zero_okay, check, compute_pseudo) \
4573 ({ \
4574 __sum16 __ret = 0; \
4575 skb->csum_valid = 0; \
4576 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4577 __ret = __skb_checksum_validate_complete(skb, \
4578 complete, compute_pseudo(skb, proto)); \
4579 __ret; \
4580 })
4581
4582 #define skb_checksum_init(skb, proto, compute_pseudo) \
4583 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4584
4585 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4586 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4587
4588 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4589 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4590
4591 #define skb_checksum_validate_zero_check(skb, proto, check, \
4592 compute_pseudo) \
4593 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4594
4595 #define skb_checksum_simple_validate(skb) \
4596 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4597
__skb_checksum_convert_check(struct sk_buff * skb)4598 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4599 {
4600 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4601 }
4602
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4603 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4604 {
4605 skb->csum = ~pseudo;
4606 skb->ip_summed = CHECKSUM_COMPLETE;
4607 }
4608
4609 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4610 do { \
4611 if (__skb_checksum_convert_check(skb)) \
4612 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4613 } while (0)
4614
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4615 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4616 u16 start, u16 offset)
4617 {
4618 skb->ip_summed = CHECKSUM_PARTIAL;
4619 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4620 skb->csum_offset = offset - start;
4621 }
4622
4623 /* Update skbuf and packet to reflect the remote checksum offload operation.
4624 * When called, ptr indicates the starting point for skb->csum when
4625 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4626 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4627 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4628 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4629 int start, int offset, bool nopartial)
4630 {
4631 __wsum delta;
4632
4633 if (!nopartial) {
4634 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4635 return;
4636 }
4637
4638 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4639 __skb_checksum_complete(skb);
4640 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4641 }
4642
4643 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4644
4645 /* Adjust skb->csum since we changed the packet */
4646 skb->csum = csum_add(skb->csum, delta);
4647 }
4648
skb_nfct(const struct sk_buff * skb)4649 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4650 {
4651 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4652 return (void *)(skb->_nfct & NFCT_PTRMASK);
4653 #else
4654 return NULL;
4655 #endif
4656 }
4657
skb_get_nfct(const struct sk_buff * skb)4658 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4659 {
4660 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4661 return skb->_nfct;
4662 #else
4663 return 0UL;
4664 #endif
4665 }
4666
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4667 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4668 {
4669 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4670 skb->slow_gro |= !!nfct;
4671 skb->_nfct = nfct;
4672 #endif
4673 }
4674
4675 #ifdef CONFIG_SKB_EXTENSIONS
4676 enum skb_ext_id {
4677 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4678 SKB_EXT_BRIDGE_NF,
4679 #endif
4680 #ifdef CONFIG_XFRM
4681 SKB_EXT_SEC_PATH,
4682 #endif
4683 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4684 TC_SKB_EXT,
4685 #endif
4686 #if IS_ENABLED(CONFIG_MPTCP)
4687 SKB_EXT_MPTCP,
4688 #endif
4689 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4690 SKB_EXT_MCTP,
4691 #endif
4692 SKB_EXT_NUM, /* must be last */
4693 };
4694
4695 /**
4696 * struct skb_ext - sk_buff extensions
4697 * @refcnt: 1 on allocation, deallocated on 0
4698 * @offset: offset to add to @data to obtain extension address
4699 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4700 * @data: start of extension data, variable sized
4701 *
4702 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4703 * to use 'u8' types while allowing up to 2kb worth of extension data.
4704 */
4705 struct skb_ext {
4706 refcount_t refcnt;
4707 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4708 u8 chunks; /* same */
4709 char data[] __aligned(8);
4710 };
4711
4712 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4713 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4714 struct skb_ext *ext);
4715 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4716 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4717 void __skb_ext_put(struct skb_ext *ext);
4718
skb_ext_put(struct sk_buff * skb)4719 static inline void skb_ext_put(struct sk_buff *skb)
4720 {
4721 if (skb->active_extensions)
4722 __skb_ext_put(skb->extensions);
4723 }
4724
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4725 static inline void __skb_ext_copy(struct sk_buff *dst,
4726 const struct sk_buff *src)
4727 {
4728 dst->active_extensions = src->active_extensions;
4729
4730 if (src->active_extensions) {
4731 struct skb_ext *ext = src->extensions;
4732
4733 refcount_inc(&ext->refcnt);
4734 dst->extensions = ext;
4735 }
4736 }
4737
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4738 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4739 {
4740 skb_ext_put(dst);
4741 __skb_ext_copy(dst, src);
4742 }
4743
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4744 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4745 {
4746 return !!ext->offset[i];
4747 }
4748
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4749 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4750 {
4751 return skb->active_extensions & (1 << id);
4752 }
4753
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4754 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4755 {
4756 if (skb_ext_exist(skb, id))
4757 __skb_ext_del(skb, id);
4758 }
4759
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4760 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4761 {
4762 if (skb_ext_exist(skb, id)) {
4763 struct skb_ext *ext = skb->extensions;
4764
4765 return (void *)ext + (ext->offset[id] << 3);
4766 }
4767
4768 return NULL;
4769 }
4770
skb_ext_reset(struct sk_buff * skb)4771 static inline void skb_ext_reset(struct sk_buff *skb)
4772 {
4773 if (unlikely(skb->active_extensions)) {
4774 __skb_ext_put(skb->extensions);
4775 skb->active_extensions = 0;
4776 }
4777 }
4778
skb_has_extensions(struct sk_buff * skb)4779 static inline bool skb_has_extensions(struct sk_buff *skb)
4780 {
4781 return unlikely(skb->active_extensions);
4782 }
4783 #else
skb_ext_put(struct sk_buff * skb)4784 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4785 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4786 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4787 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4788 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4789 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4790 #endif /* CONFIG_SKB_EXTENSIONS */
4791
nf_reset_ct(struct sk_buff * skb)4792 static inline void nf_reset_ct(struct sk_buff *skb)
4793 {
4794 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4795 nf_conntrack_put(skb_nfct(skb));
4796 skb->_nfct = 0;
4797 #endif
4798 }
4799
nf_reset_trace(struct sk_buff * skb)4800 static inline void nf_reset_trace(struct sk_buff *skb)
4801 {
4802 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4803 skb->nf_trace = 0;
4804 #endif
4805 }
4806
ipvs_reset(struct sk_buff * skb)4807 static inline void ipvs_reset(struct sk_buff *skb)
4808 {
4809 #if IS_ENABLED(CONFIG_IP_VS)
4810 skb->ipvs_property = 0;
4811 #endif
4812 }
4813
4814 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4815 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4816 bool copy)
4817 {
4818 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4819 dst->_nfct = src->_nfct;
4820 nf_conntrack_get(skb_nfct(src));
4821 #endif
4822 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4823 if (copy)
4824 dst->nf_trace = src->nf_trace;
4825 #endif
4826 }
4827
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4828 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4829 {
4830 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4831 nf_conntrack_put(skb_nfct(dst));
4832 #endif
4833 dst->slow_gro = src->slow_gro;
4834 __nf_copy(dst, src, true);
4835 }
4836
4837 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4838 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4839 {
4840 to->secmark = from->secmark;
4841 }
4842
skb_init_secmark(struct sk_buff * skb)4843 static inline void skb_init_secmark(struct sk_buff *skb)
4844 {
4845 skb->secmark = 0;
4846 }
4847 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4848 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4849 { }
4850
skb_init_secmark(struct sk_buff * skb)4851 static inline void skb_init_secmark(struct sk_buff *skb)
4852 { }
4853 #endif
4854
secpath_exists(const struct sk_buff * skb)4855 static inline int secpath_exists(const struct sk_buff *skb)
4856 {
4857 #ifdef CONFIG_XFRM
4858 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4859 #else
4860 return 0;
4861 #endif
4862 }
4863
skb_irq_freeable(const struct sk_buff * skb)4864 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4865 {
4866 return !skb->destructor &&
4867 !secpath_exists(skb) &&
4868 !skb_nfct(skb) &&
4869 !skb->_skb_refdst &&
4870 !skb_has_frag_list(skb);
4871 }
4872
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4873 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4874 {
4875 skb->queue_mapping = queue_mapping;
4876 }
4877
skb_get_queue_mapping(const struct sk_buff * skb)4878 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4879 {
4880 return skb->queue_mapping;
4881 }
4882
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4883 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4884 {
4885 to->queue_mapping = from->queue_mapping;
4886 }
4887
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4888 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4889 {
4890 skb->queue_mapping = rx_queue + 1;
4891 }
4892
skb_get_rx_queue(const struct sk_buff * skb)4893 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4894 {
4895 return skb->queue_mapping - 1;
4896 }
4897
skb_rx_queue_recorded(const struct sk_buff * skb)4898 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4899 {
4900 return skb->queue_mapping != 0;
4901 }
4902
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4903 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4904 {
4905 skb->dst_pending_confirm = val;
4906 }
4907
skb_get_dst_pending_confirm(const struct sk_buff * skb)4908 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4909 {
4910 return skb->dst_pending_confirm != 0;
4911 }
4912
skb_sec_path(const struct sk_buff * skb)4913 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4914 {
4915 #ifdef CONFIG_XFRM
4916 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4917 #else
4918 return NULL;
4919 #endif
4920 }
4921
skb_is_gso(const struct sk_buff * skb)4922 static inline bool skb_is_gso(const struct sk_buff *skb)
4923 {
4924 return skb_shinfo(skb)->gso_size;
4925 }
4926
4927 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4928 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4929 {
4930 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4931 }
4932
4933 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4934 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4935 {
4936 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4937 }
4938
4939 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4940 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4941 {
4942 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4943 }
4944
skb_gso_reset(struct sk_buff * skb)4945 static inline void skb_gso_reset(struct sk_buff *skb)
4946 {
4947 skb_shinfo(skb)->gso_size = 0;
4948 skb_shinfo(skb)->gso_segs = 0;
4949 skb_shinfo(skb)->gso_type = 0;
4950 }
4951
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4952 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4953 u16 increment)
4954 {
4955 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4956 return;
4957 shinfo->gso_size += increment;
4958 }
4959
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4960 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4961 u16 decrement)
4962 {
4963 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4964 return;
4965 shinfo->gso_size -= decrement;
4966 }
4967
4968 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4969
skb_warn_if_lro(const struct sk_buff * skb)4970 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4971 {
4972 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4973 * wanted then gso_type will be set. */
4974 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4975
4976 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4977 unlikely(shinfo->gso_type == 0)) {
4978 __skb_warn_lro_forwarding(skb);
4979 return true;
4980 }
4981 return false;
4982 }
4983
skb_forward_csum(struct sk_buff * skb)4984 static inline void skb_forward_csum(struct sk_buff *skb)
4985 {
4986 /* Unfortunately we don't support this one. Any brave souls? */
4987 if (skb->ip_summed == CHECKSUM_COMPLETE)
4988 skb->ip_summed = CHECKSUM_NONE;
4989 }
4990
4991 /**
4992 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4993 * @skb: skb to check
4994 *
4995 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4996 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4997 * use this helper, to document places where we make this assertion.
4998 */
skb_checksum_none_assert(const struct sk_buff * skb)4999 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5000 {
5001 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5002 }
5003
5004 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5005
5006 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5007 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5008 unsigned int transport_len,
5009 __sum16(*skb_chkf)(struct sk_buff *skb));
5010
5011 /**
5012 * skb_head_is_locked - Determine if the skb->head is locked down
5013 * @skb: skb to check
5014 *
5015 * The head on skbs build around a head frag can be removed if they are
5016 * not cloned. This function returns true if the skb head is locked down
5017 * due to either being allocated via kmalloc, or by being a clone with
5018 * multiple references to the head.
5019 */
skb_head_is_locked(const struct sk_buff * skb)5020 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5021 {
5022 return !skb->head_frag || skb_cloned(skb);
5023 }
5024
5025 /* Local Checksum Offload.
5026 * Compute outer checksum based on the assumption that the
5027 * inner checksum will be offloaded later.
5028 * See Documentation/networking/checksum-offloads.rst for
5029 * explanation of how this works.
5030 * Fill in outer checksum adjustment (e.g. with sum of outer
5031 * pseudo-header) before calling.
5032 * Also ensure that inner checksum is in linear data area.
5033 */
lco_csum(struct sk_buff * skb)5034 static inline __wsum lco_csum(struct sk_buff *skb)
5035 {
5036 unsigned char *csum_start = skb_checksum_start(skb);
5037 unsigned char *l4_hdr = skb_transport_header(skb);
5038 __wsum partial;
5039
5040 /* Start with complement of inner checksum adjustment */
5041 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5042 skb->csum_offset));
5043
5044 /* Add in checksum of our headers (incl. outer checksum
5045 * adjustment filled in by caller) and return result.
5046 */
5047 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5048 }
5049
skb_is_redirected(const struct sk_buff * skb)5050 static inline bool skb_is_redirected(const struct sk_buff *skb)
5051 {
5052 return skb->redirected;
5053 }
5054
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5055 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5056 {
5057 skb->redirected = 1;
5058 #ifdef CONFIG_NET_REDIRECT
5059 skb->from_ingress = from_ingress;
5060 if (skb->from_ingress)
5061 skb_clear_tstamp(skb);
5062 #endif
5063 }
5064
skb_reset_redirect(struct sk_buff * skb)5065 static inline void skb_reset_redirect(struct sk_buff *skb)
5066 {
5067 skb->redirected = 0;
5068 }
5069
skb_set_redirected_noclear(struct sk_buff * skb,bool from_ingress)5070 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5071 bool from_ingress)
5072 {
5073 skb->redirected = 1;
5074 #ifdef CONFIG_NET_REDIRECT
5075 skb->from_ingress = from_ingress;
5076 #endif
5077 }
5078
skb_csum_is_sctp(struct sk_buff * skb)5079 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5080 {
5081 #if IS_ENABLED(CONFIG_IP_SCTP)
5082 return skb->csum_not_inet;
5083 #else
5084 return 0;
5085 #endif
5086 }
5087
skb_reset_csum_not_inet(struct sk_buff * skb)5088 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5089 {
5090 skb->ip_summed = CHECKSUM_NONE;
5091 #if IS_ENABLED(CONFIG_IP_SCTP)
5092 skb->csum_not_inet = 0;
5093 #endif
5094 }
5095
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5096 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5097 const u64 kcov_handle)
5098 {
5099 #ifdef CONFIG_KCOV
5100 skb->kcov_handle = kcov_handle;
5101 #endif
5102 }
5103
skb_get_kcov_handle(struct sk_buff * skb)5104 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5105 {
5106 #ifdef CONFIG_KCOV
5107 return skb->kcov_handle;
5108 #else
5109 return 0;
5110 #endif
5111 }
5112
skb_mark_for_recycle(struct sk_buff * skb)5113 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5114 {
5115 #ifdef CONFIG_PAGE_POOL
5116 skb->pp_recycle = 1;
5117 #endif
5118 }
5119
5120 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5121 ssize_t maxsize, gfp_t gfp);
5122
5123 #endif /* __KERNEL__ */
5124 #endif /* _LINUX_SKBUFF_H */
5125