1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96 typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110
111 struct sock;
112 struct proto;
113 struct net;
114
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117
118 /**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163 struct sock_common {
164 union {
165 __addrpair skc_addrpair;
166 struct {
167 __be32 skc_daddr;
168 __be32 skc_rcv_saddr;
169 };
170 };
171 union {
172 unsigned int skc_hash;
173 __u16 skc_u16hashes[2];
174 };
175 /* skc_dport && skc_num must be grouped as well */
176 union {
177 __portpair skc_portpair;
178 struct {
179 __be16 skc_dport;
180 __u16 skc_num;
181 };
182 };
183
184 unsigned short skc_family;
185 volatile unsigned char skc_state;
186 unsigned char skc_reuse:4;
187 unsigned char skc_reuseport:1;
188 unsigned char skc_ipv6only:1;
189 unsigned char skc_net_refcnt:1;
190 int skc_bound_dev_if;
191 union {
192 struct hlist_node skc_bind_node;
193 struct hlist_node skc_portaddr_node;
194 };
195 struct proto *skc_prot;
196 possible_net_t skc_net;
197
198 #if IS_ENABLED(CONFIG_IPV6)
199 struct in6_addr skc_v6_daddr;
200 struct in6_addr skc_v6_rcv_saddr;
201 #endif
202
203 atomic64_t skc_cookie;
204
205 /* following fields are padding to force
206 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 * assuming IPV6 is enabled. We use this padding differently
208 * for different kind of 'sockets'
209 */
210 union {
211 unsigned long skc_flags;
212 struct sock *skc_listener; /* request_sock */
213 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 };
215 /*
216 * fields between dontcopy_begin/dontcopy_end
217 * are not copied in sock_copy()
218 */
219 /* private: */
220 int skc_dontcopy_begin[0];
221 /* public: */
222 union {
223 struct hlist_node skc_node;
224 struct hlist_nulls_node skc_nulls_node;
225 };
226 unsigned short skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 unsigned short skc_rx_queue_mapping;
229 #endif
230 union {
231 int skc_incoming_cpu;
232 u32 skc_rcv_wnd;
233 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
234 };
235
236 refcount_t skc_refcnt;
237 /* private: */
238 int skc_dontcopy_end[0];
239 union {
240 u32 skc_rxhash;
241 u32 skc_window_clamp;
242 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 };
244 /* public: */
245 };
246
247 struct bpf_local_storage;
248 struct sk_filter;
249
250 /**
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
304 * @sk_busy_poll_budget: napi processing budget when busypolling
305 * @sk_priority: %SO_PRIORITY setting
306 * @sk_type: socket type (%SOCK_STREAM, etc)
307 * @sk_protocol: which protocol this socket belongs in this network family
308 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309 * @sk_peer_pid: &struct pid for this socket's peer
310 * @sk_peer_cred: %SO_PEERCRED setting
311 * @sk_rcvlowat: %SO_RCVLOWAT setting
312 * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 * @sk_sndtimeo: %SO_SNDTIMEO setting
314 * @sk_txhash: computed flow hash for use on transmit
315 * @sk_txrehash: enable TX hash rethink
316 * @sk_filter: socket filtering instructions
317 * @sk_timer: sock cleanup timer
318 * @sk_stamp: time stamp of last packet received
319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320 * @sk_tsflags: SO_TIMESTAMPING flags
321 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
322 * Sockets that can be used under memory reclaim should
323 * set this to false.
324 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325 * for timestamping
326 * @sk_tskey: counter to disambiguate concurrent tstamp requests
327 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
328 * @sk_socket: Identd and reporting IO signals
329 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
330 * @sk_frag: cached page frag
331 * @sk_peek_off: current peek_offset value
332 * @sk_send_head: front of stuff to transmit
333 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334 * @sk_security: used by security modules
335 * @sk_mark: generic packet mark
336 * @sk_cgrp_data: cgroup data for this cgroup
337 * @sk_memcg: this socket's memory cgroup association
338 * @sk_write_pending: a write to stream socket waits to start
339 * @sk_disconnects: number of disconnect operations performed on this sock
340 * @sk_state_change: callback to indicate change in the state of the sock
341 * @sk_data_ready: callback to indicate there is data to be processed
342 * @sk_write_space: callback to indicate there is bf sending space available
343 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
344 * @sk_backlog_rcv: callback to process the backlog
345 * @sk_validate_xmit_skb: ptr to an optional validate function
346 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
347 * @sk_reuseport_cb: reuseport group container
348 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
349 * @sk_rcu: used during RCU grace period
350 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
351 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
352 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
353 * @sk_txtime_unused: unused txtime flags
354 * @ns_tracker: tracker for netns reference
355 * @sk_bind2_node: bind node in the bhash2 table
356 */
357 struct sock {
358 /*
359 * Now struct inet_timewait_sock also uses sock_common, so please just
360 * don't add nothing before this first member (__sk_common) --acme
361 */
362 struct sock_common __sk_common;
363 #define sk_node __sk_common.skc_node
364 #define sk_nulls_node __sk_common.skc_nulls_node
365 #define sk_refcnt __sk_common.skc_refcnt
366 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
367 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
368 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
369 #endif
370
371 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
372 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
373 #define sk_hash __sk_common.skc_hash
374 #define sk_portpair __sk_common.skc_portpair
375 #define sk_num __sk_common.skc_num
376 #define sk_dport __sk_common.skc_dport
377 #define sk_addrpair __sk_common.skc_addrpair
378 #define sk_daddr __sk_common.skc_daddr
379 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
380 #define sk_family __sk_common.skc_family
381 #define sk_state __sk_common.skc_state
382 #define sk_reuse __sk_common.skc_reuse
383 #define sk_reuseport __sk_common.skc_reuseport
384 #define sk_ipv6only __sk_common.skc_ipv6only
385 #define sk_net_refcnt __sk_common.skc_net_refcnt
386 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
387 #define sk_bind_node __sk_common.skc_bind_node
388 #define sk_prot __sk_common.skc_prot
389 #define sk_net __sk_common.skc_net
390 #define sk_v6_daddr __sk_common.skc_v6_daddr
391 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
392 #define sk_cookie __sk_common.skc_cookie
393 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
394 #define sk_flags __sk_common.skc_flags
395 #define sk_rxhash __sk_common.skc_rxhash
396
397 /* early demux fields */
398 struct dst_entry __rcu *sk_rx_dst;
399 int sk_rx_dst_ifindex;
400 u32 sk_rx_dst_cookie;
401
402 socket_lock_t sk_lock;
403 atomic_t sk_drops;
404 int sk_rcvlowat;
405 struct sk_buff_head sk_error_queue;
406 struct sk_buff_head sk_receive_queue;
407 /*
408 * The backlog queue is special, it is always used with
409 * the per-socket spinlock held and requires low latency
410 * access. Therefore we special case it's implementation.
411 * Note : rmem_alloc is in this structure to fill a hole
412 * on 64bit arches, not because its logically part of
413 * backlog.
414 */
415 struct {
416 atomic_t rmem_alloc;
417 int len;
418 struct sk_buff *head;
419 struct sk_buff *tail;
420 } sk_backlog;
421
422 #define sk_rmem_alloc sk_backlog.rmem_alloc
423
424 int sk_forward_alloc;
425 u32 sk_reserved_mem;
426 #ifdef CONFIG_NET_RX_BUSY_POLL
427 unsigned int sk_ll_usec;
428 /* ===== mostly read cache line ===== */
429 unsigned int sk_napi_id;
430 #endif
431 int sk_rcvbuf;
432 int sk_disconnects;
433
434 struct sk_filter __rcu *sk_filter;
435 union {
436 struct socket_wq __rcu *sk_wq;
437 /* private: */
438 struct socket_wq *sk_wq_raw;
439 /* public: */
440 };
441 #ifdef CONFIG_XFRM
442 struct xfrm_policy __rcu *sk_policy[2];
443 #endif
444
445 struct dst_entry __rcu *sk_dst_cache;
446 atomic_t sk_omem_alloc;
447 int sk_sndbuf;
448
449 /* ===== cache line for TX ===== */
450 int sk_wmem_queued;
451 refcount_t sk_wmem_alloc;
452 unsigned long sk_tsq_flags;
453 union {
454 struct sk_buff *sk_send_head;
455 struct rb_root tcp_rtx_queue;
456 };
457 struct sk_buff_head sk_write_queue;
458 __s32 sk_peek_off;
459 int sk_write_pending;
460 __u32 sk_dst_pending_confirm;
461 u32 sk_pacing_status; /* see enum sk_pacing */
462 long sk_sndtimeo;
463 struct timer_list sk_timer;
464 __u32 sk_priority;
465 __u32 sk_mark;
466 unsigned long sk_pacing_rate; /* bytes per second */
467 unsigned long sk_max_pacing_rate;
468 struct page_frag sk_frag;
469 netdev_features_t sk_route_caps;
470 int sk_gso_type;
471 unsigned int sk_gso_max_size;
472 gfp_t sk_allocation;
473 __u32 sk_txhash;
474
475 /*
476 * Because of non atomicity rules, all
477 * changes are protected by socket lock.
478 */
479 u8 sk_gso_disabled : 1,
480 sk_kern_sock : 1,
481 sk_no_check_tx : 1,
482 sk_no_check_rx : 1,
483 sk_userlocks : 4;
484 u8 sk_pacing_shift;
485 u16 sk_type;
486 u16 sk_protocol;
487 u16 sk_gso_max_segs;
488 unsigned long sk_lingertime;
489 struct proto *sk_prot_creator;
490 rwlock_t sk_callback_lock;
491 int sk_err,
492 sk_err_soft;
493 u32 sk_ack_backlog;
494 u32 sk_max_ack_backlog;
495 kuid_t sk_uid;
496 u8 sk_txrehash;
497 #ifdef CONFIG_NET_RX_BUSY_POLL
498 u8 sk_prefer_busy_poll;
499 u16 sk_busy_poll_budget;
500 #endif
501 spinlock_t sk_peer_lock;
502 int sk_bind_phc;
503 struct pid *sk_peer_pid;
504 const struct cred *sk_peer_cred;
505
506 long sk_rcvtimeo;
507 ktime_t sk_stamp;
508 #if BITS_PER_LONG==32
509 seqlock_t sk_stamp_seq;
510 #endif
511 atomic_t sk_tskey;
512 atomic_t sk_zckey;
513 u32 sk_tsflags;
514 u8 sk_shutdown;
515
516 u8 sk_clockid;
517 u8 sk_txtime_deadline_mode : 1,
518 sk_txtime_report_errors : 1,
519 sk_txtime_unused : 6;
520 bool sk_use_task_frag;
521
522 struct socket *sk_socket;
523 void *sk_user_data;
524 #ifdef CONFIG_SECURITY
525 void *sk_security;
526 #endif
527 struct sock_cgroup_data sk_cgrp_data;
528 struct mem_cgroup *sk_memcg;
529 void (*sk_state_change)(struct sock *sk);
530 void (*sk_data_ready)(struct sock *sk);
531 void (*sk_write_space)(struct sock *sk);
532 void (*sk_error_report)(struct sock *sk);
533 int (*sk_backlog_rcv)(struct sock *sk,
534 struct sk_buff *skb);
535 #ifdef CONFIG_SOCK_VALIDATE_XMIT
536 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
537 struct net_device *dev,
538 struct sk_buff *skb);
539 #endif
540 void (*sk_destruct)(struct sock *sk);
541 struct sock_reuseport __rcu *sk_reuseport_cb;
542 #ifdef CONFIG_BPF_SYSCALL
543 struct bpf_local_storage __rcu *sk_bpf_storage;
544 #endif
545 struct rcu_head sk_rcu;
546 netns_tracker ns_tracker;
547 struct hlist_node sk_bind2_node;
548 };
549
550 enum sk_pacing {
551 SK_PACING_NONE = 0,
552 SK_PACING_NEEDED = 1,
553 SK_PACING_FQ = 2,
554 };
555
556 /* flag bits in sk_user_data
557 *
558 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
559 * not be suitable for copying when cloning the socket. For instance,
560 * it can point to a reference counted object. sk_user_data bottom
561 * bit is set if pointer must not be copied.
562 *
563 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
564 * managed/owned by a BPF reuseport array. This bit should be set
565 * when sk_user_data's sk is added to the bpf's reuseport_array.
566 *
567 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
568 * sk_user_data points to psock type. This bit should be set
569 * when sk_user_data is assigned to a psock object.
570 */
571 #define SK_USER_DATA_NOCOPY 1UL
572 #define SK_USER_DATA_BPF 2UL
573 #define SK_USER_DATA_PSOCK 4UL
574 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
575 SK_USER_DATA_PSOCK)
576
577 /**
578 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
579 * @sk: socket
580 */
sk_user_data_is_nocopy(const struct sock * sk)581 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
582 {
583 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
584 }
585
586 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
587
588 /**
589 * __locked_read_sk_user_data_with_flags - return the pointer
590 * only if argument flags all has been set in sk_user_data. Otherwise
591 * return NULL
592 *
593 * @sk: socket
594 * @flags: flag bits
595 *
596 * The caller must be holding sk->sk_callback_lock.
597 */
598 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)599 __locked_read_sk_user_data_with_flags(const struct sock *sk,
600 uintptr_t flags)
601 {
602 uintptr_t sk_user_data =
603 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
604 lockdep_is_held(&sk->sk_callback_lock));
605
606 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
607
608 if ((sk_user_data & flags) == flags)
609 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
610 return NULL;
611 }
612
613 /**
614 * __rcu_dereference_sk_user_data_with_flags - return the pointer
615 * only if argument flags all has been set in sk_user_data. Otherwise
616 * return NULL
617 *
618 * @sk: socket
619 * @flags: flag bits
620 */
621 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)622 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
623 uintptr_t flags)
624 {
625 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
626
627 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
628
629 if ((sk_user_data & flags) == flags)
630 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
631 return NULL;
632 }
633
634 #define rcu_dereference_sk_user_data(sk) \
635 __rcu_dereference_sk_user_data_with_flags(sk, 0)
636 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
637 ({ \
638 uintptr_t __tmp1 = (uintptr_t)(ptr), \
639 __tmp2 = (uintptr_t)(flags); \
640 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
641 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
642 rcu_assign_pointer(__sk_user_data((sk)), \
643 __tmp1 | __tmp2); \
644 })
645 #define rcu_assign_sk_user_data(sk, ptr) \
646 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
647
648 static inline
sock_net(const struct sock * sk)649 struct net *sock_net(const struct sock *sk)
650 {
651 return read_pnet(&sk->sk_net);
652 }
653
654 static inline
sock_net_set(struct sock * sk,struct net * net)655 void sock_net_set(struct sock *sk, struct net *net)
656 {
657 write_pnet(&sk->sk_net, net);
658 }
659
660 /*
661 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
662 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
663 * on a socket means that the socket will reuse everybody else's port
664 * without looking at the other's sk_reuse value.
665 */
666
667 #define SK_NO_REUSE 0
668 #define SK_CAN_REUSE 1
669 #define SK_FORCE_REUSE 2
670
671 int sk_set_peek_off(struct sock *sk, int val);
672
sk_peek_offset(const struct sock * sk,int flags)673 static inline int sk_peek_offset(const struct sock *sk, int flags)
674 {
675 if (unlikely(flags & MSG_PEEK)) {
676 return READ_ONCE(sk->sk_peek_off);
677 }
678
679 return 0;
680 }
681
sk_peek_offset_bwd(struct sock * sk,int val)682 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
683 {
684 s32 off = READ_ONCE(sk->sk_peek_off);
685
686 if (unlikely(off >= 0)) {
687 off = max_t(s32, off - val, 0);
688 WRITE_ONCE(sk->sk_peek_off, off);
689 }
690 }
691
sk_peek_offset_fwd(struct sock * sk,int val)692 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
693 {
694 sk_peek_offset_bwd(sk, -val);
695 }
696
697 /*
698 * Hashed lists helper routines
699 */
sk_entry(const struct hlist_node * node)700 static inline struct sock *sk_entry(const struct hlist_node *node)
701 {
702 return hlist_entry(node, struct sock, sk_node);
703 }
704
__sk_head(const struct hlist_head * head)705 static inline struct sock *__sk_head(const struct hlist_head *head)
706 {
707 return hlist_entry(head->first, struct sock, sk_node);
708 }
709
sk_head(const struct hlist_head * head)710 static inline struct sock *sk_head(const struct hlist_head *head)
711 {
712 return hlist_empty(head) ? NULL : __sk_head(head);
713 }
714
__sk_nulls_head(const struct hlist_nulls_head * head)715 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
716 {
717 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
718 }
719
sk_nulls_head(const struct hlist_nulls_head * head)720 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
721 {
722 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
723 }
724
sk_next(const struct sock * sk)725 static inline struct sock *sk_next(const struct sock *sk)
726 {
727 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
728 }
729
sk_nulls_next(const struct sock * sk)730 static inline struct sock *sk_nulls_next(const struct sock *sk)
731 {
732 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
733 hlist_nulls_entry(sk->sk_nulls_node.next,
734 struct sock, sk_nulls_node) :
735 NULL;
736 }
737
sk_unhashed(const struct sock * sk)738 static inline bool sk_unhashed(const struct sock *sk)
739 {
740 return hlist_unhashed(&sk->sk_node);
741 }
742
sk_hashed(const struct sock * sk)743 static inline bool sk_hashed(const struct sock *sk)
744 {
745 return !sk_unhashed(sk);
746 }
747
sk_node_init(struct hlist_node * node)748 static inline void sk_node_init(struct hlist_node *node)
749 {
750 node->pprev = NULL;
751 }
752
__sk_del_node(struct sock * sk)753 static inline void __sk_del_node(struct sock *sk)
754 {
755 __hlist_del(&sk->sk_node);
756 }
757
758 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)759 static inline bool __sk_del_node_init(struct sock *sk)
760 {
761 if (sk_hashed(sk)) {
762 __sk_del_node(sk);
763 sk_node_init(&sk->sk_node);
764 return true;
765 }
766 return false;
767 }
768
769 /* Grab socket reference count. This operation is valid only
770 when sk is ALREADY grabbed f.e. it is found in hash table
771 or a list and the lookup is made under lock preventing hash table
772 modifications.
773 */
774
sock_hold(struct sock * sk)775 static __always_inline void sock_hold(struct sock *sk)
776 {
777 refcount_inc(&sk->sk_refcnt);
778 }
779
780 /* Ungrab socket in the context, which assumes that socket refcnt
781 cannot hit zero, f.e. it is true in context of any socketcall.
782 */
__sock_put(struct sock * sk)783 static __always_inline void __sock_put(struct sock *sk)
784 {
785 refcount_dec(&sk->sk_refcnt);
786 }
787
sk_del_node_init(struct sock * sk)788 static inline bool sk_del_node_init(struct sock *sk)
789 {
790 bool rc = __sk_del_node_init(sk);
791
792 if (rc) {
793 /* paranoid for a while -acme */
794 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
795 __sock_put(sk);
796 }
797 return rc;
798 }
799 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
800
__sk_nulls_del_node_init_rcu(struct sock * sk)801 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
802 {
803 if (sk_hashed(sk)) {
804 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
805 return true;
806 }
807 return false;
808 }
809
sk_nulls_del_node_init_rcu(struct sock * sk)810 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
811 {
812 bool rc = __sk_nulls_del_node_init_rcu(sk);
813
814 if (rc) {
815 /* paranoid for a while -acme */
816 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
817 __sock_put(sk);
818 }
819 return rc;
820 }
821
__sk_add_node(struct sock * sk,struct hlist_head * list)822 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
823 {
824 hlist_add_head(&sk->sk_node, list);
825 }
826
sk_add_node(struct sock * sk,struct hlist_head * list)827 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
828 {
829 sock_hold(sk);
830 __sk_add_node(sk, list);
831 }
832
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)833 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
834 {
835 sock_hold(sk);
836 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
837 sk->sk_family == AF_INET6)
838 hlist_add_tail_rcu(&sk->sk_node, list);
839 else
840 hlist_add_head_rcu(&sk->sk_node, list);
841 }
842
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)843 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
844 {
845 sock_hold(sk);
846 hlist_add_tail_rcu(&sk->sk_node, list);
847 }
848
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)849 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
850 {
851 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
852 }
853
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)854 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
855 {
856 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
857 }
858
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)859 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
860 {
861 sock_hold(sk);
862 __sk_nulls_add_node_rcu(sk, list);
863 }
864
__sk_del_bind_node(struct sock * sk)865 static inline void __sk_del_bind_node(struct sock *sk)
866 {
867 __hlist_del(&sk->sk_bind_node);
868 }
869
sk_add_bind_node(struct sock * sk,struct hlist_head * list)870 static inline void sk_add_bind_node(struct sock *sk,
871 struct hlist_head *list)
872 {
873 hlist_add_head(&sk->sk_bind_node, list);
874 }
875
__sk_del_bind2_node(struct sock * sk)876 static inline void __sk_del_bind2_node(struct sock *sk)
877 {
878 __hlist_del(&sk->sk_bind2_node);
879 }
880
sk_add_bind2_node(struct sock * sk,struct hlist_head * list)881 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
882 {
883 hlist_add_head(&sk->sk_bind2_node, list);
884 }
885
886 #define sk_for_each(__sk, list) \
887 hlist_for_each_entry(__sk, list, sk_node)
888 #define sk_for_each_rcu(__sk, list) \
889 hlist_for_each_entry_rcu(__sk, list, sk_node)
890 #define sk_nulls_for_each(__sk, node, list) \
891 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
892 #define sk_nulls_for_each_rcu(__sk, node, list) \
893 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
894 #define sk_for_each_from(__sk) \
895 hlist_for_each_entry_from(__sk, sk_node)
896 #define sk_nulls_for_each_from(__sk, node) \
897 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
898 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
899 #define sk_for_each_safe(__sk, tmp, list) \
900 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
901 #define sk_for_each_bound(__sk, list) \
902 hlist_for_each_entry(__sk, list, sk_bind_node)
903 #define sk_for_each_bound_bhash2(__sk, list) \
904 hlist_for_each_entry(__sk, list, sk_bind2_node)
905 #define sk_for_each_bound_safe(__sk, tmp, list) \
906 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
907
908 /**
909 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
910 * @tpos: the type * to use as a loop cursor.
911 * @pos: the &struct hlist_node to use as a loop cursor.
912 * @head: the head for your list.
913 * @offset: offset of hlist_node within the struct.
914 *
915 */
916 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
917 for (pos = rcu_dereference(hlist_first_rcu(head)); \
918 pos != NULL && \
919 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
920 pos = rcu_dereference(hlist_next_rcu(pos)))
921
sk_user_ns(const struct sock * sk)922 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
923 {
924 /* Careful only use this in a context where these parameters
925 * can not change and must all be valid, such as recvmsg from
926 * userspace.
927 */
928 return sk->sk_socket->file->f_cred->user_ns;
929 }
930
931 /* Sock flags */
932 enum sock_flags {
933 SOCK_DEAD,
934 SOCK_DONE,
935 SOCK_URGINLINE,
936 SOCK_KEEPOPEN,
937 SOCK_LINGER,
938 SOCK_DESTROY,
939 SOCK_BROADCAST,
940 SOCK_TIMESTAMP,
941 SOCK_ZAPPED,
942 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
943 SOCK_DBG, /* %SO_DEBUG setting */
944 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
945 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
946 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
947 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
948 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
949 SOCK_FASYNC, /* fasync() active */
950 SOCK_RXQ_OVFL,
951 SOCK_ZEROCOPY, /* buffers from userspace */
952 SOCK_WIFI_STATUS, /* push wifi status to userspace */
953 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
954 * Will use last 4 bytes of packet sent from
955 * user-space instead.
956 */
957 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
958 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
959 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
960 SOCK_TXTIME,
961 SOCK_XDP, /* XDP is attached */
962 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
963 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
964 };
965
966 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
967
sock_copy_flags(struct sock * nsk,const struct sock * osk)968 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
969 {
970 nsk->sk_flags = osk->sk_flags;
971 }
972
sock_set_flag(struct sock * sk,enum sock_flags flag)973 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
974 {
975 __set_bit(flag, &sk->sk_flags);
976 }
977
sock_reset_flag(struct sock * sk,enum sock_flags flag)978 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
979 {
980 __clear_bit(flag, &sk->sk_flags);
981 }
982
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)983 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
984 int valbool)
985 {
986 if (valbool)
987 sock_set_flag(sk, bit);
988 else
989 sock_reset_flag(sk, bit);
990 }
991
sock_flag(const struct sock * sk,enum sock_flags flag)992 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
993 {
994 return test_bit(flag, &sk->sk_flags);
995 }
996
997 #ifdef CONFIG_NET
998 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)999 static inline int sk_memalloc_socks(void)
1000 {
1001 return static_branch_unlikely(&memalloc_socks_key);
1002 }
1003
1004 void __receive_sock(struct file *file);
1005 #else
1006
sk_memalloc_socks(void)1007 static inline int sk_memalloc_socks(void)
1008 {
1009 return 0;
1010 }
1011
__receive_sock(struct file * file)1012 static inline void __receive_sock(struct file *file)
1013 { }
1014 #endif
1015
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1016 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1017 {
1018 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1019 }
1020
sk_acceptq_removed(struct sock * sk)1021 static inline void sk_acceptq_removed(struct sock *sk)
1022 {
1023 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1024 }
1025
sk_acceptq_added(struct sock * sk)1026 static inline void sk_acceptq_added(struct sock *sk)
1027 {
1028 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1029 }
1030
1031 /* Note: If you think the test should be:
1032 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1033 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1034 */
sk_acceptq_is_full(const struct sock * sk)1035 static inline bool sk_acceptq_is_full(const struct sock *sk)
1036 {
1037 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1038 }
1039
1040 /*
1041 * Compute minimal free write space needed to queue new packets.
1042 */
sk_stream_min_wspace(const struct sock * sk)1043 static inline int sk_stream_min_wspace(const struct sock *sk)
1044 {
1045 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1046 }
1047
sk_stream_wspace(const struct sock * sk)1048 static inline int sk_stream_wspace(const struct sock *sk)
1049 {
1050 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1051 }
1052
sk_wmem_queued_add(struct sock * sk,int val)1053 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1054 {
1055 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1056 }
1057
sk_forward_alloc_add(struct sock * sk,int val)1058 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1059 {
1060 /* Paired with lockless reads of sk->sk_forward_alloc */
1061 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1062 }
1063
1064 void sk_stream_write_space(struct sock *sk);
1065
1066 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1067 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1068 {
1069 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1070 skb_dst_force(skb);
1071
1072 if (!sk->sk_backlog.tail)
1073 WRITE_ONCE(sk->sk_backlog.head, skb);
1074 else
1075 sk->sk_backlog.tail->next = skb;
1076
1077 WRITE_ONCE(sk->sk_backlog.tail, skb);
1078 skb->next = NULL;
1079 }
1080
1081 /*
1082 * Take into account size of receive queue and backlog queue
1083 * Do not take into account this skb truesize,
1084 * to allow even a single big packet to come.
1085 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1086 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1087 {
1088 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1089
1090 return qsize > limit;
1091 }
1092
1093 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1094 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1095 unsigned int limit)
1096 {
1097 if (sk_rcvqueues_full(sk, limit))
1098 return -ENOBUFS;
1099
1100 /*
1101 * If the skb was allocated from pfmemalloc reserves, only
1102 * allow SOCK_MEMALLOC sockets to use it as this socket is
1103 * helping free memory
1104 */
1105 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1106 return -ENOMEM;
1107
1108 __sk_add_backlog(sk, skb);
1109 sk->sk_backlog.len += skb->truesize;
1110 return 0;
1111 }
1112
1113 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1114
1115 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1116 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1117
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1118 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1119 {
1120 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1121 return __sk_backlog_rcv(sk, skb);
1122
1123 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1124 tcp_v6_do_rcv,
1125 tcp_v4_do_rcv,
1126 sk, skb);
1127 }
1128
sk_incoming_cpu_update(struct sock * sk)1129 static inline void sk_incoming_cpu_update(struct sock *sk)
1130 {
1131 int cpu = raw_smp_processor_id();
1132
1133 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1134 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1135 }
1136
sock_rps_record_flow_hash(__u32 hash)1137 static inline void sock_rps_record_flow_hash(__u32 hash)
1138 {
1139 #ifdef CONFIG_RPS
1140 struct rps_sock_flow_table *sock_flow_table;
1141
1142 rcu_read_lock();
1143 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1144 rps_record_sock_flow(sock_flow_table, hash);
1145 rcu_read_unlock();
1146 #endif
1147 }
1148
sock_rps_record_flow(const struct sock * sk)1149 static inline void sock_rps_record_flow(const struct sock *sk)
1150 {
1151 #ifdef CONFIG_RPS
1152 if (static_branch_unlikely(&rfs_needed)) {
1153 /* Reading sk->sk_rxhash might incur an expensive cache line
1154 * miss.
1155 *
1156 * TCP_ESTABLISHED does cover almost all states where RFS
1157 * might be useful, and is cheaper [1] than testing :
1158 * IPv4: inet_sk(sk)->inet_daddr
1159 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1160 * OR an additional socket flag
1161 * [1] : sk_state and sk_prot are in the same cache line.
1162 */
1163 if (sk->sk_state == TCP_ESTABLISHED) {
1164 /* This READ_ONCE() is paired with the WRITE_ONCE()
1165 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1166 */
1167 sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1168 }
1169 }
1170 #endif
1171 }
1172
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1173 static inline void sock_rps_save_rxhash(struct sock *sk,
1174 const struct sk_buff *skb)
1175 {
1176 #ifdef CONFIG_RPS
1177 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1178 * here, and another one in sock_rps_record_flow().
1179 */
1180 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1181 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1182 #endif
1183 }
1184
sock_rps_reset_rxhash(struct sock * sk)1185 static inline void sock_rps_reset_rxhash(struct sock *sk)
1186 {
1187 #ifdef CONFIG_RPS
1188 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1189 WRITE_ONCE(sk->sk_rxhash, 0);
1190 #endif
1191 }
1192
1193 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1194 ({ int __rc, __dis = __sk->sk_disconnects; \
1195 release_sock(__sk); \
1196 __rc = __condition; \
1197 if (!__rc) { \
1198 *(__timeo) = wait_woken(__wait, \
1199 TASK_INTERRUPTIBLE, \
1200 *(__timeo)); \
1201 } \
1202 sched_annotate_sleep(); \
1203 lock_sock(__sk); \
1204 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1205 __rc; \
1206 })
1207
1208 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1209 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1210 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1211 int sk_stream_error(struct sock *sk, int flags, int err);
1212 void sk_stream_kill_queues(struct sock *sk);
1213 void sk_set_memalloc(struct sock *sk);
1214 void sk_clear_memalloc(struct sock *sk);
1215
1216 void __sk_flush_backlog(struct sock *sk);
1217
sk_flush_backlog(struct sock * sk)1218 static inline bool sk_flush_backlog(struct sock *sk)
1219 {
1220 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1221 __sk_flush_backlog(sk);
1222 return true;
1223 }
1224 return false;
1225 }
1226
1227 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1228
1229 struct request_sock_ops;
1230 struct timewait_sock_ops;
1231 struct inet_hashinfo;
1232 struct raw_hashinfo;
1233 struct smc_hashinfo;
1234 struct module;
1235 struct sk_psock;
1236
1237 /*
1238 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1239 * un-modified. Special care is taken when initializing object to zero.
1240 */
sk_prot_clear_nulls(struct sock * sk,int size)1241 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1242 {
1243 if (offsetof(struct sock, sk_node.next) != 0)
1244 memset(sk, 0, offsetof(struct sock, sk_node.next));
1245 memset(&sk->sk_node.pprev, 0,
1246 size - offsetof(struct sock, sk_node.pprev));
1247 }
1248
1249 /* Networking protocol blocks we attach to sockets.
1250 * socket layer -> transport layer interface
1251 */
1252 struct proto {
1253 void (*close)(struct sock *sk,
1254 long timeout);
1255 int (*pre_connect)(struct sock *sk,
1256 struct sockaddr *uaddr,
1257 int addr_len);
1258 int (*connect)(struct sock *sk,
1259 struct sockaddr *uaddr,
1260 int addr_len);
1261 int (*disconnect)(struct sock *sk, int flags);
1262
1263 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1264 bool kern);
1265
1266 int (*ioctl)(struct sock *sk, int cmd,
1267 int *karg);
1268 int (*init)(struct sock *sk);
1269 void (*destroy)(struct sock *sk);
1270 void (*shutdown)(struct sock *sk, int how);
1271 int (*setsockopt)(struct sock *sk, int level,
1272 int optname, sockptr_t optval,
1273 unsigned int optlen);
1274 int (*getsockopt)(struct sock *sk, int level,
1275 int optname, char __user *optval,
1276 int __user *option);
1277 void (*keepalive)(struct sock *sk, int valbool);
1278 #ifdef CONFIG_COMPAT
1279 int (*compat_ioctl)(struct sock *sk,
1280 unsigned int cmd, unsigned long arg);
1281 #endif
1282 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1283 size_t len);
1284 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1285 size_t len, int flags, int *addr_len);
1286 void (*splice_eof)(struct socket *sock);
1287 int (*bind)(struct sock *sk,
1288 struct sockaddr *addr, int addr_len);
1289 int (*bind_add)(struct sock *sk,
1290 struct sockaddr *addr, int addr_len);
1291
1292 int (*backlog_rcv) (struct sock *sk,
1293 struct sk_buff *skb);
1294 bool (*bpf_bypass_getsockopt)(int level,
1295 int optname);
1296
1297 void (*release_cb)(struct sock *sk);
1298
1299 /* Keeping track of sk's, looking them up, and port selection methods. */
1300 int (*hash)(struct sock *sk);
1301 void (*unhash)(struct sock *sk);
1302 void (*rehash)(struct sock *sk);
1303 int (*get_port)(struct sock *sk, unsigned short snum);
1304 void (*put_port)(struct sock *sk);
1305 #ifdef CONFIG_BPF_SYSCALL
1306 int (*psock_update_sk_prot)(struct sock *sk,
1307 struct sk_psock *psock,
1308 bool restore);
1309 #endif
1310
1311 /* Keeping track of sockets in use */
1312 #ifdef CONFIG_PROC_FS
1313 unsigned int inuse_idx;
1314 #endif
1315
1316 #if IS_ENABLED(CONFIG_MPTCP)
1317 int (*forward_alloc_get)(const struct sock *sk);
1318 #endif
1319
1320 bool (*stream_memory_free)(const struct sock *sk, int wake);
1321 bool (*sock_is_readable)(struct sock *sk);
1322 /* Memory pressure */
1323 void (*enter_memory_pressure)(struct sock *sk);
1324 void (*leave_memory_pressure)(struct sock *sk);
1325 atomic_long_t *memory_allocated; /* Current allocated memory. */
1326 int __percpu *per_cpu_fw_alloc;
1327 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1328
1329 /*
1330 * Pressure flag: try to collapse.
1331 * Technical note: it is used by multiple contexts non atomically.
1332 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1333 * All the __sk_mem_schedule() is of this nature: accounting
1334 * is strict, actions are advisory and have some latency.
1335 */
1336 unsigned long *memory_pressure;
1337 long *sysctl_mem;
1338
1339 int *sysctl_wmem;
1340 int *sysctl_rmem;
1341 u32 sysctl_wmem_offset;
1342 u32 sysctl_rmem_offset;
1343
1344 int max_header;
1345 bool no_autobind;
1346
1347 struct kmem_cache *slab;
1348 unsigned int obj_size;
1349 unsigned int ipv6_pinfo_offset;
1350 slab_flags_t slab_flags;
1351 unsigned int useroffset; /* Usercopy region offset */
1352 unsigned int usersize; /* Usercopy region size */
1353
1354 unsigned int __percpu *orphan_count;
1355
1356 struct request_sock_ops *rsk_prot;
1357 struct timewait_sock_ops *twsk_prot;
1358
1359 union {
1360 struct inet_hashinfo *hashinfo;
1361 struct udp_table *udp_table;
1362 struct raw_hashinfo *raw_hash;
1363 struct smc_hashinfo *smc_hash;
1364 } h;
1365
1366 struct module *owner;
1367
1368 char name[32];
1369
1370 struct list_head node;
1371 int (*diag_destroy)(struct sock *sk, int err);
1372 } __randomize_layout;
1373
1374 int proto_register(struct proto *prot, int alloc_slab);
1375 void proto_unregister(struct proto *prot);
1376 int sock_load_diag_module(int family, int protocol);
1377
1378 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1379
sk_forward_alloc_get(const struct sock * sk)1380 static inline int sk_forward_alloc_get(const struct sock *sk)
1381 {
1382 #if IS_ENABLED(CONFIG_MPTCP)
1383 if (sk->sk_prot->forward_alloc_get)
1384 return sk->sk_prot->forward_alloc_get(sk);
1385 #endif
1386 return READ_ONCE(sk->sk_forward_alloc);
1387 }
1388
__sk_stream_memory_free(const struct sock * sk,int wake)1389 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1390 {
1391 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1392 return false;
1393
1394 return sk->sk_prot->stream_memory_free ?
1395 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1396 tcp_stream_memory_free, sk, wake) : true;
1397 }
1398
sk_stream_memory_free(const struct sock * sk)1399 static inline bool sk_stream_memory_free(const struct sock *sk)
1400 {
1401 return __sk_stream_memory_free(sk, 0);
1402 }
1403
__sk_stream_is_writeable(const struct sock * sk,int wake)1404 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1405 {
1406 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1407 __sk_stream_memory_free(sk, wake);
1408 }
1409
sk_stream_is_writeable(const struct sock * sk)1410 static inline bool sk_stream_is_writeable(const struct sock *sk)
1411 {
1412 return __sk_stream_is_writeable(sk, 0);
1413 }
1414
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1415 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1416 struct cgroup *ancestor)
1417 {
1418 #ifdef CONFIG_SOCK_CGROUP_DATA
1419 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1420 ancestor);
1421 #else
1422 return -ENOTSUPP;
1423 #endif
1424 }
1425
sk_has_memory_pressure(const struct sock * sk)1426 static inline bool sk_has_memory_pressure(const struct sock *sk)
1427 {
1428 return sk->sk_prot->memory_pressure != NULL;
1429 }
1430
sk_under_global_memory_pressure(const struct sock * sk)1431 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1432 {
1433 return sk->sk_prot->memory_pressure &&
1434 !!READ_ONCE(*sk->sk_prot->memory_pressure);
1435 }
1436
sk_under_memory_pressure(const struct sock * sk)1437 static inline bool sk_under_memory_pressure(const struct sock *sk)
1438 {
1439 if (!sk->sk_prot->memory_pressure)
1440 return false;
1441
1442 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1443 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1444 return true;
1445
1446 return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1447 }
1448
1449 static inline long
proto_memory_allocated(const struct proto * prot)1450 proto_memory_allocated(const struct proto *prot)
1451 {
1452 return max(0L, atomic_long_read(prot->memory_allocated));
1453 }
1454
1455 static inline long
sk_memory_allocated(const struct sock * sk)1456 sk_memory_allocated(const struct sock *sk)
1457 {
1458 return proto_memory_allocated(sk->sk_prot);
1459 }
1460
1461 /* 1 MB per cpu, in page units */
1462 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1463 extern int sysctl_mem_pcpu_rsv;
1464
proto_memory_pcpu_drain(struct proto * proto)1465 static inline void proto_memory_pcpu_drain(struct proto *proto)
1466 {
1467 int val = this_cpu_xchg(*proto->per_cpu_fw_alloc, 0);
1468
1469 if (val)
1470 atomic_long_add(val, proto->memory_allocated);
1471 }
1472
1473 static inline void
sk_memory_allocated_add(const struct sock * sk,int val)1474 sk_memory_allocated_add(const struct sock *sk, int val)
1475 {
1476 struct proto *proto = sk->sk_prot;
1477
1478 val = this_cpu_add_return(*proto->per_cpu_fw_alloc, val);
1479
1480 if (unlikely(val >= READ_ONCE(sysctl_mem_pcpu_rsv)))
1481 proto_memory_pcpu_drain(proto);
1482 }
1483
1484 static inline void
sk_memory_allocated_sub(const struct sock * sk,int val)1485 sk_memory_allocated_sub(const struct sock *sk, int val)
1486 {
1487 struct proto *proto = sk->sk_prot;
1488
1489 val = this_cpu_sub_return(*proto->per_cpu_fw_alloc, val);
1490
1491 if (unlikely(val <= -READ_ONCE(sysctl_mem_pcpu_rsv)))
1492 proto_memory_pcpu_drain(proto);
1493 }
1494
1495 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1496
sk_sockets_allocated_dec(struct sock * sk)1497 static inline void sk_sockets_allocated_dec(struct sock *sk)
1498 {
1499 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1500 SK_ALLOC_PERCPU_COUNTER_BATCH);
1501 }
1502
sk_sockets_allocated_inc(struct sock * sk)1503 static inline void sk_sockets_allocated_inc(struct sock *sk)
1504 {
1505 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1506 SK_ALLOC_PERCPU_COUNTER_BATCH);
1507 }
1508
1509 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1510 sk_sockets_allocated_read_positive(struct sock *sk)
1511 {
1512 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1513 }
1514
1515 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1516 proto_sockets_allocated_sum_positive(struct proto *prot)
1517 {
1518 return percpu_counter_sum_positive(prot->sockets_allocated);
1519 }
1520
1521 static inline bool
proto_memory_pressure(struct proto * prot)1522 proto_memory_pressure(struct proto *prot)
1523 {
1524 if (!prot->memory_pressure)
1525 return false;
1526 return !!READ_ONCE(*prot->memory_pressure);
1527 }
1528
1529
1530 #ifdef CONFIG_PROC_FS
1531 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1532 struct prot_inuse {
1533 int all;
1534 int val[PROTO_INUSE_NR];
1535 };
1536
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1537 static inline void sock_prot_inuse_add(const struct net *net,
1538 const struct proto *prot, int val)
1539 {
1540 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1541 }
1542
sock_inuse_add(const struct net * net,int val)1543 static inline void sock_inuse_add(const struct net *net, int val)
1544 {
1545 this_cpu_add(net->core.prot_inuse->all, val);
1546 }
1547
1548 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1549 int sock_inuse_get(struct net *net);
1550 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1551 static inline void sock_prot_inuse_add(const struct net *net,
1552 const struct proto *prot, int val)
1553 {
1554 }
1555
sock_inuse_add(const struct net * net,int val)1556 static inline void sock_inuse_add(const struct net *net, int val)
1557 {
1558 }
1559 #endif
1560
1561
1562 /* With per-bucket locks this operation is not-atomic, so that
1563 * this version is not worse.
1564 */
__sk_prot_rehash(struct sock * sk)1565 static inline int __sk_prot_rehash(struct sock *sk)
1566 {
1567 sk->sk_prot->unhash(sk);
1568 return sk->sk_prot->hash(sk);
1569 }
1570
1571 /* About 10 seconds */
1572 #define SOCK_DESTROY_TIME (10*HZ)
1573
1574 /* Sockets 0-1023 can't be bound to unless you are superuser */
1575 #define PROT_SOCK 1024
1576
1577 #define SHUTDOWN_MASK 3
1578 #define RCV_SHUTDOWN 1
1579 #define SEND_SHUTDOWN 2
1580
1581 #define SOCK_BINDADDR_LOCK 4
1582 #define SOCK_BINDPORT_LOCK 8
1583
1584 struct socket_alloc {
1585 struct socket socket;
1586 struct inode vfs_inode;
1587 };
1588
SOCKET_I(struct inode * inode)1589 static inline struct socket *SOCKET_I(struct inode *inode)
1590 {
1591 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1592 }
1593
SOCK_INODE(struct socket * socket)1594 static inline struct inode *SOCK_INODE(struct socket *socket)
1595 {
1596 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1597 }
1598
1599 /*
1600 * Functions for memory accounting
1601 */
1602 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1603 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1604 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1605 void __sk_mem_reclaim(struct sock *sk, int amount);
1606
1607 #define SK_MEM_SEND 0
1608 #define SK_MEM_RECV 1
1609
1610 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1611 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1612 {
1613 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1614 }
1615
sk_mem_pages(int amt)1616 static inline int sk_mem_pages(int amt)
1617 {
1618 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1619 }
1620
sk_has_account(struct sock * sk)1621 static inline bool sk_has_account(struct sock *sk)
1622 {
1623 /* return true if protocol supports memory accounting */
1624 return !!sk->sk_prot->memory_allocated;
1625 }
1626
sk_wmem_schedule(struct sock * sk,int size)1627 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1628 {
1629 int delta;
1630
1631 if (!sk_has_account(sk))
1632 return true;
1633 delta = size - sk->sk_forward_alloc;
1634 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1635 }
1636
1637 static inline bool
__sk_rmem_schedule(struct sock * sk,int size,bool pfmemalloc)1638 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1639 {
1640 int delta;
1641
1642 if (!sk_has_account(sk))
1643 return true;
1644 delta = size - sk->sk_forward_alloc;
1645 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1646 pfmemalloc;
1647 }
1648
1649 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1650 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1651 {
1652 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1653 }
1654
sk_unused_reserved_mem(const struct sock * sk)1655 static inline int sk_unused_reserved_mem(const struct sock *sk)
1656 {
1657 int unused_mem;
1658
1659 if (likely(!sk->sk_reserved_mem))
1660 return 0;
1661
1662 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1663 atomic_read(&sk->sk_rmem_alloc);
1664
1665 return unused_mem > 0 ? unused_mem : 0;
1666 }
1667
sk_mem_reclaim(struct sock * sk)1668 static inline void sk_mem_reclaim(struct sock *sk)
1669 {
1670 int reclaimable;
1671
1672 if (!sk_has_account(sk))
1673 return;
1674
1675 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1676
1677 if (reclaimable >= (int)PAGE_SIZE)
1678 __sk_mem_reclaim(sk, reclaimable);
1679 }
1680
sk_mem_reclaim_final(struct sock * sk)1681 static inline void sk_mem_reclaim_final(struct sock *sk)
1682 {
1683 sk->sk_reserved_mem = 0;
1684 sk_mem_reclaim(sk);
1685 }
1686
sk_mem_charge(struct sock * sk,int size)1687 static inline void sk_mem_charge(struct sock *sk, int size)
1688 {
1689 if (!sk_has_account(sk))
1690 return;
1691 sk_forward_alloc_add(sk, -size);
1692 }
1693
sk_mem_uncharge(struct sock * sk,int size)1694 static inline void sk_mem_uncharge(struct sock *sk, int size)
1695 {
1696 if (!sk_has_account(sk))
1697 return;
1698 sk_forward_alloc_add(sk, size);
1699 sk_mem_reclaim(sk);
1700 }
1701
1702 /*
1703 * Macro so as to not evaluate some arguments when
1704 * lockdep is not enabled.
1705 *
1706 * Mark both the sk_lock and the sk_lock.slock as a
1707 * per-address-family lock class.
1708 */
1709 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1710 do { \
1711 sk->sk_lock.owned = 0; \
1712 init_waitqueue_head(&sk->sk_lock.wq); \
1713 spin_lock_init(&(sk)->sk_lock.slock); \
1714 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1715 sizeof((sk)->sk_lock)); \
1716 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1717 (skey), (sname)); \
1718 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1719 } while (0)
1720
lockdep_sock_is_held(const struct sock * sk)1721 static inline bool lockdep_sock_is_held(const struct sock *sk)
1722 {
1723 return lockdep_is_held(&sk->sk_lock) ||
1724 lockdep_is_held(&sk->sk_lock.slock);
1725 }
1726
1727 void lock_sock_nested(struct sock *sk, int subclass);
1728
lock_sock(struct sock * sk)1729 static inline void lock_sock(struct sock *sk)
1730 {
1731 lock_sock_nested(sk, 0);
1732 }
1733
1734 void __lock_sock(struct sock *sk);
1735 void __release_sock(struct sock *sk);
1736 void release_sock(struct sock *sk);
1737
1738 /* BH context may only use the following locking interface. */
1739 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1740 #define bh_lock_sock_nested(__sk) \
1741 spin_lock_nested(&((__sk)->sk_lock.slock), \
1742 SINGLE_DEPTH_NESTING)
1743 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1744
1745 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1746
1747 /**
1748 * lock_sock_fast - fast version of lock_sock
1749 * @sk: socket
1750 *
1751 * This version should be used for very small section, where process wont block
1752 * return false if fast path is taken:
1753 *
1754 * sk_lock.slock locked, owned = 0, BH disabled
1755 *
1756 * return true if slow path is taken:
1757 *
1758 * sk_lock.slock unlocked, owned = 1, BH enabled
1759 */
lock_sock_fast(struct sock * sk)1760 static inline bool lock_sock_fast(struct sock *sk)
1761 {
1762 /* The sk_lock has mutex_lock() semantics here. */
1763 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1764
1765 return __lock_sock_fast(sk);
1766 }
1767
1768 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1769 static inline bool lock_sock_fast_nested(struct sock *sk)
1770 {
1771 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1772
1773 return __lock_sock_fast(sk);
1774 }
1775
1776 /**
1777 * unlock_sock_fast - complement of lock_sock_fast
1778 * @sk: socket
1779 * @slow: slow mode
1780 *
1781 * fast unlock socket for user context.
1782 * If slow mode is on, we call regular release_sock()
1783 */
unlock_sock_fast(struct sock * sk,bool slow)1784 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1785 __releases(&sk->sk_lock.slock)
1786 {
1787 if (slow) {
1788 release_sock(sk);
1789 __release(&sk->sk_lock.slock);
1790 } else {
1791 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1792 spin_unlock_bh(&sk->sk_lock.slock);
1793 }
1794 }
1795
1796 void sockopt_lock_sock(struct sock *sk);
1797 void sockopt_release_sock(struct sock *sk);
1798 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1799 bool sockopt_capable(int cap);
1800
1801 /* Used by processes to "lock" a socket state, so that
1802 * interrupts and bottom half handlers won't change it
1803 * from under us. It essentially blocks any incoming
1804 * packets, so that we won't get any new data or any
1805 * packets that change the state of the socket.
1806 *
1807 * While locked, BH processing will add new packets to
1808 * the backlog queue. This queue is processed by the
1809 * owner of the socket lock right before it is released.
1810 *
1811 * Since ~2.3.5 it is also exclusive sleep lock serializing
1812 * accesses from user process context.
1813 */
1814
sock_owned_by_me(const struct sock * sk)1815 static inline void sock_owned_by_me(const struct sock *sk)
1816 {
1817 #ifdef CONFIG_LOCKDEP
1818 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1819 #endif
1820 }
1821
sock_not_owned_by_me(const struct sock * sk)1822 static inline void sock_not_owned_by_me(const struct sock *sk)
1823 {
1824 #ifdef CONFIG_LOCKDEP
1825 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1826 #endif
1827 }
1828
sock_owned_by_user(const struct sock * sk)1829 static inline bool sock_owned_by_user(const struct sock *sk)
1830 {
1831 sock_owned_by_me(sk);
1832 return sk->sk_lock.owned;
1833 }
1834
sock_owned_by_user_nocheck(const struct sock * sk)1835 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1836 {
1837 return sk->sk_lock.owned;
1838 }
1839
sock_release_ownership(struct sock * sk)1840 static inline void sock_release_ownership(struct sock *sk)
1841 {
1842 if (sock_owned_by_user_nocheck(sk)) {
1843 sk->sk_lock.owned = 0;
1844
1845 /* The sk_lock has mutex_unlock() semantics: */
1846 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1847 }
1848 }
1849
1850 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1851 static inline bool sock_allow_reclassification(const struct sock *csk)
1852 {
1853 struct sock *sk = (struct sock *)csk;
1854
1855 return !sock_owned_by_user_nocheck(sk) &&
1856 !spin_is_locked(&sk->sk_lock.slock);
1857 }
1858
1859 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1860 struct proto *prot, int kern);
1861 void sk_free(struct sock *sk);
1862 void sk_destruct(struct sock *sk);
1863 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1864 void sk_free_unlock_clone(struct sock *sk);
1865
1866 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1867 gfp_t priority);
1868 void __sock_wfree(struct sk_buff *skb);
1869 void sock_wfree(struct sk_buff *skb);
1870 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1871 gfp_t priority);
1872 void skb_orphan_partial(struct sk_buff *skb);
1873 void sock_rfree(struct sk_buff *skb);
1874 void sock_efree(struct sk_buff *skb);
1875 #ifdef CONFIG_INET
1876 void sock_edemux(struct sk_buff *skb);
1877 void sock_pfree(struct sk_buff *skb);
1878 #else
1879 #define sock_edemux sock_efree
1880 #endif
1881
1882 int sk_setsockopt(struct sock *sk, int level, int optname,
1883 sockptr_t optval, unsigned int optlen);
1884 int sock_setsockopt(struct socket *sock, int level, int op,
1885 sockptr_t optval, unsigned int optlen);
1886 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1887 int optname, sockptr_t optval, int optlen);
1888 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1889 int optname, sockptr_t optval, sockptr_t optlen);
1890
1891 int sk_getsockopt(struct sock *sk, int level, int optname,
1892 sockptr_t optval, sockptr_t optlen);
1893 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1894 bool timeval, bool time32);
1895 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1896 unsigned long data_len, int noblock,
1897 int *errcode, int max_page_order);
1898
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1899 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1900 unsigned long size,
1901 int noblock, int *errcode)
1902 {
1903 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1904 }
1905
1906 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1907 void sock_kfree_s(struct sock *sk, void *mem, int size);
1908 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1909 void sk_send_sigurg(struct sock *sk);
1910
sock_replace_proto(struct sock * sk,struct proto * proto)1911 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1912 {
1913 if (sk->sk_socket)
1914 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1915 WRITE_ONCE(sk->sk_prot, proto);
1916 }
1917
1918 struct sockcm_cookie {
1919 u64 transmit_time;
1920 u32 mark;
1921 u32 tsflags;
1922 };
1923
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1924 static inline void sockcm_init(struct sockcm_cookie *sockc,
1925 const struct sock *sk)
1926 {
1927 *sockc = (struct sockcm_cookie) {
1928 .tsflags = READ_ONCE(sk->sk_tsflags)
1929 };
1930 }
1931
1932 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1933 struct sockcm_cookie *sockc);
1934 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1935 struct sockcm_cookie *sockc);
1936
1937 /*
1938 * Functions to fill in entries in struct proto_ops when a protocol
1939 * does not implement a particular function.
1940 */
1941 int sock_no_bind(struct socket *, struct sockaddr *, int);
1942 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1943 int sock_no_socketpair(struct socket *, struct socket *);
1944 int sock_no_accept(struct socket *, struct socket *, int, bool);
1945 int sock_no_getname(struct socket *, struct sockaddr *, int);
1946 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1947 int sock_no_listen(struct socket *, int);
1948 int sock_no_shutdown(struct socket *, int);
1949 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1950 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1951 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1952 int sock_no_mmap(struct file *file, struct socket *sock,
1953 struct vm_area_struct *vma);
1954
1955 /*
1956 * Functions to fill in entries in struct proto_ops when a protocol
1957 * uses the inet style.
1958 */
1959 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1960 char __user *optval, int __user *optlen);
1961 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1962 int flags);
1963 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1964 sockptr_t optval, unsigned int optlen);
1965
1966 void sk_common_release(struct sock *sk);
1967
1968 /*
1969 * Default socket callbacks and setup code
1970 */
1971
1972 /* Initialise core socket variables using an explicit uid. */
1973 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1974
1975 /* Initialise core socket variables.
1976 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1977 */
1978 void sock_init_data(struct socket *sock, struct sock *sk);
1979
1980 /*
1981 * Socket reference counting postulates.
1982 *
1983 * * Each user of socket SHOULD hold a reference count.
1984 * * Each access point to socket (an hash table bucket, reference from a list,
1985 * running timer, skb in flight MUST hold a reference count.
1986 * * When reference count hits 0, it means it will never increase back.
1987 * * When reference count hits 0, it means that no references from
1988 * outside exist to this socket and current process on current CPU
1989 * is last user and may/should destroy this socket.
1990 * * sk_free is called from any context: process, BH, IRQ. When
1991 * it is called, socket has no references from outside -> sk_free
1992 * may release descendant resources allocated by the socket, but
1993 * to the time when it is called, socket is NOT referenced by any
1994 * hash tables, lists etc.
1995 * * Packets, delivered from outside (from network or from another process)
1996 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1997 * when they sit in queue. Otherwise, packets will leak to hole, when
1998 * socket is looked up by one cpu and unhasing is made by another CPU.
1999 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
2000 * (leak to backlog). Packet socket does all the processing inside
2001 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
2002 * use separate SMP lock, so that they are prone too.
2003 */
2004
2005 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)2006 static inline void sock_put(struct sock *sk)
2007 {
2008 if (refcount_dec_and_test(&sk->sk_refcnt))
2009 sk_free(sk);
2010 }
2011 /* Generic version of sock_put(), dealing with all sockets
2012 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
2013 */
2014 void sock_gen_put(struct sock *sk);
2015
2016 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
2017 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)2018 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
2019 const int nested)
2020 {
2021 return __sk_receive_skb(sk, skb, nested, 1, true);
2022 }
2023
sk_tx_queue_set(struct sock * sk,int tx_queue)2024 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2025 {
2026 /* sk_tx_queue_mapping accept only upto a 16-bit value */
2027 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2028 return;
2029 /* Paired with READ_ONCE() in sk_tx_queue_get() and
2030 * other WRITE_ONCE() because socket lock might be not held.
2031 */
2032 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
2033 }
2034
2035 #define NO_QUEUE_MAPPING USHRT_MAX
2036
sk_tx_queue_clear(struct sock * sk)2037 static inline void sk_tx_queue_clear(struct sock *sk)
2038 {
2039 /* Paired with READ_ONCE() in sk_tx_queue_get() and
2040 * other WRITE_ONCE() because socket lock might be not held.
2041 */
2042 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
2043 }
2044
sk_tx_queue_get(const struct sock * sk)2045 static inline int sk_tx_queue_get(const struct sock *sk)
2046 {
2047 if (sk) {
2048 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2049 * and sk_tx_queue_set().
2050 */
2051 int val = READ_ONCE(sk->sk_tx_queue_mapping);
2052
2053 if (val != NO_QUEUE_MAPPING)
2054 return val;
2055 }
2056 return -1;
2057 }
2058
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2059 static inline void __sk_rx_queue_set(struct sock *sk,
2060 const struct sk_buff *skb,
2061 bool force_set)
2062 {
2063 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2064 if (skb_rx_queue_recorded(skb)) {
2065 u16 rx_queue = skb_get_rx_queue(skb);
2066
2067 if (force_set ||
2068 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2069 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2070 }
2071 #endif
2072 }
2073
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2074 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2075 {
2076 __sk_rx_queue_set(sk, skb, true);
2077 }
2078
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2079 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2080 {
2081 __sk_rx_queue_set(sk, skb, false);
2082 }
2083
sk_rx_queue_clear(struct sock * sk)2084 static inline void sk_rx_queue_clear(struct sock *sk)
2085 {
2086 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2087 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2088 #endif
2089 }
2090
sk_rx_queue_get(const struct sock * sk)2091 static inline int sk_rx_queue_get(const struct sock *sk)
2092 {
2093 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2094 if (sk) {
2095 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2096
2097 if (res != NO_QUEUE_MAPPING)
2098 return res;
2099 }
2100 #endif
2101
2102 return -1;
2103 }
2104
sk_set_socket(struct sock * sk,struct socket * sock)2105 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2106 {
2107 sk->sk_socket = sock;
2108 }
2109
sk_sleep(struct sock * sk)2110 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2111 {
2112 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2113 return &rcu_dereference_raw(sk->sk_wq)->wait;
2114 }
2115 /* Detach socket from process context.
2116 * Announce socket dead, detach it from wait queue and inode.
2117 * Note that parent inode held reference count on this struct sock,
2118 * we do not release it in this function, because protocol
2119 * probably wants some additional cleanups or even continuing
2120 * to work with this socket (TCP).
2121 */
sock_orphan(struct sock * sk)2122 static inline void sock_orphan(struct sock *sk)
2123 {
2124 write_lock_bh(&sk->sk_callback_lock);
2125 sock_set_flag(sk, SOCK_DEAD);
2126 sk_set_socket(sk, NULL);
2127 sk->sk_wq = NULL;
2128 write_unlock_bh(&sk->sk_callback_lock);
2129 }
2130
sock_graft(struct sock * sk,struct socket * parent)2131 static inline void sock_graft(struct sock *sk, struct socket *parent)
2132 {
2133 WARN_ON(parent->sk);
2134 write_lock_bh(&sk->sk_callback_lock);
2135 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2136 parent->sk = sk;
2137 sk_set_socket(sk, parent);
2138 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2139 security_sock_graft(sk, parent);
2140 write_unlock_bh(&sk->sk_callback_lock);
2141 }
2142
2143 kuid_t sock_i_uid(struct sock *sk);
2144 unsigned long __sock_i_ino(struct sock *sk);
2145 unsigned long sock_i_ino(struct sock *sk);
2146
sock_net_uid(const struct net * net,const struct sock * sk)2147 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2148 {
2149 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2150 }
2151
net_tx_rndhash(void)2152 static inline u32 net_tx_rndhash(void)
2153 {
2154 u32 v = get_random_u32();
2155
2156 return v ?: 1;
2157 }
2158
sk_set_txhash(struct sock * sk)2159 static inline void sk_set_txhash(struct sock *sk)
2160 {
2161 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2162 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2163 }
2164
sk_rethink_txhash(struct sock * sk)2165 static inline bool sk_rethink_txhash(struct sock *sk)
2166 {
2167 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2168 sk_set_txhash(sk);
2169 return true;
2170 }
2171 return false;
2172 }
2173
2174 static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2175 __sk_dst_get(const struct sock *sk)
2176 {
2177 return rcu_dereference_check(sk->sk_dst_cache,
2178 lockdep_sock_is_held(sk));
2179 }
2180
2181 static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2182 sk_dst_get(const struct sock *sk)
2183 {
2184 struct dst_entry *dst;
2185
2186 rcu_read_lock();
2187 dst = rcu_dereference(sk->sk_dst_cache);
2188 if (dst && !rcuref_get(&dst->__rcuref))
2189 dst = NULL;
2190 rcu_read_unlock();
2191 return dst;
2192 }
2193
__dst_negative_advice(struct sock * sk)2194 static inline void __dst_negative_advice(struct sock *sk)
2195 {
2196 struct dst_entry *dst = __sk_dst_get(sk);
2197
2198 if (dst && dst->ops->negative_advice)
2199 dst->ops->negative_advice(sk, dst);
2200 }
2201
dst_negative_advice(struct sock * sk)2202 static inline void dst_negative_advice(struct sock *sk)
2203 {
2204 sk_rethink_txhash(sk);
2205 __dst_negative_advice(sk);
2206 }
2207
2208 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2209 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2210 {
2211 struct dst_entry *old_dst;
2212
2213 sk_tx_queue_clear(sk);
2214 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2215 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2216 lockdep_sock_is_held(sk));
2217 rcu_assign_pointer(sk->sk_dst_cache, dst);
2218 dst_release(old_dst);
2219 }
2220
2221 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2222 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2223 {
2224 struct dst_entry *old_dst;
2225
2226 sk_tx_queue_clear(sk);
2227 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2228 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2229 dst_release(old_dst);
2230 }
2231
2232 static inline void
__sk_dst_reset(struct sock * sk)2233 __sk_dst_reset(struct sock *sk)
2234 {
2235 __sk_dst_set(sk, NULL);
2236 }
2237
2238 static inline void
sk_dst_reset(struct sock * sk)2239 sk_dst_reset(struct sock *sk)
2240 {
2241 sk_dst_set(sk, NULL);
2242 }
2243
2244 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2245
2246 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2247
sk_dst_confirm(struct sock * sk)2248 static inline void sk_dst_confirm(struct sock *sk)
2249 {
2250 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2251 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2252 }
2253
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2254 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2255 {
2256 if (skb_get_dst_pending_confirm(skb)) {
2257 struct sock *sk = skb->sk;
2258
2259 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2260 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2261 neigh_confirm(n);
2262 }
2263 }
2264
2265 bool sk_mc_loop(struct sock *sk);
2266
sk_can_gso(const struct sock * sk)2267 static inline bool sk_can_gso(const struct sock *sk)
2268 {
2269 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2270 }
2271
2272 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2273
sk_gso_disable(struct sock * sk)2274 static inline void sk_gso_disable(struct sock *sk)
2275 {
2276 sk->sk_gso_disabled = 1;
2277 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2278 }
2279
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2280 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2281 struct iov_iter *from, char *to,
2282 int copy, int offset)
2283 {
2284 if (skb->ip_summed == CHECKSUM_NONE) {
2285 __wsum csum = 0;
2286 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2287 return -EFAULT;
2288 skb->csum = csum_block_add(skb->csum, csum, offset);
2289 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2290 if (!copy_from_iter_full_nocache(to, copy, from))
2291 return -EFAULT;
2292 } else if (!copy_from_iter_full(to, copy, from))
2293 return -EFAULT;
2294
2295 return 0;
2296 }
2297
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2298 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2299 struct iov_iter *from, int copy)
2300 {
2301 int err, offset = skb->len;
2302
2303 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2304 copy, offset);
2305 if (err)
2306 __skb_trim(skb, offset);
2307
2308 return err;
2309 }
2310
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2311 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2312 struct sk_buff *skb,
2313 struct page *page,
2314 int off, int copy)
2315 {
2316 int err;
2317
2318 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2319 copy, skb->len);
2320 if (err)
2321 return err;
2322
2323 skb_len_add(skb, copy);
2324 sk_wmem_queued_add(sk, copy);
2325 sk_mem_charge(sk, copy);
2326 return 0;
2327 }
2328
2329 /**
2330 * sk_wmem_alloc_get - returns write allocations
2331 * @sk: socket
2332 *
2333 * Return: sk_wmem_alloc minus initial offset of one
2334 */
sk_wmem_alloc_get(const struct sock * sk)2335 static inline int sk_wmem_alloc_get(const struct sock *sk)
2336 {
2337 return refcount_read(&sk->sk_wmem_alloc) - 1;
2338 }
2339
2340 /**
2341 * sk_rmem_alloc_get - returns read allocations
2342 * @sk: socket
2343 *
2344 * Return: sk_rmem_alloc
2345 */
sk_rmem_alloc_get(const struct sock * sk)2346 static inline int sk_rmem_alloc_get(const struct sock *sk)
2347 {
2348 return atomic_read(&sk->sk_rmem_alloc);
2349 }
2350
2351 /**
2352 * sk_has_allocations - check if allocations are outstanding
2353 * @sk: socket
2354 *
2355 * Return: true if socket has write or read allocations
2356 */
sk_has_allocations(const struct sock * sk)2357 static inline bool sk_has_allocations(const struct sock *sk)
2358 {
2359 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2360 }
2361
2362 /**
2363 * skwq_has_sleeper - check if there are any waiting processes
2364 * @wq: struct socket_wq
2365 *
2366 * Return: true if socket_wq has waiting processes
2367 *
2368 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2369 * barrier call. They were added due to the race found within the tcp code.
2370 *
2371 * Consider following tcp code paths::
2372 *
2373 * CPU1 CPU2
2374 * sys_select receive packet
2375 * ... ...
2376 * __add_wait_queue update tp->rcv_nxt
2377 * ... ...
2378 * tp->rcv_nxt check sock_def_readable
2379 * ... {
2380 * schedule rcu_read_lock();
2381 * wq = rcu_dereference(sk->sk_wq);
2382 * if (wq && waitqueue_active(&wq->wait))
2383 * wake_up_interruptible(&wq->wait)
2384 * ...
2385 * }
2386 *
2387 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2388 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2389 * could then endup calling schedule and sleep forever if there are no more
2390 * data on the socket.
2391 *
2392 */
skwq_has_sleeper(struct socket_wq * wq)2393 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2394 {
2395 return wq && wq_has_sleeper(&wq->wait);
2396 }
2397
2398 /**
2399 * sock_poll_wait - place memory barrier behind the poll_wait call.
2400 * @filp: file
2401 * @sock: socket to wait on
2402 * @p: poll_table
2403 *
2404 * See the comments in the wq_has_sleeper function.
2405 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2406 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2407 poll_table *p)
2408 {
2409 if (!poll_does_not_wait(p)) {
2410 poll_wait(filp, &sock->wq.wait, p);
2411 /* We need to be sure we are in sync with the
2412 * socket flags modification.
2413 *
2414 * This memory barrier is paired in the wq_has_sleeper.
2415 */
2416 smp_mb();
2417 }
2418 }
2419
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2420 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2421 {
2422 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2423 u32 txhash = READ_ONCE(sk->sk_txhash);
2424
2425 if (txhash) {
2426 skb->l4_hash = 1;
2427 skb->hash = txhash;
2428 }
2429 }
2430
2431 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2432
2433 /*
2434 * Queue a received datagram if it will fit. Stream and sequenced
2435 * protocols can't normally use this as they need to fit buffers in
2436 * and play with them.
2437 *
2438 * Inlined as it's very short and called for pretty much every
2439 * packet ever received.
2440 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2441 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2442 {
2443 skb_orphan(skb);
2444 skb->sk = sk;
2445 skb->destructor = sock_rfree;
2446 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2447 sk_mem_charge(sk, skb->truesize);
2448 }
2449
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2450 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2451 {
2452 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2453 skb_orphan(skb);
2454 skb->destructor = sock_efree;
2455 skb->sk = sk;
2456 return true;
2457 }
2458 return false;
2459 }
2460
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2461 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2462 {
2463 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2464 if (skb) {
2465 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2466 skb_set_owner_r(skb, sk);
2467 return skb;
2468 }
2469 __kfree_skb(skb);
2470 }
2471 return NULL;
2472 }
2473
skb_prepare_for_gro(struct sk_buff * skb)2474 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2475 {
2476 if (skb->destructor != sock_wfree) {
2477 skb_orphan(skb);
2478 return;
2479 }
2480 skb->slow_gro = 1;
2481 }
2482
2483 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2484 unsigned long expires);
2485
2486 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2487
2488 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2489
2490 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2491 struct sk_buff *skb, unsigned int flags,
2492 void (*destructor)(struct sock *sk,
2493 struct sk_buff *skb));
2494 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2495
2496 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2497 enum skb_drop_reason *reason);
2498
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2499 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2500 {
2501 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2502 }
2503
2504 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2505 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2506
2507 /*
2508 * Recover an error report and clear atomically
2509 */
2510
sock_error(struct sock * sk)2511 static inline int sock_error(struct sock *sk)
2512 {
2513 int err;
2514
2515 /* Avoid an atomic operation for the common case.
2516 * This is racy since another cpu/thread can change sk_err under us.
2517 */
2518 if (likely(data_race(!sk->sk_err)))
2519 return 0;
2520
2521 err = xchg(&sk->sk_err, 0);
2522 return -err;
2523 }
2524
2525 void sk_error_report(struct sock *sk);
2526
sock_wspace(struct sock * sk)2527 static inline unsigned long sock_wspace(struct sock *sk)
2528 {
2529 int amt = 0;
2530
2531 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2532 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2533 if (amt < 0)
2534 amt = 0;
2535 }
2536 return amt;
2537 }
2538
2539 /* Note:
2540 * We use sk->sk_wq_raw, from contexts knowing this
2541 * pointer is not NULL and cannot disappear/change.
2542 */
sk_set_bit(int nr,struct sock * sk)2543 static inline void sk_set_bit(int nr, struct sock *sk)
2544 {
2545 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2546 !sock_flag(sk, SOCK_FASYNC))
2547 return;
2548
2549 set_bit(nr, &sk->sk_wq_raw->flags);
2550 }
2551
sk_clear_bit(int nr,struct sock * sk)2552 static inline void sk_clear_bit(int nr, struct sock *sk)
2553 {
2554 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2555 !sock_flag(sk, SOCK_FASYNC))
2556 return;
2557
2558 clear_bit(nr, &sk->sk_wq_raw->flags);
2559 }
2560
sk_wake_async(const struct sock * sk,int how,int band)2561 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2562 {
2563 if (sock_flag(sk, SOCK_FASYNC)) {
2564 rcu_read_lock();
2565 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2566 rcu_read_unlock();
2567 }
2568 }
2569
2570 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2571 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2572 * Note: for send buffers, TCP works better if we can build two skbs at
2573 * minimum.
2574 */
2575 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2576
2577 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2578 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2579
sk_stream_moderate_sndbuf(struct sock * sk)2580 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2581 {
2582 u32 val;
2583
2584 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2585 return;
2586
2587 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2588 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2589
2590 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2591 }
2592
2593 /**
2594 * sk_page_frag - return an appropriate page_frag
2595 * @sk: socket
2596 *
2597 * Use the per task page_frag instead of the per socket one for
2598 * optimization when we know that we're in process context and own
2599 * everything that's associated with %current.
2600 *
2601 * Both direct reclaim and page faults can nest inside other
2602 * socket operations and end up recursing into sk_page_frag()
2603 * while it's already in use: explicitly avoid task page_frag
2604 * when users disable sk_use_task_frag.
2605 *
2606 * Return: a per task page_frag if context allows that,
2607 * otherwise a per socket one.
2608 */
sk_page_frag(struct sock * sk)2609 static inline struct page_frag *sk_page_frag(struct sock *sk)
2610 {
2611 if (sk->sk_use_task_frag)
2612 return ¤t->task_frag;
2613
2614 return &sk->sk_frag;
2615 }
2616
2617 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2618
2619 /*
2620 * Default write policy as shown to user space via poll/select/SIGIO
2621 */
sock_writeable(const struct sock * sk)2622 static inline bool sock_writeable(const struct sock *sk)
2623 {
2624 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2625 }
2626
gfp_any(void)2627 static inline gfp_t gfp_any(void)
2628 {
2629 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2630 }
2631
gfp_memcg_charge(void)2632 static inline gfp_t gfp_memcg_charge(void)
2633 {
2634 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2635 }
2636
sock_rcvtimeo(const struct sock * sk,bool noblock)2637 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2638 {
2639 return noblock ? 0 : sk->sk_rcvtimeo;
2640 }
2641
sock_sndtimeo(const struct sock * sk,bool noblock)2642 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2643 {
2644 return noblock ? 0 : sk->sk_sndtimeo;
2645 }
2646
sock_rcvlowat(const struct sock * sk,int waitall,int len)2647 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2648 {
2649 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2650
2651 return v ?: 1;
2652 }
2653
2654 /* Alas, with timeout socket operations are not restartable.
2655 * Compare this to poll().
2656 */
sock_intr_errno(long timeo)2657 static inline int sock_intr_errno(long timeo)
2658 {
2659 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2660 }
2661
2662 struct sock_skb_cb {
2663 u32 dropcount;
2664 };
2665
2666 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2667 * using skb->cb[] would keep using it directly and utilize its
2668 * alignement guarantee.
2669 */
2670 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2671 sizeof(struct sock_skb_cb)))
2672
2673 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2674 SOCK_SKB_CB_OFFSET))
2675
2676 #define sock_skb_cb_check_size(size) \
2677 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2678
2679 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2680 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2681 {
2682 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2683 atomic_read(&sk->sk_drops) : 0;
2684 }
2685
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2686 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2687 {
2688 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2689
2690 atomic_add(segs, &sk->sk_drops);
2691 }
2692
sock_read_timestamp(struct sock * sk)2693 static inline ktime_t sock_read_timestamp(struct sock *sk)
2694 {
2695 #if BITS_PER_LONG==32
2696 unsigned int seq;
2697 ktime_t kt;
2698
2699 do {
2700 seq = read_seqbegin(&sk->sk_stamp_seq);
2701 kt = sk->sk_stamp;
2702 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2703
2704 return kt;
2705 #else
2706 return READ_ONCE(sk->sk_stamp);
2707 #endif
2708 }
2709
sock_write_timestamp(struct sock * sk,ktime_t kt)2710 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2711 {
2712 #if BITS_PER_LONG==32
2713 write_seqlock(&sk->sk_stamp_seq);
2714 sk->sk_stamp = kt;
2715 write_sequnlock(&sk->sk_stamp_seq);
2716 #else
2717 WRITE_ONCE(sk->sk_stamp, kt);
2718 #endif
2719 }
2720
2721 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2722 struct sk_buff *skb);
2723 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2724 struct sk_buff *skb);
2725
2726 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2727 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2728 {
2729 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2730 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2731 ktime_t kt = skb->tstamp;
2732 /*
2733 * generate control messages if
2734 * - receive time stamping in software requested
2735 * - software time stamp available and wanted
2736 * - hardware time stamps available and wanted
2737 */
2738 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2739 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2740 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2741 (hwtstamps->hwtstamp &&
2742 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2743 __sock_recv_timestamp(msg, sk, skb);
2744 else
2745 sock_write_timestamp(sk, kt);
2746
2747 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2748 __sock_recv_wifi_status(msg, sk, skb);
2749 }
2750
2751 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2752 struct sk_buff *skb);
2753
2754 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2755 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2756 struct sk_buff *skb)
2757 {
2758 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2759 (1UL << SOCK_RCVTSTAMP) | \
2760 (1UL << SOCK_RCVMARK))
2761 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2762 SOF_TIMESTAMPING_RAW_HARDWARE)
2763
2764 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2765 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2766 __sock_recv_cmsgs(msg, sk, skb);
2767 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2768 sock_write_timestamp(sk, skb->tstamp);
2769 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2770 sock_write_timestamp(sk, 0);
2771 }
2772
2773 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2774
2775 /**
2776 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2777 * @sk: socket sending this packet
2778 * @tsflags: timestamping flags to use
2779 * @tx_flags: completed with instructions for time stamping
2780 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2781 *
2782 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2783 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2784 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2785 __u8 *tx_flags, __u32 *tskey)
2786 {
2787 if (unlikely(tsflags)) {
2788 __sock_tx_timestamp(tsflags, tx_flags);
2789 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2790 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2791 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2792 }
2793 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2794 *tx_flags |= SKBTX_WIFI_STATUS;
2795 }
2796
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2797 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2798 __u8 *tx_flags)
2799 {
2800 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2801 }
2802
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2803 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2804 {
2805 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2806 &skb_shinfo(skb)->tskey);
2807 }
2808
sk_is_inet(const struct sock * sk)2809 static inline bool sk_is_inet(const struct sock *sk)
2810 {
2811 int family = READ_ONCE(sk->sk_family);
2812
2813 return family == AF_INET || family == AF_INET6;
2814 }
2815
sk_is_tcp(const struct sock * sk)2816 static inline bool sk_is_tcp(const struct sock *sk)
2817 {
2818 return sk_is_inet(sk) &&
2819 sk->sk_type == SOCK_STREAM &&
2820 sk->sk_protocol == IPPROTO_TCP;
2821 }
2822
sk_is_udp(const struct sock * sk)2823 static inline bool sk_is_udp(const struct sock *sk)
2824 {
2825 return sk_is_inet(sk) &&
2826 sk->sk_type == SOCK_DGRAM &&
2827 sk->sk_protocol == IPPROTO_UDP;
2828 }
2829
sk_is_stream_unix(const struct sock * sk)2830 static inline bool sk_is_stream_unix(const struct sock *sk)
2831 {
2832 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2833 }
2834
sk_is_vsock(const struct sock * sk)2835 static inline bool sk_is_vsock(const struct sock *sk)
2836 {
2837 return sk->sk_family == AF_VSOCK;
2838 }
2839
2840 /**
2841 * sk_eat_skb - Release a skb if it is no longer needed
2842 * @sk: socket to eat this skb from
2843 * @skb: socket buffer to eat
2844 *
2845 * This routine must be called with interrupts disabled or with the socket
2846 * locked so that the sk_buff queue operation is ok.
2847 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2848 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2849 {
2850 __skb_unlink(skb, &sk->sk_receive_queue);
2851 __kfree_skb(skb);
2852 }
2853
2854 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2855 skb_sk_is_prefetched(struct sk_buff *skb)
2856 {
2857 #ifdef CONFIG_INET
2858 return skb->destructor == sock_pfree;
2859 #else
2860 return false;
2861 #endif /* CONFIG_INET */
2862 }
2863
2864 /* This helper checks if a socket is a full socket,
2865 * ie _not_ a timewait or request socket.
2866 */
sk_fullsock(const struct sock * sk)2867 static inline bool sk_fullsock(const struct sock *sk)
2868 {
2869 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2870 }
2871
2872 static inline bool
sk_is_refcounted(struct sock * sk)2873 sk_is_refcounted(struct sock *sk)
2874 {
2875 /* Only full sockets have sk->sk_flags. */
2876 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2877 }
2878
2879 /**
2880 * skb_steal_sock - steal a socket from an sk_buff
2881 * @skb: sk_buff to steal the socket from
2882 * @refcounted: is set to true if the socket is reference-counted
2883 * @prefetched: is set to true if the socket was assigned from bpf
2884 */
2885 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted,bool * prefetched)2886 skb_steal_sock(struct sk_buff *skb, bool *refcounted, bool *prefetched)
2887 {
2888 if (skb->sk) {
2889 struct sock *sk = skb->sk;
2890
2891 *refcounted = true;
2892 *prefetched = skb_sk_is_prefetched(skb);
2893 if (*prefetched)
2894 *refcounted = sk_is_refcounted(sk);
2895 skb->destructor = NULL;
2896 skb->sk = NULL;
2897 return sk;
2898 }
2899 *prefetched = false;
2900 *refcounted = false;
2901 return NULL;
2902 }
2903
2904 /* Checks if this SKB belongs to an HW offloaded socket
2905 * and whether any SW fallbacks are required based on dev.
2906 * Check decrypted mark in case skb_orphan() cleared socket.
2907 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2908 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2909 struct net_device *dev)
2910 {
2911 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2912 struct sock *sk = skb->sk;
2913
2914 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2915 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2916 #ifdef CONFIG_TLS_DEVICE
2917 } else if (unlikely(skb->decrypted)) {
2918 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2919 kfree_skb(skb);
2920 skb = NULL;
2921 #endif
2922 }
2923 #endif
2924
2925 return skb;
2926 }
2927
2928 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2929 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2930 */
sk_listener(const struct sock * sk)2931 static inline bool sk_listener(const struct sock *sk)
2932 {
2933 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2934 }
2935
2936 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2937 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2938 int type);
2939
2940 bool sk_ns_capable(const struct sock *sk,
2941 struct user_namespace *user_ns, int cap);
2942 bool sk_capable(const struct sock *sk, int cap);
2943 bool sk_net_capable(const struct sock *sk, int cap);
2944
2945 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2946
2947 /* Take into consideration the size of the struct sk_buff overhead in the
2948 * determination of these values, since that is non-constant across
2949 * platforms. This makes socket queueing behavior and performance
2950 * not depend upon such differences.
2951 */
2952 #define _SK_MEM_PACKETS 256
2953 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2954 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2955 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2956
2957 extern __u32 sysctl_wmem_max;
2958 extern __u32 sysctl_rmem_max;
2959
2960 extern int sysctl_tstamp_allow_data;
2961 extern int sysctl_optmem_max;
2962
2963 extern __u32 sysctl_wmem_default;
2964 extern __u32 sysctl_rmem_default;
2965
2966 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2967 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2968
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2969 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2970 {
2971 /* Does this proto have per netns sysctl_wmem ? */
2972 if (proto->sysctl_wmem_offset)
2973 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2974
2975 return READ_ONCE(*proto->sysctl_wmem);
2976 }
2977
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2978 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2979 {
2980 /* Does this proto have per netns sysctl_rmem ? */
2981 if (proto->sysctl_rmem_offset)
2982 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2983
2984 return READ_ONCE(*proto->sysctl_rmem);
2985 }
2986
2987 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2988 * Some wifi drivers need to tweak it to get more chunks.
2989 * They can use this helper from their ndo_start_xmit()
2990 */
sk_pacing_shift_update(struct sock * sk,int val)2991 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2992 {
2993 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2994 return;
2995 WRITE_ONCE(sk->sk_pacing_shift, val);
2996 }
2997
2998 /* if a socket is bound to a device, check that the given device
2999 * index is either the same or that the socket is bound to an L3
3000 * master device and the given device index is also enslaved to
3001 * that L3 master
3002 */
sk_dev_equal_l3scope(struct sock * sk,int dif)3003 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
3004 {
3005 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
3006 int mdif;
3007
3008 if (!bound_dev_if || bound_dev_if == dif)
3009 return true;
3010
3011 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
3012 if (mdif && mdif == bound_dev_if)
3013 return true;
3014
3015 return false;
3016 }
3017
3018 void sock_def_readable(struct sock *sk);
3019
3020 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
3021 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
3022 int sock_set_timestamping(struct sock *sk, int optname,
3023 struct so_timestamping timestamping);
3024
3025 void sock_enable_timestamps(struct sock *sk);
3026 void sock_no_linger(struct sock *sk);
3027 void sock_set_keepalive(struct sock *sk);
3028 void sock_set_priority(struct sock *sk, u32 priority);
3029 void sock_set_rcvbuf(struct sock *sk, int val);
3030 void sock_set_mark(struct sock *sk, u32 val);
3031 void sock_set_reuseaddr(struct sock *sk);
3032 void sock_set_reuseport(struct sock *sk);
3033 void sock_set_sndtimeo(struct sock *sk, s64 secs);
3034
3035 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
3036
3037 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3038 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3039 sockptr_t optval, int optlen, bool old_timeval);
3040
3041 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
3042 void __user *arg, void *karg, size_t size);
3043 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)3044 static inline bool sk_is_readable(struct sock *sk)
3045 {
3046 if (sk->sk_prot->sock_is_readable)
3047 return sk->sk_prot->sock_is_readable(sk);
3048 return false;
3049 }
3050 #endif /* _SOCK_H */
3051