xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision 875e5771536f8f631f38f0c6090a108cd611fcf3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include "bpf_jit.h"
35 
36 struct bpf_jit {
37 	u32 seen;		/* Flags to remember seen eBPF instructions */
38 	u32 seen_reg[16];	/* Array to remember which registers are used */
39 	u32 *addrs;		/* Array with relative instruction addresses */
40 	u8 *prg_buf;		/* Start of program */
41 	int size;		/* Size of program and literal pool */
42 	int size_prg;		/* Size of program */
43 	int prg;		/* Current position in program */
44 	int lit32_start;	/* Start of 32-bit literal pool */
45 	int lit32;		/* Current position in 32-bit literal pool */
46 	int lit64_start;	/* Start of 64-bit literal pool */
47 	int lit64;		/* Current position in 64-bit literal pool */
48 	int base_ip;		/* Base address for literal pool */
49 	int exit_ip;		/* Address of exit */
50 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
51 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
52 	int tail_call_start;	/* Tail call start offset */
53 	int excnt;		/* Number of exception table entries */
54 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
55 	int prologue_plt;	/* Start of prologue hotpatch PLT */
56 };
57 
58 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
59 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
60 #define SEEN_FUNC	BIT(2)		/* calls C functions */
61 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
62 
63 /*
64  * s390 registers
65  */
66 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
67 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
68 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
69 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
70 #define REG_0		REG_W0			/* Register 0 */
71 #define REG_1		REG_W1			/* Register 1 */
72 #define REG_2		BPF_REG_1		/* Register 2 */
73 #define REG_3		BPF_REG_2		/* Register 3 */
74 #define REG_4		BPF_REG_3		/* Register 4 */
75 #define REG_7		BPF_REG_6		/* Register 7 */
76 #define REG_8		BPF_REG_7		/* Register 8 */
77 #define REG_14		BPF_REG_0		/* Register 14 */
78 
79 /*
80  * Mapping of BPF registers to s390 registers
81  */
82 static const int reg2hex[] = {
83 	/* Return code */
84 	[BPF_REG_0]	= 14,
85 	/* Function parameters */
86 	[BPF_REG_1]	= 2,
87 	[BPF_REG_2]	= 3,
88 	[BPF_REG_3]	= 4,
89 	[BPF_REG_4]	= 5,
90 	[BPF_REG_5]	= 6,
91 	/* Call saved registers */
92 	[BPF_REG_6]	= 7,
93 	[BPF_REG_7]	= 8,
94 	[BPF_REG_8]	= 9,
95 	[BPF_REG_9]	= 10,
96 	/* BPF stack pointer */
97 	[BPF_REG_FP]	= 13,
98 	/* Register for blinding */
99 	[BPF_REG_AX]	= 12,
100 	/* Work registers for s390x backend */
101 	[REG_W0]	= 0,
102 	[REG_W1]	= 1,
103 	[REG_L]		= 11,
104 	[REG_15]	= 15,
105 };
106 
reg(u32 dst_reg,u32 src_reg)107 static inline u32 reg(u32 dst_reg, u32 src_reg)
108 {
109 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
110 }
111 
reg_high(u32 reg)112 static inline u32 reg_high(u32 reg)
113 {
114 	return reg2hex[reg] << 4;
115 }
116 
reg_set_seen(struct bpf_jit * jit,u32 b1)117 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
118 {
119 	u32 r1 = reg2hex[b1];
120 
121 	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
122 		jit->seen_reg[r1] = 1;
123 }
124 
125 #define REG_SET_SEEN(b1)					\
126 ({								\
127 	reg_set_seen(jit, b1);					\
128 })
129 
130 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
131 
132 /*
133  * EMIT macros for code generation
134  */
135 
136 #define _EMIT2(op)						\
137 ({								\
138 	if (jit->prg_buf)					\
139 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
140 	jit->prg += 2;						\
141 })
142 
143 #define EMIT2(op, b1, b2)					\
144 ({								\
145 	_EMIT2((op) | reg(b1, b2));				\
146 	REG_SET_SEEN(b1);					\
147 	REG_SET_SEEN(b2);					\
148 })
149 
150 #define _EMIT4(op)						\
151 ({								\
152 	if (jit->prg_buf)					\
153 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
154 	jit->prg += 4;						\
155 })
156 
157 #define EMIT4(op, b1, b2)					\
158 ({								\
159 	_EMIT4((op) | reg(b1, b2));				\
160 	REG_SET_SEEN(b1);					\
161 	REG_SET_SEEN(b2);					\
162 })
163 
164 #define EMIT4_RRF(op, b1, b2, b3)				\
165 ({								\
166 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
167 	REG_SET_SEEN(b1);					\
168 	REG_SET_SEEN(b2);					\
169 	REG_SET_SEEN(b3);					\
170 })
171 
172 #define _EMIT4_DISP(op, disp)					\
173 ({								\
174 	unsigned int __disp = (disp) & 0xfff;			\
175 	_EMIT4((op) | __disp);					\
176 })
177 
178 #define EMIT4_DISP(op, b1, b2, disp)				\
179 ({								\
180 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
181 		    reg_high(b2) << 8, (disp));			\
182 	REG_SET_SEEN(b1);					\
183 	REG_SET_SEEN(b2);					\
184 })
185 
186 #define EMIT4_IMM(op, b1, imm)					\
187 ({								\
188 	unsigned int __imm = (imm) & 0xffff;			\
189 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
190 	REG_SET_SEEN(b1);					\
191 })
192 
193 #define EMIT4_PCREL(op, pcrel)					\
194 ({								\
195 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
196 	_EMIT4((op) | __pcrel);					\
197 })
198 
199 #define EMIT4_PCREL_RIC(op, mask, target)			\
200 ({								\
201 	int __rel = ((target) - jit->prg) / 2;			\
202 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
203 })
204 
205 #define _EMIT6(op1, op2)					\
206 ({								\
207 	if (jit->prg_buf) {					\
208 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
209 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
210 	}							\
211 	jit->prg += 6;						\
212 })
213 
214 #define _EMIT6_DISP(op1, op2, disp)				\
215 ({								\
216 	unsigned int __disp = (disp) & 0xfff;			\
217 	_EMIT6((op1) | __disp, op2);				\
218 })
219 
220 #define _EMIT6_DISP_LH(op1, op2, disp)				\
221 ({								\
222 	u32 _disp = (u32) (disp);				\
223 	unsigned int __disp_h = _disp & 0xff000;		\
224 	unsigned int __disp_l = _disp & 0x00fff;		\
225 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
226 })
227 
228 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
229 ({								\
230 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
231 		       reg_high(b3) << 8, op2, disp);		\
232 	REG_SET_SEEN(b1);					\
233 	REG_SET_SEEN(b2);					\
234 	REG_SET_SEEN(b3);					\
235 })
236 
237 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
238 ({								\
239 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
240 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
241 	       (op2) | (mask) << 12);				\
242 	REG_SET_SEEN(b1);					\
243 	REG_SET_SEEN(b2);					\
244 })
245 
246 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
247 ({								\
248 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
249 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
250 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
251 	REG_SET_SEEN(b1);					\
252 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
253 })
254 
255 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
256 ({								\
257 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
258 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
259 	REG_SET_SEEN(b1);					\
260 	REG_SET_SEEN(b2);					\
261 })
262 
263 #define EMIT6_PCREL_RILB(op, b, target)				\
264 ({								\
265 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
266 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
267 	REG_SET_SEEN(b);					\
268 })
269 
270 #define EMIT6_PCREL_RIL(op, target)				\
271 ({								\
272 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
273 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
274 })
275 
276 #define EMIT6_PCREL_RILC(op, mask, target)			\
277 ({								\
278 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
279 })
280 
281 #define _EMIT6_IMM(op, imm)					\
282 ({								\
283 	unsigned int __imm = (imm);				\
284 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
285 })
286 
287 #define EMIT6_IMM(op, b1, imm)					\
288 ({								\
289 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
290 	REG_SET_SEEN(b1);					\
291 })
292 
293 #define _EMIT_CONST_U32(val)					\
294 ({								\
295 	unsigned int ret;					\
296 	ret = jit->lit32;					\
297 	if (jit->prg_buf)					\
298 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
299 	jit->lit32 += 4;					\
300 	ret;							\
301 })
302 
303 #define EMIT_CONST_U32(val)					\
304 ({								\
305 	jit->seen |= SEEN_LITERAL;				\
306 	_EMIT_CONST_U32(val) - jit->base_ip;			\
307 })
308 
309 #define _EMIT_CONST_U64(val)					\
310 ({								\
311 	unsigned int ret;					\
312 	ret = jit->lit64;					\
313 	if (jit->prg_buf)					\
314 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
315 	jit->lit64 += 8;					\
316 	ret;							\
317 })
318 
319 #define EMIT_CONST_U64(val)					\
320 ({								\
321 	jit->seen |= SEEN_LITERAL;				\
322 	_EMIT_CONST_U64(val) - jit->base_ip;			\
323 })
324 
325 #define EMIT_ZERO(b1)						\
326 ({								\
327 	if (!fp->aux->verifier_zext) {				\
328 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
329 		EMIT4(0xb9160000, b1, b1);			\
330 		REG_SET_SEEN(b1);				\
331 	}							\
332 })
333 
334 /*
335  * Return whether this is the first pass. The first pass is special, since we
336  * don't know any sizes yet, and thus must be conservative.
337  */
is_first_pass(struct bpf_jit * jit)338 static bool is_first_pass(struct bpf_jit *jit)
339 {
340 	return jit->size == 0;
341 }
342 
343 /*
344  * Return whether this is the code generation pass. The code generation pass is
345  * special, since we should change as little as possible.
346  */
is_codegen_pass(struct bpf_jit * jit)347 static bool is_codegen_pass(struct bpf_jit *jit)
348 {
349 	return jit->prg_buf;
350 }
351 
352 /*
353  * Return whether "rel" can be encoded as a short PC-relative offset
354  */
is_valid_rel(int rel)355 static bool is_valid_rel(int rel)
356 {
357 	return rel >= -65536 && rel <= 65534;
358 }
359 
360 /*
361  * Return whether "off" can be reached using a short PC-relative offset
362  */
can_use_rel(struct bpf_jit * jit,int off)363 static bool can_use_rel(struct bpf_jit *jit, int off)
364 {
365 	return is_valid_rel(off - jit->prg);
366 }
367 
368 /*
369  * Return whether given displacement can be encoded using
370  * Long-Displacement Facility
371  */
is_valid_ldisp(int disp)372 static bool is_valid_ldisp(int disp)
373 {
374 	return disp >= -524288 && disp <= 524287;
375 }
376 
377 /*
378  * Return whether the next 32-bit literal pool entry can be referenced using
379  * Long-Displacement Facility
380  */
can_use_ldisp_for_lit32(struct bpf_jit * jit)381 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
382 {
383 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
384 }
385 
386 /*
387  * Return whether the next 64-bit literal pool entry can be referenced using
388  * Long-Displacement Facility
389  */
can_use_ldisp_for_lit64(struct bpf_jit * jit)390 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
391 {
392 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
393 }
394 
395 /*
396  * Fill whole space with illegal instructions
397  */
jit_fill_hole(void * area,unsigned int size)398 static void jit_fill_hole(void *area, unsigned int size)
399 {
400 	memset(area, 0, size);
401 }
402 
403 /*
404  * Save registers from "rs" (register start) to "re" (register end) on stack
405  */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)406 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
407 {
408 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
409 
410 	if (rs == re)
411 		/* stg %rs,off(%r15) */
412 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
413 	else
414 		/* stmg %rs,%re,off(%r15) */
415 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
416 }
417 
418 /*
419  * Restore registers from "rs" (register start) to "re" (register end) on stack
420  */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)421 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
422 {
423 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
424 
425 	if (jit->seen & SEEN_STACK)
426 		off += STK_OFF + stack_depth;
427 
428 	if (rs == re)
429 		/* lg %rs,off(%r15) */
430 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
431 	else
432 		/* lmg %rs,%re,off(%r15) */
433 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
434 }
435 
436 /*
437  * Return first seen register (from start)
438  */
get_start(struct bpf_jit * jit,int start)439 static int get_start(struct bpf_jit *jit, int start)
440 {
441 	int i;
442 
443 	for (i = start; i <= 15; i++) {
444 		if (jit->seen_reg[i])
445 			return i;
446 	}
447 	return 0;
448 }
449 
450 /*
451  * Return last seen register (from start) (gap >= 2)
452  */
get_end(struct bpf_jit * jit,int start)453 static int get_end(struct bpf_jit *jit, int start)
454 {
455 	int i;
456 
457 	for (i = start; i < 15; i++) {
458 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
459 			return i - 1;
460 	}
461 	return jit->seen_reg[15] ? 15 : 14;
462 }
463 
464 #define REGS_SAVE	1
465 #define REGS_RESTORE	0
466 /*
467  * Save and restore clobbered registers (6-15) on stack.
468  * We save/restore registers in chunks with gap >= 2 registers.
469  */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)470 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
471 {
472 	const int last = 15, save_restore_size = 6;
473 	int re = 6, rs;
474 
475 	if (is_first_pass(jit)) {
476 		/*
477 		 * We don't know yet which registers are used. Reserve space
478 		 * conservatively.
479 		 */
480 		jit->prg += (last - re + 1) * save_restore_size;
481 		return;
482 	}
483 
484 	do {
485 		rs = get_start(jit, re);
486 		if (!rs)
487 			break;
488 		re = get_end(jit, rs + 1);
489 		if (op == REGS_SAVE)
490 			save_regs(jit, rs, re);
491 		else
492 			restore_regs(jit, rs, re, stack_depth);
493 		re++;
494 	} while (re <= last);
495 }
496 
bpf_skip(struct bpf_jit * jit,int size)497 static void bpf_skip(struct bpf_jit *jit, int size)
498 {
499 	if (size >= 6 && !is_valid_rel(size)) {
500 		/* brcl 0xf,size */
501 		EMIT6_PCREL_RIL(0xc0f4000000, size);
502 		size -= 6;
503 	} else if (size >= 4 && is_valid_rel(size)) {
504 		/* brc 0xf,size */
505 		EMIT4_PCREL(0xa7f40000, size);
506 		size -= 4;
507 	}
508 	while (size >= 2) {
509 		/* bcr 0,%0 */
510 		_EMIT2(0x0700);
511 		size -= 2;
512 	}
513 }
514 
515 /*
516  * PLT for hotpatchable calls. The calling convention is the same as for the
517  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
518  */
519 struct bpf_plt {
520 	char code[16];
521 	void *ret;
522 	void *target;
523 } __packed;
524 extern const struct bpf_plt bpf_plt;
525 asm(
526 	".pushsection .rodata\n"
527 	"	.balign 8\n"
528 	"bpf_plt:\n"
529 	"	lgrl %r0,bpf_plt_ret\n"
530 	"	lgrl %r1,bpf_plt_target\n"
531 	"	br %r1\n"
532 	"	.balign 8\n"
533 	"bpf_plt_ret: .quad 0\n"
534 	"bpf_plt_target: .quad 0\n"
535 	"	.popsection\n"
536 );
537 
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)538 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
539 {
540 	memcpy(plt, &bpf_plt, sizeof(*plt));
541 	plt->ret = ret;
542 	/*
543 	 * (target == NULL) implies that the branch to this PLT entry was
544 	 * patched and became a no-op. However, some CPU could have jumped
545 	 * to this PLT entry before patching and may be still executing it.
546 	 *
547 	 * Since the intention in this case is to make the PLT entry a no-op,
548 	 * make the target point to the return label instead of NULL.
549 	 */
550 	plt->target = target ?: ret;
551 }
552 
553 /*
554  * Emit function prologue
555  *
556  * Save registers and create stack frame if necessary.
557  * See stack frame layout description in "bpf_jit.h"!
558  */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)559 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
560 			     u32 stack_depth)
561 {
562 	/* No-op for hotpatching */
563 	/* brcl 0,prologue_plt */
564 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
565 	jit->prologue_plt_ret = jit->prg;
566 
567 	if (fp->aux->func_idx == 0) {
568 		/* Initialize the tail call counter in the main program. */
569 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
570 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
571 	} else {
572 		/*
573 		 * Skip the tail call counter initialization in subprograms.
574 		 * Insert nops in order to have tail_call_start at a
575 		 * predictable offset.
576 		 */
577 		bpf_skip(jit, 6);
578 	}
579 	/* Tail calls have to skip above initialization */
580 	jit->tail_call_start = jit->prg;
581 	/* Save registers */
582 	save_restore_regs(jit, REGS_SAVE, stack_depth);
583 	/* Setup literal pool */
584 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
585 		if (!is_first_pass(jit) &&
586 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
587 			/* basr %l,0 */
588 			EMIT2(0x0d00, REG_L, REG_0);
589 			jit->base_ip = jit->prg;
590 		} else {
591 			/* larl %l,lit32_start */
592 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
593 			jit->base_ip = jit->lit32_start;
594 		}
595 	}
596 	/* Setup stack and backchain */
597 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
598 		/* lgr %w1,%r15 (backchain) */
599 		EMIT4(0xb9040000, REG_W1, REG_15);
600 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
601 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
602 		/* aghi %r15,-STK_OFF */
603 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
604 		/* stg %w1,152(%r15) (backchain) */
605 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
606 			      REG_15, 152);
607 	}
608 }
609 
610 /*
611  * Emit an expoline for a jump that follows
612  */
emit_expoline(struct bpf_jit * jit)613 static void emit_expoline(struct bpf_jit *jit)
614 {
615 	/* exrl %r0,.+10 */
616 	EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
617 	/* j . */
618 	EMIT4_PCREL(0xa7f40000, 0);
619 }
620 
621 /*
622  * Emit __s390_indirect_jump_r1 thunk if necessary
623  */
emit_r1_thunk(struct bpf_jit * jit)624 static void emit_r1_thunk(struct bpf_jit *jit)
625 {
626 	if (nospec_uses_trampoline()) {
627 		jit->r1_thunk_ip = jit->prg;
628 		emit_expoline(jit);
629 		/* br %r1 */
630 		_EMIT2(0x07f1);
631 	}
632 }
633 
634 /*
635  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
636  */
call_r1(struct bpf_jit * jit)637 static void call_r1(struct bpf_jit *jit)
638 {
639 	if (nospec_uses_trampoline())
640 		/* brasl %r14,__s390_indirect_jump_r1 */
641 		EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
642 	else
643 		/* basr %r14,%r1 */
644 		EMIT2(0x0d00, REG_14, REG_1);
645 }
646 
647 /*
648  * Function epilogue
649  */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)650 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
651 {
652 	jit->exit_ip = jit->prg;
653 	/* Load exit code: lgr %r2,%b0 */
654 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
655 	/* Restore registers */
656 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
657 	if (nospec_uses_trampoline()) {
658 		jit->r14_thunk_ip = jit->prg;
659 		/* Generate __s390_indirect_jump_r14 thunk */
660 		emit_expoline(jit);
661 	}
662 	/* br %r14 */
663 	_EMIT2(0x07fe);
664 
665 	if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
666 		emit_r1_thunk(jit);
667 
668 	jit->prg = ALIGN(jit->prg, 8);
669 	jit->prologue_plt = jit->prg;
670 	if (jit->prg_buf)
671 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
672 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
673 	jit->prg += sizeof(struct bpf_plt);
674 }
675 
get_probe_mem_regno(const u8 * insn)676 static int get_probe_mem_regno(const u8 *insn)
677 {
678 	/*
679 	 * insn must point to llgc, llgh, llgf or lg, which have destination
680 	 * register at the same position.
681 	 */
682 	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
683 		return -1;
684 	if (insn[5] != 0x90 && /* llgc */
685 	    insn[5] != 0x91 && /* llgh */
686 	    insn[5] != 0x16 && /* llgf */
687 	    insn[5] != 0x04) /* lg */
688 		return -1;
689 	return insn[1] >> 4;
690 }
691 
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)692 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
693 {
694 	regs->psw.addr = extable_fixup(x);
695 	regs->gprs[x->data] = 0;
696 	return true;
697 }
698 
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)699 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
700 			     int probe_prg, int nop_prg)
701 {
702 	struct exception_table_entry *ex;
703 	int reg, prg;
704 	s64 delta;
705 	u8 *insn;
706 	int i;
707 
708 	if (!fp->aux->extable)
709 		/* Do nothing during early JIT passes. */
710 		return 0;
711 	insn = jit->prg_buf + probe_prg;
712 	reg = get_probe_mem_regno(insn);
713 	if (WARN_ON_ONCE(reg < 0))
714 		/* JIT bug - unexpected probe instruction. */
715 		return -1;
716 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
717 		/* JIT bug - gap between probe and nop instructions. */
718 		return -1;
719 	for (i = 0; i < 2; i++) {
720 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
721 			/* Verifier bug - not enough entries. */
722 			return -1;
723 		ex = &fp->aux->extable[jit->excnt];
724 		/* Add extable entries for probe and nop instructions. */
725 		prg = i == 0 ? probe_prg : nop_prg;
726 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
727 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
728 			/* JIT bug - code and extable must be close. */
729 			return -1;
730 		ex->insn = delta;
731 		/*
732 		 * Always land on the nop. Note that extable infrastructure
733 		 * ignores fixup field, it is handled by ex_handler_bpf().
734 		 */
735 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
736 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
737 			/* JIT bug - landing pad and extable must be close. */
738 			return -1;
739 		ex->fixup = delta;
740 		ex->type = EX_TYPE_BPF;
741 		ex->data = reg;
742 		jit->excnt++;
743 	}
744 	return 0;
745 }
746 
747 /*
748  * Sign-extend the register if necessary
749  */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)750 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
751 {
752 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
753 		return 0;
754 
755 	switch (size) {
756 	case 1:
757 		/* lgbr %r,%r */
758 		EMIT4(0xb9060000, r, r);
759 		return 0;
760 	case 2:
761 		/* lghr %r,%r */
762 		EMIT4(0xb9070000, r, r);
763 		return 0;
764 	case 4:
765 		/* lgfr %r,%r */
766 		EMIT4(0xb9140000, r, r);
767 		return 0;
768 	case 8:
769 		return 0;
770 	default:
771 		return -1;
772 	}
773 }
774 
775 /*
776  * Compile one eBPF instruction into s390x code
777  *
778  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
779  * stack space for the large switch statement.
780  */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)781 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
782 				 int i, bool extra_pass, u32 stack_depth)
783 {
784 	struct bpf_insn *insn = &fp->insnsi[i];
785 	u32 dst_reg = insn->dst_reg;
786 	u32 src_reg = insn->src_reg;
787 	int last, insn_count = 1;
788 	u32 *addrs = jit->addrs;
789 	s32 imm = insn->imm;
790 	s16 off = insn->off;
791 	int probe_prg = -1;
792 	unsigned int mask;
793 	int nop_prg;
794 	int err;
795 
796 	if (BPF_CLASS(insn->code) == BPF_LDX &&
797 	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
798 		probe_prg = jit->prg;
799 
800 	switch (insn->code) {
801 	/*
802 	 * BPF_MOV
803 	 */
804 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
805 		/* llgfr %dst,%src */
806 		EMIT4(0xb9160000, dst_reg, src_reg);
807 		if (insn_is_zext(&insn[1]))
808 			insn_count = 2;
809 		break;
810 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
811 		/* lgr %dst,%src */
812 		EMIT4(0xb9040000, dst_reg, src_reg);
813 		break;
814 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
815 		/* llilf %dst,imm */
816 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
817 		if (insn_is_zext(&insn[1]))
818 			insn_count = 2;
819 		break;
820 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
821 		/* lgfi %dst,imm */
822 		EMIT6_IMM(0xc0010000, dst_reg, imm);
823 		break;
824 	/*
825 	 * BPF_LD 64
826 	 */
827 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
828 	{
829 		/* 16 byte instruction that uses two 'struct bpf_insn' */
830 		u64 imm64;
831 
832 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
833 		/* lgrl %dst,imm */
834 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
835 		insn_count = 2;
836 		break;
837 	}
838 	/*
839 	 * BPF_ADD
840 	 */
841 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
842 		/* ar %dst,%src */
843 		EMIT2(0x1a00, dst_reg, src_reg);
844 		EMIT_ZERO(dst_reg);
845 		break;
846 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
847 		/* agr %dst,%src */
848 		EMIT4(0xb9080000, dst_reg, src_reg);
849 		break;
850 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
851 		if (imm != 0) {
852 			/* alfi %dst,imm */
853 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
854 		}
855 		EMIT_ZERO(dst_reg);
856 		break;
857 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
858 		if (!imm)
859 			break;
860 		/* agfi %dst,imm */
861 		EMIT6_IMM(0xc2080000, dst_reg, imm);
862 		break;
863 	/*
864 	 * BPF_SUB
865 	 */
866 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
867 		/* sr %dst,%src */
868 		EMIT2(0x1b00, dst_reg, src_reg);
869 		EMIT_ZERO(dst_reg);
870 		break;
871 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
872 		/* sgr %dst,%src */
873 		EMIT4(0xb9090000, dst_reg, src_reg);
874 		break;
875 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
876 		if (imm != 0) {
877 			/* alfi %dst,-imm */
878 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
879 		}
880 		EMIT_ZERO(dst_reg);
881 		break;
882 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
883 		if (!imm)
884 			break;
885 		if (imm == -0x80000000) {
886 			/* algfi %dst,0x80000000 */
887 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
888 		} else {
889 			/* agfi %dst,-imm */
890 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
891 		}
892 		break;
893 	/*
894 	 * BPF_MUL
895 	 */
896 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
897 		/* msr %dst,%src */
898 		EMIT4(0xb2520000, dst_reg, src_reg);
899 		EMIT_ZERO(dst_reg);
900 		break;
901 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
902 		/* msgr %dst,%src */
903 		EMIT4(0xb90c0000, dst_reg, src_reg);
904 		break;
905 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
906 		if (imm != 1) {
907 			/* msfi %r5,imm */
908 			EMIT6_IMM(0xc2010000, dst_reg, imm);
909 		}
910 		EMIT_ZERO(dst_reg);
911 		break;
912 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
913 		if (imm == 1)
914 			break;
915 		/* msgfi %dst,imm */
916 		EMIT6_IMM(0xc2000000, dst_reg, imm);
917 		break;
918 	/*
919 	 * BPF_DIV / BPF_MOD
920 	 */
921 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
922 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
923 	{
924 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
925 
926 		/* lhi %w0,0 */
927 		EMIT4_IMM(0xa7080000, REG_W0, 0);
928 		/* lr %w1,%dst */
929 		EMIT2(0x1800, REG_W1, dst_reg);
930 		/* dlr %w0,%src */
931 		EMIT4(0xb9970000, REG_W0, src_reg);
932 		/* llgfr %dst,%rc */
933 		EMIT4(0xb9160000, dst_reg, rc_reg);
934 		if (insn_is_zext(&insn[1]))
935 			insn_count = 2;
936 		break;
937 	}
938 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
939 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
940 	{
941 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
942 
943 		/* lghi %w0,0 */
944 		EMIT4_IMM(0xa7090000, REG_W0, 0);
945 		/* lgr %w1,%dst */
946 		EMIT4(0xb9040000, REG_W1, dst_reg);
947 		/* dlgr %w0,%dst */
948 		EMIT4(0xb9870000, REG_W0, src_reg);
949 		/* lgr %dst,%rc */
950 		EMIT4(0xb9040000, dst_reg, rc_reg);
951 		break;
952 	}
953 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
954 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
955 	{
956 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
957 
958 		if (imm == 1) {
959 			if (BPF_OP(insn->code) == BPF_MOD)
960 				/* lhgi %dst,0 */
961 				EMIT4_IMM(0xa7090000, dst_reg, 0);
962 			else
963 				EMIT_ZERO(dst_reg);
964 			break;
965 		}
966 		/* lhi %w0,0 */
967 		EMIT4_IMM(0xa7080000, REG_W0, 0);
968 		/* lr %w1,%dst */
969 		EMIT2(0x1800, REG_W1, dst_reg);
970 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
971 			/* dl %w0,<d(imm)>(%l) */
972 			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
973 				      EMIT_CONST_U32(imm));
974 		} else {
975 			/* lgfrl %dst,imm */
976 			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
977 					 _EMIT_CONST_U32(imm));
978 			jit->seen |= SEEN_LITERAL;
979 			/* dlr %w0,%dst */
980 			EMIT4(0xb9970000, REG_W0, dst_reg);
981 		}
982 		/* llgfr %dst,%rc */
983 		EMIT4(0xb9160000, dst_reg, rc_reg);
984 		if (insn_is_zext(&insn[1]))
985 			insn_count = 2;
986 		break;
987 	}
988 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
989 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
990 	{
991 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
992 
993 		if (imm == 1) {
994 			if (BPF_OP(insn->code) == BPF_MOD)
995 				/* lhgi %dst,0 */
996 				EMIT4_IMM(0xa7090000, dst_reg, 0);
997 			break;
998 		}
999 		/* lghi %w0,0 */
1000 		EMIT4_IMM(0xa7090000, REG_W0, 0);
1001 		/* lgr %w1,%dst */
1002 		EMIT4(0xb9040000, REG_W1, dst_reg);
1003 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1004 			/* dlg %w0,<d(imm)>(%l) */
1005 			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
1006 				      EMIT_CONST_U64(imm));
1007 		} else {
1008 			/* lgrl %dst,imm */
1009 			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1010 					 _EMIT_CONST_U64(imm));
1011 			jit->seen |= SEEN_LITERAL;
1012 			/* dlgr %w0,%dst */
1013 			EMIT4(0xb9870000, REG_W0, dst_reg);
1014 		}
1015 		/* lgr %dst,%rc */
1016 		EMIT4(0xb9040000, dst_reg, rc_reg);
1017 		break;
1018 	}
1019 	/*
1020 	 * BPF_AND
1021 	 */
1022 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1023 		/* nr %dst,%src */
1024 		EMIT2(0x1400, dst_reg, src_reg);
1025 		EMIT_ZERO(dst_reg);
1026 		break;
1027 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1028 		/* ngr %dst,%src */
1029 		EMIT4(0xb9800000, dst_reg, src_reg);
1030 		break;
1031 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1032 		/* nilf %dst,imm */
1033 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1034 		EMIT_ZERO(dst_reg);
1035 		break;
1036 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1037 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1038 			/* ng %dst,<d(imm)>(%l) */
1039 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1040 				      dst_reg, REG_0, REG_L,
1041 				      EMIT_CONST_U64(imm));
1042 		} else {
1043 			/* lgrl %w0,imm */
1044 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1045 					 _EMIT_CONST_U64(imm));
1046 			jit->seen |= SEEN_LITERAL;
1047 			/* ngr %dst,%w0 */
1048 			EMIT4(0xb9800000, dst_reg, REG_W0);
1049 		}
1050 		break;
1051 	/*
1052 	 * BPF_OR
1053 	 */
1054 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1055 		/* or %dst,%src */
1056 		EMIT2(0x1600, dst_reg, src_reg);
1057 		EMIT_ZERO(dst_reg);
1058 		break;
1059 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1060 		/* ogr %dst,%src */
1061 		EMIT4(0xb9810000, dst_reg, src_reg);
1062 		break;
1063 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1064 		/* oilf %dst,imm */
1065 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1066 		EMIT_ZERO(dst_reg);
1067 		break;
1068 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1069 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1070 			/* og %dst,<d(imm)>(%l) */
1071 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1072 				      dst_reg, REG_0, REG_L,
1073 				      EMIT_CONST_U64(imm));
1074 		} else {
1075 			/* lgrl %w0,imm */
1076 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1077 					 _EMIT_CONST_U64(imm));
1078 			jit->seen |= SEEN_LITERAL;
1079 			/* ogr %dst,%w0 */
1080 			EMIT4(0xb9810000, dst_reg, REG_W0);
1081 		}
1082 		break;
1083 	/*
1084 	 * BPF_XOR
1085 	 */
1086 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1087 		/* xr %dst,%src */
1088 		EMIT2(0x1700, dst_reg, src_reg);
1089 		EMIT_ZERO(dst_reg);
1090 		break;
1091 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1092 		/* xgr %dst,%src */
1093 		EMIT4(0xb9820000, dst_reg, src_reg);
1094 		break;
1095 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1096 		if (imm != 0) {
1097 			/* xilf %dst,imm */
1098 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1099 		}
1100 		EMIT_ZERO(dst_reg);
1101 		break;
1102 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1103 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1104 			/* xg %dst,<d(imm)>(%l) */
1105 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1106 				      dst_reg, REG_0, REG_L,
1107 				      EMIT_CONST_U64(imm));
1108 		} else {
1109 			/* lgrl %w0,imm */
1110 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1111 					 _EMIT_CONST_U64(imm));
1112 			jit->seen |= SEEN_LITERAL;
1113 			/* xgr %dst,%w0 */
1114 			EMIT4(0xb9820000, dst_reg, REG_W0);
1115 		}
1116 		break;
1117 	/*
1118 	 * BPF_LSH
1119 	 */
1120 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1121 		/* sll %dst,0(%src) */
1122 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1123 		EMIT_ZERO(dst_reg);
1124 		break;
1125 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1126 		/* sllg %dst,%dst,0(%src) */
1127 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1128 		break;
1129 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1130 		if (imm != 0) {
1131 			/* sll %dst,imm(%r0) */
1132 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1133 		}
1134 		EMIT_ZERO(dst_reg);
1135 		break;
1136 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1137 		if (imm == 0)
1138 			break;
1139 		/* sllg %dst,%dst,imm(%r0) */
1140 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1141 		break;
1142 	/*
1143 	 * BPF_RSH
1144 	 */
1145 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1146 		/* srl %dst,0(%src) */
1147 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1148 		EMIT_ZERO(dst_reg);
1149 		break;
1150 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1151 		/* srlg %dst,%dst,0(%src) */
1152 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1153 		break;
1154 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1155 		if (imm != 0) {
1156 			/* srl %dst,imm(%r0) */
1157 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1158 		}
1159 		EMIT_ZERO(dst_reg);
1160 		break;
1161 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1162 		if (imm == 0)
1163 			break;
1164 		/* srlg %dst,%dst,imm(%r0) */
1165 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1166 		break;
1167 	/*
1168 	 * BPF_ARSH
1169 	 */
1170 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1171 		/* sra %dst,%dst,0(%src) */
1172 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1173 		EMIT_ZERO(dst_reg);
1174 		break;
1175 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1176 		/* srag %dst,%dst,0(%src) */
1177 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1178 		break;
1179 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1180 		if (imm != 0) {
1181 			/* sra %dst,imm(%r0) */
1182 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1183 		}
1184 		EMIT_ZERO(dst_reg);
1185 		break;
1186 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1187 		if (imm == 0)
1188 			break;
1189 		/* srag %dst,%dst,imm(%r0) */
1190 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1191 		break;
1192 	/*
1193 	 * BPF_NEG
1194 	 */
1195 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1196 		/* lcr %dst,%dst */
1197 		EMIT2(0x1300, dst_reg, dst_reg);
1198 		EMIT_ZERO(dst_reg);
1199 		break;
1200 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1201 		/* lcgr %dst,%dst */
1202 		EMIT4(0xb9030000, dst_reg, dst_reg);
1203 		break;
1204 	/*
1205 	 * BPF_FROM_BE/LE
1206 	 */
1207 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1208 		/* s390 is big endian, therefore only clear high order bytes */
1209 		switch (imm) {
1210 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1211 			/* llghr %dst,%dst */
1212 			EMIT4(0xb9850000, dst_reg, dst_reg);
1213 			if (insn_is_zext(&insn[1]))
1214 				insn_count = 2;
1215 			break;
1216 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1217 			if (!fp->aux->verifier_zext)
1218 				/* llgfr %dst,%dst */
1219 				EMIT4(0xb9160000, dst_reg, dst_reg);
1220 			break;
1221 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1222 			break;
1223 		}
1224 		break;
1225 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1226 		switch (imm) {
1227 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1228 			/* lrvr %dst,%dst */
1229 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1230 			/* srl %dst,16(%r0) */
1231 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1232 			/* llghr %dst,%dst */
1233 			EMIT4(0xb9850000, dst_reg, dst_reg);
1234 			if (insn_is_zext(&insn[1]))
1235 				insn_count = 2;
1236 			break;
1237 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1238 			/* lrvr %dst,%dst */
1239 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1240 			if (!fp->aux->verifier_zext)
1241 				/* llgfr %dst,%dst */
1242 				EMIT4(0xb9160000, dst_reg, dst_reg);
1243 			break;
1244 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1245 			/* lrvgr %dst,%dst */
1246 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1247 			break;
1248 		}
1249 		break;
1250 	/*
1251 	 * BPF_NOSPEC (speculation barrier)
1252 	 */
1253 	case BPF_ST | BPF_NOSPEC:
1254 		break;
1255 	/*
1256 	 * BPF_ST(X)
1257 	 */
1258 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1259 		/* stcy %src,off(%dst) */
1260 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1261 		jit->seen |= SEEN_MEM;
1262 		break;
1263 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1264 		/* sthy %src,off(%dst) */
1265 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1266 		jit->seen |= SEEN_MEM;
1267 		break;
1268 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1269 		/* sty %src,off(%dst) */
1270 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1271 		jit->seen |= SEEN_MEM;
1272 		break;
1273 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1274 		/* stg %src,off(%dst) */
1275 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1276 		jit->seen |= SEEN_MEM;
1277 		break;
1278 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1279 		/* lhi %w0,imm */
1280 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1281 		/* stcy %w0,off(dst) */
1282 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1283 		jit->seen |= SEEN_MEM;
1284 		break;
1285 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1286 		/* lhi %w0,imm */
1287 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1288 		/* sthy %w0,off(dst) */
1289 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1290 		jit->seen |= SEEN_MEM;
1291 		break;
1292 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1293 		/* llilf %w0,imm  */
1294 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1295 		/* sty %w0,off(%dst) */
1296 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1297 		jit->seen |= SEEN_MEM;
1298 		break;
1299 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1300 		/* lgfi %w0,imm */
1301 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1302 		/* stg %w0,off(%dst) */
1303 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1304 		jit->seen |= SEEN_MEM;
1305 		break;
1306 	/*
1307 	 * BPF_ATOMIC
1308 	 */
1309 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1310 	case BPF_STX | BPF_ATOMIC | BPF_W:
1311 	{
1312 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1313 
1314 		switch (insn->imm) {
1315 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1316 #define EMIT_ATOMIC(op32, op64) do {					\
1317 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1318 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1319 		      src_reg, dst_reg, off);				\
1320 	if (insn->imm & BPF_FETCH) {					\
1321 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1322 		_EMIT2(0x07e0);						\
1323 		if (is32)                                               \
1324 			EMIT_ZERO(src_reg);				\
1325 	}								\
1326 } while (0)
1327 		case BPF_ADD:
1328 		case BPF_ADD | BPF_FETCH:
1329 			/* {laal|laalg} */
1330 			EMIT_ATOMIC(0x00fa, 0x00ea);
1331 			break;
1332 		case BPF_AND:
1333 		case BPF_AND | BPF_FETCH:
1334 			/* {lan|lang} */
1335 			EMIT_ATOMIC(0x00f4, 0x00e4);
1336 			break;
1337 		case BPF_OR:
1338 		case BPF_OR | BPF_FETCH:
1339 			/* {lao|laog} */
1340 			EMIT_ATOMIC(0x00f6, 0x00e6);
1341 			break;
1342 		case BPF_XOR:
1343 		case BPF_XOR | BPF_FETCH:
1344 			/* {lax|laxg} */
1345 			EMIT_ATOMIC(0x00f7, 0x00e7);
1346 			break;
1347 #undef EMIT_ATOMIC
1348 		case BPF_XCHG:
1349 			/* {ly|lg} %w0,off(%dst) */
1350 			EMIT6_DISP_LH(0xe3000000,
1351 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1352 				      dst_reg, off);
1353 			/* 0: {csy|csg} %w0,%src,off(%dst) */
1354 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1355 				      REG_W0, src_reg, dst_reg, off);
1356 			/* brc 4,0b */
1357 			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1358 			/* {llgfr|lgr} %src,%w0 */
1359 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1360 			if (is32 && insn_is_zext(&insn[1]))
1361 				insn_count = 2;
1362 			break;
1363 		case BPF_CMPXCHG:
1364 			/* 0: {csy|csg} %b0,%src,off(%dst) */
1365 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1366 				      BPF_REG_0, src_reg, dst_reg, off);
1367 			break;
1368 		default:
1369 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1370 			return -1;
1371 		}
1372 
1373 		jit->seen |= SEEN_MEM;
1374 		break;
1375 	}
1376 	/*
1377 	 * BPF_LDX
1378 	 */
1379 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1380 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1381 		/* llgc %dst,0(off,%src) */
1382 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1383 		jit->seen |= SEEN_MEM;
1384 		if (insn_is_zext(&insn[1]))
1385 			insn_count = 2;
1386 		break;
1387 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1388 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1389 		/* llgh %dst,0(off,%src) */
1390 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1391 		jit->seen |= SEEN_MEM;
1392 		if (insn_is_zext(&insn[1]))
1393 			insn_count = 2;
1394 		break;
1395 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1396 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1397 		/* llgf %dst,off(%src) */
1398 		jit->seen |= SEEN_MEM;
1399 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1400 		if (insn_is_zext(&insn[1]))
1401 			insn_count = 2;
1402 		break;
1403 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1404 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1405 		/* lg %dst,0(off,%src) */
1406 		jit->seen |= SEEN_MEM;
1407 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1408 		break;
1409 	/*
1410 	 * BPF_JMP / CALL
1411 	 */
1412 	case BPF_JMP | BPF_CALL:
1413 	{
1414 		const struct btf_func_model *m;
1415 		bool func_addr_fixed;
1416 		int j, ret;
1417 		u64 func;
1418 
1419 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1420 					    &func, &func_addr_fixed);
1421 		if (ret < 0)
1422 			return -1;
1423 
1424 		REG_SET_SEEN(BPF_REG_5);
1425 		jit->seen |= SEEN_FUNC;
1426 		/*
1427 		 * Copy the tail call counter to where the callee expects it.
1428 		 *
1429 		 * Note 1: The callee can increment the tail call counter, but
1430 		 * we do not load it back, since the x86 JIT does not do this
1431 		 * either.
1432 		 *
1433 		 * Note 2: We assume that the verifier does not let us call the
1434 		 * main program, which clears the tail call counter on entry.
1435 		 */
1436 		/* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1437 		_EMIT6(0xd203f000 | STK_OFF_TCCNT,
1438 		       0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1439 
1440 		/* Sign-extend the kfunc arguments. */
1441 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1442 			m = bpf_jit_find_kfunc_model(fp, insn);
1443 			if (!m)
1444 				return -1;
1445 
1446 			for (j = 0; j < m->nr_args; j++) {
1447 				if (sign_extend(jit, BPF_REG_1 + j,
1448 						m->arg_size[j],
1449 						m->arg_flags[j]))
1450 					return -1;
1451 			}
1452 		}
1453 
1454 		/* lgrl %w1,func */
1455 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1456 		/* %r1() */
1457 		call_r1(jit);
1458 		/* lgr %b0,%r2: load return value into %b0 */
1459 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1460 		break;
1461 	}
1462 	case BPF_JMP | BPF_TAIL_CALL: {
1463 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1464 
1465 		/*
1466 		 * Implicit input:
1467 		 *  B1: pointer to ctx
1468 		 *  B2: pointer to bpf_array
1469 		 *  B3: index in bpf_array
1470 		 *
1471 		 * if (index >= array->map.max_entries)
1472 		 *         goto out;
1473 		 */
1474 
1475 		/* llgf %w1,map.max_entries(%b2) */
1476 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1477 			      offsetof(struct bpf_array, map.max_entries));
1478 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1479 		/* clrj %b3,%w1,0xa,out */
1480 		patch_1_clrj = jit->prg;
1481 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1482 				 jit->prg);
1483 
1484 		/*
1485 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1486 		 *         goto out;
1487 		 */
1488 
1489 		if (jit->seen & SEEN_STACK)
1490 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1491 		else
1492 			off = STK_OFF_TCCNT;
1493 		/* lhi %w0,1 */
1494 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1495 		/* laal %w1,%w0,off(%r15) */
1496 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1497 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1498 		patch_2_clij = jit->prg;
1499 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1500 				 2, jit->prg);
1501 
1502 		/*
1503 		 * prog = array->ptrs[index];
1504 		 * if (prog == NULL)
1505 		 *         goto out;
1506 		 */
1507 
1508 		/* llgfr %r1,%b3: %r1 = (u32) index */
1509 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1510 		/* sllg %r1,%r1,3: %r1 *= 8 */
1511 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1512 		/* ltg %r1,prog(%b2,%r1) */
1513 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1514 			      REG_1, offsetof(struct bpf_array, ptrs));
1515 		/* brc 0x8,out */
1516 		patch_3_brc = jit->prg;
1517 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1518 
1519 		/*
1520 		 * Restore registers before calling function
1521 		 */
1522 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1523 
1524 		/*
1525 		 * goto *(prog->bpf_func + tail_call_start);
1526 		 */
1527 
1528 		/* lg %r1,bpf_func(%r1) */
1529 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1530 			      offsetof(struct bpf_prog, bpf_func));
1531 		if (nospec_uses_trampoline()) {
1532 			jit->seen |= SEEN_FUNC;
1533 			/* aghi %r1,tail_call_start */
1534 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1535 			/* brcl 0xf,__s390_indirect_jump_r1 */
1536 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1537 		} else {
1538 			/* bc 0xf,tail_call_start(%r1) */
1539 			_EMIT4(0x47f01000 + jit->tail_call_start);
1540 		}
1541 		/* out: */
1542 		if (jit->prg_buf) {
1543 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1544 				(jit->prg - patch_1_clrj) >> 1;
1545 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1546 				(jit->prg - patch_2_clij) >> 1;
1547 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1548 				(jit->prg - patch_3_brc) >> 1;
1549 		}
1550 		break;
1551 	}
1552 	case BPF_JMP | BPF_EXIT: /* return b0 */
1553 		last = (i == fp->len - 1) ? 1 : 0;
1554 		if (last)
1555 			break;
1556 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1557 			/* brc 0xf, <exit> */
1558 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1559 		else
1560 			/* brcl 0xf, <exit> */
1561 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1562 		break;
1563 	/*
1564 	 * Branch relative (number of skipped instructions) to offset on
1565 	 * condition.
1566 	 *
1567 	 * Condition code to mask mapping:
1568 	 *
1569 	 * CC | Description	   | Mask
1570 	 * ------------------------------
1571 	 * 0  | Operands equal	   |	8
1572 	 * 1  | First operand low  |	4
1573 	 * 2  | First operand high |	2
1574 	 * 3  | Unused		   |	1
1575 	 *
1576 	 * For s390x relative branches: ip = ip + off_bytes
1577 	 * For BPF relative branches:	insn = insn + off_insns + 1
1578 	 *
1579 	 * For example for s390x with offset 0 we jump to the branch
1580 	 * instruction itself (loop) and for BPF with offset 0 we
1581 	 * branch to the instruction behind the branch.
1582 	 */
1583 	case BPF_JMP | BPF_JA: /* if (true) */
1584 		mask = 0xf000; /* j */
1585 		goto branch_oc;
1586 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1587 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1588 		mask = 0x2000; /* jh */
1589 		goto branch_ks;
1590 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1591 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1592 		mask = 0x4000; /* jl */
1593 		goto branch_ks;
1594 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1595 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1596 		mask = 0xa000; /* jhe */
1597 		goto branch_ks;
1598 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1599 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1600 		mask = 0xc000; /* jle */
1601 		goto branch_ks;
1602 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1603 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1604 		mask = 0x2000; /* jh */
1605 		goto branch_ku;
1606 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1607 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1608 		mask = 0x4000; /* jl */
1609 		goto branch_ku;
1610 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1611 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1612 		mask = 0xa000; /* jhe */
1613 		goto branch_ku;
1614 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1615 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1616 		mask = 0xc000; /* jle */
1617 		goto branch_ku;
1618 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1619 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1620 		mask = 0x7000; /* jne */
1621 		goto branch_ku;
1622 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1623 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1624 		mask = 0x8000; /* je */
1625 		goto branch_ku;
1626 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1627 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1628 		mask = 0x7000; /* jnz */
1629 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1630 			/* llilf %w1,imm (load zero extend imm) */
1631 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1632 			/* nr %w1,%dst */
1633 			EMIT2(0x1400, REG_W1, dst_reg);
1634 		} else {
1635 			/* lgfi %w1,imm (load sign extend imm) */
1636 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1637 			/* ngr %w1,%dst */
1638 			EMIT4(0xb9800000, REG_W1, dst_reg);
1639 		}
1640 		goto branch_oc;
1641 
1642 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1643 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1644 		mask = 0x2000; /* jh */
1645 		goto branch_xs;
1646 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1647 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1648 		mask = 0x4000; /* jl */
1649 		goto branch_xs;
1650 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1651 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1652 		mask = 0xa000; /* jhe */
1653 		goto branch_xs;
1654 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1655 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1656 		mask = 0xc000; /* jle */
1657 		goto branch_xs;
1658 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1659 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1660 		mask = 0x2000; /* jh */
1661 		goto branch_xu;
1662 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1663 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1664 		mask = 0x4000; /* jl */
1665 		goto branch_xu;
1666 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1667 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1668 		mask = 0xa000; /* jhe */
1669 		goto branch_xu;
1670 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1671 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1672 		mask = 0xc000; /* jle */
1673 		goto branch_xu;
1674 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1675 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1676 		mask = 0x7000; /* jne */
1677 		goto branch_xu;
1678 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1679 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1680 		mask = 0x8000; /* je */
1681 		goto branch_xu;
1682 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1683 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1684 	{
1685 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1686 
1687 		mask = 0x7000; /* jnz */
1688 		/* nrk or ngrk %w1,%dst,%src */
1689 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1690 			  REG_W1, dst_reg, src_reg);
1691 		goto branch_oc;
1692 branch_ks:
1693 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1694 		/* cfi or cgfi %dst,imm */
1695 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1696 			  dst_reg, imm);
1697 		if (!is_first_pass(jit) &&
1698 		    can_use_rel(jit, addrs[i + off + 1])) {
1699 			/* brc mask,off */
1700 			EMIT4_PCREL_RIC(0xa7040000,
1701 					mask >> 12, addrs[i + off + 1]);
1702 		} else {
1703 			/* brcl mask,off */
1704 			EMIT6_PCREL_RILC(0xc0040000,
1705 					 mask >> 12, addrs[i + off + 1]);
1706 		}
1707 		break;
1708 branch_ku:
1709 		/* lgfi %w1,imm (load sign extend imm) */
1710 		src_reg = REG_1;
1711 		EMIT6_IMM(0xc0010000, src_reg, imm);
1712 		goto branch_xu;
1713 branch_xs:
1714 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1715 		if (!is_first_pass(jit) &&
1716 		    can_use_rel(jit, addrs[i + off + 1])) {
1717 			/* crj or cgrj %dst,%src,mask,off */
1718 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1719 				    dst_reg, src_reg, i, off, mask);
1720 		} else {
1721 			/* cr or cgr %dst,%src */
1722 			if (is_jmp32)
1723 				EMIT2(0x1900, dst_reg, src_reg);
1724 			else
1725 				EMIT4(0xb9200000, dst_reg, src_reg);
1726 			/* brcl mask,off */
1727 			EMIT6_PCREL_RILC(0xc0040000,
1728 					 mask >> 12, addrs[i + off + 1]);
1729 		}
1730 		break;
1731 branch_xu:
1732 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1733 		if (!is_first_pass(jit) &&
1734 		    can_use_rel(jit, addrs[i + off + 1])) {
1735 			/* clrj or clgrj %dst,%src,mask,off */
1736 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1737 				    dst_reg, src_reg, i, off, mask);
1738 		} else {
1739 			/* clr or clgr %dst,%src */
1740 			if (is_jmp32)
1741 				EMIT2(0x1500, dst_reg, src_reg);
1742 			else
1743 				EMIT4(0xb9210000, dst_reg, src_reg);
1744 			/* brcl mask,off */
1745 			EMIT6_PCREL_RILC(0xc0040000,
1746 					 mask >> 12, addrs[i + off + 1]);
1747 		}
1748 		break;
1749 branch_oc:
1750 		if (!is_first_pass(jit) &&
1751 		    can_use_rel(jit, addrs[i + off + 1])) {
1752 			/* brc mask,off */
1753 			EMIT4_PCREL_RIC(0xa7040000,
1754 					mask >> 12, addrs[i + off + 1]);
1755 		} else {
1756 			/* brcl mask,off */
1757 			EMIT6_PCREL_RILC(0xc0040000,
1758 					 mask >> 12, addrs[i + off + 1]);
1759 		}
1760 		break;
1761 	}
1762 	default: /* too complex, give up */
1763 		pr_err("Unknown opcode %02x\n", insn->code);
1764 		return -1;
1765 	}
1766 
1767 	if (probe_prg != -1) {
1768 		/*
1769 		 * Handlers of certain exceptions leave psw.addr pointing to
1770 		 * the instruction directly after the failing one. Therefore,
1771 		 * create two exception table entries and also add a nop in
1772 		 * case two probing instructions come directly after each
1773 		 * other.
1774 		 */
1775 		nop_prg = jit->prg;
1776 		/* bcr 0,%0 */
1777 		_EMIT2(0x0700);
1778 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1779 		if (err < 0)
1780 			return err;
1781 	}
1782 
1783 	return insn_count;
1784 }
1785 
1786 /*
1787  * Return whether new i-th instruction address does not violate any invariant
1788  */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1789 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1790 {
1791 	/* On the first pass anything goes */
1792 	if (is_first_pass(jit))
1793 		return true;
1794 
1795 	/* The codegen pass must not change anything */
1796 	if (is_codegen_pass(jit))
1797 		return jit->addrs[i] == jit->prg;
1798 
1799 	/* Passes in between must not increase code size */
1800 	return jit->addrs[i] >= jit->prg;
1801 }
1802 
1803 /*
1804  * Update the address of i-th instruction
1805  */
bpf_set_addr(struct bpf_jit * jit,int i)1806 static int bpf_set_addr(struct bpf_jit *jit, int i)
1807 {
1808 	int delta;
1809 
1810 	if (is_codegen_pass(jit)) {
1811 		delta = jit->prg - jit->addrs[i];
1812 		if (delta < 0)
1813 			bpf_skip(jit, -delta);
1814 	}
1815 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1816 		return -1;
1817 	jit->addrs[i] = jit->prg;
1818 	return 0;
1819 }
1820 
1821 /*
1822  * Compile eBPF program into s390x code
1823  */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1824 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1825 			bool extra_pass, u32 stack_depth)
1826 {
1827 	int i, insn_count, lit32_size, lit64_size;
1828 
1829 	jit->lit32 = jit->lit32_start;
1830 	jit->lit64 = jit->lit64_start;
1831 	jit->prg = 0;
1832 	jit->excnt = 0;
1833 
1834 	bpf_jit_prologue(jit, fp, stack_depth);
1835 	if (bpf_set_addr(jit, 0) < 0)
1836 		return -1;
1837 	for (i = 0; i < fp->len; i += insn_count) {
1838 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1839 		if (insn_count < 0)
1840 			return -1;
1841 		/* Next instruction address */
1842 		if (bpf_set_addr(jit, i + insn_count) < 0)
1843 			return -1;
1844 	}
1845 	bpf_jit_epilogue(jit, stack_depth);
1846 
1847 	lit32_size = jit->lit32 - jit->lit32_start;
1848 	lit64_size = jit->lit64 - jit->lit64_start;
1849 	jit->lit32_start = jit->prg;
1850 	if (lit32_size)
1851 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1852 	jit->lit64_start = jit->lit32_start + lit32_size;
1853 	if (lit64_size)
1854 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1855 	jit->size = jit->lit64_start + lit64_size;
1856 	jit->size_prg = jit->prg;
1857 
1858 	if (WARN_ON_ONCE(fp->aux->extable &&
1859 			 jit->excnt != fp->aux->num_exentries))
1860 		/* Verifier bug - too many entries. */
1861 		return -1;
1862 
1863 	return 0;
1864 }
1865 
bpf_jit_needs_zext(void)1866 bool bpf_jit_needs_zext(void)
1867 {
1868 	return true;
1869 }
1870 
1871 struct s390_jit_data {
1872 	struct bpf_binary_header *header;
1873 	struct bpf_jit ctx;
1874 	int pass;
1875 };
1876 
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)1877 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1878 					       struct bpf_prog *fp)
1879 {
1880 	struct bpf_binary_header *header;
1881 	u32 extable_size;
1882 	u32 code_size;
1883 
1884 	/* We need two entries per insn. */
1885 	fp->aux->num_exentries *= 2;
1886 
1887 	code_size = roundup(jit->size,
1888 			    __alignof__(struct exception_table_entry));
1889 	extable_size = fp->aux->num_exentries *
1890 		sizeof(struct exception_table_entry);
1891 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1892 				      8, jit_fill_hole);
1893 	if (!header)
1894 		return NULL;
1895 	fp->aux->extable = (struct exception_table_entry *)
1896 		(jit->prg_buf + code_size);
1897 	return header;
1898 }
1899 
1900 /*
1901  * Compile eBPF program "fp"
1902  */
bpf_int_jit_compile(struct bpf_prog * fp)1903 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1904 {
1905 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1906 	struct bpf_prog *tmp, *orig_fp = fp;
1907 	struct bpf_binary_header *header;
1908 	struct s390_jit_data *jit_data;
1909 	bool tmp_blinded = false;
1910 	bool extra_pass = false;
1911 	struct bpf_jit jit;
1912 	int pass;
1913 
1914 	if (!fp->jit_requested)
1915 		return orig_fp;
1916 
1917 	tmp = bpf_jit_blind_constants(fp);
1918 	/*
1919 	 * If blinding was requested and we failed during blinding,
1920 	 * we must fall back to the interpreter.
1921 	 */
1922 	if (IS_ERR(tmp))
1923 		return orig_fp;
1924 	if (tmp != fp) {
1925 		tmp_blinded = true;
1926 		fp = tmp;
1927 	}
1928 
1929 	jit_data = fp->aux->jit_data;
1930 	if (!jit_data) {
1931 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1932 		if (!jit_data) {
1933 			fp = orig_fp;
1934 			goto out;
1935 		}
1936 		fp->aux->jit_data = jit_data;
1937 	}
1938 	if (jit_data->ctx.addrs) {
1939 		jit = jit_data->ctx;
1940 		header = jit_data->header;
1941 		extra_pass = true;
1942 		pass = jit_data->pass + 1;
1943 		goto skip_init_ctx;
1944 	}
1945 
1946 	memset(&jit, 0, sizeof(jit));
1947 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1948 	if (jit.addrs == NULL) {
1949 		fp = orig_fp;
1950 		goto free_addrs;
1951 	}
1952 	/*
1953 	 * Three initial passes:
1954 	 *   - 1/2: Determine clobbered registers
1955 	 *   - 3:   Calculate program size and addrs array
1956 	 */
1957 	for (pass = 1; pass <= 3; pass++) {
1958 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1959 			fp = orig_fp;
1960 			goto free_addrs;
1961 		}
1962 	}
1963 	/*
1964 	 * Final pass: Allocate and generate program
1965 	 */
1966 	header = bpf_jit_alloc(&jit, fp);
1967 	if (!header) {
1968 		fp = orig_fp;
1969 		goto free_addrs;
1970 	}
1971 skip_init_ctx:
1972 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1973 		bpf_jit_binary_free(header);
1974 		fp = orig_fp;
1975 		goto free_addrs;
1976 	}
1977 	if (bpf_jit_enable > 1) {
1978 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1979 		print_fn_code(jit.prg_buf, jit.size_prg);
1980 	}
1981 	if (!fp->is_func || extra_pass) {
1982 		bpf_jit_binary_lock_ro(header);
1983 	} else {
1984 		jit_data->header = header;
1985 		jit_data->ctx = jit;
1986 		jit_data->pass = pass;
1987 	}
1988 	fp->bpf_func = (void *) jit.prg_buf;
1989 	fp->jited = 1;
1990 	fp->jited_len = jit.size;
1991 
1992 	if (!fp->is_func || extra_pass) {
1993 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1994 free_addrs:
1995 		kvfree(jit.addrs);
1996 		kfree(jit_data);
1997 		fp->aux->jit_data = NULL;
1998 	}
1999 out:
2000 	if (tmp_blinded)
2001 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
2002 					   tmp : orig_fp);
2003 	return fp;
2004 }
2005 
bpf_jit_supports_kfunc_call(void)2006 bool bpf_jit_supports_kfunc_call(void)
2007 {
2008 	return true;
2009 }
2010 
bpf_jit_supports_far_kfunc_call(void)2011 bool bpf_jit_supports_far_kfunc_call(void)
2012 {
2013 	return true;
2014 }
2015 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2016 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2017 		       void *old_addr, void *new_addr)
2018 {
2019 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2020 	struct {
2021 		u16 opc;
2022 		s32 disp;
2023 	} __packed insn;
2024 	char *ret;
2025 	int err;
2026 
2027 	/* Verify the branch to be patched. */
2028 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2029 	if (err < 0)
2030 		return err;
2031 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2032 		return -EINVAL;
2033 
2034 	if (t == BPF_MOD_JUMP &&
2035 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2036 		/*
2037 		 * The branch already points to the destination,
2038 		 * there is no PLT.
2039 		 */
2040 	} else {
2041 		/* Verify the PLT. */
2042 		plt = ip + (insn.disp << 1);
2043 		err = copy_from_kernel_nofault(&current_plt, plt,
2044 					       sizeof(current_plt));
2045 		if (err < 0)
2046 			return err;
2047 		ret = (char *)ip + 6;
2048 		bpf_jit_plt(&expected_plt, ret, old_addr);
2049 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2050 			return -EINVAL;
2051 		/* Adjust the call address. */
2052 		bpf_jit_plt(&new_plt, ret, new_addr);
2053 		s390_kernel_write(&plt->target, &new_plt.target,
2054 				  sizeof(void *));
2055 	}
2056 
2057 	/* Adjust the mask of the branch. */
2058 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2059 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2060 
2061 	/* Make the new code visible to the other CPUs. */
2062 	text_poke_sync_lock();
2063 
2064 	return 0;
2065 }
2066 
2067 struct bpf_tramp_jit {
2068 	struct bpf_jit common;
2069 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2070 				 * func_addr's original caller
2071 				 */
2072 	int stack_size;		/* Trampoline stack size */
2073 	int backchain_off;	/* Offset of backchain */
2074 	int stack_args_off;	/* Offset of stack arguments for calling
2075 				 * func_addr, has to be at the top
2076 				 */
2077 	int reg_args_off;	/* Offset of register arguments for calling
2078 				 * func_addr
2079 				 */
2080 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2081 				 * (ctx - 16)
2082 				 */
2083 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2084 				 * (ctx - 8)
2085 				 */
2086 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2087 				 * of BPF arguments followed by return value
2088 				 */
2089 	int retval_off;		/* Offset of return value (see above) */
2090 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2091 				 * for __bpf_prog_enter() return value and
2092 				 * func_addr respectively
2093 				 */
2094 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2095 	int tccnt_off;		/* Offset of saved tailcall counter */
2096 	int r14_off;		/* Offset of saved %r14, has to be at the
2097 				 * bottom */
2098 	int do_fexit;		/* do_fexit: label */
2099 };
2100 
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2101 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2102 {
2103 	/* llihf %dst_reg,val_hi */
2104 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2105 	/* oilf %rdst_reg,val_lo */
2106 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2107 }
2108 
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2109 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2110 			   const struct btf_func_model *m,
2111 			   struct bpf_tramp_link *tlink, bool save_ret)
2112 {
2113 	struct bpf_jit *jit = &tjit->common;
2114 	int cookie_off = tjit->run_ctx_off +
2115 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2116 	struct bpf_prog *p = tlink->link.prog;
2117 	int patch;
2118 
2119 	/*
2120 	 * run_ctx.cookie = tlink->cookie;
2121 	 */
2122 
2123 	/* %r0 = tlink->cookie */
2124 	load_imm64(jit, REG_W0, tlink->cookie);
2125 	/* stg %r0,cookie_off(%r15) */
2126 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2127 
2128 	/*
2129 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2130 	 *         goto skip;
2131 	 */
2132 
2133 	/* %r1 = __bpf_prog_enter */
2134 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2135 	/* %r2 = p */
2136 	load_imm64(jit, REG_2, (u64)p);
2137 	/* la %r3,run_ctx_off(%r15) */
2138 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2139 	/* %r1() */
2140 	call_r1(jit);
2141 	/* ltgr %r7,%r2 */
2142 	EMIT4(0xb9020000, REG_7, REG_2);
2143 	/* brcl 8,skip */
2144 	patch = jit->prg;
2145 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2146 
2147 	/*
2148 	 * retval = bpf_func(args, p->insnsi);
2149 	 */
2150 
2151 	/* %r1 = p->bpf_func */
2152 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2153 	/* la %r2,bpf_args_off(%r15) */
2154 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2155 	/* %r3 = p->insnsi */
2156 	if (!p->jited)
2157 		load_imm64(jit, REG_3, (u64)p->insnsi);
2158 	/* %r1() */
2159 	call_r1(jit);
2160 	/* stg %r2,retval_off(%r15) */
2161 	if (save_ret) {
2162 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2163 			return -1;
2164 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2165 			      tjit->retval_off);
2166 	}
2167 
2168 	/* skip: */
2169 	if (jit->prg_buf)
2170 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2171 
2172 	/*
2173 	 * __bpf_prog_exit(p, start, &run_ctx);
2174 	 */
2175 
2176 	/* %r1 = __bpf_prog_exit */
2177 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2178 	/* %r2 = p */
2179 	load_imm64(jit, REG_2, (u64)p);
2180 	/* lgr %r3,%r7 */
2181 	EMIT4(0xb9040000, REG_3, REG_7);
2182 	/* la %r4,run_ctx_off(%r15) */
2183 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2184 	/* %r1() */
2185 	call_r1(jit);
2186 
2187 	return 0;
2188 }
2189 
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2190 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2191 {
2192 	int stack_offset = tjit->stack_size;
2193 
2194 	tjit->stack_size += size;
2195 	return stack_offset;
2196 }
2197 
2198 /* ABI uses %r2 - %r6 for parameter passing. */
2199 #define MAX_NR_REG_ARGS 5
2200 
2201 /* The "L" field of the "mvc" instruction is 8 bits. */
2202 #define MAX_MVC_SIZE 256
2203 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2204 
2205 /* -mfentry generates a 6-byte nop on s390x. */
2206 #define S390X_PATCH_SIZE 6
2207 
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2208 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2209 					 struct bpf_tramp_jit *tjit,
2210 					 const struct btf_func_model *m,
2211 					 u32 flags,
2212 					 struct bpf_tramp_links *tlinks,
2213 					 void *func_addr)
2214 {
2215 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2216 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2217 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2218 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2219 	struct bpf_jit *jit = &tjit->common;
2220 	int arg, bpf_arg_off;
2221 	int i, j;
2222 
2223 	/* Support as many stack arguments as "mvc" instruction can handle. */
2224 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2225 	nr_stack_args = m->nr_args - nr_reg_args;
2226 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2227 		return -ENOTSUPP;
2228 
2229 	/* Return to %r14, since func_addr and %r0 are not available. */
2230 	if (!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK))
2231 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2232 
2233 	/*
2234 	 * Compute how many arguments we need to pass to BPF programs.
2235 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2236 	 * smaller are packed into 1 or 2 registers; larger arguments are
2237 	 * passed via pointers.
2238 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2239 	 * a register; larger arguments are passed via pointers.
2240 	 * We need to deal with this difference.
2241 	 */
2242 	nr_bpf_args = 0;
2243 	for (i = 0; i < m->nr_args; i++) {
2244 		if (m->arg_size[i] <= 8)
2245 			nr_bpf_args += 1;
2246 		else if (m->arg_size[i] <= 16)
2247 			nr_bpf_args += 2;
2248 		else
2249 			return -ENOTSUPP;
2250 	}
2251 
2252 	/*
2253 	 * Calculate the stack layout.
2254 	 */
2255 
2256 	/*
2257 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2258 	 * ABI requires, put our backchain at the end of the allocated memory.
2259 	 */
2260 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2261 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2262 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2263 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2264 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2265 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2266 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2267 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2268 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2269 	tjit->run_ctx_off = alloc_stack(tjit,
2270 					sizeof(struct bpf_tramp_run_ctx));
2271 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2272 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2273 	/*
2274 	 * In accordance with the s390x ABI, the caller has allocated
2275 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2276 	 * backchain, and the rest we can use.
2277 	 */
2278 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2279 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2280 
2281 	/* lgr %r1,%r15 */
2282 	EMIT4(0xb9040000, REG_1, REG_15);
2283 	/* aghi %r15,-stack_size */
2284 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2285 	/* stg %r1,backchain_off(%r15) */
2286 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2287 		      tjit->backchain_off);
2288 	/* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2289 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2290 	       0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2291 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2292 	if (nr_reg_args)
2293 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2294 			      REG_2 + (nr_reg_args - 1), REG_15,
2295 			      tjit->reg_args_off);
2296 	for (i = 0, j = 0; i < m->nr_args; i++) {
2297 		if (i < MAX_NR_REG_ARGS)
2298 			arg = REG_2 + i;
2299 		else
2300 			arg = tjit->orig_stack_args_off +
2301 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2302 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2303 		if (m->arg_size[i] <= 8) {
2304 			if (i < MAX_NR_REG_ARGS)
2305 				/* stg %arg,bpf_arg_off(%r15) */
2306 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2307 					      REG_0, REG_15, bpf_arg_off);
2308 			else
2309 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2310 				_EMIT6(0xd207f000 | bpf_arg_off,
2311 				       0xf000 | arg);
2312 			j += 1;
2313 		} else {
2314 			if (i < MAX_NR_REG_ARGS) {
2315 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2316 				_EMIT6(0xd20ff000 | bpf_arg_off,
2317 				       reg2hex[arg] << 12);
2318 			} else {
2319 				/* lg %r1,arg(%r15) */
2320 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2321 					      REG_15, arg);
2322 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2323 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2324 			}
2325 			j += 2;
2326 		}
2327 	}
2328 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2329 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2330 		      tjit->r7_r8_off);
2331 	/* stg %r14,r14_off(%r15) */
2332 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2333 
2334 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2335 		/*
2336 		 * The ftrace trampoline puts the return address (which is the
2337 		 * address of the original function + S390X_PATCH_SIZE) into
2338 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2339 		 * ftrace_init_nop() for details.
2340 		 */
2341 
2342 		/* lgr %r8,%r0 */
2343 		EMIT4(0xb9040000, REG_8, REG_0);
2344 	} else {
2345 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2346 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2347 	}
2348 
2349 	/*
2350 	 * ip = func_addr;
2351 	 * arg_cnt = m->nr_args;
2352 	 */
2353 
2354 	if (flags & BPF_TRAMP_F_IP_ARG) {
2355 		/* %r0 = func_addr */
2356 		load_imm64(jit, REG_0, (u64)func_addr);
2357 		/* stg %r0,ip_off(%r15) */
2358 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2359 			      tjit->ip_off);
2360 	}
2361 	/* lghi %r0,nr_bpf_args */
2362 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2363 	/* stg %r0,arg_cnt_off(%r15) */
2364 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2365 		      tjit->arg_cnt_off);
2366 
2367 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2368 		/*
2369 		 * __bpf_tramp_enter(im);
2370 		 */
2371 
2372 		/* %r1 = __bpf_tramp_enter */
2373 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2374 		/* %r2 = im */
2375 		load_imm64(jit, REG_2, (u64)im);
2376 		/* %r1() */
2377 		call_r1(jit);
2378 	}
2379 
2380 	for (i = 0; i < fentry->nr_links; i++)
2381 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2382 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2383 			return -EINVAL;
2384 
2385 	if (fmod_ret->nr_links) {
2386 		/*
2387 		 * retval = 0;
2388 		 */
2389 
2390 		/* xc retval_off(8,%r15),retval_off(%r15) */
2391 		_EMIT6(0xd707f000 | tjit->retval_off,
2392 		       0xf000 | tjit->retval_off);
2393 
2394 		for (i = 0; i < fmod_ret->nr_links; i++) {
2395 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2396 				return -EINVAL;
2397 
2398 			/*
2399 			 * if (retval)
2400 			 *         goto do_fexit;
2401 			 */
2402 
2403 			/* ltg %r0,retval_off(%r15) */
2404 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2405 				      tjit->retval_off);
2406 			/* brcl 7,do_fexit */
2407 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2408 		}
2409 	}
2410 
2411 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2412 		/*
2413 		 * retval = func_addr(args);
2414 		 */
2415 
2416 		/* lmg %r2,%rN,reg_args_off(%r15) */
2417 		if (nr_reg_args)
2418 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2419 				      REG_2 + (nr_reg_args - 1), REG_15,
2420 				      tjit->reg_args_off);
2421 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2422 		if (nr_stack_args)
2423 			_EMIT6(0xd200f000 |
2424 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2425 				       tjit->stack_args_off,
2426 			       0xf000 | tjit->orig_stack_args_off);
2427 		/* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2428 		_EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2429 		/* lgr %r1,%r8 */
2430 		EMIT4(0xb9040000, REG_1, REG_8);
2431 		/* %r1() */
2432 		call_r1(jit);
2433 		/* stg %r2,retval_off(%r15) */
2434 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2435 			      tjit->retval_off);
2436 
2437 		im->ip_after_call = jit->prg_buf + jit->prg;
2438 
2439 		/*
2440 		 * The following nop will be patched by bpf_tramp_image_put().
2441 		 */
2442 
2443 		/* brcl 0,im->ip_epilogue */
2444 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2445 	}
2446 
2447 	/* do_fexit: */
2448 	tjit->do_fexit = jit->prg;
2449 	for (i = 0; i < fexit->nr_links; i++)
2450 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2451 			return -EINVAL;
2452 
2453 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2454 		im->ip_epilogue = jit->prg_buf + jit->prg;
2455 
2456 		/*
2457 		 * __bpf_tramp_exit(im);
2458 		 */
2459 
2460 		/* %r1 = __bpf_tramp_exit */
2461 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2462 		/* %r2 = im */
2463 		load_imm64(jit, REG_2, (u64)im);
2464 		/* %r1() */
2465 		call_r1(jit);
2466 	}
2467 
2468 	/* lmg %r2,%rN,reg_args_off(%r15) */
2469 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2470 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2471 			      REG_2 + (nr_reg_args - 1), REG_15,
2472 			      tjit->reg_args_off);
2473 	/* lgr %r1,%r8 */
2474 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2475 		EMIT4(0xb9040000, REG_1, REG_8);
2476 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2477 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2478 		      tjit->r7_r8_off);
2479 	/* lg %r14,r14_off(%r15) */
2480 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2481 	/* lg %r2,retval_off(%r15) */
2482 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2483 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2484 			      tjit->retval_off);
2485 	/* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2486 	_EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2487 	       0xf000 | tjit->tccnt_off);
2488 	/* aghi %r15,stack_size */
2489 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2490 	/* Emit an expoline for the following indirect jump. */
2491 	if (nospec_uses_trampoline())
2492 		emit_expoline(jit);
2493 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2494 		/* br %r14 */
2495 		_EMIT2(0x07fe);
2496 	else
2497 		/* br %r1 */
2498 		_EMIT2(0x07f1);
2499 
2500 	emit_r1_thunk(jit);
2501 
2502 	return 0;
2503 }
2504 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2505 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2506 				void *image_end, const struct btf_func_model *m,
2507 				u32 flags, struct bpf_tramp_links *tlinks,
2508 				void *func_addr)
2509 {
2510 	struct bpf_tramp_jit tjit;
2511 	int ret;
2512 	int i;
2513 
2514 	for (i = 0; i < 2; i++) {
2515 		if (i == 0) {
2516 			/* Compute offsets, check whether the code fits. */
2517 			memset(&tjit, 0, sizeof(tjit));
2518 		} else {
2519 			/* Generate the code. */
2520 			tjit.common.prg = 0;
2521 			tjit.common.prg_buf = image;
2522 		}
2523 		ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2524 						    tlinks, func_addr);
2525 		if (ret < 0)
2526 			return ret;
2527 		if (tjit.common.prg > (char *)image_end - (char *)image)
2528 			/*
2529 			 * Use the same error code as for exceeding
2530 			 * BPF_MAX_TRAMP_LINKS.
2531 			 */
2532 			return -E2BIG;
2533 	}
2534 
2535 	return tjit.common.prg;
2536 }
2537 
bpf_jit_supports_subprog_tailcalls(void)2538 bool bpf_jit_supports_subprog_tailcalls(void)
2539 {
2540 	return true;
2541 }
2542