1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include "bpf_jit.h"
35
36 struct bpf_jit {
37 u32 seen; /* Flags to remember seen eBPF instructions */
38 u32 seen_reg[16]; /* Array to remember which registers are used */
39 u32 *addrs; /* Array with relative instruction addresses */
40 u8 *prg_buf; /* Start of program */
41 int size; /* Size of program and literal pool */
42 int size_prg; /* Size of program */
43 int prg; /* Current position in program */
44 int lit32_start; /* Start of 32-bit literal pool */
45 int lit32; /* Current position in 32-bit literal pool */
46 int lit64_start; /* Start of 64-bit literal pool */
47 int lit64; /* Current position in 64-bit literal pool */
48 int base_ip; /* Base address for literal pool */
49 int exit_ip; /* Address of exit */
50 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
51 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
52 int tail_call_start; /* Tail call start offset */
53 int excnt; /* Number of exception table entries */
54 int prologue_plt_ret; /* Return address for prologue hotpatch PLT */
55 int prologue_plt; /* Start of prologue hotpatch PLT */
56 };
57
58 #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
59 #define SEEN_LITERAL BIT(1) /* code uses literals */
60 #define SEEN_FUNC BIT(2) /* calls C functions */
61 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
62
63 /*
64 * s390 registers
65 */
66 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
67 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
68 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
69 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
70 #define REG_0 REG_W0 /* Register 0 */
71 #define REG_1 REG_W1 /* Register 1 */
72 #define REG_2 BPF_REG_1 /* Register 2 */
73 #define REG_3 BPF_REG_2 /* Register 3 */
74 #define REG_4 BPF_REG_3 /* Register 4 */
75 #define REG_7 BPF_REG_6 /* Register 7 */
76 #define REG_8 BPF_REG_7 /* Register 8 */
77 #define REG_14 BPF_REG_0 /* Register 14 */
78
79 /*
80 * Mapping of BPF registers to s390 registers
81 */
82 static const int reg2hex[] = {
83 /* Return code */
84 [BPF_REG_0] = 14,
85 /* Function parameters */
86 [BPF_REG_1] = 2,
87 [BPF_REG_2] = 3,
88 [BPF_REG_3] = 4,
89 [BPF_REG_4] = 5,
90 [BPF_REG_5] = 6,
91 /* Call saved registers */
92 [BPF_REG_6] = 7,
93 [BPF_REG_7] = 8,
94 [BPF_REG_8] = 9,
95 [BPF_REG_9] = 10,
96 /* BPF stack pointer */
97 [BPF_REG_FP] = 13,
98 /* Register for blinding */
99 [BPF_REG_AX] = 12,
100 /* Work registers for s390x backend */
101 [REG_W0] = 0,
102 [REG_W1] = 1,
103 [REG_L] = 11,
104 [REG_15] = 15,
105 };
106
reg(u32 dst_reg,u32 src_reg)107 static inline u32 reg(u32 dst_reg, u32 src_reg)
108 {
109 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
110 }
111
reg_high(u32 reg)112 static inline u32 reg_high(u32 reg)
113 {
114 return reg2hex[reg] << 4;
115 }
116
reg_set_seen(struct bpf_jit * jit,u32 b1)117 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
118 {
119 u32 r1 = reg2hex[b1];
120
121 if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
122 jit->seen_reg[r1] = 1;
123 }
124
125 #define REG_SET_SEEN(b1) \
126 ({ \
127 reg_set_seen(jit, b1); \
128 })
129
130 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
131
132 /*
133 * EMIT macros for code generation
134 */
135
136 #define _EMIT2(op) \
137 ({ \
138 if (jit->prg_buf) \
139 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
140 jit->prg += 2; \
141 })
142
143 #define EMIT2(op, b1, b2) \
144 ({ \
145 _EMIT2((op) | reg(b1, b2)); \
146 REG_SET_SEEN(b1); \
147 REG_SET_SEEN(b2); \
148 })
149
150 #define _EMIT4(op) \
151 ({ \
152 if (jit->prg_buf) \
153 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
154 jit->prg += 4; \
155 })
156
157 #define EMIT4(op, b1, b2) \
158 ({ \
159 _EMIT4((op) | reg(b1, b2)); \
160 REG_SET_SEEN(b1); \
161 REG_SET_SEEN(b2); \
162 })
163
164 #define EMIT4_RRF(op, b1, b2, b3) \
165 ({ \
166 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
167 REG_SET_SEEN(b1); \
168 REG_SET_SEEN(b2); \
169 REG_SET_SEEN(b3); \
170 })
171
172 #define _EMIT4_DISP(op, disp) \
173 ({ \
174 unsigned int __disp = (disp) & 0xfff; \
175 _EMIT4((op) | __disp); \
176 })
177
178 #define EMIT4_DISP(op, b1, b2, disp) \
179 ({ \
180 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
181 reg_high(b2) << 8, (disp)); \
182 REG_SET_SEEN(b1); \
183 REG_SET_SEEN(b2); \
184 })
185
186 #define EMIT4_IMM(op, b1, imm) \
187 ({ \
188 unsigned int __imm = (imm) & 0xffff; \
189 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
190 REG_SET_SEEN(b1); \
191 })
192
193 #define EMIT4_PCREL(op, pcrel) \
194 ({ \
195 long __pcrel = ((pcrel) >> 1) & 0xffff; \
196 _EMIT4((op) | __pcrel); \
197 })
198
199 #define EMIT4_PCREL_RIC(op, mask, target) \
200 ({ \
201 int __rel = ((target) - jit->prg) / 2; \
202 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
203 })
204
205 #define _EMIT6(op1, op2) \
206 ({ \
207 if (jit->prg_buf) { \
208 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
209 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
210 } \
211 jit->prg += 6; \
212 })
213
214 #define _EMIT6_DISP(op1, op2, disp) \
215 ({ \
216 unsigned int __disp = (disp) & 0xfff; \
217 _EMIT6((op1) | __disp, op2); \
218 })
219
220 #define _EMIT6_DISP_LH(op1, op2, disp) \
221 ({ \
222 u32 _disp = (u32) (disp); \
223 unsigned int __disp_h = _disp & 0xff000; \
224 unsigned int __disp_l = _disp & 0x00fff; \
225 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
226 })
227
228 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
229 ({ \
230 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
231 reg_high(b3) << 8, op2, disp); \
232 REG_SET_SEEN(b1); \
233 REG_SET_SEEN(b2); \
234 REG_SET_SEEN(b3); \
235 })
236
237 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
238 ({ \
239 unsigned int rel = (int)((target) - jit->prg) / 2; \
240 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
241 (op2) | (mask) << 12); \
242 REG_SET_SEEN(b1); \
243 REG_SET_SEEN(b2); \
244 })
245
246 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
247 ({ \
248 unsigned int rel = (int)((target) - jit->prg) / 2; \
249 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
250 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
251 REG_SET_SEEN(b1); \
252 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
253 })
254
255 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
256 ({ \
257 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
258 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
259 REG_SET_SEEN(b1); \
260 REG_SET_SEEN(b2); \
261 })
262
263 #define EMIT6_PCREL_RILB(op, b, target) \
264 ({ \
265 unsigned int rel = (int)((target) - jit->prg) / 2; \
266 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
267 REG_SET_SEEN(b); \
268 })
269
270 #define EMIT6_PCREL_RIL(op, target) \
271 ({ \
272 unsigned int rel = (int)((target) - jit->prg) / 2; \
273 _EMIT6((op) | rel >> 16, rel & 0xffff); \
274 })
275
276 #define EMIT6_PCREL_RILC(op, mask, target) \
277 ({ \
278 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
279 })
280
281 #define _EMIT6_IMM(op, imm) \
282 ({ \
283 unsigned int __imm = (imm); \
284 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
285 })
286
287 #define EMIT6_IMM(op, b1, imm) \
288 ({ \
289 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
290 REG_SET_SEEN(b1); \
291 })
292
293 #define _EMIT_CONST_U32(val) \
294 ({ \
295 unsigned int ret; \
296 ret = jit->lit32; \
297 if (jit->prg_buf) \
298 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
299 jit->lit32 += 4; \
300 ret; \
301 })
302
303 #define EMIT_CONST_U32(val) \
304 ({ \
305 jit->seen |= SEEN_LITERAL; \
306 _EMIT_CONST_U32(val) - jit->base_ip; \
307 })
308
309 #define _EMIT_CONST_U64(val) \
310 ({ \
311 unsigned int ret; \
312 ret = jit->lit64; \
313 if (jit->prg_buf) \
314 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
315 jit->lit64 += 8; \
316 ret; \
317 })
318
319 #define EMIT_CONST_U64(val) \
320 ({ \
321 jit->seen |= SEEN_LITERAL; \
322 _EMIT_CONST_U64(val) - jit->base_ip; \
323 })
324
325 #define EMIT_ZERO(b1) \
326 ({ \
327 if (!fp->aux->verifier_zext) { \
328 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
329 EMIT4(0xb9160000, b1, b1); \
330 REG_SET_SEEN(b1); \
331 } \
332 })
333
334 /*
335 * Return whether this is the first pass. The first pass is special, since we
336 * don't know any sizes yet, and thus must be conservative.
337 */
is_first_pass(struct bpf_jit * jit)338 static bool is_first_pass(struct bpf_jit *jit)
339 {
340 return jit->size == 0;
341 }
342
343 /*
344 * Return whether this is the code generation pass. The code generation pass is
345 * special, since we should change as little as possible.
346 */
is_codegen_pass(struct bpf_jit * jit)347 static bool is_codegen_pass(struct bpf_jit *jit)
348 {
349 return jit->prg_buf;
350 }
351
352 /*
353 * Return whether "rel" can be encoded as a short PC-relative offset
354 */
is_valid_rel(int rel)355 static bool is_valid_rel(int rel)
356 {
357 return rel >= -65536 && rel <= 65534;
358 }
359
360 /*
361 * Return whether "off" can be reached using a short PC-relative offset
362 */
can_use_rel(struct bpf_jit * jit,int off)363 static bool can_use_rel(struct bpf_jit *jit, int off)
364 {
365 return is_valid_rel(off - jit->prg);
366 }
367
368 /*
369 * Return whether given displacement can be encoded using
370 * Long-Displacement Facility
371 */
is_valid_ldisp(int disp)372 static bool is_valid_ldisp(int disp)
373 {
374 return disp >= -524288 && disp <= 524287;
375 }
376
377 /*
378 * Return whether the next 32-bit literal pool entry can be referenced using
379 * Long-Displacement Facility
380 */
can_use_ldisp_for_lit32(struct bpf_jit * jit)381 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
382 {
383 return is_valid_ldisp(jit->lit32 - jit->base_ip);
384 }
385
386 /*
387 * Return whether the next 64-bit literal pool entry can be referenced using
388 * Long-Displacement Facility
389 */
can_use_ldisp_for_lit64(struct bpf_jit * jit)390 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
391 {
392 return is_valid_ldisp(jit->lit64 - jit->base_ip);
393 }
394
395 /*
396 * Fill whole space with illegal instructions
397 */
jit_fill_hole(void * area,unsigned int size)398 static void jit_fill_hole(void *area, unsigned int size)
399 {
400 memset(area, 0, size);
401 }
402
403 /*
404 * Save registers from "rs" (register start) to "re" (register end) on stack
405 */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)406 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
407 {
408 u32 off = STK_OFF_R6 + (rs - 6) * 8;
409
410 if (rs == re)
411 /* stg %rs,off(%r15) */
412 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
413 else
414 /* stmg %rs,%re,off(%r15) */
415 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
416 }
417
418 /*
419 * Restore registers from "rs" (register start) to "re" (register end) on stack
420 */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)421 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
422 {
423 u32 off = STK_OFF_R6 + (rs - 6) * 8;
424
425 if (jit->seen & SEEN_STACK)
426 off += STK_OFF + stack_depth;
427
428 if (rs == re)
429 /* lg %rs,off(%r15) */
430 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
431 else
432 /* lmg %rs,%re,off(%r15) */
433 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
434 }
435
436 /*
437 * Return first seen register (from start)
438 */
get_start(struct bpf_jit * jit,int start)439 static int get_start(struct bpf_jit *jit, int start)
440 {
441 int i;
442
443 for (i = start; i <= 15; i++) {
444 if (jit->seen_reg[i])
445 return i;
446 }
447 return 0;
448 }
449
450 /*
451 * Return last seen register (from start) (gap >= 2)
452 */
get_end(struct bpf_jit * jit,int start)453 static int get_end(struct bpf_jit *jit, int start)
454 {
455 int i;
456
457 for (i = start; i < 15; i++) {
458 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
459 return i - 1;
460 }
461 return jit->seen_reg[15] ? 15 : 14;
462 }
463
464 #define REGS_SAVE 1
465 #define REGS_RESTORE 0
466 /*
467 * Save and restore clobbered registers (6-15) on stack.
468 * We save/restore registers in chunks with gap >= 2 registers.
469 */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)470 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
471 {
472 const int last = 15, save_restore_size = 6;
473 int re = 6, rs;
474
475 if (is_first_pass(jit)) {
476 /*
477 * We don't know yet which registers are used. Reserve space
478 * conservatively.
479 */
480 jit->prg += (last - re + 1) * save_restore_size;
481 return;
482 }
483
484 do {
485 rs = get_start(jit, re);
486 if (!rs)
487 break;
488 re = get_end(jit, rs + 1);
489 if (op == REGS_SAVE)
490 save_regs(jit, rs, re);
491 else
492 restore_regs(jit, rs, re, stack_depth);
493 re++;
494 } while (re <= last);
495 }
496
bpf_skip(struct bpf_jit * jit,int size)497 static void bpf_skip(struct bpf_jit *jit, int size)
498 {
499 if (size >= 6 && !is_valid_rel(size)) {
500 /* brcl 0xf,size */
501 EMIT6_PCREL_RIL(0xc0f4000000, size);
502 size -= 6;
503 } else if (size >= 4 && is_valid_rel(size)) {
504 /* brc 0xf,size */
505 EMIT4_PCREL(0xa7f40000, size);
506 size -= 4;
507 }
508 while (size >= 2) {
509 /* bcr 0,%0 */
510 _EMIT2(0x0700);
511 size -= 2;
512 }
513 }
514
515 /*
516 * PLT for hotpatchable calls. The calling convention is the same as for the
517 * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
518 */
519 struct bpf_plt {
520 char code[16];
521 void *ret;
522 void *target;
523 } __packed;
524 extern const struct bpf_plt bpf_plt;
525 asm(
526 ".pushsection .rodata\n"
527 " .balign 8\n"
528 "bpf_plt:\n"
529 " lgrl %r0,bpf_plt_ret\n"
530 " lgrl %r1,bpf_plt_target\n"
531 " br %r1\n"
532 " .balign 8\n"
533 "bpf_plt_ret: .quad 0\n"
534 "bpf_plt_target: .quad 0\n"
535 " .popsection\n"
536 );
537
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)538 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
539 {
540 memcpy(plt, &bpf_plt, sizeof(*plt));
541 plt->ret = ret;
542 /*
543 * (target == NULL) implies that the branch to this PLT entry was
544 * patched and became a no-op. However, some CPU could have jumped
545 * to this PLT entry before patching and may be still executing it.
546 *
547 * Since the intention in this case is to make the PLT entry a no-op,
548 * make the target point to the return label instead of NULL.
549 */
550 plt->target = target ?: ret;
551 }
552
553 /*
554 * Emit function prologue
555 *
556 * Save registers and create stack frame if necessary.
557 * See stack frame layout description in "bpf_jit.h"!
558 */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)559 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
560 u32 stack_depth)
561 {
562 /* No-op for hotpatching */
563 /* brcl 0,prologue_plt */
564 EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
565 jit->prologue_plt_ret = jit->prg;
566
567 if (fp->aux->func_idx == 0) {
568 /* Initialize the tail call counter in the main program. */
569 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
570 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
571 } else {
572 /*
573 * Skip the tail call counter initialization in subprograms.
574 * Insert nops in order to have tail_call_start at a
575 * predictable offset.
576 */
577 bpf_skip(jit, 6);
578 }
579 /* Tail calls have to skip above initialization */
580 jit->tail_call_start = jit->prg;
581 /* Save registers */
582 save_restore_regs(jit, REGS_SAVE, stack_depth);
583 /* Setup literal pool */
584 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
585 if (!is_first_pass(jit) &&
586 is_valid_ldisp(jit->size - (jit->prg + 2))) {
587 /* basr %l,0 */
588 EMIT2(0x0d00, REG_L, REG_0);
589 jit->base_ip = jit->prg;
590 } else {
591 /* larl %l,lit32_start */
592 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
593 jit->base_ip = jit->lit32_start;
594 }
595 }
596 /* Setup stack and backchain */
597 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
598 /* lgr %w1,%r15 (backchain) */
599 EMIT4(0xb9040000, REG_W1, REG_15);
600 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
601 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
602 /* aghi %r15,-STK_OFF */
603 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
604 /* stg %w1,152(%r15) (backchain) */
605 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
606 REG_15, 152);
607 }
608 }
609
610 /*
611 * Emit an expoline for a jump that follows
612 */
emit_expoline(struct bpf_jit * jit)613 static void emit_expoline(struct bpf_jit *jit)
614 {
615 /* exrl %r0,.+10 */
616 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
617 /* j . */
618 EMIT4_PCREL(0xa7f40000, 0);
619 }
620
621 /*
622 * Emit __s390_indirect_jump_r1 thunk if necessary
623 */
emit_r1_thunk(struct bpf_jit * jit)624 static void emit_r1_thunk(struct bpf_jit *jit)
625 {
626 if (nospec_uses_trampoline()) {
627 jit->r1_thunk_ip = jit->prg;
628 emit_expoline(jit);
629 /* br %r1 */
630 _EMIT2(0x07f1);
631 }
632 }
633
634 /*
635 * Call r1 either directly or via __s390_indirect_jump_r1 thunk
636 */
call_r1(struct bpf_jit * jit)637 static void call_r1(struct bpf_jit *jit)
638 {
639 if (nospec_uses_trampoline())
640 /* brasl %r14,__s390_indirect_jump_r1 */
641 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
642 else
643 /* basr %r14,%r1 */
644 EMIT2(0x0d00, REG_14, REG_1);
645 }
646
647 /*
648 * Function epilogue
649 */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)650 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
651 {
652 jit->exit_ip = jit->prg;
653 /* Load exit code: lgr %r2,%b0 */
654 EMIT4(0xb9040000, REG_2, BPF_REG_0);
655 /* Restore registers */
656 save_restore_regs(jit, REGS_RESTORE, stack_depth);
657 if (nospec_uses_trampoline()) {
658 jit->r14_thunk_ip = jit->prg;
659 /* Generate __s390_indirect_jump_r14 thunk */
660 emit_expoline(jit);
661 }
662 /* br %r14 */
663 _EMIT2(0x07fe);
664
665 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
666 emit_r1_thunk(jit);
667
668 jit->prg = ALIGN(jit->prg, 8);
669 jit->prologue_plt = jit->prg;
670 if (jit->prg_buf)
671 bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
672 jit->prg_buf + jit->prologue_plt_ret, NULL);
673 jit->prg += sizeof(struct bpf_plt);
674 }
675
get_probe_mem_regno(const u8 * insn)676 static int get_probe_mem_regno(const u8 *insn)
677 {
678 /*
679 * insn must point to llgc, llgh, llgf or lg, which have destination
680 * register at the same position.
681 */
682 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
683 return -1;
684 if (insn[5] != 0x90 && /* llgc */
685 insn[5] != 0x91 && /* llgh */
686 insn[5] != 0x16 && /* llgf */
687 insn[5] != 0x04) /* lg */
688 return -1;
689 return insn[1] >> 4;
690 }
691
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)692 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
693 {
694 regs->psw.addr = extable_fixup(x);
695 regs->gprs[x->data] = 0;
696 return true;
697 }
698
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)699 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
700 int probe_prg, int nop_prg)
701 {
702 struct exception_table_entry *ex;
703 int reg, prg;
704 s64 delta;
705 u8 *insn;
706 int i;
707
708 if (!fp->aux->extable)
709 /* Do nothing during early JIT passes. */
710 return 0;
711 insn = jit->prg_buf + probe_prg;
712 reg = get_probe_mem_regno(insn);
713 if (WARN_ON_ONCE(reg < 0))
714 /* JIT bug - unexpected probe instruction. */
715 return -1;
716 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
717 /* JIT bug - gap between probe and nop instructions. */
718 return -1;
719 for (i = 0; i < 2; i++) {
720 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
721 /* Verifier bug - not enough entries. */
722 return -1;
723 ex = &fp->aux->extable[jit->excnt];
724 /* Add extable entries for probe and nop instructions. */
725 prg = i == 0 ? probe_prg : nop_prg;
726 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
727 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
728 /* JIT bug - code and extable must be close. */
729 return -1;
730 ex->insn = delta;
731 /*
732 * Always land on the nop. Note that extable infrastructure
733 * ignores fixup field, it is handled by ex_handler_bpf().
734 */
735 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
736 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
737 /* JIT bug - landing pad and extable must be close. */
738 return -1;
739 ex->fixup = delta;
740 ex->type = EX_TYPE_BPF;
741 ex->data = reg;
742 jit->excnt++;
743 }
744 return 0;
745 }
746
747 /*
748 * Sign-extend the register if necessary
749 */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)750 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
751 {
752 if (!(flags & BTF_FMODEL_SIGNED_ARG))
753 return 0;
754
755 switch (size) {
756 case 1:
757 /* lgbr %r,%r */
758 EMIT4(0xb9060000, r, r);
759 return 0;
760 case 2:
761 /* lghr %r,%r */
762 EMIT4(0xb9070000, r, r);
763 return 0;
764 case 4:
765 /* lgfr %r,%r */
766 EMIT4(0xb9140000, r, r);
767 return 0;
768 case 8:
769 return 0;
770 default:
771 return -1;
772 }
773 }
774
775 /*
776 * Compile one eBPF instruction into s390x code
777 *
778 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
779 * stack space for the large switch statement.
780 */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)781 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
782 int i, bool extra_pass, u32 stack_depth)
783 {
784 struct bpf_insn *insn = &fp->insnsi[i];
785 u32 dst_reg = insn->dst_reg;
786 u32 src_reg = insn->src_reg;
787 int last, insn_count = 1;
788 u32 *addrs = jit->addrs;
789 s32 imm = insn->imm;
790 s16 off = insn->off;
791 int probe_prg = -1;
792 unsigned int mask;
793 int nop_prg;
794 int err;
795
796 if (BPF_CLASS(insn->code) == BPF_LDX &&
797 BPF_MODE(insn->code) == BPF_PROBE_MEM)
798 probe_prg = jit->prg;
799
800 switch (insn->code) {
801 /*
802 * BPF_MOV
803 */
804 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
805 /* llgfr %dst,%src */
806 EMIT4(0xb9160000, dst_reg, src_reg);
807 if (insn_is_zext(&insn[1]))
808 insn_count = 2;
809 break;
810 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
811 /* lgr %dst,%src */
812 EMIT4(0xb9040000, dst_reg, src_reg);
813 break;
814 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
815 /* llilf %dst,imm */
816 EMIT6_IMM(0xc00f0000, dst_reg, imm);
817 if (insn_is_zext(&insn[1]))
818 insn_count = 2;
819 break;
820 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
821 /* lgfi %dst,imm */
822 EMIT6_IMM(0xc0010000, dst_reg, imm);
823 break;
824 /*
825 * BPF_LD 64
826 */
827 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
828 {
829 /* 16 byte instruction that uses two 'struct bpf_insn' */
830 u64 imm64;
831
832 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
833 /* lgrl %dst,imm */
834 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
835 insn_count = 2;
836 break;
837 }
838 /*
839 * BPF_ADD
840 */
841 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
842 /* ar %dst,%src */
843 EMIT2(0x1a00, dst_reg, src_reg);
844 EMIT_ZERO(dst_reg);
845 break;
846 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
847 /* agr %dst,%src */
848 EMIT4(0xb9080000, dst_reg, src_reg);
849 break;
850 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
851 if (imm != 0) {
852 /* alfi %dst,imm */
853 EMIT6_IMM(0xc20b0000, dst_reg, imm);
854 }
855 EMIT_ZERO(dst_reg);
856 break;
857 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
858 if (!imm)
859 break;
860 /* agfi %dst,imm */
861 EMIT6_IMM(0xc2080000, dst_reg, imm);
862 break;
863 /*
864 * BPF_SUB
865 */
866 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
867 /* sr %dst,%src */
868 EMIT2(0x1b00, dst_reg, src_reg);
869 EMIT_ZERO(dst_reg);
870 break;
871 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
872 /* sgr %dst,%src */
873 EMIT4(0xb9090000, dst_reg, src_reg);
874 break;
875 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
876 if (imm != 0) {
877 /* alfi %dst,-imm */
878 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
879 }
880 EMIT_ZERO(dst_reg);
881 break;
882 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
883 if (!imm)
884 break;
885 if (imm == -0x80000000) {
886 /* algfi %dst,0x80000000 */
887 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
888 } else {
889 /* agfi %dst,-imm */
890 EMIT6_IMM(0xc2080000, dst_reg, -imm);
891 }
892 break;
893 /*
894 * BPF_MUL
895 */
896 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
897 /* msr %dst,%src */
898 EMIT4(0xb2520000, dst_reg, src_reg);
899 EMIT_ZERO(dst_reg);
900 break;
901 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
902 /* msgr %dst,%src */
903 EMIT4(0xb90c0000, dst_reg, src_reg);
904 break;
905 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
906 if (imm != 1) {
907 /* msfi %r5,imm */
908 EMIT6_IMM(0xc2010000, dst_reg, imm);
909 }
910 EMIT_ZERO(dst_reg);
911 break;
912 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
913 if (imm == 1)
914 break;
915 /* msgfi %dst,imm */
916 EMIT6_IMM(0xc2000000, dst_reg, imm);
917 break;
918 /*
919 * BPF_DIV / BPF_MOD
920 */
921 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
922 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
923 {
924 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
925
926 /* lhi %w0,0 */
927 EMIT4_IMM(0xa7080000, REG_W0, 0);
928 /* lr %w1,%dst */
929 EMIT2(0x1800, REG_W1, dst_reg);
930 /* dlr %w0,%src */
931 EMIT4(0xb9970000, REG_W0, src_reg);
932 /* llgfr %dst,%rc */
933 EMIT4(0xb9160000, dst_reg, rc_reg);
934 if (insn_is_zext(&insn[1]))
935 insn_count = 2;
936 break;
937 }
938 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
939 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
940 {
941 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
942
943 /* lghi %w0,0 */
944 EMIT4_IMM(0xa7090000, REG_W0, 0);
945 /* lgr %w1,%dst */
946 EMIT4(0xb9040000, REG_W1, dst_reg);
947 /* dlgr %w0,%dst */
948 EMIT4(0xb9870000, REG_W0, src_reg);
949 /* lgr %dst,%rc */
950 EMIT4(0xb9040000, dst_reg, rc_reg);
951 break;
952 }
953 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
954 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
955 {
956 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
957
958 if (imm == 1) {
959 if (BPF_OP(insn->code) == BPF_MOD)
960 /* lhgi %dst,0 */
961 EMIT4_IMM(0xa7090000, dst_reg, 0);
962 else
963 EMIT_ZERO(dst_reg);
964 break;
965 }
966 /* lhi %w0,0 */
967 EMIT4_IMM(0xa7080000, REG_W0, 0);
968 /* lr %w1,%dst */
969 EMIT2(0x1800, REG_W1, dst_reg);
970 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
971 /* dl %w0,<d(imm)>(%l) */
972 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
973 EMIT_CONST_U32(imm));
974 } else {
975 /* lgfrl %dst,imm */
976 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
977 _EMIT_CONST_U32(imm));
978 jit->seen |= SEEN_LITERAL;
979 /* dlr %w0,%dst */
980 EMIT4(0xb9970000, REG_W0, dst_reg);
981 }
982 /* llgfr %dst,%rc */
983 EMIT4(0xb9160000, dst_reg, rc_reg);
984 if (insn_is_zext(&insn[1]))
985 insn_count = 2;
986 break;
987 }
988 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
989 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
990 {
991 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
992
993 if (imm == 1) {
994 if (BPF_OP(insn->code) == BPF_MOD)
995 /* lhgi %dst,0 */
996 EMIT4_IMM(0xa7090000, dst_reg, 0);
997 break;
998 }
999 /* lghi %w0,0 */
1000 EMIT4_IMM(0xa7090000, REG_W0, 0);
1001 /* lgr %w1,%dst */
1002 EMIT4(0xb9040000, REG_W1, dst_reg);
1003 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1004 /* dlg %w0,<d(imm)>(%l) */
1005 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
1006 EMIT_CONST_U64(imm));
1007 } else {
1008 /* lgrl %dst,imm */
1009 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1010 _EMIT_CONST_U64(imm));
1011 jit->seen |= SEEN_LITERAL;
1012 /* dlgr %w0,%dst */
1013 EMIT4(0xb9870000, REG_W0, dst_reg);
1014 }
1015 /* lgr %dst,%rc */
1016 EMIT4(0xb9040000, dst_reg, rc_reg);
1017 break;
1018 }
1019 /*
1020 * BPF_AND
1021 */
1022 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1023 /* nr %dst,%src */
1024 EMIT2(0x1400, dst_reg, src_reg);
1025 EMIT_ZERO(dst_reg);
1026 break;
1027 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1028 /* ngr %dst,%src */
1029 EMIT4(0xb9800000, dst_reg, src_reg);
1030 break;
1031 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1032 /* nilf %dst,imm */
1033 EMIT6_IMM(0xc00b0000, dst_reg, imm);
1034 EMIT_ZERO(dst_reg);
1035 break;
1036 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1037 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1038 /* ng %dst,<d(imm)>(%l) */
1039 EMIT6_DISP_LH(0xe3000000, 0x0080,
1040 dst_reg, REG_0, REG_L,
1041 EMIT_CONST_U64(imm));
1042 } else {
1043 /* lgrl %w0,imm */
1044 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1045 _EMIT_CONST_U64(imm));
1046 jit->seen |= SEEN_LITERAL;
1047 /* ngr %dst,%w0 */
1048 EMIT4(0xb9800000, dst_reg, REG_W0);
1049 }
1050 break;
1051 /*
1052 * BPF_OR
1053 */
1054 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1055 /* or %dst,%src */
1056 EMIT2(0x1600, dst_reg, src_reg);
1057 EMIT_ZERO(dst_reg);
1058 break;
1059 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1060 /* ogr %dst,%src */
1061 EMIT4(0xb9810000, dst_reg, src_reg);
1062 break;
1063 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1064 /* oilf %dst,imm */
1065 EMIT6_IMM(0xc00d0000, dst_reg, imm);
1066 EMIT_ZERO(dst_reg);
1067 break;
1068 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1069 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1070 /* og %dst,<d(imm)>(%l) */
1071 EMIT6_DISP_LH(0xe3000000, 0x0081,
1072 dst_reg, REG_0, REG_L,
1073 EMIT_CONST_U64(imm));
1074 } else {
1075 /* lgrl %w0,imm */
1076 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1077 _EMIT_CONST_U64(imm));
1078 jit->seen |= SEEN_LITERAL;
1079 /* ogr %dst,%w0 */
1080 EMIT4(0xb9810000, dst_reg, REG_W0);
1081 }
1082 break;
1083 /*
1084 * BPF_XOR
1085 */
1086 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1087 /* xr %dst,%src */
1088 EMIT2(0x1700, dst_reg, src_reg);
1089 EMIT_ZERO(dst_reg);
1090 break;
1091 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1092 /* xgr %dst,%src */
1093 EMIT4(0xb9820000, dst_reg, src_reg);
1094 break;
1095 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1096 if (imm != 0) {
1097 /* xilf %dst,imm */
1098 EMIT6_IMM(0xc0070000, dst_reg, imm);
1099 }
1100 EMIT_ZERO(dst_reg);
1101 break;
1102 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1103 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1104 /* xg %dst,<d(imm)>(%l) */
1105 EMIT6_DISP_LH(0xe3000000, 0x0082,
1106 dst_reg, REG_0, REG_L,
1107 EMIT_CONST_U64(imm));
1108 } else {
1109 /* lgrl %w0,imm */
1110 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1111 _EMIT_CONST_U64(imm));
1112 jit->seen |= SEEN_LITERAL;
1113 /* xgr %dst,%w0 */
1114 EMIT4(0xb9820000, dst_reg, REG_W0);
1115 }
1116 break;
1117 /*
1118 * BPF_LSH
1119 */
1120 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1121 /* sll %dst,0(%src) */
1122 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1123 EMIT_ZERO(dst_reg);
1124 break;
1125 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1126 /* sllg %dst,%dst,0(%src) */
1127 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1128 break;
1129 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1130 if (imm != 0) {
1131 /* sll %dst,imm(%r0) */
1132 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1133 }
1134 EMIT_ZERO(dst_reg);
1135 break;
1136 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1137 if (imm == 0)
1138 break;
1139 /* sllg %dst,%dst,imm(%r0) */
1140 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1141 break;
1142 /*
1143 * BPF_RSH
1144 */
1145 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1146 /* srl %dst,0(%src) */
1147 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1148 EMIT_ZERO(dst_reg);
1149 break;
1150 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1151 /* srlg %dst,%dst,0(%src) */
1152 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1153 break;
1154 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1155 if (imm != 0) {
1156 /* srl %dst,imm(%r0) */
1157 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1158 }
1159 EMIT_ZERO(dst_reg);
1160 break;
1161 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1162 if (imm == 0)
1163 break;
1164 /* srlg %dst,%dst,imm(%r0) */
1165 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1166 break;
1167 /*
1168 * BPF_ARSH
1169 */
1170 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1171 /* sra %dst,%dst,0(%src) */
1172 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1173 EMIT_ZERO(dst_reg);
1174 break;
1175 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1176 /* srag %dst,%dst,0(%src) */
1177 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1178 break;
1179 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1180 if (imm != 0) {
1181 /* sra %dst,imm(%r0) */
1182 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1183 }
1184 EMIT_ZERO(dst_reg);
1185 break;
1186 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1187 if (imm == 0)
1188 break;
1189 /* srag %dst,%dst,imm(%r0) */
1190 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1191 break;
1192 /*
1193 * BPF_NEG
1194 */
1195 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1196 /* lcr %dst,%dst */
1197 EMIT2(0x1300, dst_reg, dst_reg);
1198 EMIT_ZERO(dst_reg);
1199 break;
1200 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1201 /* lcgr %dst,%dst */
1202 EMIT4(0xb9030000, dst_reg, dst_reg);
1203 break;
1204 /*
1205 * BPF_FROM_BE/LE
1206 */
1207 case BPF_ALU | BPF_END | BPF_FROM_BE:
1208 /* s390 is big endian, therefore only clear high order bytes */
1209 switch (imm) {
1210 case 16: /* dst = (u16) cpu_to_be16(dst) */
1211 /* llghr %dst,%dst */
1212 EMIT4(0xb9850000, dst_reg, dst_reg);
1213 if (insn_is_zext(&insn[1]))
1214 insn_count = 2;
1215 break;
1216 case 32: /* dst = (u32) cpu_to_be32(dst) */
1217 if (!fp->aux->verifier_zext)
1218 /* llgfr %dst,%dst */
1219 EMIT4(0xb9160000, dst_reg, dst_reg);
1220 break;
1221 case 64: /* dst = (u64) cpu_to_be64(dst) */
1222 break;
1223 }
1224 break;
1225 case BPF_ALU | BPF_END | BPF_FROM_LE:
1226 switch (imm) {
1227 case 16: /* dst = (u16) cpu_to_le16(dst) */
1228 /* lrvr %dst,%dst */
1229 EMIT4(0xb91f0000, dst_reg, dst_reg);
1230 /* srl %dst,16(%r0) */
1231 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1232 /* llghr %dst,%dst */
1233 EMIT4(0xb9850000, dst_reg, dst_reg);
1234 if (insn_is_zext(&insn[1]))
1235 insn_count = 2;
1236 break;
1237 case 32: /* dst = (u32) cpu_to_le32(dst) */
1238 /* lrvr %dst,%dst */
1239 EMIT4(0xb91f0000, dst_reg, dst_reg);
1240 if (!fp->aux->verifier_zext)
1241 /* llgfr %dst,%dst */
1242 EMIT4(0xb9160000, dst_reg, dst_reg);
1243 break;
1244 case 64: /* dst = (u64) cpu_to_le64(dst) */
1245 /* lrvgr %dst,%dst */
1246 EMIT4(0xb90f0000, dst_reg, dst_reg);
1247 break;
1248 }
1249 break;
1250 /*
1251 * BPF_NOSPEC (speculation barrier)
1252 */
1253 case BPF_ST | BPF_NOSPEC:
1254 break;
1255 /*
1256 * BPF_ST(X)
1257 */
1258 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1259 /* stcy %src,off(%dst) */
1260 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1261 jit->seen |= SEEN_MEM;
1262 break;
1263 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1264 /* sthy %src,off(%dst) */
1265 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1266 jit->seen |= SEEN_MEM;
1267 break;
1268 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1269 /* sty %src,off(%dst) */
1270 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1271 jit->seen |= SEEN_MEM;
1272 break;
1273 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1274 /* stg %src,off(%dst) */
1275 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1276 jit->seen |= SEEN_MEM;
1277 break;
1278 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1279 /* lhi %w0,imm */
1280 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1281 /* stcy %w0,off(dst) */
1282 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1283 jit->seen |= SEEN_MEM;
1284 break;
1285 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1286 /* lhi %w0,imm */
1287 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1288 /* sthy %w0,off(dst) */
1289 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1290 jit->seen |= SEEN_MEM;
1291 break;
1292 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1293 /* llilf %w0,imm */
1294 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1295 /* sty %w0,off(%dst) */
1296 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1297 jit->seen |= SEEN_MEM;
1298 break;
1299 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1300 /* lgfi %w0,imm */
1301 EMIT6_IMM(0xc0010000, REG_W0, imm);
1302 /* stg %w0,off(%dst) */
1303 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1304 jit->seen |= SEEN_MEM;
1305 break;
1306 /*
1307 * BPF_ATOMIC
1308 */
1309 case BPF_STX | BPF_ATOMIC | BPF_DW:
1310 case BPF_STX | BPF_ATOMIC | BPF_W:
1311 {
1312 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1313
1314 switch (insn->imm) {
1315 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1316 #define EMIT_ATOMIC(op32, op64) do { \
1317 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1318 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1319 src_reg, dst_reg, off); \
1320 if (insn->imm & BPF_FETCH) { \
1321 /* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */ \
1322 _EMIT2(0x07e0); \
1323 if (is32) \
1324 EMIT_ZERO(src_reg); \
1325 } \
1326 } while (0)
1327 case BPF_ADD:
1328 case BPF_ADD | BPF_FETCH:
1329 /* {laal|laalg} */
1330 EMIT_ATOMIC(0x00fa, 0x00ea);
1331 break;
1332 case BPF_AND:
1333 case BPF_AND | BPF_FETCH:
1334 /* {lan|lang} */
1335 EMIT_ATOMIC(0x00f4, 0x00e4);
1336 break;
1337 case BPF_OR:
1338 case BPF_OR | BPF_FETCH:
1339 /* {lao|laog} */
1340 EMIT_ATOMIC(0x00f6, 0x00e6);
1341 break;
1342 case BPF_XOR:
1343 case BPF_XOR | BPF_FETCH:
1344 /* {lax|laxg} */
1345 EMIT_ATOMIC(0x00f7, 0x00e7);
1346 break;
1347 #undef EMIT_ATOMIC
1348 case BPF_XCHG:
1349 /* {ly|lg} %w0,off(%dst) */
1350 EMIT6_DISP_LH(0xe3000000,
1351 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1352 dst_reg, off);
1353 /* 0: {csy|csg} %w0,%src,off(%dst) */
1354 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1355 REG_W0, src_reg, dst_reg, off);
1356 /* brc 4,0b */
1357 EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1358 /* {llgfr|lgr} %src,%w0 */
1359 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1360 if (is32 && insn_is_zext(&insn[1]))
1361 insn_count = 2;
1362 break;
1363 case BPF_CMPXCHG:
1364 /* 0: {csy|csg} %b0,%src,off(%dst) */
1365 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1366 BPF_REG_0, src_reg, dst_reg, off);
1367 break;
1368 default:
1369 pr_err("Unknown atomic operation %02x\n", insn->imm);
1370 return -1;
1371 }
1372
1373 jit->seen |= SEEN_MEM;
1374 break;
1375 }
1376 /*
1377 * BPF_LDX
1378 */
1379 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1380 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1381 /* llgc %dst,0(off,%src) */
1382 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1383 jit->seen |= SEEN_MEM;
1384 if (insn_is_zext(&insn[1]))
1385 insn_count = 2;
1386 break;
1387 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1388 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1389 /* llgh %dst,0(off,%src) */
1390 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1391 jit->seen |= SEEN_MEM;
1392 if (insn_is_zext(&insn[1]))
1393 insn_count = 2;
1394 break;
1395 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1396 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1397 /* llgf %dst,off(%src) */
1398 jit->seen |= SEEN_MEM;
1399 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1400 if (insn_is_zext(&insn[1]))
1401 insn_count = 2;
1402 break;
1403 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1404 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1405 /* lg %dst,0(off,%src) */
1406 jit->seen |= SEEN_MEM;
1407 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1408 break;
1409 /*
1410 * BPF_JMP / CALL
1411 */
1412 case BPF_JMP | BPF_CALL:
1413 {
1414 const struct btf_func_model *m;
1415 bool func_addr_fixed;
1416 int j, ret;
1417 u64 func;
1418
1419 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1420 &func, &func_addr_fixed);
1421 if (ret < 0)
1422 return -1;
1423
1424 REG_SET_SEEN(BPF_REG_5);
1425 jit->seen |= SEEN_FUNC;
1426 /*
1427 * Copy the tail call counter to where the callee expects it.
1428 *
1429 * Note 1: The callee can increment the tail call counter, but
1430 * we do not load it back, since the x86 JIT does not do this
1431 * either.
1432 *
1433 * Note 2: We assume that the verifier does not let us call the
1434 * main program, which clears the tail call counter on entry.
1435 */
1436 /* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1437 _EMIT6(0xd203f000 | STK_OFF_TCCNT,
1438 0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1439
1440 /* Sign-extend the kfunc arguments. */
1441 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1442 m = bpf_jit_find_kfunc_model(fp, insn);
1443 if (!m)
1444 return -1;
1445
1446 for (j = 0; j < m->nr_args; j++) {
1447 if (sign_extend(jit, BPF_REG_1 + j,
1448 m->arg_size[j],
1449 m->arg_flags[j]))
1450 return -1;
1451 }
1452 }
1453
1454 /* lgrl %w1,func */
1455 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1456 /* %r1() */
1457 call_r1(jit);
1458 /* lgr %b0,%r2: load return value into %b0 */
1459 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1460 break;
1461 }
1462 case BPF_JMP | BPF_TAIL_CALL: {
1463 int patch_1_clrj, patch_2_clij, patch_3_brc;
1464
1465 /*
1466 * Implicit input:
1467 * B1: pointer to ctx
1468 * B2: pointer to bpf_array
1469 * B3: index in bpf_array
1470 *
1471 * if (index >= array->map.max_entries)
1472 * goto out;
1473 */
1474
1475 /* llgf %w1,map.max_entries(%b2) */
1476 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1477 offsetof(struct bpf_array, map.max_entries));
1478 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1479 /* clrj %b3,%w1,0xa,out */
1480 patch_1_clrj = jit->prg;
1481 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1482 jit->prg);
1483
1484 /*
1485 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1486 * goto out;
1487 */
1488
1489 if (jit->seen & SEEN_STACK)
1490 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1491 else
1492 off = STK_OFF_TCCNT;
1493 /* lhi %w0,1 */
1494 EMIT4_IMM(0xa7080000, REG_W0, 1);
1495 /* laal %w1,%w0,off(%r15) */
1496 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1497 /* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1498 patch_2_clij = jit->prg;
1499 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1500 2, jit->prg);
1501
1502 /*
1503 * prog = array->ptrs[index];
1504 * if (prog == NULL)
1505 * goto out;
1506 */
1507
1508 /* llgfr %r1,%b3: %r1 = (u32) index */
1509 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1510 /* sllg %r1,%r1,3: %r1 *= 8 */
1511 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1512 /* ltg %r1,prog(%b2,%r1) */
1513 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1514 REG_1, offsetof(struct bpf_array, ptrs));
1515 /* brc 0x8,out */
1516 patch_3_brc = jit->prg;
1517 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1518
1519 /*
1520 * Restore registers before calling function
1521 */
1522 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1523
1524 /*
1525 * goto *(prog->bpf_func + tail_call_start);
1526 */
1527
1528 /* lg %r1,bpf_func(%r1) */
1529 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1530 offsetof(struct bpf_prog, bpf_func));
1531 if (nospec_uses_trampoline()) {
1532 jit->seen |= SEEN_FUNC;
1533 /* aghi %r1,tail_call_start */
1534 EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1535 /* brcl 0xf,__s390_indirect_jump_r1 */
1536 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1537 } else {
1538 /* bc 0xf,tail_call_start(%r1) */
1539 _EMIT4(0x47f01000 + jit->tail_call_start);
1540 }
1541 /* out: */
1542 if (jit->prg_buf) {
1543 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1544 (jit->prg - patch_1_clrj) >> 1;
1545 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1546 (jit->prg - patch_2_clij) >> 1;
1547 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1548 (jit->prg - patch_3_brc) >> 1;
1549 }
1550 break;
1551 }
1552 case BPF_JMP | BPF_EXIT: /* return b0 */
1553 last = (i == fp->len - 1) ? 1 : 0;
1554 if (last)
1555 break;
1556 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1557 /* brc 0xf, <exit> */
1558 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1559 else
1560 /* brcl 0xf, <exit> */
1561 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1562 break;
1563 /*
1564 * Branch relative (number of skipped instructions) to offset on
1565 * condition.
1566 *
1567 * Condition code to mask mapping:
1568 *
1569 * CC | Description | Mask
1570 * ------------------------------
1571 * 0 | Operands equal | 8
1572 * 1 | First operand low | 4
1573 * 2 | First operand high | 2
1574 * 3 | Unused | 1
1575 *
1576 * For s390x relative branches: ip = ip + off_bytes
1577 * For BPF relative branches: insn = insn + off_insns + 1
1578 *
1579 * For example for s390x with offset 0 we jump to the branch
1580 * instruction itself (loop) and for BPF with offset 0 we
1581 * branch to the instruction behind the branch.
1582 */
1583 case BPF_JMP | BPF_JA: /* if (true) */
1584 mask = 0xf000; /* j */
1585 goto branch_oc;
1586 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1587 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1588 mask = 0x2000; /* jh */
1589 goto branch_ks;
1590 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1591 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1592 mask = 0x4000; /* jl */
1593 goto branch_ks;
1594 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1595 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1596 mask = 0xa000; /* jhe */
1597 goto branch_ks;
1598 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1599 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1600 mask = 0xc000; /* jle */
1601 goto branch_ks;
1602 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1603 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1604 mask = 0x2000; /* jh */
1605 goto branch_ku;
1606 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1607 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1608 mask = 0x4000; /* jl */
1609 goto branch_ku;
1610 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1611 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1612 mask = 0xa000; /* jhe */
1613 goto branch_ku;
1614 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1615 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1616 mask = 0xc000; /* jle */
1617 goto branch_ku;
1618 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1619 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1620 mask = 0x7000; /* jne */
1621 goto branch_ku;
1622 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1623 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1624 mask = 0x8000; /* je */
1625 goto branch_ku;
1626 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1627 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1628 mask = 0x7000; /* jnz */
1629 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1630 /* llilf %w1,imm (load zero extend imm) */
1631 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1632 /* nr %w1,%dst */
1633 EMIT2(0x1400, REG_W1, dst_reg);
1634 } else {
1635 /* lgfi %w1,imm (load sign extend imm) */
1636 EMIT6_IMM(0xc0010000, REG_W1, imm);
1637 /* ngr %w1,%dst */
1638 EMIT4(0xb9800000, REG_W1, dst_reg);
1639 }
1640 goto branch_oc;
1641
1642 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1643 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1644 mask = 0x2000; /* jh */
1645 goto branch_xs;
1646 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1647 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1648 mask = 0x4000; /* jl */
1649 goto branch_xs;
1650 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1651 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1652 mask = 0xa000; /* jhe */
1653 goto branch_xs;
1654 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1655 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1656 mask = 0xc000; /* jle */
1657 goto branch_xs;
1658 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1659 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1660 mask = 0x2000; /* jh */
1661 goto branch_xu;
1662 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1663 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1664 mask = 0x4000; /* jl */
1665 goto branch_xu;
1666 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1667 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1668 mask = 0xa000; /* jhe */
1669 goto branch_xu;
1670 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1671 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1672 mask = 0xc000; /* jle */
1673 goto branch_xu;
1674 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1675 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1676 mask = 0x7000; /* jne */
1677 goto branch_xu;
1678 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1679 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1680 mask = 0x8000; /* je */
1681 goto branch_xu;
1682 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1683 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1684 {
1685 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1686
1687 mask = 0x7000; /* jnz */
1688 /* nrk or ngrk %w1,%dst,%src */
1689 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1690 REG_W1, dst_reg, src_reg);
1691 goto branch_oc;
1692 branch_ks:
1693 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1694 /* cfi or cgfi %dst,imm */
1695 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1696 dst_reg, imm);
1697 if (!is_first_pass(jit) &&
1698 can_use_rel(jit, addrs[i + off + 1])) {
1699 /* brc mask,off */
1700 EMIT4_PCREL_RIC(0xa7040000,
1701 mask >> 12, addrs[i + off + 1]);
1702 } else {
1703 /* brcl mask,off */
1704 EMIT6_PCREL_RILC(0xc0040000,
1705 mask >> 12, addrs[i + off + 1]);
1706 }
1707 break;
1708 branch_ku:
1709 /* lgfi %w1,imm (load sign extend imm) */
1710 src_reg = REG_1;
1711 EMIT6_IMM(0xc0010000, src_reg, imm);
1712 goto branch_xu;
1713 branch_xs:
1714 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1715 if (!is_first_pass(jit) &&
1716 can_use_rel(jit, addrs[i + off + 1])) {
1717 /* crj or cgrj %dst,%src,mask,off */
1718 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1719 dst_reg, src_reg, i, off, mask);
1720 } else {
1721 /* cr or cgr %dst,%src */
1722 if (is_jmp32)
1723 EMIT2(0x1900, dst_reg, src_reg);
1724 else
1725 EMIT4(0xb9200000, dst_reg, src_reg);
1726 /* brcl mask,off */
1727 EMIT6_PCREL_RILC(0xc0040000,
1728 mask >> 12, addrs[i + off + 1]);
1729 }
1730 break;
1731 branch_xu:
1732 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1733 if (!is_first_pass(jit) &&
1734 can_use_rel(jit, addrs[i + off + 1])) {
1735 /* clrj or clgrj %dst,%src,mask,off */
1736 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1737 dst_reg, src_reg, i, off, mask);
1738 } else {
1739 /* clr or clgr %dst,%src */
1740 if (is_jmp32)
1741 EMIT2(0x1500, dst_reg, src_reg);
1742 else
1743 EMIT4(0xb9210000, dst_reg, src_reg);
1744 /* brcl mask,off */
1745 EMIT6_PCREL_RILC(0xc0040000,
1746 mask >> 12, addrs[i + off + 1]);
1747 }
1748 break;
1749 branch_oc:
1750 if (!is_first_pass(jit) &&
1751 can_use_rel(jit, addrs[i + off + 1])) {
1752 /* brc mask,off */
1753 EMIT4_PCREL_RIC(0xa7040000,
1754 mask >> 12, addrs[i + off + 1]);
1755 } else {
1756 /* brcl mask,off */
1757 EMIT6_PCREL_RILC(0xc0040000,
1758 mask >> 12, addrs[i + off + 1]);
1759 }
1760 break;
1761 }
1762 default: /* too complex, give up */
1763 pr_err("Unknown opcode %02x\n", insn->code);
1764 return -1;
1765 }
1766
1767 if (probe_prg != -1) {
1768 /*
1769 * Handlers of certain exceptions leave psw.addr pointing to
1770 * the instruction directly after the failing one. Therefore,
1771 * create two exception table entries and also add a nop in
1772 * case two probing instructions come directly after each
1773 * other.
1774 */
1775 nop_prg = jit->prg;
1776 /* bcr 0,%0 */
1777 _EMIT2(0x0700);
1778 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1779 if (err < 0)
1780 return err;
1781 }
1782
1783 return insn_count;
1784 }
1785
1786 /*
1787 * Return whether new i-th instruction address does not violate any invariant
1788 */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1789 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1790 {
1791 /* On the first pass anything goes */
1792 if (is_first_pass(jit))
1793 return true;
1794
1795 /* The codegen pass must not change anything */
1796 if (is_codegen_pass(jit))
1797 return jit->addrs[i] == jit->prg;
1798
1799 /* Passes in between must not increase code size */
1800 return jit->addrs[i] >= jit->prg;
1801 }
1802
1803 /*
1804 * Update the address of i-th instruction
1805 */
bpf_set_addr(struct bpf_jit * jit,int i)1806 static int bpf_set_addr(struct bpf_jit *jit, int i)
1807 {
1808 int delta;
1809
1810 if (is_codegen_pass(jit)) {
1811 delta = jit->prg - jit->addrs[i];
1812 if (delta < 0)
1813 bpf_skip(jit, -delta);
1814 }
1815 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1816 return -1;
1817 jit->addrs[i] = jit->prg;
1818 return 0;
1819 }
1820
1821 /*
1822 * Compile eBPF program into s390x code
1823 */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1824 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1825 bool extra_pass, u32 stack_depth)
1826 {
1827 int i, insn_count, lit32_size, lit64_size;
1828
1829 jit->lit32 = jit->lit32_start;
1830 jit->lit64 = jit->lit64_start;
1831 jit->prg = 0;
1832 jit->excnt = 0;
1833
1834 bpf_jit_prologue(jit, fp, stack_depth);
1835 if (bpf_set_addr(jit, 0) < 0)
1836 return -1;
1837 for (i = 0; i < fp->len; i += insn_count) {
1838 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1839 if (insn_count < 0)
1840 return -1;
1841 /* Next instruction address */
1842 if (bpf_set_addr(jit, i + insn_count) < 0)
1843 return -1;
1844 }
1845 bpf_jit_epilogue(jit, stack_depth);
1846
1847 lit32_size = jit->lit32 - jit->lit32_start;
1848 lit64_size = jit->lit64 - jit->lit64_start;
1849 jit->lit32_start = jit->prg;
1850 if (lit32_size)
1851 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1852 jit->lit64_start = jit->lit32_start + lit32_size;
1853 if (lit64_size)
1854 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1855 jit->size = jit->lit64_start + lit64_size;
1856 jit->size_prg = jit->prg;
1857
1858 if (WARN_ON_ONCE(fp->aux->extable &&
1859 jit->excnt != fp->aux->num_exentries))
1860 /* Verifier bug - too many entries. */
1861 return -1;
1862
1863 return 0;
1864 }
1865
bpf_jit_needs_zext(void)1866 bool bpf_jit_needs_zext(void)
1867 {
1868 return true;
1869 }
1870
1871 struct s390_jit_data {
1872 struct bpf_binary_header *header;
1873 struct bpf_jit ctx;
1874 int pass;
1875 };
1876
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)1877 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1878 struct bpf_prog *fp)
1879 {
1880 struct bpf_binary_header *header;
1881 u32 extable_size;
1882 u32 code_size;
1883
1884 /* We need two entries per insn. */
1885 fp->aux->num_exentries *= 2;
1886
1887 code_size = roundup(jit->size,
1888 __alignof__(struct exception_table_entry));
1889 extable_size = fp->aux->num_exentries *
1890 sizeof(struct exception_table_entry);
1891 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1892 8, jit_fill_hole);
1893 if (!header)
1894 return NULL;
1895 fp->aux->extable = (struct exception_table_entry *)
1896 (jit->prg_buf + code_size);
1897 return header;
1898 }
1899
1900 /*
1901 * Compile eBPF program "fp"
1902 */
bpf_int_jit_compile(struct bpf_prog * fp)1903 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1904 {
1905 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1906 struct bpf_prog *tmp, *orig_fp = fp;
1907 struct bpf_binary_header *header;
1908 struct s390_jit_data *jit_data;
1909 bool tmp_blinded = false;
1910 bool extra_pass = false;
1911 struct bpf_jit jit;
1912 int pass;
1913
1914 if (!fp->jit_requested)
1915 return orig_fp;
1916
1917 tmp = bpf_jit_blind_constants(fp);
1918 /*
1919 * If blinding was requested and we failed during blinding,
1920 * we must fall back to the interpreter.
1921 */
1922 if (IS_ERR(tmp))
1923 return orig_fp;
1924 if (tmp != fp) {
1925 tmp_blinded = true;
1926 fp = tmp;
1927 }
1928
1929 jit_data = fp->aux->jit_data;
1930 if (!jit_data) {
1931 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1932 if (!jit_data) {
1933 fp = orig_fp;
1934 goto out;
1935 }
1936 fp->aux->jit_data = jit_data;
1937 }
1938 if (jit_data->ctx.addrs) {
1939 jit = jit_data->ctx;
1940 header = jit_data->header;
1941 extra_pass = true;
1942 pass = jit_data->pass + 1;
1943 goto skip_init_ctx;
1944 }
1945
1946 memset(&jit, 0, sizeof(jit));
1947 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1948 if (jit.addrs == NULL) {
1949 fp = orig_fp;
1950 goto free_addrs;
1951 }
1952 /*
1953 * Three initial passes:
1954 * - 1/2: Determine clobbered registers
1955 * - 3: Calculate program size and addrs array
1956 */
1957 for (pass = 1; pass <= 3; pass++) {
1958 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1959 fp = orig_fp;
1960 goto free_addrs;
1961 }
1962 }
1963 /*
1964 * Final pass: Allocate and generate program
1965 */
1966 header = bpf_jit_alloc(&jit, fp);
1967 if (!header) {
1968 fp = orig_fp;
1969 goto free_addrs;
1970 }
1971 skip_init_ctx:
1972 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1973 bpf_jit_binary_free(header);
1974 fp = orig_fp;
1975 goto free_addrs;
1976 }
1977 if (bpf_jit_enable > 1) {
1978 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1979 print_fn_code(jit.prg_buf, jit.size_prg);
1980 }
1981 if (!fp->is_func || extra_pass) {
1982 bpf_jit_binary_lock_ro(header);
1983 } else {
1984 jit_data->header = header;
1985 jit_data->ctx = jit;
1986 jit_data->pass = pass;
1987 }
1988 fp->bpf_func = (void *) jit.prg_buf;
1989 fp->jited = 1;
1990 fp->jited_len = jit.size;
1991
1992 if (!fp->is_func || extra_pass) {
1993 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1994 free_addrs:
1995 kvfree(jit.addrs);
1996 kfree(jit_data);
1997 fp->aux->jit_data = NULL;
1998 }
1999 out:
2000 if (tmp_blinded)
2001 bpf_jit_prog_release_other(fp, fp == orig_fp ?
2002 tmp : orig_fp);
2003 return fp;
2004 }
2005
bpf_jit_supports_kfunc_call(void)2006 bool bpf_jit_supports_kfunc_call(void)
2007 {
2008 return true;
2009 }
2010
bpf_jit_supports_far_kfunc_call(void)2011 bool bpf_jit_supports_far_kfunc_call(void)
2012 {
2013 return true;
2014 }
2015
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2016 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2017 void *old_addr, void *new_addr)
2018 {
2019 struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2020 struct {
2021 u16 opc;
2022 s32 disp;
2023 } __packed insn;
2024 char *ret;
2025 int err;
2026
2027 /* Verify the branch to be patched. */
2028 err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2029 if (err < 0)
2030 return err;
2031 if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2032 return -EINVAL;
2033
2034 if (t == BPF_MOD_JUMP &&
2035 insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2036 /*
2037 * The branch already points to the destination,
2038 * there is no PLT.
2039 */
2040 } else {
2041 /* Verify the PLT. */
2042 plt = ip + (insn.disp << 1);
2043 err = copy_from_kernel_nofault(¤t_plt, plt,
2044 sizeof(current_plt));
2045 if (err < 0)
2046 return err;
2047 ret = (char *)ip + 6;
2048 bpf_jit_plt(&expected_plt, ret, old_addr);
2049 if (memcmp(¤t_plt, &expected_plt, sizeof(current_plt)))
2050 return -EINVAL;
2051 /* Adjust the call address. */
2052 bpf_jit_plt(&new_plt, ret, new_addr);
2053 s390_kernel_write(&plt->target, &new_plt.target,
2054 sizeof(void *));
2055 }
2056
2057 /* Adjust the mask of the branch. */
2058 insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2059 s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2060
2061 /* Make the new code visible to the other CPUs. */
2062 text_poke_sync_lock();
2063
2064 return 0;
2065 }
2066
2067 struct bpf_tramp_jit {
2068 struct bpf_jit common;
2069 int orig_stack_args_off;/* Offset of arguments placed on stack by the
2070 * func_addr's original caller
2071 */
2072 int stack_size; /* Trampoline stack size */
2073 int backchain_off; /* Offset of backchain */
2074 int stack_args_off; /* Offset of stack arguments for calling
2075 * func_addr, has to be at the top
2076 */
2077 int reg_args_off; /* Offset of register arguments for calling
2078 * func_addr
2079 */
2080 int ip_off; /* For bpf_get_func_ip(), has to be at
2081 * (ctx - 16)
2082 */
2083 int arg_cnt_off; /* For bpf_get_func_arg_cnt(), has to be at
2084 * (ctx - 8)
2085 */
2086 int bpf_args_off; /* Offset of BPF_PROG context, which consists
2087 * of BPF arguments followed by return value
2088 */
2089 int retval_off; /* Offset of return value (see above) */
2090 int r7_r8_off; /* Offset of saved %r7 and %r8, which are used
2091 * for __bpf_prog_enter() return value and
2092 * func_addr respectively
2093 */
2094 int run_ctx_off; /* Offset of struct bpf_tramp_run_ctx */
2095 int tccnt_off; /* Offset of saved tailcall counter */
2096 int r14_off; /* Offset of saved %r14, has to be at the
2097 * bottom */
2098 int do_fexit; /* do_fexit: label */
2099 };
2100
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2101 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2102 {
2103 /* llihf %dst_reg,val_hi */
2104 EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2105 /* oilf %rdst_reg,val_lo */
2106 EMIT6_IMM(0xc00d0000, dst_reg, val);
2107 }
2108
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2109 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2110 const struct btf_func_model *m,
2111 struct bpf_tramp_link *tlink, bool save_ret)
2112 {
2113 struct bpf_jit *jit = &tjit->common;
2114 int cookie_off = tjit->run_ctx_off +
2115 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2116 struct bpf_prog *p = tlink->link.prog;
2117 int patch;
2118
2119 /*
2120 * run_ctx.cookie = tlink->cookie;
2121 */
2122
2123 /* %r0 = tlink->cookie */
2124 load_imm64(jit, REG_W0, tlink->cookie);
2125 /* stg %r0,cookie_off(%r15) */
2126 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2127
2128 /*
2129 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2130 * goto skip;
2131 */
2132
2133 /* %r1 = __bpf_prog_enter */
2134 load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2135 /* %r2 = p */
2136 load_imm64(jit, REG_2, (u64)p);
2137 /* la %r3,run_ctx_off(%r15) */
2138 EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2139 /* %r1() */
2140 call_r1(jit);
2141 /* ltgr %r7,%r2 */
2142 EMIT4(0xb9020000, REG_7, REG_2);
2143 /* brcl 8,skip */
2144 patch = jit->prg;
2145 EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2146
2147 /*
2148 * retval = bpf_func(args, p->insnsi);
2149 */
2150
2151 /* %r1 = p->bpf_func */
2152 load_imm64(jit, REG_1, (u64)p->bpf_func);
2153 /* la %r2,bpf_args_off(%r15) */
2154 EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2155 /* %r3 = p->insnsi */
2156 if (!p->jited)
2157 load_imm64(jit, REG_3, (u64)p->insnsi);
2158 /* %r1() */
2159 call_r1(jit);
2160 /* stg %r2,retval_off(%r15) */
2161 if (save_ret) {
2162 if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2163 return -1;
2164 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2165 tjit->retval_off);
2166 }
2167
2168 /* skip: */
2169 if (jit->prg_buf)
2170 *(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2171
2172 /*
2173 * __bpf_prog_exit(p, start, &run_ctx);
2174 */
2175
2176 /* %r1 = __bpf_prog_exit */
2177 load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2178 /* %r2 = p */
2179 load_imm64(jit, REG_2, (u64)p);
2180 /* lgr %r3,%r7 */
2181 EMIT4(0xb9040000, REG_3, REG_7);
2182 /* la %r4,run_ctx_off(%r15) */
2183 EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2184 /* %r1() */
2185 call_r1(jit);
2186
2187 return 0;
2188 }
2189
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2190 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2191 {
2192 int stack_offset = tjit->stack_size;
2193
2194 tjit->stack_size += size;
2195 return stack_offset;
2196 }
2197
2198 /* ABI uses %r2 - %r6 for parameter passing. */
2199 #define MAX_NR_REG_ARGS 5
2200
2201 /* The "L" field of the "mvc" instruction is 8 bits. */
2202 #define MAX_MVC_SIZE 256
2203 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2204
2205 /* -mfentry generates a 6-byte nop on s390x. */
2206 #define S390X_PATCH_SIZE 6
2207
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2208 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2209 struct bpf_tramp_jit *tjit,
2210 const struct btf_func_model *m,
2211 u32 flags,
2212 struct bpf_tramp_links *tlinks,
2213 void *func_addr)
2214 {
2215 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2216 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2217 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2218 int nr_bpf_args, nr_reg_args, nr_stack_args;
2219 struct bpf_jit *jit = &tjit->common;
2220 int arg, bpf_arg_off;
2221 int i, j;
2222
2223 /* Support as many stack arguments as "mvc" instruction can handle. */
2224 nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2225 nr_stack_args = m->nr_args - nr_reg_args;
2226 if (nr_stack_args > MAX_NR_STACK_ARGS)
2227 return -ENOTSUPP;
2228
2229 /* Return to %r14, since func_addr and %r0 are not available. */
2230 if (!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK))
2231 flags |= BPF_TRAMP_F_SKIP_FRAME;
2232
2233 /*
2234 * Compute how many arguments we need to pass to BPF programs.
2235 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2236 * smaller are packed into 1 or 2 registers; larger arguments are
2237 * passed via pointers.
2238 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2239 * a register; larger arguments are passed via pointers.
2240 * We need to deal with this difference.
2241 */
2242 nr_bpf_args = 0;
2243 for (i = 0; i < m->nr_args; i++) {
2244 if (m->arg_size[i] <= 8)
2245 nr_bpf_args += 1;
2246 else if (m->arg_size[i] <= 16)
2247 nr_bpf_args += 2;
2248 else
2249 return -ENOTSUPP;
2250 }
2251
2252 /*
2253 * Calculate the stack layout.
2254 */
2255
2256 /*
2257 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2258 * ABI requires, put our backchain at the end of the allocated memory.
2259 */
2260 tjit->stack_size = STACK_FRAME_OVERHEAD;
2261 tjit->backchain_off = tjit->stack_size - sizeof(u64);
2262 tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2263 tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2264 tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2265 tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2266 tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2267 tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2268 tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2269 tjit->run_ctx_off = alloc_stack(tjit,
2270 sizeof(struct bpf_tramp_run_ctx));
2271 tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2272 tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2273 /*
2274 * In accordance with the s390x ABI, the caller has allocated
2275 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2276 * backchain, and the rest we can use.
2277 */
2278 tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2279 tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2280
2281 /* lgr %r1,%r15 */
2282 EMIT4(0xb9040000, REG_1, REG_15);
2283 /* aghi %r15,-stack_size */
2284 EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2285 /* stg %r1,backchain_off(%r15) */
2286 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2287 tjit->backchain_off);
2288 /* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2289 _EMIT6(0xd203f000 | tjit->tccnt_off,
2290 0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2291 /* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2292 if (nr_reg_args)
2293 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2294 REG_2 + (nr_reg_args - 1), REG_15,
2295 tjit->reg_args_off);
2296 for (i = 0, j = 0; i < m->nr_args; i++) {
2297 if (i < MAX_NR_REG_ARGS)
2298 arg = REG_2 + i;
2299 else
2300 arg = tjit->orig_stack_args_off +
2301 (i - MAX_NR_REG_ARGS) * sizeof(u64);
2302 bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2303 if (m->arg_size[i] <= 8) {
2304 if (i < MAX_NR_REG_ARGS)
2305 /* stg %arg,bpf_arg_off(%r15) */
2306 EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2307 REG_0, REG_15, bpf_arg_off);
2308 else
2309 /* mvc bpf_arg_off(8,%r15),arg(%r15) */
2310 _EMIT6(0xd207f000 | bpf_arg_off,
2311 0xf000 | arg);
2312 j += 1;
2313 } else {
2314 if (i < MAX_NR_REG_ARGS) {
2315 /* mvc bpf_arg_off(16,%r15),0(%arg) */
2316 _EMIT6(0xd20ff000 | bpf_arg_off,
2317 reg2hex[arg] << 12);
2318 } else {
2319 /* lg %r1,arg(%r15) */
2320 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2321 REG_15, arg);
2322 /* mvc bpf_arg_off(16,%r15),0(%r1) */
2323 _EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2324 }
2325 j += 2;
2326 }
2327 }
2328 /* stmg %r7,%r8,r7_r8_off(%r15) */
2329 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2330 tjit->r7_r8_off);
2331 /* stg %r14,r14_off(%r15) */
2332 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2333
2334 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2335 /*
2336 * The ftrace trampoline puts the return address (which is the
2337 * address of the original function + S390X_PATCH_SIZE) into
2338 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2339 * ftrace_init_nop() for details.
2340 */
2341
2342 /* lgr %r8,%r0 */
2343 EMIT4(0xb9040000, REG_8, REG_0);
2344 } else {
2345 /* %r8 = func_addr + S390X_PATCH_SIZE */
2346 load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2347 }
2348
2349 /*
2350 * ip = func_addr;
2351 * arg_cnt = m->nr_args;
2352 */
2353
2354 if (flags & BPF_TRAMP_F_IP_ARG) {
2355 /* %r0 = func_addr */
2356 load_imm64(jit, REG_0, (u64)func_addr);
2357 /* stg %r0,ip_off(%r15) */
2358 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2359 tjit->ip_off);
2360 }
2361 /* lghi %r0,nr_bpf_args */
2362 EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2363 /* stg %r0,arg_cnt_off(%r15) */
2364 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2365 tjit->arg_cnt_off);
2366
2367 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2368 /*
2369 * __bpf_tramp_enter(im);
2370 */
2371
2372 /* %r1 = __bpf_tramp_enter */
2373 load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2374 /* %r2 = im */
2375 load_imm64(jit, REG_2, (u64)im);
2376 /* %r1() */
2377 call_r1(jit);
2378 }
2379
2380 for (i = 0; i < fentry->nr_links; i++)
2381 if (invoke_bpf_prog(tjit, m, fentry->links[i],
2382 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2383 return -EINVAL;
2384
2385 if (fmod_ret->nr_links) {
2386 /*
2387 * retval = 0;
2388 */
2389
2390 /* xc retval_off(8,%r15),retval_off(%r15) */
2391 _EMIT6(0xd707f000 | tjit->retval_off,
2392 0xf000 | tjit->retval_off);
2393
2394 for (i = 0; i < fmod_ret->nr_links; i++) {
2395 if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2396 return -EINVAL;
2397
2398 /*
2399 * if (retval)
2400 * goto do_fexit;
2401 */
2402
2403 /* ltg %r0,retval_off(%r15) */
2404 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2405 tjit->retval_off);
2406 /* brcl 7,do_fexit */
2407 EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2408 }
2409 }
2410
2411 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2412 /*
2413 * retval = func_addr(args);
2414 */
2415
2416 /* lmg %r2,%rN,reg_args_off(%r15) */
2417 if (nr_reg_args)
2418 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2419 REG_2 + (nr_reg_args - 1), REG_15,
2420 tjit->reg_args_off);
2421 /* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2422 if (nr_stack_args)
2423 _EMIT6(0xd200f000 |
2424 (nr_stack_args * sizeof(u64) - 1) << 16 |
2425 tjit->stack_args_off,
2426 0xf000 | tjit->orig_stack_args_off);
2427 /* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2428 _EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2429 /* lgr %r1,%r8 */
2430 EMIT4(0xb9040000, REG_1, REG_8);
2431 /* %r1() */
2432 call_r1(jit);
2433 /* stg %r2,retval_off(%r15) */
2434 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2435 tjit->retval_off);
2436
2437 im->ip_after_call = jit->prg_buf + jit->prg;
2438
2439 /*
2440 * The following nop will be patched by bpf_tramp_image_put().
2441 */
2442
2443 /* brcl 0,im->ip_epilogue */
2444 EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2445 }
2446
2447 /* do_fexit: */
2448 tjit->do_fexit = jit->prg;
2449 for (i = 0; i < fexit->nr_links; i++)
2450 if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2451 return -EINVAL;
2452
2453 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2454 im->ip_epilogue = jit->prg_buf + jit->prg;
2455
2456 /*
2457 * __bpf_tramp_exit(im);
2458 */
2459
2460 /* %r1 = __bpf_tramp_exit */
2461 load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2462 /* %r2 = im */
2463 load_imm64(jit, REG_2, (u64)im);
2464 /* %r1() */
2465 call_r1(jit);
2466 }
2467
2468 /* lmg %r2,%rN,reg_args_off(%r15) */
2469 if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2470 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2471 REG_2 + (nr_reg_args - 1), REG_15,
2472 tjit->reg_args_off);
2473 /* lgr %r1,%r8 */
2474 if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2475 EMIT4(0xb9040000, REG_1, REG_8);
2476 /* lmg %r7,%r8,r7_r8_off(%r15) */
2477 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2478 tjit->r7_r8_off);
2479 /* lg %r14,r14_off(%r15) */
2480 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2481 /* lg %r2,retval_off(%r15) */
2482 if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2483 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2484 tjit->retval_off);
2485 /* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2486 _EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2487 0xf000 | tjit->tccnt_off);
2488 /* aghi %r15,stack_size */
2489 EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2490 /* Emit an expoline for the following indirect jump. */
2491 if (nospec_uses_trampoline())
2492 emit_expoline(jit);
2493 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2494 /* br %r14 */
2495 _EMIT2(0x07fe);
2496 else
2497 /* br %r1 */
2498 _EMIT2(0x07f1);
2499
2500 emit_r1_thunk(jit);
2501
2502 return 0;
2503 }
2504
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2505 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2506 void *image_end, const struct btf_func_model *m,
2507 u32 flags, struct bpf_tramp_links *tlinks,
2508 void *func_addr)
2509 {
2510 struct bpf_tramp_jit tjit;
2511 int ret;
2512 int i;
2513
2514 for (i = 0; i < 2; i++) {
2515 if (i == 0) {
2516 /* Compute offsets, check whether the code fits. */
2517 memset(&tjit, 0, sizeof(tjit));
2518 } else {
2519 /* Generate the code. */
2520 tjit.common.prg = 0;
2521 tjit.common.prg_buf = image;
2522 }
2523 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2524 tlinks, func_addr);
2525 if (ret < 0)
2526 return ret;
2527 if (tjit.common.prg > (char *)image_end - (char *)image)
2528 /*
2529 * Use the same error code as for exceeding
2530 * BPF_MAX_TRAMP_LINKS.
2531 */
2532 return -E2BIG;
2533 }
2534
2535 return tjit.common.prg;
2536 }
2537
bpf_jit_supports_subprog_tailcalls(void)2538 bool bpf_jit_supports_subprog_tailcalls(void)
2539 {
2540 return true;
2541 }
2542