1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <linux/pagevec.h>
8 #include <linux/shmem_fs.h>
9 #include <linux/swap.h>
10
11 #include <drm/drm_cache.h>
12
13 #include "gem/i915_gem_region.h"
14 #include "i915_drv.h"
15 #include "i915_gem_object.h"
16 #include "i915_gem_tiling.h"
17 #include "i915_gemfs.h"
18 #include "i915_scatterlist.h"
19 #include "i915_trace.h"
20
21 /*
22 * Move folios to appropriate lru and release the batch, decrementing the
23 * ref count of those folios.
24 */
check_release_folio_batch(struct folio_batch * fbatch)25 static void check_release_folio_batch(struct folio_batch *fbatch)
26 {
27 check_move_unevictable_folios(fbatch);
28 __folio_batch_release(fbatch);
29 cond_resched();
30 }
31
shmem_sg_free_table(struct sg_table * st,struct address_space * mapping,bool dirty,bool backup)32 void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
33 bool dirty, bool backup)
34 {
35 struct sgt_iter sgt_iter;
36 struct folio_batch fbatch;
37 struct folio *last = NULL;
38 struct page *page;
39
40 mapping_clear_unevictable(mapping);
41
42 folio_batch_init(&fbatch);
43 for_each_sgt_page(page, sgt_iter, st) {
44 struct folio *folio = page_folio(page);
45
46 if (folio == last)
47 continue;
48 last = folio;
49 if (dirty)
50 folio_mark_dirty(folio);
51 if (backup)
52 folio_mark_accessed(folio);
53
54 if (!folio_batch_add(&fbatch, folio))
55 check_release_folio_batch(&fbatch);
56 }
57 if (fbatch.nr)
58 check_release_folio_batch(&fbatch);
59
60 sg_free_table(st);
61 }
62
shmem_sg_alloc_table(struct drm_i915_private * i915,struct sg_table * st,size_t size,struct intel_memory_region * mr,struct address_space * mapping,unsigned int max_segment)63 int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
64 size_t size, struct intel_memory_region *mr,
65 struct address_space *mapping,
66 unsigned int max_segment)
67 {
68 unsigned int page_count; /* restricted by sg_alloc_table */
69 unsigned long i;
70 struct scatterlist *sg;
71 unsigned long next_pfn = 0; /* suppress gcc warning */
72 gfp_t noreclaim;
73 int ret;
74
75 if (overflows_type(size / PAGE_SIZE, page_count))
76 return -E2BIG;
77
78 page_count = size / PAGE_SIZE;
79 /*
80 * If there's no chance of allocating enough pages for the whole
81 * object, bail early.
82 */
83 if (size > resource_size(&mr->region))
84 return -ENOMEM;
85
86 if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN))
87 return -ENOMEM;
88
89 /*
90 * Get the list of pages out of our struct file. They'll be pinned
91 * at this point until we release them.
92 *
93 * Fail silently without starting the shrinker
94 */
95 mapping_set_unevictable(mapping);
96 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
97 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
98
99 sg = st->sgl;
100 st->nents = 0;
101 for (i = 0; i < page_count; i++) {
102 struct folio *folio;
103 unsigned long nr_pages;
104 const unsigned int shrink[] = {
105 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
106 0,
107 }, *s = shrink;
108 gfp_t gfp = noreclaim;
109
110 do {
111 cond_resched();
112 folio = shmem_read_folio_gfp(mapping, i, gfp);
113 if (!IS_ERR(folio))
114 break;
115
116 if (!*s) {
117 ret = PTR_ERR(folio);
118 goto err_sg;
119 }
120
121 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
122
123 /*
124 * We've tried hard to allocate the memory by reaping
125 * our own buffer, now let the real VM do its job and
126 * go down in flames if truly OOM.
127 *
128 * However, since graphics tend to be disposable,
129 * defer the oom here by reporting the ENOMEM back
130 * to userspace.
131 */
132 if (!*s) {
133 /* reclaim and warn, but no oom */
134 gfp = mapping_gfp_mask(mapping);
135
136 /*
137 * Our bo are always dirty and so we require
138 * kswapd to reclaim our pages (direct reclaim
139 * does not effectively begin pageout of our
140 * buffers on its own). However, direct reclaim
141 * only waits for kswapd when under allocation
142 * congestion. So as a result __GFP_RECLAIM is
143 * unreliable and fails to actually reclaim our
144 * dirty pages -- unless you try over and over
145 * again with !__GFP_NORETRY. However, we still
146 * want to fail this allocation rather than
147 * trigger the out-of-memory killer and for
148 * this we want __GFP_RETRY_MAYFAIL.
149 */
150 gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
151 }
152 } while (1);
153
154 nr_pages = min_t(unsigned long,
155 folio_nr_pages(folio), page_count - i);
156 if (!i ||
157 sg->length >= max_segment ||
158 folio_pfn(folio) != next_pfn) {
159 if (i)
160 sg = sg_next(sg);
161
162 st->nents++;
163 sg_set_folio(sg, folio, nr_pages * PAGE_SIZE, 0);
164 } else {
165 /* XXX: could overflow? */
166 sg->length += nr_pages * PAGE_SIZE;
167 }
168 next_pfn = folio_pfn(folio) + nr_pages;
169 i += nr_pages - 1;
170
171 /* Check that the i965g/gm workaround works. */
172 GEM_BUG_ON(gfp & __GFP_DMA32 && next_pfn >= 0x00100000UL);
173 }
174 if (sg) /* loop terminated early; short sg table */
175 sg_mark_end(sg);
176
177 /* Trim unused sg entries to avoid wasting memory. */
178 i915_sg_trim(st);
179
180 return 0;
181 err_sg:
182 sg_mark_end(sg);
183 if (sg != st->sgl) {
184 shmem_sg_free_table(st, mapping, false, false);
185 } else {
186 mapping_clear_unevictable(mapping);
187 sg_free_table(st);
188 }
189
190 /*
191 * shmemfs first checks if there is enough memory to allocate the page
192 * and reports ENOSPC should there be insufficient, along with the usual
193 * ENOMEM for a genuine allocation failure.
194 *
195 * We use ENOSPC in our driver to mean that we have run out of aperture
196 * space and so want to translate the error from shmemfs back to our
197 * usual understanding of ENOMEM.
198 */
199 if (ret == -ENOSPC)
200 ret = -ENOMEM;
201
202 return ret;
203 }
204
shmem_get_pages(struct drm_i915_gem_object * obj)205 static int shmem_get_pages(struct drm_i915_gem_object *obj)
206 {
207 struct drm_i915_private *i915 = to_i915(obj->base.dev);
208 struct intel_memory_region *mem = obj->mm.region;
209 struct address_space *mapping = obj->base.filp->f_mapping;
210 unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
211 struct sg_table *st;
212 int ret;
213
214 /*
215 * Assert that the object is not currently in any GPU domain. As it
216 * wasn't in the GTT, there shouldn't be any way it could have been in
217 * a GPU cache
218 */
219 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
220 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
221
222 rebuild_st:
223 st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN);
224 if (!st)
225 return -ENOMEM;
226
227 ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
228 max_segment);
229 if (ret)
230 goto err_st;
231
232 ret = i915_gem_gtt_prepare_pages(obj, st);
233 if (ret) {
234 /*
235 * DMA remapping failed? One possible cause is that
236 * it could not reserve enough large entries, asking
237 * for PAGE_SIZE chunks instead may be helpful.
238 */
239 if (max_segment > PAGE_SIZE) {
240 shmem_sg_free_table(st, mapping, false, false);
241 kfree(st);
242
243 max_segment = PAGE_SIZE;
244 goto rebuild_st;
245 } else {
246 dev_warn(i915->drm.dev,
247 "Failed to DMA remap %zu pages\n",
248 obj->base.size >> PAGE_SHIFT);
249 goto err_pages;
250 }
251 }
252
253 if (i915_gem_object_needs_bit17_swizzle(obj))
254 i915_gem_object_do_bit_17_swizzle(obj, st);
255
256 if (i915_gem_object_can_bypass_llc(obj))
257 obj->cache_dirty = true;
258
259 __i915_gem_object_set_pages(obj, st);
260
261 return 0;
262
263 err_pages:
264 shmem_sg_free_table(st, mapping, false, false);
265 /*
266 * shmemfs first checks if there is enough memory to allocate the page
267 * and reports ENOSPC should there be insufficient, along with the usual
268 * ENOMEM for a genuine allocation failure.
269 *
270 * We use ENOSPC in our driver to mean that we have run out of aperture
271 * space and so want to translate the error from shmemfs back to our
272 * usual understanding of ENOMEM.
273 */
274 err_st:
275 if (ret == -ENOSPC)
276 ret = -ENOMEM;
277
278 kfree(st);
279
280 return ret;
281 }
282
283 static int
shmem_truncate(struct drm_i915_gem_object * obj)284 shmem_truncate(struct drm_i915_gem_object *obj)
285 {
286 /*
287 * Our goal here is to return as much of the memory as
288 * is possible back to the system as we are called from OOM.
289 * To do this we must instruct the shmfs to drop all of its
290 * backing pages, *now*.
291 */
292 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
293 obj->mm.madv = __I915_MADV_PURGED;
294 obj->mm.pages = ERR_PTR(-EFAULT);
295
296 return 0;
297 }
298
__shmem_writeback(size_t size,struct address_space * mapping)299 void __shmem_writeback(size_t size, struct address_space *mapping)
300 {
301 struct writeback_control wbc = {
302 .sync_mode = WB_SYNC_NONE,
303 .nr_to_write = SWAP_CLUSTER_MAX,
304 .range_start = 0,
305 .range_end = LLONG_MAX,
306 .for_reclaim = 1,
307 };
308 unsigned long i;
309
310 /*
311 * Leave mmapings intact (GTT will have been revoked on unbinding,
312 * leaving only CPU mmapings around) and add those pages to the LRU
313 * instead of invoking writeback so they are aged and paged out
314 * as normal.
315 */
316
317 /* Begin writeback on each dirty page */
318 for (i = 0; i < size >> PAGE_SHIFT; i++) {
319 struct page *page;
320
321 page = find_lock_page(mapping, i);
322 if (!page)
323 continue;
324
325 if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
326 int ret;
327
328 SetPageReclaim(page);
329 ret = mapping->a_ops->writepage(page, &wbc);
330 if (!PageWriteback(page))
331 ClearPageReclaim(page);
332 if (!ret)
333 goto put;
334 }
335 unlock_page(page);
336 put:
337 put_page(page);
338 }
339 }
340
341 static void
shmem_writeback(struct drm_i915_gem_object * obj)342 shmem_writeback(struct drm_i915_gem_object *obj)
343 {
344 __shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
345 }
346
shmem_shrink(struct drm_i915_gem_object * obj,unsigned int flags)347 static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
348 {
349 switch (obj->mm.madv) {
350 case I915_MADV_DONTNEED:
351 return i915_gem_object_truncate(obj);
352 case __I915_MADV_PURGED:
353 return 0;
354 }
355
356 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
357 shmem_writeback(obj);
358
359 return 0;
360 }
361
362 void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)363 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
364 struct sg_table *pages,
365 bool needs_clflush)
366 {
367 struct drm_i915_private *i915 = to_i915(obj->base.dev);
368
369 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
370
371 if (obj->mm.madv == I915_MADV_DONTNEED)
372 obj->mm.dirty = false;
373
374 if (needs_clflush &&
375 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
376 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
377 drm_clflush_sg(pages);
378
379 __start_cpu_write(obj);
380 /*
381 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever
382 * swapped-in. Our async flush path is not trust worthy enough yet(and
383 * happens in the wrong order), and with some tricks it's conceivable
384 * for userspace to change the cache-level to I915_CACHE_NONE after the
385 * pages are swapped-in, and since execbuf binds the object before doing
386 * the async flush, we have a race window.
387 */
388 if (!HAS_LLC(i915) && !IS_DGFX(i915))
389 obj->cache_dirty = true;
390 }
391
i915_gem_object_put_pages_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages)392 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
393 {
394 __i915_gem_object_release_shmem(obj, pages, true);
395
396 i915_gem_gtt_finish_pages(obj, pages);
397
398 if (i915_gem_object_needs_bit17_swizzle(obj))
399 i915_gem_object_save_bit_17_swizzle(obj, pages);
400
401 shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
402 obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
403 kfree(pages);
404 obj->mm.dirty = false;
405 }
406
407 static void
shmem_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)408 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
409 {
410 if (likely(i915_gem_object_has_struct_page(obj)))
411 i915_gem_object_put_pages_shmem(obj, pages);
412 else
413 i915_gem_object_put_pages_phys(obj, pages);
414 }
415
416 static int
shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)417 shmem_pwrite(struct drm_i915_gem_object *obj,
418 const struct drm_i915_gem_pwrite *arg)
419 {
420 struct address_space *mapping = obj->base.filp->f_mapping;
421 const struct address_space_operations *aops = mapping->a_ops;
422 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
423 u64 remain, offset;
424 unsigned int pg;
425
426 /* Caller already validated user args */
427 GEM_BUG_ON(!access_ok(user_data, arg->size));
428
429 if (!i915_gem_object_has_struct_page(obj))
430 return i915_gem_object_pwrite_phys(obj, arg);
431
432 /*
433 * Before we instantiate/pin the backing store for our use, we
434 * can prepopulate the shmemfs filp efficiently using a write into
435 * the pagecache. We avoid the penalty of instantiating all the
436 * pages, important if the user is just writing to a few and never
437 * uses the object on the GPU, and using a direct write into shmemfs
438 * allows it to avoid the cost of retrieving a page (either swapin
439 * or clearing-before-use) before it is overwritten.
440 */
441 if (i915_gem_object_has_pages(obj))
442 return -ENODEV;
443
444 if (obj->mm.madv != I915_MADV_WILLNEED)
445 return -EFAULT;
446
447 /*
448 * Before the pages are instantiated the object is treated as being
449 * in the CPU domain. The pages will be clflushed as required before
450 * use, and we can freely write into the pages directly. If userspace
451 * races pwrite with any other operation; corruption will ensue -
452 * that is userspace's prerogative!
453 */
454
455 remain = arg->size;
456 offset = arg->offset;
457 pg = offset_in_page(offset);
458
459 do {
460 unsigned int len, unwritten;
461 struct page *page;
462 void *data, *vaddr;
463 int err;
464 char __maybe_unused c;
465
466 len = PAGE_SIZE - pg;
467 if (len > remain)
468 len = remain;
469
470 /* Prefault the user page to reduce potential recursion */
471 err = __get_user(c, user_data);
472 if (err)
473 return err;
474
475 err = __get_user(c, user_data + len - 1);
476 if (err)
477 return err;
478
479 err = aops->write_begin(obj->base.filp, mapping, offset, len,
480 &page, &data);
481 if (err < 0)
482 return err;
483
484 vaddr = kmap_atomic(page);
485 unwritten = __copy_from_user_inatomic(vaddr + pg,
486 user_data,
487 len);
488 kunmap_atomic(vaddr);
489
490 err = aops->write_end(obj->base.filp, mapping, offset, len,
491 len - unwritten, page, data);
492 if (err < 0)
493 return err;
494
495 /* We don't handle -EFAULT, leave it to the caller to check */
496 if (unwritten)
497 return -ENODEV;
498
499 remain -= len;
500 user_data += len;
501 offset += len;
502 pg = 0;
503 } while (remain);
504
505 return 0;
506 }
507
508 static int
shmem_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * arg)509 shmem_pread(struct drm_i915_gem_object *obj,
510 const struct drm_i915_gem_pread *arg)
511 {
512 if (!i915_gem_object_has_struct_page(obj))
513 return i915_gem_object_pread_phys(obj, arg);
514
515 return -ENODEV;
516 }
517
shmem_release(struct drm_i915_gem_object * obj)518 static void shmem_release(struct drm_i915_gem_object *obj)
519 {
520 if (i915_gem_object_has_struct_page(obj))
521 i915_gem_object_release_memory_region(obj);
522
523 fput(obj->base.filp);
524 }
525
526 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
527 .name = "i915_gem_object_shmem",
528 .flags = I915_GEM_OBJECT_IS_SHRINKABLE,
529
530 .get_pages = shmem_get_pages,
531 .put_pages = shmem_put_pages,
532 .truncate = shmem_truncate,
533 .shrink = shmem_shrink,
534
535 .pwrite = shmem_pwrite,
536 .pread = shmem_pread,
537
538 .release = shmem_release,
539 };
540
__create_shmem(struct drm_i915_private * i915,struct drm_gem_object * obj,resource_size_t size)541 static int __create_shmem(struct drm_i915_private *i915,
542 struct drm_gem_object *obj,
543 resource_size_t size)
544 {
545 unsigned long flags = VM_NORESERVE;
546 struct file *filp;
547
548 drm_gem_private_object_init(&i915->drm, obj, size);
549
550 /* XXX: The __shmem_file_setup() function returns -EINVAL if size is
551 * greater than MAX_LFS_FILESIZE.
552 * To handle the same error as other code that returns -E2BIG when
553 * the size is too large, we add a code that returns -E2BIG when the
554 * size is larger than the size that can be handled.
555 * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false,
556 * so we only needs to check when BITS_PER_LONG is 64.
557 * If BITS_PER_LONG is 32, E2BIG checks are processed when
558 * i915_gem_object_size_2big() is called before init_object() callback
559 * is called.
560 */
561 if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE)
562 return -E2BIG;
563
564 if (i915->mm.gemfs)
565 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
566 flags);
567 else
568 filp = shmem_file_setup("i915", size, flags);
569 if (IS_ERR(filp))
570 return PTR_ERR(filp);
571
572 obj->filp = filp;
573 return 0;
574 }
575
shmem_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t offset,resource_size_t size,resource_size_t page_size,unsigned int flags)576 static int shmem_object_init(struct intel_memory_region *mem,
577 struct drm_i915_gem_object *obj,
578 resource_size_t offset,
579 resource_size_t size,
580 resource_size_t page_size,
581 unsigned int flags)
582 {
583 static struct lock_class_key lock_class;
584 struct drm_i915_private *i915 = mem->i915;
585 struct address_space *mapping;
586 unsigned int cache_level;
587 gfp_t mask;
588 int ret;
589
590 ret = __create_shmem(i915, &obj->base, size);
591 if (ret)
592 return ret;
593
594 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
595 if (IS_I965GM(i915) || IS_I965G(i915)) {
596 /* 965gm cannot relocate objects above 4GiB. */
597 mask &= ~__GFP_HIGHMEM;
598 mask |= __GFP_DMA32;
599 }
600
601 mapping = obj->base.filp->f_mapping;
602 mapping_set_gfp_mask(mapping, mask);
603 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
604
605 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
606 obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
607 obj->write_domain = I915_GEM_DOMAIN_CPU;
608 obj->read_domains = I915_GEM_DOMAIN_CPU;
609
610 /*
611 * MTL doesn't snoop CPU cache by default for GPU access (namely
612 * 1-way coherency). However some UMD's are currently depending on
613 * that. Make 1-way coherent the default setting for MTL. A follow
614 * up patch will extend the GEM_CREATE uAPI to allow UMD's specify
615 * caching mode at BO creation time
616 */
617 if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)))
618 /* On some devices, we can have the GPU use the LLC (the CPU
619 * cache) for about a 10% performance improvement
620 * compared to uncached. Graphics requests other than
621 * display scanout are coherent with the CPU in
622 * accessing this cache. This means in this mode we
623 * don't need to clflush on the CPU side, and on the
624 * GPU side we only need to flush internal caches to
625 * get data visible to the CPU.
626 *
627 * However, we maintain the display planes as UC, and so
628 * need to rebind when first used as such.
629 */
630 cache_level = I915_CACHE_LLC;
631 else
632 cache_level = I915_CACHE_NONE;
633
634 i915_gem_object_set_cache_coherency(obj, cache_level);
635
636 i915_gem_object_init_memory_region(obj, mem);
637
638 return 0;
639 }
640
641 struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private * i915,resource_size_t size)642 i915_gem_object_create_shmem(struct drm_i915_private *i915,
643 resource_size_t size)
644 {
645 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
646 size, 0, 0);
647 }
648
649 /* Allocate a new GEM object and fill it with the supplied data */
650 struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private * dev_priv,const void * data,resource_size_t size)651 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
652 const void *data, resource_size_t size)
653 {
654 struct drm_i915_gem_object *obj;
655 struct file *file;
656 const struct address_space_operations *aops;
657 resource_size_t offset;
658 int err;
659
660 GEM_WARN_ON(IS_DGFX(dev_priv));
661 obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
662 if (IS_ERR(obj))
663 return obj;
664
665 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
666
667 file = obj->base.filp;
668 aops = file->f_mapping->a_ops;
669 offset = 0;
670 do {
671 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
672 struct page *page;
673 void *pgdata, *vaddr;
674
675 err = aops->write_begin(file, file->f_mapping, offset, len,
676 &page, &pgdata);
677 if (err < 0)
678 goto fail;
679
680 vaddr = kmap(page);
681 memcpy(vaddr, data, len);
682 kunmap(page);
683
684 err = aops->write_end(file, file->f_mapping, offset, len, len,
685 page, pgdata);
686 if (err < 0)
687 goto fail;
688
689 size -= len;
690 data += len;
691 offset += len;
692 } while (size);
693
694 return obj;
695
696 fail:
697 i915_gem_object_put(obj);
698 return ERR_PTR(err);
699 }
700
init_shmem(struct intel_memory_region * mem)701 static int init_shmem(struct intel_memory_region *mem)
702 {
703 i915_gemfs_init(mem->i915);
704 intel_memory_region_set_name(mem, "system");
705
706 return 0; /* We have fallback to the kernel mnt if gemfs init failed. */
707 }
708
release_shmem(struct intel_memory_region * mem)709 static int release_shmem(struct intel_memory_region *mem)
710 {
711 i915_gemfs_fini(mem->i915);
712 return 0;
713 }
714
715 static const struct intel_memory_region_ops shmem_region_ops = {
716 .init = init_shmem,
717 .release = release_shmem,
718 .init_object = shmem_object_init,
719 };
720
i915_gem_shmem_setup(struct drm_i915_private * i915,u16 type,u16 instance)721 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
722 u16 type, u16 instance)
723 {
724 return intel_memory_region_create(i915, 0,
725 totalram_pages() << PAGE_SHIFT,
726 PAGE_SIZE, 0, 0,
727 type, instance,
728 &shmem_region_ops);
729 }
730
i915_gem_object_is_shmem(const struct drm_i915_gem_object * obj)731 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
732 {
733 return obj->ops == &i915_gem_shmem_ops;
734 }
735