1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "sfp.h"
20 #include "swphy.h"
21
22 enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75 };
76
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85 };
86
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92 }
93
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98 };
99
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105 }
106
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119 };
120
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126 }
127
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140 };
141
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147 }
148
149 static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156 };
157
158 static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165 };
166
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187 #define N_FAULT_INIT 5
188 #define N_FAULT 5
189
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 12
195
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
209
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
217
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222 #define SFP_EEPROM_BLOCK_SIZE 16
223
224 struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228
229 struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state;
261
262 struct delayed_work poll;
263 struct delayed_work timeout;
264 struct mutex sm_mutex; /* Protects state machine */
265 unsigned char sm_mod_state;
266 unsigned char sm_mod_tries_init;
267 unsigned char sm_mod_tries;
268 unsigned char sm_dev_state;
269 unsigned short sm_state;
270 unsigned char sm_fault_retries;
271 unsigned char sm_phy_retries;
272
273 struct sfp_eeprom_id id;
274 unsigned int module_power_mW;
275 unsigned int module_t_start_up;
276 unsigned int module_t_wait;
277
278 unsigned int rate_kbd;
279 unsigned int rs_threshold_kbd;
280 unsigned int rs_state_mask;
281
282 bool have_a2;
283 bool tx_fault_ignore;
284
285 const struct sfp_quirk *quirk;
286
287 #if IS_ENABLED(CONFIG_HWMON)
288 struct sfp_diag diag;
289 struct delayed_work hwmon_probe;
290 unsigned int hwmon_tries;
291 struct device *hwmon_dev;
292 char *hwmon_name;
293 #endif
294
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 struct dentry *debugfs_dir;
297 #endif
298 };
299
sff_module_supported(const struct sfp_eeprom_id * id)300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305
306 static const struct sff_data sff_data = {
307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 .module_supported = sff_module_supported,
309 };
310
sfp_module_supported(const struct sfp_eeprom_id * id)311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 if (id->base.phys_id == SFF8024_ID_SFP &&
314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 return true;
316
317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 * as supported based on vendor name and pn match.
320 */
321 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
325 return true;
326
327 return false;
328 }
329
330 static const struct sff_data sfp_data = {
331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 .module_supported = sfp_module_supported,
334 };
335
336 static const struct of_device_id sfp_of_match[] = {
337 { .compatible = "sff,sff", .data = &sff_data, },
338 { .compatible = "sff,sfp", .data = &sfp_data, },
339 { },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342
sfp_fixup_long_startup(struct sfp * sfp)343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347
sfp_fixup_ignore_tx_fault(struct sfp * sfp)348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 sfp->tx_fault_ignore = true;
351 }
352
353 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp * sfp)354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359
sfp_fixup_rollball_proto(struct sfp * sfp,unsigned int secs)360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365
sfp_fixup_fs_10gt(struct sfp * sfp)366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 sfp_fixup_10gbaset_30m(sfp);
369
370 // These SFPs need 4 seconds before the PHY can be accessed
371 sfp_fixup_rollball_proto(sfp, 4);
372 }
373
sfp_fixup_halny_gsfp(struct sfp * sfp)374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 /* Ignore the TX_FAULT and LOS signals on this module.
377 * these are possibly used for other purposes on this
378 * module, e.g. a serial port.
379 */
380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382
sfp_fixup_rollball(struct sfp * sfp)383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 // Rollball SFPs need 25 seconds before the PHY can be accessed
386 sfp_fixup_rollball_proto(sfp, 25);
387 }
388
sfp_fixup_rollball_cc(struct sfp * sfp)389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 sfp_fixup_rollball(sfp);
392
393 /* Some RollBall SFPs may have wrong (zero) extended compliance code
394 * burned in EEPROM. For PHY probing we need the correct one.
395 */
396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 unsigned long *modes,
401 unsigned long *interfaces)
402 {
403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 unsigned long *modes,
409 unsigned long *interfaces)
410 {
411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 unsigned long *modes,
416 unsigned long *interfaces)
417 {
418 /* Copper 2.5G SFP */
419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
427 {
428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 * types including 10G Ethernet which is not truth. So clear all claimed
430 * modes and set only one mode which module supports: 1000baseX_Full.
431 */
432 linkmode_zero(modes);
433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440
441 static const struct sfp_quirk sfp_quirks[] = {
442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 // report 2500MBd NRZ in their EEPROM
444 SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
445 sfp_fixup_ignore_tx_fault),
446
447 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
448 // NRZ in their EEPROM
449 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
450 sfp_fixup_long_startup),
451
452 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
453 // Rollball protocol to talk to the PHY.
454 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
455
456 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
457 // NRZ in their EEPROM
458 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
459 sfp_fixup_ignore_tx_fault),
460
461 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
462
463 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
464 // 2600MBd in their EERPOM
465 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
466
467 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
468 // their EEPROM
469 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
470 sfp_fixup_ignore_tx_fault),
471
472 // FS 2.5G Base-T
473 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
474
475 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
476 // 2500MBd NRZ in their EEPROM
477 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
478
479 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
480
481 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
482 // Rollball protocol to talk to the PHY.
483 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
484 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
485
486 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
487 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
488
489 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
490 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
491 SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-D", sfp_quirk_2500basex),
492 SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-U", sfp_quirk_2500basex),
493 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
494 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
495 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
496 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
497 };
498
sfp_strlen(const char * str,size_t maxlen)499 static size_t sfp_strlen(const char *str, size_t maxlen)
500 {
501 size_t size, i;
502
503 /* Trailing characters should be filled with space chars, but
504 * some manufacturers can't read SFF-8472 and use NUL.
505 */
506 for (i = 0, size = 0; i < maxlen; i++)
507 if (str[i] != ' ' && str[i] != '\0')
508 size = i + 1;
509
510 return size;
511 }
512
sfp_match(const char * qs,const char * str,size_t len)513 static bool sfp_match(const char *qs, const char *str, size_t len)
514 {
515 if (!qs)
516 return true;
517 if (strlen(qs) != len)
518 return false;
519 return !strncmp(qs, str, len);
520 }
521
sfp_lookup_quirk(const struct sfp_eeprom_id * id)522 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
523 {
524 const struct sfp_quirk *q;
525 unsigned int i;
526 size_t vs, ps;
527
528 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
529 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
530
531 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
532 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
533 sfp_match(q->part, id->base.vendor_pn, ps))
534 return q;
535
536 return NULL;
537 }
538
539 static unsigned long poll_jiffies;
540
sfp_gpio_get_state(struct sfp * sfp)541 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
542 {
543 unsigned int i, state, v;
544
545 for (i = state = 0; i < GPIO_MAX; i++) {
546 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
547 continue;
548
549 v = gpiod_get_value_cansleep(sfp->gpio[i]);
550 if (v)
551 state |= BIT(i);
552 }
553
554 return state;
555 }
556
sff_gpio_get_state(struct sfp * sfp)557 static unsigned int sff_gpio_get_state(struct sfp *sfp)
558 {
559 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
560 }
561
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)562 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
563 {
564 unsigned int drive;
565
566 if (state & SFP_F_PRESENT)
567 /* If the module is present, drive the requested signals */
568 drive = sfp->state_hw_drive;
569 else
570 /* Otherwise, let them float to the pull-ups */
571 drive = 0;
572
573 if (sfp->gpio[GPIO_TX_DISABLE]) {
574 if (drive & SFP_F_TX_DISABLE)
575 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
576 state & SFP_F_TX_DISABLE);
577 else
578 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
579 }
580
581 if (sfp->gpio[GPIO_RS0]) {
582 if (drive & SFP_F_RS0)
583 gpiod_direction_output(sfp->gpio[GPIO_RS0],
584 state & SFP_F_RS0);
585 else
586 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
587 }
588
589 if (sfp->gpio[GPIO_RS1]) {
590 if (drive & SFP_F_RS1)
591 gpiod_direction_output(sfp->gpio[GPIO_RS1],
592 state & SFP_F_RS1);
593 else
594 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
595 }
596 }
597
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)598 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
599 size_t len)
600 {
601 struct i2c_msg msgs[2];
602 u8 bus_addr = a2 ? 0x51 : 0x50;
603 size_t block_size = sfp->i2c_block_size;
604 size_t this_len;
605 int ret;
606
607 msgs[0].addr = bus_addr;
608 msgs[0].flags = 0;
609 msgs[0].len = 1;
610 msgs[0].buf = &dev_addr;
611 msgs[1].addr = bus_addr;
612 msgs[1].flags = I2C_M_RD;
613 msgs[1].len = len;
614 msgs[1].buf = buf;
615
616 while (len) {
617 this_len = len;
618 if (this_len > block_size)
619 this_len = block_size;
620
621 msgs[1].len = this_len;
622
623 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
624 if (ret < 0)
625 return ret;
626
627 if (ret != ARRAY_SIZE(msgs))
628 break;
629
630 msgs[1].buf += this_len;
631 dev_addr += this_len;
632 len -= this_len;
633 }
634
635 return msgs[1].buf - (u8 *)buf;
636 }
637
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)638 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
639 size_t len)
640 {
641 struct i2c_msg msgs[1];
642 u8 bus_addr = a2 ? 0x51 : 0x50;
643 int ret;
644
645 msgs[0].addr = bus_addr;
646 msgs[0].flags = 0;
647 msgs[0].len = 1 + len;
648 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
649 if (!msgs[0].buf)
650 return -ENOMEM;
651
652 msgs[0].buf[0] = dev_addr;
653 memcpy(&msgs[0].buf[1], buf, len);
654
655 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
656
657 kfree(msgs[0].buf);
658
659 if (ret < 0)
660 return ret;
661
662 return ret == ARRAY_SIZE(msgs) ? len : 0;
663 }
664
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)665 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
666 {
667 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
668 return -EINVAL;
669
670 sfp->i2c = i2c;
671 sfp->read = sfp_i2c_read;
672 sfp->write = sfp_i2c_write;
673
674 return 0;
675 }
676
sfp_i2c_mdiobus_create(struct sfp * sfp)677 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
678 {
679 struct mii_bus *i2c_mii;
680 int ret;
681
682 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
683 if (IS_ERR(i2c_mii))
684 return PTR_ERR(i2c_mii);
685
686 i2c_mii->name = "SFP I2C Bus";
687 i2c_mii->phy_mask = ~0;
688
689 ret = mdiobus_register(i2c_mii);
690 if (ret < 0) {
691 mdiobus_free(i2c_mii);
692 return ret;
693 }
694
695 sfp->i2c_mii = i2c_mii;
696
697 return 0;
698 }
699
sfp_i2c_mdiobus_destroy(struct sfp * sfp)700 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
701 {
702 mdiobus_unregister(sfp->i2c_mii);
703 sfp->i2c_mii = NULL;
704 }
705
706 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)707 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
708 {
709 return sfp->read(sfp, a2, addr, buf, len);
710 }
711
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)712 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
713 {
714 return sfp->write(sfp, a2, addr, buf, len);
715 }
716
sfp_modify_u8(struct sfp * sfp,bool a2,u8 addr,u8 mask,u8 val)717 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
718 {
719 int ret;
720 u8 old, v;
721
722 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
723 if (ret != sizeof(old))
724 return ret;
725
726 v = (old & ~mask) | (val & mask);
727 if (v == old)
728 return sizeof(v);
729
730 return sfp_write(sfp, a2, addr, &v, sizeof(v));
731 }
732
sfp_soft_get_state(struct sfp * sfp)733 static unsigned int sfp_soft_get_state(struct sfp *sfp)
734 {
735 unsigned int state = 0;
736 u8 status;
737 int ret;
738
739 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
740 if (ret == sizeof(status)) {
741 if (status & SFP_STATUS_RX_LOS)
742 state |= SFP_F_LOS;
743 if (status & SFP_STATUS_TX_FAULT)
744 state |= SFP_F_TX_FAULT;
745 } else {
746 dev_err_ratelimited(sfp->dev,
747 "failed to read SFP soft status: %pe\n",
748 ERR_PTR(ret));
749 /* Preserve the current state */
750 state = sfp->state;
751 }
752
753 return state & sfp->state_soft_mask;
754 }
755
sfp_soft_set_state(struct sfp * sfp,unsigned int state,unsigned int soft)756 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
757 unsigned int soft)
758 {
759 u8 mask = 0;
760 u8 val = 0;
761
762 if (soft & SFP_F_TX_DISABLE)
763 mask |= SFP_STATUS_TX_DISABLE_FORCE;
764 if (state & SFP_F_TX_DISABLE)
765 val |= SFP_STATUS_TX_DISABLE_FORCE;
766
767 if (soft & SFP_F_RS0)
768 mask |= SFP_STATUS_RS0_SELECT;
769 if (state & SFP_F_RS0)
770 val |= SFP_STATUS_RS0_SELECT;
771
772 if (mask)
773 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
774
775 val = mask = 0;
776 if (soft & SFP_F_RS1)
777 mask |= SFP_EXT_STATUS_RS1_SELECT;
778 if (state & SFP_F_RS1)
779 val |= SFP_EXT_STATUS_RS1_SELECT;
780
781 if (mask)
782 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
783 }
784
sfp_soft_start_poll(struct sfp * sfp)785 static void sfp_soft_start_poll(struct sfp *sfp)
786 {
787 const struct sfp_eeprom_id *id = &sfp->id;
788 unsigned int mask = 0;
789
790 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
791 mask |= SFP_F_TX_DISABLE;
792 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
793 mask |= SFP_F_TX_FAULT;
794 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
795 mask |= SFP_F_LOS;
796 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
797 mask |= sfp->rs_state_mask;
798
799 mutex_lock(&sfp->st_mutex);
800 // Poll the soft state for hardware pins we want to ignore
801 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
802
803 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
804 !sfp->need_poll)
805 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
806 mutex_unlock(&sfp->st_mutex);
807 }
808
sfp_soft_stop_poll(struct sfp * sfp)809 static void sfp_soft_stop_poll(struct sfp *sfp)
810 {
811 mutex_lock(&sfp->st_mutex);
812 sfp->state_soft_mask = 0;
813 mutex_unlock(&sfp->st_mutex);
814 }
815
816 /* sfp_get_state() - must be called with st_mutex held, or in the
817 * initialisation path.
818 */
sfp_get_state(struct sfp * sfp)819 static unsigned int sfp_get_state(struct sfp *sfp)
820 {
821 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
822 unsigned int state;
823
824 state = sfp->get_state(sfp) & sfp->state_hw_mask;
825 if (state & SFP_F_PRESENT && soft)
826 state |= sfp_soft_get_state(sfp);
827
828 return state;
829 }
830
831 /* sfp_set_state() - must be called with st_mutex held, or in the
832 * initialisation path.
833 */
sfp_set_state(struct sfp * sfp,unsigned int state)834 static void sfp_set_state(struct sfp *sfp, unsigned int state)
835 {
836 unsigned int soft;
837
838 sfp->set_state(sfp, state);
839
840 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
841 if (state & SFP_F_PRESENT && soft)
842 sfp_soft_set_state(sfp, state, soft);
843 }
844
sfp_mod_state(struct sfp * sfp,unsigned int mask,unsigned int set)845 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
846 {
847 mutex_lock(&sfp->st_mutex);
848 sfp->state = (sfp->state & ~mask) | set;
849 sfp_set_state(sfp, sfp->state);
850 mutex_unlock(&sfp->st_mutex);
851 }
852
sfp_check(void * buf,size_t len)853 static unsigned int sfp_check(void *buf, size_t len)
854 {
855 u8 *p, check;
856
857 for (p = buf, check = 0; len; p++, len--)
858 check += *p;
859
860 return check;
861 }
862
863 /* hwmon */
864 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)865 static umode_t sfp_hwmon_is_visible(const void *data,
866 enum hwmon_sensor_types type,
867 u32 attr, int channel)
868 {
869 const struct sfp *sfp = data;
870
871 switch (type) {
872 case hwmon_temp:
873 switch (attr) {
874 case hwmon_temp_min_alarm:
875 case hwmon_temp_max_alarm:
876 case hwmon_temp_lcrit_alarm:
877 case hwmon_temp_crit_alarm:
878 case hwmon_temp_min:
879 case hwmon_temp_max:
880 case hwmon_temp_lcrit:
881 case hwmon_temp_crit:
882 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
883 return 0;
884 fallthrough;
885 case hwmon_temp_input:
886 case hwmon_temp_label:
887 return 0444;
888 default:
889 return 0;
890 }
891 case hwmon_in:
892 switch (attr) {
893 case hwmon_in_min_alarm:
894 case hwmon_in_max_alarm:
895 case hwmon_in_lcrit_alarm:
896 case hwmon_in_crit_alarm:
897 case hwmon_in_min:
898 case hwmon_in_max:
899 case hwmon_in_lcrit:
900 case hwmon_in_crit:
901 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
902 return 0;
903 fallthrough;
904 case hwmon_in_input:
905 case hwmon_in_label:
906 return 0444;
907 default:
908 return 0;
909 }
910 case hwmon_curr:
911 switch (attr) {
912 case hwmon_curr_min_alarm:
913 case hwmon_curr_max_alarm:
914 case hwmon_curr_lcrit_alarm:
915 case hwmon_curr_crit_alarm:
916 case hwmon_curr_min:
917 case hwmon_curr_max:
918 case hwmon_curr_lcrit:
919 case hwmon_curr_crit:
920 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
921 return 0;
922 fallthrough;
923 case hwmon_curr_input:
924 case hwmon_curr_label:
925 return 0444;
926 default:
927 return 0;
928 }
929 case hwmon_power:
930 /* External calibration of receive power requires
931 * floating point arithmetic. Doing that in the kernel
932 * is not easy, so just skip it. If the module does
933 * not require external calibration, we can however
934 * show receiver power, since FP is then not needed.
935 */
936 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
937 channel == 1)
938 return 0;
939 switch (attr) {
940 case hwmon_power_min_alarm:
941 case hwmon_power_max_alarm:
942 case hwmon_power_lcrit_alarm:
943 case hwmon_power_crit_alarm:
944 case hwmon_power_min:
945 case hwmon_power_max:
946 case hwmon_power_lcrit:
947 case hwmon_power_crit:
948 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
949 return 0;
950 fallthrough;
951 case hwmon_power_input:
952 case hwmon_power_label:
953 return 0444;
954 default:
955 return 0;
956 }
957 default:
958 return 0;
959 }
960 }
961
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)962 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
963 {
964 __be16 val;
965 int err;
966
967 err = sfp_read(sfp, true, reg, &val, sizeof(val));
968 if (err < 0)
969 return err;
970
971 *value = be16_to_cpu(val);
972
973 return 0;
974 }
975
sfp_hwmon_to_rx_power(long * value)976 static void sfp_hwmon_to_rx_power(long *value)
977 {
978 *value = DIV_ROUND_CLOSEST(*value, 10);
979 }
980
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)981 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
982 long *value)
983 {
984 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
985 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
986 }
987
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)988 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
989 {
990 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
991 be16_to_cpu(sfp->diag.cal_t_offset), value);
992
993 if (*value >= 0x8000)
994 *value -= 0x10000;
995
996 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
997 }
998
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)999 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1000 {
1001 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1002 be16_to_cpu(sfp->diag.cal_v_offset), value);
1003
1004 *value = DIV_ROUND_CLOSEST(*value, 10);
1005 }
1006
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)1007 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1008 {
1009 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1010 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1011
1012 *value = DIV_ROUND_CLOSEST(*value, 500);
1013 }
1014
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)1015 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1016 {
1017 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1018 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1019
1020 *value = DIV_ROUND_CLOSEST(*value, 10);
1021 }
1022
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)1023 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1024 {
1025 int err;
1026
1027 err = sfp_hwmon_read_sensor(sfp, reg, value);
1028 if (err < 0)
1029 return err;
1030
1031 sfp_hwmon_calibrate_temp(sfp, value);
1032
1033 return 0;
1034 }
1035
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)1036 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1037 {
1038 int err;
1039
1040 err = sfp_hwmon_read_sensor(sfp, reg, value);
1041 if (err < 0)
1042 return err;
1043
1044 sfp_hwmon_calibrate_vcc(sfp, value);
1045
1046 return 0;
1047 }
1048
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)1049 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1050 {
1051 int err;
1052
1053 err = sfp_hwmon_read_sensor(sfp, reg, value);
1054 if (err < 0)
1055 return err;
1056
1057 sfp_hwmon_calibrate_bias(sfp, value);
1058
1059 return 0;
1060 }
1061
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)1062 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1063 {
1064 int err;
1065
1066 err = sfp_hwmon_read_sensor(sfp, reg, value);
1067 if (err < 0)
1068 return err;
1069
1070 sfp_hwmon_calibrate_tx_power(sfp, value);
1071
1072 return 0;
1073 }
1074
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)1075 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1076 {
1077 int err;
1078
1079 err = sfp_hwmon_read_sensor(sfp, reg, value);
1080 if (err < 0)
1081 return err;
1082
1083 sfp_hwmon_to_rx_power(value);
1084
1085 return 0;
1086 }
1087
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)1088 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1089 {
1090 u8 status;
1091 int err;
1092
1093 switch (attr) {
1094 case hwmon_temp_input:
1095 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1096
1097 case hwmon_temp_lcrit:
1098 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1099 sfp_hwmon_calibrate_temp(sfp, value);
1100 return 0;
1101
1102 case hwmon_temp_min:
1103 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1104 sfp_hwmon_calibrate_temp(sfp, value);
1105 return 0;
1106 case hwmon_temp_max:
1107 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1108 sfp_hwmon_calibrate_temp(sfp, value);
1109 return 0;
1110
1111 case hwmon_temp_crit:
1112 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1113 sfp_hwmon_calibrate_temp(sfp, value);
1114 return 0;
1115
1116 case hwmon_temp_lcrit_alarm:
1117 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1118 if (err < 0)
1119 return err;
1120
1121 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1122 return 0;
1123
1124 case hwmon_temp_min_alarm:
1125 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1126 if (err < 0)
1127 return err;
1128
1129 *value = !!(status & SFP_WARN0_TEMP_LOW);
1130 return 0;
1131
1132 case hwmon_temp_max_alarm:
1133 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1134 if (err < 0)
1135 return err;
1136
1137 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1138 return 0;
1139
1140 case hwmon_temp_crit_alarm:
1141 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1142 if (err < 0)
1143 return err;
1144
1145 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1146 return 0;
1147 default:
1148 return -EOPNOTSUPP;
1149 }
1150
1151 return -EOPNOTSUPP;
1152 }
1153
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)1154 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1155 {
1156 u8 status;
1157 int err;
1158
1159 switch (attr) {
1160 case hwmon_in_input:
1161 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1162
1163 case hwmon_in_lcrit:
1164 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1165 sfp_hwmon_calibrate_vcc(sfp, value);
1166 return 0;
1167
1168 case hwmon_in_min:
1169 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1170 sfp_hwmon_calibrate_vcc(sfp, value);
1171 return 0;
1172
1173 case hwmon_in_max:
1174 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1175 sfp_hwmon_calibrate_vcc(sfp, value);
1176 return 0;
1177
1178 case hwmon_in_crit:
1179 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1180 sfp_hwmon_calibrate_vcc(sfp, value);
1181 return 0;
1182
1183 case hwmon_in_lcrit_alarm:
1184 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1185 if (err < 0)
1186 return err;
1187
1188 *value = !!(status & SFP_ALARM0_VCC_LOW);
1189 return 0;
1190
1191 case hwmon_in_min_alarm:
1192 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1193 if (err < 0)
1194 return err;
1195
1196 *value = !!(status & SFP_WARN0_VCC_LOW);
1197 return 0;
1198
1199 case hwmon_in_max_alarm:
1200 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1201 if (err < 0)
1202 return err;
1203
1204 *value = !!(status & SFP_WARN0_VCC_HIGH);
1205 return 0;
1206
1207 case hwmon_in_crit_alarm:
1208 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1209 if (err < 0)
1210 return err;
1211
1212 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1213 return 0;
1214 default:
1215 return -EOPNOTSUPP;
1216 }
1217
1218 return -EOPNOTSUPP;
1219 }
1220
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1221 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1222 {
1223 u8 status;
1224 int err;
1225
1226 switch (attr) {
1227 case hwmon_curr_input:
1228 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1229
1230 case hwmon_curr_lcrit:
1231 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1232 sfp_hwmon_calibrate_bias(sfp, value);
1233 return 0;
1234
1235 case hwmon_curr_min:
1236 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1237 sfp_hwmon_calibrate_bias(sfp, value);
1238 return 0;
1239
1240 case hwmon_curr_max:
1241 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1242 sfp_hwmon_calibrate_bias(sfp, value);
1243 return 0;
1244
1245 case hwmon_curr_crit:
1246 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1247 sfp_hwmon_calibrate_bias(sfp, value);
1248 return 0;
1249
1250 case hwmon_curr_lcrit_alarm:
1251 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1252 if (err < 0)
1253 return err;
1254
1255 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1256 return 0;
1257
1258 case hwmon_curr_min_alarm:
1259 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1260 if (err < 0)
1261 return err;
1262
1263 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1264 return 0;
1265
1266 case hwmon_curr_max_alarm:
1267 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1268 if (err < 0)
1269 return err;
1270
1271 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1272 return 0;
1273
1274 case hwmon_curr_crit_alarm:
1275 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1276 if (err < 0)
1277 return err;
1278
1279 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1280 return 0;
1281 default:
1282 return -EOPNOTSUPP;
1283 }
1284
1285 return -EOPNOTSUPP;
1286 }
1287
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1288 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1289 {
1290 u8 status;
1291 int err;
1292
1293 switch (attr) {
1294 case hwmon_power_input:
1295 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1296
1297 case hwmon_power_lcrit:
1298 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1299 sfp_hwmon_calibrate_tx_power(sfp, value);
1300 return 0;
1301
1302 case hwmon_power_min:
1303 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1304 sfp_hwmon_calibrate_tx_power(sfp, value);
1305 return 0;
1306
1307 case hwmon_power_max:
1308 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1309 sfp_hwmon_calibrate_tx_power(sfp, value);
1310 return 0;
1311
1312 case hwmon_power_crit:
1313 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1314 sfp_hwmon_calibrate_tx_power(sfp, value);
1315 return 0;
1316
1317 case hwmon_power_lcrit_alarm:
1318 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1319 if (err < 0)
1320 return err;
1321
1322 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1323 return 0;
1324
1325 case hwmon_power_min_alarm:
1326 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1327 if (err < 0)
1328 return err;
1329
1330 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1331 return 0;
1332
1333 case hwmon_power_max_alarm:
1334 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1335 if (err < 0)
1336 return err;
1337
1338 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1339 return 0;
1340
1341 case hwmon_power_crit_alarm:
1342 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1343 if (err < 0)
1344 return err;
1345
1346 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1347 return 0;
1348 default:
1349 return -EOPNOTSUPP;
1350 }
1351
1352 return -EOPNOTSUPP;
1353 }
1354
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1355 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1356 {
1357 u8 status;
1358 int err;
1359
1360 switch (attr) {
1361 case hwmon_power_input:
1362 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1363
1364 case hwmon_power_lcrit:
1365 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1366 sfp_hwmon_to_rx_power(value);
1367 return 0;
1368
1369 case hwmon_power_min:
1370 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1371 sfp_hwmon_to_rx_power(value);
1372 return 0;
1373
1374 case hwmon_power_max:
1375 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1376 sfp_hwmon_to_rx_power(value);
1377 return 0;
1378
1379 case hwmon_power_crit:
1380 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1381 sfp_hwmon_to_rx_power(value);
1382 return 0;
1383
1384 case hwmon_power_lcrit_alarm:
1385 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1386 if (err < 0)
1387 return err;
1388
1389 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1390 return 0;
1391
1392 case hwmon_power_min_alarm:
1393 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1394 if (err < 0)
1395 return err;
1396
1397 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1398 return 0;
1399
1400 case hwmon_power_max_alarm:
1401 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1402 if (err < 0)
1403 return err;
1404
1405 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1406 return 0;
1407
1408 case hwmon_power_crit_alarm:
1409 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1410 if (err < 0)
1411 return err;
1412
1413 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1414 return 0;
1415 default:
1416 return -EOPNOTSUPP;
1417 }
1418
1419 return -EOPNOTSUPP;
1420 }
1421
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1422 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1423 u32 attr, int channel, long *value)
1424 {
1425 struct sfp *sfp = dev_get_drvdata(dev);
1426
1427 switch (type) {
1428 case hwmon_temp:
1429 return sfp_hwmon_temp(sfp, attr, value);
1430 case hwmon_in:
1431 return sfp_hwmon_vcc(sfp, attr, value);
1432 case hwmon_curr:
1433 return sfp_hwmon_bias(sfp, attr, value);
1434 case hwmon_power:
1435 switch (channel) {
1436 case 0:
1437 return sfp_hwmon_tx_power(sfp, attr, value);
1438 case 1:
1439 return sfp_hwmon_rx_power(sfp, attr, value);
1440 default:
1441 return -EOPNOTSUPP;
1442 }
1443 default:
1444 return -EOPNOTSUPP;
1445 }
1446 }
1447
1448 static const char *const sfp_hwmon_power_labels[] = {
1449 "TX_power",
1450 "RX_power",
1451 };
1452
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1453 static int sfp_hwmon_read_string(struct device *dev,
1454 enum hwmon_sensor_types type,
1455 u32 attr, int channel, const char **str)
1456 {
1457 switch (type) {
1458 case hwmon_curr:
1459 switch (attr) {
1460 case hwmon_curr_label:
1461 *str = "bias";
1462 return 0;
1463 default:
1464 return -EOPNOTSUPP;
1465 }
1466 break;
1467 case hwmon_temp:
1468 switch (attr) {
1469 case hwmon_temp_label:
1470 *str = "temperature";
1471 return 0;
1472 default:
1473 return -EOPNOTSUPP;
1474 }
1475 break;
1476 case hwmon_in:
1477 switch (attr) {
1478 case hwmon_in_label:
1479 *str = "VCC";
1480 return 0;
1481 default:
1482 return -EOPNOTSUPP;
1483 }
1484 break;
1485 case hwmon_power:
1486 switch (attr) {
1487 case hwmon_power_label:
1488 *str = sfp_hwmon_power_labels[channel];
1489 return 0;
1490 default:
1491 return -EOPNOTSUPP;
1492 }
1493 break;
1494 default:
1495 return -EOPNOTSUPP;
1496 }
1497
1498 return -EOPNOTSUPP;
1499 }
1500
1501 static const struct hwmon_ops sfp_hwmon_ops = {
1502 .is_visible = sfp_hwmon_is_visible,
1503 .read = sfp_hwmon_read,
1504 .read_string = sfp_hwmon_read_string,
1505 };
1506
1507 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1508 HWMON_CHANNEL_INFO(chip,
1509 HWMON_C_REGISTER_TZ),
1510 HWMON_CHANNEL_INFO(in,
1511 HWMON_I_INPUT |
1512 HWMON_I_MAX | HWMON_I_MIN |
1513 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1514 HWMON_I_CRIT | HWMON_I_LCRIT |
1515 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1516 HWMON_I_LABEL),
1517 HWMON_CHANNEL_INFO(temp,
1518 HWMON_T_INPUT |
1519 HWMON_T_MAX | HWMON_T_MIN |
1520 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1521 HWMON_T_CRIT | HWMON_T_LCRIT |
1522 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1523 HWMON_T_LABEL),
1524 HWMON_CHANNEL_INFO(curr,
1525 HWMON_C_INPUT |
1526 HWMON_C_MAX | HWMON_C_MIN |
1527 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1528 HWMON_C_CRIT | HWMON_C_LCRIT |
1529 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1530 HWMON_C_LABEL),
1531 HWMON_CHANNEL_INFO(power,
1532 /* Transmit power */
1533 HWMON_P_INPUT |
1534 HWMON_P_MAX | HWMON_P_MIN |
1535 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1536 HWMON_P_CRIT | HWMON_P_LCRIT |
1537 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1538 HWMON_P_LABEL,
1539 /* Receive power */
1540 HWMON_P_INPUT |
1541 HWMON_P_MAX | HWMON_P_MIN |
1542 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1543 HWMON_P_CRIT | HWMON_P_LCRIT |
1544 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1545 HWMON_P_LABEL),
1546 NULL,
1547 };
1548
1549 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1550 .ops = &sfp_hwmon_ops,
1551 .info = sfp_hwmon_info,
1552 };
1553
sfp_hwmon_probe(struct work_struct * work)1554 static void sfp_hwmon_probe(struct work_struct *work)
1555 {
1556 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1557 int err;
1558
1559 /* hwmon interface needs to access 16bit registers in atomic way to
1560 * guarantee coherency of the diagnostic monitoring data. If it is not
1561 * possible to guarantee coherency because EEPROM is broken in such way
1562 * that does not support atomic 16bit read operation then we have to
1563 * skip registration of hwmon device.
1564 */
1565 if (sfp->i2c_block_size < 2) {
1566 dev_info(sfp->dev,
1567 "skipping hwmon device registration due to broken EEPROM\n");
1568 dev_info(sfp->dev,
1569 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1570 return;
1571 }
1572
1573 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1574 if (err < 0) {
1575 if (sfp->hwmon_tries--) {
1576 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1577 T_PROBE_RETRY_SLOW);
1578 } else {
1579 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1580 ERR_PTR(err));
1581 }
1582 return;
1583 }
1584
1585 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1586 if (IS_ERR(sfp->hwmon_name)) {
1587 dev_err(sfp->dev, "out of memory for hwmon name\n");
1588 return;
1589 }
1590
1591 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1592 sfp->hwmon_name, sfp,
1593 &sfp_hwmon_chip_info,
1594 NULL);
1595 if (IS_ERR(sfp->hwmon_dev))
1596 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1597 PTR_ERR(sfp->hwmon_dev));
1598 }
1599
sfp_hwmon_insert(struct sfp * sfp)1600 static int sfp_hwmon_insert(struct sfp *sfp)
1601 {
1602 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1603 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1604 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1605 }
1606
1607 return 0;
1608 }
1609
sfp_hwmon_remove(struct sfp * sfp)1610 static void sfp_hwmon_remove(struct sfp *sfp)
1611 {
1612 cancel_delayed_work_sync(&sfp->hwmon_probe);
1613 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1614 hwmon_device_unregister(sfp->hwmon_dev);
1615 sfp->hwmon_dev = NULL;
1616 kfree(sfp->hwmon_name);
1617 }
1618 }
1619
sfp_hwmon_init(struct sfp * sfp)1620 static int sfp_hwmon_init(struct sfp *sfp)
1621 {
1622 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1623
1624 return 0;
1625 }
1626
sfp_hwmon_exit(struct sfp * sfp)1627 static void sfp_hwmon_exit(struct sfp *sfp)
1628 {
1629 cancel_delayed_work_sync(&sfp->hwmon_probe);
1630 }
1631 #else
sfp_hwmon_insert(struct sfp * sfp)1632 static int sfp_hwmon_insert(struct sfp *sfp)
1633 {
1634 return 0;
1635 }
1636
sfp_hwmon_remove(struct sfp * sfp)1637 static void sfp_hwmon_remove(struct sfp *sfp)
1638 {
1639 }
1640
sfp_hwmon_init(struct sfp * sfp)1641 static int sfp_hwmon_init(struct sfp *sfp)
1642 {
1643 return 0;
1644 }
1645
sfp_hwmon_exit(struct sfp * sfp)1646 static void sfp_hwmon_exit(struct sfp *sfp)
1647 {
1648 }
1649 #endif
1650
1651 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1652 static void sfp_module_tx_disable(struct sfp *sfp)
1653 {
1654 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1655 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1656 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1657 }
1658
sfp_module_tx_enable(struct sfp * sfp)1659 static void sfp_module_tx_enable(struct sfp *sfp)
1660 {
1661 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1662 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1663 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1664 }
1665
1666 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1667 static int sfp_debug_state_show(struct seq_file *s, void *data)
1668 {
1669 struct sfp *sfp = s->private;
1670
1671 seq_printf(s, "Module state: %s\n",
1672 mod_state_to_str(sfp->sm_mod_state));
1673 seq_printf(s, "Module probe attempts: %d %d\n",
1674 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1675 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1676 seq_printf(s, "Device state: %s\n",
1677 dev_state_to_str(sfp->sm_dev_state));
1678 seq_printf(s, "Main state: %s\n",
1679 sm_state_to_str(sfp->sm_state));
1680 seq_printf(s, "Fault recovery remaining retries: %d\n",
1681 sfp->sm_fault_retries);
1682 seq_printf(s, "PHY probe remaining retries: %d\n",
1683 sfp->sm_phy_retries);
1684 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1685 seq_printf(s, "Rate select threshold: %u kBd\n",
1686 sfp->rs_threshold_kbd);
1687 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1688 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1689 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1690 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1691 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1692 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1693 return 0;
1694 }
1695 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1696
sfp_debugfs_init(struct sfp * sfp)1697 static void sfp_debugfs_init(struct sfp *sfp)
1698 {
1699 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1700
1701 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1702 &sfp_debug_state_fops);
1703 }
1704
sfp_debugfs_exit(struct sfp * sfp)1705 static void sfp_debugfs_exit(struct sfp *sfp)
1706 {
1707 debugfs_remove_recursive(sfp->debugfs_dir);
1708 }
1709 #else
sfp_debugfs_init(struct sfp * sfp)1710 static void sfp_debugfs_init(struct sfp *sfp)
1711 {
1712 }
1713
sfp_debugfs_exit(struct sfp * sfp)1714 static void sfp_debugfs_exit(struct sfp *sfp)
1715 {
1716 }
1717 #endif
1718
sfp_module_tx_fault_reset(struct sfp * sfp)1719 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1720 {
1721 unsigned int state;
1722
1723 mutex_lock(&sfp->st_mutex);
1724 state = sfp->state;
1725 if (!(state & SFP_F_TX_DISABLE)) {
1726 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1727
1728 udelay(T_RESET_US);
1729
1730 sfp_set_state(sfp, state);
1731 }
1732 mutex_unlock(&sfp->st_mutex);
1733 }
1734
1735 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1736 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1737 {
1738 if (timeout)
1739 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1740 timeout);
1741 else
1742 cancel_delayed_work(&sfp->timeout);
1743 }
1744
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1745 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1746 unsigned int timeout)
1747 {
1748 sfp->sm_state = state;
1749 sfp_sm_set_timer(sfp, timeout);
1750 }
1751
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1752 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1753 unsigned int timeout)
1754 {
1755 sfp->sm_mod_state = state;
1756 sfp_sm_set_timer(sfp, timeout);
1757 }
1758
sfp_sm_phy_detach(struct sfp * sfp)1759 static void sfp_sm_phy_detach(struct sfp *sfp)
1760 {
1761 sfp_remove_phy(sfp->sfp_bus);
1762 phy_device_remove(sfp->mod_phy);
1763 phy_device_free(sfp->mod_phy);
1764 sfp->mod_phy = NULL;
1765 }
1766
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1767 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1768 {
1769 struct phy_device *phy;
1770 int err;
1771
1772 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1773 if (phy == ERR_PTR(-ENODEV))
1774 return PTR_ERR(phy);
1775 if (IS_ERR(phy)) {
1776 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1777 return PTR_ERR(phy);
1778 }
1779
1780 /* Mark this PHY as being on a SFP module */
1781 phy->is_on_sfp_module = true;
1782
1783 err = phy_device_register(phy);
1784 if (err) {
1785 phy_device_free(phy);
1786 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1787 ERR_PTR(err));
1788 return err;
1789 }
1790
1791 err = sfp_add_phy(sfp->sfp_bus, phy);
1792 if (err) {
1793 phy_device_remove(phy);
1794 phy_device_free(phy);
1795 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1796 return err;
1797 }
1798
1799 sfp->mod_phy = phy;
1800
1801 return 0;
1802 }
1803
sfp_sm_link_up(struct sfp * sfp)1804 static void sfp_sm_link_up(struct sfp *sfp)
1805 {
1806 sfp_link_up(sfp->sfp_bus);
1807 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1808 }
1809
sfp_sm_link_down(struct sfp * sfp)1810 static void sfp_sm_link_down(struct sfp *sfp)
1811 {
1812 sfp_link_down(sfp->sfp_bus);
1813 }
1814
sfp_sm_link_check_los(struct sfp * sfp)1815 static void sfp_sm_link_check_los(struct sfp *sfp)
1816 {
1817 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1818 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1819 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1820 bool los = false;
1821
1822 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1823 * are set, we assume that no LOS signal is available. If both are
1824 * set, we assume LOS is not implemented (and is meaningless.)
1825 */
1826 if (los_options == los_inverted)
1827 los = !(sfp->state & SFP_F_LOS);
1828 else if (los_options == los_normal)
1829 los = !!(sfp->state & SFP_F_LOS);
1830
1831 if (los)
1832 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1833 else
1834 sfp_sm_link_up(sfp);
1835 }
1836
sfp_los_event_active(struct sfp * sfp,unsigned int event)1837 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1838 {
1839 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1840 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1841 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1842
1843 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1844 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1845 }
1846
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1847 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1848 {
1849 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1850 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1851 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1852
1853 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1854 (los_options == los_normal && event == SFP_E_LOS_LOW);
1855 }
1856
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1857 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1858 {
1859 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1860 dev_err(sfp->dev,
1861 "module persistently indicates fault, disabling\n");
1862 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1863 } else {
1864 if (warn)
1865 dev_err(sfp->dev, "module transmit fault indicated\n");
1866
1867 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1868 }
1869 }
1870
sfp_sm_add_mdio_bus(struct sfp * sfp)1871 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1872 {
1873 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1874 return sfp_i2c_mdiobus_create(sfp);
1875
1876 return 0;
1877 }
1878
1879 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1880 * normally sits at I2C bus address 0x56, and may either be a clause 22
1881 * or clause 45 PHY.
1882 *
1883 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1884 * negotiation enabled, but some may be in 1000base-X - which is for the
1885 * PHY driver to determine.
1886 *
1887 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1888 * mode according to the negotiated line speed.
1889 */
sfp_sm_probe_for_phy(struct sfp * sfp)1890 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1891 {
1892 int err = 0;
1893
1894 switch (sfp->mdio_protocol) {
1895 case MDIO_I2C_NONE:
1896 break;
1897
1898 case MDIO_I2C_MARVELL_C22:
1899 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1900 break;
1901
1902 case MDIO_I2C_C45:
1903 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1904 break;
1905
1906 case MDIO_I2C_ROLLBALL:
1907 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1908 break;
1909 }
1910
1911 return err;
1912 }
1913
sfp_module_parse_power(struct sfp * sfp)1914 static int sfp_module_parse_power(struct sfp *sfp)
1915 {
1916 u32 power_mW = 1000;
1917 bool supports_a2;
1918
1919 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1920 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1921 power_mW = 1500;
1922 /* Added in Rev 11.9, but there is no compliance code for this */
1923 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1924 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1925 power_mW = 2000;
1926
1927 /* Power level 1 modules (max. 1W) are always supported. */
1928 if (power_mW <= 1000) {
1929 sfp->module_power_mW = power_mW;
1930 return 0;
1931 }
1932
1933 supports_a2 = sfp->id.ext.sff8472_compliance !=
1934 SFP_SFF8472_COMPLIANCE_NONE ||
1935 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1936
1937 if (power_mW > sfp->max_power_mW) {
1938 /* Module power specification exceeds the allowed maximum. */
1939 if (!supports_a2) {
1940 /* The module appears not to implement bus address
1941 * 0xa2, so assume that the module powers up in the
1942 * indicated mode.
1943 */
1944 dev_err(sfp->dev,
1945 "Host does not support %u.%uW modules\n",
1946 power_mW / 1000, (power_mW / 100) % 10);
1947 return -EINVAL;
1948 } else {
1949 dev_warn(sfp->dev,
1950 "Host does not support %u.%uW modules, module left in power mode 1\n",
1951 power_mW / 1000, (power_mW / 100) % 10);
1952 return 0;
1953 }
1954 }
1955
1956 if (!supports_a2) {
1957 /* The module power level is below the host maximum and the
1958 * module appears not to implement bus address 0xa2, so assume
1959 * that the module powers up in the indicated mode.
1960 */
1961 return 0;
1962 }
1963
1964 /* If the module requires a higher power mode, but also requires
1965 * an address change sequence, warn the user that the module may
1966 * not be functional.
1967 */
1968 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1969 dev_warn(sfp->dev,
1970 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1971 power_mW / 1000, (power_mW / 100) % 10);
1972 return 0;
1973 }
1974
1975 sfp->module_power_mW = power_mW;
1976
1977 return 0;
1978 }
1979
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1980 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1981 {
1982 int err;
1983
1984 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1985 SFP_EXT_STATUS_PWRLVL_SELECT,
1986 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1987 if (err != sizeof(u8)) {
1988 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1989 enable ? "en" : "dis", ERR_PTR(err));
1990 return -EAGAIN;
1991 }
1992
1993 if (enable)
1994 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1995 sfp->module_power_mW / 1000,
1996 (sfp->module_power_mW / 100) % 10);
1997
1998 return 0;
1999 }
2000
sfp_module_parse_rate_select(struct sfp * sfp)2001 static void sfp_module_parse_rate_select(struct sfp *sfp)
2002 {
2003 u8 rate_id;
2004
2005 sfp->rs_threshold_kbd = 0;
2006 sfp->rs_state_mask = 0;
2007
2008 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2009 /* No support for RateSelect */
2010 return;
2011
2012 /* Default to INF-8074 RateSelect operation. The signalling threshold
2013 * rate is not well specified, so always select "Full Bandwidth", but
2014 * SFF-8079 reveals that it is understood that RS0 will be low for
2015 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2016 * This method exists prior to SFF-8472.
2017 */
2018 sfp->rs_state_mask = SFP_F_RS0;
2019 sfp->rs_threshold_kbd = 1594;
2020
2021 /* Parse the rate identifier, which is complicated due to history:
2022 * SFF-8472 rev 9.5 marks this field as reserved.
2023 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2024 * compliance is not required.
2025 * SFF-8472 rev 10.2 defines this field using values 0..4
2026 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2027 * and even values.
2028 */
2029 rate_id = sfp->id.base.rate_id;
2030 if (rate_id == 0)
2031 /* Unspecified */
2032 return;
2033
2034 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2035 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2036 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2037 */
2038 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2039 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2040 rate_id == 3)
2041 rate_id = SFF_RID_8431;
2042
2043 if (rate_id & SFF_RID_8079) {
2044 /* SFF-8079 RateSelect / Application Select in conjunction with
2045 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2046 * with only bit 0 used, which takes precedence over SFF-8472.
2047 */
2048 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2049 /* SFF-8079 Part 1 - rate selection between Fibre
2050 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2051 * is high for 2125, so we have to subtract 1 to
2052 * include it.
2053 */
2054 sfp->rs_threshold_kbd = 2125 - 1;
2055 sfp->rs_state_mask = SFP_F_RS0;
2056 }
2057 return;
2058 }
2059
2060 /* SFF-8472 rev 9.5 does not define the rate identifier */
2061 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2062 return;
2063
2064 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2065 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2066 */
2067 switch (rate_id) {
2068 case SFF_RID_8431_RX_ONLY:
2069 sfp->rs_threshold_kbd = 4250;
2070 sfp->rs_state_mask = SFP_F_RS0;
2071 break;
2072
2073 case SFF_RID_8431_TX_ONLY:
2074 sfp->rs_threshold_kbd = 4250;
2075 sfp->rs_state_mask = SFP_F_RS1;
2076 break;
2077
2078 case SFF_RID_8431:
2079 sfp->rs_threshold_kbd = 4250;
2080 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2081 break;
2082
2083 case SFF_RID_10G8G:
2084 sfp->rs_threshold_kbd = 9000;
2085 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2086 break;
2087 }
2088 }
2089
2090 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2091 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2092 * not support multibyte reads from the EEPROM. Each multi-byte read
2093 * operation returns just one byte of EEPROM followed by zeros. There is
2094 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2095 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2096 * name and vendor id into EEPROM, so there is even no way to detect if
2097 * module is V-SOL V2801F. Therefore check for those zeros in the read
2098 * data and then based on check switch to reading EEPROM to one byte
2099 * at a time.
2100 */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)2101 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2102 {
2103 size_t i, block_size = sfp->i2c_block_size;
2104
2105 /* Already using byte IO */
2106 if (block_size == 1)
2107 return false;
2108
2109 for (i = 1; i < len; i += block_size) {
2110 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2111 return false;
2112 }
2113 return true;
2114 }
2115
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)2116 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2117 {
2118 u8 check;
2119 int err;
2120
2121 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2122 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2123 id->base.connector != SFF8024_CONNECTOR_LC) {
2124 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2125 id->base.phys_id = SFF8024_ID_SFF_8472;
2126 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2127 id->base.connector = SFF8024_CONNECTOR_LC;
2128 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2129 if (err != 3) {
2130 dev_err(sfp->dev,
2131 "Failed to rewrite module EEPROM: %pe\n",
2132 ERR_PTR(err));
2133 return err;
2134 }
2135
2136 /* Cotsworks modules have been found to require a delay between write operations. */
2137 mdelay(50);
2138
2139 /* Update base structure checksum */
2140 check = sfp_check(&id->base, sizeof(id->base) - 1);
2141 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2142 if (err != 1) {
2143 dev_err(sfp->dev,
2144 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2145 ERR_PTR(err));
2146 return err;
2147 }
2148 }
2149 return 0;
2150 }
2151
sfp_module_parse_sff8472(struct sfp * sfp)2152 static int sfp_module_parse_sff8472(struct sfp *sfp)
2153 {
2154 /* If the module requires address swap mode, warn about it */
2155 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2156 dev_warn(sfp->dev,
2157 "module address swap to access page 0xA2 is not supported.\n");
2158 else
2159 sfp->have_a2 = true;
2160
2161 return 0;
2162 }
2163
sfp_sm_mod_probe(struct sfp * sfp,bool report)2164 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2165 {
2166 /* SFP module inserted - read I2C data */
2167 struct sfp_eeprom_id id;
2168 bool cotsworks_sfbg;
2169 unsigned int mask;
2170 bool cotsworks;
2171 u8 check;
2172 int ret;
2173
2174 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2175
2176 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2177 if (ret < 0) {
2178 if (report)
2179 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2180 ERR_PTR(ret));
2181 return -EAGAIN;
2182 }
2183
2184 if (ret != sizeof(id.base)) {
2185 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2186 return -EAGAIN;
2187 }
2188
2189 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2190 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2191 * that EEPROM supports atomic 16bit read operation for diagnostic
2192 * fields, so do not switch to one byte reading at a time unless it
2193 * is really required and we have no other option.
2194 */
2195 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2196 dev_info(sfp->dev,
2197 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2198 dev_info(sfp->dev,
2199 "Switching to reading EEPROM to one byte at a time\n");
2200 sfp->i2c_block_size = 1;
2201
2202 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2203 if (ret < 0) {
2204 if (report)
2205 dev_err(sfp->dev,
2206 "failed to read EEPROM: %pe\n",
2207 ERR_PTR(ret));
2208 return -EAGAIN;
2209 }
2210
2211 if (ret != sizeof(id.base)) {
2212 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2213 ERR_PTR(ret));
2214 return -EAGAIN;
2215 }
2216 }
2217
2218 /* Cotsworks do not seem to update the checksums when they
2219 * do the final programming with the final module part number,
2220 * serial number and date code.
2221 */
2222 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2223 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2224
2225 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2226 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2227 * Cotsworks PN matches and bytes are not correct.
2228 */
2229 if (cotsworks && cotsworks_sfbg) {
2230 ret = sfp_cotsworks_fixup_check(sfp, &id);
2231 if (ret < 0)
2232 return ret;
2233 }
2234
2235 /* Validate the checksum over the base structure */
2236 check = sfp_check(&id.base, sizeof(id.base) - 1);
2237 if (check != id.base.cc_base) {
2238 if (cotsworks) {
2239 dev_warn(sfp->dev,
2240 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2241 check, id.base.cc_base);
2242 } else {
2243 dev_err(sfp->dev,
2244 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2245 check, id.base.cc_base);
2246 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2247 16, 1, &id, sizeof(id), true);
2248 return -EINVAL;
2249 }
2250 }
2251
2252 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2253 if (ret < 0) {
2254 if (report)
2255 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2256 ERR_PTR(ret));
2257 return -EAGAIN;
2258 }
2259
2260 if (ret != sizeof(id.ext)) {
2261 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2262 return -EAGAIN;
2263 }
2264
2265 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2266 if (check != id.ext.cc_ext) {
2267 if (cotsworks) {
2268 dev_warn(sfp->dev,
2269 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2270 check, id.ext.cc_ext);
2271 } else {
2272 dev_err(sfp->dev,
2273 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2274 check, id.ext.cc_ext);
2275 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2276 16, 1, &id, sizeof(id), true);
2277 memset(&id.ext, 0, sizeof(id.ext));
2278 }
2279 }
2280
2281 sfp->id = id;
2282
2283 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2284 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2285 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2286 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2287 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2288 (int)sizeof(id.ext.datecode), id.ext.datecode);
2289
2290 /* Check whether we support this module */
2291 if (!sfp->type->module_supported(&id)) {
2292 dev_err(sfp->dev,
2293 "module is not supported - phys id 0x%02x 0x%02x\n",
2294 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2295 return -EINVAL;
2296 }
2297
2298 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2299 ret = sfp_module_parse_sff8472(sfp);
2300 if (ret < 0)
2301 return ret;
2302 }
2303
2304 /* Parse the module power requirement */
2305 ret = sfp_module_parse_power(sfp);
2306 if (ret < 0)
2307 return ret;
2308
2309 sfp_module_parse_rate_select(sfp);
2310
2311 mask = SFP_F_PRESENT;
2312 if (sfp->gpio[GPIO_TX_DISABLE])
2313 mask |= SFP_F_TX_DISABLE;
2314 if (sfp->gpio[GPIO_TX_FAULT])
2315 mask |= SFP_F_TX_FAULT;
2316 if (sfp->gpio[GPIO_LOS])
2317 mask |= SFP_F_LOS;
2318 if (sfp->gpio[GPIO_RS0])
2319 mask |= SFP_F_RS0;
2320 if (sfp->gpio[GPIO_RS1])
2321 mask |= SFP_F_RS1;
2322
2323 sfp->module_t_start_up = T_START_UP;
2324 sfp->module_t_wait = T_WAIT;
2325
2326 sfp->tx_fault_ignore = false;
2327
2328 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2329 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2330 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2331 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2332 sfp->mdio_protocol = MDIO_I2C_C45;
2333 else if (sfp->id.base.e1000_base_t)
2334 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2335 else
2336 sfp->mdio_protocol = MDIO_I2C_NONE;
2337
2338 sfp->quirk = sfp_lookup_quirk(&id);
2339
2340 mutex_lock(&sfp->st_mutex);
2341 /* Initialise state bits to use from hardware */
2342 sfp->state_hw_mask = mask;
2343
2344 /* We want to drive the rate select pins that the module is using */
2345 sfp->state_hw_drive |= sfp->rs_state_mask;
2346
2347 if (sfp->quirk && sfp->quirk->fixup)
2348 sfp->quirk->fixup(sfp);
2349 mutex_unlock(&sfp->st_mutex);
2350
2351 return 0;
2352 }
2353
sfp_sm_mod_remove(struct sfp * sfp)2354 static void sfp_sm_mod_remove(struct sfp *sfp)
2355 {
2356 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2357 sfp_module_remove(sfp->sfp_bus);
2358
2359 sfp_hwmon_remove(sfp);
2360
2361 memset(&sfp->id, 0, sizeof(sfp->id));
2362 sfp->module_power_mW = 0;
2363 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2364 sfp->have_a2 = false;
2365
2366 dev_info(sfp->dev, "module removed\n");
2367 }
2368
2369 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2370 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2371 {
2372 switch (sfp->sm_dev_state) {
2373 default:
2374 if (event == SFP_E_DEV_ATTACH)
2375 sfp->sm_dev_state = SFP_DEV_DOWN;
2376 break;
2377
2378 case SFP_DEV_DOWN:
2379 if (event == SFP_E_DEV_DETACH)
2380 sfp->sm_dev_state = SFP_DEV_DETACHED;
2381 else if (event == SFP_E_DEV_UP)
2382 sfp->sm_dev_state = SFP_DEV_UP;
2383 break;
2384
2385 case SFP_DEV_UP:
2386 if (event == SFP_E_DEV_DETACH)
2387 sfp->sm_dev_state = SFP_DEV_DETACHED;
2388 else if (event == SFP_E_DEV_DOWN)
2389 sfp->sm_dev_state = SFP_DEV_DOWN;
2390 break;
2391 }
2392 }
2393
2394 /* This state machine tracks the insert/remove state of the module, probes
2395 * the on-board EEPROM, and sets up the power level.
2396 */
sfp_sm_module(struct sfp * sfp,unsigned int event)2397 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2398 {
2399 int err;
2400
2401 /* Handle remove event globally, it resets this state machine */
2402 if (event == SFP_E_REMOVE) {
2403 sfp_sm_mod_remove(sfp);
2404 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2405 return;
2406 }
2407
2408 /* Handle device detach globally */
2409 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2410 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2411 if (sfp->module_power_mW > 1000 &&
2412 sfp->sm_mod_state > SFP_MOD_HPOWER)
2413 sfp_sm_mod_hpower(sfp, false);
2414 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2415 return;
2416 }
2417
2418 switch (sfp->sm_mod_state) {
2419 default:
2420 if (event == SFP_E_INSERT) {
2421 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2422 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2423 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2424 }
2425 break;
2426
2427 case SFP_MOD_PROBE:
2428 /* Wait for T_PROBE_INIT to time out */
2429 if (event != SFP_E_TIMEOUT)
2430 break;
2431
2432 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2433 if (err == -EAGAIN) {
2434 if (sfp->sm_mod_tries_init &&
2435 --sfp->sm_mod_tries_init) {
2436 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2437 break;
2438 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2439 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2440 dev_warn(sfp->dev,
2441 "please wait, module slow to respond\n");
2442 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2443 break;
2444 }
2445 }
2446 if (err < 0) {
2447 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2448 break;
2449 }
2450
2451 /* Force a poll to re-read the hardware signal state after
2452 * sfp_sm_mod_probe() changed state_hw_mask.
2453 */
2454 mod_delayed_work(system_wq, &sfp->poll, 1);
2455
2456 err = sfp_hwmon_insert(sfp);
2457 if (err)
2458 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2459 ERR_PTR(err));
2460
2461 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2462 fallthrough;
2463 case SFP_MOD_WAITDEV:
2464 /* Ensure that the device is attached before proceeding */
2465 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2466 break;
2467
2468 /* Report the module insertion to the upstream device */
2469 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2470 sfp->quirk);
2471 if (err < 0) {
2472 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2473 break;
2474 }
2475
2476 /* If this is a power level 1 module, we are done */
2477 if (sfp->module_power_mW <= 1000)
2478 goto insert;
2479
2480 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2481 fallthrough;
2482 case SFP_MOD_HPOWER:
2483 /* Enable high power mode */
2484 err = sfp_sm_mod_hpower(sfp, true);
2485 if (err < 0) {
2486 if (err != -EAGAIN) {
2487 sfp_module_remove(sfp->sfp_bus);
2488 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2489 } else {
2490 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2491 }
2492 break;
2493 }
2494
2495 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2496 break;
2497
2498 case SFP_MOD_WAITPWR:
2499 /* Wait for T_HPOWER_LEVEL to time out */
2500 if (event != SFP_E_TIMEOUT)
2501 break;
2502
2503 insert:
2504 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2505 break;
2506
2507 case SFP_MOD_PRESENT:
2508 case SFP_MOD_ERROR:
2509 break;
2510 }
2511 }
2512
sfp_sm_main(struct sfp * sfp,unsigned int event)2513 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2514 {
2515 unsigned long timeout;
2516 int ret;
2517
2518 /* Some events are global */
2519 if (sfp->sm_state != SFP_S_DOWN &&
2520 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2521 sfp->sm_dev_state != SFP_DEV_UP)) {
2522 if (sfp->sm_state == SFP_S_LINK_UP &&
2523 sfp->sm_dev_state == SFP_DEV_UP)
2524 sfp_sm_link_down(sfp);
2525 if (sfp->sm_state > SFP_S_INIT)
2526 sfp_module_stop(sfp->sfp_bus);
2527 if (sfp->mod_phy)
2528 sfp_sm_phy_detach(sfp);
2529 if (sfp->i2c_mii)
2530 sfp_i2c_mdiobus_destroy(sfp);
2531 sfp_module_tx_disable(sfp);
2532 sfp_soft_stop_poll(sfp);
2533 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2534 return;
2535 }
2536
2537 /* The main state machine */
2538 switch (sfp->sm_state) {
2539 case SFP_S_DOWN:
2540 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2541 sfp->sm_dev_state != SFP_DEV_UP)
2542 break;
2543
2544 /* Only use the soft state bits if we have access to the A2h
2545 * memory, which implies that we have some level of SFF-8472
2546 * compliance.
2547 */
2548 if (sfp->have_a2)
2549 sfp_soft_start_poll(sfp);
2550
2551 sfp_module_tx_enable(sfp);
2552
2553 /* Initialise the fault clearance retries */
2554 sfp->sm_fault_retries = N_FAULT_INIT;
2555
2556 /* We need to check the TX_FAULT state, which is not defined
2557 * while TX_DISABLE is asserted. The earliest we want to do
2558 * anything (such as probe for a PHY) is 50ms (or more on
2559 * specific modules).
2560 */
2561 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2562 break;
2563
2564 case SFP_S_WAIT:
2565 if (event != SFP_E_TIMEOUT)
2566 break;
2567
2568 if (sfp->state & SFP_F_TX_FAULT) {
2569 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2570 * from the TX_DISABLE deassertion for the module to
2571 * initialise, which is indicated by TX_FAULT
2572 * deasserting.
2573 */
2574 timeout = sfp->module_t_start_up;
2575 if (timeout > sfp->module_t_wait)
2576 timeout -= sfp->module_t_wait;
2577 else
2578 timeout = 1;
2579
2580 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2581 } else {
2582 /* TX_FAULT is not asserted, assume the module has
2583 * finished initialising.
2584 */
2585 goto init_done;
2586 }
2587 break;
2588
2589 case SFP_S_INIT:
2590 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2591 /* TX_FAULT is still asserted after t_init
2592 * or t_start_up, so assume there is a fault.
2593 */
2594 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2595 sfp->sm_fault_retries == N_FAULT_INIT);
2596 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2597 init_done:
2598 /* Create mdiobus and start trying for PHY */
2599 ret = sfp_sm_add_mdio_bus(sfp);
2600 if (ret < 0) {
2601 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2602 break;
2603 }
2604 sfp->sm_phy_retries = R_PHY_RETRY;
2605 goto phy_probe;
2606 }
2607 break;
2608
2609 case SFP_S_INIT_PHY:
2610 if (event != SFP_E_TIMEOUT)
2611 break;
2612 phy_probe:
2613 /* TX_FAULT deasserted or we timed out with TX_FAULT
2614 * clear. Probe for the PHY and check the LOS state.
2615 */
2616 ret = sfp_sm_probe_for_phy(sfp);
2617 if (ret == -ENODEV) {
2618 if (--sfp->sm_phy_retries) {
2619 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2620 break;
2621 } else {
2622 dev_info(sfp->dev, "no PHY detected\n");
2623 }
2624 } else if (ret) {
2625 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2626 break;
2627 }
2628 if (sfp_module_start(sfp->sfp_bus)) {
2629 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2630 break;
2631 }
2632 sfp_sm_link_check_los(sfp);
2633
2634 /* Reset the fault retry count */
2635 sfp->sm_fault_retries = N_FAULT;
2636 break;
2637
2638 case SFP_S_INIT_TX_FAULT:
2639 if (event == SFP_E_TIMEOUT) {
2640 sfp_module_tx_fault_reset(sfp);
2641 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2642 }
2643 break;
2644
2645 case SFP_S_WAIT_LOS:
2646 if (event == SFP_E_TX_FAULT)
2647 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2648 else if (sfp_los_event_inactive(sfp, event))
2649 sfp_sm_link_up(sfp);
2650 break;
2651
2652 case SFP_S_LINK_UP:
2653 if (event == SFP_E_TX_FAULT) {
2654 sfp_sm_link_down(sfp);
2655 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2656 } else if (sfp_los_event_active(sfp, event)) {
2657 sfp_sm_link_down(sfp);
2658 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2659 }
2660 break;
2661
2662 case SFP_S_TX_FAULT:
2663 if (event == SFP_E_TIMEOUT) {
2664 sfp_module_tx_fault_reset(sfp);
2665 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2666 }
2667 break;
2668
2669 case SFP_S_REINIT:
2670 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2671 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2672 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2673 dev_info(sfp->dev, "module transmit fault recovered\n");
2674 sfp_sm_link_check_los(sfp);
2675 }
2676 break;
2677
2678 case SFP_S_TX_DISABLE:
2679 break;
2680 }
2681 }
2682
__sfp_sm_event(struct sfp * sfp,unsigned int event)2683 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2684 {
2685 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2686 mod_state_to_str(sfp->sm_mod_state),
2687 dev_state_to_str(sfp->sm_dev_state),
2688 sm_state_to_str(sfp->sm_state),
2689 event_to_str(event));
2690
2691 sfp_sm_device(sfp, event);
2692 sfp_sm_module(sfp, event);
2693 sfp_sm_main(sfp, event);
2694
2695 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2696 mod_state_to_str(sfp->sm_mod_state),
2697 dev_state_to_str(sfp->sm_dev_state),
2698 sm_state_to_str(sfp->sm_state));
2699 }
2700
sfp_sm_event(struct sfp * sfp,unsigned int event)2701 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2702 {
2703 mutex_lock(&sfp->sm_mutex);
2704 __sfp_sm_event(sfp, event);
2705 mutex_unlock(&sfp->sm_mutex);
2706 }
2707
sfp_attach(struct sfp * sfp)2708 static void sfp_attach(struct sfp *sfp)
2709 {
2710 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2711 }
2712
sfp_detach(struct sfp * sfp)2713 static void sfp_detach(struct sfp *sfp)
2714 {
2715 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2716 }
2717
sfp_start(struct sfp * sfp)2718 static void sfp_start(struct sfp *sfp)
2719 {
2720 sfp_sm_event(sfp, SFP_E_DEV_UP);
2721 }
2722
sfp_stop(struct sfp * sfp)2723 static void sfp_stop(struct sfp *sfp)
2724 {
2725 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2726 }
2727
sfp_set_signal_rate(struct sfp * sfp,unsigned int rate_kbd)2728 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2729 {
2730 unsigned int set;
2731
2732 sfp->rate_kbd = rate_kbd;
2733
2734 if (rate_kbd > sfp->rs_threshold_kbd)
2735 set = sfp->rs_state_mask;
2736 else
2737 set = 0;
2738
2739 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2740 }
2741
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2742 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2743 {
2744 /* locking... and check module is present */
2745
2746 if (sfp->id.ext.sff8472_compliance &&
2747 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2748 modinfo->type = ETH_MODULE_SFF_8472;
2749 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2750 } else {
2751 modinfo->type = ETH_MODULE_SFF_8079;
2752 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2753 }
2754 return 0;
2755 }
2756
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2757 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2758 u8 *data)
2759 {
2760 unsigned int first, last, len;
2761 int ret;
2762
2763 if (!(sfp->state & SFP_F_PRESENT))
2764 return -ENODEV;
2765
2766 if (ee->len == 0)
2767 return -EINVAL;
2768
2769 first = ee->offset;
2770 last = ee->offset + ee->len;
2771 if (first < ETH_MODULE_SFF_8079_LEN) {
2772 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2773 len -= first;
2774
2775 ret = sfp_read(sfp, false, first, data, len);
2776 if (ret < 0)
2777 return ret;
2778
2779 first += len;
2780 data += len;
2781 }
2782 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2783 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2784 len -= first;
2785 first -= ETH_MODULE_SFF_8079_LEN;
2786
2787 ret = sfp_read(sfp, true, first, data, len);
2788 if (ret < 0)
2789 return ret;
2790 }
2791 return 0;
2792 }
2793
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2794 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2795 const struct ethtool_module_eeprom *page,
2796 struct netlink_ext_ack *extack)
2797 {
2798 if (!(sfp->state & SFP_F_PRESENT))
2799 return -ENODEV;
2800
2801 if (page->bank) {
2802 NL_SET_ERR_MSG(extack, "Banks not supported");
2803 return -EOPNOTSUPP;
2804 }
2805
2806 if (page->page) {
2807 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2808 return -EOPNOTSUPP;
2809 }
2810
2811 if (page->i2c_address != 0x50 &&
2812 page->i2c_address != 0x51) {
2813 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2814 return -EOPNOTSUPP;
2815 }
2816
2817 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2818 page->data, page->length);
2819 };
2820
2821 static const struct sfp_socket_ops sfp_module_ops = {
2822 .attach = sfp_attach,
2823 .detach = sfp_detach,
2824 .start = sfp_start,
2825 .stop = sfp_stop,
2826 .set_signal_rate = sfp_set_signal_rate,
2827 .module_info = sfp_module_info,
2828 .module_eeprom = sfp_module_eeprom,
2829 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2830 };
2831
sfp_timeout(struct work_struct * work)2832 static void sfp_timeout(struct work_struct *work)
2833 {
2834 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2835
2836 rtnl_lock();
2837 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2838 rtnl_unlock();
2839 }
2840
sfp_check_state(struct sfp * sfp)2841 static void sfp_check_state(struct sfp *sfp)
2842 {
2843 unsigned int state, i, changed;
2844
2845 rtnl_lock();
2846 mutex_lock(&sfp->st_mutex);
2847 state = sfp_get_state(sfp);
2848 changed = state ^ sfp->state;
2849 if (sfp->tx_fault_ignore)
2850 changed &= SFP_F_PRESENT | SFP_F_LOS;
2851 else
2852 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2853
2854 for (i = 0; i < GPIO_MAX; i++)
2855 if (changed & BIT(i))
2856 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2857 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2858
2859 state |= sfp->state & SFP_F_OUTPUTS;
2860 sfp->state = state;
2861 mutex_unlock(&sfp->st_mutex);
2862
2863 mutex_lock(&sfp->sm_mutex);
2864 if (changed & SFP_F_PRESENT)
2865 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2866 SFP_E_INSERT : SFP_E_REMOVE);
2867
2868 if (changed & SFP_F_TX_FAULT)
2869 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2870 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2871
2872 if (changed & SFP_F_LOS)
2873 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2874 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2875 mutex_unlock(&sfp->sm_mutex);
2876 rtnl_unlock();
2877 }
2878
sfp_irq(int irq,void * data)2879 static irqreturn_t sfp_irq(int irq, void *data)
2880 {
2881 struct sfp *sfp = data;
2882
2883 sfp_check_state(sfp);
2884
2885 return IRQ_HANDLED;
2886 }
2887
sfp_poll(struct work_struct * work)2888 static void sfp_poll(struct work_struct *work)
2889 {
2890 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2891
2892 sfp_check_state(sfp);
2893
2894 // st_mutex doesn't need to be held here for state_soft_mask,
2895 // it's unimportant if we race while reading this.
2896 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2897 sfp->need_poll)
2898 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2899 }
2900
sfp_alloc(struct device * dev)2901 static struct sfp *sfp_alloc(struct device *dev)
2902 {
2903 struct sfp *sfp;
2904
2905 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2906 if (!sfp)
2907 return ERR_PTR(-ENOMEM);
2908
2909 sfp->dev = dev;
2910 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2911
2912 mutex_init(&sfp->sm_mutex);
2913 mutex_init(&sfp->st_mutex);
2914 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2915 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2916
2917 sfp_hwmon_init(sfp);
2918
2919 return sfp;
2920 }
2921
sfp_cleanup(void * data)2922 static void sfp_cleanup(void *data)
2923 {
2924 struct sfp *sfp = data;
2925
2926 sfp_hwmon_exit(sfp);
2927
2928 cancel_delayed_work_sync(&sfp->poll);
2929 cancel_delayed_work_sync(&sfp->timeout);
2930 if (sfp->i2c_mii) {
2931 mdiobus_unregister(sfp->i2c_mii);
2932 mdiobus_free(sfp->i2c_mii);
2933 }
2934 if (sfp->i2c)
2935 i2c_put_adapter(sfp->i2c);
2936 kfree(sfp);
2937 }
2938
sfp_i2c_get(struct sfp * sfp)2939 static int sfp_i2c_get(struct sfp *sfp)
2940 {
2941 struct fwnode_handle *h;
2942 struct i2c_adapter *i2c;
2943 int err;
2944
2945 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2946 if (IS_ERR(h)) {
2947 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2948 return -ENODEV;
2949 }
2950
2951 i2c = i2c_get_adapter_by_fwnode(h);
2952 if (!i2c) {
2953 err = -EPROBE_DEFER;
2954 goto put;
2955 }
2956
2957 err = sfp_i2c_configure(sfp, i2c);
2958 if (err)
2959 i2c_put_adapter(i2c);
2960 put:
2961 fwnode_handle_put(h);
2962 return err;
2963 }
2964
sfp_probe(struct platform_device * pdev)2965 static int sfp_probe(struct platform_device *pdev)
2966 {
2967 const struct sff_data *sff;
2968 char *sfp_irq_name;
2969 struct sfp *sfp;
2970 int err, i;
2971
2972 sfp = sfp_alloc(&pdev->dev);
2973 if (IS_ERR(sfp))
2974 return PTR_ERR(sfp);
2975
2976 platform_set_drvdata(pdev, sfp);
2977
2978 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2979 if (err < 0)
2980 return err;
2981
2982 sff = device_get_match_data(sfp->dev);
2983 if (!sff)
2984 sff = &sfp_data;
2985
2986 sfp->type = sff;
2987
2988 err = sfp_i2c_get(sfp);
2989 if (err)
2990 return err;
2991
2992 for (i = 0; i < GPIO_MAX; i++)
2993 if (sff->gpios & BIT(i)) {
2994 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2995 gpio_names[i], gpio_flags[i]);
2996 if (IS_ERR(sfp->gpio[i]))
2997 return PTR_ERR(sfp->gpio[i]);
2998 }
2999
3000 sfp->state_hw_mask = SFP_F_PRESENT;
3001 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3002
3003 sfp->get_state = sfp_gpio_get_state;
3004 sfp->set_state = sfp_gpio_set_state;
3005
3006 /* Modules that have no detect signal are always present */
3007 if (!(sfp->gpio[GPIO_MODDEF0]))
3008 sfp->get_state = sff_gpio_get_state;
3009
3010 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3011 &sfp->max_power_mW);
3012 if (sfp->max_power_mW < 1000) {
3013 if (sfp->max_power_mW)
3014 dev_warn(sfp->dev,
3015 "Firmware bug: host maximum power should be at least 1W\n");
3016 sfp->max_power_mW = 1000;
3017 }
3018
3019 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3020 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3021
3022 /* Get the initial state, and always signal TX disable,
3023 * since the network interface will not be up.
3024 */
3025 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3026
3027 if (sfp->gpio[GPIO_RS0] &&
3028 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3029 sfp->state |= SFP_F_RS0;
3030 sfp_set_state(sfp, sfp->state);
3031 sfp_module_tx_disable(sfp);
3032 if (sfp->state & SFP_F_PRESENT) {
3033 rtnl_lock();
3034 sfp_sm_event(sfp, SFP_E_INSERT);
3035 rtnl_unlock();
3036 }
3037
3038 for (i = 0; i < GPIO_MAX; i++) {
3039 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3040 continue;
3041
3042 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3043 if (sfp->gpio_irq[i] < 0) {
3044 sfp->gpio_irq[i] = 0;
3045 sfp->need_poll = true;
3046 continue;
3047 }
3048
3049 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3050 "%s-%s", dev_name(sfp->dev),
3051 gpio_names[i]);
3052
3053 if (!sfp_irq_name)
3054 return -ENOMEM;
3055
3056 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3057 NULL, sfp_irq,
3058 IRQF_ONESHOT |
3059 IRQF_TRIGGER_RISING |
3060 IRQF_TRIGGER_FALLING,
3061 sfp_irq_name, sfp);
3062 if (err) {
3063 sfp->gpio_irq[i] = 0;
3064 sfp->need_poll = true;
3065 }
3066 }
3067
3068 if (sfp->need_poll)
3069 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3070
3071 /* We could have an issue in cases no Tx disable pin is available or
3072 * wired as modules using a laser as their light source will continue to
3073 * be active when the fiber is removed. This could be a safety issue and
3074 * we should at least warn the user about that.
3075 */
3076 if (!sfp->gpio[GPIO_TX_DISABLE])
3077 dev_warn(sfp->dev,
3078 "No tx_disable pin: SFP modules will always be emitting.\n");
3079
3080 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3081 if (!sfp->sfp_bus)
3082 return -ENOMEM;
3083
3084 sfp_debugfs_init(sfp);
3085
3086 return 0;
3087 }
3088
sfp_remove(struct platform_device * pdev)3089 static int sfp_remove(struct platform_device *pdev)
3090 {
3091 struct sfp *sfp = platform_get_drvdata(pdev);
3092
3093 sfp_debugfs_exit(sfp);
3094 sfp_unregister_socket(sfp->sfp_bus);
3095
3096 rtnl_lock();
3097 sfp_sm_event(sfp, SFP_E_REMOVE);
3098 rtnl_unlock();
3099
3100 return 0;
3101 }
3102
sfp_shutdown(struct platform_device * pdev)3103 static void sfp_shutdown(struct platform_device *pdev)
3104 {
3105 struct sfp *sfp = platform_get_drvdata(pdev);
3106 int i;
3107
3108 for (i = 0; i < GPIO_MAX; i++) {
3109 if (!sfp->gpio_irq[i])
3110 continue;
3111
3112 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3113 }
3114
3115 cancel_delayed_work_sync(&sfp->poll);
3116 cancel_delayed_work_sync(&sfp->timeout);
3117 }
3118
3119 static struct platform_driver sfp_driver = {
3120 .probe = sfp_probe,
3121 .remove = sfp_remove,
3122 .shutdown = sfp_shutdown,
3123 .driver = {
3124 .name = "sfp",
3125 .of_match_table = sfp_of_match,
3126 },
3127 };
3128
sfp_init(void)3129 static int sfp_init(void)
3130 {
3131 poll_jiffies = msecs_to_jiffies(100);
3132
3133 return platform_driver_register(&sfp_driver);
3134 }
3135 module_init(sfp_init);
3136
sfp_exit(void)3137 static void sfp_exit(void)
3138 {
3139 platform_driver_unregister(&sfp_driver);
3140 }
3141 module_exit(sfp_exit);
3142
3143 MODULE_ALIAS("platform:sfp");
3144 MODULE_AUTHOR("Russell King");
3145 MODULE_LICENSE("GPL v2");
3146