xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision af9b2ff010f593d81e2f5fb04155e9fc25b9dfd0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69 #include "vmx_onhyperv.h"
70 #include "posted_intr.h"
71 
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74 
75 #ifdef MODULE
76 static const struct x86_cpu_id vmx_cpu_id[] = {
77 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
78 	{}
79 };
80 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
81 #endif
82 
83 bool __read_mostly enable_vpid = 1;
84 module_param_named(vpid, enable_vpid, bool, 0444);
85 
86 static bool __read_mostly enable_vnmi = 1;
87 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
88 
89 bool __read_mostly flexpriority_enabled = 1;
90 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
91 
92 bool __read_mostly enable_ept = 1;
93 module_param_named(ept, enable_ept, bool, S_IRUGO);
94 
95 bool __read_mostly enable_unrestricted_guest = 1;
96 module_param_named(unrestricted_guest,
97 			enable_unrestricted_guest, bool, S_IRUGO);
98 
99 bool __read_mostly enable_ept_ad_bits = 1;
100 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
101 
102 static bool __read_mostly emulate_invalid_guest_state = true;
103 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
104 
105 static bool __read_mostly fasteoi = 1;
106 module_param(fasteoi, bool, S_IRUGO);
107 
108 module_param(enable_apicv, bool, S_IRUGO);
109 
110 bool __read_mostly enable_ipiv = true;
111 module_param(enable_ipiv, bool, 0444);
112 
113 /*
114  * If nested=1, nested virtualization is supported, i.e., guests may use
115  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
116  * use VMX instructions.
117  */
118 static bool __read_mostly nested = 1;
119 module_param(nested, bool, S_IRUGO);
120 
121 bool __read_mostly enable_pml = 1;
122 module_param_named(pml, enable_pml, bool, S_IRUGO);
123 
124 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
125 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
126 
127 static bool __read_mostly dump_invalid_vmcs = 0;
128 module_param(dump_invalid_vmcs, bool, 0644);
129 
130 #define MSR_BITMAP_MODE_X2APIC		1
131 #define MSR_BITMAP_MODE_X2APIC_APICV	2
132 
133 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
134 
135 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
136 static int __read_mostly cpu_preemption_timer_multi;
137 static bool __read_mostly enable_preemption_timer = 1;
138 #ifdef CONFIG_X86_64
139 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
140 #endif
141 
142 extern bool __read_mostly allow_smaller_maxphyaddr;
143 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
144 
145 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
146 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
147 #define KVM_VM_CR0_ALWAYS_ON				\
148 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
149 
150 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
151 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
152 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
153 
154 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
155 
156 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
157 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
158 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
159 	RTIT_STATUS_BYTECNT))
160 
161 /*
162  * List of MSRs that can be directly passed to the guest.
163  * In addition to these x2apic and PT MSRs are handled specially.
164  */
165 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
166 	MSR_IA32_SPEC_CTRL,
167 	MSR_IA32_PRED_CMD,
168 	MSR_IA32_FLUSH_CMD,
169 	MSR_IA32_TSC,
170 #ifdef CONFIG_X86_64
171 	MSR_FS_BASE,
172 	MSR_GS_BASE,
173 	MSR_KERNEL_GS_BASE,
174 	MSR_IA32_XFD,
175 	MSR_IA32_XFD_ERR,
176 #endif
177 	MSR_IA32_SYSENTER_CS,
178 	MSR_IA32_SYSENTER_ESP,
179 	MSR_IA32_SYSENTER_EIP,
180 	MSR_CORE_C1_RES,
181 	MSR_CORE_C3_RESIDENCY,
182 	MSR_CORE_C6_RESIDENCY,
183 	MSR_CORE_C7_RESIDENCY,
184 };
185 
186 /*
187  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
188  * ple_gap:    upper bound on the amount of time between two successive
189  *             executions of PAUSE in a loop. Also indicate if ple enabled.
190  *             According to test, this time is usually smaller than 128 cycles.
191  * ple_window: upper bound on the amount of time a guest is allowed to execute
192  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
193  *             less than 2^12 cycles
194  * Time is measured based on a counter that runs at the same rate as the TSC,
195  * refer SDM volume 3b section 21.6.13 & 22.1.3.
196  */
197 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
198 module_param(ple_gap, uint, 0444);
199 
200 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
201 module_param(ple_window, uint, 0444);
202 
203 /* Default doubles per-vcpu window every exit. */
204 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
205 module_param(ple_window_grow, uint, 0444);
206 
207 /* Default resets per-vcpu window every exit to ple_window. */
208 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
209 module_param(ple_window_shrink, uint, 0444);
210 
211 /* Default is to compute the maximum so we can never overflow. */
212 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
213 module_param(ple_window_max, uint, 0444);
214 
215 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
216 int __read_mostly pt_mode = PT_MODE_SYSTEM;
217 #ifdef CONFIG_BROKEN
218 module_param(pt_mode, int, S_IRUGO);
219 #endif
220 
221 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
222 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
223 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
224 
225 /* Storage for pre module init parameter parsing */
226 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
227 
228 static const struct {
229 	const char *option;
230 	bool for_parse;
231 } vmentry_l1d_param[] = {
232 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
233 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
234 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
235 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
236 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
237 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
238 };
239 
240 #define L1D_CACHE_ORDER 4
241 static void *vmx_l1d_flush_pages;
242 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
244 {
245 	struct page *page;
246 	unsigned int i;
247 
248 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
249 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 		return 0;
251 	}
252 
253 	if (!enable_ept) {
254 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
255 		return 0;
256 	}
257 
258 	if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
259 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
260 		return 0;
261 	}
262 
263 	/* If set to auto use the default l1tf mitigation method */
264 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
265 		switch (l1tf_mitigation) {
266 		case L1TF_MITIGATION_OFF:
267 			l1tf = VMENTER_L1D_FLUSH_NEVER;
268 			break;
269 		case L1TF_MITIGATION_FLUSH_NOWARN:
270 		case L1TF_MITIGATION_FLUSH:
271 		case L1TF_MITIGATION_FLUSH_NOSMT:
272 			l1tf = VMENTER_L1D_FLUSH_COND;
273 			break;
274 		case L1TF_MITIGATION_FULL:
275 		case L1TF_MITIGATION_FULL_FORCE:
276 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
277 			break;
278 		}
279 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
280 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
281 	}
282 
283 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
284 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
285 		/*
286 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
287 		 * lifetime and so should not be charged to a memcg.
288 		 */
289 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
290 		if (!page)
291 			return -ENOMEM;
292 		vmx_l1d_flush_pages = page_address(page);
293 
294 		/*
295 		 * Initialize each page with a different pattern in
296 		 * order to protect against KSM in the nested
297 		 * virtualization case.
298 		 */
299 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
300 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
301 			       PAGE_SIZE);
302 		}
303 	}
304 
305 	l1tf_vmx_mitigation = l1tf;
306 
307 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
308 		static_branch_enable(&vmx_l1d_should_flush);
309 	else
310 		static_branch_disable(&vmx_l1d_should_flush);
311 
312 	if (l1tf == VMENTER_L1D_FLUSH_COND)
313 		static_branch_enable(&vmx_l1d_flush_cond);
314 	else
315 		static_branch_disable(&vmx_l1d_flush_cond);
316 	return 0;
317 }
318 
vmentry_l1d_flush_parse(const char * s)319 static int vmentry_l1d_flush_parse(const char *s)
320 {
321 	unsigned int i;
322 
323 	if (s) {
324 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
325 			if (vmentry_l1d_param[i].for_parse &&
326 			    sysfs_streq(s, vmentry_l1d_param[i].option))
327 				return i;
328 		}
329 	}
330 	return -EINVAL;
331 }
332 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)333 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
334 {
335 	int l1tf, ret;
336 
337 	l1tf = vmentry_l1d_flush_parse(s);
338 	if (l1tf < 0)
339 		return l1tf;
340 
341 	if (!boot_cpu_has(X86_BUG_L1TF))
342 		return 0;
343 
344 	/*
345 	 * Has vmx_init() run already? If not then this is the pre init
346 	 * parameter parsing. In that case just store the value and let
347 	 * vmx_init() do the proper setup after enable_ept has been
348 	 * established.
349 	 */
350 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
351 		vmentry_l1d_flush_param = l1tf;
352 		return 0;
353 	}
354 
355 	mutex_lock(&vmx_l1d_flush_mutex);
356 	ret = vmx_setup_l1d_flush(l1tf);
357 	mutex_unlock(&vmx_l1d_flush_mutex);
358 	return ret;
359 }
360 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)361 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
362 {
363 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
364 		return sysfs_emit(s, "???\n");
365 
366 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
367 }
368 
vmx_disable_fb_clear(struct vcpu_vmx * vmx)369 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
370 {
371 	u64 msr;
372 
373 	if (!vmx->disable_fb_clear)
374 		return;
375 
376 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
377 	msr |= FB_CLEAR_DIS;
378 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
379 	/* Cache the MSR value to avoid reading it later */
380 	vmx->msr_ia32_mcu_opt_ctrl = msr;
381 }
382 
vmx_enable_fb_clear(struct vcpu_vmx * vmx)383 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
384 {
385 	if (!vmx->disable_fb_clear)
386 		return;
387 
388 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
389 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
390 }
391 
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)392 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
393 {
394 	/*
395 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
396 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
397 	 * the mitigation. Disabling the clearing behavior provides a
398 	 * performance boost for guests that aren't aware that manually clearing
399 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
400 	 * and VM-Exit.
401 	 */
402 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
403 				(host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
404 				!boot_cpu_has_bug(X86_BUG_MDS) &&
405 				!boot_cpu_has_bug(X86_BUG_TAA);
406 
407 	/*
408 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
409 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
410 	 * execute VERW.
411 	 */
412 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
413 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
414 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
415 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
416 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
417 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
418 		vmx->disable_fb_clear = false;
419 }
420 
421 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
422 	.set = vmentry_l1d_flush_set,
423 	.get = vmentry_l1d_flush_get,
424 };
425 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
426 
427 static u32 vmx_segment_access_rights(struct kvm_segment *var);
428 
429 void vmx_vmexit(void);
430 
431 #define vmx_insn_failed(fmt...)		\
432 do {					\
433 	WARN_ONCE(1, fmt);		\
434 	pr_warn_ratelimited(fmt);	\
435 } while (0)
436 
vmread_error(unsigned long field)437 noinline void vmread_error(unsigned long field)
438 {
439 	vmx_insn_failed("vmread failed: field=%lx\n", field);
440 }
441 
442 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)443 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
444 {
445 	if (fault) {
446 		kvm_spurious_fault();
447 	} else {
448 		instrumentation_begin();
449 		vmread_error(field);
450 		instrumentation_end();
451 	}
452 }
453 #endif
454 
vmwrite_error(unsigned long field,unsigned long value)455 noinline void vmwrite_error(unsigned long field, unsigned long value)
456 {
457 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
458 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
459 }
460 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)461 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
462 {
463 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
464 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
465 }
466 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)467 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
468 {
469 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
470 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
471 }
472 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)473 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
474 {
475 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
476 			ext, vpid, gva);
477 }
478 
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)479 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
480 {
481 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
482 			ext, eptp, gpa);
483 }
484 
485 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
486 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
487 /*
488  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
489  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
490  */
491 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
492 
493 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
494 static DEFINE_SPINLOCK(vmx_vpid_lock);
495 
496 struct vmcs_config vmcs_config __ro_after_init;
497 struct vmx_capability vmx_capability __ro_after_init;
498 
499 #define VMX_SEGMENT_FIELD(seg)					\
500 	[VCPU_SREG_##seg] = {                                   \
501 		.selector = GUEST_##seg##_SELECTOR,		\
502 		.base = GUEST_##seg##_BASE,		   	\
503 		.limit = GUEST_##seg##_LIMIT,		   	\
504 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
505 	}
506 
507 static const struct kvm_vmx_segment_field {
508 	unsigned selector;
509 	unsigned base;
510 	unsigned limit;
511 	unsigned ar_bytes;
512 } kvm_vmx_segment_fields[] = {
513 	VMX_SEGMENT_FIELD(CS),
514 	VMX_SEGMENT_FIELD(DS),
515 	VMX_SEGMENT_FIELD(ES),
516 	VMX_SEGMENT_FIELD(FS),
517 	VMX_SEGMENT_FIELD(GS),
518 	VMX_SEGMENT_FIELD(SS),
519 	VMX_SEGMENT_FIELD(TR),
520 	VMX_SEGMENT_FIELD(LDTR),
521 };
522 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)523 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
524 {
525 	vmx->segment_cache.bitmask = 0;
526 }
527 
528 static unsigned long host_idt_base;
529 
530 #if IS_ENABLED(CONFIG_HYPERV)
531 static struct kvm_x86_ops vmx_x86_ops __initdata;
532 
533 static bool __read_mostly enlightened_vmcs = true;
534 module_param(enlightened_vmcs, bool, 0444);
535 
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)536 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
537 {
538 	struct hv_enlightened_vmcs *evmcs;
539 	struct hv_partition_assist_pg **p_hv_pa_pg =
540 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
541 	/*
542 	 * Synthetic VM-Exit is not enabled in current code and so All
543 	 * evmcs in singe VM shares same assist page.
544 	 */
545 	if (!*p_hv_pa_pg)
546 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
547 
548 	if (!*p_hv_pa_pg)
549 		return -ENOMEM;
550 
551 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
552 
553 	evmcs->partition_assist_page =
554 		__pa(*p_hv_pa_pg);
555 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
557 
558 	return 0;
559 }
560 
hv_init_evmcs(void)561 static __init void hv_init_evmcs(void)
562 {
563 	int cpu;
564 
565 	if (!enlightened_vmcs)
566 		return;
567 
568 	/*
569 	 * Enlightened VMCS usage should be recommended and the host needs
570 	 * to support eVMCS v1 or above.
571 	 */
572 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
573 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
574 	     KVM_EVMCS_VERSION) {
575 
576 		/* Check that we have assist pages on all online CPUs */
577 		for_each_online_cpu(cpu) {
578 			if (!hv_get_vp_assist_page(cpu)) {
579 				enlightened_vmcs = false;
580 				break;
581 			}
582 		}
583 
584 		if (enlightened_vmcs) {
585 			pr_info("Using Hyper-V Enlightened VMCS\n");
586 			static_branch_enable(&__kvm_is_using_evmcs);
587 		}
588 
589 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
590 			vmx_x86_ops.enable_l2_tlb_flush
591 				= hv_enable_l2_tlb_flush;
592 
593 	} else {
594 		enlightened_vmcs = false;
595 	}
596 }
597 
hv_reset_evmcs(void)598 static void hv_reset_evmcs(void)
599 {
600 	struct hv_vp_assist_page *vp_ap;
601 
602 	if (!kvm_is_using_evmcs())
603 		return;
604 
605 	/*
606 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
607 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
608 	 * doesn't have a VP assist page allocated.
609 	 */
610 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
611 	if (WARN_ON_ONCE(!vp_ap))
612 		return;
613 
614 	/*
615 	 * Reset everything to support using non-enlightened VMCS access later
616 	 * (e.g. when we reload the module with enlightened_vmcs=0)
617 	 */
618 	vp_ap->nested_control.features.directhypercall = 0;
619 	vp_ap->current_nested_vmcs = 0;
620 	vp_ap->enlighten_vmentry = 0;
621 }
622 
623 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)624 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)625 static void hv_reset_evmcs(void) {}
626 #endif /* IS_ENABLED(CONFIG_HYPERV) */
627 
628 /*
629  * Comment's format: document - errata name - stepping - processor name.
630  * Refer from
631  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
632  */
633 static u32 vmx_preemption_cpu_tfms[] = {
634 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
635 0x000206E6,
636 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
637 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
638 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
639 0x00020652,
640 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
641 0x00020655,
642 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
643 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
644 /*
645  * 320767.pdf - AAP86  - B1 -
646  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
647  */
648 0x000106E5,
649 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
650 0x000106A0,
651 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
652 0x000106A1,
653 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
654 0x000106A4,
655  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
656  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
657  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
658 0x000106A5,
659  /* Xeon E3-1220 V2 */
660 0x000306A8,
661 };
662 
cpu_has_broken_vmx_preemption_timer(void)663 static inline bool cpu_has_broken_vmx_preemption_timer(void)
664 {
665 	u32 eax = cpuid_eax(0x00000001), i;
666 
667 	/* Clear the reserved bits */
668 	eax &= ~(0x3U << 14 | 0xfU << 28);
669 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
670 		if (eax == vmx_preemption_cpu_tfms[i])
671 			return true;
672 
673 	return false;
674 }
675 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)676 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
677 {
678 	return flexpriority_enabled && lapic_in_kernel(vcpu);
679 }
680 
possible_passthrough_msr_slot(u32 msr)681 static int possible_passthrough_msr_slot(u32 msr)
682 {
683 	u32 i;
684 
685 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
686 		if (vmx_possible_passthrough_msrs[i] == msr)
687 			return i;
688 
689 	return -ENOENT;
690 }
691 
is_valid_passthrough_msr(u32 msr)692 static bool is_valid_passthrough_msr(u32 msr)
693 {
694 	bool r;
695 
696 	switch (msr) {
697 	case 0x800 ... 0x8ff:
698 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
699 		return true;
700 	case MSR_IA32_RTIT_STATUS:
701 	case MSR_IA32_RTIT_OUTPUT_BASE:
702 	case MSR_IA32_RTIT_OUTPUT_MASK:
703 	case MSR_IA32_RTIT_CR3_MATCH:
704 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
705 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
706 	case MSR_LBR_SELECT:
707 	case MSR_LBR_TOS:
708 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
709 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
710 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
711 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
712 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
713 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
714 		return true;
715 	}
716 
717 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
718 
719 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
720 
721 	return r;
722 }
723 
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)724 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
725 {
726 	int i;
727 
728 	i = kvm_find_user_return_msr(msr);
729 	if (i >= 0)
730 		return &vmx->guest_uret_msrs[i];
731 	return NULL;
732 }
733 
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)734 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
735 				  struct vmx_uret_msr *msr, u64 data)
736 {
737 	unsigned int slot = msr - vmx->guest_uret_msrs;
738 	int ret = 0;
739 
740 	if (msr->load_into_hardware) {
741 		preempt_disable();
742 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
743 		preempt_enable();
744 	}
745 	if (!ret)
746 		msr->data = data;
747 	return ret;
748 }
749 
750 /*
751  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
752  *
753  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
754  * atomically track post-VMXON state, e.g. this may be called in NMI context.
755  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
756  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
757  * magically in RM, VM86, compat mode, or at CPL>0.
758  */
kvm_cpu_vmxoff(void)759 static int kvm_cpu_vmxoff(void)
760 {
761 	asm goto("1: vmxoff\n\t"
762 			  _ASM_EXTABLE(1b, %l[fault])
763 			  ::: "cc", "memory" : fault);
764 
765 	cr4_clear_bits(X86_CR4_VMXE);
766 	return 0;
767 
768 fault:
769 	cr4_clear_bits(X86_CR4_VMXE);
770 	return -EIO;
771 }
772 
vmx_emergency_disable(void)773 static void vmx_emergency_disable(void)
774 {
775 	int cpu = raw_smp_processor_id();
776 	struct loaded_vmcs *v;
777 
778 	kvm_rebooting = true;
779 
780 	/*
781 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
782 	 * set in task context.  If this races with VMX is disabled by an NMI,
783 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
784 	 * kvm_rebooting set.
785 	 */
786 	if (!(__read_cr4() & X86_CR4_VMXE))
787 		return;
788 
789 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
790 			    loaded_vmcss_on_cpu_link) {
791 		vmcs_clear(v->vmcs);
792 		if (v->shadow_vmcs)
793 			vmcs_clear(v->shadow_vmcs);
794 	}
795 
796 	kvm_cpu_vmxoff();
797 }
798 
__loaded_vmcs_clear(void * arg)799 static void __loaded_vmcs_clear(void *arg)
800 {
801 	struct loaded_vmcs *loaded_vmcs = arg;
802 	int cpu = raw_smp_processor_id();
803 
804 	if (loaded_vmcs->cpu != cpu)
805 		return; /* vcpu migration can race with cpu offline */
806 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
807 		per_cpu(current_vmcs, cpu) = NULL;
808 
809 	vmcs_clear(loaded_vmcs->vmcs);
810 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
811 		vmcs_clear(loaded_vmcs->shadow_vmcs);
812 
813 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
814 
815 	/*
816 	 * Ensure all writes to loaded_vmcs, including deleting it from its
817 	 * current percpu list, complete before setting loaded_vmcs->cpu to
818 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
819 	 * and add loaded_vmcs to its percpu list before it's deleted from this
820 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
821 	 */
822 	smp_wmb();
823 
824 	loaded_vmcs->cpu = -1;
825 	loaded_vmcs->launched = 0;
826 }
827 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)828 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
829 {
830 	int cpu = loaded_vmcs->cpu;
831 
832 	if (cpu != -1)
833 		smp_call_function_single(cpu,
834 			 __loaded_vmcs_clear, loaded_vmcs, 1);
835 }
836 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)837 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
838 				       unsigned field)
839 {
840 	bool ret;
841 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
842 
843 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
844 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
845 		vmx->segment_cache.bitmask = 0;
846 	}
847 	ret = vmx->segment_cache.bitmask & mask;
848 	vmx->segment_cache.bitmask |= mask;
849 	return ret;
850 }
851 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)852 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 	u16 *p = &vmx->segment_cache.seg[seg].selector;
855 
856 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
857 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
858 	return *p;
859 }
860 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)861 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 	ulong *p = &vmx->segment_cache.seg[seg].base;
864 
865 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
866 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
867 	return *p;
868 }
869 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)870 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
871 {
872 	u32 *p = &vmx->segment_cache.seg[seg].limit;
873 
874 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
875 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
876 	return *p;
877 }
878 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)879 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
880 {
881 	u32 *p = &vmx->segment_cache.seg[seg].ar;
882 
883 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
884 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
885 	return *p;
886 }
887 
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)888 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
889 {
890 	u32 eb;
891 
892 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
893 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
894 	/*
895 	 * Guest access to VMware backdoor ports could legitimately
896 	 * trigger #GP because of TSS I/O permission bitmap.
897 	 * We intercept those #GP and allow access to them anyway
898 	 * as VMware does.
899 	 */
900 	if (enable_vmware_backdoor)
901 		eb |= (1u << GP_VECTOR);
902 	if ((vcpu->guest_debug &
903 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
904 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
905 		eb |= 1u << BP_VECTOR;
906 	if (to_vmx(vcpu)->rmode.vm86_active)
907 		eb = ~0;
908 	if (!vmx_need_pf_intercept(vcpu))
909 		eb &= ~(1u << PF_VECTOR);
910 
911 	/* When we are running a nested L2 guest and L1 specified for it a
912 	 * certain exception bitmap, we must trap the same exceptions and pass
913 	 * them to L1. When running L2, we will only handle the exceptions
914 	 * specified above if L1 did not want them.
915 	 */
916 	if (is_guest_mode(vcpu))
917 		eb |= get_vmcs12(vcpu)->exception_bitmap;
918 	else {
919 		int mask = 0, match = 0;
920 
921 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
922 			/*
923 			 * If EPT is enabled, #PF is currently only intercepted
924 			 * if MAXPHYADDR is smaller on the guest than on the
925 			 * host.  In that case we only care about present,
926 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
927 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
928 			 */
929 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
930 			match = PFERR_PRESENT_MASK;
931 		}
932 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
933 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
934 	}
935 
936 	/*
937 	 * Disabling xfd interception indicates that dynamic xfeatures
938 	 * might be used in the guest. Always trap #NM in this case
939 	 * to save guest xfd_err timely.
940 	 */
941 	if (vcpu->arch.xfd_no_write_intercept)
942 		eb |= (1u << NM_VECTOR);
943 
944 	vmcs_write32(EXCEPTION_BITMAP, eb);
945 }
946 
947 /*
948  * Check if MSR is intercepted for currently loaded MSR bitmap.
949  */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)950 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
951 {
952 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
953 		return true;
954 
955 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
956 }
957 
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)958 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
959 {
960 	unsigned int flags = 0;
961 
962 	if (vmx->loaded_vmcs->launched)
963 		flags |= VMX_RUN_VMRESUME;
964 
965 	/*
966 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
967 	 * to change it directly without causing a vmexit.  In that case read
968 	 * it after vmexit and store it in vmx->spec_ctrl.
969 	 */
970 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
971 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
972 
973 	return flags;
974 }
975 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)976 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
977 		unsigned long entry, unsigned long exit)
978 {
979 	vm_entry_controls_clearbit(vmx, entry);
980 	vm_exit_controls_clearbit(vmx, exit);
981 }
982 
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)983 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
984 {
985 	unsigned int i;
986 
987 	for (i = 0; i < m->nr; ++i) {
988 		if (m->val[i].index == msr)
989 			return i;
990 	}
991 	return -ENOENT;
992 }
993 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)994 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
995 {
996 	int i;
997 	struct msr_autoload *m = &vmx->msr_autoload;
998 
999 	switch (msr) {
1000 	case MSR_EFER:
1001 		if (cpu_has_load_ia32_efer()) {
1002 			clear_atomic_switch_msr_special(vmx,
1003 					VM_ENTRY_LOAD_IA32_EFER,
1004 					VM_EXIT_LOAD_IA32_EFER);
1005 			return;
1006 		}
1007 		break;
1008 	case MSR_CORE_PERF_GLOBAL_CTRL:
1009 		if (cpu_has_load_perf_global_ctrl()) {
1010 			clear_atomic_switch_msr_special(vmx,
1011 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1012 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1013 			return;
1014 		}
1015 		break;
1016 	}
1017 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1018 	if (i < 0)
1019 		goto skip_guest;
1020 	--m->guest.nr;
1021 	m->guest.val[i] = m->guest.val[m->guest.nr];
1022 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1023 
1024 skip_guest:
1025 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1026 	if (i < 0)
1027 		return;
1028 
1029 	--m->host.nr;
1030 	m->host.val[i] = m->host.val[m->host.nr];
1031 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1032 }
1033 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1034 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1035 		unsigned long entry, unsigned long exit,
1036 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1037 		u64 guest_val, u64 host_val)
1038 {
1039 	vmcs_write64(guest_val_vmcs, guest_val);
1040 	if (host_val_vmcs != HOST_IA32_EFER)
1041 		vmcs_write64(host_val_vmcs, host_val);
1042 	vm_entry_controls_setbit(vmx, entry);
1043 	vm_exit_controls_setbit(vmx, exit);
1044 }
1045 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1046 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1047 				  u64 guest_val, u64 host_val, bool entry_only)
1048 {
1049 	int i, j = 0;
1050 	struct msr_autoload *m = &vmx->msr_autoload;
1051 
1052 	switch (msr) {
1053 	case MSR_EFER:
1054 		if (cpu_has_load_ia32_efer()) {
1055 			add_atomic_switch_msr_special(vmx,
1056 					VM_ENTRY_LOAD_IA32_EFER,
1057 					VM_EXIT_LOAD_IA32_EFER,
1058 					GUEST_IA32_EFER,
1059 					HOST_IA32_EFER,
1060 					guest_val, host_val);
1061 			return;
1062 		}
1063 		break;
1064 	case MSR_CORE_PERF_GLOBAL_CTRL:
1065 		if (cpu_has_load_perf_global_ctrl()) {
1066 			add_atomic_switch_msr_special(vmx,
1067 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1068 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1069 					GUEST_IA32_PERF_GLOBAL_CTRL,
1070 					HOST_IA32_PERF_GLOBAL_CTRL,
1071 					guest_val, host_val);
1072 			return;
1073 		}
1074 		break;
1075 	case MSR_IA32_PEBS_ENABLE:
1076 		/* PEBS needs a quiescent period after being disabled (to write
1077 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1078 		 * provide that period, so a CPU could write host's record into
1079 		 * guest's memory.
1080 		 */
1081 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1082 	}
1083 
1084 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1085 	if (!entry_only)
1086 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1087 
1088 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1089 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1090 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1091 				"Can't add msr %x\n", msr);
1092 		return;
1093 	}
1094 	if (i < 0) {
1095 		i = m->guest.nr++;
1096 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1097 	}
1098 	m->guest.val[i].index = msr;
1099 	m->guest.val[i].value = guest_val;
1100 
1101 	if (entry_only)
1102 		return;
1103 
1104 	if (j < 0) {
1105 		j = m->host.nr++;
1106 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1107 	}
1108 	m->host.val[j].index = msr;
1109 	m->host.val[j].value = host_val;
1110 }
1111 
update_transition_efer(struct vcpu_vmx * vmx)1112 static bool update_transition_efer(struct vcpu_vmx *vmx)
1113 {
1114 	u64 guest_efer = vmx->vcpu.arch.efer;
1115 	u64 ignore_bits = 0;
1116 	int i;
1117 
1118 	/* Shadow paging assumes NX to be available.  */
1119 	if (!enable_ept)
1120 		guest_efer |= EFER_NX;
1121 
1122 	/*
1123 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1124 	 */
1125 	ignore_bits |= EFER_SCE;
1126 #ifdef CONFIG_X86_64
1127 	ignore_bits |= EFER_LMA | EFER_LME;
1128 	/* SCE is meaningful only in long mode on Intel */
1129 	if (guest_efer & EFER_LMA)
1130 		ignore_bits &= ~(u64)EFER_SCE;
1131 #endif
1132 
1133 	/*
1134 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1135 	 * On CPUs that support "load IA32_EFER", always switch EFER
1136 	 * atomically, since it's faster than switching it manually.
1137 	 */
1138 	if (cpu_has_load_ia32_efer() ||
1139 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1140 		if (!(guest_efer & EFER_LMA))
1141 			guest_efer &= ~EFER_LME;
1142 		if (guest_efer != host_efer)
1143 			add_atomic_switch_msr(vmx, MSR_EFER,
1144 					      guest_efer, host_efer, false);
1145 		else
1146 			clear_atomic_switch_msr(vmx, MSR_EFER);
1147 		return false;
1148 	}
1149 
1150 	i = kvm_find_user_return_msr(MSR_EFER);
1151 	if (i < 0)
1152 		return false;
1153 
1154 	clear_atomic_switch_msr(vmx, MSR_EFER);
1155 
1156 	guest_efer &= ~ignore_bits;
1157 	guest_efer |= host_efer & ignore_bits;
1158 
1159 	vmx->guest_uret_msrs[i].data = guest_efer;
1160 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1161 
1162 	return true;
1163 }
1164 
1165 #ifdef CONFIG_X86_32
1166 /*
1167  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1168  * VMCS rather than the segment table.  KVM uses this helper to figure
1169  * out the current bases to poke them into the VMCS before entry.
1170  */
segment_base(u16 selector)1171 static unsigned long segment_base(u16 selector)
1172 {
1173 	struct desc_struct *table;
1174 	unsigned long v;
1175 
1176 	if (!(selector & ~SEGMENT_RPL_MASK))
1177 		return 0;
1178 
1179 	table = get_current_gdt_ro();
1180 
1181 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1182 		u16 ldt_selector = kvm_read_ldt();
1183 
1184 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1185 			return 0;
1186 
1187 		table = (struct desc_struct *)segment_base(ldt_selector);
1188 	}
1189 	v = get_desc_base(&table[selector >> 3]);
1190 	return v;
1191 }
1192 #endif
1193 
pt_can_write_msr(struct vcpu_vmx * vmx)1194 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1195 {
1196 	return vmx_pt_mode_is_host_guest() &&
1197 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1198 }
1199 
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1200 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1201 {
1202 	/* The base must be 128-byte aligned and a legal physical address. */
1203 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1204 }
1205 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1206 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1207 {
1208 	u32 i;
1209 
1210 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1211 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1212 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1213 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1214 	for (i = 0; i < addr_range; i++) {
1215 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1216 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1217 	}
1218 }
1219 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1220 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1221 {
1222 	u32 i;
1223 
1224 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1225 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1226 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1227 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1228 	for (i = 0; i < addr_range; i++) {
1229 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1230 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1231 	}
1232 }
1233 
pt_guest_enter(struct vcpu_vmx * vmx)1234 static void pt_guest_enter(struct vcpu_vmx *vmx)
1235 {
1236 	if (vmx_pt_mode_is_system())
1237 		return;
1238 
1239 	/*
1240 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1241 	 * Save host state before VM entry.
1242 	 */
1243 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1245 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1246 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1247 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1248 	}
1249 }
1250 
pt_guest_exit(struct vcpu_vmx * vmx)1251 static void pt_guest_exit(struct vcpu_vmx *vmx)
1252 {
1253 	if (vmx_pt_mode_is_system())
1254 		return;
1255 
1256 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1257 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1258 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1259 	}
1260 
1261 	/*
1262 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1263 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1264 	 */
1265 	if (vmx->pt_desc.host.ctl)
1266 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1267 }
1268 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1269 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1270 			unsigned long fs_base, unsigned long gs_base)
1271 {
1272 	if (unlikely(fs_sel != host->fs_sel)) {
1273 		if (!(fs_sel & 7))
1274 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1275 		else
1276 			vmcs_write16(HOST_FS_SELECTOR, 0);
1277 		host->fs_sel = fs_sel;
1278 	}
1279 	if (unlikely(gs_sel != host->gs_sel)) {
1280 		if (!(gs_sel & 7))
1281 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1282 		else
1283 			vmcs_write16(HOST_GS_SELECTOR, 0);
1284 		host->gs_sel = gs_sel;
1285 	}
1286 	if (unlikely(fs_base != host->fs_base)) {
1287 		vmcs_writel(HOST_FS_BASE, fs_base);
1288 		host->fs_base = fs_base;
1289 	}
1290 	if (unlikely(gs_base != host->gs_base)) {
1291 		vmcs_writel(HOST_GS_BASE, gs_base);
1292 		host->gs_base = gs_base;
1293 	}
1294 }
1295 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1296 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1297 {
1298 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1299 	struct vmcs_host_state *host_state;
1300 #ifdef CONFIG_X86_64
1301 	int cpu = raw_smp_processor_id();
1302 #endif
1303 	unsigned long fs_base, gs_base;
1304 	u16 fs_sel, gs_sel;
1305 	int i;
1306 
1307 	vmx->req_immediate_exit = false;
1308 
1309 	/*
1310 	 * Note that guest MSRs to be saved/restored can also be changed
1311 	 * when guest state is loaded. This happens when guest transitions
1312 	 * to/from long-mode by setting MSR_EFER.LMA.
1313 	 */
1314 	if (!vmx->guest_uret_msrs_loaded) {
1315 		vmx->guest_uret_msrs_loaded = true;
1316 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1317 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1318 				continue;
1319 
1320 			kvm_set_user_return_msr(i,
1321 						vmx->guest_uret_msrs[i].data,
1322 						vmx->guest_uret_msrs[i].mask);
1323 		}
1324 	}
1325 
1326 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1327 		nested_sync_vmcs12_to_shadow(vcpu);
1328 
1329 	if (vmx->guest_state_loaded)
1330 		return;
1331 
1332 	host_state = &vmx->loaded_vmcs->host_state;
1333 
1334 	/*
1335 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1336 	 * allow segment selectors with cpl > 0 or ti == 1.
1337 	 */
1338 	host_state->ldt_sel = kvm_read_ldt();
1339 
1340 #ifdef CONFIG_X86_64
1341 	savesegment(ds, host_state->ds_sel);
1342 	savesegment(es, host_state->es_sel);
1343 
1344 	gs_base = cpu_kernelmode_gs_base(cpu);
1345 	if (likely(is_64bit_mm(current->mm))) {
1346 		current_save_fsgs();
1347 		fs_sel = current->thread.fsindex;
1348 		gs_sel = current->thread.gsindex;
1349 		fs_base = current->thread.fsbase;
1350 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1351 	} else {
1352 		savesegment(fs, fs_sel);
1353 		savesegment(gs, gs_sel);
1354 		fs_base = read_msr(MSR_FS_BASE);
1355 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1356 	}
1357 
1358 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1359 #else
1360 	savesegment(fs, fs_sel);
1361 	savesegment(gs, gs_sel);
1362 	fs_base = segment_base(fs_sel);
1363 	gs_base = segment_base(gs_sel);
1364 #endif
1365 
1366 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1367 	vmx->guest_state_loaded = true;
1368 }
1369 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1370 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1371 {
1372 	struct vmcs_host_state *host_state;
1373 
1374 	if (!vmx->guest_state_loaded)
1375 		return;
1376 
1377 	host_state = &vmx->loaded_vmcs->host_state;
1378 
1379 	++vmx->vcpu.stat.host_state_reload;
1380 
1381 #ifdef CONFIG_X86_64
1382 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1383 #endif
1384 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1385 		kvm_load_ldt(host_state->ldt_sel);
1386 #ifdef CONFIG_X86_64
1387 		load_gs_index(host_state->gs_sel);
1388 #else
1389 		loadsegment(gs, host_state->gs_sel);
1390 #endif
1391 	}
1392 	if (host_state->fs_sel & 7)
1393 		loadsegment(fs, host_state->fs_sel);
1394 #ifdef CONFIG_X86_64
1395 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1396 		loadsegment(ds, host_state->ds_sel);
1397 		loadsegment(es, host_state->es_sel);
1398 	}
1399 #endif
1400 	invalidate_tss_limit();
1401 #ifdef CONFIG_X86_64
1402 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1403 #endif
1404 	load_fixmap_gdt(raw_smp_processor_id());
1405 	vmx->guest_state_loaded = false;
1406 	vmx->guest_uret_msrs_loaded = false;
1407 }
1408 
1409 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1410 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1411 {
1412 	preempt_disable();
1413 	if (vmx->guest_state_loaded)
1414 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1415 	preempt_enable();
1416 	return vmx->msr_guest_kernel_gs_base;
1417 }
1418 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1419 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1420 {
1421 	preempt_disable();
1422 	if (vmx->guest_state_loaded)
1423 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1424 	preempt_enable();
1425 	vmx->msr_guest_kernel_gs_base = data;
1426 }
1427 #endif
1428 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1429 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1430 			struct loaded_vmcs *buddy)
1431 {
1432 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1433 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1434 	struct vmcs *prev;
1435 
1436 	if (!already_loaded) {
1437 		loaded_vmcs_clear(vmx->loaded_vmcs);
1438 		local_irq_disable();
1439 
1440 		/*
1441 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1442 		 * this cpu's percpu list, otherwise it may not yet be deleted
1443 		 * from its previous cpu's percpu list.  Pairs with the
1444 		 * smb_wmb() in __loaded_vmcs_clear().
1445 		 */
1446 		smp_rmb();
1447 
1448 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1449 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1450 		local_irq_enable();
1451 	}
1452 
1453 	prev = per_cpu(current_vmcs, cpu);
1454 	if (prev != vmx->loaded_vmcs->vmcs) {
1455 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1456 		vmcs_load(vmx->loaded_vmcs->vmcs);
1457 
1458 		/*
1459 		 * No indirect branch prediction barrier needed when switching
1460 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1461 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1462 		 * performs IBPB on nested VM-Exit (a single nested transition
1463 		 * may switch the active VMCS multiple times).
1464 		 */
1465 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1466 			indirect_branch_prediction_barrier();
1467 	}
1468 
1469 	if (!already_loaded) {
1470 		void *gdt = get_current_gdt_ro();
1471 
1472 		/*
1473 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1474 		 * TLB entries from its previous association with the vCPU.
1475 		 */
1476 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1477 
1478 		/*
1479 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1480 		 * processors.  See 22.2.4.
1481 		 */
1482 		vmcs_writel(HOST_TR_BASE,
1483 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1484 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1485 
1486 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1487 			/* 22.2.3 */
1488 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1489 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1490 		}
1491 
1492 		vmx->loaded_vmcs->cpu = cpu;
1493 	}
1494 }
1495 
1496 /*
1497  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1498  * vcpu mutex is already taken.
1499  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1500 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1501 {
1502 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1503 
1504 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1505 
1506 	vmx_vcpu_pi_load(vcpu, cpu);
1507 
1508 	vmx->host_debugctlmsr = get_debugctlmsr();
1509 }
1510 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1511 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1512 {
1513 	vmx_vcpu_pi_put(vcpu);
1514 
1515 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1516 }
1517 
vmx_emulation_required(struct kvm_vcpu * vcpu)1518 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1519 {
1520 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1521 }
1522 
vmx_get_rflags(struct kvm_vcpu * vcpu)1523 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1524 {
1525 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1526 	unsigned long rflags, save_rflags;
1527 
1528 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1529 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1530 		rflags = vmcs_readl(GUEST_RFLAGS);
1531 		if (vmx->rmode.vm86_active) {
1532 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1533 			save_rflags = vmx->rmode.save_rflags;
1534 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1535 		}
1536 		vmx->rflags = rflags;
1537 	}
1538 	return vmx->rflags;
1539 }
1540 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1541 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1542 {
1543 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1544 	unsigned long old_rflags;
1545 
1546 	/*
1547 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1548 	 * is an unrestricted guest in order to mark L2 as needing emulation
1549 	 * if L1 runs L2 as a restricted guest.
1550 	 */
1551 	if (is_unrestricted_guest(vcpu)) {
1552 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1553 		vmx->rflags = rflags;
1554 		vmcs_writel(GUEST_RFLAGS, rflags);
1555 		return;
1556 	}
1557 
1558 	old_rflags = vmx_get_rflags(vcpu);
1559 	vmx->rflags = rflags;
1560 	if (vmx->rmode.vm86_active) {
1561 		vmx->rmode.save_rflags = rflags;
1562 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1563 	}
1564 	vmcs_writel(GUEST_RFLAGS, rflags);
1565 
1566 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1567 		vmx->emulation_required = vmx_emulation_required(vcpu);
1568 }
1569 
vmx_get_if_flag(struct kvm_vcpu * vcpu)1570 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1571 {
1572 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1573 }
1574 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1575 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1576 {
1577 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1578 	int ret = 0;
1579 
1580 	if (interruptibility & GUEST_INTR_STATE_STI)
1581 		ret |= KVM_X86_SHADOW_INT_STI;
1582 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1583 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1584 
1585 	return ret;
1586 }
1587 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1588 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1589 {
1590 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1591 	u32 interruptibility = interruptibility_old;
1592 
1593 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1594 
1595 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1596 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1597 	else if (mask & KVM_X86_SHADOW_INT_STI)
1598 		interruptibility |= GUEST_INTR_STATE_STI;
1599 
1600 	if ((interruptibility != interruptibility_old))
1601 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1602 }
1603 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1604 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1605 {
1606 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1607 	unsigned long value;
1608 
1609 	/*
1610 	 * Any MSR write that attempts to change bits marked reserved will
1611 	 * case a #GP fault.
1612 	 */
1613 	if (data & vmx->pt_desc.ctl_bitmask)
1614 		return 1;
1615 
1616 	/*
1617 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1618 	 * result in a #GP unless the same write also clears TraceEn.
1619 	 */
1620 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1621 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1622 		return 1;
1623 
1624 	/*
1625 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1626 	 * and FabricEn would cause #GP, if
1627 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1628 	 */
1629 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1630 		!(data & RTIT_CTL_FABRIC_EN) &&
1631 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1632 					PT_CAP_single_range_output))
1633 		return 1;
1634 
1635 	/*
1636 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1637 	 * utilize encodings marked reserved will cause a #GP fault.
1638 	 */
1639 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1640 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1641 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1642 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1643 		return 1;
1644 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1645 						PT_CAP_cycle_thresholds);
1646 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1647 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1648 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1649 		return 1;
1650 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1651 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1652 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1653 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1654 		return 1;
1655 
1656 	/*
1657 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1658 	 * cause a #GP fault.
1659 	 */
1660 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1661 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1662 		return 1;
1663 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1664 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1665 		return 1;
1666 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1667 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1668 		return 1;
1669 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1670 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1671 		return 1;
1672 
1673 	return 0;
1674 }
1675 
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1676 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1677 					void *insn, int insn_len)
1678 {
1679 	/*
1680 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1681 	 * not point at the failing instruction, and even if it did, the code
1682 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1683 	 * so that guest userspace can't DoS the guest simply by triggering
1684 	 * emulation (enclaves are CPL3 only).
1685 	 */
1686 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1687 		kvm_queue_exception(vcpu, UD_VECTOR);
1688 		return false;
1689 	}
1690 	return true;
1691 }
1692 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1693 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1694 {
1695 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1696 	unsigned long rip, orig_rip;
1697 	u32 instr_len;
1698 
1699 	/*
1700 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1701 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1702 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1703 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1704 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1705 	 * i.e. we end up advancing IP with some random value.
1706 	 */
1707 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1708 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1709 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1710 
1711 		/*
1712 		 * Emulating an enclave's instructions isn't supported as KVM
1713 		 * cannot access the enclave's memory or its true RIP, e.g. the
1714 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1715 		 * the RIP that actually triggered the VM-Exit.  But, because
1716 		 * most instructions that cause VM-Exit will #UD in an enclave,
1717 		 * most instruction-based VM-Exits simply do not occur.
1718 		 *
1719 		 * There are a few exceptions, notably the debug instructions
1720 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1721 		 * and generate #DB/#BP as expected, which KVM might intercept.
1722 		 * But again, the CPU does the dirty work and saves an instr
1723 		 * length of zero so VMMs don't shoot themselves in the foot.
1724 		 * WARN if KVM tries to skip a non-zero length instruction on
1725 		 * a VM-Exit from an enclave.
1726 		 */
1727 		if (!instr_len)
1728 			goto rip_updated;
1729 
1730 		WARN_ONCE(exit_reason.enclave_mode,
1731 			  "skipping instruction after SGX enclave VM-Exit");
1732 
1733 		orig_rip = kvm_rip_read(vcpu);
1734 		rip = orig_rip + instr_len;
1735 #ifdef CONFIG_X86_64
1736 		/*
1737 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1738 		 * mode, but just finding out that we are in 64-bit mode is
1739 		 * quite expensive.  Only do it if there was a carry.
1740 		 */
1741 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1742 			rip = (u32)rip;
1743 #endif
1744 		kvm_rip_write(vcpu, rip);
1745 	} else {
1746 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1747 			return 0;
1748 	}
1749 
1750 rip_updated:
1751 	/* skipping an emulated instruction also counts */
1752 	vmx_set_interrupt_shadow(vcpu, 0);
1753 
1754 	return 1;
1755 }
1756 
1757 /*
1758  * Recognizes a pending MTF VM-exit and records the nested state for later
1759  * delivery.
1760  */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1761 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1762 {
1763 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1764 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1765 
1766 	if (!is_guest_mode(vcpu))
1767 		return;
1768 
1769 	/*
1770 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1771 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1772 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1773 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1774 	 * as ICEBP is higher priority than both.  As instruction emulation is
1775 	 * completed at this point (i.e. KVM is at the instruction boundary),
1776 	 * any #DB exception pending delivery must be a debug-trap of lower
1777 	 * priority than MTF.  Record the pending MTF state to be delivered in
1778 	 * vmx_check_nested_events().
1779 	 */
1780 	if (nested_cpu_has_mtf(vmcs12) &&
1781 	    (!vcpu->arch.exception.pending ||
1782 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1783 	    (!vcpu->arch.exception_vmexit.pending ||
1784 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1785 		vmx->nested.mtf_pending = true;
1786 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1787 	} else {
1788 		vmx->nested.mtf_pending = false;
1789 	}
1790 }
1791 
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1792 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1793 {
1794 	vmx_update_emulated_instruction(vcpu);
1795 	return skip_emulated_instruction(vcpu);
1796 }
1797 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1798 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1799 {
1800 	/*
1801 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1802 	 * explicitly skip the instruction because if the HLT state is set,
1803 	 * then the instruction is already executing and RIP has already been
1804 	 * advanced.
1805 	 */
1806 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1807 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1808 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1809 }
1810 
vmx_inject_exception(struct kvm_vcpu * vcpu)1811 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1812 {
1813 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1814 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1815 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1816 
1817 	kvm_deliver_exception_payload(vcpu, ex);
1818 
1819 	if (ex->has_error_code) {
1820 		/*
1821 		 * Despite the error code being architecturally defined as 32
1822 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1823 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1824 		 * will (should) never provide a bogus error code, but AMD CPUs
1825 		 * do generate error codes with bits 31:16 set, and so KVM's
1826 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1827 		 * the upper bits to avoid VM-Fail, losing information that
1828 		 * does't really exist is preferable to killing the VM.
1829 		 */
1830 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1831 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1832 	}
1833 
1834 	if (vmx->rmode.vm86_active) {
1835 		int inc_eip = 0;
1836 		if (kvm_exception_is_soft(ex->vector))
1837 			inc_eip = vcpu->arch.event_exit_inst_len;
1838 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1839 		return;
1840 	}
1841 
1842 	WARN_ON_ONCE(vmx->emulation_required);
1843 
1844 	if (kvm_exception_is_soft(ex->vector)) {
1845 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1846 			     vmx->vcpu.arch.event_exit_inst_len);
1847 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1848 	} else
1849 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1850 
1851 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1852 
1853 	vmx_clear_hlt(vcpu);
1854 }
1855 
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1856 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1857 			       bool load_into_hardware)
1858 {
1859 	struct vmx_uret_msr *uret_msr;
1860 
1861 	uret_msr = vmx_find_uret_msr(vmx, msr);
1862 	if (!uret_msr)
1863 		return;
1864 
1865 	uret_msr->load_into_hardware = load_into_hardware;
1866 }
1867 
1868 /*
1869  * Configuring user return MSRs to automatically save, load, and restore MSRs
1870  * that need to be shoved into hardware when running the guest.  Note, omitting
1871  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1872  * loaded into hardware when running the guest.
1873  */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1874 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1875 {
1876 #ifdef CONFIG_X86_64
1877 	bool load_syscall_msrs;
1878 
1879 	/*
1880 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1881 	 * when EFER.SCE is set.
1882 	 */
1883 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1884 			    (vmx->vcpu.arch.efer & EFER_SCE);
1885 
1886 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1887 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1888 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1889 #endif
1890 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1891 
1892 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1893 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1894 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1895 
1896 	/*
1897 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1898 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1899 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1900 	 * so that TSX remains always disabled.
1901 	 */
1902 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1903 
1904 	/*
1905 	 * The set of MSRs to load may have changed, reload MSRs before the
1906 	 * next VM-Enter.
1907 	 */
1908 	vmx->guest_uret_msrs_loaded = false;
1909 }
1910 
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1911 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1912 {
1913 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1914 
1915 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1916 		return vmcs12->tsc_offset;
1917 
1918 	return 0;
1919 }
1920 
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1921 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1922 {
1923 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1924 
1925 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1926 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1927 		return vmcs12->tsc_multiplier;
1928 
1929 	return kvm_caps.default_tsc_scaling_ratio;
1930 }
1931 
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1932 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1933 {
1934 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1935 }
1936 
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1937 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1938 {
1939 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1940 }
1941 
1942 /*
1943  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1944  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1945  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1946  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1947  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1948  */
1949 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1950 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1951 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1952 					FEAT_CTL_SGX_LC_ENABLED		 | \
1953 					FEAT_CTL_SGX_ENABLED		 | \
1954 					FEAT_CTL_LMCE_ENABLED)
1955 
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1956 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1957 						    struct msr_data *msr)
1958 {
1959 	uint64_t valid_bits;
1960 
1961 	/*
1962 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1963 	 * exposed to the guest.
1964 	 */
1965 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1966 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1967 
1968 	if (!msr->host_initiated &&
1969 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1970 		return false;
1971 
1972 	if (msr->host_initiated)
1973 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1974 	else
1975 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1976 
1977 	return !(msr->data & ~valid_bits);
1978 }
1979 
vmx_get_msr_feature(struct kvm_msr_entry * msr)1980 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1981 {
1982 	switch (msr->index) {
1983 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1984 		if (!nested)
1985 			return 1;
1986 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1987 	default:
1988 		return KVM_MSR_RET_INVALID;
1989 	}
1990 }
1991 
1992 /*
1993  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1994  * Returns 0 on success, non-0 otherwise.
1995  * Assumes vcpu_load() was already called.
1996  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1997 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1998 {
1999 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2000 	struct vmx_uret_msr *msr;
2001 	u32 index;
2002 
2003 	switch (msr_info->index) {
2004 #ifdef CONFIG_X86_64
2005 	case MSR_FS_BASE:
2006 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2007 		break;
2008 	case MSR_GS_BASE:
2009 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2010 		break;
2011 	case MSR_KERNEL_GS_BASE:
2012 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2013 		break;
2014 #endif
2015 	case MSR_EFER:
2016 		return kvm_get_msr_common(vcpu, msr_info);
2017 	case MSR_IA32_TSX_CTRL:
2018 		if (!msr_info->host_initiated &&
2019 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2020 			return 1;
2021 		goto find_uret_msr;
2022 	case MSR_IA32_UMWAIT_CONTROL:
2023 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2024 			return 1;
2025 
2026 		msr_info->data = vmx->msr_ia32_umwait_control;
2027 		break;
2028 	case MSR_IA32_SPEC_CTRL:
2029 		if (!msr_info->host_initiated &&
2030 		    !guest_has_spec_ctrl_msr(vcpu))
2031 			return 1;
2032 
2033 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2034 		break;
2035 	case MSR_IA32_SYSENTER_CS:
2036 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2037 		break;
2038 	case MSR_IA32_SYSENTER_EIP:
2039 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2040 		break;
2041 	case MSR_IA32_SYSENTER_ESP:
2042 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2043 		break;
2044 	case MSR_IA32_BNDCFGS:
2045 		if (!kvm_mpx_supported() ||
2046 		    (!msr_info->host_initiated &&
2047 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2048 			return 1;
2049 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2050 		break;
2051 	case MSR_IA32_MCG_EXT_CTL:
2052 		if (!msr_info->host_initiated &&
2053 		    !(vmx->msr_ia32_feature_control &
2054 		      FEAT_CTL_LMCE_ENABLED))
2055 			return 1;
2056 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2057 		break;
2058 	case MSR_IA32_FEAT_CTL:
2059 		msr_info->data = vmx->msr_ia32_feature_control;
2060 		break;
2061 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2062 		if (!msr_info->host_initiated &&
2063 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2064 			return 1;
2065 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2066 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2067 		break;
2068 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2069 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2070 			return 1;
2071 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2072 				    &msr_info->data))
2073 			return 1;
2074 		/*
2075 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2076 		 * instead of just ignoring the features, different Hyper-V
2077 		 * versions are either trying to use them and fail or do some
2078 		 * sanity checking and refuse to boot. Filter all unsupported
2079 		 * features out.
2080 		 */
2081 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2082 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2083 							&msr_info->data);
2084 		break;
2085 	case MSR_IA32_RTIT_CTL:
2086 		if (!vmx_pt_mode_is_host_guest())
2087 			return 1;
2088 		msr_info->data = vmx->pt_desc.guest.ctl;
2089 		break;
2090 	case MSR_IA32_RTIT_STATUS:
2091 		if (!vmx_pt_mode_is_host_guest())
2092 			return 1;
2093 		msr_info->data = vmx->pt_desc.guest.status;
2094 		break;
2095 	case MSR_IA32_RTIT_CR3_MATCH:
2096 		if (!vmx_pt_mode_is_host_guest() ||
2097 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2098 						PT_CAP_cr3_filtering))
2099 			return 1;
2100 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2101 		break;
2102 	case MSR_IA32_RTIT_OUTPUT_BASE:
2103 		if (!vmx_pt_mode_is_host_guest() ||
2104 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2105 					PT_CAP_topa_output) &&
2106 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2107 					PT_CAP_single_range_output)))
2108 			return 1;
2109 		msr_info->data = vmx->pt_desc.guest.output_base;
2110 		break;
2111 	case MSR_IA32_RTIT_OUTPUT_MASK:
2112 		if (!vmx_pt_mode_is_host_guest() ||
2113 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2114 					PT_CAP_topa_output) &&
2115 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2116 					PT_CAP_single_range_output)))
2117 			return 1;
2118 		msr_info->data = vmx->pt_desc.guest.output_mask;
2119 		break;
2120 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2121 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2122 		if (!vmx_pt_mode_is_host_guest() ||
2123 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2124 			return 1;
2125 		if (index % 2)
2126 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2127 		else
2128 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2129 		break;
2130 	case MSR_IA32_DEBUGCTLMSR:
2131 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2132 		break;
2133 	default:
2134 	find_uret_msr:
2135 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2136 		if (msr) {
2137 			msr_info->data = msr->data;
2138 			break;
2139 		}
2140 		return kvm_get_msr_common(vcpu, msr_info);
2141 	}
2142 
2143 	return 0;
2144 }
2145 
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2146 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2147 						    u64 data)
2148 {
2149 #ifdef CONFIG_X86_64
2150 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2151 		return (u32)data;
2152 #endif
2153 	return (unsigned long)data;
2154 }
2155 
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2156 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2157 {
2158 	u64 debugctl = 0;
2159 
2160 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2161 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2162 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2163 
2164 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2165 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2166 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2167 
2168 	return debugctl;
2169 }
2170 
2171 /*
2172  * Writes msr value into the appropriate "register".
2173  * Returns 0 on success, non-0 otherwise.
2174  * Assumes vcpu_load() was already called.
2175  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2176 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2177 {
2178 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2179 	struct vmx_uret_msr *msr;
2180 	int ret = 0;
2181 	u32 msr_index = msr_info->index;
2182 	u64 data = msr_info->data;
2183 	u32 index;
2184 
2185 	switch (msr_index) {
2186 	case MSR_EFER:
2187 		ret = kvm_set_msr_common(vcpu, msr_info);
2188 		break;
2189 #ifdef CONFIG_X86_64
2190 	case MSR_FS_BASE:
2191 		vmx_segment_cache_clear(vmx);
2192 		vmcs_writel(GUEST_FS_BASE, data);
2193 		break;
2194 	case MSR_GS_BASE:
2195 		vmx_segment_cache_clear(vmx);
2196 		vmcs_writel(GUEST_GS_BASE, data);
2197 		break;
2198 	case MSR_KERNEL_GS_BASE:
2199 		vmx_write_guest_kernel_gs_base(vmx, data);
2200 		break;
2201 	case MSR_IA32_XFD:
2202 		ret = kvm_set_msr_common(vcpu, msr_info);
2203 		/*
2204 		 * Always intercepting WRMSR could incur non-negligible
2205 		 * overhead given xfd might be changed frequently in
2206 		 * guest context switch. Disable write interception
2207 		 * upon the first write with a non-zero value (indicating
2208 		 * potential usage on dynamic xfeatures). Also update
2209 		 * exception bitmap to trap #NM for proper virtualization
2210 		 * of guest xfd_err.
2211 		 */
2212 		if (!ret && data) {
2213 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2214 						      MSR_TYPE_RW);
2215 			vcpu->arch.xfd_no_write_intercept = true;
2216 			vmx_update_exception_bitmap(vcpu);
2217 		}
2218 		break;
2219 #endif
2220 	case MSR_IA32_SYSENTER_CS:
2221 		if (is_guest_mode(vcpu))
2222 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2223 		vmcs_write32(GUEST_SYSENTER_CS, data);
2224 		break;
2225 	case MSR_IA32_SYSENTER_EIP:
2226 		if (is_guest_mode(vcpu)) {
2227 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2228 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2229 		}
2230 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2231 		break;
2232 	case MSR_IA32_SYSENTER_ESP:
2233 		if (is_guest_mode(vcpu)) {
2234 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2235 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2236 		}
2237 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2238 		break;
2239 	case MSR_IA32_DEBUGCTLMSR: {
2240 		u64 invalid;
2241 
2242 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2243 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2244 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2245 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2246 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2247 		}
2248 
2249 		if (invalid)
2250 			return 1;
2251 
2252 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2253 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2254 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2255 
2256 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2257 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2258 		    (data & DEBUGCTLMSR_LBR))
2259 			intel_pmu_create_guest_lbr_event(vcpu);
2260 		return 0;
2261 	}
2262 	case MSR_IA32_BNDCFGS:
2263 		if (!kvm_mpx_supported() ||
2264 		    (!msr_info->host_initiated &&
2265 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2266 			return 1;
2267 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2268 		    (data & MSR_IA32_BNDCFGS_RSVD))
2269 			return 1;
2270 
2271 		if (is_guest_mode(vcpu) &&
2272 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2273 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2274 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2275 
2276 		vmcs_write64(GUEST_BNDCFGS, data);
2277 		break;
2278 	case MSR_IA32_UMWAIT_CONTROL:
2279 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2280 			return 1;
2281 
2282 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2283 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2284 			return 1;
2285 
2286 		vmx->msr_ia32_umwait_control = data;
2287 		break;
2288 	case MSR_IA32_SPEC_CTRL:
2289 		if (!msr_info->host_initiated &&
2290 		    !guest_has_spec_ctrl_msr(vcpu))
2291 			return 1;
2292 
2293 		if (kvm_spec_ctrl_test_value(data))
2294 			return 1;
2295 
2296 		vmx->spec_ctrl = data;
2297 		if (!data)
2298 			break;
2299 
2300 		/*
2301 		 * For non-nested:
2302 		 * When it's written (to non-zero) for the first time, pass
2303 		 * it through.
2304 		 *
2305 		 * For nested:
2306 		 * The handling of the MSR bitmap for L2 guests is done in
2307 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2308 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2309 		 * in the merging. We update the vmcs01 here for L1 as well
2310 		 * since it will end up touching the MSR anyway now.
2311 		 */
2312 		vmx_disable_intercept_for_msr(vcpu,
2313 					      MSR_IA32_SPEC_CTRL,
2314 					      MSR_TYPE_RW);
2315 		break;
2316 	case MSR_IA32_TSX_CTRL:
2317 		if (!msr_info->host_initiated &&
2318 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2319 			return 1;
2320 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2321 			return 1;
2322 		goto find_uret_msr;
2323 	case MSR_IA32_CR_PAT:
2324 		ret = kvm_set_msr_common(vcpu, msr_info);
2325 		if (ret)
2326 			break;
2327 
2328 		if (is_guest_mode(vcpu) &&
2329 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2330 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2331 
2332 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2333 			vmcs_write64(GUEST_IA32_PAT, data);
2334 		break;
2335 	case MSR_IA32_MCG_EXT_CTL:
2336 		if ((!msr_info->host_initiated &&
2337 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2338 		       FEAT_CTL_LMCE_ENABLED)) ||
2339 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2340 			return 1;
2341 		vcpu->arch.mcg_ext_ctl = data;
2342 		break;
2343 	case MSR_IA32_FEAT_CTL:
2344 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2345 			return 1;
2346 
2347 		vmx->msr_ia32_feature_control = data;
2348 		if (msr_info->host_initiated && data == 0)
2349 			vmx_leave_nested(vcpu);
2350 
2351 		/* SGX may be enabled/disabled by guest's firmware */
2352 		vmx_write_encls_bitmap(vcpu, NULL);
2353 		break;
2354 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2355 		/*
2356 		 * On real hardware, the LE hash MSRs are writable before
2357 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2358 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2359 		 * become writable.
2360 		 *
2361 		 * KVM does not emulate SGX activation for simplicity, so
2362 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2363 		 * is unlocked.  This is technically not architectural
2364 		 * behavior, but it's close enough.
2365 		 */
2366 		if (!msr_info->host_initiated &&
2367 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2368 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2369 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2370 			return 1;
2371 		vmx->msr_ia32_sgxlepubkeyhash
2372 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2373 		break;
2374 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2375 		if (!msr_info->host_initiated)
2376 			return 1; /* they are read-only */
2377 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2378 			return 1;
2379 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2380 	case MSR_IA32_RTIT_CTL:
2381 		if (!vmx_pt_mode_is_host_guest() ||
2382 			vmx_rtit_ctl_check(vcpu, data) ||
2383 			vmx->nested.vmxon)
2384 			return 1;
2385 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2386 		vmx->pt_desc.guest.ctl = data;
2387 		pt_update_intercept_for_msr(vcpu);
2388 		break;
2389 	case MSR_IA32_RTIT_STATUS:
2390 		if (!pt_can_write_msr(vmx))
2391 			return 1;
2392 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2393 			return 1;
2394 		vmx->pt_desc.guest.status = data;
2395 		break;
2396 	case MSR_IA32_RTIT_CR3_MATCH:
2397 		if (!pt_can_write_msr(vmx))
2398 			return 1;
2399 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2400 					   PT_CAP_cr3_filtering))
2401 			return 1;
2402 		vmx->pt_desc.guest.cr3_match = data;
2403 		break;
2404 	case MSR_IA32_RTIT_OUTPUT_BASE:
2405 		if (!pt_can_write_msr(vmx))
2406 			return 1;
2407 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2408 					   PT_CAP_topa_output) &&
2409 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2410 					   PT_CAP_single_range_output))
2411 			return 1;
2412 		if (!pt_output_base_valid(vcpu, data))
2413 			return 1;
2414 		vmx->pt_desc.guest.output_base = data;
2415 		break;
2416 	case MSR_IA32_RTIT_OUTPUT_MASK:
2417 		if (!pt_can_write_msr(vmx))
2418 			return 1;
2419 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2420 					   PT_CAP_topa_output) &&
2421 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2422 					   PT_CAP_single_range_output))
2423 			return 1;
2424 		vmx->pt_desc.guest.output_mask = data;
2425 		break;
2426 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2427 		if (!pt_can_write_msr(vmx))
2428 			return 1;
2429 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2430 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2431 			return 1;
2432 		if (is_noncanonical_address(data, vcpu))
2433 			return 1;
2434 		if (index % 2)
2435 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2436 		else
2437 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2438 		break;
2439 	case MSR_IA32_PERF_CAPABILITIES:
2440 		if (data && !vcpu_to_pmu(vcpu)->version)
2441 			return 1;
2442 		if (data & PMU_CAP_LBR_FMT) {
2443 			if ((data & PMU_CAP_LBR_FMT) !=
2444 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2445 				return 1;
2446 			if (!cpuid_model_is_consistent(vcpu))
2447 				return 1;
2448 		}
2449 		if (data & PERF_CAP_PEBS_FORMAT) {
2450 			if ((data & PERF_CAP_PEBS_MASK) !=
2451 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2452 				return 1;
2453 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2454 				return 1;
2455 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2456 				return 1;
2457 			if (!cpuid_model_is_consistent(vcpu))
2458 				return 1;
2459 		}
2460 		ret = kvm_set_msr_common(vcpu, msr_info);
2461 		break;
2462 
2463 	default:
2464 	find_uret_msr:
2465 		msr = vmx_find_uret_msr(vmx, msr_index);
2466 		if (msr)
2467 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2468 		else
2469 			ret = kvm_set_msr_common(vcpu, msr_info);
2470 	}
2471 
2472 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2473 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2474 		vmx_update_fb_clear_dis(vcpu, vmx);
2475 
2476 	return ret;
2477 }
2478 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2479 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2480 {
2481 	unsigned long guest_owned_bits;
2482 
2483 	kvm_register_mark_available(vcpu, reg);
2484 
2485 	switch (reg) {
2486 	case VCPU_REGS_RSP:
2487 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2488 		break;
2489 	case VCPU_REGS_RIP:
2490 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2491 		break;
2492 	case VCPU_EXREG_PDPTR:
2493 		if (enable_ept)
2494 			ept_save_pdptrs(vcpu);
2495 		break;
2496 	case VCPU_EXREG_CR0:
2497 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2498 
2499 		vcpu->arch.cr0 &= ~guest_owned_bits;
2500 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2501 		break;
2502 	case VCPU_EXREG_CR3:
2503 		/*
2504 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2505 		 * CR3 is loaded into hardware, not the guest's CR3.
2506 		 */
2507 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2508 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2509 		break;
2510 	case VCPU_EXREG_CR4:
2511 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2512 
2513 		vcpu->arch.cr4 &= ~guest_owned_bits;
2514 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2515 		break;
2516 	default:
2517 		KVM_BUG_ON(1, vcpu->kvm);
2518 		break;
2519 	}
2520 }
2521 
2522 /*
2523  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2524  * directly instead of going through cpu_has(), to ensure KVM is trapping
2525  * ENCLS whenever it's supported in hardware.  It does not matter whether
2526  * the host OS supports or has enabled SGX.
2527  */
cpu_has_sgx(void)2528 static bool cpu_has_sgx(void)
2529 {
2530 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2531 }
2532 
2533 /*
2534  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2535  * can't be used due to errata where VM Exit may incorrectly clear
2536  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2537  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2538  */
cpu_has_perf_global_ctrl_bug(void)2539 static bool cpu_has_perf_global_ctrl_bug(void)
2540 {
2541 	if (boot_cpu_data.x86 == 0x6) {
2542 		switch (boot_cpu_data.x86_model) {
2543 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2544 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2545 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2546 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2547 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2548 			return true;
2549 		default:
2550 			break;
2551 		}
2552 	}
2553 
2554 	return false;
2555 }
2556 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2557 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2558 {
2559 	u32 vmx_msr_low, vmx_msr_high;
2560 	u32 ctl = ctl_min | ctl_opt;
2561 
2562 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2563 
2564 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2565 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2566 
2567 	/* Ensure minimum (required) set of control bits are supported. */
2568 	if (ctl_min & ~ctl)
2569 		return -EIO;
2570 
2571 	*result = ctl;
2572 	return 0;
2573 }
2574 
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2575 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2576 {
2577 	u64 allowed;
2578 
2579 	rdmsrl(msr, allowed);
2580 
2581 	return  ctl_opt & allowed;
2582 }
2583 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2584 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2585 			     struct vmx_capability *vmx_cap)
2586 {
2587 	u32 vmx_msr_low, vmx_msr_high;
2588 	u32 _pin_based_exec_control = 0;
2589 	u32 _cpu_based_exec_control = 0;
2590 	u32 _cpu_based_2nd_exec_control = 0;
2591 	u64 _cpu_based_3rd_exec_control = 0;
2592 	u32 _vmexit_control = 0;
2593 	u32 _vmentry_control = 0;
2594 	u64 misc_msr;
2595 	int i;
2596 
2597 	/*
2598 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2599 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2600 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2601 	 */
2602 	struct {
2603 		u32 entry_control;
2604 		u32 exit_control;
2605 	} const vmcs_entry_exit_pairs[] = {
2606 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2607 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2608 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2609 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2610 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2611 	};
2612 
2613 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2614 
2615 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2616 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2617 				MSR_IA32_VMX_PROCBASED_CTLS,
2618 				&_cpu_based_exec_control))
2619 		return -EIO;
2620 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2621 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2622 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2623 					MSR_IA32_VMX_PROCBASED_CTLS2,
2624 					&_cpu_based_2nd_exec_control))
2625 			return -EIO;
2626 	}
2627 #ifndef CONFIG_X86_64
2628 	if (!(_cpu_based_2nd_exec_control &
2629 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2630 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2631 #endif
2632 
2633 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2634 		_cpu_based_2nd_exec_control &= ~(
2635 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2636 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2637 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2638 
2639 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2640 		&vmx_cap->ept, &vmx_cap->vpid);
2641 
2642 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2643 	    vmx_cap->ept) {
2644 		pr_warn_once("EPT CAP should not exist if not support "
2645 				"1-setting enable EPT VM-execution control\n");
2646 
2647 		if (error_on_inconsistent_vmcs_config)
2648 			return -EIO;
2649 
2650 		vmx_cap->ept = 0;
2651 	}
2652 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2653 	    vmx_cap->vpid) {
2654 		pr_warn_once("VPID CAP should not exist if not support "
2655 				"1-setting enable VPID VM-execution control\n");
2656 
2657 		if (error_on_inconsistent_vmcs_config)
2658 			return -EIO;
2659 
2660 		vmx_cap->vpid = 0;
2661 	}
2662 
2663 	if (!cpu_has_sgx())
2664 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2665 
2666 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2667 		_cpu_based_3rd_exec_control =
2668 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2669 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2670 
2671 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2672 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2673 				MSR_IA32_VMX_EXIT_CTLS,
2674 				&_vmexit_control))
2675 		return -EIO;
2676 
2677 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2678 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2679 				MSR_IA32_VMX_PINBASED_CTLS,
2680 				&_pin_based_exec_control))
2681 		return -EIO;
2682 
2683 	if (cpu_has_broken_vmx_preemption_timer())
2684 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2685 	if (!(_cpu_based_2nd_exec_control &
2686 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2687 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2688 
2689 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2690 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2691 				MSR_IA32_VMX_ENTRY_CTLS,
2692 				&_vmentry_control))
2693 		return -EIO;
2694 
2695 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2696 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2697 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2698 
2699 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2700 			continue;
2701 
2702 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2703 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2704 
2705 		if (error_on_inconsistent_vmcs_config)
2706 			return -EIO;
2707 
2708 		_vmentry_control &= ~n_ctrl;
2709 		_vmexit_control &= ~x_ctrl;
2710 	}
2711 
2712 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2713 
2714 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2715 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2716 		return -EIO;
2717 
2718 #ifdef CONFIG_X86_64
2719 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2720 	if (vmx_msr_high & (1u<<16))
2721 		return -EIO;
2722 #endif
2723 
2724 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2725 	if (((vmx_msr_high >> 18) & 15) != 6)
2726 		return -EIO;
2727 
2728 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2729 
2730 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2731 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2732 
2733 	vmcs_conf->revision_id = vmx_msr_low;
2734 
2735 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2736 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2737 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2738 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2739 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2740 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2741 	vmcs_conf->misc	= misc_msr;
2742 
2743 #if IS_ENABLED(CONFIG_HYPERV)
2744 	if (enlightened_vmcs)
2745 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2746 #endif
2747 
2748 	return 0;
2749 }
2750 
__kvm_is_vmx_supported(void)2751 static bool __kvm_is_vmx_supported(void)
2752 {
2753 	int cpu = smp_processor_id();
2754 
2755 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2756 		pr_err("VMX not supported by CPU %d\n", cpu);
2757 		return false;
2758 	}
2759 
2760 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2761 	    !this_cpu_has(X86_FEATURE_VMX)) {
2762 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2763 		return false;
2764 	}
2765 
2766 	return true;
2767 }
2768 
kvm_is_vmx_supported(void)2769 static bool kvm_is_vmx_supported(void)
2770 {
2771 	bool supported;
2772 
2773 	migrate_disable();
2774 	supported = __kvm_is_vmx_supported();
2775 	migrate_enable();
2776 
2777 	return supported;
2778 }
2779 
vmx_check_processor_compat(void)2780 static int vmx_check_processor_compat(void)
2781 {
2782 	int cpu = raw_smp_processor_id();
2783 	struct vmcs_config vmcs_conf;
2784 	struct vmx_capability vmx_cap;
2785 
2786 	if (!__kvm_is_vmx_supported())
2787 		return -EIO;
2788 
2789 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2790 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2791 		return -EIO;
2792 	}
2793 	if (nested)
2794 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2795 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2796 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2797 		return -EIO;
2798 	}
2799 	return 0;
2800 }
2801 
kvm_cpu_vmxon(u64 vmxon_pointer)2802 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2803 {
2804 	u64 msr;
2805 
2806 	cr4_set_bits(X86_CR4_VMXE);
2807 
2808 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2809 			  _ASM_EXTABLE(1b, %l[fault])
2810 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2811 			  : : fault);
2812 	return 0;
2813 
2814 fault:
2815 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2816 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2817 	cr4_clear_bits(X86_CR4_VMXE);
2818 
2819 	return -EFAULT;
2820 }
2821 
vmx_hardware_enable(void)2822 static int vmx_hardware_enable(void)
2823 {
2824 	int cpu = raw_smp_processor_id();
2825 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2826 	int r;
2827 
2828 	if (cr4_read_shadow() & X86_CR4_VMXE)
2829 		return -EBUSY;
2830 
2831 	/*
2832 	 * This can happen if we hot-added a CPU but failed to allocate
2833 	 * VP assist page for it.
2834 	 */
2835 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2836 		return -EFAULT;
2837 
2838 	intel_pt_handle_vmx(1);
2839 
2840 	r = kvm_cpu_vmxon(phys_addr);
2841 	if (r) {
2842 		intel_pt_handle_vmx(0);
2843 		return r;
2844 	}
2845 
2846 	if (enable_ept)
2847 		ept_sync_global();
2848 
2849 	return 0;
2850 }
2851 
vmclear_local_loaded_vmcss(void)2852 static void vmclear_local_loaded_vmcss(void)
2853 {
2854 	int cpu = raw_smp_processor_id();
2855 	struct loaded_vmcs *v, *n;
2856 
2857 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2858 				 loaded_vmcss_on_cpu_link)
2859 		__loaded_vmcs_clear(v);
2860 }
2861 
vmx_hardware_disable(void)2862 static void vmx_hardware_disable(void)
2863 {
2864 	vmclear_local_loaded_vmcss();
2865 
2866 	if (kvm_cpu_vmxoff())
2867 		kvm_spurious_fault();
2868 
2869 	hv_reset_evmcs();
2870 
2871 	intel_pt_handle_vmx(0);
2872 }
2873 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2874 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2875 {
2876 	int node = cpu_to_node(cpu);
2877 	struct page *pages;
2878 	struct vmcs *vmcs;
2879 
2880 	pages = __alloc_pages_node(node, flags, 0);
2881 	if (!pages)
2882 		return NULL;
2883 	vmcs = page_address(pages);
2884 	memset(vmcs, 0, vmcs_config.size);
2885 
2886 	/* KVM supports Enlightened VMCS v1 only */
2887 	if (kvm_is_using_evmcs())
2888 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2889 	else
2890 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2891 
2892 	if (shadow)
2893 		vmcs->hdr.shadow_vmcs = 1;
2894 	return vmcs;
2895 }
2896 
free_vmcs(struct vmcs * vmcs)2897 void free_vmcs(struct vmcs *vmcs)
2898 {
2899 	free_page((unsigned long)vmcs);
2900 }
2901 
2902 /*
2903  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2904  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2905 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2906 {
2907 	if (!loaded_vmcs->vmcs)
2908 		return;
2909 	loaded_vmcs_clear(loaded_vmcs);
2910 	free_vmcs(loaded_vmcs->vmcs);
2911 	loaded_vmcs->vmcs = NULL;
2912 	if (loaded_vmcs->msr_bitmap)
2913 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2914 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2915 }
2916 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2917 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2918 {
2919 	loaded_vmcs->vmcs = alloc_vmcs(false);
2920 	if (!loaded_vmcs->vmcs)
2921 		return -ENOMEM;
2922 
2923 	vmcs_clear(loaded_vmcs->vmcs);
2924 
2925 	loaded_vmcs->shadow_vmcs = NULL;
2926 	loaded_vmcs->hv_timer_soft_disabled = false;
2927 	loaded_vmcs->cpu = -1;
2928 	loaded_vmcs->launched = 0;
2929 
2930 	if (cpu_has_vmx_msr_bitmap()) {
2931 		loaded_vmcs->msr_bitmap = (unsigned long *)
2932 				__get_free_page(GFP_KERNEL_ACCOUNT);
2933 		if (!loaded_vmcs->msr_bitmap)
2934 			goto out_vmcs;
2935 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2936 	}
2937 
2938 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2939 	memset(&loaded_vmcs->controls_shadow, 0,
2940 		sizeof(struct vmcs_controls_shadow));
2941 
2942 	return 0;
2943 
2944 out_vmcs:
2945 	free_loaded_vmcs(loaded_vmcs);
2946 	return -ENOMEM;
2947 }
2948 
free_kvm_area(void)2949 static void free_kvm_area(void)
2950 {
2951 	int cpu;
2952 
2953 	for_each_possible_cpu(cpu) {
2954 		free_vmcs(per_cpu(vmxarea, cpu));
2955 		per_cpu(vmxarea, cpu) = NULL;
2956 	}
2957 }
2958 
alloc_kvm_area(void)2959 static __init int alloc_kvm_area(void)
2960 {
2961 	int cpu;
2962 
2963 	for_each_possible_cpu(cpu) {
2964 		struct vmcs *vmcs;
2965 
2966 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2967 		if (!vmcs) {
2968 			free_kvm_area();
2969 			return -ENOMEM;
2970 		}
2971 
2972 		/*
2973 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2974 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2975 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2976 		 *
2977 		 * However, even though not explicitly documented by
2978 		 * TLFS, VMXArea passed as VMXON argument should
2979 		 * still be marked with revision_id reported by
2980 		 * physical CPU.
2981 		 */
2982 		if (kvm_is_using_evmcs())
2983 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2984 
2985 		per_cpu(vmxarea, cpu) = vmcs;
2986 	}
2987 	return 0;
2988 }
2989 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2990 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2991 		struct kvm_segment *save)
2992 {
2993 	if (!emulate_invalid_guest_state) {
2994 		/*
2995 		 * CS and SS RPL should be equal during guest entry according
2996 		 * to VMX spec, but in reality it is not always so. Since vcpu
2997 		 * is in the middle of the transition from real mode to
2998 		 * protected mode it is safe to assume that RPL 0 is a good
2999 		 * default value.
3000 		 */
3001 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3002 			save->selector &= ~SEGMENT_RPL_MASK;
3003 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3004 		save->s = 1;
3005 	}
3006 	__vmx_set_segment(vcpu, save, seg);
3007 }
3008 
enter_pmode(struct kvm_vcpu * vcpu)3009 static void enter_pmode(struct kvm_vcpu *vcpu)
3010 {
3011 	unsigned long flags;
3012 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3013 
3014 	/*
3015 	 * Update real mode segment cache. It may be not up-to-date if segment
3016 	 * register was written while vcpu was in a guest mode.
3017 	 */
3018 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3019 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3020 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3021 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3022 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3023 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3024 
3025 	vmx->rmode.vm86_active = 0;
3026 
3027 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3028 
3029 	flags = vmcs_readl(GUEST_RFLAGS);
3030 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3031 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3032 	vmcs_writel(GUEST_RFLAGS, flags);
3033 
3034 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3035 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3036 
3037 	vmx_update_exception_bitmap(vcpu);
3038 
3039 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3040 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3041 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3042 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3043 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3044 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3045 }
3046 
fix_rmode_seg(int seg,struct kvm_segment * save)3047 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3048 {
3049 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3050 	struct kvm_segment var = *save;
3051 
3052 	var.dpl = 0x3;
3053 	if (seg == VCPU_SREG_CS)
3054 		var.type = 0x3;
3055 
3056 	if (!emulate_invalid_guest_state) {
3057 		var.selector = var.base >> 4;
3058 		var.base = var.base & 0xffff0;
3059 		var.limit = 0xffff;
3060 		var.g = 0;
3061 		var.db = 0;
3062 		var.present = 1;
3063 		var.s = 1;
3064 		var.l = 0;
3065 		var.unusable = 0;
3066 		var.type = 0x3;
3067 		var.avl = 0;
3068 		if (save->base & 0xf)
3069 			pr_warn_once("segment base is not paragraph aligned "
3070 				     "when entering protected mode (seg=%d)", seg);
3071 	}
3072 
3073 	vmcs_write16(sf->selector, var.selector);
3074 	vmcs_writel(sf->base, var.base);
3075 	vmcs_write32(sf->limit, var.limit);
3076 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3077 }
3078 
enter_rmode(struct kvm_vcpu * vcpu)3079 static void enter_rmode(struct kvm_vcpu *vcpu)
3080 {
3081 	unsigned long flags;
3082 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3083 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3084 
3085 	/*
3086 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3087 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3088 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3089 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3090 	 * CR0.PG=0 when L2 is active.
3091 	 */
3092 	WARN_ON_ONCE(is_guest_mode(vcpu));
3093 
3094 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3095 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3096 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3097 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3098 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3099 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3100 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3101 
3102 	vmx->rmode.vm86_active = 1;
3103 
3104 	vmx_segment_cache_clear(vmx);
3105 
3106 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3107 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3108 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3109 
3110 	flags = vmcs_readl(GUEST_RFLAGS);
3111 	vmx->rmode.save_rflags = flags;
3112 
3113 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3114 
3115 	vmcs_writel(GUEST_RFLAGS, flags);
3116 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3117 	vmx_update_exception_bitmap(vcpu);
3118 
3119 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3120 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3121 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3122 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3123 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3124 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3125 }
3126 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3127 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3128 {
3129 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3130 
3131 	/* Nothing to do if hardware doesn't support EFER. */
3132 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3133 		return 0;
3134 
3135 	vcpu->arch.efer = efer;
3136 #ifdef CONFIG_X86_64
3137 	if (efer & EFER_LMA)
3138 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3139 	else
3140 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3141 #else
3142 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3143 		return 1;
3144 #endif
3145 
3146 	vmx_setup_uret_msrs(vmx);
3147 	return 0;
3148 }
3149 
3150 #ifdef CONFIG_X86_64
3151 
enter_lmode(struct kvm_vcpu * vcpu)3152 static void enter_lmode(struct kvm_vcpu *vcpu)
3153 {
3154 	u32 guest_tr_ar;
3155 
3156 	vmx_segment_cache_clear(to_vmx(vcpu));
3157 
3158 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3159 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3160 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3161 				     __func__);
3162 		vmcs_write32(GUEST_TR_AR_BYTES,
3163 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3164 			     | VMX_AR_TYPE_BUSY_64_TSS);
3165 	}
3166 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3167 }
3168 
exit_lmode(struct kvm_vcpu * vcpu)3169 static void exit_lmode(struct kvm_vcpu *vcpu)
3170 {
3171 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3172 }
3173 
3174 #endif
3175 
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3176 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3177 {
3178 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3179 
3180 	/*
3181 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3182 	 * the CPU is not required to invalidate guest-physical mappings on
3183 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3184 	 * associated with the root EPT structure and not any particular VPID
3185 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3186 	 */
3187 	if (enable_ept) {
3188 		ept_sync_global();
3189 	} else if (enable_vpid) {
3190 		if (cpu_has_vmx_invvpid_global()) {
3191 			vpid_sync_vcpu_global();
3192 		} else {
3193 			vpid_sync_vcpu_single(vmx->vpid);
3194 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3195 		}
3196 	}
3197 }
3198 
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3199 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3200 {
3201 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3202 		return nested_get_vpid02(vcpu);
3203 	return to_vmx(vcpu)->vpid;
3204 }
3205 
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3206 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3207 {
3208 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3209 	u64 root_hpa = mmu->root.hpa;
3210 
3211 	/* No flush required if the current context is invalid. */
3212 	if (!VALID_PAGE(root_hpa))
3213 		return;
3214 
3215 	if (enable_ept)
3216 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3217 						mmu->root_role.level));
3218 	else
3219 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3220 }
3221 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3222 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3223 {
3224 	/*
3225 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3226 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3227 	 */
3228 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3229 }
3230 
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3231 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3232 {
3233 	/*
3234 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3235 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3236 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3237 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3238 	 * i.e. no explicit INVVPID is necessary.
3239 	 */
3240 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3241 }
3242 
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3243 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3244 {
3245 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3246 
3247 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3248 		return;
3249 
3250 	if (is_pae_paging(vcpu)) {
3251 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3252 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3253 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3254 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3255 	}
3256 }
3257 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3258 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3259 {
3260 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3261 
3262 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3263 		return;
3264 
3265 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3266 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3267 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3268 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3269 
3270 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3271 }
3272 
3273 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3274 			  CPU_BASED_CR3_STORE_EXITING)
3275 
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3276 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3277 {
3278 	if (is_guest_mode(vcpu))
3279 		return nested_guest_cr0_valid(vcpu, cr0);
3280 
3281 	if (to_vmx(vcpu)->nested.vmxon)
3282 		return nested_host_cr0_valid(vcpu, cr0);
3283 
3284 	return true;
3285 }
3286 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3287 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3288 {
3289 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3290 	unsigned long hw_cr0, old_cr0_pg;
3291 	u32 tmp;
3292 
3293 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3294 
3295 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3296 	if (enable_unrestricted_guest)
3297 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3298 	else {
3299 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3300 		if (!enable_ept)
3301 			hw_cr0 |= X86_CR0_WP;
3302 
3303 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3304 			enter_pmode(vcpu);
3305 
3306 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3307 			enter_rmode(vcpu);
3308 	}
3309 
3310 	vmcs_writel(CR0_READ_SHADOW, cr0);
3311 	vmcs_writel(GUEST_CR0, hw_cr0);
3312 	vcpu->arch.cr0 = cr0;
3313 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3314 
3315 #ifdef CONFIG_X86_64
3316 	if (vcpu->arch.efer & EFER_LME) {
3317 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3318 			enter_lmode(vcpu);
3319 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3320 			exit_lmode(vcpu);
3321 	}
3322 #endif
3323 
3324 	if (enable_ept && !enable_unrestricted_guest) {
3325 		/*
3326 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3327 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3328 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3329 		 * KVM's CR3 is installed.
3330 		 */
3331 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3332 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3333 
3334 		/*
3335 		 * When running with EPT but not unrestricted guest, KVM must
3336 		 * intercept CR3 accesses when paging is _disabled_.  This is
3337 		 * necessary because restricted guests can't actually run with
3338 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3339 		 * run the guest when identity mapped page tables.
3340 		 *
3341 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3342 		 * update, it may be stale with respect to CR3 interception,
3343 		 * e.g. after nested VM-Enter.
3344 		 *
3345 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3346 		 * stores to forward them to L1, even if KVM does not need to
3347 		 * intercept them to preserve its identity mapped page tables.
3348 		 */
3349 		if (!(cr0 & X86_CR0_PG)) {
3350 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3351 		} else if (!is_guest_mode(vcpu)) {
3352 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3353 		} else {
3354 			tmp = exec_controls_get(vmx);
3355 			tmp &= ~CR3_EXITING_BITS;
3356 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3357 			exec_controls_set(vmx, tmp);
3358 		}
3359 
3360 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3361 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3362 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3363 
3364 		/*
3365 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3366 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3367 		 */
3368 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3369 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3370 	}
3371 
3372 	/* depends on vcpu->arch.cr0 to be set to a new value */
3373 	vmx->emulation_required = vmx_emulation_required(vcpu);
3374 }
3375 
vmx_get_max_ept_level(void)3376 static int vmx_get_max_ept_level(void)
3377 {
3378 	if (cpu_has_vmx_ept_5levels())
3379 		return 5;
3380 	return 4;
3381 }
3382 
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3383 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3384 {
3385 	u64 eptp = VMX_EPTP_MT_WB;
3386 
3387 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3388 
3389 	if (enable_ept_ad_bits &&
3390 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3391 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3392 	eptp |= root_hpa;
3393 
3394 	return eptp;
3395 }
3396 
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3397 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3398 			     int root_level)
3399 {
3400 	struct kvm *kvm = vcpu->kvm;
3401 	bool update_guest_cr3 = true;
3402 	unsigned long guest_cr3;
3403 	u64 eptp;
3404 
3405 	if (enable_ept) {
3406 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3407 		vmcs_write64(EPT_POINTER, eptp);
3408 
3409 		hv_track_root_tdp(vcpu, root_hpa);
3410 
3411 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3412 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3413 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3414 			guest_cr3 = vcpu->arch.cr3;
3415 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3416 			update_guest_cr3 = false;
3417 		vmx_ept_load_pdptrs(vcpu);
3418 	} else {
3419 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3420 	}
3421 
3422 	if (update_guest_cr3)
3423 		vmcs_writel(GUEST_CR3, guest_cr3);
3424 }
3425 
3426 
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3427 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3428 {
3429 	/*
3430 	 * We operate under the default treatment of SMM, so VMX cannot be
3431 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3432 	 * i.e. is a reserved bit, is handled by common x86 code.
3433 	 */
3434 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3435 		return false;
3436 
3437 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3438 		return false;
3439 
3440 	return true;
3441 }
3442 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3443 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3444 {
3445 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3446 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3447 	unsigned long hw_cr4;
3448 
3449 	/*
3450 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3451 	 * is in force while we are in guest mode.  Do not let guests control
3452 	 * this bit, even if host CR4.MCE == 0.
3453 	 */
3454 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3455 	if (enable_unrestricted_guest)
3456 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3457 	else if (vmx->rmode.vm86_active)
3458 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3459 	else
3460 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3461 
3462 	if (vmx_umip_emulated()) {
3463 		if (cr4 & X86_CR4_UMIP) {
3464 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3465 			hw_cr4 &= ~X86_CR4_UMIP;
3466 		} else if (!is_guest_mode(vcpu) ||
3467 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3468 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3469 		}
3470 	}
3471 
3472 	vcpu->arch.cr4 = cr4;
3473 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3474 
3475 	if (!enable_unrestricted_guest) {
3476 		if (enable_ept) {
3477 			if (!is_paging(vcpu)) {
3478 				hw_cr4 &= ~X86_CR4_PAE;
3479 				hw_cr4 |= X86_CR4_PSE;
3480 			} else if (!(cr4 & X86_CR4_PAE)) {
3481 				hw_cr4 &= ~X86_CR4_PAE;
3482 			}
3483 		}
3484 
3485 		/*
3486 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3487 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3488 		 * to be manually disabled when guest switches to non-paging
3489 		 * mode.
3490 		 *
3491 		 * If !enable_unrestricted_guest, the CPU is always running
3492 		 * with CR0.PG=1 and CR4 needs to be modified.
3493 		 * If enable_unrestricted_guest, the CPU automatically
3494 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3495 		 */
3496 		if (!is_paging(vcpu))
3497 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3498 	}
3499 
3500 	vmcs_writel(CR4_READ_SHADOW, cr4);
3501 	vmcs_writel(GUEST_CR4, hw_cr4);
3502 
3503 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3504 		kvm_update_cpuid_runtime(vcpu);
3505 }
3506 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3507 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3508 {
3509 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3510 	u32 ar;
3511 
3512 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3513 		*var = vmx->rmode.segs[seg];
3514 		if (seg == VCPU_SREG_TR
3515 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3516 			return;
3517 		var->base = vmx_read_guest_seg_base(vmx, seg);
3518 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3519 		return;
3520 	}
3521 	var->base = vmx_read_guest_seg_base(vmx, seg);
3522 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3523 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3524 	ar = vmx_read_guest_seg_ar(vmx, seg);
3525 	var->unusable = (ar >> 16) & 1;
3526 	var->type = ar & 15;
3527 	var->s = (ar >> 4) & 1;
3528 	var->dpl = (ar >> 5) & 3;
3529 	/*
3530 	 * Some userspaces do not preserve unusable property. Since usable
3531 	 * segment has to be present according to VMX spec we can use present
3532 	 * property to amend userspace bug by making unusable segment always
3533 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3534 	 * segment as unusable.
3535 	 */
3536 	var->present = !var->unusable;
3537 	var->avl = (ar >> 12) & 1;
3538 	var->l = (ar >> 13) & 1;
3539 	var->db = (ar >> 14) & 1;
3540 	var->g = (ar >> 15) & 1;
3541 }
3542 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3543 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3544 {
3545 	struct kvm_segment s;
3546 
3547 	if (to_vmx(vcpu)->rmode.vm86_active) {
3548 		vmx_get_segment(vcpu, &s, seg);
3549 		return s.base;
3550 	}
3551 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3552 }
3553 
vmx_get_cpl(struct kvm_vcpu * vcpu)3554 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3555 {
3556 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3557 
3558 	if (unlikely(vmx->rmode.vm86_active))
3559 		return 0;
3560 	else {
3561 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3562 		return VMX_AR_DPL(ar);
3563 	}
3564 }
3565 
vmx_segment_access_rights(struct kvm_segment * var)3566 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3567 {
3568 	u32 ar;
3569 
3570 	ar = var->type & 15;
3571 	ar |= (var->s & 1) << 4;
3572 	ar |= (var->dpl & 3) << 5;
3573 	ar |= (var->present & 1) << 7;
3574 	ar |= (var->avl & 1) << 12;
3575 	ar |= (var->l & 1) << 13;
3576 	ar |= (var->db & 1) << 14;
3577 	ar |= (var->g & 1) << 15;
3578 	ar |= (var->unusable || !var->present) << 16;
3579 
3580 	return ar;
3581 }
3582 
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3583 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3584 {
3585 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3586 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3587 
3588 	vmx_segment_cache_clear(vmx);
3589 
3590 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3591 		vmx->rmode.segs[seg] = *var;
3592 		if (seg == VCPU_SREG_TR)
3593 			vmcs_write16(sf->selector, var->selector);
3594 		else if (var->s)
3595 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3596 		return;
3597 	}
3598 
3599 	vmcs_writel(sf->base, var->base);
3600 	vmcs_write32(sf->limit, var->limit);
3601 	vmcs_write16(sf->selector, var->selector);
3602 
3603 	/*
3604 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3605 	 * qemu binaries.
3606 	 *   IA32 arch specifies that at the time of processor reset the
3607 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3608 	 * is setting it to 0 in the userland code. This causes invalid guest
3609 	 * state vmexit when "unrestricted guest" mode is turned on.
3610 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3611 	 * tree. Newer qemu binaries with that qemu fix would not need this
3612 	 * kvm hack.
3613 	 */
3614 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3615 		var->type |= 0x1; /* Accessed */
3616 
3617 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3618 }
3619 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3620 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3621 {
3622 	__vmx_set_segment(vcpu, var, seg);
3623 
3624 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3625 }
3626 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3627 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3628 {
3629 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3630 
3631 	*db = (ar >> 14) & 1;
3632 	*l = (ar >> 13) & 1;
3633 }
3634 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3635 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3636 {
3637 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3638 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3639 }
3640 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3641 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3642 {
3643 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3644 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3645 }
3646 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3647 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3648 {
3649 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3650 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3651 }
3652 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3653 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3654 {
3655 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3656 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3657 }
3658 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3659 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3660 {
3661 	struct kvm_segment var;
3662 	u32 ar;
3663 
3664 	vmx_get_segment(vcpu, &var, seg);
3665 	var.dpl = 0x3;
3666 	if (seg == VCPU_SREG_CS)
3667 		var.type = 0x3;
3668 	ar = vmx_segment_access_rights(&var);
3669 
3670 	if (var.base != (var.selector << 4))
3671 		return false;
3672 	if (var.limit != 0xffff)
3673 		return false;
3674 	if (ar != 0xf3)
3675 		return false;
3676 
3677 	return true;
3678 }
3679 
code_segment_valid(struct kvm_vcpu * vcpu)3680 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3681 {
3682 	struct kvm_segment cs;
3683 	unsigned int cs_rpl;
3684 
3685 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3686 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3687 
3688 	if (cs.unusable)
3689 		return false;
3690 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3691 		return false;
3692 	if (!cs.s)
3693 		return false;
3694 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3695 		if (cs.dpl > cs_rpl)
3696 			return false;
3697 	} else {
3698 		if (cs.dpl != cs_rpl)
3699 			return false;
3700 	}
3701 	if (!cs.present)
3702 		return false;
3703 
3704 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3705 	return true;
3706 }
3707 
stack_segment_valid(struct kvm_vcpu * vcpu)3708 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3709 {
3710 	struct kvm_segment ss;
3711 	unsigned int ss_rpl;
3712 
3713 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3714 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3715 
3716 	if (ss.unusable)
3717 		return true;
3718 	if (ss.type != 3 && ss.type != 7)
3719 		return false;
3720 	if (!ss.s)
3721 		return false;
3722 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3723 		return false;
3724 	if (!ss.present)
3725 		return false;
3726 
3727 	return true;
3728 }
3729 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3730 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3731 {
3732 	struct kvm_segment var;
3733 	unsigned int rpl;
3734 
3735 	vmx_get_segment(vcpu, &var, seg);
3736 	rpl = var.selector & SEGMENT_RPL_MASK;
3737 
3738 	if (var.unusable)
3739 		return true;
3740 	if (!var.s)
3741 		return false;
3742 	if (!var.present)
3743 		return false;
3744 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3745 		if (var.dpl < rpl) /* DPL < RPL */
3746 			return false;
3747 	}
3748 
3749 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3750 	 * rights flags
3751 	 */
3752 	return true;
3753 }
3754 
tr_valid(struct kvm_vcpu * vcpu)3755 static bool tr_valid(struct kvm_vcpu *vcpu)
3756 {
3757 	struct kvm_segment tr;
3758 
3759 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3760 
3761 	if (tr.unusable)
3762 		return false;
3763 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3764 		return false;
3765 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3766 		return false;
3767 	if (!tr.present)
3768 		return false;
3769 
3770 	return true;
3771 }
3772 
ldtr_valid(struct kvm_vcpu * vcpu)3773 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3774 {
3775 	struct kvm_segment ldtr;
3776 
3777 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3778 
3779 	if (ldtr.unusable)
3780 		return true;
3781 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3782 		return false;
3783 	if (ldtr.type != 2)
3784 		return false;
3785 	if (!ldtr.present)
3786 		return false;
3787 
3788 	return true;
3789 }
3790 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3791 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3792 {
3793 	struct kvm_segment cs, ss;
3794 
3795 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3796 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3797 
3798 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3799 		 (ss.selector & SEGMENT_RPL_MASK));
3800 }
3801 
3802 /*
3803  * Check if guest state is valid. Returns true if valid, false if
3804  * not.
3805  * We assume that registers are always usable
3806  */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3807 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3808 {
3809 	/* real mode guest state checks */
3810 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3811 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3812 			return false;
3813 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3814 			return false;
3815 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3816 			return false;
3817 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3818 			return false;
3819 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3820 			return false;
3821 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3822 			return false;
3823 	} else {
3824 	/* protected mode guest state checks */
3825 		if (!cs_ss_rpl_check(vcpu))
3826 			return false;
3827 		if (!code_segment_valid(vcpu))
3828 			return false;
3829 		if (!stack_segment_valid(vcpu))
3830 			return false;
3831 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3832 			return false;
3833 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3834 			return false;
3835 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3836 			return false;
3837 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3838 			return false;
3839 		if (!tr_valid(vcpu))
3840 			return false;
3841 		if (!ldtr_valid(vcpu))
3842 			return false;
3843 	}
3844 	/* TODO:
3845 	 * - Add checks on RIP
3846 	 * - Add checks on RFLAGS
3847 	 */
3848 
3849 	return true;
3850 }
3851 
init_rmode_tss(struct kvm * kvm,void __user * ua)3852 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3853 {
3854 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3855 	u16 data;
3856 	int i;
3857 
3858 	for (i = 0; i < 3; i++) {
3859 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3860 			return -EFAULT;
3861 	}
3862 
3863 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3864 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3865 		return -EFAULT;
3866 
3867 	data = ~0;
3868 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3869 		return -EFAULT;
3870 
3871 	return 0;
3872 }
3873 
init_rmode_identity_map(struct kvm * kvm)3874 static int init_rmode_identity_map(struct kvm *kvm)
3875 {
3876 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3877 	int i, r = 0;
3878 	void __user *uaddr;
3879 	u32 tmp;
3880 
3881 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3882 	mutex_lock(&kvm->slots_lock);
3883 
3884 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3885 		goto out;
3886 
3887 	if (!kvm_vmx->ept_identity_map_addr)
3888 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3889 
3890 	uaddr = __x86_set_memory_region(kvm,
3891 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3892 					kvm_vmx->ept_identity_map_addr,
3893 					PAGE_SIZE);
3894 	if (IS_ERR(uaddr)) {
3895 		r = PTR_ERR(uaddr);
3896 		goto out;
3897 	}
3898 
3899 	/* Set up identity-mapping pagetable for EPT in real mode */
3900 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3901 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3902 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3903 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3904 			r = -EFAULT;
3905 			goto out;
3906 		}
3907 	}
3908 	kvm_vmx->ept_identity_pagetable_done = true;
3909 
3910 out:
3911 	mutex_unlock(&kvm->slots_lock);
3912 	return r;
3913 }
3914 
seg_setup(int seg)3915 static void seg_setup(int seg)
3916 {
3917 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3918 	unsigned int ar;
3919 
3920 	vmcs_write16(sf->selector, 0);
3921 	vmcs_writel(sf->base, 0);
3922 	vmcs_write32(sf->limit, 0xffff);
3923 	ar = 0x93;
3924 	if (seg == VCPU_SREG_CS)
3925 		ar |= 0x08; /* code segment */
3926 
3927 	vmcs_write32(sf->ar_bytes, ar);
3928 }
3929 
allocate_vpid(void)3930 int allocate_vpid(void)
3931 {
3932 	int vpid;
3933 
3934 	if (!enable_vpid)
3935 		return 0;
3936 	spin_lock(&vmx_vpid_lock);
3937 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3938 	if (vpid < VMX_NR_VPIDS)
3939 		__set_bit(vpid, vmx_vpid_bitmap);
3940 	else
3941 		vpid = 0;
3942 	spin_unlock(&vmx_vpid_lock);
3943 	return vpid;
3944 }
3945 
free_vpid(int vpid)3946 void free_vpid(int vpid)
3947 {
3948 	if (!enable_vpid || vpid == 0)
3949 		return;
3950 	spin_lock(&vmx_vpid_lock);
3951 	__clear_bit(vpid, vmx_vpid_bitmap);
3952 	spin_unlock(&vmx_vpid_lock);
3953 }
3954 
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3955 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3956 {
3957 	/*
3958 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3959 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3960 	 * bitmap has changed.
3961 	 */
3962 	if (kvm_is_using_evmcs()) {
3963 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3964 
3965 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3966 			evmcs->hv_clean_fields &=
3967 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3968 	}
3969 
3970 	vmx->nested.force_msr_bitmap_recalc = true;
3971 }
3972 
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3973 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3974 {
3975 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3976 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3977 
3978 	if (!cpu_has_vmx_msr_bitmap())
3979 		return;
3980 
3981 	vmx_msr_bitmap_l01_changed(vmx);
3982 
3983 	/*
3984 	 * Mark the desired intercept state in shadow bitmap, this is needed
3985 	 * for resync when the MSR filters change.
3986 	*/
3987 	if (is_valid_passthrough_msr(msr)) {
3988 		int idx = possible_passthrough_msr_slot(msr);
3989 
3990 		if (idx != -ENOENT) {
3991 			if (type & MSR_TYPE_R)
3992 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3993 			if (type & MSR_TYPE_W)
3994 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3995 		}
3996 	}
3997 
3998 	if ((type & MSR_TYPE_R) &&
3999 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4000 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4001 		type &= ~MSR_TYPE_R;
4002 	}
4003 
4004 	if ((type & MSR_TYPE_W) &&
4005 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4006 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4007 		type &= ~MSR_TYPE_W;
4008 	}
4009 
4010 	if (type & MSR_TYPE_R)
4011 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4012 
4013 	if (type & MSR_TYPE_W)
4014 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4015 }
4016 
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4017 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4018 {
4019 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4020 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4021 
4022 	if (!cpu_has_vmx_msr_bitmap())
4023 		return;
4024 
4025 	vmx_msr_bitmap_l01_changed(vmx);
4026 
4027 	/*
4028 	 * Mark the desired intercept state in shadow bitmap, this is needed
4029 	 * for resync when the MSR filter changes.
4030 	*/
4031 	if (is_valid_passthrough_msr(msr)) {
4032 		int idx = possible_passthrough_msr_slot(msr);
4033 
4034 		if (idx != -ENOENT) {
4035 			if (type & MSR_TYPE_R)
4036 				set_bit(idx, vmx->shadow_msr_intercept.read);
4037 			if (type & MSR_TYPE_W)
4038 				set_bit(idx, vmx->shadow_msr_intercept.write);
4039 		}
4040 	}
4041 
4042 	if (type & MSR_TYPE_R)
4043 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4044 
4045 	if (type & MSR_TYPE_W)
4046 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4047 }
4048 
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4049 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4050 {
4051 	/*
4052 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4053 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4054 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4055 	 */
4056 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4057 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4059 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4060 	u8 mode;
4061 
4062 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4063 		return;
4064 
4065 	if (cpu_has_secondary_exec_ctrls() &&
4066 	    (secondary_exec_controls_get(vmx) &
4067 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4068 		mode = MSR_BITMAP_MODE_X2APIC;
4069 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4070 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4071 	} else {
4072 		mode = 0;
4073 	}
4074 
4075 	if (mode == vmx->x2apic_msr_bitmap_mode)
4076 		return;
4077 
4078 	vmx->x2apic_msr_bitmap_mode = mode;
4079 
4080 	/*
4081 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4082 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4083 	 * Intercept all writes by default and poke holes as needed.  Pass
4084 	 * through reads for all valid registers by default in x2APIC+APICv
4085 	 * mode, only the current timer count needs on-demand emulation by KVM.
4086 	 */
4087 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4088 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4089 	else
4090 		msr_bitmap[read_idx] = ~0ull;
4091 	msr_bitmap[write_idx] = ~0ull;
4092 
4093 	/*
4094 	 * TPR reads and writes can be virtualized even if virtual interrupt
4095 	 * delivery is not in use.
4096 	 */
4097 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4098 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4099 
4100 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4101 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4102 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4103 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4104 		if (enable_ipiv)
4105 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4106 	}
4107 }
4108 
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4109 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4110 {
4111 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4112 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4113 	u32 i;
4114 
4115 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4116 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4117 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4118 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4119 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4120 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4121 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4122 	}
4123 }
4124 
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)4125 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4126 {
4127 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4128 	void *vapic_page;
4129 	u32 vppr;
4130 	int rvi;
4131 
4132 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4133 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4134 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4135 		return false;
4136 
4137 	rvi = vmx_get_rvi();
4138 
4139 	vapic_page = vmx->nested.virtual_apic_map.hva;
4140 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4141 
4142 	return ((rvi & 0xf0) > (vppr & 0xf0));
4143 }
4144 
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4145 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4146 {
4147 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4148 	u32 i;
4149 
4150 	/*
4151 	 * Redo intercept permissions for MSRs that KVM is passing through to
4152 	 * the guest.  Disabling interception will check the new MSR filter and
4153 	 * ensure that KVM enables interception if usersepace wants to filter
4154 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4155 	 * refreshed since KVM is going to intercept them regardless of what
4156 	 * userspace wants.
4157 	 */
4158 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4159 		u32 msr = vmx_possible_passthrough_msrs[i];
4160 
4161 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4162 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4163 
4164 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4165 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4166 	}
4167 
4168 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4169 	if (vmx_pt_mode_is_host_guest())
4170 		pt_update_intercept_for_msr(vcpu);
4171 }
4172 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4173 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4174 						     int pi_vec)
4175 {
4176 #ifdef CONFIG_SMP
4177 	if (vcpu->mode == IN_GUEST_MODE) {
4178 		/*
4179 		 * The vector of the virtual has already been set in the PIR.
4180 		 * Send a notification event to deliver the virtual interrupt
4181 		 * unless the vCPU is the currently running vCPU, i.e. the
4182 		 * event is being sent from a fastpath VM-Exit handler, in
4183 		 * which case the PIR will be synced to the vIRR before
4184 		 * re-entering the guest.
4185 		 *
4186 		 * When the target is not the running vCPU, the following
4187 		 * possibilities emerge:
4188 		 *
4189 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4190 		 * event posts the interrupt to the vCPU.
4191 		 *
4192 		 * Case 2: vCPU exits to root mode and is still runnable. The
4193 		 * PIR will be synced to the vIRR before re-entering the guest.
4194 		 * Sending a notification event is ok as the host IRQ handler
4195 		 * will ignore the spurious event.
4196 		 *
4197 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4198 		 * has already synced PIR to vIRR and never blocks the vCPU if
4199 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4200 		 * not wait for any requested interrupts in PIR, and sending a
4201 		 * notification event also results in a benign, spurious event.
4202 		 */
4203 
4204 		if (vcpu != kvm_get_running_vcpu())
4205 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4206 		return;
4207 	}
4208 #endif
4209 	/*
4210 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4211 	 * otherwise do nothing as KVM will grab the highest priority pending
4212 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4213 	 */
4214 	kvm_vcpu_wake_up(vcpu);
4215 }
4216 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4217 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4218 						int vector)
4219 {
4220 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4221 
4222 	if (is_guest_mode(vcpu) &&
4223 	    vector == vmx->nested.posted_intr_nv) {
4224 		/*
4225 		 * If a posted intr is not recognized by hardware,
4226 		 * we will accomplish it in the next vmentry.
4227 		 */
4228 		vmx->nested.pi_pending = true;
4229 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4230 
4231 		/*
4232 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4233 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4234 		 * request if triggering a posted interrupt "fails" because
4235 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4236 		 * the smb_wmb() in kvm_make_request() only ensures everything
4237 		 * done before making the request is visible when the request
4238 		 * is visible, it doesn't ensure ordering between the store to
4239 		 * vcpu->requests and the load from vcpu->mode.
4240 		 */
4241 		smp_mb__after_atomic();
4242 
4243 		/* the PIR and ON have been set by L1. */
4244 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4245 		return 0;
4246 	}
4247 	return -1;
4248 }
4249 /*
4250  * Send interrupt to vcpu via posted interrupt way.
4251  * 1. If target vcpu is running(non-root mode), send posted interrupt
4252  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4253  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4254  * interrupt from PIR in next vmentry.
4255  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4256 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4257 {
4258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4259 	int r;
4260 
4261 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4262 	if (!r)
4263 		return 0;
4264 
4265 	/* Note, this is called iff the local APIC is in-kernel. */
4266 	if (!vcpu->arch.apic->apicv_active)
4267 		return -1;
4268 
4269 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4270 		return 0;
4271 
4272 	/* If a previous notification has sent the IPI, nothing to do.  */
4273 	if (pi_test_and_set_on(&vmx->pi_desc))
4274 		return 0;
4275 
4276 	/*
4277 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4278 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4279 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4280 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4281 	 */
4282 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4283 	return 0;
4284 }
4285 
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4286 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4287 				  int trig_mode, int vector)
4288 {
4289 	struct kvm_vcpu *vcpu = apic->vcpu;
4290 
4291 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4292 		kvm_lapic_set_irr(vector, apic);
4293 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4294 		kvm_vcpu_kick(vcpu);
4295 	} else {
4296 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4297 					   trig_mode, vector);
4298 	}
4299 }
4300 
4301 /*
4302  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4303  * will not change in the lifetime of the guest.
4304  * Note that host-state that does change is set elsewhere. E.g., host-state
4305  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4306  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4307 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4308 {
4309 	u32 low32, high32;
4310 	unsigned long tmpl;
4311 	unsigned long cr0, cr3, cr4;
4312 
4313 	cr0 = read_cr0();
4314 	WARN_ON(cr0 & X86_CR0_TS);
4315 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4316 
4317 	/*
4318 	 * Save the most likely value for this task's CR3 in the VMCS.
4319 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4320 	 */
4321 	cr3 = __read_cr3();
4322 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4323 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4324 
4325 	/* Save the most likely value for this task's CR4 in the VMCS. */
4326 	cr4 = cr4_read_shadow();
4327 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4328 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4329 
4330 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4331 #ifdef CONFIG_X86_64
4332 	/*
4333 	 * Load null selectors, so we can avoid reloading them in
4334 	 * vmx_prepare_switch_to_host(), in case userspace uses
4335 	 * the null selectors too (the expected case).
4336 	 */
4337 	vmcs_write16(HOST_DS_SELECTOR, 0);
4338 	vmcs_write16(HOST_ES_SELECTOR, 0);
4339 #else
4340 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4341 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4342 #endif
4343 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4344 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4345 
4346 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4347 
4348 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4349 
4350 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4351 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4352 
4353 	/*
4354 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4355 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4356 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4357 	 * have already done so!).
4358 	 */
4359 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4360 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4361 
4362 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4363 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4364 
4365 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4366 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4367 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4368 	}
4369 
4370 	if (cpu_has_load_ia32_efer())
4371 		vmcs_write64(HOST_IA32_EFER, host_efer);
4372 }
4373 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4374 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4375 {
4376 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4377 
4378 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4379 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4380 	if (!enable_ept) {
4381 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4382 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4383 	}
4384 	if (is_guest_mode(&vmx->vcpu))
4385 		vcpu->arch.cr4_guest_owned_bits &=
4386 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4387 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4388 }
4389 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4390 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4391 {
4392 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4393 
4394 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4395 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4396 
4397 	if (!enable_vnmi)
4398 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4399 
4400 	if (!enable_preemption_timer)
4401 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4402 
4403 	return pin_based_exec_ctrl;
4404 }
4405 
vmx_vmentry_ctrl(void)4406 static u32 vmx_vmentry_ctrl(void)
4407 {
4408 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4409 
4410 	if (vmx_pt_mode_is_system())
4411 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4412 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4413 	/*
4414 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4415 	 */
4416 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4417 			  VM_ENTRY_LOAD_IA32_EFER |
4418 			  VM_ENTRY_IA32E_MODE);
4419 
4420 	if (cpu_has_perf_global_ctrl_bug())
4421 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4422 
4423 	return vmentry_ctrl;
4424 }
4425 
vmx_vmexit_ctrl(void)4426 static u32 vmx_vmexit_ctrl(void)
4427 {
4428 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4429 
4430 	/*
4431 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4432 	 * nested virtualization and thus allowed to be set in vmcs12.
4433 	 */
4434 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4435 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4436 
4437 	if (vmx_pt_mode_is_system())
4438 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4439 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4440 
4441 	if (cpu_has_perf_global_ctrl_bug())
4442 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4443 
4444 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4445 	return vmexit_ctrl &
4446 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4447 }
4448 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4449 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4450 {
4451 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4452 
4453 	if (is_guest_mode(vcpu)) {
4454 		vmx->nested.update_vmcs01_apicv_status = true;
4455 		return;
4456 	}
4457 
4458 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4459 
4460 	if (kvm_vcpu_apicv_active(vcpu)) {
4461 		secondary_exec_controls_setbit(vmx,
4462 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4463 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4464 		if (enable_ipiv)
4465 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4466 	} else {
4467 		secondary_exec_controls_clearbit(vmx,
4468 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4469 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4470 		if (enable_ipiv)
4471 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4472 	}
4473 
4474 	vmx_update_msr_bitmap_x2apic(vcpu);
4475 }
4476 
vmx_exec_control(struct vcpu_vmx * vmx)4477 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4478 {
4479 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4480 
4481 	/*
4482 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4483 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4484 	 */
4485 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4486 			  CPU_BASED_USE_IO_BITMAPS |
4487 			  CPU_BASED_MONITOR_TRAP_FLAG |
4488 			  CPU_BASED_PAUSE_EXITING);
4489 
4490 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4491 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4492 			  CPU_BASED_NMI_WINDOW_EXITING);
4493 
4494 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4495 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4496 
4497 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4498 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4499 
4500 #ifdef CONFIG_X86_64
4501 	if (exec_control & CPU_BASED_TPR_SHADOW)
4502 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4503 				  CPU_BASED_CR8_STORE_EXITING);
4504 	else
4505 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4506 				CPU_BASED_CR8_LOAD_EXITING;
4507 #endif
4508 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4509 	if (enable_ept)
4510 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4511 				  CPU_BASED_CR3_STORE_EXITING |
4512 				  CPU_BASED_INVLPG_EXITING);
4513 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4514 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4515 				CPU_BASED_MONITOR_EXITING);
4516 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4517 		exec_control &= ~CPU_BASED_HLT_EXITING;
4518 	return exec_control;
4519 }
4520 
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4521 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4522 {
4523 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4524 
4525 	/*
4526 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4527 	 * APICv is inhibited.
4528 	 */
4529 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4530 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4531 
4532 	return exec_control;
4533 }
4534 
4535 /*
4536  * Adjust a single secondary execution control bit to intercept/allow an
4537  * instruction in the guest.  This is usually done based on whether or not a
4538  * feature has been exposed to the guest in order to correctly emulate faults.
4539  */
4540 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4541 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4542 				  u32 control, bool enabled, bool exiting)
4543 {
4544 	/*
4545 	 * If the control is for an opt-in feature, clear the control if the
4546 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4547 	 * control is opt-out, i.e. an exiting control, clear the control if
4548 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4549 	 * disabled for the associated instruction.  Note, the caller is
4550 	 * responsible presetting exec_control to set all supported bits.
4551 	 */
4552 	if (enabled == exiting)
4553 		*exec_control &= ~control;
4554 
4555 	/*
4556 	 * Update the nested MSR settings so that a nested VMM can/can't set
4557 	 * controls for features that are/aren't exposed to the guest.
4558 	 */
4559 	if (nested) {
4560 		/*
4561 		 * All features that can be added or removed to VMX MSRs must
4562 		 * be supported in the first place for nested virtualization.
4563 		 */
4564 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4565 			enabled = false;
4566 
4567 		if (enabled)
4568 			vmx->nested.msrs.secondary_ctls_high |= control;
4569 		else
4570 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4571 	}
4572 }
4573 
4574 /*
4575  * Wrapper macro for the common case of adjusting a secondary execution control
4576  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4577  * verifies that the control is actually supported by KVM and hardware.
4578  */
4579 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4580 ({												\
4581 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4582 	bool __enabled;										\
4583 												\
4584 	if (cpu_has_vmx_##name()) {								\
4585 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4586 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4587 		else										\
4588 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4589 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4590 						  __enabled, exiting);				\
4591 	}											\
4592 })
4593 
4594 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4595 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4596 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4597 
4598 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4599 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4600 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4601 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4602 {
4603 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4604 
4605 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4606 
4607 	if (vmx_pt_mode_is_system())
4608 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4609 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4610 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4611 	if (vmx->vpid == 0)
4612 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4613 	if (!enable_ept) {
4614 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4615 		enable_unrestricted_guest = 0;
4616 	}
4617 	if (!enable_unrestricted_guest)
4618 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4619 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4620 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4621 	if (!kvm_vcpu_apicv_active(vcpu))
4622 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4623 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4624 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4625 
4626 	/*
4627 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4628 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4629 	 */
4630 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4631 
4632 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4633 	 * in vmx_set_cr4.  */
4634 	exec_control &= ~SECONDARY_EXEC_DESC;
4635 
4636 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4637 	   (handle_vmptrld).
4638 	   We can NOT enable shadow_vmcs here because we don't have yet
4639 	   a current VMCS12
4640 	*/
4641 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4642 
4643 	/*
4644 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4645 	 * it needs to be set here when dirty logging is already active, e.g.
4646 	 * if this vCPU was created after dirty logging was enabled.
4647 	 */
4648 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4649 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4650 
4651 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4652 
4653 	/*
4654 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4655 	 * feature is exposed to the guest.  This creates a virtualization hole
4656 	 * if both are supported in hardware but only one is exposed to the
4657 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4658 	 * is advertised is preferable to emulating the advertised instruction
4659 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4660 	 */
4661 	if (cpu_has_vmx_rdtscp()) {
4662 		bool rdpid_or_rdtscp_enabled =
4663 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4664 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4665 
4666 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4667 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4668 						  rdpid_or_rdtscp_enabled, false);
4669 	}
4670 
4671 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4672 
4673 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4674 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4675 
4676 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4677 				    ENABLE_USR_WAIT_PAUSE, false);
4678 
4679 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4680 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4681 
4682 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4683 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4684 
4685 	return exec_control;
4686 }
4687 
vmx_get_pid_table_order(struct kvm * kvm)4688 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4689 {
4690 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4691 }
4692 
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4693 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4694 {
4695 	struct page *pages;
4696 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4697 
4698 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4699 		return 0;
4700 
4701 	if (kvm_vmx->pid_table)
4702 		return 0;
4703 
4704 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4705 			    vmx_get_pid_table_order(kvm));
4706 	if (!pages)
4707 		return -ENOMEM;
4708 
4709 	kvm_vmx->pid_table = (void *)page_address(pages);
4710 	return 0;
4711 }
4712 
vmx_vcpu_precreate(struct kvm * kvm)4713 static int vmx_vcpu_precreate(struct kvm *kvm)
4714 {
4715 	return vmx_alloc_ipiv_pid_table(kvm);
4716 }
4717 
4718 #define VMX_XSS_EXIT_BITMAP 0
4719 
init_vmcs(struct vcpu_vmx * vmx)4720 static void init_vmcs(struct vcpu_vmx *vmx)
4721 {
4722 	struct kvm *kvm = vmx->vcpu.kvm;
4723 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4724 
4725 	if (nested)
4726 		nested_vmx_set_vmcs_shadowing_bitmap();
4727 
4728 	if (cpu_has_vmx_msr_bitmap())
4729 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4730 
4731 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4732 
4733 	/* Control */
4734 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4735 
4736 	exec_controls_set(vmx, vmx_exec_control(vmx));
4737 
4738 	if (cpu_has_secondary_exec_ctrls())
4739 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4740 
4741 	if (cpu_has_tertiary_exec_ctrls())
4742 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4743 
4744 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4745 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4746 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4747 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4748 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4749 
4750 		vmcs_write16(GUEST_INTR_STATUS, 0);
4751 
4752 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4753 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4754 	}
4755 
4756 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4757 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4758 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4759 	}
4760 
4761 	if (!kvm_pause_in_guest(kvm)) {
4762 		vmcs_write32(PLE_GAP, ple_gap);
4763 		vmx->ple_window = ple_window;
4764 		vmx->ple_window_dirty = true;
4765 	}
4766 
4767 	if (kvm_notify_vmexit_enabled(kvm))
4768 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4769 
4770 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4771 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4772 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4773 
4774 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4775 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4776 	vmx_set_constant_host_state(vmx);
4777 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4778 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4779 
4780 	if (cpu_has_vmx_vmfunc())
4781 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4782 
4783 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4784 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4785 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4786 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4787 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4788 
4789 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4790 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4791 
4792 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4793 
4794 	/* 22.2.1, 20.8.1 */
4795 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4796 
4797 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4798 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4799 
4800 	set_cr4_guest_host_mask(vmx);
4801 
4802 	if (vmx->vpid != 0)
4803 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4804 
4805 	if (cpu_has_vmx_xsaves())
4806 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4807 
4808 	if (enable_pml) {
4809 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4810 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4811 	}
4812 
4813 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4814 
4815 	if (vmx_pt_mode_is_host_guest()) {
4816 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4817 		/* Bit[6~0] are forced to 1, writes are ignored. */
4818 		vmx->pt_desc.guest.output_mask = 0x7F;
4819 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4820 	}
4821 
4822 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4823 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4824 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4825 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4826 
4827 	if (cpu_has_vmx_tpr_shadow()) {
4828 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4829 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4830 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4831 				     __pa(vmx->vcpu.arch.apic->regs));
4832 		vmcs_write32(TPR_THRESHOLD, 0);
4833 	}
4834 
4835 	vmx_setup_uret_msrs(vmx);
4836 }
4837 
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4838 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4839 {
4840 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4841 
4842 	init_vmcs(vmx);
4843 
4844 	if (nested)
4845 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4846 
4847 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4848 
4849 	vmx->nested.posted_intr_nv = -1;
4850 	vmx->nested.vmxon_ptr = INVALID_GPA;
4851 	vmx->nested.current_vmptr = INVALID_GPA;
4852 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4853 
4854 	vcpu->arch.microcode_version = 0x100000000ULL;
4855 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4856 
4857 	/*
4858 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4859 	 * or POSTED_INTR_WAKEUP_VECTOR.
4860 	 */
4861 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4862 	vmx->pi_desc.sn = 1;
4863 }
4864 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4865 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4866 {
4867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4868 
4869 	if (!init_event)
4870 		__vmx_vcpu_reset(vcpu);
4871 
4872 	vmx->rmode.vm86_active = 0;
4873 	vmx->spec_ctrl = 0;
4874 
4875 	vmx->msr_ia32_umwait_control = 0;
4876 
4877 	vmx->hv_deadline_tsc = -1;
4878 	kvm_set_cr8(vcpu, 0);
4879 
4880 	vmx_segment_cache_clear(vmx);
4881 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4882 
4883 	seg_setup(VCPU_SREG_CS);
4884 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4885 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4886 
4887 	seg_setup(VCPU_SREG_DS);
4888 	seg_setup(VCPU_SREG_ES);
4889 	seg_setup(VCPU_SREG_FS);
4890 	seg_setup(VCPU_SREG_GS);
4891 	seg_setup(VCPU_SREG_SS);
4892 
4893 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4894 	vmcs_writel(GUEST_TR_BASE, 0);
4895 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4896 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4897 
4898 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4899 	vmcs_writel(GUEST_LDTR_BASE, 0);
4900 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4901 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4902 
4903 	vmcs_writel(GUEST_GDTR_BASE, 0);
4904 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4905 
4906 	vmcs_writel(GUEST_IDTR_BASE, 0);
4907 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4908 
4909 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4910 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4911 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4912 	if (kvm_mpx_supported())
4913 		vmcs_write64(GUEST_BNDCFGS, 0);
4914 
4915 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4916 
4917 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4918 
4919 	vpid_sync_context(vmx->vpid);
4920 
4921 	vmx_update_fb_clear_dis(vcpu, vmx);
4922 }
4923 
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4924 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4925 {
4926 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4927 }
4928 
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4929 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4930 {
4931 	if (!enable_vnmi ||
4932 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4933 		vmx_enable_irq_window(vcpu);
4934 		return;
4935 	}
4936 
4937 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4938 }
4939 
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4940 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4941 {
4942 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4943 	uint32_t intr;
4944 	int irq = vcpu->arch.interrupt.nr;
4945 
4946 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4947 
4948 	++vcpu->stat.irq_injections;
4949 	if (vmx->rmode.vm86_active) {
4950 		int inc_eip = 0;
4951 		if (vcpu->arch.interrupt.soft)
4952 			inc_eip = vcpu->arch.event_exit_inst_len;
4953 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4954 		return;
4955 	}
4956 	intr = irq | INTR_INFO_VALID_MASK;
4957 	if (vcpu->arch.interrupt.soft) {
4958 		intr |= INTR_TYPE_SOFT_INTR;
4959 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4960 			     vmx->vcpu.arch.event_exit_inst_len);
4961 	} else
4962 		intr |= INTR_TYPE_EXT_INTR;
4963 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4964 
4965 	vmx_clear_hlt(vcpu);
4966 }
4967 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4968 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4969 {
4970 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4971 
4972 	if (!enable_vnmi) {
4973 		/*
4974 		 * Tracking the NMI-blocked state in software is built upon
4975 		 * finding the next open IRQ window. This, in turn, depends on
4976 		 * well-behaving guests: They have to keep IRQs disabled at
4977 		 * least as long as the NMI handler runs. Otherwise we may
4978 		 * cause NMI nesting, maybe breaking the guest. But as this is
4979 		 * highly unlikely, we can live with the residual risk.
4980 		 */
4981 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4982 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4983 	}
4984 
4985 	++vcpu->stat.nmi_injections;
4986 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4987 
4988 	if (vmx->rmode.vm86_active) {
4989 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4990 		return;
4991 	}
4992 
4993 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4994 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4995 
4996 	vmx_clear_hlt(vcpu);
4997 }
4998 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4999 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5000 {
5001 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5002 	bool masked;
5003 
5004 	if (!enable_vnmi)
5005 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5006 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5007 		return false;
5008 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5009 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5010 	return masked;
5011 }
5012 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5013 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5014 {
5015 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5016 
5017 	if (!enable_vnmi) {
5018 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5019 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5020 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5021 		}
5022 	} else {
5023 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5024 		if (masked)
5025 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5026 				      GUEST_INTR_STATE_NMI);
5027 		else
5028 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5029 					GUEST_INTR_STATE_NMI);
5030 	}
5031 }
5032 
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5033 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5034 {
5035 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5036 		return false;
5037 
5038 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5039 		return true;
5040 
5041 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5042 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5043 		 GUEST_INTR_STATE_NMI));
5044 }
5045 
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5046 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5047 {
5048 	if (to_vmx(vcpu)->nested.nested_run_pending)
5049 		return -EBUSY;
5050 
5051 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5052 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5053 		return -EBUSY;
5054 
5055 	return !vmx_nmi_blocked(vcpu);
5056 }
5057 
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5058 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5059 {
5060 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5061 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5062 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5063 }
5064 
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5065 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5066 {
5067 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5068 		return false;
5069 
5070 	return __vmx_interrupt_blocked(vcpu);
5071 }
5072 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5073 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5074 {
5075 	if (to_vmx(vcpu)->nested.nested_run_pending)
5076 		return -EBUSY;
5077 
5078 	/*
5079 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5080 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5081 	 */
5082 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5083 		return -EBUSY;
5084 
5085 	return !vmx_interrupt_blocked(vcpu);
5086 }
5087 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5088 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5089 {
5090 	void __user *ret;
5091 
5092 	if (enable_unrestricted_guest)
5093 		return 0;
5094 
5095 	mutex_lock(&kvm->slots_lock);
5096 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5097 				      PAGE_SIZE * 3);
5098 	mutex_unlock(&kvm->slots_lock);
5099 
5100 	if (IS_ERR(ret))
5101 		return PTR_ERR(ret);
5102 
5103 	to_kvm_vmx(kvm)->tss_addr = addr;
5104 
5105 	return init_rmode_tss(kvm, ret);
5106 }
5107 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5108 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5109 {
5110 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5111 	return 0;
5112 }
5113 
rmode_exception(struct kvm_vcpu * vcpu,int vec)5114 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5115 {
5116 	switch (vec) {
5117 	case BP_VECTOR:
5118 		/*
5119 		 * Update instruction length as we may reinject the exception
5120 		 * from user space while in guest debugging mode.
5121 		 */
5122 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5123 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5124 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5125 			return false;
5126 		fallthrough;
5127 	case DB_VECTOR:
5128 		return !(vcpu->guest_debug &
5129 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5130 	case DE_VECTOR:
5131 	case OF_VECTOR:
5132 	case BR_VECTOR:
5133 	case UD_VECTOR:
5134 	case DF_VECTOR:
5135 	case SS_VECTOR:
5136 	case GP_VECTOR:
5137 	case MF_VECTOR:
5138 		return true;
5139 	}
5140 	return false;
5141 }
5142 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5143 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5144 				  int vec, u32 err_code)
5145 {
5146 	/*
5147 	 * Instruction with address size override prefix opcode 0x67
5148 	 * Cause the #SS fault with 0 error code in VM86 mode.
5149 	 */
5150 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5151 		if (kvm_emulate_instruction(vcpu, 0)) {
5152 			if (vcpu->arch.halt_request) {
5153 				vcpu->arch.halt_request = 0;
5154 				return kvm_emulate_halt_noskip(vcpu);
5155 			}
5156 			return 1;
5157 		}
5158 		return 0;
5159 	}
5160 
5161 	/*
5162 	 * Forward all other exceptions that are valid in real mode.
5163 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5164 	 *        the required debugging infrastructure rework.
5165 	 */
5166 	kvm_queue_exception(vcpu, vec);
5167 	return 1;
5168 }
5169 
handle_machine_check(struct kvm_vcpu * vcpu)5170 static int handle_machine_check(struct kvm_vcpu *vcpu)
5171 {
5172 	/* handled by vmx_vcpu_run() */
5173 	return 1;
5174 }
5175 
5176 /*
5177  * If the host has split lock detection disabled, then #AC is
5178  * unconditionally injected into the guest, which is the pre split lock
5179  * detection behaviour.
5180  *
5181  * If the host has split lock detection enabled then #AC is
5182  * only injected into the guest when:
5183  *  - Guest CPL == 3 (user mode)
5184  *  - Guest has #AC detection enabled in CR0
5185  *  - Guest EFLAGS has AC bit set
5186  */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5187 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5188 {
5189 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5190 		return true;
5191 
5192 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5193 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5194 }
5195 
handle_exception_nmi(struct kvm_vcpu * vcpu)5196 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5197 {
5198 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5199 	struct kvm_run *kvm_run = vcpu->run;
5200 	u32 intr_info, ex_no, error_code;
5201 	unsigned long cr2, dr6;
5202 	u32 vect_info;
5203 
5204 	vect_info = vmx->idt_vectoring_info;
5205 	intr_info = vmx_get_intr_info(vcpu);
5206 
5207 	/*
5208 	 * Machine checks are handled by handle_exception_irqoff(), or by
5209 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5210 	 * vmx_vcpu_enter_exit().
5211 	 */
5212 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5213 		return 1;
5214 
5215 	/*
5216 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5217 	 * This ensures the nested_vmx check is not skipped so vmexit can
5218 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5219 	 * point.
5220 	 */
5221 	if (is_nm_fault(intr_info)) {
5222 		kvm_queue_exception(vcpu, NM_VECTOR);
5223 		return 1;
5224 	}
5225 
5226 	if (is_invalid_opcode(intr_info))
5227 		return handle_ud(vcpu);
5228 
5229 	error_code = 0;
5230 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5231 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5232 
5233 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5234 		WARN_ON_ONCE(!enable_vmware_backdoor);
5235 
5236 		/*
5237 		 * VMware backdoor emulation on #GP interception only handles
5238 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5239 		 * error code on #GP.
5240 		 */
5241 		if (error_code) {
5242 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5243 			return 1;
5244 		}
5245 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5246 	}
5247 
5248 	/*
5249 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5250 	 * MMIO, it is better to report an internal error.
5251 	 * See the comments in vmx_handle_exit.
5252 	 */
5253 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5254 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5255 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5256 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5257 		vcpu->run->internal.ndata = 4;
5258 		vcpu->run->internal.data[0] = vect_info;
5259 		vcpu->run->internal.data[1] = intr_info;
5260 		vcpu->run->internal.data[2] = error_code;
5261 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5262 		return 0;
5263 	}
5264 
5265 	if (is_page_fault(intr_info)) {
5266 		cr2 = vmx_get_exit_qual(vcpu);
5267 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5268 			/*
5269 			 * EPT will cause page fault only if we need to
5270 			 * detect illegal GPAs.
5271 			 */
5272 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5273 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5274 			return 1;
5275 		} else
5276 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5277 	}
5278 
5279 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5280 
5281 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5282 		return handle_rmode_exception(vcpu, ex_no, error_code);
5283 
5284 	switch (ex_no) {
5285 	case DB_VECTOR:
5286 		dr6 = vmx_get_exit_qual(vcpu);
5287 		if (!(vcpu->guest_debug &
5288 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5289 			/*
5290 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5291 			 * instruction.  ICEBP generates a trap-like #DB, but
5292 			 * despite its interception control being tied to #DB,
5293 			 * is an instruction intercept, i.e. the VM-Exit occurs
5294 			 * on the ICEBP itself.  Use the inner "skip" helper to
5295 			 * avoid single-step #DB and MTF updates, as ICEBP is
5296 			 * higher priority.  Note, skipping ICEBP still clears
5297 			 * STI and MOVSS blocking.
5298 			 *
5299 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5300 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5301 			 * blocking is active, as the CPU doesn't set the bit
5302 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5303 			 * consistency check that a single-step #DB is pending
5304 			 * in this scenario as the previous instruction cannot
5305 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5306 			 * don't modify RFLAGS), therefore the one instruction
5307 			 * delay when activating single-step breakpoints must
5308 			 * have already expired.  Note, the CPU sets/clears BS
5309 			 * as appropriate for all other VM-Exits types.
5310 			 */
5311 			if (is_icebp(intr_info))
5312 				WARN_ON(!skip_emulated_instruction(vcpu));
5313 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5314 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5315 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5316 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5317 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5318 
5319 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5320 			return 1;
5321 		}
5322 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5323 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5324 		fallthrough;
5325 	case BP_VECTOR:
5326 		/*
5327 		 * Update instruction length as we may reinject #BP from
5328 		 * user space while in guest debugging mode. Reading it for
5329 		 * #DB as well causes no harm, it is not used in that case.
5330 		 */
5331 		vmx->vcpu.arch.event_exit_inst_len =
5332 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5333 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5334 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5335 		kvm_run->debug.arch.exception = ex_no;
5336 		break;
5337 	case AC_VECTOR:
5338 		if (vmx_guest_inject_ac(vcpu)) {
5339 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5340 			return 1;
5341 		}
5342 
5343 		/*
5344 		 * Handle split lock. Depending on detection mode this will
5345 		 * either warn and disable split lock detection for this
5346 		 * task or force SIGBUS on it.
5347 		 */
5348 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5349 			return 1;
5350 		fallthrough;
5351 	default:
5352 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5353 		kvm_run->ex.exception = ex_no;
5354 		kvm_run->ex.error_code = error_code;
5355 		break;
5356 	}
5357 	return 0;
5358 }
5359 
handle_external_interrupt(struct kvm_vcpu * vcpu)5360 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5361 {
5362 	++vcpu->stat.irq_exits;
5363 	return 1;
5364 }
5365 
handle_triple_fault(struct kvm_vcpu * vcpu)5366 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5367 {
5368 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5369 	vcpu->mmio_needed = 0;
5370 	return 0;
5371 }
5372 
handle_io(struct kvm_vcpu * vcpu)5373 static int handle_io(struct kvm_vcpu *vcpu)
5374 {
5375 	unsigned long exit_qualification;
5376 	int size, in, string;
5377 	unsigned port;
5378 
5379 	exit_qualification = vmx_get_exit_qual(vcpu);
5380 	string = (exit_qualification & 16) != 0;
5381 
5382 	++vcpu->stat.io_exits;
5383 
5384 	if (string)
5385 		return kvm_emulate_instruction(vcpu, 0);
5386 
5387 	port = exit_qualification >> 16;
5388 	size = (exit_qualification & 7) + 1;
5389 	in = (exit_qualification & 8) != 0;
5390 
5391 	return kvm_fast_pio(vcpu, size, port, in);
5392 }
5393 
5394 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5395 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5396 {
5397 	/*
5398 	 * Patch in the VMCALL instruction:
5399 	 */
5400 	hypercall[0] = 0x0f;
5401 	hypercall[1] = 0x01;
5402 	hypercall[2] = 0xc1;
5403 }
5404 
5405 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5406 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5407 {
5408 	if (is_guest_mode(vcpu)) {
5409 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5410 		unsigned long orig_val = val;
5411 
5412 		/*
5413 		 * We get here when L2 changed cr0 in a way that did not change
5414 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5415 		 * but did change L0 shadowed bits. So we first calculate the
5416 		 * effective cr0 value that L1 would like to write into the
5417 		 * hardware. It consists of the L2-owned bits from the new
5418 		 * value combined with the L1-owned bits from L1's guest_cr0.
5419 		 */
5420 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5421 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5422 
5423 		if (kvm_set_cr0(vcpu, val))
5424 			return 1;
5425 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5426 		return 0;
5427 	} else {
5428 		return kvm_set_cr0(vcpu, val);
5429 	}
5430 }
5431 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5432 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5433 {
5434 	if (is_guest_mode(vcpu)) {
5435 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5436 		unsigned long orig_val = val;
5437 
5438 		/* analogously to handle_set_cr0 */
5439 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5440 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5441 		if (kvm_set_cr4(vcpu, val))
5442 			return 1;
5443 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5444 		return 0;
5445 	} else
5446 		return kvm_set_cr4(vcpu, val);
5447 }
5448 
handle_desc(struct kvm_vcpu * vcpu)5449 static int handle_desc(struct kvm_vcpu *vcpu)
5450 {
5451 	/*
5452 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5453 	 * and other code needs to be updated if UMIP can be guest owned.
5454 	 */
5455 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5456 
5457 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5458 	return kvm_emulate_instruction(vcpu, 0);
5459 }
5460 
handle_cr(struct kvm_vcpu * vcpu)5461 static int handle_cr(struct kvm_vcpu *vcpu)
5462 {
5463 	unsigned long exit_qualification, val;
5464 	int cr;
5465 	int reg;
5466 	int err;
5467 	int ret;
5468 
5469 	exit_qualification = vmx_get_exit_qual(vcpu);
5470 	cr = exit_qualification & 15;
5471 	reg = (exit_qualification >> 8) & 15;
5472 	switch ((exit_qualification >> 4) & 3) {
5473 	case 0: /* mov to cr */
5474 		val = kvm_register_read(vcpu, reg);
5475 		trace_kvm_cr_write(cr, val);
5476 		switch (cr) {
5477 		case 0:
5478 			err = handle_set_cr0(vcpu, val);
5479 			return kvm_complete_insn_gp(vcpu, err);
5480 		case 3:
5481 			WARN_ON_ONCE(enable_unrestricted_guest);
5482 
5483 			err = kvm_set_cr3(vcpu, val);
5484 			return kvm_complete_insn_gp(vcpu, err);
5485 		case 4:
5486 			err = handle_set_cr4(vcpu, val);
5487 			return kvm_complete_insn_gp(vcpu, err);
5488 		case 8: {
5489 				u8 cr8_prev = kvm_get_cr8(vcpu);
5490 				u8 cr8 = (u8)val;
5491 				err = kvm_set_cr8(vcpu, cr8);
5492 				ret = kvm_complete_insn_gp(vcpu, err);
5493 				if (lapic_in_kernel(vcpu))
5494 					return ret;
5495 				if (cr8_prev <= cr8)
5496 					return ret;
5497 				/*
5498 				 * TODO: we might be squashing a
5499 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5500 				 * KVM_EXIT_DEBUG here.
5501 				 */
5502 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5503 				return 0;
5504 			}
5505 		}
5506 		break;
5507 	case 2: /* clts */
5508 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5509 		return -EIO;
5510 	case 1: /*mov from cr*/
5511 		switch (cr) {
5512 		case 3:
5513 			WARN_ON_ONCE(enable_unrestricted_guest);
5514 
5515 			val = kvm_read_cr3(vcpu);
5516 			kvm_register_write(vcpu, reg, val);
5517 			trace_kvm_cr_read(cr, val);
5518 			return kvm_skip_emulated_instruction(vcpu);
5519 		case 8:
5520 			val = kvm_get_cr8(vcpu);
5521 			kvm_register_write(vcpu, reg, val);
5522 			trace_kvm_cr_read(cr, val);
5523 			return kvm_skip_emulated_instruction(vcpu);
5524 		}
5525 		break;
5526 	case 3: /* lmsw */
5527 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5528 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5529 		kvm_lmsw(vcpu, val);
5530 
5531 		return kvm_skip_emulated_instruction(vcpu);
5532 	default:
5533 		break;
5534 	}
5535 	vcpu->run->exit_reason = 0;
5536 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5537 	       (int)(exit_qualification >> 4) & 3, cr);
5538 	return 0;
5539 }
5540 
handle_dr(struct kvm_vcpu * vcpu)5541 static int handle_dr(struct kvm_vcpu *vcpu)
5542 {
5543 	unsigned long exit_qualification;
5544 	int dr, dr7, reg;
5545 	int err = 1;
5546 
5547 	exit_qualification = vmx_get_exit_qual(vcpu);
5548 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5549 
5550 	/* First, if DR does not exist, trigger UD */
5551 	if (!kvm_require_dr(vcpu, dr))
5552 		return 1;
5553 
5554 	if (vmx_get_cpl(vcpu) > 0)
5555 		goto out;
5556 
5557 	dr7 = vmcs_readl(GUEST_DR7);
5558 	if (dr7 & DR7_GD) {
5559 		/*
5560 		 * As the vm-exit takes precedence over the debug trap, we
5561 		 * need to emulate the latter, either for the host or the
5562 		 * guest debugging itself.
5563 		 */
5564 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5565 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5566 			vcpu->run->debug.arch.dr7 = dr7;
5567 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5568 			vcpu->run->debug.arch.exception = DB_VECTOR;
5569 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5570 			return 0;
5571 		} else {
5572 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5573 			return 1;
5574 		}
5575 	}
5576 
5577 	if (vcpu->guest_debug == 0) {
5578 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5579 
5580 		/*
5581 		 * No more DR vmexits; force a reload of the debug registers
5582 		 * and reenter on this instruction.  The next vmexit will
5583 		 * retrieve the full state of the debug registers.
5584 		 */
5585 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5586 		return 1;
5587 	}
5588 
5589 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5590 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5591 		unsigned long val;
5592 
5593 		kvm_get_dr(vcpu, dr, &val);
5594 		kvm_register_write(vcpu, reg, val);
5595 		err = 0;
5596 	} else {
5597 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5598 	}
5599 
5600 out:
5601 	return kvm_complete_insn_gp(vcpu, err);
5602 }
5603 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5604 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5605 {
5606 	get_debugreg(vcpu->arch.db[0], 0);
5607 	get_debugreg(vcpu->arch.db[1], 1);
5608 	get_debugreg(vcpu->arch.db[2], 2);
5609 	get_debugreg(vcpu->arch.db[3], 3);
5610 	get_debugreg(vcpu->arch.dr6, 6);
5611 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5612 
5613 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5614 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5615 
5616 	/*
5617 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5618 	 * a stale dr6 from the guest.
5619 	 */
5620 	set_debugreg(DR6_RESERVED, 6);
5621 }
5622 
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)5623 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5624 {
5625 	lockdep_assert_irqs_disabled();
5626 	set_debugreg(vcpu->arch.dr6, 6);
5627 }
5628 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5629 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5630 {
5631 	vmcs_writel(GUEST_DR7, val);
5632 }
5633 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5634 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5635 {
5636 	kvm_apic_update_ppr(vcpu);
5637 	return 1;
5638 }
5639 
handle_interrupt_window(struct kvm_vcpu * vcpu)5640 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5641 {
5642 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5643 
5644 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5645 
5646 	++vcpu->stat.irq_window_exits;
5647 	return 1;
5648 }
5649 
handle_invlpg(struct kvm_vcpu * vcpu)5650 static int handle_invlpg(struct kvm_vcpu *vcpu)
5651 {
5652 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5653 
5654 	kvm_mmu_invlpg(vcpu, exit_qualification);
5655 	return kvm_skip_emulated_instruction(vcpu);
5656 }
5657 
handle_apic_access(struct kvm_vcpu * vcpu)5658 static int handle_apic_access(struct kvm_vcpu *vcpu)
5659 {
5660 	if (likely(fasteoi)) {
5661 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5662 		int access_type, offset;
5663 
5664 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5665 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5666 		/*
5667 		 * Sane guest uses MOV to write EOI, with written value
5668 		 * not cared. So make a short-circuit here by avoiding
5669 		 * heavy instruction emulation.
5670 		 */
5671 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5672 		    (offset == APIC_EOI)) {
5673 			kvm_lapic_set_eoi(vcpu);
5674 			return kvm_skip_emulated_instruction(vcpu);
5675 		}
5676 	}
5677 	return kvm_emulate_instruction(vcpu, 0);
5678 }
5679 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5680 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5681 {
5682 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5683 	int vector = exit_qualification & 0xff;
5684 
5685 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5686 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5687 	return 1;
5688 }
5689 
handle_apic_write(struct kvm_vcpu * vcpu)5690 static int handle_apic_write(struct kvm_vcpu *vcpu)
5691 {
5692 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5693 
5694 	/*
5695 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5696 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5697 	 * for the access.  I.e. the correct value has already been  written to
5698 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5699 	 * retrieve the register value and emulate the access.
5700 	 */
5701 	u32 offset = exit_qualification & 0xff0;
5702 
5703 	kvm_apic_write_nodecode(vcpu, offset);
5704 	return 1;
5705 }
5706 
handle_task_switch(struct kvm_vcpu * vcpu)5707 static int handle_task_switch(struct kvm_vcpu *vcpu)
5708 {
5709 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5710 	unsigned long exit_qualification;
5711 	bool has_error_code = false;
5712 	u32 error_code = 0;
5713 	u16 tss_selector;
5714 	int reason, type, idt_v, idt_index;
5715 
5716 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5717 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5718 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5719 
5720 	exit_qualification = vmx_get_exit_qual(vcpu);
5721 
5722 	reason = (u32)exit_qualification >> 30;
5723 	if (reason == TASK_SWITCH_GATE && idt_v) {
5724 		switch (type) {
5725 		case INTR_TYPE_NMI_INTR:
5726 			vcpu->arch.nmi_injected = false;
5727 			vmx_set_nmi_mask(vcpu, true);
5728 			break;
5729 		case INTR_TYPE_EXT_INTR:
5730 		case INTR_TYPE_SOFT_INTR:
5731 			kvm_clear_interrupt_queue(vcpu);
5732 			break;
5733 		case INTR_TYPE_HARD_EXCEPTION:
5734 			if (vmx->idt_vectoring_info &
5735 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5736 				has_error_code = true;
5737 				error_code =
5738 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5739 			}
5740 			fallthrough;
5741 		case INTR_TYPE_SOFT_EXCEPTION:
5742 			kvm_clear_exception_queue(vcpu);
5743 			break;
5744 		default:
5745 			break;
5746 		}
5747 	}
5748 	tss_selector = exit_qualification;
5749 
5750 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5751 		       type != INTR_TYPE_EXT_INTR &&
5752 		       type != INTR_TYPE_NMI_INTR))
5753 		WARN_ON(!skip_emulated_instruction(vcpu));
5754 
5755 	/*
5756 	 * TODO: What about debug traps on tss switch?
5757 	 *       Are we supposed to inject them and update dr6?
5758 	 */
5759 	return kvm_task_switch(vcpu, tss_selector,
5760 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5761 			       reason, has_error_code, error_code);
5762 }
5763 
handle_ept_violation(struct kvm_vcpu * vcpu)5764 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5765 {
5766 	unsigned long exit_qualification;
5767 	gpa_t gpa;
5768 	u64 error_code;
5769 
5770 	exit_qualification = vmx_get_exit_qual(vcpu);
5771 
5772 	/*
5773 	 * EPT violation happened while executing iret from NMI,
5774 	 * "blocked by NMI" bit has to be set before next VM entry.
5775 	 * There are errata that may cause this bit to not be set:
5776 	 * AAK134, BY25.
5777 	 */
5778 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5779 			enable_vnmi &&
5780 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5781 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5782 
5783 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5784 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5785 
5786 	/* Is it a read fault? */
5787 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5788 		     ? PFERR_USER_MASK : 0;
5789 	/* Is it a write fault? */
5790 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5791 		      ? PFERR_WRITE_MASK : 0;
5792 	/* Is it a fetch fault? */
5793 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5794 		      ? PFERR_FETCH_MASK : 0;
5795 	/* ept page table entry is present? */
5796 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5797 		      ? PFERR_PRESENT_MASK : 0;
5798 
5799 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5800 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5801 
5802 	vcpu->arch.exit_qualification = exit_qualification;
5803 
5804 	/*
5805 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5806 	 * a guest page fault.  We have to emulate the instruction here, because
5807 	 * if the illegal address is that of a paging structure, then
5808 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5809 	 * would also use advanced VM-exit information for EPT violations to
5810 	 * reconstruct the page fault error code.
5811 	 */
5812 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5813 		return kvm_emulate_instruction(vcpu, 0);
5814 
5815 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5816 }
5817 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5818 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5819 {
5820 	gpa_t gpa;
5821 
5822 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5823 		return 1;
5824 
5825 	/*
5826 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5827 	 * nGPA here instead of the required GPA.
5828 	 */
5829 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5830 	if (!is_guest_mode(vcpu) &&
5831 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5832 		trace_kvm_fast_mmio(gpa);
5833 		return kvm_skip_emulated_instruction(vcpu);
5834 	}
5835 
5836 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5837 }
5838 
handle_nmi_window(struct kvm_vcpu * vcpu)5839 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5840 {
5841 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5842 		return -EIO;
5843 
5844 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5845 	++vcpu->stat.nmi_window_exits;
5846 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5847 
5848 	return 1;
5849 }
5850 
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5851 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5852 {
5853 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5854 
5855 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5856 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5857 }
5858 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5859 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5860 {
5861 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5862 	bool intr_window_requested;
5863 	unsigned count = 130;
5864 
5865 	intr_window_requested = exec_controls_get(vmx) &
5866 				CPU_BASED_INTR_WINDOW_EXITING;
5867 
5868 	while (vmx->emulation_required && count-- != 0) {
5869 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5870 			return handle_interrupt_window(&vmx->vcpu);
5871 
5872 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5873 			return 1;
5874 
5875 		if (!kvm_emulate_instruction(vcpu, 0))
5876 			return 0;
5877 
5878 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5879 			kvm_prepare_emulation_failure_exit(vcpu);
5880 			return 0;
5881 		}
5882 
5883 		if (vcpu->arch.halt_request) {
5884 			vcpu->arch.halt_request = 0;
5885 			return kvm_emulate_halt_noskip(vcpu);
5886 		}
5887 
5888 		/*
5889 		 * Note, return 1 and not 0, vcpu_run() will invoke
5890 		 * xfer_to_guest_mode() which will create a proper return
5891 		 * code.
5892 		 */
5893 		if (__xfer_to_guest_mode_work_pending())
5894 			return 1;
5895 	}
5896 
5897 	return 1;
5898 }
5899 
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5900 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5901 {
5902 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5903 		kvm_prepare_emulation_failure_exit(vcpu);
5904 		return 0;
5905 	}
5906 
5907 	return 1;
5908 }
5909 
grow_ple_window(struct kvm_vcpu * vcpu)5910 static void grow_ple_window(struct kvm_vcpu *vcpu)
5911 {
5912 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5913 	unsigned int old = vmx->ple_window;
5914 
5915 	vmx->ple_window = __grow_ple_window(old, ple_window,
5916 					    ple_window_grow,
5917 					    ple_window_max);
5918 
5919 	if (vmx->ple_window != old) {
5920 		vmx->ple_window_dirty = true;
5921 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5922 					    vmx->ple_window, old);
5923 	}
5924 }
5925 
shrink_ple_window(struct kvm_vcpu * vcpu)5926 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5927 {
5928 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5929 	unsigned int old = vmx->ple_window;
5930 
5931 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5932 					      ple_window_shrink,
5933 					      ple_window);
5934 
5935 	if (vmx->ple_window != old) {
5936 		vmx->ple_window_dirty = true;
5937 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5938 					    vmx->ple_window, old);
5939 	}
5940 }
5941 
5942 /*
5943  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5944  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5945  */
handle_pause(struct kvm_vcpu * vcpu)5946 static int handle_pause(struct kvm_vcpu *vcpu)
5947 {
5948 	if (!kvm_pause_in_guest(vcpu->kvm))
5949 		grow_ple_window(vcpu);
5950 
5951 	/*
5952 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5953 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5954 	 * never set PAUSE_EXITING and just set PLE if supported,
5955 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5956 	 */
5957 	kvm_vcpu_on_spin(vcpu, true);
5958 	return kvm_skip_emulated_instruction(vcpu);
5959 }
5960 
handle_monitor_trap(struct kvm_vcpu * vcpu)5961 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5962 {
5963 	return 1;
5964 }
5965 
handle_invpcid(struct kvm_vcpu * vcpu)5966 static int handle_invpcid(struct kvm_vcpu *vcpu)
5967 {
5968 	u32 vmx_instruction_info;
5969 	unsigned long type;
5970 	gva_t gva;
5971 	struct {
5972 		u64 pcid;
5973 		u64 gla;
5974 	} operand;
5975 	int gpr_index;
5976 
5977 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5978 		kvm_queue_exception(vcpu, UD_VECTOR);
5979 		return 1;
5980 	}
5981 
5982 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5983 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5984 	type = kvm_register_read(vcpu, gpr_index);
5985 
5986 	/* According to the Intel instruction reference, the memory operand
5987 	 * is read even if it isn't needed (e.g., for type==all)
5988 	 */
5989 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5990 				vmx_instruction_info, false,
5991 				sizeof(operand), &gva))
5992 		return 1;
5993 
5994 	return kvm_handle_invpcid(vcpu, type, gva);
5995 }
5996 
handle_pml_full(struct kvm_vcpu * vcpu)5997 static int handle_pml_full(struct kvm_vcpu *vcpu)
5998 {
5999 	unsigned long exit_qualification;
6000 
6001 	trace_kvm_pml_full(vcpu->vcpu_id);
6002 
6003 	exit_qualification = vmx_get_exit_qual(vcpu);
6004 
6005 	/*
6006 	 * PML buffer FULL happened while executing iret from NMI,
6007 	 * "blocked by NMI" bit has to be set before next VM entry.
6008 	 */
6009 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6010 			enable_vnmi &&
6011 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6012 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6013 				GUEST_INTR_STATE_NMI);
6014 
6015 	/*
6016 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6017 	 * here.., and there's no userspace involvement needed for PML.
6018 	 */
6019 	return 1;
6020 }
6021 
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)6022 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
6023 {
6024 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6025 
6026 	if (!vmx->req_immediate_exit &&
6027 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6028 		kvm_lapic_expired_hv_timer(vcpu);
6029 		return EXIT_FASTPATH_REENTER_GUEST;
6030 	}
6031 
6032 	return EXIT_FASTPATH_NONE;
6033 }
6034 
handle_preemption_timer(struct kvm_vcpu * vcpu)6035 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6036 {
6037 	handle_fastpath_preemption_timer(vcpu);
6038 	return 1;
6039 }
6040 
6041 /*
6042  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6043  * are overwritten by nested_vmx_setup() when nested=1.
6044  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6045 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6046 {
6047 	kvm_queue_exception(vcpu, UD_VECTOR);
6048 	return 1;
6049 }
6050 
6051 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6052 static int handle_encls(struct kvm_vcpu *vcpu)
6053 {
6054 	/*
6055 	 * SGX virtualization is disabled.  There is no software enable bit for
6056 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6057 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6058 	 */
6059 	kvm_queue_exception(vcpu, UD_VECTOR);
6060 	return 1;
6061 }
6062 #endif /* CONFIG_X86_SGX_KVM */
6063 
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6064 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6065 {
6066 	/*
6067 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6068 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6069 	 * vmx_handle_exit().
6070 	 */
6071 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6072 	return 1;
6073 }
6074 
handle_notify(struct kvm_vcpu * vcpu)6075 static int handle_notify(struct kvm_vcpu *vcpu)
6076 {
6077 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6078 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6079 
6080 	++vcpu->stat.notify_window_exits;
6081 
6082 	/*
6083 	 * Notify VM exit happened while executing iret from NMI,
6084 	 * "blocked by NMI" bit has to be set before next VM entry.
6085 	 */
6086 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6087 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6088 			      GUEST_INTR_STATE_NMI);
6089 
6090 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6091 	    context_invalid) {
6092 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6093 		vcpu->run->notify.flags = context_invalid ?
6094 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6095 		return 0;
6096 	}
6097 
6098 	return 1;
6099 }
6100 
6101 /*
6102  * The exit handlers return 1 if the exit was handled fully and guest execution
6103  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6104  * to be done to userspace and return 0.
6105  */
6106 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6107 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6108 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6109 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6110 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6111 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6112 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6113 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6114 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6115 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6116 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6117 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6118 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6119 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6120 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6121 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6122 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6123 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6124 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6125 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6126 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6127 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6128 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6129 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6130 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6131 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6132 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6133 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6134 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6135 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6136 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6137 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6138 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6139 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6140 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6141 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6142 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6143 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6144 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6145 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6146 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6147 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6148 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6149 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6150 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6151 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6152 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6153 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6154 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6155 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6156 	[EXIT_REASON_ENCLS]		      = handle_encls,
6157 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6158 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6159 };
6160 
6161 static const int kvm_vmx_max_exit_handlers =
6162 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6163 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6164 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6165 			      u64 *info1, u64 *info2,
6166 			      u32 *intr_info, u32 *error_code)
6167 {
6168 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6169 
6170 	*reason = vmx->exit_reason.full;
6171 	*info1 = vmx_get_exit_qual(vcpu);
6172 	if (!(vmx->exit_reason.failed_vmentry)) {
6173 		*info2 = vmx->idt_vectoring_info;
6174 		*intr_info = vmx_get_intr_info(vcpu);
6175 		if (is_exception_with_error_code(*intr_info))
6176 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6177 		else
6178 			*error_code = 0;
6179 	} else {
6180 		*info2 = 0;
6181 		*intr_info = 0;
6182 		*error_code = 0;
6183 	}
6184 }
6185 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6186 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6187 {
6188 	if (vmx->pml_pg) {
6189 		__free_page(vmx->pml_pg);
6190 		vmx->pml_pg = NULL;
6191 	}
6192 }
6193 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6194 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6195 {
6196 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6197 	u64 *pml_buf;
6198 	u16 pml_idx;
6199 
6200 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6201 
6202 	/* Do nothing if PML buffer is empty */
6203 	if (pml_idx == (PML_ENTITY_NUM - 1))
6204 		return;
6205 
6206 	/* PML index always points to next available PML buffer entity */
6207 	if (pml_idx >= PML_ENTITY_NUM)
6208 		pml_idx = 0;
6209 	else
6210 		pml_idx++;
6211 
6212 	pml_buf = page_address(vmx->pml_pg);
6213 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6214 		u64 gpa;
6215 
6216 		gpa = pml_buf[pml_idx];
6217 		WARN_ON(gpa & (PAGE_SIZE - 1));
6218 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6219 	}
6220 
6221 	/* reset PML index */
6222 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6223 }
6224 
vmx_dump_sel(char * name,uint32_t sel)6225 static void vmx_dump_sel(char *name, uint32_t sel)
6226 {
6227 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6228 	       name, vmcs_read16(sel),
6229 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6230 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6231 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6232 }
6233 
vmx_dump_dtsel(char * name,uint32_t limit)6234 static void vmx_dump_dtsel(char *name, uint32_t limit)
6235 {
6236 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6237 	       name, vmcs_read32(limit),
6238 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6239 }
6240 
vmx_dump_msrs(char * name,struct vmx_msrs * m)6241 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6242 {
6243 	unsigned int i;
6244 	struct vmx_msr_entry *e;
6245 
6246 	pr_err("MSR %s:\n", name);
6247 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6248 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6249 }
6250 
dump_vmcs(struct kvm_vcpu * vcpu)6251 void dump_vmcs(struct kvm_vcpu *vcpu)
6252 {
6253 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6254 	u32 vmentry_ctl, vmexit_ctl;
6255 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6256 	u64 tertiary_exec_control;
6257 	unsigned long cr4;
6258 	int efer_slot;
6259 
6260 	if (!dump_invalid_vmcs) {
6261 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6262 		return;
6263 	}
6264 
6265 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6266 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6267 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6268 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6269 	cr4 = vmcs_readl(GUEST_CR4);
6270 
6271 	if (cpu_has_secondary_exec_ctrls())
6272 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6273 	else
6274 		secondary_exec_control = 0;
6275 
6276 	if (cpu_has_tertiary_exec_ctrls())
6277 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6278 	else
6279 		tertiary_exec_control = 0;
6280 
6281 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6282 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6283 	pr_err("*** Guest State ***\n");
6284 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6285 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6286 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6287 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6288 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6289 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6290 	if (cpu_has_vmx_ept()) {
6291 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6292 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6293 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6294 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6295 	}
6296 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6297 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6298 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6299 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6300 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6301 	       vmcs_readl(GUEST_SYSENTER_ESP),
6302 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6303 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6304 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6305 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6306 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6307 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6308 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6309 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6310 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6311 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6312 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6313 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6314 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6315 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6316 	else if (efer_slot >= 0)
6317 		pr_err("EFER= 0x%016llx (autoload)\n",
6318 		       vmx->msr_autoload.guest.val[efer_slot].value);
6319 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6320 		pr_err("EFER= 0x%016llx (effective)\n",
6321 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6322 	else
6323 		pr_err("EFER= 0x%016llx (effective)\n",
6324 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6325 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6326 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6327 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6328 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6329 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6330 	if (cpu_has_load_perf_global_ctrl() &&
6331 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6332 		pr_err("PerfGlobCtl = 0x%016llx\n",
6333 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6334 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6335 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6336 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6337 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6338 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6339 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6340 		pr_err("InterruptStatus = %04x\n",
6341 		       vmcs_read16(GUEST_INTR_STATUS));
6342 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6343 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6344 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6345 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6346 
6347 	pr_err("*** Host State ***\n");
6348 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6349 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6350 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6351 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6352 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6353 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6354 	       vmcs_read16(HOST_TR_SELECTOR));
6355 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6356 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6357 	       vmcs_readl(HOST_TR_BASE));
6358 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6359 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6360 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6361 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6362 	       vmcs_readl(HOST_CR4));
6363 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6364 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6365 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6366 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6367 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6368 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6369 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6370 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6371 	if (cpu_has_load_perf_global_ctrl() &&
6372 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6373 		pr_err("PerfGlobCtl = 0x%016llx\n",
6374 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6375 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6376 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6377 
6378 	pr_err("*** Control State ***\n");
6379 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6380 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6381 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6382 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6383 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6384 	       vmcs_read32(EXCEPTION_BITMAP),
6385 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6386 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6387 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6388 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6389 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6390 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6391 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6392 	       vmcs_read32(VM_EXIT_INTR_INFO),
6393 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6394 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6395 	pr_err("        reason=%08x qualification=%016lx\n",
6396 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6397 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6398 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6399 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6400 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6401 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6402 		pr_err("TSC Multiplier = 0x%016llx\n",
6403 		       vmcs_read64(TSC_MULTIPLIER));
6404 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6405 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6406 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6407 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6408 		}
6409 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6410 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6411 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6412 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6413 	}
6414 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6415 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6416 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6417 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6418 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6419 		pr_err("PLE Gap=%08x Window=%08x\n",
6420 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6421 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6422 		pr_err("Virtual processor ID = 0x%04x\n",
6423 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6424 }
6425 
6426 /*
6427  * The guest has exited.  See if we can fix it or if we need userspace
6428  * assistance.
6429  */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6430 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6431 {
6432 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6433 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6434 	u32 vectoring_info = vmx->idt_vectoring_info;
6435 	u16 exit_handler_index;
6436 
6437 	/*
6438 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6439 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6440 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6441 	 * mode as if vcpus is in root mode, the PML buffer must has been
6442 	 * flushed already.  Note, PML is never enabled in hardware while
6443 	 * running L2.
6444 	 */
6445 	if (enable_pml && !is_guest_mode(vcpu))
6446 		vmx_flush_pml_buffer(vcpu);
6447 
6448 	/*
6449 	 * KVM should never reach this point with a pending nested VM-Enter.
6450 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6451 	 * invalid guest state should never happen as that means KVM knowingly
6452 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6453 	 */
6454 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6455 		return -EIO;
6456 
6457 	if (is_guest_mode(vcpu)) {
6458 		/*
6459 		 * PML is never enabled when running L2, bail immediately if a
6460 		 * PML full exit occurs as something is horribly wrong.
6461 		 */
6462 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6463 			goto unexpected_vmexit;
6464 
6465 		/*
6466 		 * The host physical addresses of some pages of guest memory
6467 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6468 		 * Page). The CPU may write to these pages via their host
6469 		 * physical address while L2 is running, bypassing any
6470 		 * address-translation-based dirty tracking (e.g. EPT write
6471 		 * protection).
6472 		 *
6473 		 * Mark them dirty on every exit from L2 to prevent them from
6474 		 * getting out of sync with dirty tracking.
6475 		 */
6476 		nested_mark_vmcs12_pages_dirty(vcpu);
6477 
6478 		/*
6479 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6480 		 * operation, nested VM-Enter rejects any attempt to enter L2
6481 		 * with invalid state.  However, those checks are skipped if
6482 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6483 		 * L2 state is invalid, it means either L1 modified SMRAM state
6484 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6485 		 * doing so is architecturally allowed in the RSM case, and is
6486 		 * the least awful solution for the userspace case without
6487 		 * risking false positives.
6488 		 */
6489 		if (vmx->emulation_required) {
6490 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6491 			return 1;
6492 		}
6493 
6494 		if (nested_vmx_reflect_vmexit(vcpu))
6495 			return 1;
6496 	}
6497 
6498 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6499 	if (vmx->emulation_required)
6500 		return handle_invalid_guest_state(vcpu);
6501 
6502 	if (exit_reason.failed_vmentry) {
6503 		dump_vmcs(vcpu);
6504 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6505 		vcpu->run->fail_entry.hardware_entry_failure_reason
6506 			= exit_reason.full;
6507 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6508 		return 0;
6509 	}
6510 
6511 	if (unlikely(vmx->fail)) {
6512 		dump_vmcs(vcpu);
6513 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6514 		vcpu->run->fail_entry.hardware_entry_failure_reason
6515 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6516 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6517 		return 0;
6518 	}
6519 
6520 	/*
6521 	 * Note:
6522 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6523 	 * delivery event since it indicates guest is accessing MMIO.
6524 	 * The vm-exit can be triggered again after return to guest that
6525 	 * will cause infinite loop.
6526 	 */
6527 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6528 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6529 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6530 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6531 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6532 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6533 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6534 		int ndata = 3;
6535 
6536 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6537 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6538 		vcpu->run->internal.data[0] = vectoring_info;
6539 		vcpu->run->internal.data[1] = exit_reason.full;
6540 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6541 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6542 			vcpu->run->internal.data[ndata++] =
6543 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6544 		}
6545 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6546 		vcpu->run->internal.ndata = ndata;
6547 		return 0;
6548 	}
6549 
6550 	if (unlikely(!enable_vnmi &&
6551 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6552 		if (!vmx_interrupt_blocked(vcpu)) {
6553 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6554 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6555 			   vcpu->arch.nmi_pending) {
6556 			/*
6557 			 * This CPU don't support us in finding the end of an
6558 			 * NMI-blocked window if the guest runs with IRQs
6559 			 * disabled. So we pull the trigger after 1 s of
6560 			 * futile waiting, but inform the user about this.
6561 			 */
6562 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6563 			       "state on VCPU %d after 1 s timeout\n",
6564 			       __func__, vcpu->vcpu_id);
6565 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6566 		}
6567 	}
6568 
6569 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6570 		return 1;
6571 
6572 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6573 		goto unexpected_vmexit;
6574 #ifdef CONFIG_RETPOLINE
6575 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6576 		return kvm_emulate_wrmsr(vcpu);
6577 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6578 		return handle_preemption_timer(vcpu);
6579 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6580 		return handle_interrupt_window(vcpu);
6581 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6582 		return handle_external_interrupt(vcpu);
6583 	else if (exit_reason.basic == EXIT_REASON_HLT)
6584 		return kvm_emulate_halt(vcpu);
6585 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6586 		return handle_ept_misconfig(vcpu);
6587 #endif
6588 
6589 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6590 						kvm_vmx_max_exit_handlers);
6591 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6592 		goto unexpected_vmexit;
6593 
6594 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6595 
6596 unexpected_vmexit:
6597 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6598 		    exit_reason.full);
6599 	dump_vmcs(vcpu);
6600 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6601 	vcpu->run->internal.suberror =
6602 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6603 	vcpu->run->internal.ndata = 2;
6604 	vcpu->run->internal.data[0] = exit_reason.full;
6605 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6606 	return 0;
6607 }
6608 
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6609 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6610 {
6611 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6612 
6613 	/*
6614 	 * Exit to user space when bus lock detected to inform that there is
6615 	 * a bus lock in guest.
6616 	 */
6617 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6618 		if (ret > 0)
6619 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6620 
6621 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6622 		return 0;
6623 	}
6624 	return ret;
6625 }
6626 
6627 /*
6628  * Software based L1D cache flush which is used when microcode providing
6629  * the cache control MSR is not loaded.
6630  *
6631  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6632  * flush it is required to read in 64 KiB because the replacement algorithm
6633  * is not exactly LRU. This could be sized at runtime via topology
6634  * information but as all relevant affected CPUs have 32KiB L1D cache size
6635  * there is no point in doing so.
6636  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6637 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6638 {
6639 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6640 
6641 	/*
6642 	 * This code is only executed when the flush mode is 'cond' or
6643 	 * 'always'
6644 	 */
6645 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6646 		bool flush_l1d;
6647 
6648 		/*
6649 		 * Clear the per-vcpu flush bit, it gets set again
6650 		 * either from vcpu_run() or from one of the unsafe
6651 		 * VMEXIT handlers.
6652 		 */
6653 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6654 		vcpu->arch.l1tf_flush_l1d = false;
6655 
6656 		/*
6657 		 * Clear the per-cpu flush bit, it gets set again from
6658 		 * the interrupt handlers.
6659 		 */
6660 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6661 		kvm_clear_cpu_l1tf_flush_l1d();
6662 
6663 		if (!flush_l1d)
6664 			return;
6665 	}
6666 
6667 	vcpu->stat.l1d_flush++;
6668 
6669 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6670 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6671 		return;
6672 	}
6673 
6674 	asm volatile(
6675 		/* First ensure the pages are in the TLB */
6676 		"xorl	%%eax, %%eax\n"
6677 		".Lpopulate_tlb:\n\t"
6678 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6679 		"addl	$4096, %%eax\n\t"
6680 		"cmpl	%%eax, %[size]\n\t"
6681 		"jne	.Lpopulate_tlb\n\t"
6682 		"xorl	%%eax, %%eax\n\t"
6683 		"cpuid\n\t"
6684 		/* Now fill the cache */
6685 		"xorl	%%eax, %%eax\n"
6686 		".Lfill_cache:\n"
6687 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6688 		"addl	$64, %%eax\n\t"
6689 		"cmpl	%%eax, %[size]\n\t"
6690 		"jne	.Lfill_cache\n\t"
6691 		"lfence\n"
6692 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6693 		    [size] "r" (size)
6694 		: "eax", "ebx", "ecx", "edx");
6695 }
6696 
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6697 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6698 {
6699 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6700 	int tpr_threshold;
6701 
6702 	if (is_guest_mode(vcpu) &&
6703 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6704 		return;
6705 
6706 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6707 	if (is_guest_mode(vcpu))
6708 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6709 	else
6710 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6711 }
6712 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6713 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6714 {
6715 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6716 	u32 sec_exec_control;
6717 
6718 	if (!lapic_in_kernel(vcpu))
6719 		return;
6720 
6721 	if (!flexpriority_enabled &&
6722 	    !cpu_has_vmx_virtualize_x2apic_mode())
6723 		return;
6724 
6725 	/* Postpone execution until vmcs01 is the current VMCS. */
6726 	if (is_guest_mode(vcpu)) {
6727 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6728 		return;
6729 	}
6730 
6731 	sec_exec_control = secondary_exec_controls_get(vmx);
6732 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6733 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6734 
6735 	switch (kvm_get_apic_mode(vcpu)) {
6736 	case LAPIC_MODE_INVALID:
6737 		WARN_ONCE(true, "Invalid local APIC state");
6738 		break;
6739 	case LAPIC_MODE_DISABLED:
6740 		break;
6741 	case LAPIC_MODE_XAPIC:
6742 		if (flexpriority_enabled) {
6743 			sec_exec_control |=
6744 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6745 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6746 
6747 			/*
6748 			 * Flush the TLB, reloading the APIC access page will
6749 			 * only do so if its physical address has changed, but
6750 			 * the guest may have inserted a non-APIC mapping into
6751 			 * the TLB while the APIC access page was disabled.
6752 			 */
6753 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6754 		}
6755 		break;
6756 	case LAPIC_MODE_X2APIC:
6757 		if (cpu_has_vmx_virtualize_x2apic_mode())
6758 			sec_exec_control |=
6759 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6760 		break;
6761 	}
6762 	secondary_exec_controls_set(vmx, sec_exec_control);
6763 
6764 	vmx_update_msr_bitmap_x2apic(vcpu);
6765 }
6766 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6767 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6768 {
6769 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6770 	struct kvm *kvm = vcpu->kvm;
6771 	struct kvm_memslots *slots = kvm_memslots(kvm);
6772 	struct kvm_memory_slot *slot;
6773 	unsigned long mmu_seq;
6774 	kvm_pfn_t pfn;
6775 
6776 	/* Defer reload until vmcs01 is the current VMCS. */
6777 	if (is_guest_mode(vcpu)) {
6778 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6779 		return;
6780 	}
6781 
6782 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6783 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6784 		return;
6785 
6786 	/*
6787 	 * Grab the memslot so that the hva lookup for the mmu_notifier retry
6788 	 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely
6789 	 * on the pfn lookup's validation of the memslot to ensure a valid hva
6790 	 * is used for the retry check.
6791 	 */
6792 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6793 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6794 		return;
6795 
6796 	/*
6797 	 * Ensure that the mmu_notifier sequence count is read before KVM
6798 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6799 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6800 	 * in kvm_mmu_invalidate_end().
6801 	 */
6802 	mmu_seq = kvm->mmu_invalidate_seq;
6803 	smp_rmb();
6804 
6805 	/*
6806 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6807 	 * controls the APIC-access page memslot, and only deletes the memslot
6808 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6809 	 */
6810 	pfn = gfn_to_pfn_memslot(slot, gfn);
6811 	if (is_error_noslot_pfn(pfn))
6812 		return;
6813 
6814 	read_lock(&vcpu->kvm->mmu_lock);
6815 	if (mmu_invalidate_retry_hva(kvm, mmu_seq,
6816 				     gfn_to_hva_memslot(slot, gfn))) {
6817 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6818 		read_unlock(&vcpu->kvm->mmu_lock);
6819 		goto out;
6820 	}
6821 
6822 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6823 	read_unlock(&vcpu->kvm->mmu_lock);
6824 
6825 	/*
6826 	 * No need for a manual TLB flush at this point, KVM has already done a
6827 	 * flush if there were SPTEs pointing at the previous page.
6828 	 */
6829 out:
6830 	/*
6831 	 * Do not pin apic access page in memory, the MMU notifier
6832 	 * will call us again if it is migrated or swapped out.
6833 	 */
6834 	kvm_release_pfn_clean(pfn);
6835 }
6836 
vmx_hwapic_isr_update(int max_isr)6837 static void vmx_hwapic_isr_update(int max_isr)
6838 {
6839 	u16 status;
6840 	u8 old;
6841 
6842 	if (max_isr == -1)
6843 		max_isr = 0;
6844 
6845 	status = vmcs_read16(GUEST_INTR_STATUS);
6846 	old = status >> 8;
6847 	if (max_isr != old) {
6848 		status &= 0xff;
6849 		status |= max_isr << 8;
6850 		vmcs_write16(GUEST_INTR_STATUS, status);
6851 	}
6852 }
6853 
vmx_set_rvi(int vector)6854 static void vmx_set_rvi(int vector)
6855 {
6856 	u16 status;
6857 	u8 old;
6858 
6859 	if (vector == -1)
6860 		vector = 0;
6861 
6862 	status = vmcs_read16(GUEST_INTR_STATUS);
6863 	old = (u8)status & 0xff;
6864 	if ((u8)vector != old) {
6865 		status &= ~0xff;
6866 		status |= (u8)vector;
6867 		vmcs_write16(GUEST_INTR_STATUS, status);
6868 	}
6869 }
6870 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6871 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6872 {
6873 	/*
6874 	 * When running L2, updating RVI is only relevant when
6875 	 * vmcs12 virtual-interrupt-delivery enabled.
6876 	 * However, it can be enabled only when L1 also
6877 	 * intercepts external-interrupts and in that case
6878 	 * we should not update vmcs02 RVI but instead intercept
6879 	 * interrupt. Therefore, do nothing when running L2.
6880 	 */
6881 	if (!is_guest_mode(vcpu))
6882 		vmx_set_rvi(max_irr);
6883 }
6884 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6885 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6886 {
6887 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6888 	int max_irr;
6889 	bool got_posted_interrupt;
6890 
6891 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6892 		return -EIO;
6893 
6894 	if (pi_test_on(&vmx->pi_desc)) {
6895 		pi_clear_on(&vmx->pi_desc);
6896 		/*
6897 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6898 		 * But on x86 this is just a compiler barrier anyway.
6899 		 */
6900 		smp_mb__after_atomic();
6901 		got_posted_interrupt =
6902 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6903 	} else {
6904 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6905 		got_posted_interrupt = false;
6906 	}
6907 
6908 	/*
6909 	 * Newly recognized interrupts are injected via either virtual interrupt
6910 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6911 	 * disabled in two cases:
6912 	 *
6913 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6914 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6915 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6916 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6917 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6918 	 *
6919 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6920 	 * attempt to post interrupts.  The posted interrupt vector will cause
6921 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6922 	 */
6923 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6924 		vmx_set_rvi(max_irr);
6925 	else if (got_posted_interrupt)
6926 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6927 
6928 	return max_irr;
6929 }
6930 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6931 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6932 {
6933 	if (!kvm_vcpu_apicv_active(vcpu))
6934 		return;
6935 
6936 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6937 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6938 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6939 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6940 }
6941 
vmx_apicv_pre_state_restore(struct kvm_vcpu * vcpu)6942 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6943 {
6944 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6945 
6946 	pi_clear_on(&vmx->pi_desc);
6947 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6948 }
6949 
6950 void vmx_do_interrupt_irqoff(unsigned long entry);
6951 void vmx_do_nmi_irqoff(void);
6952 
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6953 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6954 {
6955 	/*
6956 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6957 	 * MSR value is not clobbered by the host activity before the guest
6958 	 * has chance to consume it.
6959 	 *
6960 	 * Do not blindly read xfd_err here, since this exception might
6961 	 * be caused by L1 interception on a platform which doesn't
6962 	 * support xfd at all.
6963 	 *
6964 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6965 	 * only when xfd contains a non-zero value.
6966 	 *
6967 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6968 	 */
6969 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6970 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6971 }
6972 
handle_exception_irqoff(struct vcpu_vmx * vmx)6973 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6974 {
6975 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6976 
6977 	/* if exit due to PF check for async PF */
6978 	if (is_page_fault(intr_info))
6979 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6980 	/* if exit due to NM, handle before interrupts are enabled */
6981 	else if (is_nm_fault(intr_info))
6982 		handle_nm_fault_irqoff(&vmx->vcpu);
6983 	/* Handle machine checks before interrupts are enabled */
6984 	else if (is_machine_check(intr_info))
6985 		kvm_machine_check();
6986 }
6987 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6988 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6989 {
6990 	u32 intr_info = vmx_get_intr_info(vcpu);
6991 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6992 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6993 
6994 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6995 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6996 		return;
6997 
6998 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6999 	vmx_do_interrupt_irqoff(gate_offset(desc));
7000 	kvm_after_interrupt(vcpu);
7001 
7002 	vcpu->arch.at_instruction_boundary = true;
7003 }
7004 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7005 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7006 {
7007 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7008 
7009 	if (vmx->emulation_required)
7010 		return;
7011 
7012 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7013 		handle_external_interrupt_irqoff(vcpu);
7014 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7015 		handle_exception_irqoff(vmx);
7016 }
7017 
7018 /*
7019  * The kvm parameter can be NULL (module initialization, or invocation before
7020  * VM creation). Be sure to check the kvm parameter before using it.
7021  */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7022 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7023 {
7024 	switch (index) {
7025 	case MSR_IA32_SMBASE:
7026 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7027 			return false;
7028 		/*
7029 		 * We cannot do SMM unless we can run the guest in big
7030 		 * real mode.
7031 		 */
7032 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7033 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7034 		return nested;
7035 	case MSR_AMD64_VIRT_SPEC_CTRL:
7036 	case MSR_AMD64_TSC_RATIO:
7037 		/* This is AMD only.  */
7038 		return false;
7039 	default:
7040 		return true;
7041 	}
7042 }
7043 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7044 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7045 {
7046 	u32 exit_intr_info;
7047 	bool unblock_nmi;
7048 	u8 vector;
7049 	bool idtv_info_valid;
7050 
7051 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7052 
7053 	if (enable_vnmi) {
7054 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7055 			return;
7056 
7057 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7058 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7059 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7060 		/*
7061 		 * SDM 3: 27.7.1.2 (September 2008)
7062 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7063 		 * a guest IRET fault.
7064 		 * SDM 3: 23.2.2 (September 2008)
7065 		 * Bit 12 is undefined in any of the following cases:
7066 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7067 		 *   information field.
7068 		 *  If the VM exit is due to a double fault.
7069 		 */
7070 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7071 		    vector != DF_VECTOR && !idtv_info_valid)
7072 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7073 				      GUEST_INTR_STATE_NMI);
7074 		else
7075 			vmx->loaded_vmcs->nmi_known_unmasked =
7076 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7077 				  & GUEST_INTR_STATE_NMI);
7078 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7079 		vmx->loaded_vmcs->vnmi_blocked_time +=
7080 			ktime_to_ns(ktime_sub(ktime_get(),
7081 					      vmx->loaded_vmcs->entry_time));
7082 }
7083 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7084 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7085 				      u32 idt_vectoring_info,
7086 				      int instr_len_field,
7087 				      int error_code_field)
7088 {
7089 	u8 vector;
7090 	int type;
7091 	bool idtv_info_valid;
7092 
7093 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7094 
7095 	vcpu->arch.nmi_injected = false;
7096 	kvm_clear_exception_queue(vcpu);
7097 	kvm_clear_interrupt_queue(vcpu);
7098 
7099 	if (!idtv_info_valid)
7100 		return;
7101 
7102 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7103 
7104 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7105 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7106 
7107 	switch (type) {
7108 	case INTR_TYPE_NMI_INTR:
7109 		vcpu->arch.nmi_injected = true;
7110 		/*
7111 		 * SDM 3: 27.7.1.2 (September 2008)
7112 		 * Clear bit "block by NMI" before VM entry if a NMI
7113 		 * delivery faulted.
7114 		 */
7115 		vmx_set_nmi_mask(vcpu, false);
7116 		break;
7117 	case INTR_TYPE_SOFT_EXCEPTION:
7118 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7119 		fallthrough;
7120 	case INTR_TYPE_HARD_EXCEPTION:
7121 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7122 			u32 err = vmcs_read32(error_code_field);
7123 			kvm_requeue_exception_e(vcpu, vector, err);
7124 		} else
7125 			kvm_requeue_exception(vcpu, vector);
7126 		break;
7127 	case INTR_TYPE_SOFT_INTR:
7128 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7129 		fallthrough;
7130 	case INTR_TYPE_EXT_INTR:
7131 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7132 		break;
7133 	default:
7134 		break;
7135 	}
7136 }
7137 
vmx_complete_interrupts(struct vcpu_vmx * vmx)7138 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7139 {
7140 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7141 				  VM_EXIT_INSTRUCTION_LEN,
7142 				  IDT_VECTORING_ERROR_CODE);
7143 }
7144 
vmx_cancel_injection(struct kvm_vcpu * vcpu)7145 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7146 {
7147 	__vmx_complete_interrupts(vcpu,
7148 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7149 				  VM_ENTRY_INSTRUCTION_LEN,
7150 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7151 
7152 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7153 }
7154 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7155 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7156 {
7157 	int i, nr_msrs;
7158 	struct perf_guest_switch_msr *msrs;
7159 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7160 
7161 	pmu->host_cross_mapped_mask = 0;
7162 	if (pmu->pebs_enable & pmu->global_ctrl)
7163 		intel_pmu_cross_mapped_check(pmu);
7164 
7165 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7166 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7167 	if (!msrs)
7168 		return;
7169 
7170 	for (i = 0; i < nr_msrs; i++)
7171 		if (msrs[i].host == msrs[i].guest)
7172 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7173 		else
7174 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7175 					msrs[i].host, false);
7176 }
7177 
vmx_update_hv_timer(struct kvm_vcpu * vcpu)7178 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7179 {
7180 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7181 	u64 tscl;
7182 	u32 delta_tsc;
7183 
7184 	if (vmx->req_immediate_exit) {
7185 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7186 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7187 	} else if (vmx->hv_deadline_tsc != -1) {
7188 		tscl = rdtsc();
7189 		if (vmx->hv_deadline_tsc > tscl)
7190 			/* set_hv_timer ensures the delta fits in 32-bits */
7191 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7192 				cpu_preemption_timer_multi);
7193 		else
7194 			delta_tsc = 0;
7195 
7196 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7197 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7198 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7199 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7200 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7201 	}
7202 }
7203 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7204 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7205 {
7206 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7207 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7208 		vmcs_writel(HOST_RSP, host_rsp);
7209 	}
7210 }
7211 
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7212 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7213 					unsigned int flags)
7214 {
7215 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7216 
7217 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7218 		return;
7219 
7220 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7221 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7222 
7223 	/*
7224 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7225 	 *
7226 	 * For legacy IBRS, the IBRS bit always needs to be written after
7227 	 * transitioning from a less privileged predictor mode, regardless of
7228 	 * whether the guest/host values differ.
7229 	 */
7230 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7231 	    vmx->spec_ctrl != hostval)
7232 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7233 
7234 	barrier_nospec();
7235 }
7236 
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)7237 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7238 {
7239 	switch (to_vmx(vcpu)->exit_reason.basic) {
7240 	case EXIT_REASON_MSR_WRITE:
7241 		return handle_fastpath_set_msr_irqoff(vcpu);
7242 	case EXIT_REASON_PREEMPTION_TIMER:
7243 		return handle_fastpath_preemption_timer(vcpu);
7244 	default:
7245 		return EXIT_FASTPATH_NONE;
7246 	}
7247 }
7248 
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7249 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7250 					unsigned int flags)
7251 {
7252 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7253 
7254 	guest_state_enter_irqoff();
7255 
7256 	/*
7257 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7258 	 * mitigation for MDS is done late in VMentry and is still
7259 	 * executed in spite of L1D Flush. This is because an extra VERW
7260 	 * should not matter much after the big hammer L1D Flush.
7261 	 */
7262 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7263 		vmx_l1d_flush(vcpu);
7264 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7265 		 kvm_arch_has_assigned_device(vcpu->kvm))
7266 		mds_clear_cpu_buffers();
7267 
7268 	vmx_disable_fb_clear(vmx);
7269 
7270 	if (vcpu->arch.cr2 != native_read_cr2())
7271 		native_write_cr2(vcpu->arch.cr2);
7272 
7273 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7274 				   flags);
7275 
7276 	vcpu->arch.cr2 = native_read_cr2();
7277 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7278 
7279 	vmx->idt_vectoring_info = 0;
7280 
7281 	vmx_enable_fb_clear(vmx);
7282 
7283 	if (unlikely(vmx->fail)) {
7284 		vmx->exit_reason.full = 0xdead;
7285 		goto out;
7286 	}
7287 
7288 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7289 	if (likely(!vmx->exit_reason.failed_vmentry))
7290 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7291 
7292 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7293 	    is_nmi(vmx_get_intr_info(vcpu))) {
7294 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7295 		vmx_do_nmi_irqoff();
7296 		kvm_after_interrupt(vcpu);
7297 	}
7298 
7299 out:
7300 	guest_state_exit_irqoff();
7301 }
7302 
vmx_vcpu_run(struct kvm_vcpu * vcpu)7303 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7304 {
7305 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7306 	unsigned long cr3, cr4;
7307 
7308 	/* Record the guest's net vcpu time for enforced NMI injections. */
7309 	if (unlikely(!enable_vnmi &&
7310 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7311 		vmx->loaded_vmcs->entry_time = ktime_get();
7312 
7313 	/*
7314 	 * Don't enter VMX if guest state is invalid, let the exit handler
7315 	 * start emulation until we arrive back to a valid state.  Synthesize a
7316 	 * consistency check VM-Exit due to invalid guest state and bail.
7317 	 */
7318 	if (unlikely(vmx->emulation_required)) {
7319 		vmx->fail = 0;
7320 
7321 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7322 		vmx->exit_reason.failed_vmentry = 1;
7323 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7324 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7325 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7326 		vmx->exit_intr_info = 0;
7327 		return EXIT_FASTPATH_NONE;
7328 	}
7329 
7330 	trace_kvm_entry(vcpu);
7331 
7332 	if (vmx->ple_window_dirty) {
7333 		vmx->ple_window_dirty = false;
7334 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7335 	}
7336 
7337 	/*
7338 	 * We did this in prepare_switch_to_guest, because it needs to
7339 	 * be within srcu_read_lock.
7340 	 */
7341 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7342 
7343 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7344 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7345 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7346 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7347 	vcpu->arch.regs_dirty = 0;
7348 
7349 	/*
7350 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7351 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7352 	 * it switches back to the current->mm, which can occur in KVM context
7353 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7354 	 * toggles a static key while handling a VM-Exit.
7355 	 */
7356 	cr3 = __get_current_cr3_fast();
7357 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7358 		vmcs_writel(HOST_CR3, cr3);
7359 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7360 	}
7361 
7362 	cr4 = cr4_read_shadow();
7363 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7364 		vmcs_writel(HOST_CR4, cr4);
7365 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7366 	}
7367 
7368 	/* When single-stepping over STI and MOV SS, we must clear the
7369 	 * corresponding interruptibility bits in the guest state. Otherwise
7370 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7371 	 * exceptions being set, but that's not correct for the guest debugging
7372 	 * case. */
7373 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7374 		vmx_set_interrupt_shadow(vcpu, 0);
7375 
7376 	kvm_load_guest_xsave_state(vcpu);
7377 
7378 	pt_guest_enter(vmx);
7379 
7380 	atomic_switch_perf_msrs(vmx);
7381 	if (intel_pmu_lbr_is_enabled(vcpu))
7382 		vmx_passthrough_lbr_msrs(vcpu);
7383 
7384 	if (enable_preemption_timer)
7385 		vmx_update_hv_timer(vcpu);
7386 
7387 	kvm_wait_lapic_expire(vcpu);
7388 
7389 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7390 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7391 
7392 	/* All fields are clean at this point */
7393 	if (kvm_is_using_evmcs()) {
7394 		current_evmcs->hv_clean_fields |=
7395 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7396 
7397 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7398 	}
7399 
7400 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7401 	if (vmx->host_debugctlmsr)
7402 		update_debugctlmsr(vmx->host_debugctlmsr);
7403 
7404 #ifndef CONFIG_X86_64
7405 	/*
7406 	 * The sysexit path does not restore ds/es, so we must set them to
7407 	 * a reasonable value ourselves.
7408 	 *
7409 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7410 	 * function may be executed in interrupt context, which saves and
7411 	 * restore segments around it, nullifying its effect.
7412 	 */
7413 	loadsegment(ds, __USER_DS);
7414 	loadsegment(es, __USER_DS);
7415 #endif
7416 
7417 	pt_guest_exit(vmx);
7418 
7419 	kvm_load_host_xsave_state(vcpu);
7420 
7421 	if (is_guest_mode(vcpu)) {
7422 		/*
7423 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7424 		 * checking.
7425 		 */
7426 		if (vmx->nested.nested_run_pending &&
7427 		    !vmx->exit_reason.failed_vmentry)
7428 			++vcpu->stat.nested_run;
7429 
7430 		vmx->nested.nested_run_pending = 0;
7431 	}
7432 
7433 	if (unlikely(vmx->fail))
7434 		return EXIT_FASTPATH_NONE;
7435 
7436 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7437 		kvm_machine_check();
7438 
7439 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7440 
7441 	if (unlikely(vmx->exit_reason.failed_vmentry))
7442 		return EXIT_FASTPATH_NONE;
7443 
7444 	vmx->loaded_vmcs->launched = 1;
7445 
7446 	vmx_recover_nmi_blocking(vmx);
7447 	vmx_complete_interrupts(vmx);
7448 
7449 	if (is_guest_mode(vcpu))
7450 		return EXIT_FASTPATH_NONE;
7451 
7452 	return vmx_exit_handlers_fastpath(vcpu);
7453 }
7454 
vmx_vcpu_free(struct kvm_vcpu * vcpu)7455 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7456 {
7457 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7458 
7459 	if (enable_pml)
7460 		vmx_destroy_pml_buffer(vmx);
7461 	free_vpid(vmx->vpid);
7462 	nested_vmx_free_vcpu(vcpu);
7463 	free_loaded_vmcs(vmx->loaded_vmcs);
7464 }
7465 
vmx_vcpu_create(struct kvm_vcpu * vcpu)7466 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7467 {
7468 	struct vmx_uret_msr *tsx_ctrl;
7469 	struct vcpu_vmx *vmx;
7470 	int i, err;
7471 
7472 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7473 	vmx = to_vmx(vcpu);
7474 
7475 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7476 
7477 	err = -ENOMEM;
7478 
7479 	vmx->vpid = allocate_vpid();
7480 
7481 	/*
7482 	 * If PML is turned on, failure on enabling PML just results in failure
7483 	 * of creating the vcpu, therefore we can simplify PML logic (by
7484 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7485 	 * for the guest), etc.
7486 	 */
7487 	if (enable_pml) {
7488 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7489 		if (!vmx->pml_pg)
7490 			goto free_vpid;
7491 	}
7492 
7493 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7494 		vmx->guest_uret_msrs[i].mask = -1ull;
7495 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7496 		/*
7497 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7498 		 * Keep the host value unchanged to avoid changing CPUID bits
7499 		 * under the host kernel's feet.
7500 		 */
7501 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7502 		if (tsx_ctrl)
7503 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7504 	}
7505 
7506 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7507 	if (err < 0)
7508 		goto free_pml;
7509 
7510 	/*
7511 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7512 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7513 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7514 	 * performance benefits from enabling it for vmcs02.
7515 	 */
7516 	if (kvm_is_using_evmcs() &&
7517 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7518 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7519 
7520 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7521 	}
7522 
7523 	/* The MSR bitmap starts with all ones */
7524 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7525 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7526 
7527 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7528 #ifdef CONFIG_X86_64
7529 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7530 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7531 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7532 #endif
7533 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7534 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7535 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7536 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7537 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7538 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7539 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7540 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7541 	}
7542 
7543 	vmx->loaded_vmcs = &vmx->vmcs01;
7544 
7545 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7546 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7547 		if (err)
7548 			goto free_vmcs;
7549 	}
7550 
7551 	if (enable_ept && !enable_unrestricted_guest) {
7552 		err = init_rmode_identity_map(vcpu->kvm);
7553 		if (err)
7554 			goto free_vmcs;
7555 	}
7556 
7557 	if (vmx_can_use_ipiv(vcpu))
7558 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7559 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7560 
7561 	return 0;
7562 
7563 free_vmcs:
7564 	free_loaded_vmcs(vmx->loaded_vmcs);
7565 free_pml:
7566 	vmx_destroy_pml_buffer(vmx);
7567 free_vpid:
7568 	free_vpid(vmx->vpid);
7569 	return err;
7570 }
7571 
7572 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7573 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7574 
vmx_vm_init(struct kvm * kvm)7575 static int vmx_vm_init(struct kvm *kvm)
7576 {
7577 	if (!ple_gap)
7578 		kvm->arch.pause_in_guest = true;
7579 
7580 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7581 		switch (l1tf_mitigation) {
7582 		case L1TF_MITIGATION_OFF:
7583 		case L1TF_MITIGATION_FLUSH_NOWARN:
7584 			/* 'I explicitly don't care' is set */
7585 			break;
7586 		case L1TF_MITIGATION_FLUSH:
7587 		case L1TF_MITIGATION_FLUSH_NOSMT:
7588 		case L1TF_MITIGATION_FULL:
7589 			/*
7590 			 * Warn upon starting the first VM in a potentially
7591 			 * insecure environment.
7592 			 */
7593 			if (sched_smt_active())
7594 				pr_warn_once(L1TF_MSG_SMT);
7595 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7596 				pr_warn_once(L1TF_MSG_L1D);
7597 			break;
7598 		case L1TF_MITIGATION_FULL_FORCE:
7599 			/* Flush is enforced */
7600 			break;
7601 		}
7602 	}
7603 	return 0;
7604 }
7605 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7606 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7607 {
7608 	u8 cache;
7609 
7610 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7611 	 * memory aliases with conflicting memory types and sometimes MCEs.
7612 	 * We have to be careful as to what are honored and when.
7613 	 *
7614 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7615 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7616 	 * This was historically the source of MCEs and we want to be
7617 	 * conservative.
7618 	 *
7619 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7620 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7621 	 * EPT memory type is set to WB.  The effective memory type is forced
7622 	 * WB.
7623 	 *
7624 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7625 	 * EPT memory type is used to emulate guest CD/MTRR.
7626 	 */
7627 
7628 	if (is_mmio)
7629 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7630 
7631 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7632 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7633 
7634 	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7635 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7636 			cache = MTRR_TYPE_WRBACK;
7637 		else
7638 			cache = MTRR_TYPE_UNCACHABLE;
7639 
7640 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7641 	}
7642 
7643 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7644 }
7645 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7646 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7647 {
7648 	/*
7649 	 * These bits in the secondary execution controls field
7650 	 * are dynamic, the others are mostly based on the hypervisor
7651 	 * architecture and the guest's CPUID.  Do not touch the
7652 	 * dynamic bits.
7653 	 */
7654 	u32 mask =
7655 		SECONDARY_EXEC_SHADOW_VMCS |
7656 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7657 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7658 		SECONDARY_EXEC_DESC;
7659 
7660 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7661 
7662 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7663 }
7664 
7665 /*
7666  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7667  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7668  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7669 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7670 {
7671 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7672 	struct kvm_cpuid_entry2 *entry;
7673 
7674 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7675 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7676 
7677 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7678 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7679 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7680 } while (0)
7681 
7682 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7683 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7684 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7685 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7686 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7687 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7688 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7689 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7690 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7691 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7692 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7693 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7694 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7695 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7696 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7697 
7698 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7699 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7700 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7701 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7702 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7703 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7704 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7705 
7706 #undef cr4_fixed1_update
7707 }
7708 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7709 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7710 {
7711 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7712 	struct kvm_cpuid_entry2 *best = NULL;
7713 	int i;
7714 
7715 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7716 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7717 		if (!best)
7718 			return;
7719 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7720 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7721 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7722 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7723 	}
7724 
7725 	/* Get the number of configurable Address Ranges for filtering */
7726 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7727 						PT_CAP_num_address_ranges);
7728 
7729 	/* Initialize and clear the no dependency bits */
7730 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7731 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7732 			RTIT_CTL_BRANCH_EN);
7733 
7734 	/*
7735 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7736 	 * will inject an #GP
7737 	 */
7738 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7739 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7740 
7741 	/*
7742 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7743 	 * PSBFreq can be set
7744 	 */
7745 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7746 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7747 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7748 
7749 	/*
7750 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7751 	 */
7752 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7753 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7754 					      RTIT_CTL_MTC_RANGE);
7755 
7756 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7757 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7758 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7759 							RTIT_CTL_PTW_EN);
7760 
7761 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7762 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7763 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7764 
7765 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7766 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7767 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7768 
7769 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7770 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7771 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7772 
7773 	/* unmask address range configure area */
7774 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7775 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7776 }
7777 
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7778 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7779 {
7780 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7781 
7782 	/*
7783 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7784 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7785 	 * set if and only if XSAVE is supported.
7786 	 */
7787 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7788 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7789 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7790 
7791 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7792 
7793 	vmx_setup_uret_msrs(vmx);
7794 
7795 	if (cpu_has_secondary_exec_ctrls())
7796 		vmcs_set_secondary_exec_control(vmx,
7797 						vmx_secondary_exec_control(vmx));
7798 
7799 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7800 		vmx->msr_ia32_feature_control_valid_bits |=
7801 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7802 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7803 	else
7804 		vmx->msr_ia32_feature_control_valid_bits &=
7805 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7806 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7807 
7808 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7809 		nested_vmx_cr_fixed1_bits_update(vcpu);
7810 
7811 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7812 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7813 		update_intel_pt_cfg(vcpu);
7814 
7815 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7816 		struct vmx_uret_msr *msr;
7817 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7818 		if (msr) {
7819 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7820 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7821 		}
7822 	}
7823 
7824 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7825 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7826 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7827 
7828 	if (boot_cpu_has(X86_FEATURE_IBPB))
7829 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7830 					  !guest_has_pred_cmd_msr(vcpu));
7831 
7832 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7833 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7834 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7835 
7836 	set_cr4_guest_host_mask(vmx);
7837 
7838 	vmx_write_encls_bitmap(vcpu, NULL);
7839 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7840 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7841 	else
7842 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7843 
7844 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7845 		vmx->msr_ia32_feature_control_valid_bits |=
7846 			FEAT_CTL_SGX_LC_ENABLED;
7847 	else
7848 		vmx->msr_ia32_feature_control_valid_bits &=
7849 			~FEAT_CTL_SGX_LC_ENABLED;
7850 
7851 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7852 	vmx_update_exception_bitmap(vcpu);
7853 }
7854 
vmx_get_perf_capabilities(void)7855 static u64 vmx_get_perf_capabilities(void)
7856 {
7857 	u64 perf_cap = PMU_CAP_FW_WRITES;
7858 	struct x86_pmu_lbr lbr;
7859 	u64 host_perf_cap = 0;
7860 
7861 	if (!enable_pmu)
7862 		return 0;
7863 
7864 	if (boot_cpu_has(X86_FEATURE_PDCM))
7865 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7866 
7867 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7868 		x86_perf_get_lbr(&lbr);
7869 		if (lbr.nr)
7870 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7871 	}
7872 
7873 	if (vmx_pebs_supported()) {
7874 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7875 
7876 		/*
7877 		 * Disallow adaptive PEBS as it is functionally broken, can be
7878 		 * used by the guest to read *host* LBRs, and can be used to
7879 		 * bypass userspace event filters.  To correctly and safely
7880 		 * support adaptive PEBS, KVM needs to:
7881 		 *
7882 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7883 		 *    counters.
7884 		 *
7885 		 * 2. Gain support from perf (or take direct control of counter
7886 		 *    programming) to support events without adaptive PEBS
7887 		 *    enabled for the hardware counter.
7888 		 *
7889 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7890 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7891 		 *
7892 		 * 4. Document which PMU events are effectively exposed to the
7893 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7894 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7895 		 */
7896 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7897 	}
7898 
7899 	return perf_cap;
7900 }
7901 
vmx_set_cpu_caps(void)7902 static __init void vmx_set_cpu_caps(void)
7903 {
7904 	kvm_set_cpu_caps();
7905 
7906 	/* CPUID 0x1 */
7907 	if (nested)
7908 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7909 
7910 	/* CPUID 0x7 */
7911 	if (kvm_mpx_supported())
7912 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7913 	if (!cpu_has_vmx_invpcid())
7914 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7915 	if (vmx_pt_mode_is_host_guest())
7916 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7917 	if (vmx_pebs_supported()) {
7918 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7919 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7920 	}
7921 
7922 	if (!enable_pmu)
7923 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7924 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7925 
7926 	if (!enable_sgx) {
7927 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7928 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7929 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7930 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7931 	}
7932 
7933 	if (vmx_umip_emulated())
7934 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7935 
7936 	/* CPUID 0xD.1 */
7937 	kvm_caps.supported_xss = 0;
7938 	if (!cpu_has_vmx_xsaves())
7939 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7940 
7941 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7942 	if (!cpu_has_vmx_rdtscp()) {
7943 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7944 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7945 	}
7946 
7947 	if (cpu_has_vmx_waitpkg())
7948 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7949 }
7950 
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7951 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7952 {
7953 	to_vmx(vcpu)->req_immediate_exit = true;
7954 }
7955 
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7956 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7957 				  struct x86_instruction_info *info)
7958 {
7959 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7960 	unsigned short port;
7961 	bool intercept;
7962 	int size;
7963 
7964 	if (info->intercept == x86_intercept_in ||
7965 	    info->intercept == x86_intercept_ins) {
7966 		port = info->src_val;
7967 		size = info->dst_bytes;
7968 	} else {
7969 		port = info->dst_val;
7970 		size = info->src_bytes;
7971 	}
7972 
7973 	/*
7974 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7975 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7976 	 * control.
7977 	 *
7978 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7979 	 */
7980 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7981 		intercept = nested_cpu_has(vmcs12,
7982 					   CPU_BASED_UNCOND_IO_EXITING);
7983 	else
7984 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7985 
7986 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7987 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7988 }
7989 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7990 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7991 			       struct x86_instruction_info *info,
7992 			       enum x86_intercept_stage stage,
7993 			       struct x86_exception *exception)
7994 {
7995 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7996 
7997 	switch (info->intercept) {
7998 	/*
7999 	 * RDPID causes #UD if disabled through secondary execution controls.
8000 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
8001 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8002 	 */
8003 	case x86_intercept_rdpid:
8004 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8005 			exception->vector = UD_VECTOR;
8006 			exception->error_code_valid = false;
8007 			return X86EMUL_PROPAGATE_FAULT;
8008 		}
8009 		break;
8010 
8011 	case x86_intercept_in:
8012 	case x86_intercept_ins:
8013 	case x86_intercept_out:
8014 	case x86_intercept_outs:
8015 		return vmx_check_intercept_io(vcpu, info);
8016 
8017 	case x86_intercept_lgdt:
8018 	case x86_intercept_lidt:
8019 	case x86_intercept_lldt:
8020 	case x86_intercept_ltr:
8021 	case x86_intercept_sgdt:
8022 	case x86_intercept_sidt:
8023 	case x86_intercept_sldt:
8024 	case x86_intercept_str:
8025 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8026 			return X86EMUL_CONTINUE;
8027 
8028 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8029 		break;
8030 
8031 	case x86_intercept_pause:
8032 		/*
8033 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8034 		 * with vanilla NOPs in the emulator.  Apply the interception
8035 		 * check only to actual PAUSE instructions.  Don't check
8036 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8037 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8038 		 * the PAUSE.
8039 		 */
8040 		if ((info->rep_prefix != REPE_PREFIX) ||
8041 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8042 			return X86EMUL_CONTINUE;
8043 
8044 		break;
8045 
8046 	/* TODO: check more intercepts... */
8047 	default:
8048 		break;
8049 	}
8050 
8051 	return X86EMUL_UNHANDLEABLE;
8052 }
8053 
8054 #ifdef CONFIG_X86_64
8055 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8056 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8057 				  u64 divisor, u64 *result)
8058 {
8059 	u64 low = a << shift, high = a >> (64 - shift);
8060 
8061 	/* To avoid the overflow on divq */
8062 	if (high >= divisor)
8063 		return 1;
8064 
8065 	/* Low hold the result, high hold rem which is discarded */
8066 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8067 	    "rm" (divisor), "0" (low), "1" (high));
8068 	*result = low;
8069 
8070 	return 0;
8071 }
8072 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8073 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8074 			    bool *expired)
8075 {
8076 	struct vcpu_vmx *vmx;
8077 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8078 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8079 
8080 	vmx = to_vmx(vcpu);
8081 	tscl = rdtsc();
8082 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8083 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8084 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8085 						    ktimer->timer_advance_ns);
8086 
8087 	if (delta_tsc > lapic_timer_advance_cycles)
8088 		delta_tsc -= lapic_timer_advance_cycles;
8089 	else
8090 		delta_tsc = 0;
8091 
8092 	/* Convert to host delta tsc if tsc scaling is enabled */
8093 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8094 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8095 				kvm_caps.tsc_scaling_ratio_frac_bits,
8096 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8097 		return -ERANGE;
8098 
8099 	/*
8100 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8101 	 * we can't use the preemption timer.
8102 	 * It's possible that it fits on later vmentries, but checking
8103 	 * on every vmentry is costly so we just use an hrtimer.
8104 	 */
8105 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8106 		return -ERANGE;
8107 
8108 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8109 	*expired = !delta_tsc;
8110 	return 0;
8111 }
8112 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8113 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8114 {
8115 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8116 }
8117 #endif
8118 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)8119 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8120 {
8121 	if (!kvm_pause_in_guest(vcpu->kvm))
8122 		shrink_ple_window(vcpu);
8123 }
8124 
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8125 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8126 {
8127 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8128 
8129 	if (WARN_ON_ONCE(!enable_pml))
8130 		return;
8131 
8132 	if (is_guest_mode(vcpu)) {
8133 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8134 		return;
8135 	}
8136 
8137 	/*
8138 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8139 	 * code, but in that case another update request will be made and so
8140 	 * the guest will never run with a stale PML value.
8141 	 */
8142 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8143 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8144 	else
8145 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8146 }
8147 
vmx_setup_mce(struct kvm_vcpu * vcpu)8148 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8149 {
8150 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8151 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8152 			FEAT_CTL_LMCE_ENABLED;
8153 	else
8154 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8155 			~FEAT_CTL_LMCE_ENABLED;
8156 }
8157 
8158 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8159 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8160 {
8161 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8162 	if (to_vmx(vcpu)->nested.nested_run_pending)
8163 		return -EBUSY;
8164 	return !is_smm(vcpu);
8165 }
8166 
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8167 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8168 {
8169 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8170 
8171 	/*
8172 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8173 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8174 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8175 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8176 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8177 	 */
8178 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8179 	if (vmx->nested.smm.guest_mode)
8180 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8181 
8182 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8183 	vmx->nested.vmxon = false;
8184 	vmx_clear_hlt(vcpu);
8185 	return 0;
8186 }
8187 
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8188 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8189 {
8190 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8191 	int ret;
8192 
8193 	if (vmx->nested.smm.vmxon) {
8194 		vmx->nested.vmxon = true;
8195 		vmx->nested.smm.vmxon = false;
8196 	}
8197 
8198 	if (vmx->nested.smm.guest_mode) {
8199 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8200 		if (ret)
8201 			return ret;
8202 
8203 		vmx->nested.nested_run_pending = 1;
8204 		vmx->nested.smm.guest_mode = false;
8205 	}
8206 	return 0;
8207 }
8208 
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8209 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8210 {
8211 	/* RSM will cause a vmexit anyway.  */
8212 }
8213 #endif
8214 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8215 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8216 {
8217 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8218 }
8219 
vmx_migrate_timers(struct kvm_vcpu * vcpu)8220 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8221 {
8222 	if (is_guest_mode(vcpu)) {
8223 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8224 
8225 		if (hrtimer_try_to_cancel(timer) == 1)
8226 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8227 	}
8228 }
8229 
vmx_hardware_unsetup(void)8230 static void vmx_hardware_unsetup(void)
8231 {
8232 	kvm_set_posted_intr_wakeup_handler(NULL);
8233 
8234 	if (nested)
8235 		nested_vmx_hardware_unsetup();
8236 
8237 	free_kvm_area();
8238 }
8239 
8240 #define VMX_REQUIRED_APICV_INHIBITS			\
8241 (							\
8242 	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8243 	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8244 	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8245 	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8246 	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8247 	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8248 	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8249 )
8250 
vmx_vm_destroy(struct kvm * kvm)8251 static void vmx_vm_destroy(struct kvm *kvm)
8252 {
8253 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8254 
8255 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8256 }
8257 
8258 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8259 	.name = KBUILD_MODNAME,
8260 
8261 	.check_processor_compatibility = vmx_check_processor_compat,
8262 
8263 	.hardware_unsetup = vmx_hardware_unsetup,
8264 
8265 	.hardware_enable = vmx_hardware_enable,
8266 	.hardware_disable = vmx_hardware_disable,
8267 	.has_emulated_msr = vmx_has_emulated_msr,
8268 
8269 	.vm_size = sizeof(struct kvm_vmx),
8270 	.vm_init = vmx_vm_init,
8271 	.vm_destroy = vmx_vm_destroy,
8272 
8273 	.vcpu_precreate = vmx_vcpu_precreate,
8274 	.vcpu_create = vmx_vcpu_create,
8275 	.vcpu_free = vmx_vcpu_free,
8276 	.vcpu_reset = vmx_vcpu_reset,
8277 
8278 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8279 	.vcpu_load = vmx_vcpu_load,
8280 	.vcpu_put = vmx_vcpu_put,
8281 
8282 	.update_exception_bitmap = vmx_update_exception_bitmap,
8283 	.get_msr_feature = vmx_get_msr_feature,
8284 	.get_msr = vmx_get_msr,
8285 	.set_msr = vmx_set_msr,
8286 	.get_segment_base = vmx_get_segment_base,
8287 	.get_segment = vmx_get_segment,
8288 	.set_segment = vmx_set_segment,
8289 	.get_cpl = vmx_get_cpl,
8290 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8291 	.is_valid_cr0 = vmx_is_valid_cr0,
8292 	.set_cr0 = vmx_set_cr0,
8293 	.is_valid_cr4 = vmx_is_valid_cr4,
8294 	.set_cr4 = vmx_set_cr4,
8295 	.set_efer = vmx_set_efer,
8296 	.get_idt = vmx_get_idt,
8297 	.set_idt = vmx_set_idt,
8298 	.get_gdt = vmx_get_gdt,
8299 	.set_gdt = vmx_set_gdt,
8300 	.set_dr6 = vmx_set_dr6,
8301 	.set_dr7 = vmx_set_dr7,
8302 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8303 	.cache_reg = vmx_cache_reg,
8304 	.get_rflags = vmx_get_rflags,
8305 	.set_rflags = vmx_set_rflags,
8306 	.get_if_flag = vmx_get_if_flag,
8307 
8308 	.flush_tlb_all = vmx_flush_tlb_all,
8309 	.flush_tlb_current = vmx_flush_tlb_current,
8310 	.flush_tlb_gva = vmx_flush_tlb_gva,
8311 	.flush_tlb_guest = vmx_flush_tlb_guest,
8312 
8313 	.vcpu_pre_run = vmx_vcpu_pre_run,
8314 	.vcpu_run = vmx_vcpu_run,
8315 	.handle_exit = vmx_handle_exit,
8316 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8317 	.update_emulated_instruction = vmx_update_emulated_instruction,
8318 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8319 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8320 	.patch_hypercall = vmx_patch_hypercall,
8321 	.inject_irq = vmx_inject_irq,
8322 	.inject_nmi = vmx_inject_nmi,
8323 	.inject_exception = vmx_inject_exception,
8324 	.cancel_injection = vmx_cancel_injection,
8325 	.interrupt_allowed = vmx_interrupt_allowed,
8326 	.nmi_allowed = vmx_nmi_allowed,
8327 	.get_nmi_mask = vmx_get_nmi_mask,
8328 	.set_nmi_mask = vmx_set_nmi_mask,
8329 	.enable_nmi_window = vmx_enable_nmi_window,
8330 	.enable_irq_window = vmx_enable_irq_window,
8331 	.update_cr8_intercept = vmx_update_cr8_intercept,
8332 
8333 	.x2apic_icr_is_split = false,
8334 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8335 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8336 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8337 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8338 	.apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8339 	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8340 	.hwapic_irr_update = vmx_hwapic_irr_update,
8341 	.hwapic_isr_update = vmx_hwapic_isr_update,
8342 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8343 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8344 	.deliver_interrupt = vmx_deliver_interrupt,
8345 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8346 
8347 	.set_tss_addr = vmx_set_tss_addr,
8348 	.set_identity_map_addr = vmx_set_identity_map_addr,
8349 	.get_mt_mask = vmx_get_mt_mask,
8350 
8351 	.get_exit_info = vmx_get_exit_info,
8352 
8353 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8354 
8355 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8356 
8357 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8358 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8359 	.write_tsc_offset = vmx_write_tsc_offset,
8360 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8361 
8362 	.load_mmu_pgd = vmx_load_mmu_pgd,
8363 
8364 	.check_intercept = vmx_check_intercept,
8365 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8366 
8367 	.request_immediate_exit = vmx_request_immediate_exit,
8368 
8369 	.sched_in = vmx_sched_in,
8370 
8371 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8372 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8373 
8374 	.nested_ops = &vmx_nested_ops,
8375 
8376 	.pi_update_irte = vmx_pi_update_irte,
8377 	.pi_start_assignment = vmx_pi_start_assignment,
8378 
8379 #ifdef CONFIG_X86_64
8380 	.set_hv_timer = vmx_set_hv_timer,
8381 	.cancel_hv_timer = vmx_cancel_hv_timer,
8382 #endif
8383 
8384 	.setup_mce = vmx_setup_mce,
8385 
8386 #ifdef CONFIG_KVM_SMM
8387 	.smi_allowed = vmx_smi_allowed,
8388 	.enter_smm = vmx_enter_smm,
8389 	.leave_smm = vmx_leave_smm,
8390 	.enable_smi_window = vmx_enable_smi_window,
8391 #endif
8392 
8393 	.can_emulate_instruction = vmx_can_emulate_instruction,
8394 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8395 	.migrate_timers = vmx_migrate_timers,
8396 
8397 	.msr_filter_changed = vmx_msr_filter_changed,
8398 	.complete_emulated_msr = kvm_complete_insn_gp,
8399 
8400 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8401 };
8402 
vmx_handle_intel_pt_intr(void)8403 static unsigned int vmx_handle_intel_pt_intr(void)
8404 {
8405 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8406 
8407 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8408 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8409 		return 0;
8410 
8411 	kvm_make_request(KVM_REQ_PMI, vcpu);
8412 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8413 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8414 	return 1;
8415 }
8416 
vmx_setup_user_return_msrs(void)8417 static __init void vmx_setup_user_return_msrs(void)
8418 {
8419 
8420 	/*
8421 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8422 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8423 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8424 	 * support this emulation, MSR_STAR is included in the list for i386,
8425 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8426 	 * into hardware and is here purely for emulation purposes.
8427 	 */
8428 	const u32 vmx_uret_msrs_list[] = {
8429 	#ifdef CONFIG_X86_64
8430 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8431 	#endif
8432 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8433 		MSR_IA32_TSX_CTRL,
8434 	};
8435 	int i;
8436 
8437 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8438 
8439 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8440 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8441 }
8442 
vmx_setup_me_spte_mask(void)8443 static void __init vmx_setup_me_spte_mask(void)
8444 {
8445 	u64 me_mask = 0;
8446 
8447 	/*
8448 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8449 	 * the former to avoid exposing shadow_phys_bits.
8450 	 *
8451 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8452 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8453 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8454 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8455 	 * reported by CPUID.  Those bits between are KeyID bits.
8456 	 */
8457 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8458 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8459 			kvm_get_shadow_phys_bits() - 1);
8460 	/*
8461 	 * Unlike SME, host kernel doesn't support setting up any
8462 	 * MKTME KeyID on Intel platforms.  No memory encryption
8463 	 * bits should be included into the SPTE.
8464 	 */
8465 	kvm_mmu_set_me_spte_mask(0, me_mask);
8466 }
8467 
8468 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8469 
hardware_setup(void)8470 static __init int hardware_setup(void)
8471 {
8472 	unsigned long host_bndcfgs;
8473 	struct desc_ptr dt;
8474 	int r;
8475 
8476 	store_idt(&dt);
8477 	host_idt_base = dt.address;
8478 
8479 	vmx_setup_user_return_msrs();
8480 
8481 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8482 		return -EIO;
8483 
8484 	if (cpu_has_perf_global_ctrl_bug())
8485 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8486 			     "does not work properly. Using workaround\n");
8487 
8488 	if (boot_cpu_has(X86_FEATURE_NX))
8489 		kvm_enable_efer_bits(EFER_NX);
8490 
8491 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8492 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8493 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8494 	}
8495 
8496 	if (!cpu_has_vmx_mpx())
8497 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8498 					     XFEATURE_MASK_BNDCSR);
8499 
8500 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8501 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8502 		enable_vpid = 0;
8503 
8504 	if (!cpu_has_vmx_ept() ||
8505 	    !cpu_has_vmx_ept_4levels() ||
8506 	    !cpu_has_vmx_ept_mt_wb() ||
8507 	    !cpu_has_vmx_invept_global())
8508 		enable_ept = 0;
8509 
8510 	/* NX support is required for shadow paging. */
8511 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8512 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8513 		return -EOPNOTSUPP;
8514 	}
8515 
8516 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8517 		enable_ept_ad_bits = 0;
8518 
8519 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8520 		enable_unrestricted_guest = 0;
8521 
8522 	if (!cpu_has_vmx_flexpriority())
8523 		flexpriority_enabled = 0;
8524 
8525 	if (!cpu_has_virtual_nmis())
8526 		enable_vnmi = 0;
8527 
8528 #ifdef CONFIG_X86_SGX_KVM
8529 	if (!cpu_has_vmx_encls_vmexit())
8530 		enable_sgx = false;
8531 #endif
8532 
8533 	/*
8534 	 * set_apic_access_page_addr() is used to reload apic access
8535 	 * page upon invalidation.  No need to do anything if not
8536 	 * using the APIC_ACCESS_ADDR VMCS field.
8537 	 */
8538 	if (!flexpriority_enabled)
8539 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8540 
8541 	if (!cpu_has_vmx_tpr_shadow())
8542 		vmx_x86_ops.update_cr8_intercept = NULL;
8543 
8544 #if IS_ENABLED(CONFIG_HYPERV)
8545 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8546 	    && enable_ept) {
8547 		vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8548 		vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8549 	}
8550 #endif
8551 
8552 	if (!cpu_has_vmx_ple()) {
8553 		ple_gap = 0;
8554 		ple_window = 0;
8555 		ple_window_grow = 0;
8556 		ple_window_max = 0;
8557 		ple_window_shrink = 0;
8558 	}
8559 
8560 	if (!cpu_has_vmx_apicv())
8561 		enable_apicv = 0;
8562 	if (!enable_apicv)
8563 		vmx_x86_ops.sync_pir_to_irr = NULL;
8564 
8565 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8566 		enable_ipiv = false;
8567 
8568 	if (cpu_has_vmx_tsc_scaling())
8569 		kvm_caps.has_tsc_control = true;
8570 
8571 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8572 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8573 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8574 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8575 
8576 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8577 
8578 	if (enable_ept)
8579 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8580 				      cpu_has_vmx_ept_execute_only());
8581 
8582 	/*
8583 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8584 	 * bits to shadow_zero_check.
8585 	 */
8586 	vmx_setup_me_spte_mask();
8587 
8588 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8589 			  ept_caps_to_lpage_level(vmx_capability.ept));
8590 
8591 	/*
8592 	 * Only enable PML when hardware supports PML feature, and both EPT
8593 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8594 	 */
8595 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8596 		enable_pml = 0;
8597 
8598 	if (!enable_pml)
8599 		vmx_x86_ops.cpu_dirty_log_size = 0;
8600 
8601 	if (!cpu_has_vmx_preemption_timer())
8602 		enable_preemption_timer = false;
8603 
8604 	if (enable_preemption_timer) {
8605 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8606 
8607 		cpu_preemption_timer_multi =
8608 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8609 
8610 		if (tsc_khz)
8611 			use_timer_freq = (u64)tsc_khz * 1000;
8612 		use_timer_freq >>= cpu_preemption_timer_multi;
8613 
8614 		/*
8615 		 * KVM "disables" the preemption timer by setting it to its max
8616 		 * value.  Don't use the timer if it might cause spurious exits
8617 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8618 		 */
8619 		if (use_timer_freq > 0xffffffffu / 10)
8620 			enable_preemption_timer = false;
8621 	}
8622 
8623 	if (!enable_preemption_timer) {
8624 		vmx_x86_ops.set_hv_timer = NULL;
8625 		vmx_x86_ops.cancel_hv_timer = NULL;
8626 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8627 	}
8628 
8629 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8630 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8631 
8632 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8633 		return -EINVAL;
8634 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8635 		pt_mode = PT_MODE_SYSTEM;
8636 	if (pt_mode == PT_MODE_HOST_GUEST)
8637 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8638 	else
8639 		vmx_init_ops.handle_intel_pt_intr = NULL;
8640 
8641 	setup_default_sgx_lepubkeyhash();
8642 
8643 	if (nested) {
8644 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8645 
8646 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8647 		if (r)
8648 			return r;
8649 	}
8650 
8651 	vmx_set_cpu_caps();
8652 
8653 	r = alloc_kvm_area();
8654 	if (r && nested)
8655 		nested_vmx_hardware_unsetup();
8656 
8657 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8658 
8659 	return r;
8660 }
8661 
8662 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8663 	.hardware_setup = hardware_setup,
8664 	.handle_intel_pt_intr = NULL,
8665 
8666 	.runtime_ops = &vmx_x86_ops,
8667 	.pmu_ops = &intel_pmu_ops,
8668 };
8669 
vmx_cleanup_l1d_flush(void)8670 static void vmx_cleanup_l1d_flush(void)
8671 {
8672 	if (vmx_l1d_flush_pages) {
8673 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8674 		vmx_l1d_flush_pages = NULL;
8675 	}
8676 	/* Restore state so sysfs ignores VMX */
8677 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8678 }
8679 
__vmx_exit(void)8680 static void __vmx_exit(void)
8681 {
8682 	allow_smaller_maxphyaddr = false;
8683 
8684 	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8685 
8686 	vmx_cleanup_l1d_flush();
8687 }
8688 
vmx_exit(void)8689 static void vmx_exit(void)
8690 {
8691 	kvm_exit();
8692 	kvm_x86_vendor_exit();
8693 
8694 	__vmx_exit();
8695 }
8696 module_exit(vmx_exit);
8697 
vmx_init(void)8698 static int __init vmx_init(void)
8699 {
8700 	int r, cpu;
8701 
8702 	if (!kvm_is_vmx_supported())
8703 		return -EOPNOTSUPP;
8704 
8705 	/*
8706 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8707 	 * to unwind if a later step fails.
8708 	 */
8709 	hv_init_evmcs();
8710 
8711 	r = kvm_x86_vendor_init(&vmx_init_ops);
8712 	if (r)
8713 		return r;
8714 
8715 	/*
8716 	 * Must be called after common x86 init so enable_ept is properly set
8717 	 * up. Hand the parameter mitigation value in which was stored in
8718 	 * the pre module init parser. If no parameter was given, it will
8719 	 * contain 'auto' which will be turned into the default 'cond'
8720 	 * mitigation mode.
8721 	 */
8722 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8723 	if (r)
8724 		goto err_l1d_flush;
8725 
8726 	for_each_possible_cpu(cpu) {
8727 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8728 
8729 		pi_init_cpu(cpu);
8730 	}
8731 
8732 	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8733 
8734 	vmx_check_vmcs12_offsets();
8735 
8736 	/*
8737 	 * Shadow paging doesn't have a (further) performance penalty
8738 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8739 	 * by default
8740 	 */
8741 	if (!enable_ept)
8742 		allow_smaller_maxphyaddr = true;
8743 
8744 	/*
8745 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8746 	 * exposed to userspace!
8747 	 */
8748 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8749 		     THIS_MODULE);
8750 	if (r)
8751 		goto err_kvm_init;
8752 
8753 	return 0;
8754 
8755 err_kvm_init:
8756 	__vmx_exit();
8757 err_l1d_flush:
8758 	kvm_x86_vendor_exit();
8759 	return r;
8760 }
8761 module_init(vmx_init);
8762