xref: /openbmc/linux/security/selinux/ss/services.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct selinux_policy_convert_data {
72 	struct convert_context_args args;
73 	struct sidtab_convert_params sidtab_params;
74 };
75 
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 				    struct context *context,
79 				    char **scontext,
80 				    u32 *scontext_len);
81 
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 				  struct sidtab *sidtab,
84 				  struct sidtab_entry *entry,
85 				  char **scontext,
86 				  u32 *scontext_len);
87 
88 static void context_struct_compute_av(struct policydb *policydb,
89 				      struct context *scontext,
90 				      struct context *tcontext,
91 				      u16 tclass,
92 				      struct av_decision *avd,
93 				      struct extended_perms *xperms);
94 
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)95 static int selinux_set_mapping(struct policydb *pol,
96 			       const struct security_class_mapping *map,
97 			       struct selinux_map *out_map)
98 {
99 	u16 i, j;
100 	bool print_unknown_handle = false;
101 
102 	/* Find number of classes in the input mapping */
103 	if (!map)
104 		return -EINVAL;
105 	i = 0;
106 	while (map[i].name)
107 		i++;
108 
109 	/* Allocate space for the class records, plus one for class zero */
110 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 	if (!out_map->mapping)
112 		return -ENOMEM;
113 
114 	/* Store the raw class and permission values */
115 	j = 0;
116 	while (map[j].name) {
117 		const struct security_class_mapping *p_in = map + (j++);
118 		struct selinux_mapping *p_out = out_map->mapping + j;
119 		u16 k;
120 
121 		/* An empty class string skips ahead */
122 		if (!strcmp(p_in->name, "")) {
123 			p_out->num_perms = 0;
124 			continue;
125 		}
126 
127 		p_out->value = string_to_security_class(pol, p_in->name);
128 		if (!p_out->value) {
129 			pr_info("SELinux:  Class %s not defined in policy.\n",
130 			       p_in->name);
131 			if (pol->reject_unknown)
132 				goto err;
133 			p_out->num_perms = 0;
134 			print_unknown_handle = true;
135 			continue;
136 		}
137 
138 		k = 0;
139 		while (p_in->perms[k]) {
140 			/* An empty permission string skips ahead */
141 			if (!*p_in->perms[k]) {
142 				k++;
143 				continue;
144 			}
145 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 							    p_in->perms[k]);
147 			if (!p_out->perms[k]) {
148 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149 				       p_in->perms[k], p_in->name);
150 				if (pol->reject_unknown)
151 					goto err;
152 				print_unknown_handle = true;
153 			}
154 
155 			k++;
156 		}
157 		p_out->num_perms = k;
158 	}
159 
160 	if (print_unknown_handle)
161 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 		       pol->allow_unknown ? "allowed" : "denied");
163 
164 	out_map->size = i;
165 	return 0;
166 err:
167 	kfree(out_map->mapping);
168 	out_map->mapping = NULL;
169 	return -EINVAL;
170 }
171 
172 /*
173  * Get real, policy values from mapped values
174  */
175 
unmap_class(struct selinux_map * map,u16 tclass)176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 	if (tclass < map->size)
179 		return map->mapping[tclass].value;
180 
181 	return tclass;
182 }
183 
184 /*
185  * Get kernel value for class from its policy value
186  */
map_class(struct selinux_map * map,u16 pol_value)187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 	u16 i;
190 
191 	for (i = 1; i < map->size; i++) {
192 		if (map->mapping[i].value == pol_value)
193 			return i;
194 	}
195 
196 	return SECCLASS_NULL;
197 }
198 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)199 static void map_decision(struct selinux_map *map,
200 			 u16 tclass, struct av_decision *avd,
201 			 int allow_unknown)
202 {
203 	if (tclass < map->size) {
204 		struct selinux_mapping *mapping = &map->mapping[tclass];
205 		unsigned int i, n = mapping->num_perms;
206 		u32 result;
207 
208 		for (i = 0, result = 0; i < n; i++) {
209 			if (avd->allowed & mapping->perms[i])
210 				result |= (u32)1<<i;
211 			if (allow_unknown && !mapping->perms[i])
212 				result |= (u32)1<<i;
213 		}
214 		avd->allowed = result;
215 
216 		for (i = 0, result = 0; i < n; i++)
217 			if (avd->auditallow & mapping->perms[i])
218 				result |= (u32)1<<i;
219 		avd->auditallow = result;
220 
221 		for (i = 0, result = 0; i < n; i++) {
222 			if (avd->auditdeny & mapping->perms[i])
223 				result |= (u32)1<<i;
224 			if (!allow_unknown && !mapping->perms[i])
225 				result |= (u32)1<<i;
226 		}
227 		/*
228 		 * In case the kernel has a bug and requests a permission
229 		 * between num_perms and the maximum permission number, we
230 		 * should audit that denial
231 		 */
232 		for (; i < (sizeof(u32)*8); i++)
233 			result |= (u32)1<<i;
234 		avd->auditdeny = result;
235 	}
236 }
237 
security_mls_enabled(void)238 int security_mls_enabled(void)
239 {
240 	int mls_enabled;
241 	struct selinux_policy *policy;
242 
243 	if (!selinux_initialized())
244 		return 0;
245 
246 	rcu_read_lock();
247 	policy = rcu_dereference(selinux_state.policy);
248 	mls_enabled = policy->policydb.mls_enabled;
249 	rcu_read_unlock();
250 	return mls_enabled;
251 }
252 
253 /*
254  * Return the boolean value of a constraint expression
255  * when it is applied to the specified source and target
256  * security contexts.
257  *
258  * xcontext is a special beast...  It is used by the validatetrans rules
259  * only.  For these rules, scontext is the context before the transition,
260  * tcontext is the context after the transition, and xcontext is the context
261  * of the process performing the transition.  All other callers of
262  * constraint_expr_eval should pass in NULL for xcontext.
263  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)264 static int constraint_expr_eval(struct policydb *policydb,
265 				struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp + 1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp + 1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH - 1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb->role_val_to_struct[val1 - 1];
310 				r2 = policydb->role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 				switch (e->op) {
356 				case CEXPR_EQ:
357 					s[++sp] = mls_level_eq(l1, l2);
358 					continue;
359 				case CEXPR_NEQ:
360 					s[++sp] = !mls_level_eq(l1, l2);
361 					continue;
362 				case CEXPR_DOM:
363 					s[++sp] = mls_level_dom(l1, l2);
364 					continue;
365 				case CEXPR_DOMBY:
366 					s[++sp] = mls_level_dom(l2, l1);
367 					continue;
368 				case CEXPR_INCOMP:
369 					s[++sp] = mls_level_incomp(l2, l1);
370 					continue;
371 				default:
372 					BUG();
373 					return 0;
374 				}
375 				break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
dump_masked_av_helper(void * k,void * d,void * args)443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)455 static void security_dump_masked_av(struct policydb *policydb,
456 				    struct context *scontext,
457 				    struct context *tcontext,
458 				    u16 tclass,
459 				    u32 permissions,
460 				    const char *reason)
461 {
462 	struct common_datum *common_dat;
463 	struct class_datum *tclass_dat;
464 	struct audit_buffer *ab;
465 	char *tclass_name;
466 	char *scontext_name = NULL;
467 	char *tcontext_name = NULL;
468 	char *permission_names[32];
469 	int index;
470 	u32 length;
471 	bool need_comma = false;
472 
473 	if (!permissions)
474 		return;
475 
476 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 	common_dat = tclass_dat->comdatum;
479 
480 	/* init permission_names */
481 	if (common_dat &&
482 	    hashtab_map(&common_dat->permissions.table,
483 			dump_masked_av_helper, permission_names) < 0)
484 		goto out;
485 
486 	if (hashtab_map(&tclass_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	/* get scontext/tcontext in text form */
491 	if (context_struct_to_string(policydb, scontext,
492 				     &scontext_name, &length) < 0)
493 		goto out;
494 
495 	if (context_struct_to_string(policydb, tcontext,
496 				     &tcontext_name, &length) < 0)
497 		goto out;
498 
499 	/* audit a message */
500 	ab = audit_log_start(audit_context(),
501 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 	if (!ab)
503 		goto out;
504 
505 	audit_log_format(ab, "op=security_compute_av reason=%s "
506 			 "scontext=%s tcontext=%s tclass=%s perms=",
507 			 reason, scontext_name, tcontext_name, tclass_name);
508 
509 	for (index = 0; index < 32; index++) {
510 		u32 mask = (1 << index);
511 
512 		if ((mask & permissions) == 0)
513 			continue;
514 
515 		audit_log_format(ab, "%s%s",
516 				 need_comma ? "," : "",
517 				 permission_names[index]
518 				 ? permission_names[index] : "????");
519 		need_comma = true;
520 	}
521 	audit_log_end(ab);
522 out:
523 	/* release scontext/tcontext */
524 	kfree(tcontext_name);
525 	kfree(scontext_name);
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * flag which drivers have permissions
586  * only looking for ioctl based extended permissions
587  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 		struct extended_perms *xperms,
590 		struct avtab_node *node)
591 {
592 	unsigned int i;
593 
594 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 		/* if allowing permissions within a driver */
600 		security_xperm_set(xperms->drivers.p,
601 					node->datum.u.xperms->driver);
602 	}
603 
604 	xperms->len = 1;
605 }
606 
607 /*
608  * Compute access vectors and extended permissions based on a context
609  * structure pair for the permissions in a particular class.
610  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)611 static void context_struct_compute_av(struct policydb *policydb,
612 				      struct context *scontext,
613 				      struct context *tcontext,
614 				      u16 tclass,
615 				      struct av_decision *avd,
616 				      struct extended_perms *xperms)
617 {
618 	struct constraint_node *constraint;
619 	struct role_allow *ra;
620 	struct avtab_key avkey;
621 	struct avtab_node *node;
622 	struct class_datum *tclass_datum;
623 	struct ebitmap *sattr, *tattr;
624 	struct ebitmap_node *snode, *tnode;
625 	unsigned int i, j;
626 
627 	avd->allowed = 0;
628 	avd->auditallow = 0;
629 	avd->auditdeny = 0xffffffff;
630 	if (xperms) {
631 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632 		xperms->len = 0;
633 	}
634 
635 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636 		if (printk_ratelimit())
637 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
638 		return;
639 	}
640 
641 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
642 
643 	/*
644 	 * If a specific type enforcement rule was defined for
645 	 * this permission check, then use it.
646 	 */
647 	avkey.target_class = tclass;
648 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
649 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
650 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
651 	ebitmap_for_each_positive_bit(sattr, snode, i) {
652 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
653 			avkey.source_type = i + 1;
654 			avkey.target_type = j + 1;
655 			for (node = avtab_search_node(&policydb->te_avtab,
656 						      &avkey);
657 			     node;
658 			     node = avtab_search_node_next(node, avkey.specified)) {
659 				if (node->key.specified == AVTAB_ALLOWED)
660 					avd->allowed |= node->datum.u.data;
661 				else if (node->key.specified == AVTAB_AUDITALLOW)
662 					avd->auditallow |= node->datum.u.data;
663 				else if (node->key.specified == AVTAB_AUDITDENY)
664 					avd->auditdeny &= node->datum.u.data;
665 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
666 					services_compute_xperms_drivers(xperms, node);
667 			}
668 
669 			/* Check conditional av table for additional permissions */
670 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
671 					avd, xperms);
672 
673 		}
674 	}
675 
676 	/*
677 	 * Remove any permissions prohibited by a constraint (this includes
678 	 * the MLS policy).
679 	 */
680 	constraint = tclass_datum->constraints;
681 	while (constraint) {
682 		if ((constraint->permissions & (avd->allowed)) &&
683 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
684 					  constraint->expr)) {
685 			avd->allowed &= ~(constraint->permissions);
686 		}
687 		constraint = constraint->next;
688 	}
689 
690 	/*
691 	 * If checking process transition permission and the
692 	 * role is changing, then check the (current_role, new_role)
693 	 * pair.
694 	 */
695 	if (tclass == policydb->process_class &&
696 	    (avd->allowed & policydb->process_trans_perms) &&
697 	    scontext->role != tcontext->role) {
698 		for (ra = policydb->role_allow; ra; ra = ra->next) {
699 			if (scontext->role == ra->role &&
700 			    tcontext->role == ra->new_role)
701 				break;
702 		}
703 		if (!ra)
704 			avd->allowed &= ~policydb->process_trans_perms;
705 	}
706 
707 	/*
708 	 * If the given source and target types have boundary
709 	 * constraint, lazy checks have to mask any violated
710 	 * permission and notice it to userspace via audit.
711 	 */
712 	type_attribute_bounds_av(policydb, scontext, tcontext,
713 				 tclass, avd);
714 }
715 
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)716 static int security_validtrans_handle_fail(struct selinux_policy *policy,
717 					struct sidtab_entry *oentry,
718 					struct sidtab_entry *nentry,
719 					struct sidtab_entry *tentry,
720 					u16 tclass)
721 {
722 	struct policydb *p = &policy->policydb;
723 	struct sidtab *sidtab = policy->sidtab;
724 	char *o = NULL, *n = NULL, *t = NULL;
725 	u32 olen, nlen, tlen;
726 
727 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
728 		goto out;
729 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
730 		goto out;
731 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
732 		goto out;
733 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
734 		  "op=security_validate_transition seresult=denied"
735 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
736 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
737 out:
738 	kfree(o);
739 	kfree(n);
740 	kfree(t);
741 
742 	if (!enforcing_enabled())
743 		return 0;
744 	return -EPERM;
745 }
746 
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)747 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
748 					  u16 orig_tclass, bool user)
749 {
750 	struct selinux_policy *policy;
751 	struct policydb *policydb;
752 	struct sidtab *sidtab;
753 	struct sidtab_entry *oentry;
754 	struct sidtab_entry *nentry;
755 	struct sidtab_entry *tentry;
756 	struct class_datum *tclass_datum;
757 	struct constraint_node *constraint;
758 	u16 tclass;
759 	int rc = 0;
760 
761 
762 	if (!selinux_initialized())
763 		return 0;
764 
765 	rcu_read_lock();
766 
767 	policy = rcu_dereference(selinux_state.policy);
768 	policydb = &policy->policydb;
769 	sidtab = policy->sidtab;
770 
771 	if (!user)
772 		tclass = unmap_class(&policy->map, orig_tclass);
773 	else
774 		tclass = orig_tclass;
775 
776 	if (!tclass || tclass > policydb->p_classes.nprim) {
777 		rc = -EINVAL;
778 		goto out;
779 	}
780 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
781 
782 	oentry = sidtab_search_entry(sidtab, oldsid);
783 	if (!oentry) {
784 		pr_err("SELinux: %s:  unrecognized SID %d\n",
785 			__func__, oldsid);
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 
790 	nentry = sidtab_search_entry(sidtab, newsid);
791 	if (!nentry) {
792 		pr_err("SELinux: %s:  unrecognized SID %d\n",
793 			__func__, newsid);
794 		rc = -EINVAL;
795 		goto out;
796 	}
797 
798 	tentry = sidtab_search_entry(sidtab, tasksid);
799 	if (!tentry) {
800 		pr_err("SELinux: %s:  unrecognized SID %d\n",
801 			__func__, tasksid);
802 		rc = -EINVAL;
803 		goto out;
804 	}
805 
806 	constraint = tclass_datum->validatetrans;
807 	while (constraint) {
808 		if (!constraint_expr_eval(policydb, &oentry->context,
809 					  &nentry->context, &tentry->context,
810 					  constraint->expr)) {
811 			if (user)
812 				rc = -EPERM;
813 			else
814 				rc = security_validtrans_handle_fail(policy,
815 								oentry,
816 								nentry,
817 								tentry,
818 								tclass);
819 			goto out;
820 		}
821 		constraint = constraint->next;
822 	}
823 
824 out:
825 	rcu_read_unlock();
826 	return rc;
827 }
828 
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)829 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
830 				      u16 tclass)
831 {
832 	return security_compute_validatetrans(oldsid, newsid, tasksid,
833 					      tclass, true);
834 }
835 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)836 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
837 				 u16 orig_tclass)
838 {
839 	return security_compute_validatetrans(oldsid, newsid, tasksid,
840 					      orig_tclass, false);
841 }
842 
843 /*
844  * security_bounded_transition - check whether the given
845  * transition is directed to bounded, or not.
846  * It returns 0, if @newsid is bounded by @oldsid.
847  * Otherwise, it returns error code.
848  *
849  * @oldsid : current security identifier
850  * @newsid : destinated security identifier
851  */
security_bounded_transition(u32 old_sid,u32 new_sid)852 int security_bounded_transition(u32 old_sid, u32 new_sid)
853 {
854 	struct selinux_policy *policy;
855 	struct policydb *policydb;
856 	struct sidtab *sidtab;
857 	struct sidtab_entry *old_entry, *new_entry;
858 	struct type_datum *type;
859 	u32 index;
860 	int rc;
861 
862 	if (!selinux_initialized())
863 		return 0;
864 
865 	rcu_read_lock();
866 	policy = rcu_dereference(selinux_state.policy);
867 	policydb = &policy->policydb;
868 	sidtab = policy->sidtab;
869 
870 	rc = -EINVAL;
871 	old_entry = sidtab_search_entry(sidtab, old_sid);
872 	if (!old_entry) {
873 		pr_err("SELinux: %s: unrecognized SID %u\n",
874 		       __func__, old_sid);
875 		goto out;
876 	}
877 
878 	rc = -EINVAL;
879 	new_entry = sidtab_search_entry(sidtab, new_sid);
880 	if (!new_entry) {
881 		pr_err("SELinux: %s: unrecognized SID %u\n",
882 		       __func__, new_sid);
883 		goto out;
884 	}
885 
886 	rc = 0;
887 	/* type/domain unchanged */
888 	if (old_entry->context.type == new_entry->context.type)
889 		goto out;
890 
891 	index = new_entry->context.type;
892 	while (true) {
893 		type = policydb->type_val_to_struct[index - 1];
894 		BUG_ON(!type);
895 
896 		/* not bounded anymore */
897 		rc = -EPERM;
898 		if (!type->bounds)
899 			break;
900 
901 		/* @newsid is bounded by @oldsid */
902 		rc = 0;
903 		if (type->bounds == old_entry->context.type)
904 			break;
905 
906 		index = type->bounds;
907 	}
908 
909 	if (rc) {
910 		char *old_name = NULL;
911 		char *new_name = NULL;
912 		u32 length;
913 
914 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
915 					    &old_name, &length) &&
916 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
917 					    &new_name, &length)) {
918 			audit_log(audit_context(),
919 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
920 				  "op=security_bounded_transition "
921 				  "seresult=denied "
922 				  "oldcontext=%s newcontext=%s",
923 				  old_name, new_name);
924 		}
925 		kfree(new_name);
926 		kfree(old_name);
927 	}
928 out:
929 	rcu_read_unlock();
930 
931 	return rc;
932 }
933 
avd_init(struct selinux_policy * policy,struct av_decision * avd)934 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
935 {
936 	avd->allowed = 0;
937 	avd->auditallow = 0;
938 	avd->auditdeny = 0xffffffff;
939 	if (policy)
940 		avd->seqno = policy->latest_granting;
941 	else
942 		avd->seqno = 0;
943 	avd->flags = 0;
944 }
945 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)946 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947 					struct avtab_node *node)
948 {
949 	unsigned int i;
950 
951 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952 		if (xpermd->driver != node->datum.u.xperms->driver)
953 			return;
954 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
956 					xpermd->driver))
957 			return;
958 	} else {
959 		pr_warn_once(
960 			"SELinux: unknown extended permission (%u) will be ignored\n",
961 			node->datum.u.xperms->specified);
962 		return;
963 	}
964 
965 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
966 		xpermd->used |= XPERMS_ALLOWED;
967 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
968 			memset(xpermd->allowed->p, 0xff,
969 					sizeof(xpermd->allowed->p));
970 		}
971 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
972 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
973 				xpermd->allowed->p[i] |=
974 					node->datum.u.xperms->perms.p[i];
975 		}
976 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
977 		xpermd->used |= XPERMS_AUDITALLOW;
978 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
979 			memset(xpermd->auditallow->p, 0xff,
980 					sizeof(xpermd->auditallow->p));
981 		}
982 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
983 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
984 				xpermd->auditallow->p[i] |=
985 					node->datum.u.xperms->perms.p[i];
986 		}
987 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
988 		xpermd->used |= XPERMS_DONTAUDIT;
989 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
990 			memset(xpermd->dontaudit->p, 0xff,
991 					sizeof(xpermd->dontaudit->p));
992 		}
993 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
994 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
995 				xpermd->dontaudit->p[i] |=
996 					node->datum.u.xperms->perms.p[i];
997 		}
998 	} else {
999 		pr_warn_once("SELinux: unknown specified key (%u)\n",
1000 			     node->key.specified);
1001 	}
1002 }
1003 
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1004 void security_compute_xperms_decision(u32 ssid,
1005 				      u32 tsid,
1006 				      u16 orig_tclass,
1007 				      u8 driver,
1008 				      struct extended_perms_decision *xpermd)
1009 {
1010 	struct selinux_policy *policy;
1011 	struct policydb *policydb;
1012 	struct sidtab *sidtab;
1013 	u16 tclass;
1014 	struct context *scontext, *tcontext;
1015 	struct avtab_key avkey;
1016 	struct avtab_node *node;
1017 	struct ebitmap *sattr, *tattr;
1018 	struct ebitmap_node *snode, *tnode;
1019 	unsigned int i, j;
1020 
1021 	xpermd->driver = driver;
1022 	xpermd->used = 0;
1023 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1024 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1025 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1026 
1027 	rcu_read_lock();
1028 	if (!selinux_initialized())
1029 		goto allow;
1030 
1031 	policy = rcu_dereference(selinux_state.policy);
1032 	policydb = &policy->policydb;
1033 	sidtab = policy->sidtab;
1034 
1035 	scontext = sidtab_search(sidtab, ssid);
1036 	if (!scontext) {
1037 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038 		       __func__, ssid);
1039 		goto out;
1040 	}
1041 
1042 	tcontext = sidtab_search(sidtab, tsid);
1043 	if (!tcontext) {
1044 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1045 		       __func__, tsid);
1046 		goto out;
1047 	}
1048 
1049 	tclass = unmap_class(&policy->map, orig_tclass);
1050 	if (unlikely(orig_tclass && !tclass)) {
1051 		if (policydb->allow_unknown)
1052 			goto allow;
1053 		goto out;
1054 	}
1055 
1056 
1057 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1058 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1059 		goto out;
1060 	}
1061 
1062 	avkey.target_class = tclass;
1063 	avkey.specified = AVTAB_XPERMS;
1064 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1065 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1066 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1067 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1068 			avkey.source_type = i + 1;
1069 			avkey.target_type = j + 1;
1070 			for (node = avtab_search_node(&policydb->te_avtab,
1071 						      &avkey);
1072 			     node;
1073 			     node = avtab_search_node_next(node, avkey.specified))
1074 				services_compute_xperms_decision(xpermd, node);
1075 
1076 			cond_compute_xperms(&policydb->te_cond_avtab,
1077 						&avkey, xpermd);
1078 		}
1079 	}
1080 out:
1081 	rcu_read_unlock();
1082 	return;
1083 allow:
1084 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1085 	goto out;
1086 }
1087 
1088 /**
1089  * security_compute_av - Compute access vector decisions.
1090  * @ssid: source security identifier
1091  * @tsid: target security identifier
1092  * @orig_tclass: target security class
1093  * @avd: access vector decisions
1094  * @xperms: extended permissions
1095  *
1096  * Compute a set of access vector decisions based on the
1097  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1098  */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1099 void security_compute_av(u32 ssid,
1100 			 u32 tsid,
1101 			 u16 orig_tclass,
1102 			 struct av_decision *avd,
1103 			 struct extended_perms *xperms)
1104 {
1105 	struct selinux_policy *policy;
1106 	struct policydb *policydb;
1107 	struct sidtab *sidtab;
1108 	u16 tclass;
1109 	struct context *scontext = NULL, *tcontext = NULL;
1110 
1111 	rcu_read_lock();
1112 	policy = rcu_dereference(selinux_state.policy);
1113 	avd_init(policy, avd);
1114 	xperms->len = 0;
1115 	if (!selinux_initialized())
1116 		goto allow;
1117 
1118 	policydb = &policy->policydb;
1119 	sidtab = policy->sidtab;
1120 
1121 	scontext = sidtab_search(sidtab, ssid);
1122 	if (!scontext) {
1123 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1124 		       __func__, ssid);
1125 		goto out;
1126 	}
1127 
1128 	/* permissive domain? */
1129 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1130 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1131 
1132 	tcontext = sidtab_search(sidtab, tsid);
1133 	if (!tcontext) {
1134 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1135 		       __func__, tsid);
1136 		goto out;
1137 	}
1138 
1139 	tclass = unmap_class(&policy->map, orig_tclass);
1140 	if (unlikely(orig_tclass && !tclass)) {
1141 		if (policydb->allow_unknown)
1142 			goto allow;
1143 		goto out;
1144 	}
1145 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1146 				  xperms);
1147 	map_decision(&policy->map, orig_tclass, avd,
1148 		     policydb->allow_unknown);
1149 out:
1150 	rcu_read_unlock();
1151 	return;
1152 allow:
1153 	avd->allowed = 0xffffffff;
1154 	goto out;
1155 }
1156 
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1157 void security_compute_av_user(u32 ssid,
1158 			      u32 tsid,
1159 			      u16 tclass,
1160 			      struct av_decision *avd)
1161 {
1162 	struct selinux_policy *policy;
1163 	struct policydb *policydb;
1164 	struct sidtab *sidtab;
1165 	struct context *scontext = NULL, *tcontext = NULL;
1166 
1167 	rcu_read_lock();
1168 	policy = rcu_dereference(selinux_state.policy);
1169 	avd_init(policy, avd);
1170 	if (!selinux_initialized())
1171 		goto allow;
1172 
1173 	policydb = &policy->policydb;
1174 	sidtab = policy->sidtab;
1175 
1176 	scontext = sidtab_search(sidtab, ssid);
1177 	if (!scontext) {
1178 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1179 		       __func__, ssid);
1180 		goto out;
1181 	}
1182 
1183 	/* permissive domain? */
1184 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1185 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1186 
1187 	tcontext = sidtab_search(sidtab, tsid);
1188 	if (!tcontext) {
1189 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1190 		       __func__, tsid);
1191 		goto out;
1192 	}
1193 
1194 	if (unlikely(!tclass)) {
1195 		if (policydb->allow_unknown)
1196 			goto allow;
1197 		goto out;
1198 	}
1199 
1200 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1201 				  NULL);
1202  out:
1203 	rcu_read_unlock();
1204 	return;
1205 allow:
1206 	avd->allowed = 0xffffffff;
1207 	goto out;
1208 }
1209 
1210 /*
1211  * Write the security context string representation of
1212  * the context structure `context' into a dynamically
1213  * allocated string of the correct size.  Set `*scontext'
1214  * to point to this string and set `*scontext_len' to
1215  * the length of the string.
1216  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1217 static int context_struct_to_string(struct policydb *p,
1218 				    struct context *context,
1219 				    char **scontext, u32 *scontext_len)
1220 {
1221 	char *scontextp;
1222 
1223 	if (scontext)
1224 		*scontext = NULL;
1225 	*scontext_len = 0;
1226 
1227 	if (context->len) {
1228 		*scontext_len = context->len;
1229 		if (scontext) {
1230 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1231 			if (!(*scontext))
1232 				return -ENOMEM;
1233 		}
1234 		return 0;
1235 	}
1236 
1237 	/* Compute the size of the context. */
1238 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1239 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1240 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1241 	*scontext_len += mls_compute_context_len(p, context);
1242 
1243 	if (!scontext)
1244 		return 0;
1245 
1246 	/* Allocate space for the context; caller must free this space. */
1247 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1248 	if (!scontextp)
1249 		return -ENOMEM;
1250 	*scontext = scontextp;
1251 
1252 	/*
1253 	 * Copy the user name, role name and type name into the context.
1254 	 */
1255 	scontextp += sprintf(scontextp, "%s:%s:%s",
1256 		sym_name(p, SYM_USERS, context->user - 1),
1257 		sym_name(p, SYM_ROLES, context->role - 1),
1258 		sym_name(p, SYM_TYPES, context->type - 1));
1259 
1260 	mls_sid_to_context(p, context, &scontextp);
1261 
1262 	*scontextp = 0;
1263 
1264 	return 0;
1265 }
1266 
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1267 static int sidtab_entry_to_string(struct policydb *p,
1268 				  struct sidtab *sidtab,
1269 				  struct sidtab_entry *entry,
1270 				  char **scontext, u32 *scontext_len)
1271 {
1272 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1273 
1274 	if (rc != -ENOENT)
1275 		return rc;
1276 
1277 	rc = context_struct_to_string(p, &entry->context, scontext,
1278 				      scontext_len);
1279 	if (!rc && scontext)
1280 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1281 	return rc;
1282 }
1283 
1284 #include "initial_sid_to_string.h"
1285 
security_sidtab_hash_stats(char * page)1286 int security_sidtab_hash_stats(char *page)
1287 {
1288 	struct selinux_policy *policy;
1289 	int rc;
1290 
1291 	if (!selinux_initialized()) {
1292 		pr_err("SELinux: %s:  called before initial load_policy\n",
1293 		       __func__);
1294 		return -EINVAL;
1295 	}
1296 
1297 	rcu_read_lock();
1298 	policy = rcu_dereference(selinux_state.policy);
1299 	rc = sidtab_hash_stats(policy->sidtab, page);
1300 	rcu_read_unlock();
1301 
1302 	return rc;
1303 }
1304 
security_get_initial_sid_context(u32 sid)1305 const char *security_get_initial_sid_context(u32 sid)
1306 {
1307 	if (unlikely(sid > SECINITSID_NUM))
1308 		return NULL;
1309 	return initial_sid_to_string[sid];
1310 }
1311 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1312 static int security_sid_to_context_core(u32 sid, char **scontext,
1313 					u32 *scontext_len, int force,
1314 					int only_invalid)
1315 {
1316 	struct selinux_policy *policy;
1317 	struct policydb *policydb;
1318 	struct sidtab *sidtab;
1319 	struct sidtab_entry *entry;
1320 	int rc = 0;
1321 
1322 	if (scontext)
1323 		*scontext = NULL;
1324 	*scontext_len  = 0;
1325 
1326 	if (!selinux_initialized()) {
1327 		if (sid <= SECINITSID_NUM) {
1328 			char *scontextp;
1329 			const char *s = initial_sid_to_string[sid];
1330 
1331 			if (!s)
1332 				return -EINVAL;
1333 			*scontext_len = strlen(s) + 1;
1334 			if (!scontext)
1335 				return 0;
1336 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1337 			if (!scontextp)
1338 				return -ENOMEM;
1339 			*scontext = scontextp;
1340 			return 0;
1341 		}
1342 		pr_err("SELinux: %s:  called before initial "
1343 		       "load_policy on unknown SID %d\n", __func__, sid);
1344 		return -EINVAL;
1345 	}
1346 	rcu_read_lock();
1347 	policy = rcu_dereference(selinux_state.policy);
1348 	policydb = &policy->policydb;
1349 	sidtab = policy->sidtab;
1350 
1351 	if (force)
1352 		entry = sidtab_search_entry_force(sidtab, sid);
1353 	else
1354 		entry = sidtab_search_entry(sidtab, sid);
1355 	if (!entry) {
1356 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1357 			__func__, sid);
1358 		rc = -EINVAL;
1359 		goto out_unlock;
1360 	}
1361 	if (only_invalid && !entry->context.len)
1362 		goto out_unlock;
1363 
1364 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1365 				    scontext_len);
1366 
1367 out_unlock:
1368 	rcu_read_unlock();
1369 	return rc;
1370 
1371 }
1372 
1373 /**
1374  * security_sid_to_context - Obtain a context for a given SID.
1375  * @sid: security identifier, SID
1376  * @scontext: security context
1377  * @scontext_len: length in bytes
1378  *
1379  * Write the string representation of the context associated with @sid
1380  * into a dynamically allocated string of the correct size.  Set @scontext
1381  * to point to this string and set @scontext_len to the length of the string.
1382  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1383 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1384 {
1385 	return security_sid_to_context_core(sid, scontext,
1386 					    scontext_len, 0, 0);
1387 }
1388 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1389 int security_sid_to_context_force(u32 sid,
1390 				  char **scontext, u32 *scontext_len)
1391 {
1392 	return security_sid_to_context_core(sid, scontext,
1393 					    scontext_len, 1, 0);
1394 }
1395 
1396 /**
1397  * security_sid_to_context_inval - Obtain a context for a given SID if it
1398  *                                 is invalid.
1399  * @sid: security identifier, SID
1400  * @scontext: security context
1401  * @scontext_len: length in bytes
1402  *
1403  * Write the string representation of the context associated with @sid
1404  * into a dynamically allocated string of the correct size, but only if the
1405  * context is invalid in the current policy.  Set @scontext to point to
1406  * this string (or NULL if the context is valid) and set @scontext_len to
1407  * the length of the string (or 0 if the context is valid).
1408  */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1409 int security_sid_to_context_inval(u32 sid,
1410 				  char **scontext, u32 *scontext_len)
1411 {
1412 	return security_sid_to_context_core(sid, scontext,
1413 					    scontext_len, 1, 1);
1414 }
1415 
1416 /*
1417  * Caveat:  Mutates scontext.
1418  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1419 static int string_to_context_struct(struct policydb *pol,
1420 				    struct sidtab *sidtabp,
1421 				    char *scontext,
1422 				    struct context *ctx,
1423 				    u32 def_sid)
1424 {
1425 	struct role_datum *role;
1426 	struct type_datum *typdatum;
1427 	struct user_datum *usrdatum;
1428 	char *scontextp, *p, oldc;
1429 	int rc = 0;
1430 
1431 	context_init(ctx);
1432 
1433 	/* Parse the security context. */
1434 
1435 	rc = -EINVAL;
1436 	scontextp = scontext;
1437 
1438 	/* Extract the user. */
1439 	p = scontextp;
1440 	while (*p && *p != ':')
1441 		p++;
1442 
1443 	if (*p == 0)
1444 		goto out;
1445 
1446 	*p++ = 0;
1447 
1448 	usrdatum = symtab_search(&pol->p_users, scontextp);
1449 	if (!usrdatum)
1450 		goto out;
1451 
1452 	ctx->user = usrdatum->value;
1453 
1454 	/* Extract role. */
1455 	scontextp = p;
1456 	while (*p && *p != ':')
1457 		p++;
1458 
1459 	if (*p == 0)
1460 		goto out;
1461 
1462 	*p++ = 0;
1463 
1464 	role = symtab_search(&pol->p_roles, scontextp);
1465 	if (!role)
1466 		goto out;
1467 	ctx->role = role->value;
1468 
1469 	/* Extract type. */
1470 	scontextp = p;
1471 	while (*p && *p != ':')
1472 		p++;
1473 	oldc = *p;
1474 	*p++ = 0;
1475 
1476 	typdatum = symtab_search(&pol->p_types, scontextp);
1477 	if (!typdatum || typdatum->attribute)
1478 		goto out;
1479 
1480 	ctx->type = typdatum->value;
1481 
1482 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1483 	if (rc)
1484 		goto out;
1485 
1486 	/* Check the validity of the new context. */
1487 	rc = -EINVAL;
1488 	if (!policydb_context_isvalid(pol, ctx))
1489 		goto out;
1490 	rc = 0;
1491 out:
1492 	if (rc)
1493 		context_destroy(ctx);
1494 	return rc;
1495 }
1496 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1497 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1498 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1499 					int force)
1500 {
1501 	struct selinux_policy *policy;
1502 	struct policydb *policydb;
1503 	struct sidtab *sidtab;
1504 	char *scontext2, *str = NULL;
1505 	struct context context;
1506 	int rc = 0;
1507 
1508 	/* An empty security context is never valid. */
1509 	if (!scontext_len)
1510 		return -EINVAL;
1511 
1512 	/* Copy the string to allow changes and ensure a NUL terminator */
1513 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1514 	if (!scontext2)
1515 		return -ENOMEM;
1516 
1517 	if (!selinux_initialized()) {
1518 		u32 i;
1519 
1520 		for (i = 1; i < SECINITSID_NUM; i++) {
1521 			const char *s = initial_sid_to_string[i];
1522 
1523 			if (s && !strcmp(s, scontext2)) {
1524 				*sid = i;
1525 				goto out;
1526 			}
1527 		}
1528 		*sid = SECINITSID_KERNEL;
1529 		goto out;
1530 	}
1531 	*sid = SECSID_NULL;
1532 
1533 	if (force) {
1534 		/* Save another copy for storing in uninterpreted form */
1535 		rc = -ENOMEM;
1536 		str = kstrdup(scontext2, gfp_flags);
1537 		if (!str)
1538 			goto out;
1539 	}
1540 retry:
1541 	rcu_read_lock();
1542 	policy = rcu_dereference(selinux_state.policy);
1543 	policydb = &policy->policydb;
1544 	sidtab = policy->sidtab;
1545 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1546 				      &context, def_sid);
1547 	if (rc == -EINVAL && force) {
1548 		context.str = str;
1549 		context.len = strlen(str) + 1;
1550 		str = NULL;
1551 	} else if (rc)
1552 		goto out_unlock;
1553 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1554 	if (rc == -ESTALE) {
1555 		rcu_read_unlock();
1556 		if (context.str) {
1557 			str = context.str;
1558 			context.str = NULL;
1559 		}
1560 		context_destroy(&context);
1561 		goto retry;
1562 	}
1563 	context_destroy(&context);
1564 out_unlock:
1565 	rcu_read_unlock();
1566 out:
1567 	kfree(scontext2);
1568 	kfree(str);
1569 	return rc;
1570 }
1571 
1572 /**
1573  * security_context_to_sid - Obtain a SID for a given security context.
1574  * @scontext: security context
1575  * @scontext_len: length in bytes
1576  * @sid: security identifier, SID
1577  * @gfp: context for the allocation
1578  *
1579  * Obtains a SID associated with the security context that
1580  * has the string representation specified by @scontext.
1581  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1582  * memory is available, or 0 on success.
1583  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1584 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1585 			    gfp_t gfp)
1586 {
1587 	return security_context_to_sid_core(scontext, scontext_len,
1588 					    sid, SECSID_NULL, gfp, 0);
1589 }
1590 
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1591 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1592 {
1593 	return security_context_to_sid(scontext, strlen(scontext),
1594 				       sid, gfp);
1595 }
1596 
1597 /**
1598  * security_context_to_sid_default - Obtain a SID for a given security context,
1599  * falling back to specified default if needed.
1600  *
1601  * @scontext: security context
1602  * @scontext_len: length in bytes
1603  * @sid: security identifier, SID
1604  * @def_sid: default SID to assign on error
1605  * @gfp_flags: the allocator get-free-page (GFP) flags
1606  *
1607  * Obtains a SID associated with the security context that
1608  * has the string representation specified by @scontext.
1609  * The default SID is passed to the MLS layer to be used to allow
1610  * kernel labeling of the MLS field if the MLS field is not present
1611  * (for upgrading to MLS without full relabel).
1612  * Implicitly forces adding of the context even if it cannot be mapped yet.
1613  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1614  * memory is available, or 0 on success.
1615  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1616 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1617 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1618 {
1619 	return security_context_to_sid_core(scontext, scontext_len,
1620 					    sid, def_sid, gfp_flags, 1);
1621 }
1622 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1623 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1624 				  u32 *sid)
1625 {
1626 	return security_context_to_sid_core(scontext, scontext_len,
1627 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1628 }
1629 
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1630 static int compute_sid_handle_invalid_context(
1631 	struct selinux_policy *policy,
1632 	struct sidtab_entry *sentry,
1633 	struct sidtab_entry *tentry,
1634 	u16 tclass,
1635 	struct context *newcontext)
1636 {
1637 	struct policydb *policydb = &policy->policydb;
1638 	struct sidtab *sidtab = policy->sidtab;
1639 	char *s = NULL, *t = NULL, *n = NULL;
1640 	u32 slen, tlen, nlen;
1641 	struct audit_buffer *ab;
1642 
1643 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1644 		goto out;
1645 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1646 		goto out;
1647 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1648 		goto out;
1649 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1650 	if (!ab)
1651 		goto out;
1652 	audit_log_format(ab,
1653 			 "op=security_compute_sid invalid_context=");
1654 	/* no need to record the NUL with untrusted strings */
1655 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1656 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1657 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1658 	audit_log_end(ab);
1659 out:
1660 	kfree(s);
1661 	kfree(t);
1662 	kfree(n);
1663 	if (!enforcing_enabled())
1664 		return 0;
1665 	return -EACCES;
1666 }
1667 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1668 static void filename_compute_type(struct policydb *policydb,
1669 				  struct context *newcontext,
1670 				  u32 stype, u32 ttype, u16 tclass,
1671 				  const char *objname)
1672 {
1673 	struct filename_trans_key ft;
1674 	struct filename_trans_datum *datum;
1675 
1676 	/*
1677 	 * Most filename trans rules are going to live in specific directories
1678 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1679 	 * if the ttype does not contain any rules.
1680 	 */
1681 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1682 		return;
1683 
1684 	ft.ttype = ttype;
1685 	ft.tclass = tclass;
1686 	ft.name = objname;
1687 
1688 	datum = policydb_filenametr_search(policydb, &ft);
1689 	while (datum) {
1690 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1691 			newcontext->type = datum->otype;
1692 			return;
1693 		}
1694 		datum = datum->next;
1695 	}
1696 }
1697 
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1698 static int security_compute_sid(u32 ssid,
1699 				u32 tsid,
1700 				u16 orig_tclass,
1701 				u16 specified,
1702 				const char *objname,
1703 				u32 *out_sid,
1704 				bool kern)
1705 {
1706 	struct selinux_policy *policy;
1707 	struct policydb *policydb;
1708 	struct sidtab *sidtab;
1709 	struct class_datum *cladatum;
1710 	struct context *scontext, *tcontext, newcontext;
1711 	struct sidtab_entry *sentry, *tentry;
1712 	struct avtab_key avkey;
1713 	struct avtab_node *avnode, *node;
1714 	u16 tclass;
1715 	int rc = 0;
1716 	bool sock;
1717 
1718 	if (!selinux_initialized()) {
1719 		switch (orig_tclass) {
1720 		case SECCLASS_PROCESS: /* kernel value */
1721 			*out_sid = ssid;
1722 			break;
1723 		default:
1724 			*out_sid = tsid;
1725 			break;
1726 		}
1727 		goto out;
1728 	}
1729 
1730 retry:
1731 	cladatum = NULL;
1732 	context_init(&newcontext);
1733 
1734 	rcu_read_lock();
1735 
1736 	policy = rcu_dereference(selinux_state.policy);
1737 
1738 	if (kern) {
1739 		tclass = unmap_class(&policy->map, orig_tclass);
1740 		sock = security_is_socket_class(orig_tclass);
1741 	} else {
1742 		tclass = orig_tclass;
1743 		sock = security_is_socket_class(map_class(&policy->map,
1744 							  tclass));
1745 	}
1746 
1747 	policydb = &policy->policydb;
1748 	sidtab = policy->sidtab;
1749 
1750 	sentry = sidtab_search_entry(sidtab, ssid);
1751 	if (!sentry) {
1752 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1753 		       __func__, ssid);
1754 		rc = -EINVAL;
1755 		goto out_unlock;
1756 	}
1757 	tentry = sidtab_search_entry(sidtab, tsid);
1758 	if (!tentry) {
1759 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1760 		       __func__, tsid);
1761 		rc = -EINVAL;
1762 		goto out_unlock;
1763 	}
1764 
1765 	scontext = &sentry->context;
1766 	tcontext = &tentry->context;
1767 
1768 	if (tclass && tclass <= policydb->p_classes.nprim)
1769 		cladatum = policydb->class_val_to_struct[tclass - 1];
1770 
1771 	/* Set the user identity. */
1772 	switch (specified) {
1773 	case AVTAB_TRANSITION:
1774 	case AVTAB_CHANGE:
1775 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1776 			newcontext.user = tcontext->user;
1777 		} else {
1778 			/* notice this gets both DEFAULT_SOURCE and unset */
1779 			/* Use the process user identity. */
1780 			newcontext.user = scontext->user;
1781 		}
1782 		break;
1783 	case AVTAB_MEMBER:
1784 		/* Use the related object owner. */
1785 		newcontext.user = tcontext->user;
1786 		break;
1787 	}
1788 
1789 	/* Set the role to default values. */
1790 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1791 		newcontext.role = scontext->role;
1792 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1793 		newcontext.role = tcontext->role;
1794 	} else {
1795 		if ((tclass == policydb->process_class) || sock)
1796 			newcontext.role = scontext->role;
1797 		else
1798 			newcontext.role = OBJECT_R_VAL;
1799 	}
1800 
1801 	/* Set the type to default values. */
1802 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1803 		newcontext.type = scontext->type;
1804 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1805 		newcontext.type = tcontext->type;
1806 	} else {
1807 		if ((tclass == policydb->process_class) || sock) {
1808 			/* Use the type of process. */
1809 			newcontext.type = scontext->type;
1810 		} else {
1811 			/* Use the type of the related object. */
1812 			newcontext.type = tcontext->type;
1813 		}
1814 	}
1815 
1816 	/* Look for a type transition/member/change rule. */
1817 	avkey.source_type = scontext->type;
1818 	avkey.target_type = tcontext->type;
1819 	avkey.target_class = tclass;
1820 	avkey.specified = specified;
1821 	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1822 
1823 	/* If no permanent rule, also check for enabled conditional rules */
1824 	if (!avnode) {
1825 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1826 		for (; node; node = avtab_search_node_next(node, specified)) {
1827 			if (node->key.specified & AVTAB_ENABLED) {
1828 				avnode = node;
1829 				break;
1830 			}
1831 		}
1832 	}
1833 
1834 	if (avnode) {
1835 		/* Use the type from the type transition/member/change rule. */
1836 		newcontext.type = avnode->datum.u.data;
1837 	}
1838 
1839 	/* if we have a objname this is a file trans check so check those rules */
1840 	if (objname)
1841 		filename_compute_type(policydb, &newcontext, scontext->type,
1842 				      tcontext->type, tclass, objname);
1843 
1844 	/* Check for class-specific changes. */
1845 	if (specified & AVTAB_TRANSITION) {
1846 		/* Look for a role transition rule. */
1847 		struct role_trans_datum *rtd;
1848 		struct role_trans_key rtk = {
1849 			.role = scontext->role,
1850 			.type = tcontext->type,
1851 			.tclass = tclass,
1852 		};
1853 
1854 		rtd = policydb_roletr_search(policydb, &rtk);
1855 		if (rtd)
1856 			newcontext.role = rtd->new_role;
1857 	}
1858 
1859 	/* Set the MLS attributes.
1860 	   This is done last because it may allocate memory. */
1861 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1862 			     &newcontext, sock);
1863 	if (rc)
1864 		goto out_unlock;
1865 
1866 	/* Check the validity of the context. */
1867 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1868 		rc = compute_sid_handle_invalid_context(policy, sentry,
1869 							tentry, tclass,
1870 							&newcontext);
1871 		if (rc)
1872 			goto out_unlock;
1873 	}
1874 	/* Obtain the sid for the context. */
1875 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1876 	if (rc == -ESTALE) {
1877 		rcu_read_unlock();
1878 		context_destroy(&newcontext);
1879 		goto retry;
1880 	}
1881 out_unlock:
1882 	rcu_read_unlock();
1883 	context_destroy(&newcontext);
1884 out:
1885 	return rc;
1886 }
1887 
1888 /**
1889  * security_transition_sid - Compute the SID for a new subject/object.
1890  * @ssid: source security identifier
1891  * @tsid: target security identifier
1892  * @tclass: target security class
1893  * @qstr: object name
1894  * @out_sid: security identifier for new subject/object
1895  *
1896  * Compute a SID to use for labeling a new subject or object in the
1897  * class @tclass based on a SID pair (@ssid, @tsid).
1898  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1899  * if insufficient memory is available, or %0 if the new SID was
1900  * computed successfully.
1901  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1902 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1903 			    const struct qstr *qstr, u32 *out_sid)
1904 {
1905 	return security_compute_sid(ssid, tsid, tclass,
1906 				    AVTAB_TRANSITION,
1907 				    qstr ? qstr->name : NULL, out_sid, true);
1908 }
1909 
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1910 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1911 				 const char *objname, u32 *out_sid)
1912 {
1913 	return security_compute_sid(ssid, tsid, tclass,
1914 				    AVTAB_TRANSITION,
1915 				    objname, out_sid, false);
1916 }
1917 
1918 /**
1919  * security_member_sid - Compute the SID for member selection.
1920  * @ssid: source security identifier
1921  * @tsid: target security identifier
1922  * @tclass: target security class
1923  * @out_sid: security identifier for selected member
1924  *
1925  * Compute a SID to use when selecting a member of a polyinstantiated
1926  * object of class @tclass based on a SID pair (@ssid, @tsid).
1927  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1928  * if insufficient memory is available, or %0 if the SID was
1929  * computed successfully.
1930  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1931 int security_member_sid(u32 ssid,
1932 			u32 tsid,
1933 			u16 tclass,
1934 			u32 *out_sid)
1935 {
1936 	return security_compute_sid(ssid, tsid, tclass,
1937 				    AVTAB_MEMBER, NULL,
1938 				    out_sid, false);
1939 }
1940 
1941 /**
1942  * security_change_sid - Compute the SID for object relabeling.
1943  * @ssid: source security identifier
1944  * @tsid: target security identifier
1945  * @tclass: target security class
1946  * @out_sid: security identifier for selected member
1947  *
1948  * Compute a SID to use for relabeling an object of class @tclass
1949  * based on a SID pair (@ssid, @tsid).
1950  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1951  * if insufficient memory is available, or %0 if the SID was
1952  * computed successfully.
1953  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1954 int security_change_sid(u32 ssid,
1955 			u32 tsid,
1956 			u16 tclass,
1957 			u32 *out_sid)
1958 {
1959 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1960 				    out_sid, false);
1961 }
1962 
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)1963 static inline int convert_context_handle_invalid_context(
1964 	struct policydb *policydb,
1965 	struct context *context)
1966 {
1967 	char *s;
1968 	u32 len;
1969 
1970 	if (enforcing_enabled())
1971 		return -EINVAL;
1972 
1973 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1974 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1975 			s);
1976 		kfree(s);
1977 	}
1978 	return 0;
1979 }
1980 
1981 /**
1982  * services_convert_context - Convert a security context across policies.
1983  * @args: populated convert_context_args struct
1984  * @oldc: original context
1985  * @newc: converted context
1986  * @gfp_flags: allocation flags
1987  *
1988  * Convert the values in the security context structure @oldc from the values
1989  * specified in the policy @args->oldp to the values specified in the policy
1990  * @args->newp, storing the new context in @newc, and verifying that the
1991  * context is valid under the new policy.
1992  */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)1993 int services_convert_context(struct convert_context_args *args,
1994 			     struct context *oldc, struct context *newc,
1995 			     gfp_t gfp_flags)
1996 {
1997 	struct ocontext *oc;
1998 	struct role_datum *role;
1999 	struct type_datum *typdatum;
2000 	struct user_datum *usrdatum;
2001 	char *s;
2002 	u32 len;
2003 	int rc;
2004 
2005 	if (oldc->str) {
2006 		s = kstrdup(oldc->str, gfp_flags);
2007 		if (!s)
2008 			return -ENOMEM;
2009 
2010 		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2011 		if (rc == -EINVAL) {
2012 			/*
2013 			 * Retain string representation for later mapping.
2014 			 *
2015 			 * IMPORTANT: We need to copy the contents of oldc->str
2016 			 * back into s again because string_to_context_struct()
2017 			 * may have garbled it.
2018 			 */
2019 			memcpy(s, oldc->str, oldc->len);
2020 			context_init(newc);
2021 			newc->str = s;
2022 			newc->len = oldc->len;
2023 			return 0;
2024 		}
2025 		kfree(s);
2026 		if (rc) {
2027 			/* Other error condition, e.g. ENOMEM. */
2028 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2029 			       oldc->str, -rc);
2030 			return rc;
2031 		}
2032 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2033 			oldc->str);
2034 		return 0;
2035 	}
2036 
2037 	context_init(newc);
2038 
2039 	/* Convert the user. */
2040 	usrdatum = symtab_search(&args->newp->p_users,
2041 				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2042 	if (!usrdatum)
2043 		goto bad;
2044 	newc->user = usrdatum->value;
2045 
2046 	/* Convert the role. */
2047 	role = symtab_search(&args->newp->p_roles,
2048 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2049 	if (!role)
2050 		goto bad;
2051 	newc->role = role->value;
2052 
2053 	/* Convert the type. */
2054 	typdatum = symtab_search(&args->newp->p_types,
2055 				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2056 	if (!typdatum)
2057 		goto bad;
2058 	newc->type = typdatum->value;
2059 
2060 	/* Convert the MLS fields if dealing with MLS policies */
2061 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2062 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2063 		if (rc)
2064 			goto bad;
2065 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2066 		/*
2067 		 * Switching between non-MLS and MLS policy:
2068 		 * ensure that the MLS fields of the context for all
2069 		 * existing entries in the sidtab are filled in with a
2070 		 * suitable default value, likely taken from one of the
2071 		 * initial SIDs.
2072 		 */
2073 		oc = args->newp->ocontexts[OCON_ISID];
2074 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2075 			oc = oc->next;
2076 		if (!oc) {
2077 			pr_err("SELinux:  unable to look up"
2078 				" the initial SIDs list\n");
2079 			goto bad;
2080 		}
2081 		rc = mls_range_set(newc, &oc->context[0].range);
2082 		if (rc)
2083 			goto bad;
2084 	}
2085 
2086 	/* Check the validity of the new context. */
2087 	if (!policydb_context_isvalid(args->newp, newc)) {
2088 		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2089 		if (rc)
2090 			goto bad;
2091 	}
2092 
2093 	return 0;
2094 bad:
2095 	/* Map old representation to string and save it. */
2096 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2097 	if (rc)
2098 		return rc;
2099 	context_destroy(newc);
2100 	newc->str = s;
2101 	newc->len = len;
2102 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2103 		newc->str);
2104 	return 0;
2105 }
2106 
security_load_policycaps(struct selinux_policy * policy)2107 static void security_load_policycaps(struct selinux_policy *policy)
2108 {
2109 	struct policydb *p;
2110 	unsigned int i;
2111 	struct ebitmap_node *node;
2112 
2113 	p = &policy->policydb;
2114 
2115 	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2116 		WRITE_ONCE(selinux_state.policycap[i],
2117 			ebitmap_get_bit(&p->policycaps, i));
2118 
2119 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2120 		pr_info("SELinux:  policy capability %s=%d\n",
2121 			selinux_policycap_names[i],
2122 			ebitmap_get_bit(&p->policycaps, i));
2123 
2124 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2125 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2126 			pr_info("SELinux:  unknown policy capability %u\n",
2127 				i);
2128 	}
2129 }
2130 
2131 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2132 				struct selinux_policy *newpolicy);
2133 
selinux_policy_free(struct selinux_policy * policy)2134 static void selinux_policy_free(struct selinux_policy *policy)
2135 {
2136 	if (!policy)
2137 		return;
2138 
2139 	sidtab_destroy(policy->sidtab);
2140 	kfree(policy->map.mapping);
2141 	policydb_destroy(&policy->policydb);
2142 	kfree(policy->sidtab);
2143 	kfree(policy);
2144 }
2145 
selinux_policy_cond_free(struct selinux_policy * policy)2146 static void selinux_policy_cond_free(struct selinux_policy *policy)
2147 {
2148 	cond_policydb_destroy_dup(&policy->policydb);
2149 	kfree(policy);
2150 }
2151 
selinux_policy_cancel(struct selinux_load_state * load_state)2152 void selinux_policy_cancel(struct selinux_load_state *load_state)
2153 {
2154 	struct selinux_state *state = &selinux_state;
2155 	struct selinux_policy *oldpolicy;
2156 
2157 	oldpolicy = rcu_dereference_protected(state->policy,
2158 					lockdep_is_held(&state->policy_mutex));
2159 
2160 	sidtab_cancel_convert(oldpolicy->sidtab);
2161 	selinux_policy_free(load_state->policy);
2162 	kfree(load_state->convert_data);
2163 }
2164 
selinux_notify_policy_change(u32 seqno)2165 static void selinux_notify_policy_change(u32 seqno)
2166 {
2167 	/* Flush external caches and notify userspace of policy load */
2168 	avc_ss_reset(seqno);
2169 	selnl_notify_policyload(seqno);
2170 	selinux_status_update_policyload(seqno);
2171 	selinux_netlbl_cache_invalidate();
2172 	selinux_xfrm_notify_policyload();
2173 	selinux_ima_measure_state_locked();
2174 }
2175 
selinux_policy_commit(struct selinux_load_state * load_state)2176 void selinux_policy_commit(struct selinux_load_state *load_state)
2177 {
2178 	struct selinux_state *state = &selinux_state;
2179 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2180 	unsigned long flags;
2181 	u32 seqno;
2182 
2183 	oldpolicy = rcu_dereference_protected(state->policy,
2184 					lockdep_is_held(&state->policy_mutex));
2185 
2186 	/* If switching between different policy types, log MLS status */
2187 	if (oldpolicy) {
2188 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2189 			pr_info("SELinux: Disabling MLS support...\n");
2190 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2191 			pr_info("SELinux: Enabling MLS support...\n");
2192 	}
2193 
2194 	/* Set latest granting seqno for new policy. */
2195 	if (oldpolicy)
2196 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2197 	else
2198 		newpolicy->latest_granting = 1;
2199 	seqno = newpolicy->latest_granting;
2200 
2201 	/* Install the new policy. */
2202 	if (oldpolicy) {
2203 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2204 		rcu_assign_pointer(state->policy, newpolicy);
2205 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2206 	} else {
2207 		rcu_assign_pointer(state->policy, newpolicy);
2208 	}
2209 
2210 	/* Load the policycaps from the new policy */
2211 	security_load_policycaps(newpolicy);
2212 
2213 	if (!selinux_initialized()) {
2214 		/*
2215 		 * After first policy load, the security server is
2216 		 * marked as initialized and ready to handle requests and
2217 		 * any objects created prior to policy load are then labeled.
2218 		 */
2219 		selinux_mark_initialized();
2220 		selinux_complete_init();
2221 	}
2222 
2223 	/* Free the old policy */
2224 	synchronize_rcu();
2225 	selinux_policy_free(oldpolicy);
2226 	kfree(load_state->convert_data);
2227 
2228 	/* Notify others of the policy change */
2229 	selinux_notify_policy_change(seqno);
2230 }
2231 
2232 /**
2233  * security_load_policy - Load a security policy configuration.
2234  * @data: binary policy data
2235  * @len: length of data in bytes
2236  * @load_state: policy load state
2237  *
2238  * Load a new set of security policy configuration data,
2239  * validate it and convert the SID table as necessary.
2240  * This function will flush the access vector cache after
2241  * loading the new policy.
2242  */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2243 int security_load_policy(void *data, size_t len,
2244 			 struct selinux_load_state *load_state)
2245 {
2246 	struct selinux_state *state = &selinux_state;
2247 	struct selinux_policy *newpolicy, *oldpolicy;
2248 	struct selinux_policy_convert_data *convert_data;
2249 	int rc = 0;
2250 	struct policy_file file = { data, len }, *fp = &file;
2251 
2252 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2253 	if (!newpolicy)
2254 		return -ENOMEM;
2255 
2256 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2257 	if (!newpolicy->sidtab) {
2258 		rc = -ENOMEM;
2259 		goto err_policy;
2260 	}
2261 
2262 	rc = policydb_read(&newpolicy->policydb, fp);
2263 	if (rc)
2264 		goto err_sidtab;
2265 
2266 	newpolicy->policydb.len = len;
2267 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2268 				&newpolicy->map);
2269 	if (rc)
2270 		goto err_policydb;
2271 
2272 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2273 	if (rc) {
2274 		pr_err("SELinux:  unable to load the initial SIDs\n");
2275 		goto err_mapping;
2276 	}
2277 
2278 	if (!selinux_initialized()) {
2279 		/* First policy load, so no need to preserve state from old policy */
2280 		load_state->policy = newpolicy;
2281 		load_state->convert_data = NULL;
2282 		return 0;
2283 	}
2284 
2285 	oldpolicy = rcu_dereference_protected(state->policy,
2286 					lockdep_is_held(&state->policy_mutex));
2287 
2288 	/* Preserve active boolean values from the old policy */
2289 	rc = security_preserve_bools(oldpolicy, newpolicy);
2290 	if (rc) {
2291 		pr_err("SELinux:  unable to preserve booleans\n");
2292 		goto err_free_isids;
2293 	}
2294 
2295 	/*
2296 	 * Convert the internal representations of contexts
2297 	 * in the new SID table.
2298 	 */
2299 
2300 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2301 	if (!convert_data) {
2302 		rc = -ENOMEM;
2303 		goto err_free_isids;
2304 	}
2305 
2306 	convert_data->args.oldp = &oldpolicy->policydb;
2307 	convert_data->args.newp = &newpolicy->policydb;
2308 
2309 	convert_data->sidtab_params.args = &convert_data->args;
2310 	convert_data->sidtab_params.target = newpolicy->sidtab;
2311 
2312 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2313 	if (rc) {
2314 		pr_err("SELinux:  unable to convert the internal"
2315 			" representation of contexts in the new SID"
2316 			" table\n");
2317 		goto err_free_convert_data;
2318 	}
2319 
2320 	load_state->policy = newpolicy;
2321 	load_state->convert_data = convert_data;
2322 	return 0;
2323 
2324 err_free_convert_data:
2325 	kfree(convert_data);
2326 err_free_isids:
2327 	sidtab_destroy(newpolicy->sidtab);
2328 err_mapping:
2329 	kfree(newpolicy->map.mapping);
2330 err_policydb:
2331 	policydb_destroy(&newpolicy->policydb);
2332 err_sidtab:
2333 	kfree(newpolicy->sidtab);
2334 err_policy:
2335 	kfree(newpolicy);
2336 
2337 	return rc;
2338 }
2339 
2340 /**
2341  * ocontext_to_sid - Helper to safely get sid for an ocontext
2342  * @sidtab: SID table
2343  * @c: ocontext structure
2344  * @index: index of the context entry (0 or 1)
2345  * @out_sid: pointer to the resulting SID value
2346  *
2347  * For all ocontexts except OCON_ISID the SID fields are populated
2348  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2349  * operation, this helper must be used to do that safely.
2350  *
2351  * WARNING: This function may return -ESTALE, indicating that the caller
2352  * must retry the operation after re-acquiring the policy pointer!
2353  */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2354 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2355 			   size_t index, u32 *out_sid)
2356 {
2357 	int rc;
2358 	u32 sid;
2359 
2360 	/* Ensure the associated sidtab entry is visible to this thread. */
2361 	sid = smp_load_acquire(&c->sid[index]);
2362 	if (!sid) {
2363 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2364 		if (rc)
2365 			return rc;
2366 
2367 		/*
2368 		 * Ensure the new sidtab entry is visible to other threads
2369 		 * when they see the SID.
2370 		 */
2371 		smp_store_release(&c->sid[index], sid);
2372 	}
2373 	*out_sid = sid;
2374 	return 0;
2375 }
2376 
2377 /**
2378  * security_port_sid - Obtain the SID for a port.
2379  * @protocol: protocol number
2380  * @port: port number
2381  * @out_sid: security identifier
2382  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2383 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2384 {
2385 	struct selinux_policy *policy;
2386 	struct policydb *policydb;
2387 	struct sidtab *sidtab;
2388 	struct ocontext *c;
2389 	int rc;
2390 
2391 	if (!selinux_initialized()) {
2392 		*out_sid = SECINITSID_PORT;
2393 		return 0;
2394 	}
2395 
2396 retry:
2397 	rc = 0;
2398 	rcu_read_lock();
2399 	policy = rcu_dereference(selinux_state.policy);
2400 	policydb = &policy->policydb;
2401 	sidtab = policy->sidtab;
2402 
2403 	c = policydb->ocontexts[OCON_PORT];
2404 	while (c) {
2405 		if (c->u.port.protocol == protocol &&
2406 		    c->u.port.low_port <= port &&
2407 		    c->u.port.high_port >= port)
2408 			break;
2409 		c = c->next;
2410 	}
2411 
2412 	if (c) {
2413 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2414 		if (rc == -ESTALE) {
2415 			rcu_read_unlock();
2416 			goto retry;
2417 		}
2418 		if (rc)
2419 			goto out;
2420 	} else {
2421 		*out_sid = SECINITSID_PORT;
2422 	}
2423 
2424 out:
2425 	rcu_read_unlock();
2426 	return rc;
2427 }
2428 
2429 /**
2430  * security_ib_pkey_sid - Obtain the SID for a pkey.
2431  * @subnet_prefix: Subnet Prefix
2432  * @pkey_num: pkey number
2433  * @out_sid: security identifier
2434  */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2435 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2436 {
2437 	struct selinux_policy *policy;
2438 	struct policydb *policydb;
2439 	struct sidtab *sidtab;
2440 	struct ocontext *c;
2441 	int rc;
2442 
2443 	if (!selinux_initialized()) {
2444 		*out_sid = SECINITSID_UNLABELED;
2445 		return 0;
2446 	}
2447 
2448 retry:
2449 	rc = 0;
2450 	rcu_read_lock();
2451 	policy = rcu_dereference(selinux_state.policy);
2452 	policydb = &policy->policydb;
2453 	sidtab = policy->sidtab;
2454 
2455 	c = policydb->ocontexts[OCON_IBPKEY];
2456 	while (c) {
2457 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2458 		    c->u.ibpkey.high_pkey >= pkey_num &&
2459 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2460 			break;
2461 
2462 		c = c->next;
2463 	}
2464 
2465 	if (c) {
2466 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2467 		if (rc == -ESTALE) {
2468 			rcu_read_unlock();
2469 			goto retry;
2470 		}
2471 		if (rc)
2472 			goto out;
2473 	} else
2474 		*out_sid = SECINITSID_UNLABELED;
2475 
2476 out:
2477 	rcu_read_unlock();
2478 	return rc;
2479 }
2480 
2481 /**
2482  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2483  * @dev_name: device name
2484  * @port_num: port number
2485  * @out_sid: security identifier
2486  */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2487 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2488 {
2489 	struct selinux_policy *policy;
2490 	struct policydb *policydb;
2491 	struct sidtab *sidtab;
2492 	struct ocontext *c;
2493 	int rc;
2494 
2495 	if (!selinux_initialized()) {
2496 		*out_sid = SECINITSID_UNLABELED;
2497 		return 0;
2498 	}
2499 
2500 retry:
2501 	rc = 0;
2502 	rcu_read_lock();
2503 	policy = rcu_dereference(selinux_state.policy);
2504 	policydb = &policy->policydb;
2505 	sidtab = policy->sidtab;
2506 
2507 	c = policydb->ocontexts[OCON_IBENDPORT];
2508 	while (c) {
2509 		if (c->u.ibendport.port == port_num &&
2510 		    !strncmp(c->u.ibendport.dev_name,
2511 			     dev_name,
2512 			     IB_DEVICE_NAME_MAX))
2513 			break;
2514 
2515 		c = c->next;
2516 	}
2517 
2518 	if (c) {
2519 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2520 		if (rc == -ESTALE) {
2521 			rcu_read_unlock();
2522 			goto retry;
2523 		}
2524 		if (rc)
2525 			goto out;
2526 	} else
2527 		*out_sid = SECINITSID_UNLABELED;
2528 
2529 out:
2530 	rcu_read_unlock();
2531 	return rc;
2532 }
2533 
2534 /**
2535  * security_netif_sid - Obtain the SID for a network interface.
2536  * @name: interface name
2537  * @if_sid: interface SID
2538  */
security_netif_sid(char * name,u32 * if_sid)2539 int security_netif_sid(char *name, u32 *if_sid)
2540 {
2541 	struct selinux_policy *policy;
2542 	struct policydb *policydb;
2543 	struct sidtab *sidtab;
2544 	int rc;
2545 	struct ocontext *c;
2546 
2547 	if (!selinux_initialized()) {
2548 		*if_sid = SECINITSID_NETIF;
2549 		return 0;
2550 	}
2551 
2552 retry:
2553 	rc = 0;
2554 	rcu_read_lock();
2555 	policy = rcu_dereference(selinux_state.policy);
2556 	policydb = &policy->policydb;
2557 	sidtab = policy->sidtab;
2558 
2559 	c = policydb->ocontexts[OCON_NETIF];
2560 	while (c) {
2561 		if (strcmp(name, c->u.name) == 0)
2562 			break;
2563 		c = c->next;
2564 	}
2565 
2566 	if (c) {
2567 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2568 		if (rc == -ESTALE) {
2569 			rcu_read_unlock();
2570 			goto retry;
2571 		}
2572 		if (rc)
2573 			goto out;
2574 	} else
2575 		*if_sid = SECINITSID_NETIF;
2576 
2577 out:
2578 	rcu_read_unlock();
2579 	return rc;
2580 }
2581 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2582 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2583 {
2584 	int i, fail = 0;
2585 
2586 	for (i = 0; i < 4; i++)
2587 		if (addr[i] != (input[i] & mask[i])) {
2588 			fail = 1;
2589 			break;
2590 		}
2591 
2592 	return !fail;
2593 }
2594 
2595 /**
2596  * security_node_sid - Obtain the SID for a node (host).
2597  * @domain: communication domain aka address family
2598  * @addrp: address
2599  * @addrlen: address length in bytes
2600  * @out_sid: security identifier
2601  */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2602 int security_node_sid(u16 domain,
2603 		      void *addrp,
2604 		      u32 addrlen,
2605 		      u32 *out_sid)
2606 {
2607 	struct selinux_policy *policy;
2608 	struct policydb *policydb;
2609 	struct sidtab *sidtab;
2610 	int rc;
2611 	struct ocontext *c;
2612 
2613 	if (!selinux_initialized()) {
2614 		*out_sid = SECINITSID_NODE;
2615 		return 0;
2616 	}
2617 
2618 retry:
2619 	rcu_read_lock();
2620 	policy = rcu_dereference(selinux_state.policy);
2621 	policydb = &policy->policydb;
2622 	sidtab = policy->sidtab;
2623 
2624 	switch (domain) {
2625 	case AF_INET: {
2626 		u32 addr;
2627 
2628 		rc = -EINVAL;
2629 		if (addrlen != sizeof(u32))
2630 			goto out;
2631 
2632 		addr = *((u32 *)addrp);
2633 
2634 		c = policydb->ocontexts[OCON_NODE];
2635 		while (c) {
2636 			if (c->u.node.addr == (addr & c->u.node.mask))
2637 				break;
2638 			c = c->next;
2639 		}
2640 		break;
2641 	}
2642 
2643 	case AF_INET6:
2644 		rc = -EINVAL;
2645 		if (addrlen != sizeof(u64) * 2)
2646 			goto out;
2647 		c = policydb->ocontexts[OCON_NODE6];
2648 		while (c) {
2649 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2650 						c->u.node6.mask))
2651 				break;
2652 			c = c->next;
2653 		}
2654 		break;
2655 
2656 	default:
2657 		rc = 0;
2658 		*out_sid = SECINITSID_NODE;
2659 		goto out;
2660 	}
2661 
2662 	if (c) {
2663 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2664 		if (rc == -ESTALE) {
2665 			rcu_read_unlock();
2666 			goto retry;
2667 		}
2668 		if (rc)
2669 			goto out;
2670 	} else {
2671 		*out_sid = SECINITSID_NODE;
2672 	}
2673 
2674 	rc = 0;
2675 out:
2676 	rcu_read_unlock();
2677 	return rc;
2678 }
2679 
2680 #define SIDS_NEL 25
2681 
2682 /**
2683  * security_get_user_sids - Obtain reachable SIDs for a user.
2684  * @fromsid: starting SID
2685  * @username: username
2686  * @sids: array of reachable SIDs for user
2687  * @nel: number of elements in @sids
2688  *
2689  * Generate the set of SIDs for legal security contexts
2690  * for a given user that can be reached by @fromsid.
2691  * Set *@sids to point to a dynamically allocated
2692  * array containing the set of SIDs.  Set *@nel to the
2693  * number of elements in the array.
2694  */
2695 
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2696 int security_get_user_sids(u32 fromsid,
2697 			   char *username,
2698 			   u32 **sids,
2699 			   u32 *nel)
2700 {
2701 	struct selinux_policy *policy;
2702 	struct policydb *policydb;
2703 	struct sidtab *sidtab;
2704 	struct context *fromcon, usercon;
2705 	u32 *mysids = NULL, *mysids2, sid;
2706 	u32 i, j, mynel, maxnel = SIDS_NEL;
2707 	struct user_datum *user;
2708 	struct role_datum *role;
2709 	struct ebitmap_node *rnode, *tnode;
2710 	int rc;
2711 
2712 	*sids = NULL;
2713 	*nel = 0;
2714 
2715 	if (!selinux_initialized())
2716 		return 0;
2717 
2718 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2719 	if (!mysids)
2720 		return -ENOMEM;
2721 
2722 retry:
2723 	mynel = 0;
2724 	rcu_read_lock();
2725 	policy = rcu_dereference(selinux_state.policy);
2726 	policydb = &policy->policydb;
2727 	sidtab = policy->sidtab;
2728 
2729 	context_init(&usercon);
2730 
2731 	rc = -EINVAL;
2732 	fromcon = sidtab_search(sidtab, fromsid);
2733 	if (!fromcon)
2734 		goto out_unlock;
2735 
2736 	rc = -EINVAL;
2737 	user = symtab_search(&policydb->p_users, username);
2738 	if (!user)
2739 		goto out_unlock;
2740 
2741 	usercon.user = user->value;
2742 
2743 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2744 		role = policydb->role_val_to_struct[i];
2745 		usercon.role = i + 1;
2746 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2747 			usercon.type = j + 1;
2748 
2749 			if (mls_setup_user_range(policydb, fromcon, user,
2750 						 &usercon))
2751 				continue;
2752 
2753 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2754 			if (rc == -ESTALE) {
2755 				rcu_read_unlock();
2756 				goto retry;
2757 			}
2758 			if (rc)
2759 				goto out_unlock;
2760 			if (mynel < maxnel) {
2761 				mysids[mynel++] = sid;
2762 			} else {
2763 				rc = -ENOMEM;
2764 				maxnel += SIDS_NEL;
2765 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2766 				if (!mysids2)
2767 					goto out_unlock;
2768 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2769 				kfree(mysids);
2770 				mysids = mysids2;
2771 				mysids[mynel++] = sid;
2772 			}
2773 		}
2774 	}
2775 	rc = 0;
2776 out_unlock:
2777 	rcu_read_unlock();
2778 	if (rc || !mynel) {
2779 		kfree(mysids);
2780 		return rc;
2781 	}
2782 
2783 	rc = -ENOMEM;
2784 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2785 	if (!mysids2) {
2786 		kfree(mysids);
2787 		return rc;
2788 	}
2789 	for (i = 0, j = 0; i < mynel; i++) {
2790 		struct av_decision dummy_avd;
2791 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2792 					  SECCLASS_PROCESS, /* kernel value */
2793 					  PROCESS__TRANSITION, AVC_STRICT,
2794 					  &dummy_avd);
2795 		if (!rc)
2796 			mysids2[j++] = mysids[i];
2797 		cond_resched();
2798 	}
2799 	kfree(mysids);
2800 	*sids = mysids2;
2801 	*nel = j;
2802 	return 0;
2803 }
2804 
2805 /**
2806  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2807  * @policy: policy
2808  * @fstype: filesystem type
2809  * @path: path from root of mount
2810  * @orig_sclass: file security class
2811  * @sid: SID for path
2812  *
2813  * Obtain a SID to use for a file in a filesystem that
2814  * cannot support xattr or use a fixed labeling behavior like
2815  * transition SIDs or task SIDs.
2816  *
2817  * WARNING: This function may return -ESTALE, indicating that the caller
2818  * must retry the operation after re-acquiring the policy pointer!
2819  */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2820 static inline int __security_genfs_sid(struct selinux_policy *policy,
2821 				       const char *fstype,
2822 				       const char *path,
2823 				       u16 orig_sclass,
2824 				       u32 *sid)
2825 {
2826 	struct policydb *policydb = &policy->policydb;
2827 	struct sidtab *sidtab = policy->sidtab;
2828 	u16 sclass;
2829 	struct genfs *genfs;
2830 	struct ocontext *c;
2831 	int cmp = 0;
2832 
2833 	while (path[0] == '/' && path[1] == '/')
2834 		path++;
2835 
2836 	sclass = unmap_class(&policy->map, orig_sclass);
2837 	*sid = SECINITSID_UNLABELED;
2838 
2839 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2840 		cmp = strcmp(fstype, genfs->fstype);
2841 		if (cmp <= 0)
2842 			break;
2843 	}
2844 
2845 	if (!genfs || cmp)
2846 		return -ENOENT;
2847 
2848 	for (c = genfs->head; c; c = c->next) {
2849 		size_t len = strlen(c->u.name);
2850 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2851 		    (strncmp(c->u.name, path, len) == 0))
2852 			break;
2853 	}
2854 
2855 	if (!c)
2856 		return -ENOENT;
2857 
2858 	return ocontext_to_sid(sidtab, c, 0, sid);
2859 }
2860 
2861 /**
2862  * security_genfs_sid - Obtain a SID for a file in a filesystem
2863  * @fstype: filesystem type
2864  * @path: path from root of mount
2865  * @orig_sclass: file security class
2866  * @sid: SID for path
2867  *
2868  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2869  * it afterward.
2870  */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2871 int security_genfs_sid(const char *fstype,
2872 		       const char *path,
2873 		       u16 orig_sclass,
2874 		       u32 *sid)
2875 {
2876 	struct selinux_policy *policy;
2877 	int retval;
2878 
2879 	if (!selinux_initialized()) {
2880 		*sid = SECINITSID_UNLABELED;
2881 		return 0;
2882 	}
2883 
2884 	do {
2885 		rcu_read_lock();
2886 		policy = rcu_dereference(selinux_state.policy);
2887 		retval = __security_genfs_sid(policy, fstype, path,
2888 					      orig_sclass, sid);
2889 		rcu_read_unlock();
2890 	} while (retval == -ESTALE);
2891 	return retval;
2892 }
2893 
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2894 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2895 			const char *fstype,
2896 			const char *path,
2897 			u16 orig_sclass,
2898 			u32 *sid)
2899 {
2900 	/* no lock required, policy is not yet accessible by other threads */
2901 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2902 }
2903 
2904 /**
2905  * security_fs_use - Determine how to handle labeling for a filesystem.
2906  * @sb: superblock in question
2907  */
security_fs_use(struct super_block * sb)2908 int security_fs_use(struct super_block *sb)
2909 {
2910 	struct selinux_policy *policy;
2911 	struct policydb *policydb;
2912 	struct sidtab *sidtab;
2913 	int rc;
2914 	struct ocontext *c;
2915 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2916 	const char *fstype = sb->s_type->name;
2917 
2918 	if (!selinux_initialized()) {
2919 		sbsec->behavior = SECURITY_FS_USE_NONE;
2920 		sbsec->sid = SECINITSID_UNLABELED;
2921 		return 0;
2922 	}
2923 
2924 retry:
2925 	rcu_read_lock();
2926 	policy = rcu_dereference(selinux_state.policy);
2927 	policydb = &policy->policydb;
2928 	sidtab = policy->sidtab;
2929 
2930 	c = policydb->ocontexts[OCON_FSUSE];
2931 	while (c) {
2932 		if (strcmp(fstype, c->u.name) == 0)
2933 			break;
2934 		c = c->next;
2935 	}
2936 
2937 	if (c) {
2938 		sbsec->behavior = c->v.behavior;
2939 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2940 		if (rc == -ESTALE) {
2941 			rcu_read_unlock();
2942 			goto retry;
2943 		}
2944 		if (rc)
2945 			goto out;
2946 	} else {
2947 		rc = __security_genfs_sid(policy, fstype, "/",
2948 					SECCLASS_DIR, &sbsec->sid);
2949 		if (rc == -ESTALE) {
2950 			rcu_read_unlock();
2951 			goto retry;
2952 		}
2953 		if (rc) {
2954 			sbsec->behavior = SECURITY_FS_USE_NONE;
2955 			rc = 0;
2956 		} else {
2957 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2958 		}
2959 	}
2960 
2961 out:
2962 	rcu_read_unlock();
2963 	return rc;
2964 }
2965 
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)2966 int security_get_bools(struct selinux_policy *policy,
2967 		       u32 *len, char ***names, int **values)
2968 {
2969 	struct policydb *policydb;
2970 	u32 i;
2971 	int rc;
2972 
2973 	policydb = &policy->policydb;
2974 
2975 	*names = NULL;
2976 	*values = NULL;
2977 
2978 	rc = 0;
2979 	*len = policydb->p_bools.nprim;
2980 	if (!*len)
2981 		goto out;
2982 
2983 	rc = -ENOMEM;
2984 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2985 	if (!*names)
2986 		goto err;
2987 
2988 	rc = -ENOMEM;
2989 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2990 	if (!*values)
2991 		goto err;
2992 
2993 	for (i = 0; i < *len; i++) {
2994 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2995 
2996 		rc = -ENOMEM;
2997 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2998 				      GFP_ATOMIC);
2999 		if (!(*names)[i])
3000 			goto err;
3001 	}
3002 	rc = 0;
3003 out:
3004 	return rc;
3005 err:
3006 	if (*names) {
3007 		for (i = 0; i < *len; i++)
3008 			kfree((*names)[i]);
3009 		kfree(*names);
3010 	}
3011 	kfree(*values);
3012 	*len = 0;
3013 	*names = NULL;
3014 	*values = NULL;
3015 	goto out;
3016 }
3017 
3018 
security_set_bools(u32 len,int * values)3019 int security_set_bools(u32 len, int *values)
3020 {
3021 	struct selinux_state *state = &selinux_state;
3022 	struct selinux_policy *newpolicy, *oldpolicy;
3023 	int rc;
3024 	u32 i, seqno = 0;
3025 
3026 	if (!selinux_initialized())
3027 		return -EINVAL;
3028 
3029 	oldpolicy = rcu_dereference_protected(state->policy,
3030 					lockdep_is_held(&state->policy_mutex));
3031 
3032 	/* Consistency check on number of booleans, should never fail */
3033 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3034 		return -EINVAL;
3035 
3036 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3037 	if (!newpolicy)
3038 		return -ENOMEM;
3039 
3040 	/*
3041 	 * Deep copy only the parts of the policydb that might be
3042 	 * modified as a result of changing booleans.
3043 	 */
3044 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3045 	if (rc) {
3046 		kfree(newpolicy);
3047 		return -ENOMEM;
3048 	}
3049 
3050 	/* Update the boolean states in the copy */
3051 	for (i = 0; i < len; i++) {
3052 		int new_state = !!values[i];
3053 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3054 
3055 		if (new_state != old_state) {
3056 			audit_log(audit_context(), GFP_ATOMIC,
3057 				AUDIT_MAC_CONFIG_CHANGE,
3058 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3059 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3060 				new_state,
3061 				old_state,
3062 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3063 				audit_get_sessionid(current));
3064 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3065 		}
3066 	}
3067 
3068 	/* Re-evaluate the conditional rules in the copy */
3069 	evaluate_cond_nodes(&newpolicy->policydb);
3070 
3071 	/* Set latest granting seqno for new policy */
3072 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3073 	seqno = newpolicy->latest_granting;
3074 
3075 	/* Install the new policy */
3076 	rcu_assign_pointer(state->policy, newpolicy);
3077 
3078 	/*
3079 	 * Free the conditional portions of the old policydb
3080 	 * that were copied for the new policy, and the oldpolicy
3081 	 * structure itself but not what it references.
3082 	 */
3083 	synchronize_rcu();
3084 	selinux_policy_cond_free(oldpolicy);
3085 
3086 	/* Notify others of the policy change */
3087 	selinux_notify_policy_change(seqno);
3088 	return 0;
3089 }
3090 
security_get_bool_value(u32 index)3091 int security_get_bool_value(u32 index)
3092 {
3093 	struct selinux_policy *policy;
3094 	struct policydb *policydb;
3095 	int rc;
3096 	u32 len;
3097 
3098 	if (!selinux_initialized())
3099 		return 0;
3100 
3101 	rcu_read_lock();
3102 	policy = rcu_dereference(selinux_state.policy);
3103 	policydb = &policy->policydb;
3104 
3105 	rc = -EFAULT;
3106 	len = policydb->p_bools.nprim;
3107 	if (index >= len)
3108 		goto out;
3109 
3110 	rc = policydb->bool_val_to_struct[index]->state;
3111 out:
3112 	rcu_read_unlock();
3113 	return rc;
3114 }
3115 
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3116 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3117 				struct selinux_policy *newpolicy)
3118 {
3119 	int rc, *bvalues = NULL;
3120 	char **bnames = NULL;
3121 	struct cond_bool_datum *booldatum;
3122 	u32 i, nbools = 0;
3123 
3124 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3125 	if (rc)
3126 		goto out;
3127 	for (i = 0; i < nbools; i++) {
3128 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3129 					bnames[i]);
3130 		if (booldatum)
3131 			booldatum->state = bvalues[i];
3132 	}
3133 	evaluate_cond_nodes(&newpolicy->policydb);
3134 
3135 out:
3136 	if (bnames) {
3137 		for (i = 0; i < nbools; i++)
3138 			kfree(bnames[i]);
3139 	}
3140 	kfree(bnames);
3141 	kfree(bvalues);
3142 	return rc;
3143 }
3144 
3145 /*
3146  * security_sid_mls_copy() - computes a new sid based on the given
3147  * sid and the mls portion of mls_sid.
3148  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3149 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3150 {
3151 	struct selinux_policy *policy;
3152 	struct policydb *policydb;
3153 	struct sidtab *sidtab;
3154 	struct context *context1;
3155 	struct context *context2;
3156 	struct context newcon;
3157 	char *s;
3158 	u32 len;
3159 	int rc;
3160 
3161 	if (!selinux_initialized()) {
3162 		*new_sid = sid;
3163 		return 0;
3164 	}
3165 
3166 retry:
3167 	rc = 0;
3168 	context_init(&newcon);
3169 
3170 	rcu_read_lock();
3171 	policy = rcu_dereference(selinux_state.policy);
3172 	policydb = &policy->policydb;
3173 	sidtab = policy->sidtab;
3174 
3175 	if (!policydb->mls_enabled) {
3176 		*new_sid = sid;
3177 		goto out_unlock;
3178 	}
3179 
3180 	rc = -EINVAL;
3181 	context1 = sidtab_search(sidtab, sid);
3182 	if (!context1) {
3183 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3184 			__func__, sid);
3185 		goto out_unlock;
3186 	}
3187 
3188 	rc = -EINVAL;
3189 	context2 = sidtab_search(sidtab, mls_sid);
3190 	if (!context2) {
3191 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3192 			__func__, mls_sid);
3193 		goto out_unlock;
3194 	}
3195 
3196 	newcon.user = context1->user;
3197 	newcon.role = context1->role;
3198 	newcon.type = context1->type;
3199 	rc = mls_context_cpy(&newcon, context2);
3200 	if (rc)
3201 		goto out_unlock;
3202 
3203 	/* Check the validity of the new context. */
3204 	if (!policydb_context_isvalid(policydb, &newcon)) {
3205 		rc = convert_context_handle_invalid_context(policydb,
3206 							&newcon);
3207 		if (rc) {
3208 			if (!context_struct_to_string(policydb, &newcon, &s,
3209 						      &len)) {
3210 				struct audit_buffer *ab;
3211 
3212 				ab = audit_log_start(audit_context(),
3213 						     GFP_ATOMIC,
3214 						     AUDIT_SELINUX_ERR);
3215 				audit_log_format(ab,
3216 						 "op=security_sid_mls_copy invalid_context=");
3217 				/* don't record NUL with untrusted strings */
3218 				audit_log_n_untrustedstring(ab, s, len - 1);
3219 				audit_log_end(ab);
3220 				kfree(s);
3221 			}
3222 			goto out_unlock;
3223 		}
3224 	}
3225 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3226 	if (rc == -ESTALE) {
3227 		rcu_read_unlock();
3228 		context_destroy(&newcon);
3229 		goto retry;
3230 	}
3231 out_unlock:
3232 	rcu_read_unlock();
3233 	context_destroy(&newcon);
3234 	return rc;
3235 }
3236 
3237 /**
3238  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3239  * @nlbl_sid: NetLabel SID
3240  * @nlbl_type: NetLabel labeling protocol type
3241  * @xfrm_sid: XFRM SID
3242  * @peer_sid: network peer sid
3243  *
3244  * Description:
3245  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3246  * resolved into a single SID it is returned via @peer_sid and the function
3247  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3248  * returns a negative value.  A table summarizing the behavior is below:
3249  *
3250  *                                 | function return |      @sid
3251  *   ------------------------------+-----------------+-----------------
3252  *   no peer labels                |        0        |    SECSID_NULL
3253  *   single peer label             |        0        |    <peer_label>
3254  *   multiple, consistent labels   |        0        |    <peer_label>
3255  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3256  *
3257  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3258 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3259 				 u32 xfrm_sid,
3260 				 u32 *peer_sid)
3261 {
3262 	struct selinux_policy *policy;
3263 	struct policydb *policydb;
3264 	struct sidtab *sidtab;
3265 	int rc;
3266 	struct context *nlbl_ctx;
3267 	struct context *xfrm_ctx;
3268 
3269 	*peer_sid = SECSID_NULL;
3270 
3271 	/* handle the common (which also happens to be the set of easy) cases
3272 	 * right away, these two if statements catch everything involving a
3273 	 * single or absent peer SID/label */
3274 	if (xfrm_sid == SECSID_NULL) {
3275 		*peer_sid = nlbl_sid;
3276 		return 0;
3277 	}
3278 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3279 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3280 	 * is present */
3281 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3282 		*peer_sid = xfrm_sid;
3283 		return 0;
3284 	}
3285 
3286 	if (!selinux_initialized())
3287 		return 0;
3288 
3289 	rcu_read_lock();
3290 	policy = rcu_dereference(selinux_state.policy);
3291 	policydb = &policy->policydb;
3292 	sidtab = policy->sidtab;
3293 
3294 	/*
3295 	 * We don't need to check initialized here since the only way both
3296 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3297 	 * security server was initialized and state->initialized was true.
3298 	 */
3299 	if (!policydb->mls_enabled) {
3300 		rc = 0;
3301 		goto out;
3302 	}
3303 
3304 	rc = -EINVAL;
3305 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3306 	if (!nlbl_ctx) {
3307 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3308 		       __func__, nlbl_sid);
3309 		goto out;
3310 	}
3311 	rc = -EINVAL;
3312 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3313 	if (!xfrm_ctx) {
3314 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3315 		       __func__, xfrm_sid);
3316 		goto out;
3317 	}
3318 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3319 	if (rc)
3320 		goto out;
3321 
3322 	/* at present NetLabel SIDs/labels really only carry MLS
3323 	 * information so if the MLS portion of the NetLabel SID
3324 	 * matches the MLS portion of the labeled XFRM SID/label
3325 	 * then pass along the XFRM SID as it is the most
3326 	 * expressive */
3327 	*peer_sid = xfrm_sid;
3328 out:
3329 	rcu_read_unlock();
3330 	return rc;
3331 }
3332 
get_classes_callback(void * k,void * d,void * args)3333 static int get_classes_callback(void *k, void *d, void *args)
3334 {
3335 	struct class_datum *datum = d;
3336 	char *name = k, **classes = args;
3337 	u32 value = datum->value - 1;
3338 
3339 	classes[value] = kstrdup(name, GFP_ATOMIC);
3340 	if (!classes[value])
3341 		return -ENOMEM;
3342 
3343 	return 0;
3344 }
3345 
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3346 int security_get_classes(struct selinux_policy *policy,
3347 			 char ***classes, u32 *nclasses)
3348 {
3349 	struct policydb *policydb;
3350 	int rc;
3351 
3352 	policydb = &policy->policydb;
3353 
3354 	rc = -ENOMEM;
3355 	*nclasses = policydb->p_classes.nprim;
3356 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3357 	if (!*classes)
3358 		goto out;
3359 
3360 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3361 			 *classes);
3362 	if (rc) {
3363 		u32 i;
3364 
3365 		for (i = 0; i < *nclasses; i++)
3366 			kfree((*classes)[i]);
3367 		kfree(*classes);
3368 	}
3369 
3370 out:
3371 	return rc;
3372 }
3373 
get_permissions_callback(void * k,void * d,void * args)3374 static int get_permissions_callback(void *k, void *d, void *args)
3375 {
3376 	struct perm_datum *datum = d;
3377 	char *name = k, **perms = args;
3378 	u32 value = datum->value - 1;
3379 
3380 	perms[value] = kstrdup(name, GFP_ATOMIC);
3381 	if (!perms[value])
3382 		return -ENOMEM;
3383 
3384 	return 0;
3385 }
3386 
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3387 int security_get_permissions(struct selinux_policy *policy,
3388 			     const char *class, char ***perms, u32 *nperms)
3389 {
3390 	struct policydb *policydb;
3391 	u32 i;
3392 	int rc;
3393 	struct class_datum *match;
3394 
3395 	policydb = &policy->policydb;
3396 
3397 	rc = -EINVAL;
3398 	match = symtab_search(&policydb->p_classes, class);
3399 	if (!match) {
3400 		pr_err("SELinux: %s:  unrecognized class %s\n",
3401 			__func__, class);
3402 		goto out;
3403 	}
3404 
3405 	rc = -ENOMEM;
3406 	*nperms = match->permissions.nprim;
3407 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3408 	if (!*perms)
3409 		goto out;
3410 
3411 	if (match->comdatum) {
3412 		rc = hashtab_map(&match->comdatum->permissions.table,
3413 				 get_permissions_callback, *perms);
3414 		if (rc)
3415 			goto err;
3416 	}
3417 
3418 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3419 			 *perms);
3420 	if (rc)
3421 		goto err;
3422 
3423 out:
3424 	return rc;
3425 
3426 err:
3427 	for (i = 0; i < *nperms; i++)
3428 		kfree((*perms)[i]);
3429 	kfree(*perms);
3430 	return rc;
3431 }
3432 
security_get_reject_unknown(void)3433 int security_get_reject_unknown(void)
3434 {
3435 	struct selinux_policy *policy;
3436 	int value;
3437 
3438 	if (!selinux_initialized())
3439 		return 0;
3440 
3441 	rcu_read_lock();
3442 	policy = rcu_dereference(selinux_state.policy);
3443 	value = policy->policydb.reject_unknown;
3444 	rcu_read_unlock();
3445 	return value;
3446 }
3447 
security_get_allow_unknown(void)3448 int security_get_allow_unknown(void)
3449 {
3450 	struct selinux_policy *policy;
3451 	int value;
3452 
3453 	if (!selinux_initialized())
3454 		return 0;
3455 
3456 	rcu_read_lock();
3457 	policy = rcu_dereference(selinux_state.policy);
3458 	value = policy->policydb.allow_unknown;
3459 	rcu_read_unlock();
3460 	return value;
3461 }
3462 
3463 /**
3464  * security_policycap_supported - Check for a specific policy capability
3465  * @req_cap: capability
3466  *
3467  * Description:
3468  * This function queries the currently loaded policy to see if it supports the
3469  * capability specified by @req_cap.  Returns true (1) if the capability is
3470  * supported, false (0) if it isn't supported.
3471  *
3472  */
security_policycap_supported(unsigned int req_cap)3473 int security_policycap_supported(unsigned int req_cap)
3474 {
3475 	struct selinux_policy *policy;
3476 	int rc;
3477 
3478 	if (!selinux_initialized())
3479 		return 0;
3480 
3481 	rcu_read_lock();
3482 	policy = rcu_dereference(selinux_state.policy);
3483 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3484 	rcu_read_unlock();
3485 
3486 	return rc;
3487 }
3488 
3489 struct selinux_audit_rule {
3490 	u32 au_seqno;
3491 	struct context au_ctxt;
3492 };
3493 
selinux_audit_rule_free(void * vrule)3494 void selinux_audit_rule_free(void *vrule)
3495 {
3496 	struct selinux_audit_rule *rule = vrule;
3497 
3498 	if (rule) {
3499 		context_destroy(&rule->au_ctxt);
3500 		kfree(rule);
3501 	}
3502 }
3503 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3504 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3505 			    gfp_t gfp)
3506 {
3507 	struct selinux_state *state = &selinux_state;
3508 	struct selinux_policy *policy;
3509 	struct policydb *policydb;
3510 	struct selinux_audit_rule *tmprule;
3511 	struct role_datum *roledatum;
3512 	struct type_datum *typedatum;
3513 	struct user_datum *userdatum;
3514 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3515 	int rc = 0;
3516 
3517 	*rule = NULL;
3518 
3519 	if (!selinux_initialized())
3520 		return -EOPNOTSUPP;
3521 
3522 	switch (field) {
3523 	case AUDIT_SUBJ_USER:
3524 	case AUDIT_SUBJ_ROLE:
3525 	case AUDIT_SUBJ_TYPE:
3526 	case AUDIT_OBJ_USER:
3527 	case AUDIT_OBJ_ROLE:
3528 	case AUDIT_OBJ_TYPE:
3529 		/* only 'equals' and 'not equals' fit user, role, and type */
3530 		if (op != Audit_equal && op != Audit_not_equal)
3531 			return -EINVAL;
3532 		break;
3533 	case AUDIT_SUBJ_SEN:
3534 	case AUDIT_SUBJ_CLR:
3535 	case AUDIT_OBJ_LEV_LOW:
3536 	case AUDIT_OBJ_LEV_HIGH:
3537 		/* we do not allow a range, indicated by the presence of '-' */
3538 		if (strchr(rulestr, '-'))
3539 			return -EINVAL;
3540 		break;
3541 	default:
3542 		/* only the above fields are valid */
3543 		return -EINVAL;
3544 	}
3545 
3546 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3547 	if (!tmprule)
3548 		return -ENOMEM;
3549 	context_init(&tmprule->au_ctxt);
3550 
3551 	rcu_read_lock();
3552 	policy = rcu_dereference(state->policy);
3553 	policydb = &policy->policydb;
3554 	tmprule->au_seqno = policy->latest_granting;
3555 	switch (field) {
3556 	case AUDIT_SUBJ_USER:
3557 	case AUDIT_OBJ_USER:
3558 		userdatum = symtab_search(&policydb->p_users, rulestr);
3559 		if (!userdatum) {
3560 			rc = -EINVAL;
3561 			goto err;
3562 		}
3563 		tmprule->au_ctxt.user = userdatum->value;
3564 		break;
3565 	case AUDIT_SUBJ_ROLE:
3566 	case AUDIT_OBJ_ROLE:
3567 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3568 		if (!roledatum) {
3569 			rc = -EINVAL;
3570 			goto err;
3571 		}
3572 		tmprule->au_ctxt.role = roledatum->value;
3573 		break;
3574 	case AUDIT_SUBJ_TYPE:
3575 	case AUDIT_OBJ_TYPE:
3576 		typedatum = symtab_search(&policydb->p_types, rulestr);
3577 		if (!typedatum) {
3578 			rc = -EINVAL;
3579 			goto err;
3580 		}
3581 		tmprule->au_ctxt.type = typedatum->value;
3582 		break;
3583 	case AUDIT_SUBJ_SEN:
3584 	case AUDIT_SUBJ_CLR:
3585 	case AUDIT_OBJ_LEV_LOW:
3586 	case AUDIT_OBJ_LEV_HIGH:
3587 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3588 				     GFP_ATOMIC);
3589 		if (rc)
3590 			goto err;
3591 		break;
3592 	}
3593 	rcu_read_unlock();
3594 
3595 	*rule = tmprule;
3596 	return 0;
3597 
3598 err:
3599 	rcu_read_unlock();
3600 	selinux_audit_rule_free(tmprule);
3601 	*rule = NULL;
3602 	return rc;
3603 }
3604 
3605 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3606 int selinux_audit_rule_known(struct audit_krule *rule)
3607 {
3608 	u32 i;
3609 
3610 	for (i = 0; i < rule->field_count; i++) {
3611 		struct audit_field *f = &rule->fields[i];
3612 		switch (f->type) {
3613 		case AUDIT_SUBJ_USER:
3614 		case AUDIT_SUBJ_ROLE:
3615 		case AUDIT_SUBJ_TYPE:
3616 		case AUDIT_SUBJ_SEN:
3617 		case AUDIT_SUBJ_CLR:
3618 		case AUDIT_OBJ_USER:
3619 		case AUDIT_OBJ_ROLE:
3620 		case AUDIT_OBJ_TYPE:
3621 		case AUDIT_OBJ_LEV_LOW:
3622 		case AUDIT_OBJ_LEV_HIGH:
3623 			return 1;
3624 		}
3625 	}
3626 
3627 	return 0;
3628 }
3629 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3630 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3631 {
3632 	struct selinux_state *state = &selinux_state;
3633 	struct selinux_policy *policy;
3634 	struct context *ctxt;
3635 	struct mls_level *level;
3636 	struct selinux_audit_rule *rule = vrule;
3637 	int match = 0;
3638 
3639 	if (unlikely(!rule)) {
3640 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3641 		return -ENOENT;
3642 	}
3643 
3644 	if (!selinux_initialized())
3645 		return 0;
3646 
3647 	rcu_read_lock();
3648 
3649 	policy = rcu_dereference(state->policy);
3650 
3651 	if (rule->au_seqno < policy->latest_granting) {
3652 		match = -ESTALE;
3653 		goto out;
3654 	}
3655 
3656 	ctxt = sidtab_search(policy->sidtab, sid);
3657 	if (unlikely(!ctxt)) {
3658 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3659 			  sid);
3660 		match = -ENOENT;
3661 		goto out;
3662 	}
3663 
3664 	/* a field/op pair that is not caught here will simply fall through
3665 	   without a match */
3666 	switch (field) {
3667 	case AUDIT_SUBJ_USER:
3668 	case AUDIT_OBJ_USER:
3669 		switch (op) {
3670 		case Audit_equal:
3671 			match = (ctxt->user == rule->au_ctxt.user);
3672 			break;
3673 		case Audit_not_equal:
3674 			match = (ctxt->user != rule->au_ctxt.user);
3675 			break;
3676 		}
3677 		break;
3678 	case AUDIT_SUBJ_ROLE:
3679 	case AUDIT_OBJ_ROLE:
3680 		switch (op) {
3681 		case Audit_equal:
3682 			match = (ctxt->role == rule->au_ctxt.role);
3683 			break;
3684 		case Audit_not_equal:
3685 			match = (ctxt->role != rule->au_ctxt.role);
3686 			break;
3687 		}
3688 		break;
3689 	case AUDIT_SUBJ_TYPE:
3690 	case AUDIT_OBJ_TYPE:
3691 		switch (op) {
3692 		case Audit_equal:
3693 			match = (ctxt->type == rule->au_ctxt.type);
3694 			break;
3695 		case Audit_not_equal:
3696 			match = (ctxt->type != rule->au_ctxt.type);
3697 			break;
3698 		}
3699 		break;
3700 	case AUDIT_SUBJ_SEN:
3701 	case AUDIT_SUBJ_CLR:
3702 	case AUDIT_OBJ_LEV_LOW:
3703 	case AUDIT_OBJ_LEV_HIGH:
3704 		level = ((field == AUDIT_SUBJ_SEN ||
3705 			  field == AUDIT_OBJ_LEV_LOW) ?
3706 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3707 		switch (op) {
3708 		case Audit_equal:
3709 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3710 					     level);
3711 			break;
3712 		case Audit_not_equal:
3713 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3714 					      level);
3715 			break;
3716 		case Audit_lt:
3717 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3718 					       level) &&
3719 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3720 					       level));
3721 			break;
3722 		case Audit_le:
3723 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3724 					      level);
3725 			break;
3726 		case Audit_gt:
3727 			match = (mls_level_dom(level,
3728 					      &rule->au_ctxt.range.level[0]) &&
3729 				 !mls_level_eq(level,
3730 					       &rule->au_ctxt.range.level[0]));
3731 			break;
3732 		case Audit_ge:
3733 			match = mls_level_dom(level,
3734 					      &rule->au_ctxt.range.level[0]);
3735 			break;
3736 		}
3737 	}
3738 
3739 out:
3740 	rcu_read_unlock();
3741 	return match;
3742 }
3743 
aurule_avc_callback(u32 event)3744 static int aurule_avc_callback(u32 event)
3745 {
3746 	if (event == AVC_CALLBACK_RESET)
3747 		return audit_update_lsm_rules();
3748 	return 0;
3749 }
3750 
aurule_init(void)3751 static int __init aurule_init(void)
3752 {
3753 	int err;
3754 
3755 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3756 	if (err)
3757 		panic("avc_add_callback() failed, error %d\n", err);
3758 
3759 	return err;
3760 }
3761 __initcall(aurule_init);
3762 
3763 #ifdef CONFIG_NETLABEL
3764 /**
3765  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3766  * @secattr: the NetLabel packet security attributes
3767  * @sid: the SELinux SID
3768  *
3769  * Description:
3770  * Attempt to cache the context in @ctx, which was derived from the packet in
3771  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3772  * already been initialized.
3773  *
3774  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3775 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3776 				      u32 sid)
3777 {
3778 	u32 *sid_cache;
3779 
3780 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3781 	if (sid_cache == NULL)
3782 		return;
3783 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3784 	if (secattr->cache == NULL) {
3785 		kfree(sid_cache);
3786 		return;
3787 	}
3788 
3789 	*sid_cache = sid;
3790 	secattr->cache->free = kfree;
3791 	secattr->cache->data = sid_cache;
3792 	secattr->flags |= NETLBL_SECATTR_CACHE;
3793 }
3794 
3795 /**
3796  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3797  * @secattr: the NetLabel packet security attributes
3798  * @sid: the SELinux SID
3799  *
3800  * Description:
3801  * Convert the given NetLabel security attributes in @secattr into a
3802  * SELinux SID.  If the @secattr field does not contain a full SELinux
3803  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3804  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3805  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3806  * conversion for future lookups.  Returns zero on success, negative values on
3807  * failure.
3808  *
3809  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3810 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3811 				   u32 *sid)
3812 {
3813 	struct selinux_policy *policy;
3814 	struct policydb *policydb;
3815 	struct sidtab *sidtab;
3816 	int rc;
3817 	struct context *ctx;
3818 	struct context ctx_new;
3819 
3820 	if (!selinux_initialized()) {
3821 		*sid = SECSID_NULL;
3822 		return 0;
3823 	}
3824 
3825 retry:
3826 	rc = 0;
3827 	rcu_read_lock();
3828 	policy = rcu_dereference(selinux_state.policy);
3829 	policydb = &policy->policydb;
3830 	sidtab = policy->sidtab;
3831 
3832 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3833 		*sid = *(u32 *)secattr->cache->data;
3834 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3835 		*sid = secattr->attr.secid;
3836 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3837 		rc = -EIDRM;
3838 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3839 		if (ctx == NULL)
3840 			goto out;
3841 
3842 		context_init(&ctx_new);
3843 		ctx_new.user = ctx->user;
3844 		ctx_new.role = ctx->role;
3845 		ctx_new.type = ctx->type;
3846 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3847 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3848 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3849 			if (rc)
3850 				goto out;
3851 		}
3852 		rc = -EIDRM;
3853 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3854 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3855 			goto out;
3856 		}
3857 
3858 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3859 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3860 		if (rc == -ESTALE) {
3861 			rcu_read_unlock();
3862 			goto retry;
3863 		}
3864 		if (rc)
3865 			goto out;
3866 
3867 		security_netlbl_cache_add(secattr, *sid);
3868 	} else
3869 		*sid = SECSID_NULL;
3870 
3871 out:
3872 	rcu_read_unlock();
3873 	return rc;
3874 }
3875 
3876 /**
3877  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3878  * @sid: the SELinux SID
3879  * @secattr: the NetLabel packet security attributes
3880  *
3881  * Description:
3882  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3883  * Returns zero on success, negative values on failure.
3884  *
3885  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3886 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3887 {
3888 	struct selinux_policy *policy;
3889 	struct policydb *policydb;
3890 	int rc;
3891 	struct context *ctx;
3892 
3893 	if (!selinux_initialized())
3894 		return 0;
3895 
3896 	rcu_read_lock();
3897 	policy = rcu_dereference(selinux_state.policy);
3898 	policydb = &policy->policydb;
3899 
3900 	rc = -ENOENT;
3901 	ctx = sidtab_search(policy->sidtab, sid);
3902 	if (ctx == NULL)
3903 		goto out;
3904 
3905 	rc = -ENOMEM;
3906 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3907 				  GFP_ATOMIC);
3908 	if (secattr->domain == NULL)
3909 		goto out;
3910 
3911 	secattr->attr.secid = sid;
3912 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3913 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3914 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3915 out:
3916 	rcu_read_unlock();
3917 	return rc;
3918 }
3919 #endif /* CONFIG_NETLABEL */
3920 
3921 /**
3922  * __security_read_policy - read the policy.
3923  * @policy: SELinux policy
3924  * @data: binary policy data
3925  * @len: length of data in bytes
3926  *
3927  */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3928 static int __security_read_policy(struct selinux_policy *policy,
3929 				  void *data, size_t *len)
3930 {
3931 	int rc;
3932 	struct policy_file fp;
3933 
3934 	fp.data = data;
3935 	fp.len = *len;
3936 
3937 	rc = policydb_write(&policy->policydb, &fp);
3938 	if (rc)
3939 		return rc;
3940 
3941 	*len = (unsigned long)fp.data - (unsigned long)data;
3942 	return 0;
3943 }
3944 
3945 /**
3946  * security_read_policy - read the policy.
3947  * @data: binary policy data
3948  * @len: length of data in bytes
3949  *
3950  */
security_read_policy(void ** data,size_t * len)3951 int security_read_policy(void **data, size_t *len)
3952 {
3953 	struct selinux_state *state = &selinux_state;
3954 	struct selinux_policy *policy;
3955 
3956 	policy = rcu_dereference_protected(
3957 			state->policy, lockdep_is_held(&state->policy_mutex));
3958 	if (!policy)
3959 		return -EINVAL;
3960 
3961 	*len = policy->policydb.len;
3962 	*data = vmalloc_user(*len);
3963 	if (!*data)
3964 		return -ENOMEM;
3965 
3966 	return __security_read_policy(policy, *data, len);
3967 }
3968 
3969 /**
3970  * security_read_state_kernel - read the policy.
3971  * @data: binary policy data
3972  * @len: length of data in bytes
3973  *
3974  * Allocates kernel memory for reading SELinux policy.
3975  * This function is for internal use only and should not
3976  * be used for returning data to user space.
3977  *
3978  * This function must be called with policy_mutex held.
3979  */
security_read_state_kernel(void ** data,size_t * len)3980 int security_read_state_kernel(void **data, size_t *len)
3981 {
3982 	int err;
3983 	struct selinux_state *state = &selinux_state;
3984 	struct selinux_policy *policy;
3985 
3986 	policy = rcu_dereference_protected(
3987 			state->policy, lockdep_is_held(&state->policy_mutex));
3988 	if (!policy)
3989 		return -EINVAL;
3990 
3991 	*len = policy->policydb.len;
3992 	*data = vmalloc(*len);
3993 	if (!*data)
3994 		return -ENOMEM;
3995 
3996 	err = __security_read_policy(policy, *data, len);
3997 	if (err) {
3998 		vfree(*data);
3999 		*data = NULL;
4000 		*len = 0;
4001 	}
4002 	return err;
4003 }
4004