1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70
71 struct selinux_policy_convert_data {
72 struct convert_context_args args;
73 struct sidtab_convert_params sidtab_params;
74 };
75
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 struct context *context,
79 char **scontext,
80 u32 *scontext_len);
81
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 struct sidtab *sidtab,
84 struct sidtab_entry *entry,
85 char **scontext,
86 u32 *scontext_len);
87
88 static void context_struct_compute_av(struct policydb *policydb,
89 struct context *scontext,
90 struct context *tcontext,
91 u16 tclass,
92 struct av_decision *avd,
93 struct extended_perms *xperms);
94
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)95 static int selinux_set_mapping(struct policydb *pol,
96 const struct security_class_mapping *map,
97 struct selinux_map *out_map)
98 {
99 u16 i, j;
100 bool print_unknown_handle = false;
101
102 /* Find number of classes in the input mapping */
103 if (!map)
104 return -EINVAL;
105 i = 0;
106 while (map[i].name)
107 i++;
108
109 /* Allocate space for the class records, plus one for class zero */
110 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 if (!out_map->mapping)
112 return -ENOMEM;
113
114 /* Store the raw class and permission values */
115 j = 0;
116 while (map[j].name) {
117 const struct security_class_mapping *p_in = map + (j++);
118 struct selinux_mapping *p_out = out_map->mapping + j;
119 u16 k;
120
121 /* An empty class string skips ahead */
122 if (!strcmp(p_in->name, "")) {
123 p_out->num_perms = 0;
124 continue;
125 }
126
127 p_out->value = string_to_security_class(pol, p_in->name);
128 if (!p_out->value) {
129 pr_info("SELinux: Class %s not defined in policy.\n",
130 p_in->name);
131 if (pol->reject_unknown)
132 goto err;
133 p_out->num_perms = 0;
134 print_unknown_handle = true;
135 continue;
136 }
137
138 k = 0;
139 while (p_in->perms[k]) {
140 /* An empty permission string skips ahead */
141 if (!*p_in->perms[k]) {
142 k++;
143 continue;
144 }
145 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 p_in->perms[k]);
147 if (!p_out->perms[k]) {
148 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
149 p_in->perms[k], p_in->name);
150 if (pol->reject_unknown)
151 goto err;
152 print_unknown_handle = true;
153 }
154
155 k++;
156 }
157 p_out->num_perms = k;
158 }
159
160 if (print_unknown_handle)
161 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 pol->allow_unknown ? "allowed" : "denied");
163
164 out_map->size = i;
165 return 0;
166 err:
167 kfree(out_map->mapping);
168 out_map->mapping = NULL;
169 return -EINVAL;
170 }
171
172 /*
173 * Get real, policy values from mapped values
174 */
175
unmap_class(struct selinux_map * map,u16 tclass)176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 if (tclass < map->size)
179 return map->mapping[tclass].value;
180
181 return tclass;
182 }
183
184 /*
185 * Get kernel value for class from its policy value
186 */
map_class(struct selinux_map * map,u16 pol_value)187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 u16 i;
190
191 for (i = 1; i < map->size; i++) {
192 if (map->mapping[i].value == pol_value)
193 return i;
194 }
195
196 return SECCLASS_NULL;
197 }
198
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)199 static void map_decision(struct selinux_map *map,
200 u16 tclass, struct av_decision *avd,
201 int allow_unknown)
202 {
203 if (tclass < map->size) {
204 struct selinux_mapping *mapping = &map->mapping[tclass];
205 unsigned int i, n = mapping->num_perms;
206 u32 result;
207
208 for (i = 0, result = 0; i < n; i++) {
209 if (avd->allowed & mapping->perms[i])
210 result |= (u32)1<<i;
211 if (allow_unknown && !mapping->perms[i])
212 result |= (u32)1<<i;
213 }
214 avd->allowed = result;
215
216 for (i = 0, result = 0; i < n; i++)
217 if (avd->auditallow & mapping->perms[i])
218 result |= (u32)1<<i;
219 avd->auditallow = result;
220
221 for (i = 0, result = 0; i < n; i++) {
222 if (avd->auditdeny & mapping->perms[i])
223 result |= (u32)1<<i;
224 if (!allow_unknown && !mapping->perms[i])
225 result |= (u32)1<<i;
226 }
227 /*
228 * In case the kernel has a bug and requests a permission
229 * between num_perms and the maximum permission number, we
230 * should audit that denial
231 */
232 for (; i < (sizeof(u32)*8); i++)
233 result |= (u32)1<<i;
234 avd->auditdeny = result;
235 }
236 }
237
security_mls_enabled(void)238 int security_mls_enabled(void)
239 {
240 int mls_enabled;
241 struct selinux_policy *policy;
242
243 if (!selinux_initialized())
244 return 0;
245
246 rcu_read_lock();
247 policy = rcu_dereference(selinux_state.policy);
248 mls_enabled = policy->policydb.mls_enabled;
249 rcu_read_unlock();
250 return mls_enabled;
251 }
252
253 /*
254 * Return the boolean value of a constraint expression
255 * when it is applied to the specified source and target
256 * security contexts.
257 *
258 * xcontext is a special beast... It is used by the validatetrans rules
259 * only. For these rules, scontext is the context before the transition,
260 * tcontext is the context after the transition, and xcontext is the context
261 * of the process performing the transition. All other callers of
262 * constraint_expr_eval should pass in NULL for xcontext.
263 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)264 static int constraint_expr_eval(struct policydb *policydb,
265 struct context *scontext,
266 struct context *tcontext,
267 struct context *xcontext,
268 struct constraint_expr *cexpr)
269 {
270 u32 val1, val2;
271 struct context *c;
272 struct role_datum *r1, *r2;
273 struct mls_level *l1, *l2;
274 struct constraint_expr *e;
275 int s[CEXPR_MAXDEPTH];
276 int sp = -1;
277
278 for (e = cexpr; e; e = e->next) {
279 switch (e->expr_type) {
280 case CEXPR_NOT:
281 BUG_ON(sp < 0);
282 s[sp] = !s[sp];
283 break;
284 case CEXPR_AND:
285 BUG_ON(sp < 1);
286 sp--;
287 s[sp] &= s[sp + 1];
288 break;
289 case CEXPR_OR:
290 BUG_ON(sp < 1);
291 sp--;
292 s[sp] |= s[sp + 1];
293 break;
294 case CEXPR_ATTR:
295 if (sp == (CEXPR_MAXDEPTH - 1))
296 return 0;
297 switch (e->attr) {
298 case CEXPR_USER:
299 val1 = scontext->user;
300 val2 = tcontext->user;
301 break;
302 case CEXPR_TYPE:
303 val1 = scontext->type;
304 val2 = tcontext->type;
305 break;
306 case CEXPR_ROLE:
307 val1 = scontext->role;
308 val2 = tcontext->role;
309 r1 = policydb->role_val_to_struct[val1 - 1];
310 r2 = policydb->role_val_to_struct[val2 - 1];
311 switch (e->op) {
312 case CEXPR_DOM:
313 s[++sp] = ebitmap_get_bit(&r1->dominates,
314 val2 - 1);
315 continue;
316 case CEXPR_DOMBY:
317 s[++sp] = ebitmap_get_bit(&r2->dominates,
318 val1 - 1);
319 continue;
320 case CEXPR_INCOMP:
321 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 val2 - 1) &&
323 !ebitmap_get_bit(&r2->dominates,
324 val1 - 1));
325 continue;
326 default:
327 break;
328 }
329 break;
330 case CEXPR_L1L2:
331 l1 = &(scontext->range.level[0]);
332 l2 = &(tcontext->range.level[0]);
333 goto mls_ops;
334 case CEXPR_L1H2:
335 l1 = &(scontext->range.level[0]);
336 l2 = &(tcontext->range.level[1]);
337 goto mls_ops;
338 case CEXPR_H1L2:
339 l1 = &(scontext->range.level[1]);
340 l2 = &(tcontext->range.level[0]);
341 goto mls_ops;
342 case CEXPR_H1H2:
343 l1 = &(scontext->range.level[1]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346 case CEXPR_L1H1:
347 l1 = &(scontext->range.level[0]);
348 l2 = &(scontext->range.level[1]);
349 goto mls_ops;
350 case CEXPR_L2H2:
351 l1 = &(tcontext->range.level[0]);
352 l2 = &(tcontext->range.level[1]);
353 goto mls_ops;
354 mls_ops:
355 switch (e->op) {
356 case CEXPR_EQ:
357 s[++sp] = mls_level_eq(l1, l2);
358 continue;
359 case CEXPR_NEQ:
360 s[++sp] = !mls_level_eq(l1, l2);
361 continue;
362 case CEXPR_DOM:
363 s[++sp] = mls_level_dom(l1, l2);
364 continue;
365 case CEXPR_DOMBY:
366 s[++sp] = mls_level_dom(l2, l1);
367 continue;
368 case CEXPR_INCOMP:
369 s[++sp] = mls_level_incomp(l2, l1);
370 continue;
371 default:
372 BUG();
373 return 0;
374 }
375 break;
376 default:
377 BUG();
378 return 0;
379 }
380
381 switch (e->op) {
382 case CEXPR_EQ:
383 s[++sp] = (val1 == val2);
384 break;
385 case CEXPR_NEQ:
386 s[++sp] = (val1 != val2);
387 break;
388 default:
389 BUG();
390 return 0;
391 }
392 break;
393 case CEXPR_NAMES:
394 if (sp == (CEXPR_MAXDEPTH-1))
395 return 0;
396 c = scontext;
397 if (e->attr & CEXPR_TARGET)
398 c = tcontext;
399 else if (e->attr & CEXPR_XTARGET) {
400 c = xcontext;
401 if (!c) {
402 BUG();
403 return 0;
404 }
405 }
406 if (e->attr & CEXPR_USER)
407 val1 = c->user;
408 else if (e->attr & CEXPR_ROLE)
409 val1 = c->role;
410 else if (e->attr & CEXPR_TYPE)
411 val1 = c->type;
412 else {
413 BUG();
414 return 0;
415 }
416
417 switch (e->op) {
418 case CEXPR_EQ:
419 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 break;
421 case CEXPR_NEQ:
422 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 break;
424 default:
425 BUG();
426 return 0;
427 }
428 break;
429 default:
430 BUG();
431 return 0;
432 }
433 }
434
435 BUG_ON(sp != 0);
436 return s[0];
437 }
438
439 /*
440 * security_dump_masked_av - dumps masked permissions during
441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442 */
dump_masked_av_helper(void * k,void * d,void * args)443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 struct perm_datum *pdatum = d;
446 char **permission_names = args;
447
448 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449
450 permission_names[pdatum->value - 1] = (char *)k;
451
452 return 0;
453 }
454
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)455 static void security_dump_masked_av(struct policydb *policydb,
456 struct context *scontext,
457 struct context *tcontext,
458 u16 tclass,
459 u32 permissions,
460 const char *reason)
461 {
462 struct common_datum *common_dat;
463 struct class_datum *tclass_dat;
464 struct audit_buffer *ab;
465 char *tclass_name;
466 char *scontext_name = NULL;
467 char *tcontext_name = NULL;
468 char *permission_names[32];
469 int index;
470 u32 length;
471 bool need_comma = false;
472
473 if (!permissions)
474 return;
475
476 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 common_dat = tclass_dat->comdatum;
479
480 /* init permission_names */
481 if (common_dat &&
482 hashtab_map(&common_dat->permissions.table,
483 dump_masked_av_helper, permission_names) < 0)
484 goto out;
485
486 if (hashtab_map(&tclass_dat->permissions.table,
487 dump_masked_av_helper, permission_names) < 0)
488 goto out;
489
490 /* get scontext/tcontext in text form */
491 if (context_struct_to_string(policydb, scontext,
492 &scontext_name, &length) < 0)
493 goto out;
494
495 if (context_struct_to_string(policydb, tcontext,
496 &tcontext_name, &length) < 0)
497 goto out;
498
499 /* audit a message */
500 ab = audit_log_start(audit_context(),
501 GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 if (!ab)
503 goto out;
504
505 audit_log_format(ab, "op=security_compute_av reason=%s "
506 "scontext=%s tcontext=%s tclass=%s perms=",
507 reason, scontext_name, tcontext_name, tclass_name);
508
509 for (index = 0; index < 32; index++) {
510 u32 mask = (1 << index);
511
512 if ((mask & permissions) == 0)
513 continue;
514
515 audit_log_format(ab, "%s%s",
516 need_comma ? "," : "",
517 permission_names[index]
518 ? permission_names[index] : "????");
519 need_comma = true;
520 }
521 audit_log_end(ab);
522 out:
523 /* release scontext/tcontext */
524 kfree(tcontext_name);
525 kfree(scontext_name);
526 }
527
528 /*
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
531 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 struct context *scontext,
534 struct context *tcontext,
535 u16 tclass,
536 struct av_decision *avd)
537 {
538 struct context lo_scontext;
539 struct context lo_tcontext, *tcontextp = tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source;
542 struct type_datum *target;
543 u32 masked = 0;
544
545 source = policydb->type_val_to_struct[scontext->type - 1];
546 BUG_ON(!source);
547
548 if (!source->bounds)
549 return;
550
551 target = policydb->type_val_to_struct[tcontext->type - 1];
552 BUG_ON(!target);
553
554 memset(&lo_avd, 0, sizeof(lo_avd));
555
556 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 lo_scontext.type = source->bounds;
558
559 if (target->bounds) {
560 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 lo_tcontext.type = target->bounds;
562 tcontextp = &lo_tcontext;
563 }
564
565 context_struct_compute_av(policydb, &lo_scontext,
566 tcontextp,
567 tclass,
568 &lo_avd,
569 NULL);
570
571 masked = ~lo_avd.allowed & avd->allowed;
572
573 if (likely(!masked))
574 return; /* no masked permission */
575
576 /* mask violated permissions */
577 avd->allowed &= ~masked;
578
579 /* audit masked permissions */
580 security_dump_masked_av(policydb, scontext, tcontext,
581 tclass, masked, "bounds");
582 }
583
584 /*
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permissions
587 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591 {
592 unsigned int i;
593
594 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 /* if one or more driver has all permissions allowed */
596 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 /* if allowing permissions within a driver */
600 security_xperm_set(xperms->drivers.p,
601 node->datum.u.xperms->driver);
602 }
603
604 xperms->len = 1;
605 }
606
607 /*
608 * Compute access vectors and extended permissions based on a context
609 * structure pair for the permissions in a particular class.
610 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)611 static void context_struct_compute_av(struct policydb *policydb,
612 struct context *scontext,
613 struct context *tcontext,
614 u16 tclass,
615 struct av_decision *avd,
616 struct extended_perms *xperms)
617 {
618 struct constraint_node *constraint;
619 struct role_allow *ra;
620 struct avtab_key avkey;
621 struct avtab_node *node;
622 struct class_datum *tclass_datum;
623 struct ebitmap *sattr, *tattr;
624 struct ebitmap_node *snode, *tnode;
625 unsigned int i, j;
626
627 avd->allowed = 0;
628 avd->auditallow = 0;
629 avd->auditdeny = 0xffffffff;
630 if (xperms) {
631 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632 xperms->len = 0;
633 }
634
635 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636 if (printk_ratelimit())
637 pr_warn("SELinux: Invalid class %hu\n", tclass);
638 return;
639 }
640
641 tclass_datum = policydb->class_val_to_struct[tclass - 1];
642
643 /*
644 * If a specific type enforcement rule was defined for
645 * this permission check, then use it.
646 */
647 avkey.target_class = tclass;
648 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
649 sattr = &policydb->type_attr_map_array[scontext->type - 1];
650 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
651 ebitmap_for_each_positive_bit(sattr, snode, i) {
652 ebitmap_for_each_positive_bit(tattr, tnode, j) {
653 avkey.source_type = i + 1;
654 avkey.target_type = j + 1;
655 for (node = avtab_search_node(&policydb->te_avtab,
656 &avkey);
657 node;
658 node = avtab_search_node_next(node, avkey.specified)) {
659 if (node->key.specified == AVTAB_ALLOWED)
660 avd->allowed |= node->datum.u.data;
661 else if (node->key.specified == AVTAB_AUDITALLOW)
662 avd->auditallow |= node->datum.u.data;
663 else if (node->key.specified == AVTAB_AUDITDENY)
664 avd->auditdeny &= node->datum.u.data;
665 else if (xperms && (node->key.specified & AVTAB_XPERMS))
666 services_compute_xperms_drivers(xperms, node);
667 }
668
669 /* Check conditional av table for additional permissions */
670 cond_compute_av(&policydb->te_cond_avtab, &avkey,
671 avd, xperms);
672
673 }
674 }
675
676 /*
677 * Remove any permissions prohibited by a constraint (this includes
678 * the MLS policy).
679 */
680 constraint = tclass_datum->constraints;
681 while (constraint) {
682 if ((constraint->permissions & (avd->allowed)) &&
683 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
684 constraint->expr)) {
685 avd->allowed &= ~(constraint->permissions);
686 }
687 constraint = constraint->next;
688 }
689
690 /*
691 * If checking process transition permission and the
692 * role is changing, then check the (current_role, new_role)
693 * pair.
694 */
695 if (tclass == policydb->process_class &&
696 (avd->allowed & policydb->process_trans_perms) &&
697 scontext->role != tcontext->role) {
698 for (ra = policydb->role_allow; ra; ra = ra->next) {
699 if (scontext->role == ra->role &&
700 tcontext->role == ra->new_role)
701 break;
702 }
703 if (!ra)
704 avd->allowed &= ~policydb->process_trans_perms;
705 }
706
707 /*
708 * If the given source and target types have boundary
709 * constraint, lazy checks have to mask any violated
710 * permission and notice it to userspace via audit.
711 */
712 type_attribute_bounds_av(policydb, scontext, tcontext,
713 tclass, avd);
714 }
715
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)716 static int security_validtrans_handle_fail(struct selinux_policy *policy,
717 struct sidtab_entry *oentry,
718 struct sidtab_entry *nentry,
719 struct sidtab_entry *tentry,
720 u16 tclass)
721 {
722 struct policydb *p = &policy->policydb;
723 struct sidtab *sidtab = policy->sidtab;
724 char *o = NULL, *n = NULL, *t = NULL;
725 u32 olen, nlen, tlen;
726
727 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
728 goto out;
729 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
730 goto out;
731 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
732 goto out;
733 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
734 "op=security_validate_transition seresult=denied"
735 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
736 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
737 out:
738 kfree(o);
739 kfree(n);
740 kfree(t);
741
742 if (!enforcing_enabled())
743 return 0;
744 return -EPERM;
745 }
746
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)747 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
748 u16 orig_tclass, bool user)
749 {
750 struct selinux_policy *policy;
751 struct policydb *policydb;
752 struct sidtab *sidtab;
753 struct sidtab_entry *oentry;
754 struct sidtab_entry *nentry;
755 struct sidtab_entry *tentry;
756 struct class_datum *tclass_datum;
757 struct constraint_node *constraint;
758 u16 tclass;
759 int rc = 0;
760
761
762 if (!selinux_initialized())
763 return 0;
764
765 rcu_read_lock();
766
767 policy = rcu_dereference(selinux_state.policy);
768 policydb = &policy->policydb;
769 sidtab = policy->sidtab;
770
771 if (!user)
772 tclass = unmap_class(&policy->map, orig_tclass);
773 else
774 tclass = orig_tclass;
775
776 if (!tclass || tclass > policydb->p_classes.nprim) {
777 rc = -EINVAL;
778 goto out;
779 }
780 tclass_datum = policydb->class_val_to_struct[tclass - 1];
781
782 oentry = sidtab_search_entry(sidtab, oldsid);
783 if (!oentry) {
784 pr_err("SELinux: %s: unrecognized SID %d\n",
785 __func__, oldsid);
786 rc = -EINVAL;
787 goto out;
788 }
789
790 nentry = sidtab_search_entry(sidtab, newsid);
791 if (!nentry) {
792 pr_err("SELinux: %s: unrecognized SID %d\n",
793 __func__, newsid);
794 rc = -EINVAL;
795 goto out;
796 }
797
798 tentry = sidtab_search_entry(sidtab, tasksid);
799 if (!tentry) {
800 pr_err("SELinux: %s: unrecognized SID %d\n",
801 __func__, tasksid);
802 rc = -EINVAL;
803 goto out;
804 }
805
806 constraint = tclass_datum->validatetrans;
807 while (constraint) {
808 if (!constraint_expr_eval(policydb, &oentry->context,
809 &nentry->context, &tentry->context,
810 constraint->expr)) {
811 if (user)
812 rc = -EPERM;
813 else
814 rc = security_validtrans_handle_fail(policy,
815 oentry,
816 nentry,
817 tentry,
818 tclass);
819 goto out;
820 }
821 constraint = constraint->next;
822 }
823
824 out:
825 rcu_read_unlock();
826 return rc;
827 }
828
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)829 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
830 u16 tclass)
831 {
832 return security_compute_validatetrans(oldsid, newsid, tasksid,
833 tclass, true);
834 }
835
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)836 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
837 u16 orig_tclass)
838 {
839 return security_compute_validatetrans(oldsid, newsid, tasksid,
840 orig_tclass, false);
841 }
842
843 /*
844 * security_bounded_transition - check whether the given
845 * transition is directed to bounded, or not.
846 * It returns 0, if @newsid is bounded by @oldsid.
847 * Otherwise, it returns error code.
848 *
849 * @oldsid : current security identifier
850 * @newsid : destinated security identifier
851 */
security_bounded_transition(u32 old_sid,u32 new_sid)852 int security_bounded_transition(u32 old_sid, u32 new_sid)
853 {
854 struct selinux_policy *policy;
855 struct policydb *policydb;
856 struct sidtab *sidtab;
857 struct sidtab_entry *old_entry, *new_entry;
858 struct type_datum *type;
859 u32 index;
860 int rc;
861
862 if (!selinux_initialized())
863 return 0;
864
865 rcu_read_lock();
866 policy = rcu_dereference(selinux_state.policy);
867 policydb = &policy->policydb;
868 sidtab = policy->sidtab;
869
870 rc = -EINVAL;
871 old_entry = sidtab_search_entry(sidtab, old_sid);
872 if (!old_entry) {
873 pr_err("SELinux: %s: unrecognized SID %u\n",
874 __func__, old_sid);
875 goto out;
876 }
877
878 rc = -EINVAL;
879 new_entry = sidtab_search_entry(sidtab, new_sid);
880 if (!new_entry) {
881 pr_err("SELinux: %s: unrecognized SID %u\n",
882 __func__, new_sid);
883 goto out;
884 }
885
886 rc = 0;
887 /* type/domain unchanged */
888 if (old_entry->context.type == new_entry->context.type)
889 goto out;
890
891 index = new_entry->context.type;
892 while (true) {
893 type = policydb->type_val_to_struct[index - 1];
894 BUG_ON(!type);
895
896 /* not bounded anymore */
897 rc = -EPERM;
898 if (!type->bounds)
899 break;
900
901 /* @newsid is bounded by @oldsid */
902 rc = 0;
903 if (type->bounds == old_entry->context.type)
904 break;
905
906 index = type->bounds;
907 }
908
909 if (rc) {
910 char *old_name = NULL;
911 char *new_name = NULL;
912 u32 length;
913
914 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
915 &old_name, &length) &&
916 !sidtab_entry_to_string(policydb, sidtab, new_entry,
917 &new_name, &length)) {
918 audit_log(audit_context(),
919 GFP_ATOMIC, AUDIT_SELINUX_ERR,
920 "op=security_bounded_transition "
921 "seresult=denied "
922 "oldcontext=%s newcontext=%s",
923 old_name, new_name);
924 }
925 kfree(new_name);
926 kfree(old_name);
927 }
928 out:
929 rcu_read_unlock();
930
931 return rc;
932 }
933
avd_init(struct selinux_policy * policy,struct av_decision * avd)934 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
935 {
936 avd->allowed = 0;
937 avd->auditallow = 0;
938 avd->auditdeny = 0xffffffff;
939 if (policy)
940 avd->seqno = policy->latest_granting;
941 else
942 avd->seqno = 0;
943 avd->flags = 0;
944 }
945
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)946 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947 struct avtab_node *node)
948 {
949 unsigned int i;
950
951 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952 if (xpermd->driver != node->datum.u.xperms->driver)
953 return;
954 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955 if (!security_xperm_test(node->datum.u.xperms->perms.p,
956 xpermd->driver))
957 return;
958 } else {
959 pr_warn_once(
960 "SELinux: unknown extended permission (%u) will be ignored\n",
961 node->datum.u.xperms->specified);
962 return;
963 }
964
965 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
966 xpermd->used |= XPERMS_ALLOWED;
967 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
968 memset(xpermd->allowed->p, 0xff,
969 sizeof(xpermd->allowed->p));
970 }
971 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
972 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
973 xpermd->allowed->p[i] |=
974 node->datum.u.xperms->perms.p[i];
975 }
976 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
977 xpermd->used |= XPERMS_AUDITALLOW;
978 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
979 memset(xpermd->auditallow->p, 0xff,
980 sizeof(xpermd->auditallow->p));
981 }
982 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
983 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
984 xpermd->auditallow->p[i] |=
985 node->datum.u.xperms->perms.p[i];
986 }
987 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
988 xpermd->used |= XPERMS_DONTAUDIT;
989 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
990 memset(xpermd->dontaudit->p, 0xff,
991 sizeof(xpermd->dontaudit->p));
992 }
993 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
994 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
995 xpermd->dontaudit->p[i] |=
996 node->datum.u.xperms->perms.p[i];
997 }
998 } else {
999 pr_warn_once("SELinux: unknown specified key (%u)\n",
1000 node->key.specified);
1001 }
1002 }
1003
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1004 void security_compute_xperms_decision(u32 ssid,
1005 u32 tsid,
1006 u16 orig_tclass,
1007 u8 driver,
1008 struct extended_perms_decision *xpermd)
1009 {
1010 struct selinux_policy *policy;
1011 struct policydb *policydb;
1012 struct sidtab *sidtab;
1013 u16 tclass;
1014 struct context *scontext, *tcontext;
1015 struct avtab_key avkey;
1016 struct avtab_node *node;
1017 struct ebitmap *sattr, *tattr;
1018 struct ebitmap_node *snode, *tnode;
1019 unsigned int i, j;
1020
1021 xpermd->driver = driver;
1022 xpermd->used = 0;
1023 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1024 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1025 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1026
1027 rcu_read_lock();
1028 if (!selinux_initialized())
1029 goto allow;
1030
1031 policy = rcu_dereference(selinux_state.policy);
1032 policydb = &policy->policydb;
1033 sidtab = policy->sidtab;
1034
1035 scontext = sidtab_search(sidtab, ssid);
1036 if (!scontext) {
1037 pr_err("SELinux: %s: unrecognized SID %d\n",
1038 __func__, ssid);
1039 goto out;
1040 }
1041
1042 tcontext = sidtab_search(sidtab, tsid);
1043 if (!tcontext) {
1044 pr_err("SELinux: %s: unrecognized SID %d\n",
1045 __func__, tsid);
1046 goto out;
1047 }
1048
1049 tclass = unmap_class(&policy->map, orig_tclass);
1050 if (unlikely(orig_tclass && !tclass)) {
1051 if (policydb->allow_unknown)
1052 goto allow;
1053 goto out;
1054 }
1055
1056
1057 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1058 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1059 goto out;
1060 }
1061
1062 avkey.target_class = tclass;
1063 avkey.specified = AVTAB_XPERMS;
1064 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1065 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1066 ebitmap_for_each_positive_bit(sattr, snode, i) {
1067 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1068 avkey.source_type = i + 1;
1069 avkey.target_type = j + 1;
1070 for (node = avtab_search_node(&policydb->te_avtab,
1071 &avkey);
1072 node;
1073 node = avtab_search_node_next(node, avkey.specified))
1074 services_compute_xperms_decision(xpermd, node);
1075
1076 cond_compute_xperms(&policydb->te_cond_avtab,
1077 &avkey, xpermd);
1078 }
1079 }
1080 out:
1081 rcu_read_unlock();
1082 return;
1083 allow:
1084 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1085 goto out;
1086 }
1087
1088 /**
1089 * security_compute_av - Compute access vector decisions.
1090 * @ssid: source security identifier
1091 * @tsid: target security identifier
1092 * @orig_tclass: target security class
1093 * @avd: access vector decisions
1094 * @xperms: extended permissions
1095 *
1096 * Compute a set of access vector decisions based on the
1097 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1098 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1099 void security_compute_av(u32 ssid,
1100 u32 tsid,
1101 u16 orig_tclass,
1102 struct av_decision *avd,
1103 struct extended_perms *xperms)
1104 {
1105 struct selinux_policy *policy;
1106 struct policydb *policydb;
1107 struct sidtab *sidtab;
1108 u16 tclass;
1109 struct context *scontext = NULL, *tcontext = NULL;
1110
1111 rcu_read_lock();
1112 policy = rcu_dereference(selinux_state.policy);
1113 avd_init(policy, avd);
1114 xperms->len = 0;
1115 if (!selinux_initialized())
1116 goto allow;
1117
1118 policydb = &policy->policydb;
1119 sidtab = policy->sidtab;
1120
1121 scontext = sidtab_search(sidtab, ssid);
1122 if (!scontext) {
1123 pr_err("SELinux: %s: unrecognized SID %d\n",
1124 __func__, ssid);
1125 goto out;
1126 }
1127
1128 /* permissive domain? */
1129 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1130 avd->flags |= AVD_FLAGS_PERMISSIVE;
1131
1132 tcontext = sidtab_search(sidtab, tsid);
1133 if (!tcontext) {
1134 pr_err("SELinux: %s: unrecognized SID %d\n",
1135 __func__, tsid);
1136 goto out;
1137 }
1138
1139 tclass = unmap_class(&policy->map, orig_tclass);
1140 if (unlikely(orig_tclass && !tclass)) {
1141 if (policydb->allow_unknown)
1142 goto allow;
1143 goto out;
1144 }
1145 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1146 xperms);
1147 map_decision(&policy->map, orig_tclass, avd,
1148 policydb->allow_unknown);
1149 out:
1150 rcu_read_unlock();
1151 return;
1152 allow:
1153 avd->allowed = 0xffffffff;
1154 goto out;
1155 }
1156
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1157 void security_compute_av_user(u32 ssid,
1158 u32 tsid,
1159 u16 tclass,
1160 struct av_decision *avd)
1161 {
1162 struct selinux_policy *policy;
1163 struct policydb *policydb;
1164 struct sidtab *sidtab;
1165 struct context *scontext = NULL, *tcontext = NULL;
1166
1167 rcu_read_lock();
1168 policy = rcu_dereference(selinux_state.policy);
1169 avd_init(policy, avd);
1170 if (!selinux_initialized())
1171 goto allow;
1172
1173 policydb = &policy->policydb;
1174 sidtab = policy->sidtab;
1175
1176 scontext = sidtab_search(sidtab, ssid);
1177 if (!scontext) {
1178 pr_err("SELinux: %s: unrecognized SID %d\n",
1179 __func__, ssid);
1180 goto out;
1181 }
1182
1183 /* permissive domain? */
1184 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1185 avd->flags |= AVD_FLAGS_PERMISSIVE;
1186
1187 tcontext = sidtab_search(sidtab, tsid);
1188 if (!tcontext) {
1189 pr_err("SELinux: %s: unrecognized SID %d\n",
1190 __func__, tsid);
1191 goto out;
1192 }
1193
1194 if (unlikely(!tclass)) {
1195 if (policydb->allow_unknown)
1196 goto allow;
1197 goto out;
1198 }
1199
1200 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1201 NULL);
1202 out:
1203 rcu_read_unlock();
1204 return;
1205 allow:
1206 avd->allowed = 0xffffffff;
1207 goto out;
1208 }
1209
1210 /*
1211 * Write the security context string representation of
1212 * the context structure `context' into a dynamically
1213 * allocated string of the correct size. Set `*scontext'
1214 * to point to this string and set `*scontext_len' to
1215 * the length of the string.
1216 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1217 static int context_struct_to_string(struct policydb *p,
1218 struct context *context,
1219 char **scontext, u32 *scontext_len)
1220 {
1221 char *scontextp;
1222
1223 if (scontext)
1224 *scontext = NULL;
1225 *scontext_len = 0;
1226
1227 if (context->len) {
1228 *scontext_len = context->len;
1229 if (scontext) {
1230 *scontext = kstrdup(context->str, GFP_ATOMIC);
1231 if (!(*scontext))
1232 return -ENOMEM;
1233 }
1234 return 0;
1235 }
1236
1237 /* Compute the size of the context. */
1238 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1239 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1240 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1241 *scontext_len += mls_compute_context_len(p, context);
1242
1243 if (!scontext)
1244 return 0;
1245
1246 /* Allocate space for the context; caller must free this space. */
1247 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1248 if (!scontextp)
1249 return -ENOMEM;
1250 *scontext = scontextp;
1251
1252 /*
1253 * Copy the user name, role name and type name into the context.
1254 */
1255 scontextp += sprintf(scontextp, "%s:%s:%s",
1256 sym_name(p, SYM_USERS, context->user - 1),
1257 sym_name(p, SYM_ROLES, context->role - 1),
1258 sym_name(p, SYM_TYPES, context->type - 1));
1259
1260 mls_sid_to_context(p, context, &scontextp);
1261
1262 *scontextp = 0;
1263
1264 return 0;
1265 }
1266
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1267 static int sidtab_entry_to_string(struct policydb *p,
1268 struct sidtab *sidtab,
1269 struct sidtab_entry *entry,
1270 char **scontext, u32 *scontext_len)
1271 {
1272 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1273
1274 if (rc != -ENOENT)
1275 return rc;
1276
1277 rc = context_struct_to_string(p, &entry->context, scontext,
1278 scontext_len);
1279 if (!rc && scontext)
1280 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1281 return rc;
1282 }
1283
1284 #include "initial_sid_to_string.h"
1285
security_sidtab_hash_stats(char * page)1286 int security_sidtab_hash_stats(char *page)
1287 {
1288 struct selinux_policy *policy;
1289 int rc;
1290
1291 if (!selinux_initialized()) {
1292 pr_err("SELinux: %s: called before initial load_policy\n",
1293 __func__);
1294 return -EINVAL;
1295 }
1296
1297 rcu_read_lock();
1298 policy = rcu_dereference(selinux_state.policy);
1299 rc = sidtab_hash_stats(policy->sidtab, page);
1300 rcu_read_unlock();
1301
1302 return rc;
1303 }
1304
security_get_initial_sid_context(u32 sid)1305 const char *security_get_initial_sid_context(u32 sid)
1306 {
1307 if (unlikely(sid > SECINITSID_NUM))
1308 return NULL;
1309 return initial_sid_to_string[sid];
1310 }
1311
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1312 static int security_sid_to_context_core(u32 sid, char **scontext,
1313 u32 *scontext_len, int force,
1314 int only_invalid)
1315 {
1316 struct selinux_policy *policy;
1317 struct policydb *policydb;
1318 struct sidtab *sidtab;
1319 struct sidtab_entry *entry;
1320 int rc = 0;
1321
1322 if (scontext)
1323 *scontext = NULL;
1324 *scontext_len = 0;
1325
1326 if (!selinux_initialized()) {
1327 if (sid <= SECINITSID_NUM) {
1328 char *scontextp;
1329 const char *s = initial_sid_to_string[sid];
1330
1331 if (!s)
1332 return -EINVAL;
1333 *scontext_len = strlen(s) + 1;
1334 if (!scontext)
1335 return 0;
1336 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1337 if (!scontextp)
1338 return -ENOMEM;
1339 *scontext = scontextp;
1340 return 0;
1341 }
1342 pr_err("SELinux: %s: called before initial "
1343 "load_policy on unknown SID %d\n", __func__, sid);
1344 return -EINVAL;
1345 }
1346 rcu_read_lock();
1347 policy = rcu_dereference(selinux_state.policy);
1348 policydb = &policy->policydb;
1349 sidtab = policy->sidtab;
1350
1351 if (force)
1352 entry = sidtab_search_entry_force(sidtab, sid);
1353 else
1354 entry = sidtab_search_entry(sidtab, sid);
1355 if (!entry) {
1356 pr_err("SELinux: %s: unrecognized SID %d\n",
1357 __func__, sid);
1358 rc = -EINVAL;
1359 goto out_unlock;
1360 }
1361 if (only_invalid && !entry->context.len)
1362 goto out_unlock;
1363
1364 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1365 scontext_len);
1366
1367 out_unlock:
1368 rcu_read_unlock();
1369 return rc;
1370
1371 }
1372
1373 /**
1374 * security_sid_to_context - Obtain a context for a given SID.
1375 * @sid: security identifier, SID
1376 * @scontext: security context
1377 * @scontext_len: length in bytes
1378 *
1379 * Write the string representation of the context associated with @sid
1380 * into a dynamically allocated string of the correct size. Set @scontext
1381 * to point to this string and set @scontext_len to the length of the string.
1382 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1383 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1384 {
1385 return security_sid_to_context_core(sid, scontext,
1386 scontext_len, 0, 0);
1387 }
1388
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1389 int security_sid_to_context_force(u32 sid,
1390 char **scontext, u32 *scontext_len)
1391 {
1392 return security_sid_to_context_core(sid, scontext,
1393 scontext_len, 1, 0);
1394 }
1395
1396 /**
1397 * security_sid_to_context_inval - Obtain a context for a given SID if it
1398 * is invalid.
1399 * @sid: security identifier, SID
1400 * @scontext: security context
1401 * @scontext_len: length in bytes
1402 *
1403 * Write the string representation of the context associated with @sid
1404 * into a dynamically allocated string of the correct size, but only if the
1405 * context is invalid in the current policy. Set @scontext to point to
1406 * this string (or NULL if the context is valid) and set @scontext_len to
1407 * the length of the string (or 0 if the context is valid).
1408 */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1409 int security_sid_to_context_inval(u32 sid,
1410 char **scontext, u32 *scontext_len)
1411 {
1412 return security_sid_to_context_core(sid, scontext,
1413 scontext_len, 1, 1);
1414 }
1415
1416 /*
1417 * Caveat: Mutates scontext.
1418 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1419 static int string_to_context_struct(struct policydb *pol,
1420 struct sidtab *sidtabp,
1421 char *scontext,
1422 struct context *ctx,
1423 u32 def_sid)
1424 {
1425 struct role_datum *role;
1426 struct type_datum *typdatum;
1427 struct user_datum *usrdatum;
1428 char *scontextp, *p, oldc;
1429 int rc = 0;
1430
1431 context_init(ctx);
1432
1433 /* Parse the security context. */
1434
1435 rc = -EINVAL;
1436 scontextp = scontext;
1437
1438 /* Extract the user. */
1439 p = scontextp;
1440 while (*p && *p != ':')
1441 p++;
1442
1443 if (*p == 0)
1444 goto out;
1445
1446 *p++ = 0;
1447
1448 usrdatum = symtab_search(&pol->p_users, scontextp);
1449 if (!usrdatum)
1450 goto out;
1451
1452 ctx->user = usrdatum->value;
1453
1454 /* Extract role. */
1455 scontextp = p;
1456 while (*p && *p != ':')
1457 p++;
1458
1459 if (*p == 0)
1460 goto out;
1461
1462 *p++ = 0;
1463
1464 role = symtab_search(&pol->p_roles, scontextp);
1465 if (!role)
1466 goto out;
1467 ctx->role = role->value;
1468
1469 /* Extract type. */
1470 scontextp = p;
1471 while (*p && *p != ':')
1472 p++;
1473 oldc = *p;
1474 *p++ = 0;
1475
1476 typdatum = symtab_search(&pol->p_types, scontextp);
1477 if (!typdatum || typdatum->attribute)
1478 goto out;
1479
1480 ctx->type = typdatum->value;
1481
1482 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1483 if (rc)
1484 goto out;
1485
1486 /* Check the validity of the new context. */
1487 rc = -EINVAL;
1488 if (!policydb_context_isvalid(pol, ctx))
1489 goto out;
1490 rc = 0;
1491 out:
1492 if (rc)
1493 context_destroy(ctx);
1494 return rc;
1495 }
1496
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1497 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1498 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1499 int force)
1500 {
1501 struct selinux_policy *policy;
1502 struct policydb *policydb;
1503 struct sidtab *sidtab;
1504 char *scontext2, *str = NULL;
1505 struct context context;
1506 int rc = 0;
1507
1508 /* An empty security context is never valid. */
1509 if (!scontext_len)
1510 return -EINVAL;
1511
1512 /* Copy the string to allow changes and ensure a NUL terminator */
1513 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1514 if (!scontext2)
1515 return -ENOMEM;
1516
1517 if (!selinux_initialized()) {
1518 u32 i;
1519
1520 for (i = 1; i < SECINITSID_NUM; i++) {
1521 const char *s = initial_sid_to_string[i];
1522
1523 if (s && !strcmp(s, scontext2)) {
1524 *sid = i;
1525 goto out;
1526 }
1527 }
1528 *sid = SECINITSID_KERNEL;
1529 goto out;
1530 }
1531 *sid = SECSID_NULL;
1532
1533 if (force) {
1534 /* Save another copy for storing in uninterpreted form */
1535 rc = -ENOMEM;
1536 str = kstrdup(scontext2, gfp_flags);
1537 if (!str)
1538 goto out;
1539 }
1540 retry:
1541 rcu_read_lock();
1542 policy = rcu_dereference(selinux_state.policy);
1543 policydb = &policy->policydb;
1544 sidtab = policy->sidtab;
1545 rc = string_to_context_struct(policydb, sidtab, scontext2,
1546 &context, def_sid);
1547 if (rc == -EINVAL && force) {
1548 context.str = str;
1549 context.len = strlen(str) + 1;
1550 str = NULL;
1551 } else if (rc)
1552 goto out_unlock;
1553 rc = sidtab_context_to_sid(sidtab, &context, sid);
1554 if (rc == -ESTALE) {
1555 rcu_read_unlock();
1556 if (context.str) {
1557 str = context.str;
1558 context.str = NULL;
1559 }
1560 context_destroy(&context);
1561 goto retry;
1562 }
1563 context_destroy(&context);
1564 out_unlock:
1565 rcu_read_unlock();
1566 out:
1567 kfree(scontext2);
1568 kfree(str);
1569 return rc;
1570 }
1571
1572 /**
1573 * security_context_to_sid - Obtain a SID for a given security context.
1574 * @scontext: security context
1575 * @scontext_len: length in bytes
1576 * @sid: security identifier, SID
1577 * @gfp: context for the allocation
1578 *
1579 * Obtains a SID associated with the security context that
1580 * has the string representation specified by @scontext.
1581 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1582 * memory is available, or 0 on success.
1583 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1584 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1585 gfp_t gfp)
1586 {
1587 return security_context_to_sid_core(scontext, scontext_len,
1588 sid, SECSID_NULL, gfp, 0);
1589 }
1590
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1591 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1592 {
1593 return security_context_to_sid(scontext, strlen(scontext),
1594 sid, gfp);
1595 }
1596
1597 /**
1598 * security_context_to_sid_default - Obtain a SID for a given security context,
1599 * falling back to specified default if needed.
1600 *
1601 * @scontext: security context
1602 * @scontext_len: length in bytes
1603 * @sid: security identifier, SID
1604 * @def_sid: default SID to assign on error
1605 * @gfp_flags: the allocator get-free-page (GFP) flags
1606 *
1607 * Obtains a SID associated with the security context that
1608 * has the string representation specified by @scontext.
1609 * The default SID is passed to the MLS layer to be used to allow
1610 * kernel labeling of the MLS field if the MLS field is not present
1611 * (for upgrading to MLS without full relabel).
1612 * Implicitly forces adding of the context even if it cannot be mapped yet.
1613 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1614 * memory is available, or 0 on success.
1615 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1616 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1617 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1618 {
1619 return security_context_to_sid_core(scontext, scontext_len,
1620 sid, def_sid, gfp_flags, 1);
1621 }
1622
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1623 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1624 u32 *sid)
1625 {
1626 return security_context_to_sid_core(scontext, scontext_len,
1627 sid, SECSID_NULL, GFP_KERNEL, 1);
1628 }
1629
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1630 static int compute_sid_handle_invalid_context(
1631 struct selinux_policy *policy,
1632 struct sidtab_entry *sentry,
1633 struct sidtab_entry *tentry,
1634 u16 tclass,
1635 struct context *newcontext)
1636 {
1637 struct policydb *policydb = &policy->policydb;
1638 struct sidtab *sidtab = policy->sidtab;
1639 char *s = NULL, *t = NULL, *n = NULL;
1640 u32 slen, tlen, nlen;
1641 struct audit_buffer *ab;
1642
1643 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1644 goto out;
1645 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1646 goto out;
1647 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1648 goto out;
1649 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1650 if (!ab)
1651 goto out;
1652 audit_log_format(ab,
1653 "op=security_compute_sid invalid_context=");
1654 /* no need to record the NUL with untrusted strings */
1655 audit_log_n_untrustedstring(ab, n, nlen - 1);
1656 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1657 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1658 audit_log_end(ab);
1659 out:
1660 kfree(s);
1661 kfree(t);
1662 kfree(n);
1663 if (!enforcing_enabled())
1664 return 0;
1665 return -EACCES;
1666 }
1667
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1668 static void filename_compute_type(struct policydb *policydb,
1669 struct context *newcontext,
1670 u32 stype, u32 ttype, u16 tclass,
1671 const char *objname)
1672 {
1673 struct filename_trans_key ft;
1674 struct filename_trans_datum *datum;
1675
1676 /*
1677 * Most filename trans rules are going to live in specific directories
1678 * like /dev or /var/run. This bitmap will quickly skip rule searches
1679 * if the ttype does not contain any rules.
1680 */
1681 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1682 return;
1683
1684 ft.ttype = ttype;
1685 ft.tclass = tclass;
1686 ft.name = objname;
1687
1688 datum = policydb_filenametr_search(policydb, &ft);
1689 while (datum) {
1690 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1691 newcontext->type = datum->otype;
1692 return;
1693 }
1694 datum = datum->next;
1695 }
1696 }
1697
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1698 static int security_compute_sid(u32 ssid,
1699 u32 tsid,
1700 u16 orig_tclass,
1701 u16 specified,
1702 const char *objname,
1703 u32 *out_sid,
1704 bool kern)
1705 {
1706 struct selinux_policy *policy;
1707 struct policydb *policydb;
1708 struct sidtab *sidtab;
1709 struct class_datum *cladatum;
1710 struct context *scontext, *tcontext, newcontext;
1711 struct sidtab_entry *sentry, *tentry;
1712 struct avtab_key avkey;
1713 struct avtab_node *avnode, *node;
1714 u16 tclass;
1715 int rc = 0;
1716 bool sock;
1717
1718 if (!selinux_initialized()) {
1719 switch (orig_tclass) {
1720 case SECCLASS_PROCESS: /* kernel value */
1721 *out_sid = ssid;
1722 break;
1723 default:
1724 *out_sid = tsid;
1725 break;
1726 }
1727 goto out;
1728 }
1729
1730 retry:
1731 cladatum = NULL;
1732 context_init(&newcontext);
1733
1734 rcu_read_lock();
1735
1736 policy = rcu_dereference(selinux_state.policy);
1737
1738 if (kern) {
1739 tclass = unmap_class(&policy->map, orig_tclass);
1740 sock = security_is_socket_class(orig_tclass);
1741 } else {
1742 tclass = orig_tclass;
1743 sock = security_is_socket_class(map_class(&policy->map,
1744 tclass));
1745 }
1746
1747 policydb = &policy->policydb;
1748 sidtab = policy->sidtab;
1749
1750 sentry = sidtab_search_entry(sidtab, ssid);
1751 if (!sentry) {
1752 pr_err("SELinux: %s: unrecognized SID %d\n",
1753 __func__, ssid);
1754 rc = -EINVAL;
1755 goto out_unlock;
1756 }
1757 tentry = sidtab_search_entry(sidtab, tsid);
1758 if (!tentry) {
1759 pr_err("SELinux: %s: unrecognized SID %d\n",
1760 __func__, tsid);
1761 rc = -EINVAL;
1762 goto out_unlock;
1763 }
1764
1765 scontext = &sentry->context;
1766 tcontext = &tentry->context;
1767
1768 if (tclass && tclass <= policydb->p_classes.nprim)
1769 cladatum = policydb->class_val_to_struct[tclass - 1];
1770
1771 /* Set the user identity. */
1772 switch (specified) {
1773 case AVTAB_TRANSITION:
1774 case AVTAB_CHANGE:
1775 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1776 newcontext.user = tcontext->user;
1777 } else {
1778 /* notice this gets both DEFAULT_SOURCE and unset */
1779 /* Use the process user identity. */
1780 newcontext.user = scontext->user;
1781 }
1782 break;
1783 case AVTAB_MEMBER:
1784 /* Use the related object owner. */
1785 newcontext.user = tcontext->user;
1786 break;
1787 }
1788
1789 /* Set the role to default values. */
1790 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1791 newcontext.role = scontext->role;
1792 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1793 newcontext.role = tcontext->role;
1794 } else {
1795 if ((tclass == policydb->process_class) || sock)
1796 newcontext.role = scontext->role;
1797 else
1798 newcontext.role = OBJECT_R_VAL;
1799 }
1800
1801 /* Set the type to default values. */
1802 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1803 newcontext.type = scontext->type;
1804 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1805 newcontext.type = tcontext->type;
1806 } else {
1807 if ((tclass == policydb->process_class) || sock) {
1808 /* Use the type of process. */
1809 newcontext.type = scontext->type;
1810 } else {
1811 /* Use the type of the related object. */
1812 newcontext.type = tcontext->type;
1813 }
1814 }
1815
1816 /* Look for a type transition/member/change rule. */
1817 avkey.source_type = scontext->type;
1818 avkey.target_type = tcontext->type;
1819 avkey.target_class = tclass;
1820 avkey.specified = specified;
1821 avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1822
1823 /* If no permanent rule, also check for enabled conditional rules */
1824 if (!avnode) {
1825 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1826 for (; node; node = avtab_search_node_next(node, specified)) {
1827 if (node->key.specified & AVTAB_ENABLED) {
1828 avnode = node;
1829 break;
1830 }
1831 }
1832 }
1833
1834 if (avnode) {
1835 /* Use the type from the type transition/member/change rule. */
1836 newcontext.type = avnode->datum.u.data;
1837 }
1838
1839 /* if we have a objname this is a file trans check so check those rules */
1840 if (objname)
1841 filename_compute_type(policydb, &newcontext, scontext->type,
1842 tcontext->type, tclass, objname);
1843
1844 /* Check for class-specific changes. */
1845 if (specified & AVTAB_TRANSITION) {
1846 /* Look for a role transition rule. */
1847 struct role_trans_datum *rtd;
1848 struct role_trans_key rtk = {
1849 .role = scontext->role,
1850 .type = tcontext->type,
1851 .tclass = tclass,
1852 };
1853
1854 rtd = policydb_roletr_search(policydb, &rtk);
1855 if (rtd)
1856 newcontext.role = rtd->new_role;
1857 }
1858
1859 /* Set the MLS attributes.
1860 This is done last because it may allocate memory. */
1861 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1862 &newcontext, sock);
1863 if (rc)
1864 goto out_unlock;
1865
1866 /* Check the validity of the context. */
1867 if (!policydb_context_isvalid(policydb, &newcontext)) {
1868 rc = compute_sid_handle_invalid_context(policy, sentry,
1869 tentry, tclass,
1870 &newcontext);
1871 if (rc)
1872 goto out_unlock;
1873 }
1874 /* Obtain the sid for the context. */
1875 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1876 if (rc == -ESTALE) {
1877 rcu_read_unlock();
1878 context_destroy(&newcontext);
1879 goto retry;
1880 }
1881 out_unlock:
1882 rcu_read_unlock();
1883 context_destroy(&newcontext);
1884 out:
1885 return rc;
1886 }
1887
1888 /**
1889 * security_transition_sid - Compute the SID for a new subject/object.
1890 * @ssid: source security identifier
1891 * @tsid: target security identifier
1892 * @tclass: target security class
1893 * @qstr: object name
1894 * @out_sid: security identifier for new subject/object
1895 *
1896 * Compute a SID to use for labeling a new subject or object in the
1897 * class @tclass based on a SID pair (@ssid, @tsid).
1898 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1899 * if insufficient memory is available, or %0 if the new SID was
1900 * computed successfully.
1901 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1902 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1903 const struct qstr *qstr, u32 *out_sid)
1904 {
1905 return security_compute_sid(ssid, tsid, tclass,
1906 AVTAB_TRANSITION,
1907 qstr ? qstr->name : NULL, out_sid, true);
1908 }
1909
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1910 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1911 const char *objname, u32 *out_sid)
1912 {
1913 return security_compute_sid(ssid, tsid, tclass,
1914 AVTAB_TRANSITION,
1915 objname, out_sid, false);
1916 }
1917
1918 /**
1919 * security_member_sid - Compute the SID for member selection.
1920 * @ssid: source security identifier
1921 * @tsid: target security identifier
1922 * @tclass: target security class
1923 * @out_sid: security identifier for selected member
1924 *
1925 * Compute a SID to use when selecting a member of a polyinstantiated
1926 * object of class @tclass based on a SID pair (@ssid, @tsid).
1927 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1928 * if insufficient memory is available, or %0 if the SID was
1929 * computed successfully.
1930 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1931 int security_member_sid(u32 ssid,
1932 u32 tsid,
1933 u16 tclass,
1934 u32 *out_sid)
1935 {
1936 return security_compute_sid(ssid, tsid, tclass,
1937 AVTAB_MEMBER, NULL,
1938 out_sid, false);
1939 }
1940
1941 /**
1942 * security_change_sid - Compute the SID for object relabeling.
1943 * @ssid: source security identifier
1944 * @tsid: target security identifier
1945 * @tclass: target security class
1946 * @out_sid: security identifier for selected member
1947 *
1948 * Compute a SID to use for relabeling an object of class @tclass
1949 * based on a SID pair (@ssid, @tsid).
1950 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1951 * if insufficient memory is available, or %0 if the SID was
1952 * computed successfully.
1953 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1954 int security_change_sid(u32 ssid,
1955 u32 tsid,
1956 u16 tclass,
1957 u32 *out_sid)
1958 {
1959 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1960 out_sid, false);
1961 }
1962
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)1963 static inline int convert_context_handle_invalid_context(
1964 struct policydb *policydb,
1965 struct context *context)
1966 {
1967 char *s;
1968 u32 len;
1969
1970 if (enforcing_enabled())
1971 return -EINVAL;
1972
1973 if (!context_struct_to_string(policydb, context, &s, &len)) {
1974 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1975 s);
1976 kfree(s);
1977 }
1978 return 0;
1979 }
1980
1981 /**
1982 * services_convert_context - Convert a security context across policies.
1983 * @args: populated convert_context_args struct
1984 * @oldc: original context
1985 * @newc: converted context
1986 * @gfp_flags: allocation flags
1987 *
1988 * Convert the values in the security context structure @oldc from the values
1989 * specified in the policy @args->oldp to the values specified in the policy
1990 * @args->newp, storing the new context in @newc, and verifying that the
1991 * context is valid under the new policy.
1992 */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)1993 int services_convert_context(struct convert_context_args *args,
1994 struct context *oldc, struct context *newc,
1995 gfp_t gfp_flags)
1996 {
1997 struct ocontext *oc;
1998 struct role_datum *role;
1999 struct type_datum *typdatum;
2000 struct user_datum *usrdatum;
2001 char *s;
2002 u32 len;
2003 int rc;
2004
2005 if (oldc->str) {
2006 s = kstrdup(oldc->str, gfp_flags);
2007 if (!s)
2008 return -ENOMEM;
2009
2010 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2011 if (rc == -EINVAL) {
2012 /*
2013 * Retain string representation for later mapping.
2014 *
2015 * IMPORTANT: We need to copy the contents of oldc->str
2016 * back into s again because string_to_context_struct()
2017 * may have garbled it.
2018 */
2019 memcpy(s, oldc->str, oldc->len);
2020 context_init(newc);
2021 newc->str = s;
2022 newc->len = oldc->len;
2023 return 0;
2024 }
2025 kfree(s);
2026 if (rc) {
2027 /* Other error condition, e.g. ENOMEM. */
2028 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2029 oldc->str, -rc);
2030 return rc;
2031 }
2032 pr_info("SELinux: Context %s became valid (mapped).\n",
2033 oldc->str);
2034 return 0;
2035 }
2036
2037 context_init(newc);
2038
2039 /* Convert the user. */
2040 usrdatum = symtab_search(&args->newp->p_users,
2041 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2042 if (!usrdatum)
2043 goto bad;
2044 newc->user = usrdatum->value;
2045
2046 /* Convert the role. */
2047 role = symtab_search(&args->newp->p_roles,
2048 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2049 if (!role)
2050 goto bad;
2051 newc->role = role->value;
2052
2053 /* Convert the type. */
2054 typdatum = symtab_search(&args->newp->p_types,
2055 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2056 if (!typdatum)
2057 goto bad;
2058 newc->type = typdatum->value;
2059
2060 /* Convert the MLS fields if dealing with MLS policies */
2061 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2062 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2063 if (rc)
2064 goto bad;
2065 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2066 /*
2067 * Switching between non-MLS and MLS policy:
2068 * ensure that the MLS fields of the context for all
2069 * existing entries in the sidtab are filled in with a
2070 * suitable default value, likely taken from one of the
2071 * initial SIDs.
2072 */
2073 oc = args->newp->ocontexts[OCON_ISID];
2074 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2075 oc = oc->next;
2076 if (!oc) {
2077 pr_err("SELinux: unable to look up"
2078 " the initial SIDs list\n");
2079 goto bad;
2080 }
2081 rc = mls_range_set(newc, &oc->context[0].range);
2082 if (rc)
2083 goto bad;
2084 }
2085
2086 /* Check the validity of the new context. */
2087 if (!policydb_context_isvalid(args->newp, newc)) {
2088 rc = convert_context_handle_invalid_context(args->oldp, oldc);
2089 if (rc)
2090 goto bad;
2091 }
2092
2093 return 0;
2094 bad:
2095 /* Map old representation to string and save it. */
2096 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2097 if (rc)
2098 return rc;
2099 context_destroy(newc);
2100 newc->str = s;
2101 newc->len = len;
2102 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2103 newc->str);
2104 return 0;
2105 }
2106
security_load_policycaps(struct selinux_policy * policy)2107 static void security_load_policycaps(struct selinux_policy *policy)
2108 {
2109 struct policydb *p;
2110 unsigned int i;
2111 struct ebitmap_node *node;
2112
2113 p = &policy->policydb;
2114
2115 for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2116 WRITE_ONCE(selinux_state.policycap[i],
2117 ebitmap_get_bit(&p->policycaps, i));
2118
2119 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2120 pr_info("SELinux: policy capability %s=%d\n",
2121 selinux_policycap_names[i],
2122 ebitmap_get_bit(&p->policycaps, i));
2123
2124 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2125 if (i >= ARRAY_SIZE(selinux_policycap_names))
2126 pr_info("SELinux: unknown policy capability %u\n",
2127 i);
2128 }
2129 }
2130
2131 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2132 struct selinux_policy *newpolicy);
2133
selinux_policy_free(struct selinux_policy * policy)2134 static void selinux_policy_free(struct selinux_policy *policy)
2135 {
2136 if (!policy)
2137 return;
2138
2139 sidtab_destroy(policy->sidtab);
2140 kfree(policy->map.mapping);
2141 policydb_destroy(&policy->policydb);
2142 kfree(policy->sidtab);
2143 kfree(policy);
2144 }
2145
selinux_policy_cond_free(struct selinux_policy * policy)2146 static void selinux_policy_cond_free(struct selinux_policy *policy)
2147 {
2148 cond_policydb_destroy_dup(&policy->policydb);
2149 kfree(policy);
2150 }
2151
selinux_policy_cancel(struct selinux_load_state * load_state)2152 void selinux_policy_cancel(struct selinux_load_state *load_state)
2153 {
2154 struct selinux_state *state = &selinux_state;
2155 struct selinux_policy *oldpolicy;
2156
2157 oldpolicy = rcu_dereference_protected(state->policy,
2158 lockdep_is_held(&state->policy_mutex));
2159
2160 sidtab_cancel_convert(oldpolicy->sidtab);
2161 selinux_policy_free(load_state->policy);
2162 kfree(load_state->convert_data);
2163 }
2164
selinux_notify_policy_change(u32 seqno)2165 static void selinux_notify_policy_change(u32 seqno)
2166 {
2167 /* Flush external caches and notify userspace of policy load */
2168 avc_ss_reset(seqno);
2169 selnl_notify_policyload(seqno);
2170 selinux_status_update_policyload(seqno);
2171 selinux_netlbl_cache_invalidate();
2172 selinux_xfrm_notify_policyload();
2173 selinux_ima_measure_state_locked();
2174 }
2175
selinux_policy_commit(struct selinux_load_state * load_state)2176 void selinux_policy_commit(struct selinux_load_state *load_state)
2177 {
2178 struct selinux_state *state = &selinux_state;
2179 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2180 unsigned long flags;
2181 u32 seqno;
2182
2183 oldpolicy = rcu_dereference_protected(state->policy,
2184 lockdep_is_held(&state->policy_mutex));
2185
2186 /* If switching between different policy types, log MLS status */
2187 if (oldpolicy) {
2188 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2189 pr_info("SELinux: Disabling MLS support...\n");
2190 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2191 pr_info("SELinux: Enabling MLS support...\n");
2192 }
2193
2194 /* Set latest granting seqno for new policy. */
2195 if (oldpolicy)
2196 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2197 else
2198 newpolicy->latest_granting = 1;
2199 seqno = newpolicy->latest_granting;
2200
2201 /* Install the new policy. */
2202 if (oldpolicy) {
2203 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2204 rcu_assign_pointer(state->policy, newpolicy);
2205 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2206 } else {
2207 rcu_assign_pointer(state->policy, newpolicy);
2208 }
2209
2210 /* Load the policycaps from the new policy */
2211 security_load_policycaps(newpolicy);
2212
2213 if (!selinux_initialized()) {
2214 /*
2215 * After first policy load, the security server is
2216 * marked as initialized and ready to handle requests and
2217 * any objects created prior to policy load are then labeled.
2218 */
2219 selinux_mark_initialized();
2220 selinux_complete_init();
2221 }
2222
2223 /* Free the old policy */
2224 synchronize_rcu();
2225 selinux_policy_free(oldpolicy);
2226 kfree(load_state->convert_data);
2227
2228 /* Notify others of the policy change */
2229 selinux_notify_policy_change(seqno);
2230 }
2231
2232 /**
2233 * security_load_policy - Load a security policy configuration.
2234 * @data: binary policy data
2235 * @len: length of data in bytes
2236 * @load_state: policy load state
2237 *
2238 * Load a new set of security policy configuration data,
2239 * validate it and convert the SID table as necessary.
2240 * This function will flush the access vector cache after
2241 * loading the new policy.
2242 */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2243 int security_load_policy(void *data, size_t len,
2244 struct selinux_load_state *load_state)
2245 {
2246 struct selinux_state *state = &selinux_state;
2247 struct selinux_policy *newpolicy, *oldpolicy;
2248 struct selinux_policy_convert_data *convert_data;
2249 int rc = 0;
2250 struct policy_file file = { data, len }, *fp = &file;
2251
2252 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2253 if (!newpolicy)
2254 return -ENOMEM;
2255
2256 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2257 if (!newpolicy->sidtab) {
2258 rc = -ENOMEM;
2259 goto err_policy;
2260 }
2261
2262 rc = policydb_read(&newpolicy->policydb, fp);
2263 if (rc)
2264 goto err_sidtab;
2265
2266 newpolicy->policydb.len = len;
2267 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2268 &newpolicy->map);
2269 if (rc)
2270 goto err_policydb;
2271
2272 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2273 if (rc) {
2274 pr_err("SELinux: unable to load the initial SIDs\n");
2275 goto err_mapping;
2276 }
2277
2278 if (!selinux_initialized()) {
2279 /* First policy load, so no need to preserve state from old policy */
2280 load_state->policy = newpolicy;
2281 load_state->convert_data = NULL;
2282 return 0;
2283 }
2284
2285 oldpolicy = rcu_dereference_protected(state->policy,
2286 lockdep_is_held(&state->policy_mutex));
2287
2288 /* Preserve active boolean values from the old policy */
2289 rc = security_preserve_bools(oldpolicy, newpolicy);
2290 if (rc) {
2291 pr_err("SELinux: unable to preserve booleans\n");
2292 goto err_free_isids;
2293 }
2294
2295 /*
2296 * Convert the internal representations of contexts
2297 * in the new SID table.
2298 */
2299
2300 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2301 if (!convert_data) {
2302 rc = -ENOMEM;
2303 goto err_free_isids;
2304 }
2305
2306 convert_data->args.oldp = &oldpolicy->policydb;
2307 convert_data->args.newp = &newpolicy->policydb;
2308
2309 convert_data->sidtab_params.args = &convert_data->args;
2310 convert_data->sidtab_params.target = newpolicy->sidtab;
2311
2312 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2313 if (rc) {
2314 pr_err("SELinux: unable to convert the internal"
2315 " representation of contexts in the new SID"
2316 " table\n");
2317 goto err_free_convert_data;
2318 }
2319
2320 load_state->policy = newpolicy;
2321 load_state->convert_data = convert_data;
2322 return 0;
2323
2324 err_free_convert_data:
2325 kfree(convert_data);
2326 err_free_isids:
2327 sidtab_destroy(newpolicy->sidtab);
2328 err_mapping:
2329 kfree(newpolicy->map.mapping);
2330 err_policydb:
2331 policydb_destroy(&newpolicy->policydb);
2332 err_sidtab:
2333 kfree(newpolicy->sidtab);
2334 err_policy:
2335 kfree(newpolicy);
2336
2337 return rc;
2338 }
2339
2340 /**
2341 * ocontext_to_sid - Helper to safely get sid for an ocontext
2342 * @sidtab: SID table
2343 * @c: ocontext structure
2344 * @index: index of the context entry (0 or 1)
2345 * @out_sid: pointer to the resulting SID value
2346 *
2347 * For all ocontexts except OCON_ISID the SID fields are populated
2348 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2349 * operation, this helper must be used to do that safely.
2350 *
2351 * WARNING: This function may return -ESTALE, indicating that the caller
2352 * must retry the operation after re-acquiring the policy pointer!
2353 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2354 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2355 size_t index, u32 *out_sid)
2356 {
2357 int rc;
2358 u32 sid;
2359
2360 /* Ensure the associated sidtab entry is visible to this thread. */
2361 sid = smp_load_acquire(&c->sid[index]);
2362 if (!sid) {
2363 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2364 if (rc)
2365 return rc;
2366
2367 /*
2368 * Ensure the new sidtab entry is visible to other threads
2369 * when they see the SID.
2370 */
2371 smp_store_release(&c->sid[index], sid);
2372 }
2373 *out_sid = sid;
2374 return 0;
2375 }
2376
2377 /**
2378 * security_port_sid - Obtain the SID for a port.
2379 * @protocol: protocol number
2380 * @port: port number
2381 * @out_sid: security identifier
2382 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2383 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2384 {
2385 struct selinux_policy *policy;
2386 struct policydb *policydb;
2387 struct sidtab *sidtab;
2388 struct ocontext *c;
2389 int rc;
2390
2391 if (!selinux_initialized()) {
2392 *out_sid = SECINITSID_PORT;
2393 return 0;
2394 }
2395
2396 retry:
2397 rc = 0;
2398 rcu_read_lock();
2399 policy = rcu_dereference(selinux_state.policy);
2400 policydb = &policy->policydb;
2401 sidtab = policy->sidtab;
2402
2403 c = policydb->ocontexts[OCON_PORT];
2404 while (c) {
2405 if (c->u.port.protocol == protocol &&
2406 c->u.port.low_port <= port &&
2407 c->u.port.high_port >= port)
2408 break;
2409 c = c->next;
2410 }
2411
2412 if (c) {
2413 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2414 if (rc == -ESTALE) {
2415 rcu_read_unlock();
2416 goto retry;
2417 }
2418 if (rc)
2419 goto out;
2420 } else {
2421 *out_sid = SECINITSID_PORT;
2422 }
2423
2424 out:
2425 rcu_read_unlock();
2426 return rc;
2427 }
2428
2429 /**
2430 * security_ib_pkey_sid - Obtain the SID for a pkey.
2431 * @subnet_prefix: Subnet Prefix
2432 * @pkey_num: pkey number
2433 * @out_sid: security identifier
2434 */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2435 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2436 {
2437 struct selinux_policy *policy;
2438 struct policydb *policydb;
2439 struct sidtab *sidtab;
2440 struct ocontext *c;
2441 int rc;
2442
2443 if (!selinux_initialized()) {
2444 *out_sid = SECINITSID_UNLABELED;
2445 return 0;
2446 }
2447
2448 retry:
2449 rc = 0;
2450 rcu_read_lock();
2451 policy = rcu_dereference(selinux_state.policy);
2452 policydb = &policy->policydb;
2453 sidtab = policy->sidtab;
2454
2455 c = policydb->ocontexts[OCON_IBPKEY];
2456 while (c) {
2457 if (c->u.ibpkey.low_pkey <= pkey_num &&
2458 c->u.ibpkey.high_pkey >= pkey_num &&
2459 c->u.ibpkey.subnet_prefix == subnet_prefix)
2460 break;
2461
2462 c = c->next;
2463 }
2464
2465 if (c) {
2466 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2467 if (rc == -ESTALE) {
2468 rcu_read_unlock();
2469 goto retry;
2470 }
2471 if (rc)
2472 goto out;
2473 } else
2474 *out_sid = SECINITSID_UNLABELED;
2475
2476 out:
2477 rcu_read_unlock();
2478 return rc;
2479 }
2480
2481 /**
2482 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2483 * @dev_name: device name
2484 * @port_num: port number
2485 * @out_sid: security identifier
2486 */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2487 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2488 {
2489 struct selinux_policy *policy;
2490 struct policydb *policydb;
2491 struct sidtab *sidtab;
2492 struct ocontext *c;
2493 int rc;
2494
2495 if (!selinux_initialized()) {
2496 *out_sid = SECINITSID_UNLABELED;
2497 return 0;
2498 }
2499
2500 retry:
2501 rc = 0;
2502 rcu_read_lock();
2503 policy = rcu_dereference(selinux_state.policy);
2504 policydb = &policy->policydb;
2505 sidtab = policy->sidtab;
2506
2507 c = policydb->ocontexts[OCON_IBENDPORT];
2508 while (c) {
2509 if (c->u.ibendport.port == port_num &&
2510 !strncmp(c->u.ibendport.dev_name,
2511 dev_name,
2512 IB_DEVICE_NAME_MAX))
2513 break;
2514
2515 c = c->next;
2516 }
2517
2518 if (c) {
2519 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2520 if (rc == -ESTALE) {
2521 rcu_read_unlock();
2522 goto retry;
2523 }
2524 if (rc)
2525 goto out;
2526 } else
2527 *out_sid = SECINITSID_UNLABELED;
2528
2529 out:
2530 rcu_read_unlock();
2531 return rc;
2532 }
2533
2534 /**
2535 * security_netif_sid - Obtain the SID for a network interface.
2536 * @name: interface name
2537 * @if_sid: interface SID
2538 */
security_netif_sid(char * name,u32 * if_sid)2539 int security_netif_sid(char *name, u32 *if_sid)
2540 {
2541 struct selinux_policy *policy;
2542 struct policydb *policydb;
2543 struct sidtab *sidtab;
2544 int rc;
2545 struct ocontext *c;
2546
2547 if (!selinux_initialized()) {
2548 *if_sid = SECINITSID_NETIF;
2549 return 0;
2550 }
2551
2552 retry:
2553 rc = 0;
2554 rcu_read_lock();
2555 policy = rcu_dereference(selinux_state.policy);
2556 policydb = &policy->policydb;
2557 sidtab = policy->sidtab;
2558
2559 c = policydb->ocontexts[OCON_NETIF];
2560 while (c) {
2561 if (strcmp(name, c->u.name) == 0)
2562 break;
2563 c = c->next;
2564 }
2565
2566 if (c) {
2567 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2568 if (rc == -ESTALE) {
2569 rcu_read_unlock();
2570 goto retry;
2571 }
2572 if (rc)
2573 goto out;
2574 } else
2575 *if_sid = SECINITSID_NETIF;
2576
2577 out:
2578 rcu_read_unlock();
2579 return rc;
2580 }
2581
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2582 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2583 {
2584 int i, fail = 0;
2585
2586 for (i = 0; i < 4; i++)
2587 if (addr[i] != (input[i] & mask[i])) {
2588 fail = 1;
2589 break;
2590 }
2591
2592 return !fail;
2593 }
2594
2595 /**
2596 * security_node_sid - Obtain the SID for a node (host).
2597 * @domain: communication domain aka address family
2598 * @addrp: address
2599 * @addrlen: address length in bytes
2600 * @out_sid: security identifier
2601 */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2602 int security_node_sid(u16 domain,
2603 void *addrp,
2604 u32 addrlen,
2605 u32 *out_sid)
2606 {
2607 struct selinux_policy *policy;
2608 struct policydb *policydb;
2609 struct sidtab *sidtab;
2610 int rc;
2611 struct ocontext *c;
2612
2613 if (!selinux_initialized()) {
2614 *out_sid = SECINITSID_NODE;
2615 return 0;
2616 }
2617
2618 retry:
2619 rcu_read_lock();
2620 policy = rcu_dereference(selinux_state.policy);
2621 policydb = &policy->policydb;
2622 sidtab = policy->sidtab;
2623
2624 switch (domain) {
2625 case AF_INET: {
2626 u32 addr;
2627
2628 rc = -EINVAL;
2629 if (addrlen != sizeof(u32))
2630 goto out;
2631
2632 addr = *((u32 *)addrp);
2633
2634 c = policydb->ocontexts[OCON_NODE];
2635 while (c) {
2636 if (c->u.node.addr == (addr & c->u.node.mask))
2637 break;
2638 c = c->next;
2639 }
2640 break;
2641 }
2642
2643 case AF_INET6:
2644 rc = -EINVAL;
2645 if (addrlen != sizeof(u64) * 2)
2646 goto out;
2647 c = policydb->ocontexts[OCON_NODE6];
2648 while (c) {
2649 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2650 c->u.node6.mask))
2651 break;
2652 c = c->next;
2653 }
2654 break;
2655
2656 default:
2657 rc = 0;
2658 *out_sid = SECINITSID_NODE;
2659 goto out;
2660 }
2661
2662 if (c) {
2663 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2664 if (rc == -ESTALE) {
2665 rcu_read_unlock();
2666 goto retry;
2667 }
2668 if (rc)
2669 goto out;
2670 } else {
2671 *out_sid = SECINITSID_NODE;
2672 }
2673
2674 rc = 0;
2675 out:
2676 rcu_read_unlock();
2677 return rc;
2678 }
2679
2680 #define SIDS_NEL 25
2681
2682 /**
2683 * security_get_user_sids - Obtain reachable SIDs for a user.
2684 * @fromsid: starting SID
2685 * @username: username
2686 * @sids: array of reachable SIDs for user
2687 * @nel: number of elements in @sids
2688 *
2689 * Generate the set of SIDs for legal security contexts
2690 * for a given user that can be reached by @fromsid.
2691 * Set *@sids to point to a dynamically allocated
2692 * array containing the set of SIDs. Set *@nel to the
2693 * number of elements in the array.
2694 */
2695
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2696 int security_get_user_sids(u32 fromsid,
2697 char *username,
2698 u32 **sids,
2699 u32 *nel)
2700 {
2701 struct selinux_policy *policy;
2702 struct policydb *policydb;
2703 struct sidtab *sidtab;
2704 struct context *fromcon, usercon;
2705 u32 *mysids = NULL, *mysids2, sid;
2706 u32 i, j, mynel, maxnel = SIDS_NEL;
2707 struct user_datum *user;
2708 struct role_datum *role;
2709 struct ebitmap_node *rnode, *tnode;
2710 int rc;
2711
2712 *sids = NULL;
2713 *nel = 0;
2714
2715 if (!selinux_initialized())
2716 return 0;
2717
2718 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2719 if (!mysids)
2720 return -ENOMEM;
2721
2722 retry:
2723 mynel = 0;
2724 rcu_read_lock();
2725 policy = rcu_dereference(selinux_state.policy);
2726 policydb = &policy->policydb;
2727 sidtab = policy->sidtab;
2728
2729 context_init(&usercon);
2730
2731 rc = -EINVAL;
2732 fromcon = sidtab_search(sidtab, fromsid);
2733 if (!fromcon)
2734 goto out_unlock;
2735
2736 rc = -EINVAL;
2737 user = symtab_search(&policydb->p_users, username);
2738 if (!user)
2739 goto out_unlock;
2740
2741 usercon.user = user->value;
2742
2743 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2744 role = policydb->role_val_to_struct[i];
2745 usercon.role = i + 1;
2746 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2747 usercon.type = j + 1;
2748
2749 if (mls_setup_user_range(policydb, fromcon, user,
2750 &usercon))
2751 continue;
2752
2753 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2754 if (rc == -ESTALE) {
2755 rcu_read_unlock();
2756 goto retry;
2757 }
2758 if (rc)
2759 goto out_unlock;
2760 if (mynel < maxnel) {
2761 mysids[mynel++] = sid;
2762 } else {
2763 rc = -ENOMEM;
2764 maxnel += SIDS_NEL;
2765 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2766 if (!mysids2)
2767 goto out_unlock;
2768 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2769 kfree(mysids);
2770 mysids = mysids2;
2771 mysids[mynel++] = sid;
2772 }
2773 }
2774 }
2775 rc = 0;
2776 out_unlock:
2777 rcu_read_unlock();
2778 if (rc || !mynel) {
2779 kfree(mysids);
2780 return rc;
2781 }
2782
2783 rc = -ENOMEM;
2784 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2785 if (!mysids2) {
2786 kfree(mysids);
2787 return rc;
2788 }
2789 for (i = 0, j = 0; i < mynel; i++) {
2790 struct av_decision dummy_avd;
2791 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2792 SECCLASS_PROCESS, /* kernel value */
2793 PROCESS__TRANSITION, AVC_STRICT,
2794 &dummy_avd);
2795 if (!rc)
2796 mysids2[j++] = mysids[i];
2797 cond_resched();
2798 }
2799 kfree(mysids);
2800 *sids = mysids2;
2801 *nel = j;
2802 return 0;
2803 }
2804
2805 /**
2806 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2807 * @policy: policy
2808 * @fstype: filesystem type
2809 * @path: path from root of mount
2810 * @orig_sclass: file security class
2811 * @sid: SID for path
2812 *
2813 * Obtain a SID to use for a file in a filesystem that
2814 * cannot support xattr or use a fixed labeling behavior like
2815 * transition SIDs or task SIDs.
2816 *
2817 * WARNING: This function may return -ESTALE, indicating that the caller
2818 * must retry the operation after re-acquiring the policy pointer!
2819 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2820 static inline int __security_genfs_sid(struct selinux_policy *policy,
2821 const char *fstype,
2822 const char *path,
2823 u16 orig_sclass,
2824 u32 *sid)
2825 {
2826 struct policydb *policydb = &policy->policydb;
2827 struct sidtab *sidtab = policy->sidtab;
2828 u16 sclass;
2829 struct genfs *genfs;
2830 struct ocontext *c;
2831 int cmp = 0;
2832
2833 while (path[0] == '/' && path[1] == '/')
2834 path++;
2835
2836 sclass = unmap_class(&policy->map, orig_sclass);
2837 *sid = SECINITSID_UNLABELED;
2838
2839 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2840 cmp = strcmp(fstype, genfs->fstype);
2841 if (cmp <= 0)
2842 break;
2843 }
2844
2845 if (!genfs || cmp)
2846 return -ENOENT;
2847
2848 for (c = genfs->head; c; c = c->next) {
2849 size_t len = strlen(c->u.name);
2850 if ((!c->v.sclass || sclass == c->v.sclass) &&
2851 (strncmp(c->u.name, path, len) == 0))
2852 break;
2853 }
2854
2855 if (!c)
2856 return -ENOENT;
2857
2858 return ocontext_to_sid(sidtab, c, 0, sid);
2859 }
2860
2861 /**
2862 * security_genfs_sid - Obtain a SID for a file in a filesystem
2863 * @fstype: filesystem type
2864 * @path: path from root of mount
2865 * @orig_sclass: file security class
2866 * @sid: SID for path
2867 *
2868 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2869 * it afterward.
2870 */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2871 int security_genfs_sid(const char *fstype,
2872 const char *path,
2873 u16 orig_sclass,
2874 u32 *sid)
2875 {
2876 struct selinux_policy *policy;
2877 int retval;
2878
2879 if (!selinux_initialized()) {
2880 *sid = SECINITSID_UNLABELED;
2881 return 0;
2882 }
2883
2884 do {
2885 rcu_read_lock();
2886 policy = rcu_dereference(selinux_state.policy);
2887 retval = __security_genfs_sid(policy, fstype, path,
2888 orig_sclass, sid);
2889 rcu_read_unlock();
2890 } while (retval == -ESTALE);
2891 return retval;
2892 }
2893
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2894 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2895 const char *fstype,
2896 const char *path,
2897 u16 orig_sclass,
2898 u32 *sid)
2899 {
2900 /* no lock required, policy is not yet accessible by other threads */
2901 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2902 }
2903
2904 /**
2905 * security_fs_use - Determine how to handle labeling for a filesystem.
2906 * @sb: superblock in question
2907 */
security_fs_use(struct super_block * sb)2908 int security_fs_use(struct super_block *sb)
2909 {
2910 struct selinux_policy *policy;
2911 struct policydb *policydb;
2912 struct sidtab *sidtab;
2913 int rc;
2914 struct ocontext *c;
2915 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2916 const char *fstype = sb->s_type->name;
2917
2918 if (!selinux_initialized()) {
2919 sbsec->behavior = SECURITY_FS_USE_NONE;
2920 sbsec->sid = SECINITSID_UNLABELED;
2921 return 0;
2922 }
2923
2924 retry:
2925 rcu_read_lock();
2926 policy = rcu_dereference(selinux_state.policy);
2927 policydb = &policy->policydb;
2928 sidtab = policy->sidtab;
2929
2930 c = policydb->ocontexts[OCON_FSUSE];
2931 while (c) {
2932 if (strcmp(fstype, c->u.name) == 0)
2933 break;
2934 c = c->next;
2935 }
2936
2937 if (c) {
2938 sbsec->behavior = c->v.behavior;
2939 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2940 if (rc == -ESTALE) {
2941 rcu_read_unlock();
2942 goto retry;
2943 }
2944 if (rc)
2945 goto out;
2946 } else {
2947 rc = __security_genfs_sid(policy, fstype, "/",
2948 SECCLASS_DIR, &sbsec->sid);
2949 if (rc == -ESTALE) {
2950 rcu_read_unlock();
2951 goto retry;
2952 }
2953 if (rc) {
2954 sbsec->behavior = SECURITY_FS_USE_NONE;
2955 rc = 0;
2956 } else {
2957 sbsec->behavior = SECURITY_FS_USE_GENFS;
2958 }
2959 }
2960
2961 out:
2962 rcu_read_unlock();
2963 return rc;
2964 }
2965
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)2966 int security_get_bools(struct selinux_policy *policy,
2967 u32 *len, char ***names, int **values)
2968 {
2969 struct policydb *policydb;
2970 u32 i;
2971 int rc;
2972
2973 policydb = &policy->policydb;
2974
2975 *names = NULL;
2976 *values = NULL;
2977
2978 rc = 0;
2979 *len = policydb->p_bools.nprim;
2980 if (!*len)
2981 goto out;
2982
2983 rc = -ENOMEM;
2984 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2985 if (!*names)
2986 goto err;
2987
2988 rc = -ENOMEM;
2989 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2990 if (!*values)
2991 goto err;
2992
2993 for (i = 0; i < *len; i++) {
2994 (*values)[i] = policydb->bool_val_to_struct[i]->state;
2995
2996 rc = -ENOMEM;
2997 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2998 GFP_ATOMIC);
2999 if (!(*names)[i])
3000 goto err;
3001 }
3002 rc = 0;
3003 out:
3004 return rc;
3005 err:
3006 if (*names) {
3007 for (i = 0; i < *len; i++)
3008 kfree((*names)[i]);
3009 kfree(*names);
3010 }
3011 kfree(*values);
3012 *len = 0;
3013 *names = NULL;
3014 *values = NULL;
3015 goto out;
3016 }
3017
3018
security_set_bools(u32 len,int * values)3019 int security_set_bools(u32 len, int *values)
3020 {
3021 struct selinux_state *state = &selinux_state;
3022 struct selinux_policy *newpolicy, *oldpolicy;
3023 int rc;
3024 u32 i, seqno = 0;
3025
3026 if (!selinux_initialized())
3027 return -EINVAL;
3028
3029 oldpolicy = rcu_dereference_protected(state->policy,
3030 lockdep_is_held(&state->policy_mutex));
3031
3032 /* Consistency check on number of booleans, should never fail */
3033 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3034 return -EINVAL;
3035
3036 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3037 if (!newpolicy)
3038 return -ENOMEM;
3039
3040 /*
3041 * Deep copy only the parts of the policydb that might be
3042 * modified as a result of changing booleans.
3043 */
3044 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3045 if (rc) {
3046 kfree(newpolicy);
3047 return -ENOMEM;
3048 }
3049
3050 /* Update the boolean states in the copy */
3051 for (i = 0; i < len; i++) {
3052 int new_state = !!values[i];
3053 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3054
3055 if (new_state != old_state) {
3056 audit_log(audit_context(), GFP_ATOMIC,
3057 AUDIT_MAC_CONFIG_CHANGE,
3058 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3059 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3060 new_state,
3061 old_state,
3062 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3063 audit_get_sessionid(current));
3064 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3065 }
3066 }
3067
3068 /* Re-evaluate the conditional rules in the copy */
3069 evaluate_cond_nodes(&newpolicy->policydb);
3070
3071 /* Set latest granting seqno for new policy */
3072 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3073 seqno = newpolicy->latest_granting;
3074
3075 /* Install the new policy */
3076 rcu_assign_pointer(state->policy, newpolicy);
3077
3078 /*
3079 * Free the conditional portions of the old policydb
3080 * that were copied for the new policy, and the oldpolicy
3081 * structure itself but not what it references.
3082 */
3083 synchronize_rcu();
3084 selinux_policy_cond_free(oldpolicy);
3085
3086 /* Notify others of the policy change */
3087 selinux_notify_policy_change(seqno);
3088 return 0;
3089 }
3090
security_get_bool_value(u32 index)3091 int security_get_bool_value(u32 index)
3092 {
3093 struct selinux_policy *policy;
3094 struct policydb *policydb;
3095 int rc;
3096 u32 len;
3097
3098 if (!selinux_initialized())
3099 return 0;
3100
3101 rcu_read_lock();
3102 policy = rcu_dereference(selinux_state.policy);
3103 policydb = &policy->policydb;
3104
3105 rc = -EFAULT;
3106 len = policydb->p_bools.nprim;
3107 if (index >= len)
3108 goto out;
3109
3110 rc = policydb->bool_val_to_struct[index]->state;
3111 out:
3112 rcu_read_unlock();
3113 return rc;
3114 }
3115
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3116 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3117 struct selinux_policy *newpolicy)
3118 {
3119 int rc, *bvalues = NULL;
3120 char **bnames = NULL;
3121 struct cond_bool_datum *booldatum;
3122 u32 i, nbools = 0;
3123
3124 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3125 if (rc)
3126 goto out;
3127 for (i = 0; i < nbools; i++) {
3128 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3129 bnames[i]);
3130 if (booldatum)
3131 booldatum->state = bvalues[i];
3132 }
3133 evaluate_cond_nodes(&newpolicy->policydb);
3134
3135 out:
3136 if (bnames) {
3137 for (i = 0; i < nbools; i++)
3138 kfree(bnames[i]);
3139 }
3140 kfree(bnames);
3141 kfree(bvalues);
3142 return rc;
3143 }
3144
3145 /*
3146 * security_sid_mls_copy() - computes a new sid based on the given
3147 * sid and the mls portion of mls_sid.
3148 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3149 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3150 {
3151 struct selinux_policy *policy;
3152 struct policydb *policydb;
3153 struct sidtab *sidtab;
3154 struct context *context1;
3155 struct context *context2;
3156 struct context newcon;
3157 char *s;
3158 u32 len;
3159 int rc;
3160
3161 if (!selinux_initialized()) {
3162 *new_sid = sid;
3163 return 0;
3164 }
3165
3166 retry:
3167 rc = 0;
3168 context_init(&newcon);
3169
3170 rcu_read_lock();
3171 policy = rcu_dereference(selinux_state.policy);
3172 policydb = &policy->policydb;
3173 sidtab = policy->sidtab;
3174
3175 if (!policydb->mls_enabled) {
3176 *new_sid = sid;
3177 goto out_unlock;
3178 }
3179
3180 rc = -EINVAL;
3181 context1 = sidtab_search(sidtab, sid);
3182 if (!context1) {
3183 pr_err("SELinux: %s: unrecognized SID %d\n",
3184 __func__, sid);
3185 goto out_unlock;
3186 }
3187
3188 rc = -EINVAL;
3189 context2 = sidtab_search(sidtab, mls_sid);
3190 if (!context2) {
3191 pr_err("SELinux: %s: unrecognized SID %d\n",
3192 __func__, mls_sid);
3193 goto out_unlock;
3194 }
3195
3196 newcon.user = context1->user;
3197 newcon.role = context1->role;
3198 newcon.type = context1->type;
3199 rc = mls_context_cpy(&newcon, context2);
3200 if (rc)
3201 goto out_unlock;
3202
3203 /* Check the validity of the new context. */
3204 if (!policydb_context_isvalid(policydb, &newcon)) {
3205 rc = convert_context_handle_invalid_context(policydb,
3206 &newcon);
3207 if (rc) {
3208 if (!context_struct_to_string(policydb, &newcon, &s,
3209 &len)) {
3210 struct audit_buffer *ab;
3211
3212 ab = audit_log_start(audit_context(),
3213 GFP_ATOMIC,
3214 AUDIT_SELINUX_ERR);
3215 audit_log_format(ab,
3216 "op=security_sid_mls_copy invalid_context=");
3217 /* don't record NUL with untrusted strings */
3218 audit_log_n_untrustedstring(ab, s, len - 1);
3219 audit_log_end(ab);
3220 kfree(s);
3221 }
3222 goto out_unlock;
3223 }
3224 }
3225 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3226 if (rc == -ESTALE) {
3227 rcu_read_unlock();
3228 context_destroy(&newcon);
3229 goto retry;
3230 }
3231 out_unlock:
3232 rcu_read_unlock();
3233 context_destroy(&newcon);
3234 return rc;
3235 }
3236
3237 /**
3238 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3239 * @nlbl_sid: NetLabel SID
3240 * @nlbl_type: NetLabel labeling protocol type
3241 * @xfrm_sid: XFRM SID
3242 * @peer_sid: network peer sid
3243 *
3244 * Description:
3245 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3246 * resolved into a single SID it is returned via @peer_sid and the function
3247 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3248 * returns a negative value. A table summarizing the behavior is below:
3249 *
3250 * | function return | @sid
3251 * ------------------------------+-----------------+-----------------
3252 * no peer labels | 0 | SECSID_NULL
3253 * single peer label | 0 | <peer_label>
3254 * multiple, consistent labels | 0 | <peer_label>
3255 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3256 *
3257 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3258 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3259 u32 xfrm_sid,
3260 u32 *peer_sid)
3261 {
3262 struct selinux_policy *policy;
3263 struct policydb *policydb;
3264 struct sidtab *sidtab;
3265 int rc;
3266 struct context *nlbl_ctx;
3267 struct context *xfrm_ctx;
3268
3269 *peer_sid = SECSID_NULL;
3270
3271 /* handle the common (which also happens to be the set of easy) cases
3272 * right away, these two if statements catch everything involving a
3273 * single or absent peer SID/label */
3274 if (xfrm_sid == SECSID_NULL) {
3275 *peer_sid = nlbl_sid;
3276 return 0;
3277 }
3278 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3279 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3280 * is present */
3281 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3282 *peer_sid = xfrm_sid;
3283 return 0;
3284 }
3285
3286 if (!selinux_initialized())
3287 return 0;
3288
3289 rcu_read_lock();
3290 policy = rcu_dereference(selinux_state.policy);
3291 policydb = &policy->policydb;
3292 sidtab = policy->sidtab;
3293
3294 /*
3295 * We don't need to check initialized here since the only way both
3296 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3297 * security server was initialized and state->initialized was true.
3298 */
3299 if (!policydb->mls_enabled) {
3300 rc = 0;
3301 goto out;
3302 }
3303
3304 rc = -EINVAL;
3305 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3306 if (!nlbl_ctx) {
3307 pr_err("SELinux: %s: unrecognized SID %d\n",
3308 __func__, nlbl_sid);
3309 goto out;
3310 }
3311 rc = -EINVAL;
3312 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3313 if (!xfrm_ctx) {
3314 pr_err("SELinux: %s: unrecognized SID %d\n",
3315 __func__, xfrm_sid);
3316 goto out;
3317 }
3318 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3319 if (rc)
3320 goto out;
3321
3322 /* at present NetLabel SIDs/labels really only carry MLS
3323 * information so if the MLS portion of the NetLabel SID
3324 * matches the MLS portion of the labeled XFRM SID/label
3325 * then pass along the XFRM SID as it is the most
3326 * expressive */
3327 *peer_sid = xfrm_sid;
3328 out:
3329 rcu_read_unlock();
3330 return rc;
3331 }
3332
get_classes_callback(void * k,void * d,void * args)3333 static int get_classes_callback(void *k, void *d, void *args)
3334 {
3335 struct class_datum *datum = d;
3336 char *name = k, **classes = args;
3337 u32 value = datum->value - 1;
3338
3339 classes[value] = kstrdup(name, GFP_ATOMIC);
3340 if (!classes[value])
3341 return -ENOMEM;
3342
3343 return 0;
3344 }
3345
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3346 int security_get_classes(struct selinux_policy *policy,
3347 char ***classes, u32 *nclasses)
3348 {
3349 struct policydb *policydb;
3350 int rc;
3351
3352 policydb = &policy->policydb;
3353
3354 rc = -ENOMEM;
3355 *nclasses = policydb->p_classes.nprim;
3356 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3357 if (!*classes)
3358 goto out;
3359
3360 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3361 *classes);
3362 if (rc) {
3363 u32 i;
3364
3365 for (i = 0; i < *nclasses; i++)
3366 kfree((*classes)[i]);
3367 kfree(*classes);
3368 }
3369
3370 out:
3371 return rc;
3372 }
3373
get_permissions_callback(void * k,void * d,void * args)3374 static int get_permissions_callback(void *k, void *d, void *args)
3375 {
3376 struct perm_datum *datum = d;
3377 char *name = k, **perms = args;
3378 u32 value = datum->value - 1;
3379
3380 perms[value] = kstrdup(name, GFP_ATOMIC);
3381 if (!perms[value])
3382 return -ENOMEM;
3383
3384 return 0;
3385 }
3386
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3387 int security_get_permissions(struct selinux_policy *policy,
3388 const char *class, char ***perms, u32 *nperms)
3389 {
3390 struct policydb *policydb;
3391 u32 i;
3392 int rc;
3393 struct class_datum *match;
3394
3395 policydb = &policy->policydb;
3396
3397 rc = -EINVAL;
3398 match = symtab_search(&policydb->p_classes, class);
3399 if (!match) {
3400 pr_err("SELinux: %s: unrecognized class %s\n",
3401 __func__, class);
3402 goto out;
3403 }
3404
3405 rc = -ENOMEM;
3406 *nperms = match->permissions.nprim;
3407 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3408 if (!*perms)
3409 goto out;
3410
3411 if (match->comdatum) {
3412 rc = hashtab_map(&match->comdatum->permissions.table,
3413 get_permissions_callback, *perms);
3414 if (rc)
3415 goto err;
3416 }
3417
3418 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3419 *perms);
3420 if (rc)
3421 goto err;
3422
3423 out:
3424 return rc;
3425
3426 err:
3427 for (i = 0; i < *nperms; i++)
3428 kfree((*perms)[i]);
3429 kfree(*perms);
3430 return rc;
3431 }
3432
security_get_reject_unknown(void)3433 int security_get_reject_unknown(void)
3434 {
3435 struct selinux_policy *policy;
3436 int value;
3437
3438 if (!selinux_initialized())
3439 return 0;
3440
3441 rcu_read_lock();
3442 policy = rcu_dereference(selinux_state.policy);
3443 value = policy->policydb.reject_unknown;
3444 rcu_read_unlock();
3445 return value;
3446 }
3447
security_get_allow_unknown(void)3448 int security_get_allow_unknown(void)
3449 {
3450 struct selinux_policy *policy;
3451 int value;
3452
3453 if (!selinux_initialized())
3454 return 0;
3455
3456 rcu_read_lock();
3457 policy = rcu_dereference(selinux_state.policy);
3458 value = policy->policydb.allow_unknown;
3459 rcu_read_unlock();
3460 return value;
3461 }
3462
3463 /**
3464 * security_policycap_supported - Check for a specific policy capability
3465 * @req_cap: capability
3466 *
3467 * Description:
3468 * This function queries the currently loaded policy to see if it supports the
3469 * capability specified by @req_cap. Returns true (1) if the capability is
3470 * supported, false (0) if it isn't supported.
3471 *
3472 */
security_policycap_supported(unsigned int req_cap)3473 int security_policycap_supported(unsigned int req_cap)
3474 {
3475 struct selinux_policy *policy;
3476 int rc;
3477
3478 if (!selinux_initialized())
3479 return 0;
3480
3481 rcu_read_lock();
3482 policy = rcu_dereference(selinux_state.policy);
3483 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3484 rcu_read_unlock();
3485
3486 return rc;
3487 }
3488
3489 struct selinux_audit_rule {
3490 u32 au_seqno;
3491 struct context au_ctxt;
3492 };
3493
selinux_audit_rule_free(void * vrule)3494 void selinux_audit_rule_free(void *vrule)
3495 {
3496 struct selinux_audit_rule *rule = vrule;
3497
3498 if (rule) {
3499 context_destroy(&rule->au_ctxt);
3500 kfree(rule);
3501 }
3502 }
3503
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3504 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3505 gfp_t gfp)
3506 {
3507 struct selinux_state *state = &selinux_state;
3508 struct selinux_policy *policy;
3509 struct policydb *policydb;
3510 struct selinux_audit_rule *tmprule;
3511 struct role_datum *roledatum;
3512 struct type_datum *typedatum;
3513 struct user_datum *userdatum;
3514 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3515 int rc = 0;
3516
3517 *rule = NULL;
3518
3519 if (!selinux_initialized())
3520 return -EOPNOTSUPP;
3521
3522 switch (field) {
3523 case AUDIT_SUBJ_USER:
3524 case AUDIT_SUBJ_ROLE:
3525 case AUDIT_SUBJ_TYPE:
3526 case AUDIT_OBJ_USER:
3527 case AUDIT_OBJ_ROLE:
3528 case AUDIT_OBJ_TYPE:
3529 /* only 'equals' and 'not equals' fit user, role, and type */
3530 if (op != Audit_equal && op != Audit_not_equal)
3531 return -EINVAL;
3532 break;
3533 case AUDIT_SUBJ_SEN:
3534 case AUDIT_SUBJ_CLR:
3535 case AUDIT_OBJ_LEV_LOW:
3536 case AUDIT_OBJ_LEV_HIGH:
3537 /* we do not allow a range, indicated by the presence of '-' */
3538 if (strchr(rulestr, '-'))
3539 return -EINVAL;
3540 break;
3541 default:
3542 /* only the above fields are valid */
3543 return -EINVAL;
3544 }
3545
3546 tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3547 if (!tmprule)
3548 return -ENOMEM;
3549 context_init(&tmprule->au_ctxt);
3550
3551 rcu_read_lock();
3552 policy = rcu_dereference(state->policy);
3553 policydb = &policy->policydb;
3554 tmprule->au_seqno = policy->latest_granting;
3555 switch (field) {
3556 case AUDIT_SUBJ_USER:
3557 case AUDIT_OBJ_USER:
3558 userdatum = symtab_search(&policydb->p_users, rulestr);
3559 if (!userdatum) {
3560 rc = -EINVAL;
3561 goto err;
3562 }
3563 tmprule->au_ctxt.user = userdatum->value;
3564 break;
3565 case AUDIT_SUBJ_ROLE:
3566 case AUDIT_OBJ_ROLE:
3567 roledatum = symtab_search(&policydb->p_roles, rulestr);
3568 if (!roledatum) {
3569 rc = -EINVAL;
3570 goto err;
3571 }
3572 tmprule->au_ctxt.role = roledatum->value;
3573 break;
3574 case AUDIT_SUBJ_TYPE:
3575 case AUDIT_OBJ_TYPE:
3576 typedatum = symtab_search(&policydb->p_types, rulestr);
3577 if (!typedatum) {
3578 rc = -EINVAL;
3579 goto err;
3580 }
3581 tmprule->au_ctxt.type = typedatum->value;
3582 break;
3583 case AUDIT_SUBJ_SEN:
3584 case AUDIT_SUBJ_CLR:
3585 case AUDIT_OBJ_LEV_LOW:
3586 case AUDIT_OBJ_LEV_HIGH:
3587 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3588 GFP_ATOMIC);
3589 if (rc)
3590 goto err;
3591 break;
3592 }
3593 rcu_read_unlock();
3594
3595 *rule = tmprule;
3596 return 0;
3597
3598 err:
3599 rcu_read_unlock();
3600 selinux_audit_rule_free(tmprule);
3601 *rule = NULL;
3602 return rc;
3603 }
3604
3605 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3606 int selinux_audit_rule_known(struct audit_krule *rule)
3607 {
3608 u32 i;
3609
3610 for (i = 0; i < rule->field_count; i++) {
3611 struct audit_field *f = &rule->fields[i];
3612 switch (f->type) {
3613 case AUDIT_SUBJ_USER:
3614 case AUDIT_SUBJ_ROLE:
3615 case AUDIT_SUBJ_TYPE:
3616 case AUDIT_SUBJ_SEN:
3617 case AUDIT_SUBJ_CLR:
3618 case AUDIT_OBJ_USER:
3619 case AUDIT_OBJ_ROLE:
3620 case AUDIT_OBJ_TYPE:
3621 case AUDIT_OBJ_LEV_LOW:
3622 case AUDIT_OBJ_LEV_HIGH:
3623 return 1;
3624 }
3625 }
3626
3627 return 0;
3628 }
3629
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3630 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3631 {
3632 struct selinux_state *state = &selinux_state;
3633 struct selinux_policy *policy;
3634 struct context *ctxt;
3635 struct mls_level *level;
3636 struct selinux_audit_rule *rule = vrule;
3637 int match = 0;
3638
3639 if (unlikely(!rule)) {
3640 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3641 return -ENOENT;
3642 }
3643
3644 if (!selinux_initialized())
3645 return 0;
3646
3647 rcu_read_lock();
3648
3649 policy = rcu_dereference(state->policy);
3650
3651 if (rule->au_seqno < policy->latest_granting) {
3652 match = -ESTALE;
3653 goto out;
3654 }
3655
3656 ctxt = sidtab_search(policy->sidtab, sid);
3657 if (unlikely(!ctxt)) {
3658 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3659 sid);
3660 match = -ENOENT;
3661 goto out;
3662 }
3663
3664 /* a field/op pair that is not caught here will simply fall through
3665 without a match */
3666 switch (field) {
3667 case AUDIT_SUBJ_USER:
3668 case AUDIT_OBJ_USER:
3669 switch (op) {
3670 case Audit_equal:
3671 match = (ctxt->user == rule->au_ctxt.user);
3672 break;
3673 case Audit_not_equal:
3674 match = (ctxt->user != rule->au_ctxt.user);
3675 break;
3676 }
3677 break;
3678 case AUDIT_SUBJ_ROLE:
3679 case AUDIT_OBJ_ROLE:
3680 switch (op) {
3681 case Audit_equal:
3682 match = (ctxt->role == rule->au_ctxt.role);
3683 break;
3684 case Audit_not_equal:
3685 match = (ctxt->role != rule->au_ctxt.role);
3686 break;
3687 }
3688 break;
3689 case AUDIT_SUBJ_TYPE:
3690 case AUDIT_OBJ_TYPE:
3691 switch (op) {
3692 case Audit_equal:
3693 match = (ctxt->type == rule->au_ctxt.type);
3694 break;
3695 case Audit_not_equal:
3696 match = (ctxt->type != rule->au_ctxt.type);
3697 break;
3698 }
3699 break;
3700 case AUDIT_SUBJ_SEN:
3701 case AUDIT_SUBJ_CLR:
3702 case AUDIT_OBJ_LEV_LOW:
3703 case AUDIT_OBJ_LEV_HIGH:
3704 level = ((field == AUDIT_SUBJ_SEN ||
3705 field == AUDIT_OBJ_LEV_LOW) ?
3706 &ctxt->range.level[0] : &ctxt->range.level[1]);
3707 switch (op) {
3708 case Audit_equal:
3709 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3710 level);
3711 break;
3712 case Audit_not_equal:
3713 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3714 level);
3715 break;
3716 case Audit_lt:
3717 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3718 level) &&
3719 !mls_level_eq(&rule->au_ctxt.range.level[0],
3720 level));
3721 break;
3722 case Audit_le:
3723 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3724 level);
3725 break;
3726 case Audit_gt:
3727 match = (mls_level_dom(level,
3728 &rule->au_ctxt.range.level[0]) &&
3729 !mls_level_eq(level,
3730 &rule->au_ctxt.range.level[0]));
3731 break;
3732 case Audit_ge:
3733 match = mls_level_dom(level,
3734 &rule->au_ctxt.range.level[0]);
3735 break;
3736 }
3737 }
3738
3739 out:
3740 rcu_read_unlock();
3741 return match;
3742 }
3743
aurule_avc_callback(u32 event)3744 static int aurule_avc_callback(u32 event)
3745 {
3746 if (event == AVC_CALLBACK_RESET)
3747 return audit_update_lsm_rules();
3748 return 0;
3749 }
3750
aurule_init(void)3751 static int __init aurule_init(void)
3752 {
3753 int err;
3754
3755 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3756 if (err)
3757 panic("avc_add_callback() failed, error %d\n", err);
3758
3759 return err;
3760 }
3761 __initcall(aurule_init);
3762
3763 #ifdef CONFIG_NETLABEL
3764 /**
3765 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3766 * @secattr: the NetLabel packet security attributes
3767 * @sid: the SELinux SID
3768 *
3769 * Description:
3770 * Attempt to cache the context in @ctx, which was derived from the packet in
3771 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3772 * already been initialized.
3773 *
3774 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3775 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3776 u32 sid)
3777 {
3778 u32 *sid_cache;
3779
3780 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3781 if (sid_cache == NULL)
3782 return;
3783 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3784 if (secattr->cache == NULL) {
3785 kfree(sid_cache);
3786 return;
3787 }
3788
3789 *sid_cache = sid;
3790 secattr->cache->free = kfree;
3791 secattr->cache->data = sid_cache;
3792 secattr->flags |= NETLBL_SECATTR_CACHE;
3793 }
3794
3795 /**
3796 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3797 * @secattr: the NetLabel packet security attributes
3798 * @sid: the SELinux SID
3799 *
3800 * Description:
3801 * Convert the given NetLabel security attributes in @secattr into a
3802 * SELinux SID. If the @secattr field does not contain a full SELinux
3803 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3804 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3805 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3806 * conversion for future lookups. Returns zero on success, negative values on
3807 * failure.
3808 *
3809 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3810 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3811 u32 *sid)
3812 {
3813 struct selinux_policy *policy;
3814 struct policydb *policydb;
3815 struct sidtab *sidtab;
3816 int rc;
3817 struct context *ctx;
3818 struct context ctx_new;
3819
3820 if (!selinux_initialized()) {
3821 *sid = SECSID_NULL;
3822 return 0;
3823 }
3824
3825 retry:
3826 rc = 0;
3827 rcu_read_lock();
3828 policy = rcu_dereference(selinux_state.policy);
3829 policydb = &policy->policydb;
3830 sidtab = policy->sidtab;
3831
3832 if (secattr->flags & NETLBL_SECATTR_CACHE)
3833 *sid = *(u32 *)secattr->cache->data;
3834 else if (secattr->flags & NETLBL_SECATTR_SECID)
3835 *sid = secattr->attr.secid;
3836 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3837 rc = -EIDRM;
3838 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3839 if (ctx == NULL)
3840 goto out;
3841
3842 context_init(&ctx_new);
3843 ctx_new.user = ctx->user;
3844 ctx_new.role = ctx->role;
3845 ctx_new.type = ctx->type;
3846 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3847 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3848 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3849 if (rc)
3850 goto out;
3851 }
3852 rc = -EIDRM;
3853 if (!mls_context_isvalid(policydb, &ctx_new)) {
3854 ebitmap_destroy(&ctx_new.range.level[0].cat);
3855 goto out;
3856 }
3857
3858 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3859 ebitmap_destroy(&ctx_new.range.level[0].cat);
3860 if (rc == -ESTALE) {
3861 rcu_read_unlock();
3862 goto retry;
3863 }
3864 if (rc)
3865 goto out;
3866
3867 security_netlbl_cache_add(secattr, *sid);
3868 } else
3869 *sid = SECSID_NULL;
3870
3871 out:
3872 rcu_read_unlock();
3873 return rc;
3874 }
3875
3876 /**
3877 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3878 * @sid: the SELinux SID
3879 * @secattr: the NetLabel packet security attributes
3880 *
3881 * Description:
3882 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3883 * Returns zero on success, negative values on failure.
3884 *
3885 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3886 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3887 {
3888 struct selinux_policy *policy;
3889 struct policydb *policydb;
3890 int rc;
3891 struct context *ctx;
3892
3893 if (!selinux_initialized())
3894 return 0;
3895
3896 rcu_read_lock();
3897 policy = rcu_dereference(selinux_state.policy);
3898 policydb = &policy->policydb;
3899
3900 rc = -ENOENT;
3901 ctx = sidtab_search(policy->sidtab, sid);
3902 if (ctx == NULL)
3903 goto out;
3904
3905 rc = -ENOMEM;
3906 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3907 GFP_ATOMIC);
3908 if (secattr->domain == NULL)
3909 goto out;
3910
3911 secattr->attr.secid = sid;
3912 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3913 mls_export_netlbl_lvl(policydb, ctx, secattr);
3914 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3915 out:
3916 rcu_read_unlock();
3917 return rc;
3918 }
3919 #endif /* CONFIG_NETLABEL */
3920
3921 /**
3922 * __security_read_policy - read the policy.
3923 * @policy: SELinux policy
3924 * @data: binary policy data
3925 * @len: length of data in bytes
3926 *
3927 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3928 static int __security_read_policy(struct selinux_policy *policy,
3929 void *data, size_t *len)
3930 {
3931 int rc;
3932 struct policy_file fp;
3933
3934 fp.data = data;
3935 fp.len = *len;
3936
3937 rc = policydb_write(&policy->policydb, &fp);
3938 if (rc)
3939 return rc;
3940
3941 *len = (unsigned long)fp.data - (unsigned long)data;
3942 return 0;
3943 }
3944
3945 /**
3946 * security_read_policy - read the policy.
3947 * @data: binary policy data
3948 * @len: length of data in bytes
3949 *
3950 */
security_read_policy(void ** data,size_t * len)3951 int security_read_policy(void **data, size_t *len)
3952 {
3953 struct selinux_state *state = &selinux_state;
3954 struct selinux_policy *policy;
3955
3956 policy = rcu_dereference_protected(
3957 state->policy, lockdep_is_held(&state->policy_mutex));
3958 if (!policy)
3959 return -EINVAL;
3960
3961 *len = policy->policydb.len;
3962 *data = vmalloc_user(*len);
3963 if (!*data)
3964 return -ENOMEM;
3965
3966 return __security_read_policy(policy, *data, len);
3967 }
3968
3969 /**
3970 * security_read_state_kernel - read the policy.
3971 * @data: binary policy data
3972 * @len: length of data in bytes
3973 *
3974 * Allocates kernel memory for reading SELinux policy.
3975 * This function is for internal use only and should not
3976 * be used for returning data to user space.
3977 *
3978 * This function must be called with policy_mutex held.
3979 */
security_read_state_kernel(void ** data,size_t * len)3980 int security_read_state_kernel(void **data, size_t *len)
3981 {
3982 int err;
3983 struct selinux_state *state = &selinux_state;
3984 struct selinux_policy *policy;
3985
3986 policy = rcu_dereference_protected(
3987 state->policy, lockdep_is_held(&state->policy_mutex));
3988 if (!policy)
3989 return -EINVAL;
3990
3991 *len = policy->policydb.len;
3992 *data = vmalloc(*len);
3993 if (!*data)
3994 return -ENOMEM;
3995
3996 err = __security_read_policy(policy, *data, len);
3997 if (err) {
3998 vfree(*data);
3999 *data = NULL;
4000 *len = 0;
4001 }
4002 return err;
4003 }
4004