xref: /openbmc/linux/fs/btrfs/scrub.c (revision 44ad3baf1cca483e418b6aadf2d3994f69e0f16a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This detemines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP		8
50 
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX		16
58 
59 #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60 
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66 
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 	bool is_metadata;
70 
71 	union {
72 		/*
73 		 * Csum pointer for data csum verification.  Should point to a
74 		 * sector csum inside scrub_stripe::csums.
75 		 *
76 		 * NULL if this data sector has no csum.
77 		 */
78 		u8 *csum;
79 
80 		/*
81 		 * Extra info for metadata verification.  All sectors inside a
82 		 * tree block share the same generation.
83 		 */
84 		u64 generation;
85 	};
86 };
87 
88 enum scrub_stripe_flags {
89 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90 	SCRUB_STRIPE_FLAG_INITIALIZED,
91 
92 	/* Set when the read-repair is finished. */
93 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94 
95 	/*
96 	 * Set for data stripes if it's triggered from P/Q stripe.
97 	 * During such scrub, we should not report errors in data stripes, nor
98 	 * update the accounting.
99 	 */
100 	SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109 	struct scrub_ctx *sctx;
110 	struct btrfs_block_group *bg;
111 
112 	struct page *pages[SCRUB_STRIPE_PAGES];
113 	struct scrub_sector_verification *sectors;
114 
115 	struct btrfs_device *dev;
116 	u64 logical;
117 	u64 physical;
118 
119 	u16 mirror_num;
120 
121 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 	u16 nr_sectors;
123 
124 	/*
125 	 * How many data/meta extents are in this stripe.  Only for scrub status
126 	 * reporting purposes.
127 	 */
128 	u16 nr_data_extents;
129 	u16 nr_meta_extents;
130 
131 	atomic_t pending_io;
132 	wait_queue_head_t io_wait;
133 	wait_queue_head_t repair_wait;
134 
135 	/*
136 	 * Indicate the states of the stripe.  Bits are defined in
137 	 * scrub_stripe_flags enum.
138 	 */
139 	unsigned long state;
140 
141 	/* Indicate which sectors are covered by extent items. */
142 	unsigned long extent_sector_bitmap;
143 
144 	/*
145 	 * The errors hit during the initial read of the stripe.
146 	 *
147 	 * Would be utilized for error reporting and repair.
148 	 *
149 	 * The remaining init_nr_* records the number of errors hit, only used
150 	 * by error reporting.
151 	 */
152 	unsigned long init_error_bitmap;
153 	unsigned int init_nr_io_errors;
154 	unsigned int init_nr_csum_errors;
155 	unsigned int init_nr_meta_errors;
156 	unsigned int init_nr_meta_gen_errors;
157 
158 	/*
159 	 * The following error bitmaps are all for the current status.
160 	 * Every time we submit a new read, these bitmaps may be updated.
161 	 *
162 	 * error_bitmap = io_error_bitmap | csum_error_bitmap |
163 	 *		  meta_error_bitmap | meta_generation_bitmap;
164 	 *
165 	 * IO and csum errors can happen for both metadata and data.
166 	 */
167 	unsigned long error_bitmap;
168 	unsigned long io_error_bitmap;
169 	unsigned long csum_error_bitmap;
170 	unsigned long meta_error_bitmap;
171 	unsigned long meta_gen_error_bitmap;
172 
173 	/* For writeback (repair or replace) error reporting. */
174 	unsigned long write_error_bitmap;
175 
176 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
177 	spinlock_t write_error_lock;
178 
179 	/*
180 	 * Checksum for the whole stripe if this stripe is inside a data block
181 	 * group.
182 	 */
183 	u8 *csums;
184 
185 	struct work_struct work;
186 };
187 
188 struct scrub_ctx {
189 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
190 	struct scrub_stripe	*raid56_data_stripes;
191 	struct btrfs_fs_info	*fs_info;
192 	struct btrfs_path	extent_path;
193 	struct btrfs_path	csum_path;
194 	int			first_free;
195 	int			cur_stripe;
196 	atomic_t		cancel_req;
197 	int			readonly;
198 	int			sectors_per_bio;
199 
200 	/* State of IO submission throttling affecting the associated device */
201 	ktime_t			throttle_deadline;
202 	u64			throttle_sent;
203 
204 	int			is_dev_replace;
205 	u64			write_pointer;
206 
207 	struct mutex            wr_lock;
208 	struct btrfs_device     *wr_tgtdev;
209 
210 	/*
211 	 * statistics
212 	 */
213 	struct btrfs_scrub_progress stat;
214 	spinlock_t		stat_lock;
215 
216 	/*
217 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
218 	 * decrement bios_in_flight and workers_pending and then do a wakeup
219 	 * on the list_wait wait queue. We must ensure the main scrub task
220 	 * doesn't free the scrub context before or while the workers are
221 	 * doing the wakeup() call.
222 	 */
223 	refcount_t              refs;
224 };
225 
226 struct scrub_warning {
227 	struct btrfs_path	*path;
228 	u64			extent_item_size;
229 	const char		*errstr;
230 	u64			physical;
231 	u64			logical;
232 	struct btrfs_device	*dev;
233 };
234 
release_scrub_stripe(struct scrub_stripe * stripe)235 static void release_scrub_stripe(struct scrub_stripe *stripe)
236 {
237 	if (!stripe)
238 		return;
239 
240 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
241 		if (stripe->pages[i])
242 			__free_page(stripe->pages[i]);
243 		stripe->pages[i] = NULL;
244 	}
245 	kfree(stripe->sectors);
246 	kfree(stripe->csums);
247 	stripe->sectors = NULL;
248 	stripe->csums = NULL;
249 	stripe->sctx = NULL;
250 	stripe->state = 0;
251 }
252 
init_scrub_stripe(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe)253 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
254 			     struct scrub_stripe *stripe)
255 {
256 	int ret;
257 
258 	memset(stripe, 0, sizeof(*stripe));
259 
260 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
261 	stripe->state = 0;
262 
263 	init_waitqueue_head(&stripe->io_wait);
264 	init_waitqueue_head(&stripe->repair_wait);
265 	atomic_set(&stripe->pending_io, 0);
266 	spin_lock_init(&stripe->write_error_lock);
267 
268 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
269 	if (ret < 0)
270 		goto error;
271 
272 	stripe->sectors = kcalloc(stripe->nr_sectors,
273 				  sizeof(struct scrub_sector_verification),
274 				  GFP_KERNEL);
275 	if (!stripe->sectors)
276 		goto error;
277 
278 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
279 				fs_info->csum_size, GFP_KERNEL);
280 	if (!stripe->csums)
281 		goto error;
282 	return 0;
283 error:
284 	release_scrub_stripe(stripe);
285 	return -ENOMEM;
286 }
287 
wait_scrub_stripe_io(struct scrub_stripe * stripe)288 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
289 {
290 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
291 }
292 
293 static void scrub_put_ctx(struct scrub_ctx *sctx);
294 
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)295 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
296 {
297 	while (atomic_read(&fs_info->scrub_pause_req)) {
298 		mutex_unlock(&fs_info->scrub_lock);
299 		wait_event(fs_info->scrub_pause_wait,
300 		   atomic_read(&fs_info->scrub_pause_req) == 0);
301 		mutex_lock(&fs_info->scrub_lock);
302 	}
303 }
304 
scrub_pause_on(struct btrfs_fs_info * fs_info)305 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
306 {
307 	atomic_inc(&fs_info->scrubs_paused);
308 	wake_up(&fs_info->scrub_pause_wait);
309 }
310 
scrub_pause_off(struct btrfs_fs_info * fs_info)311 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
312 {
313 	mutex_lock(&fs_info->scrub_lock);
314 	__scrub_blocked_if_needed(fs_info);
315 	atomic_dec(&fs_info->scrubs_paused);
316 	mutex_unlock(&fs_info->scrub_lock);
317 
318 	wake_up(&fs_info->scrub_pause_wait);
319 }
320 
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)321 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 {
323 	scrub_pause_on(fs_info);
324 	scrub_pause_off(fs_info);
325 }
326 
scrub_free_ctx(struct scrub_ctx * sctx)327 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
328 {
329 	int i;
330 
331 	if (!sctx)
332 		return;
333 
334 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
335 		release_scrub_stripe(&sctx->stripes[i]);
336 
337 	kvfree(sctx);
338 }
339 
scrub_put_ctx(struct scrub_ctx * sctx)340 static void scrub_put_ctx(struct scrub_ctx *sctx)
341 {
342 	if (refcount_dec_and_test(&sctx->refs))
343 		scrub_free_ctx(sctx);
344 }
345 
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)346 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
347 		struct btrfs_fs_info *fs_info, int is_dev_replace)
348 {
349 	struct scrub_ctx *sctx;
350 	int		i;
351 
352 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
353 	 * kvzalloc().
354 	 */
355 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
356 	if (!sctx)
357 		goto nomem;
358 	refcount_set(&sctx->refs, 1);
359 	sctx->is_dev_replace = is_dev_replace;
360 	sctx->fs_info = fs_info;
361 	sctx->extent_path.search_commit_root = 1;
362 	sctx->extent_path.skip_locking = 1;
363 	sctx->csum_path.search_commit_root = 1;
364 	sctx->csum_path.skip_locking = 1;
365 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
366 		int ret;
367 
368 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
369 		if (ret < 0)
370 			goto nomem;
371 		sctx->stripes[i].sctx = sctx;
372 	}
373 	sctx->first_free = 0;
374 	atomic_set(&sctx->cancel_req, 0);
375 
376 	spin_lock_init(&sctx->stat_lock);
377 	sctx->throttle_deadline = 0;
378 
379 	mutex_init(&sctx->wr_lock);
380 	if (is_dev_replace) {
381 		WARN_ON(!fs_info->dev_replace.tgtdev);
382 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
383 	}
384 
385 	return sctx;
386 
387 nomem:
388 	scrub_free_ctx(sctx);
389 	return ERR_PTR(-ENOMEM);
390 }
391 
scrub_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)392 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
393 				     u64 root, void *warn_ctx)
394 {
395 	u32 nlink;
396 	int ret;
397 	int i;
398 	unsigned nofs_flag;
399 	struct extent_buffer *eb;
400 	struct btrfs_inode_item *inode_item;
401 	struct scrub_warning *swarn = warn_ctx;
402 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
403 	struct inode_fs_paths *ipath = NULL;
404 	struct btrfs_root *local_root;
405 	struct btrfs_key key;
406 
407 	local_root = btrfs_get_fs_root(fs_info, root, true);
408 	if (IS_ERR(local_root)) {
409 		ret = PTR_ERR(local_root);
410 		goto err;
411 	}
412 
413 	/*
414 	 * this makes the path point to (inum INODE_ITEM ioff)
415 	 */
416 	key.objectid = inum;
417 	key.type = BTRFS_INODE_ITEM_KEY;
418 	key.offset = 0;
419 
420 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
421 	if (ret) {
422 		btrfs_put_root(local_root);
423 		btrfs_release_path(swarn->path);
424 		goto err;
425 	}
426 
427 	eb = swarn->path->nodes[0];
428 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
429 					struct btrfs_inode_item);
430 	nlink = btrfs_inode_nlink(eb, inode_item);
431 	btrfs_release_path(swarn->path);
432 
433 	/*
434 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
435 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
436 	 * not seem to be strictly necessary.
437 	 */
438 	nofs_flag = memalloc_nofs_save();
439 	ipath = init_ipath(4096, local_root, swarn->path);
440 	memalloc_nofs_restore(nofs_flag);
441 	if (IS_ERR(ipath)) {
442 		btrfs_put_root(local_root);
443 		ret = PTR_ERR(ipath);
444 		ipath = NULL;
445 		goto err;
446 	}
447 	ret = paths_from_inode(inum, ipath);
448 
449 	if (ret < 0)
450 		goto err;
451 
452 	/*
453 	 * we deliberately ignore the bit ipath might have been too small to
454 	 * hold all of the paths here
455 	 */
456 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
457 		btrfs_warn_in_rcu(fs_info,
458 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
459 				  swarn->errstr, swarn->logical,
460 				  btrfs_dev_name(swarn->dev),
461 				  swarn->physical,
462 				  root, inum, offset,
463 				  fs_info->sectorsize, nlink,
464 				  (char *)(unsigned long)ipath->fspath->val[i]);
465 
466 	btrfs_put_root(local_root);
467 	free_ipath(ipath);
468 	return 0;
469 
470 err:
471 	btrfs_warn_in_rcu(fs_info,
472 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
473 			  swarn->errstr, swarn->logical,
474 			  btrfs_dev_name(swarn->dev),
475 			  swarn->physical,
476 			  root, inum, offset, ret);
477 
478 	free_ipath(ipath);
479 	return 0;
480 }
481 
scrub_print_common_warning(const char * errstr,struct btrfs_device * dev,bool is_super,u64 logical,u64 physical)482 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
483 				       bool is_super, u64 logical, u64 physical)
484 {
485 	struct btrfs_fs_info *fs_info = dev->fs_info;
486 	struct btrfs_path *path;
487 	struct btrfs_key found_key;
488 	struct extent_buffer *eb;
489 	struct btrfs_extent_item *ei;
490 	struct scrub_warning swarn;
491 	u64 flags = 0;
492 	u32 item_size;
493 	int ret;
494 
495 	/* Super block error, no need to search extent tree. */
496 	if (is_super) {
497 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
498 				  errstr, btrfs_dev_name(dev), physical);
499 		return;
500 	}
501 	path = btrfs_alloc_path();
502 	if (!path)
503 		return;
504 
505 	swarn.physical = physical;
506 	swarn.logical = logical;
507 	swarn.errstr = errstr;
508 	swarn.dev = NULL;
509 
510 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
511 				  &flags);
512 	if (ret < 0)
513 		goto out;
514 
515 	swarn.extent_item_size = found_key.offset;
516 
517 	eb = path->nodes[0];
518 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
519 	item_size = btrfs_item_size(eb, path->slots[0]);
520 
521 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
522 		unsigned long ptr = 0;
523 		u8 ref_level;
524 		u64 ref_root;
525 
526 		while (true) {
527 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
528 						      item_size, &ref_root,
529 						      &ref_level);
530 			if (ret < 0) {
531 				btrfs_warn(fs_info,
532 				"failed to resolve tree backref for logical %llu: %d",
533 						  swarn.logical, ret);
534 				break;
535 			}
536 			if (ret > 0)
537 				break;
538 			btrfs_warn_in_rcu(fs_info,
539 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
540 				errstr, swarn.logical, btrfs_dev_name(dev),
541 				swarn.physical, (ref_level ? "node" : "leaf"),
542 				ref_level, ref_root);
543 		}
544 		btrfs_release_path(path);
545 	} else {
546 		struct btrfs_backref_walk_ctx ctx = { 0 };
547 
548 		btrfs_release_path(path);
549 
550 		ctx.bytenr = found_key.objectid;
551 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
552 		ctx.fs_info = fs_info;
553 
554 		swarn.path = path;
555 		swarn.dev = dev;
556 
557 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
558 	}
559 
560 out:
561 	btrfs_free_path(path);
562 }
563 
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)564 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
565 {
566 	int ret = 0;
567 	u64 length;
568 
569 	if (!btrfs_is_zoned(sctx->fs_info))
570 		return 0;
571 
572 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
573 		return 0;
574 
575 	if (sctx->write_pointer < physical) {
576 		length = physical - sctx->write_pointer;
577 
578 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
579 						sctx->write_pointer, length);
580 		if (!ret)
581 			sctx->write_pointer = physical;
582 	}
583 	return ret;
584 }
585 
scrub_stripe_get_page(struct scrub_stripe * stripe,int sector_nr)586 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
587 {
588 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
589 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
590 
591 	return stripe->pages[page_index];
592 }
593 
scrub_stripe_get_page_offset(struct scrub_stripe * stripe,int sector_nr)594 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
595 						 int sector_nr)
596 {
597 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
598 
599 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
600 }
601 
scrub_verify_one_metadata(struct scrub_stripe * stripe,int sector_nr)602 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
603 {
604 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
605 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
606 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
607 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
608 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
609 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
610 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
611 	u8 calculated_csum[BTRFS_CSUM_SIZE];
612 	struct btrfs_header *header;
613 
614 	/*
615 	 * Here we don't have a good way to attach the pages (and subpages)
616 	 * to a dummy extent buffer, thus we have to directly grab the members
617 	 * from pages.
618 	 */
619 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
620 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
621 
622 	if (logical != btrfs_stack_header_bytenr(header)) {
623 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
624 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
625 		btrfs_warn_rl(fs_info,
626 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
627 			      logical, stripe->mirror_num,
628 			      btrfs_stack_header_bytenr(header), logical);
629 		return;
630 	}
631 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
632 		   BTRFS_FSID_SIZE) != 0) {
633 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
634 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
635 		btrfs_warn_rl(fs_info,
636 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
637 			      logical, stripe->mirror_num,
638 			      header->fsid, fs_info->fs_devices->fsid);
639 		return;
640 	}
641 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
642 		   BTRFS_UUID_SIZE) != 0) {
643 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
644 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
645 		btrfs_warn_rl(fs_info,
646 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
647 			      logical, stripe->mirror_num,
648 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
649 		return;
650 	}
651 
652 	/* Now check tree block csum. */
653 	shash->tfm = fs_info->csum_shash;
654 	crypto_shash_init(shash);
655 	crypto_shash_update(shash, page_address(first_page) + first_off +
656 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
657 
658 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
659 		struct page *page = scrub_stripe_get_page(stripe, i);
660 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
661 
662 		crypto_shash_update(shash, page_address(page) + page_off,
663 				    fs_info->sectorsize);
664 	}
665 
666 	crypto_shash_final(shash, calculated_csum);
667 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
668 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
669 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
670 		btrfs_warn_rl(fs_info,
671 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
672 			      logical, stripe->mirror_num,
673 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
674 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
675 		return;
676 	}
677 	if (stripe->sectors[sector_nr].generation !=
678 	    btrfs_stack_header_generation(header)) {
679 		bitmap_set(&stripe->meta_gen_error_bitmap, sector_nr, sectors_per_tree);
680 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
681 		btrfs_warn_rl(fs_info,
682 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
683 			      logical, stripe->mirror_num,
684 			      btrfs_stack_header_generation(header),
685 			      stripe->sectors[sector_nr].generation);
686 		return;
687 	}
688 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
689 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
690 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
691 	bitmap_clear(&stripe->meta_gen_error_bitmap, sector_nr, sectors_per_tree);
692 }
693 
scrub_verify_one_sector(struct scrub_stripe * stripe,int sector_nr)694 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
695 {
696 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
697 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
698 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
699 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
700 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
701 	u8 csum_buf[BTRFS_CSUM_SIZE];
702 	int ret;
703 
704 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
705 
706 	/* Sector not utilized, skip it. */
707 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
708 		return;
709 
710 	/* IO error, no need to check. */
711 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
712 		return;
713 
714 	/* Metadata, verify the full tree block. */
715 	if (sector->is_metadata) {
716 		/*
717 		 * Check if the tree block crosses the stripe boudary.  If
718 		 * crossed the boundary, we cannot verify it but only give a
719 		 * warning.
720 		 *
721 		 * This can only happen on a very old filesystem where chunks
722 		 * are not ensured to be stripe aligned.
723 		 */
724 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
725 			btrfs_warn_rl(fs_info,
726 			"tree block at %llu crosses stripe boundary %llu",
727 				      stripe->logical +
728 				      (sector_nr << fs_info->sectorsize_bits),
729 				      stripe->logical);
730 			return;
731 		}
732 		scrub_verify_one_metadata(stripe, sector_nr);
733 		return;
734 	}
735 
736 	/*
737 	 * Data is easier, we just verify the data csum (if we have it).  For
738 	 * cases without csum, we have no other choice but to trust it.
739 	 */
740 	if (!sector->csum) {
741 		clear_bit(sector_nr, &stripe->error_bitmap);
742 		return;
743 	}
744 
745 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
746 	if (ret < 0) {
747 		set_bit(sector_nr, &stripe->csum_error_bitmap);
748 		set_bit(sector_nr, &stripe->error_bitmap);
749 	} else {
750 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
751 		clear_bit(sector_nr, &stripe->error_bitmap);
752 	}
753 }
754 
755 /* Verify specified sectors of a stripe. */
scrub_verify_one_stripe(struct scrub_stripe * stripe,unsigned long bitmap)756 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
757 {
758 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
759 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
760 	int sector_nr;
761 
762 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
763 		scrub_verify_one_sector(stripe, sector_nr);
764 		if (stripe->sectors[sector_nr].is_metadata)
765 			sector_nr += sectors_per_tree - 1;
766 	}
767 }
768 
calc_sector_number(struct scrub_stripe * stripe,struct bio_vec * first_bvec)769 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
770 {
771 	int i;
772 
773 	for (i = 0; i < stripe->nr_sectors; i++) {
774 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
775 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
776 			break;
777 	}
778 	ASSERT(i < stripe->nr_sectors);
779 	return i;
780 }
781 
782 /*
783  * Repair read is different to the regular read:
784  *
785  * - Only reads the failed sectors
786  * - May have extra blocksize limits
787  */
scrub_repair_read_endio(struct btrfs_bio * bbio)788 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
789 {
790 	struct scrub_stripe *stripe = bbio->private;
791 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
792 	struct bio_vec *bvec;
793 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
794 	u32 bio_size = 0;
795 	int i;
796 
797 	ASSERT(sector_nr < stripe->nr_sectors);
798 
799 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
800 		bio_size += bvec->bv_len;
801 
802 	if (bbio->bio.bi_status) {
803 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
804 			   bio_size >> fs_info->sectorsize_bits);
805 		bitmap_set(&stripe->error_bitmap, sector_nr,
806 			   bio_size >> fs_info->sectorsize_bits);
807 	} else {
808 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
809 			     bio_size >> fs_info->sectorsize_bits);
810 	}
811 	bio_put(&bbio->bio);
812 	if (atomic_dec_and_test(&stripe->pending_io))
813 		wake_up(&stripe->io_wait);
814 }
815 
calc_next_mirror(int mirror,int num_copies)816 static int calc_next_mirror(int mirror, int num_copies)
817 {
818 	ASSERT(mirror <= num_copies);
819 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
820 }
821 
scrub_stripe_submit_repair_read(struct scrub_stripe * stripe,int mirror,int blocksize,bool wait)822 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
823 					    int mirror, int blocksize, bool wait)
824 {
825 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
826 	struct btrfs_bio *bbio = NULL;
827 	const unsigned long old_error_bitmap = stripe->error_bitmap;
828 	int i;
829 
830 	ASSERT(stripe->mirror_num >= 1);
831 	ASSERT(atomic_read(&stripe->pending_io) == 0);
832 
833 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
834 		struct page *page;
835 		int pgoff;
836 		int ret;
837 
838 		page = scrub_stripe_get_page(stripe, i);
839 		pgoff = scrub_stripe_get_page_offset(stripe, i);
840 
841 		/* The current sector cannot be merged, submit the bio. */
842 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
843 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
844 			ASSERT(bbio->bio.bi_iter.bi_size);
845 			atomic_inc(&stripe->pending_io);
846 			btrfs_submit_bio(bbio, mirror);
847 			if (wait)
848 				wait_scrub_stripe_io(stripe);
849 			bbio = NULL;
850 		}
851 
852 		if (!bbio) {
853 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
854 				fs_info, scrub_repair_read_endio, stripe);
855 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
856 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
857 		}
858 
859 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
860 		ASSERT(ret == fs_info->sectorsize);
861 	}
862 	if (bbio) {
863 		ASSERT(bbio->bio.bi_iter.bi_size);
864 		atomic_inc(&stripe->pending_io);
865 		btrfs_submit_bio(bbio, mirror);
866 		if (wait)
867 			wait_scrub_stripe_io(stripe);
868 	}
869 }
870 
scrub_stripe_report_errors(struct scrub_ctx * sctx,struct scrub_stripe * stripe)871 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
872 				       struct scrub_stripe *stripe)
873 {
874 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
875 				      DEFAULT_RATELIMIT_BURST);
876 	struct btrfs_fs_info *fs_info = sctx->fs_info;
877 	struct btrfs_device *dev = NULL;
878 	u64 physical = 0;
879 	int nr_data_sectors = 0;
880 	int nr_meta_sectors = 0;
881 	int nr_nodatacsum_sectors = 0;
882 	int nr_repaired_sectors = 0;
883 	int sector_nr;
884 
885 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
886 		return;
887 
888 	/*
889 	 * Init needed infos for error reporting.
890 	 *
891 	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
892 	 * thus no need for dev/physical, error reporting still needs dev and physical.
893 	 */
894 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
895 		u64 mapped_len = fs_info->sectorsize;
896 		struct btrfs_io_context *bioc = NULL;
897 		int stripe_index = stripe->mirror_num - 1;
898 		int ret;
899 
900 		/* For scrub, our mirror_num should always start at 1. */
901 		ASSERT(stripe->mirror_num >= 1);
902 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
903 				      stripe->logical, &mapped_len, &bioc,
904 				      NULL, NULL, 1);
905 		/*
906 		 * If we failed, dev will be NULL, and later detailed reports
907 		 * will just be skipped.
908 		 */
909 		if (ret < 0)
910 			goto skip;
911 		physical = bioc->stripes[stripe_index].physical;
912 		dev = bioc->stripes[stripe_index].dev;
913 		btrfs_put_bioc(bioc);
914 	}
915 
916 skip:
917 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
918 		bool repaired = false;
919 
920 		if (stripe->sectors[sector_nr].is_metadata) {
921 			nr_meta_sectors++;
922 		} else {
923 			nr_data_sectors++;
924 			if (!stripe->sectors[sector_nr].csum)
925 				nr_nodatacsum_sectors++;
926 		}
927 
928 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
929 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
930 			nr_repaired_sectors++;
931 			repaired = true;
932 		}
933 
934 		/* Good sector from the beginning, nothing need to be done. */
935 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
936 			continue;
937 
938 		/*
939 		 * Report error for the corrupted sectors.  If repaired, just
940 		 * output the message of repaired message.
941 		 */
942 		if (repaired) {
943 			if (dev) {
944 				btrfs_err_rl_in_rcu(fs_info,
945 			"fixed up error at logical %llu on dev %s physical %llu",
946 					    stripe->logical, btrfs_dev_name(dev),
947 					    physical);
948 			} else {
949 				btrfs_err_rl_in_rcu(fs_info,
950 			"fixed up error at logical %llu on mirror %u",
951 					    stripe->logical, stripe->mirror_num);
952 			}
953 			continue;
954 		}
955 
956 		/* The remaining are all for unrepaired. */
957 		if (dev) {
958 			btrfs_err_rl_in_rcu(fs_info,
959 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
960 					    stripe->logical, btrfs_dev_name(dev),
961 					    physical);
962 		} else {
963 			btrfs_err_rl_in_rcu(fs_info,
964 	"unable to fixup (regular) error at logical %llu on mirror %u",
965 					    stripe->logical, stripe->mirror_num);
966 		}
967 
968 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
969 			if (__ratelimit(&rs) && dev)
970 				scrub_print_common_warning("i/o error", dev, false,
971 						     stripe->logical, physical);
972 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
973 			if (__ratelimit(&rs) && dev)
974 				scrub_print_common_warning("checksum error", dev, false,
975 						     stripe->logical, physical);
976 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
977 			if (__ratelimit(&rs) && dev)
978 				scrub_print_common_warning("header error", dev, false,
979 						     stripe->logical, physical);
980 		if (test_bit(sector_nr, &stripe->meta_gen_error_bitmap))
981 			if (__ratelimit(&rs) && dev)
982 				scrub_print_common_warning("generation error", dev, false,
983 						     stripe->logical, physical);
984 	}
985 
986 	/* Update the device stats. */
987 	for (int i = 0; i < stripe->init_nr_io_errors; i++)
988 		btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS);
989 	for (int i = 0; i < stripe->init_nr_csum_errors; i++)
990 		btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
991 	/* Generation mismatch error is based on each metadata, not each block. */
992 	for (int i = 0; i < stripe->init_nr_meta_gen_errors;
993 	     i += (fs_info->nodesize >> fs_info->sectorsize_bits))
994 		btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS);
995 
996 	spin_lock(&sctx->stat_lock);
997 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
998 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
999 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
1000 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
1001 	sctx->stat.no_csum += nr_nodatacsum_sectors;
1002 	sctx->stat.read_errors += stripe->init_nr_io_errors;
1003 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
1004 	sctx->stat.verify_errors += stripe->init_nr_meta_errors +
1005 				    stripe->init_nr_meta_gen_errors;
1006 	sctx->stat.uncorrectable_errors +=
1007 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
1008 	sctx->stat.corrected_errors += nr_repaired_sectors;
1009 	spin_unlock(&sctx->stat_lock);
1010 }
1011 
1012 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1013 				unsigned long write_bitmap, bool dev_replace);
1014 
1015 /*
1016  * The main entrance for all read related scrub work, including:
1017  *
1018  * - Wait for the initial read to finish
1019  * - Verify and locate any bad sectors
1020  * - Go through the remaining mirrors and try to read as large blocksize as
1021  *   possible
1022  * - Go through all mirrors (including the failed mirror) sector-by-sector
1023  * - Submit writeback for repaired sectors
1024  *
1025  * Writeback for dev-replace does not happen here, it needs extra
1026  * synchronization for zoned devices.
1027  */
scrub_stripe_read_repair_worker(struct work_struct * work)1028 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1029 {
1030 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1031 	struct scrub_ctx *sctx = stripe->sctx;
1032 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1033 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1034 					  stripe->bg->length);
1035 	unsigned long repaired;
1036 	int mirror;
1037 	int i;
1038 
1039 	ASSERT(stripe->mirror_num > 0);
1040 
1041 	wait_scrub_stripe_io(stripe);
1042 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1043 	/* Save the initial failed bitmap for later repair and report usage. */
1044 	stripe->init_error_bitmap = stripe->error_bitmap;
1045 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1046 						  stripe->nr_sectors);
1047 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1048 						    stripe->nr_sectors);
1049 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1050 						    stripe->nr_sectors);
1051 	stripe->init_nr_meta_gen_errors = bitmap_weight(&stripe->meta_gen_error_bitmap,
1052 							stripe->nr_sectors);
1053 
1054 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1055 		goto out;
1056 
1057 	/*
1058 	 * Try all remaining mirrors.
1059 	 *
1060 	 * Here we still try to read as large block as possible, as this is
1061 	 * faster and we have extra safety nets to rely on.
1062 	 */
1063 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1064 	     mirror != stripe->mirror_num;
1065 	     mirror = calc_next_mirror(mirror, num_copies)) {
1066 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1067 
1068 		scrub_stripe_submit_repair_read(stripe, mirror,
1069 						BTRFS_STRIPE_LEN, false);
1070 		wait_scrub_stripe_io(stripe);
1071 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1072 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1073 			goto out;
1074 	}
1075 
1076 	/*
1077 	 * Last safety net, try re-checking all mirrors, including the failed
1078 	 * one, sector-by-sector.
1079 	 *
1080 	 * As if one sector failed the drive's internal csum, the whole read
1081 	 * containing the offending sector would be marked as error.
1082 	 * Thus here we do sector-by-sector read.
1083 	 *
1084 	 * This can be slow, thus we only try it as the last resort.
1085 	 */
1086 
1087 	for (i = 0, mirror = stripe->mirror_num;
1088 	     i < num_copies;
1089 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1090 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1091 
1092 		scrub_stripe_submit_repair_read(stripe, mirror,
1093 						fs_info->sectorsize, true);
1094 		wait_scrub_stripe_io(stripe);
1095 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1096 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1097 			goto out;
1098 	}
1099 out:
1100 	/*
1101 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1102 	 * in-place, but queue the bg to be relocated.
1103 	 */
1104 	bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1105 		      stripe->nr_sectors);
1106 	if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1107 		if (btrfs_is_zoned(fs_info)) {
1108 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1109 		} else {
1110 			scrub_write_sectors(sctx, stripe, repaired, false);
1111 			wait_scrub_stripe_io(stripe);
1112 		}
1113 	}
1114 
1115 	scrub_stripe_report_errors(sctx, stripe);
1116 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1117 	wake_up(&stripe->repair_wait);
1118 }
1119 
scrub_read_endio(struct btrfs_bio * bbio)1120 static void scrub_read_endio(struct btrfs_bio *bbio)
1121 {
1122 	struct scrub_stripe *stripe = bbio->private;
1123 	struct bio_vec *bvec;
1124 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1125 	int num_sectors;
1126 	u32 bio_size = 0;
1127 	int i;
1128 
1129 	ASSERT(sector_nr < stripe->nr_sectors);
1130 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1131 		bio_size += bvec->bv_len;
1132 	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1133 
1134 	if (bbio->bio.bi_status) {
1135 		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1136 		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1137 	} else {
1138 		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1139 	}
1140 	bio_put(&bbio->bio);
1141 	if (atomic_dec_and_test(&stripe->pending_io)) {
1142 		wake_up(&stripe->io_wait);
1143 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1144 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1145 	}
1146 }
1147 
scrub_write_endio(struct btrfs_bio * bbio)1148 static void scrub_write_endio(struct btrfs_bio *bbio)
1149 {
1150 	struct scrub_stripe *stripe = bbio->private;
1151 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1152 	struct bio_vec *bvec;
1153 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1154 	u32 bio_size = 0;
1155 	int i;
1156 
1157 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1158 		bio_size += bvec->bv_len;
1159 
1160 	if (bbio->bio.bi_status) {
1161 		unsigned long flags;
1162 
1163 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1164 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1165 			   bio_size >> fs_info->sectorsize_bits);
1166 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1167 		for (int i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++)
1168 			btrfs_dev_stat_inc_and_print(stripe->dev,
1169 						     BTRFS_DEV_STAT_WRITE_ERRS);
1170 	}
1171 	bio_put(&bbio->bio);
1172 
1173 	if (atomic_dec_and_test(&stripe->pending_io))
1174 		wake_up(&stripe->io_wait);
1175 }
1176 
scrub_submit_write_bio(struct scrub_ctx * sctx,struct scrub_stripe * stripe,struct btrfs_bio * bbio,bool dev_replace)1177 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1178 				   struct scrub_stripe *stripe,
1179 				   struct btrfs_bio *bbio, bool dev_replace)
1180 {
1181 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1182 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1183 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1184 		      stripe->logical;
1185 
1186 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1187 	atomic_inc(&stripe->pending_io);
1188 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1189 	if (!btrfs_is_zoned(fs_info))
1190 		return;
1191 	/*
1192 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1193 	 * the write to finish before the next write.
1194 	 */
1195 	wait_scrub_stripe_io(stripe);
1196 
1197 	/*
1198 	 * And also need to update the write pointer if write finished
1199 	 * successfully.
1200 	 */
1201 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1202 		      &stripe->write_error_bitmap))
1203 		sctx->write_pointer += bio_len;
1204 }
1205 
1206 /*
1207  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1208  *
1209  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1210  *
1211  * - Only needs logical bytenr and mirror_num
1212  *   Just like the scrub read path
1213  *
1214  * - Would only result in writes to the specified mirror
1215  *   Unlike the regular writeback path, which would write back to all stripes
1216  *
1217  * - Handle dev-replace and read-repair writeback differently
1218  */
scrub_write_sectors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,unsigned long write_bitmap,bool dev_replace)1219 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1220 				unsigned long write_bitmap, bool dev_replace)
1221 {
1222 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1223 	struct btrfs_bio *bbio = NULL;
1224 	int sector_nr;
1225 
1226 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1227 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1228 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1229 		int ret;
1230 
1231 		/* We should only writeback sectors covered by an extent. */
1232 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1233 
1234 		/* Cannot merge with previous sector, submit the current one. */
1235 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1236 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1237 			bbio = NULL;
1238 		}
1239 		if (!bbio) {
1240 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1241 					       fs_info, scrub_write_endio, stripe);
1242 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1243 				(sector_nr << fs_info->sectorsize_bits)) >>
1244 				SECTOR_SHIFT;
1245 		}
1246 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1247 		ASSERT(ret == fs_info->sectorsize);
1248 	}
1249 	if (bbio)
1250 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1251 }
1252 
1253 /*
1254  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1255  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1256  */
scrub_throttle_dev_io(struct scrub_ctx * sctx,struct btrfs_device * device,unsigned int bio_size)1257 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1258 				  unsigned int bio_size)
1259 {
1260 	const int time_slice = 1000;
1261 	s64 delta;
1262 	ktime_t now;
1263 	u32 div;
1264 	u64 bwlimit;
1265 
1266 	bwlimit = READ_ONCE(device->scrub_speed_max);
1267 	if (bwlimit == 0)
1268 		return;
1269 
1270 	/*
1271 	 * Slice is divided into intervals when the IO is submitted, adjust by
1272 	 * bwlimit and maximum of 64 intervals.
1273 	 */
1274 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1275 	div = min_t(u32, 64, div);
1276 
1277 	/* Start new epoch, set deadline */
1278 	now = ktime_get();
1279 	if (sctx->throttle_deadline == 0) {
1280 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1281 		sctx->throttle_sent = 0;
1282 	}
1283 
1284 	/* Still in the time to send? */
1285 	if (ktime_before(now, sctx->throttle_deadline)) {
1286 		/* If current bio is within the limit, send it */
1287 		sctx->throttle_sent += bio_size;
1288 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1289 			return;
1290 
1291 		/* We're over the limit, sleep until the rest of the slice */
1292 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1293 	} else {
1294 		/* New request after deadline, start new epoch */
1295 		delta = 0;
1296 	}
1297 
1298 	if (delta) {
1299 		long timeout;
1300 
1301 		timeout = div_u64(delta * HZ, 1000);
1302 		schedule_timeout_interruptible(timeout);
1303 	}
1304 
1305 	/* Next call will start the deadline period */
1306 	sctx->throttle_deadline = 0;
1307 }
1308 
1309 /*
1310  * Given a physical address, this will calculate it's
1311  * logical offset. if this is a parity stripe, it will return
1312  * the most left data stripe's logical offset.
1313  *
1314  * return 0 if it is a data stripe, 1 means parity stripe.
1315  */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)1316 static int get_raid56_logic_offset(u64 physical, int num,
1317 				   struct map_lookup *map, u64 *offset,
1318 				   u64 *stripe_start)
1319 {
1320 	int i;
1321 	int j = 0;
1322 	u64 last_offset;
1323 	const int data_stripes = nr_data_stripes(map);
1324 
1325 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1326 	if (stripe_start)
1327 		*stripe_start = last_offset;
1328 
1329 	*offset = last_offset;
1330 	for (i = 0; i < data_stripes; i++) {
1331 		u32 stripe_nr;
1332 		u32 stripe_index;
1333 		u32 rot;
1334 
1335 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1336 
1337 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1338 
1339 		/* Work out the disk rotation on this stripe-set */
1340 		rot = stripe_nr % map->num_stripes;
1341 		/* calculate which stripe this data locates */
1342 		rot += i;
1343 		stripe_index = rot % map->num_stripes;
1344 		if (stripe_index == num)
1345 			return 0;
1346 		if (stripe_index < num)
1347 			j++;
1348 	}
1349 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1350 	return 1;
1351 }
1352 
1353 /*
1354  * Return 0 if the extent item range covers any byte of the range.
1355  * Return <0 if the extent item is before @search_start.
1356  * Return >0 if the extent item is after @start_start + @search_len.
1357  */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)1358 static int compare_extent_item_range(struct btrfs_path *path,
1359 				     u64 search_start, u64 search_len)
1360 {
1361 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1362 	u64 len;
1363 	struct btrfs_key key;
1364 
1365 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1366 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1367 	       key.type == BTRFS_METADATA_ITEM_KEY);
1368 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1369 		len = fs_info->nodesize;
1370 	else
1371 		len = key.offset;
1372 
1373 	if (key.objectid + len <= search_start)
1374 		return -1;
1375 	if (key.objectid >= search_start + search_len)
1376 		return 1;
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Locate one extent item which covers any byte in range
1382  * [@search_start, @search_start + @search_length)
1383  *
1384  * If the path is not initialized, we will initialize the search by doing
1385  * a btrfs_search_slot().
1386  * If the path is already initialized, we will use the path as the initial
1387  * slot, to avoid duplicated btrfs_search_slot() calls.
1388  *
1389  * NOTE: If an extent item starts before @search_start, we will still
1390  * return the extent item. This is for data extent crossing stripe boundary.
1391  *
1392  * Return 0 if we found such extent item, and @path will point to the extent item.
1393  * Return >0 if no such extent item can be found, and @path will be released.
1394  * Return <0 if hit fatal error, and @path will be released.
1395  */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)1396 static int find_first_extent_item(struct btrfs_root *extent_root,
1397 				  struct btrfs_path *path,
1398 				  u64 search_start, u64 search_len)
1399 {
1400 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1401 	struct btrfs_key key;
1402 	int ret;
1403 
1404 	/* Continue using the existing path */
1405 	if (path->nodes[0])
1406 		goto search_forward;
1407 
1408 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1409 		key.type = BTRFS_METADATA_ITEM_KEY;
1410 	else
1411 		key.type = BTRFS_EXTENT_ITEM_KEY;
1412 	key.objectid = search_start;
1413 	key.offset = (u64)-1;
1414 
1415 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1416 	if (ret < 0)
1417 		return ret;
1418 
1419 	ASSERT(ret > 0);
1420 	/*
1421 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1422 	 * an extent item starting before @search_start.
1423 	 */
1424 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1425 	if (ret < 0)
1426 		return ret;
1427 	/*
1428 	 * No matter whether we have found an extent item, the next loop will
1429 	 * properly do every check on the key.
1430 	 */
1431 search_forward:
1432 	while (true) {
1433 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1434 		if (key.objectid >= search_start + search_len)
1435 			break;
1436 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1437 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1438 			goto next;
1439 
1440 		ret = compare_extent_item_range(path, search_start, search_len);
1441 		if (ret == 0)
1442 			return ret;
1443 		if (ret > 0)
1444 			break;
1445 next:
1446 		path->slots[0]++;
1447 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1448 			ret = btrfs_next_leaf(extent_root, path);
1449 			if (ret) {
1450 				/* Either no more item or fatal error */
1451 				btrfs_release_path(path);
1452 				return ret;
1453 			}
1454 		}
1455 	}
1456 	btrfs_release_path(path);
1457 	return 1;
1458 }
1459 
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)1460 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1461 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1462 {
1463 	struct btrfs_key key;
1464 	struct btrfs_extent_item *ei;
1465 
1466 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1467 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1468 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1469 	*extent_start_ret = key.objectid;
1470 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1471 		*size_ret = path->nodes[0]->fs_info->nodesize;
1472 	else
1473 		*size_ret = key.offset;
1474 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1475 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1476 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1477 }
1478 
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)1479 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1480 					u64 physical, u64 physical_end)
1481 {
1482 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1483 	int ret = 0;
1484 
1485 	if (!btrfs_is_zoned(fs_info))
1486 		return 0;
1487 
1488 	mutex_lock(&sctx->wr_lock);
1489 	if (sctx->write_pointer < physical_end) {
1490 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1491 						    physical,
1492 						    sctx->write_pointer);
1493 		if (ret)
1494 			btrfs_err(fs_info,
1495 				  "zoned: failed to recover write pointer");
1496 	}
1497 	mutex_unlock(&sctx->wr_lock);
1498 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1499 
1500 	return ret;
1501 }
1502 
fill_one_extent_info(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe,u64 extent_start,u64 extent_len,u64 extent_flags,u64 extent_gen)1503 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1504 				 struct scrub_stripe *stripe,
1505 				 u64 extent_start, u64 extent_len,
1506 				 u64 extent_flags, u64 extent_gen)
1507 {
1508 	for (u64 cur_logical = max(stripe->logical, extent_start);
1509 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1510 			       extent_start + extent_len);
1511 	     cur_logical += fs_info->sectorsize) {
1512 		const int nr_sector = (cur_logical - stripe->logical) >>
1513 				      fs_info->sectorsize_bits;
1514 		struct scrub_sector_verification *sector =
1515 						&stripe->sectors[nr_sector];
1516 
1517 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1518 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1519 			sector->is_metadata = true;
1520 			sector->generation = extent_gen;
1521 		}
1522 	}
1523 }
1524 
scrub_stripe_reset_bitmaps(struct scrub_stripe * stripe)1525 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1526 {
1527 	stripe->extent_sector_bitmap = 0;
1528 	stripe->init_error_bitmap = 0;
1529 	stripe->init_nr_io_errors = 0;
1530 	stripe->init_nr_csum_errors = 0;
1531 	stripe->init_nr_meta_errors = 0;
1532 	stripe->init_nr_meta_gen_errors = 0;
1533 	stripe->error_bitmap = 0;
1534 	stripe->io_error_bitmap = 0;
1535 	stripe->csum_error_bitmap = 0;
1536 	stripe->meta_error_bitmap = 0;
1537 	stripe->meta_gen_error_bitmap = 0;
1538 }
1539 
1540 /*
1541  * Locate one stripe which has at least one extent in its range.
1542  *
1543  * Return 0 if found such stripe, and store its info into @stripe.
1544  * Return >0 if there is no such stripe in the specified range.
1545  * Return <0 for error.
1546  */
scrub_find_fill_first_stripe(struct btrfs_block_group * bg,struct btrfs_path * extent_path,struct btrfs_path * csum_path,struct btrfs_device * dev,u64 physical,int mirror_num,u64 logical_start,u32 logical_len,struct scrub_stripe * stripe)1547 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1548 					struct btrfs_path *extent_path,
1549 					struct btrfs_path *csum_path,
1550 					struct btrfs_device *dev, u64 physical,
1551 					int mirror_num, u64 logical_start,
1552 					u32 logical_len,
1553 					struct scrub_stripe *stripe)
1554 {
1555 	struct btrfs_fs_info *fs_info = bg->fs_info;
1556 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1557 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1558 	const u64 logical_end = logical_start + logical_len;
1559 	u64 cur_logical = logical_start;
1560 	u64 stripe_end;
1561 	u64 extent_start;
1562 	u64 extent_len;
1563 	u64 extent_flags;
1564 	u64 extent_gen;
1565 	int ret;
1566 
1567 	if (unlikely(!extent_root || !csum_root)) {
1568 		btrfs_err(fs_info, "no valid extent or csum root for scrub");
1569 		return -EUCLEAN;
1570 	}
1571 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1572 				   stripe->nr_sectors);
1573 	scrub_stripe_reset_bitmaps(stripe);
1574 
1575 	/* The range must be inside the bg. */
1576 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1577 
1578 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1579 				     logical_len);
1580 	/* Either error or not found. */
1581 	if (ret)
1582 		goto out;
1583 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1584 			&extent_gen);
1585 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1586 		stripe->nr_meta_extents++;
1587 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1588 		stripe->nr_data_extents++;
1589 	cur_logical = max(extent_start, cur_logical);
1590 
1591 	/*
1592 	 * Round down to stripe boundary.
1593 	 *
1594 	 * The extra calculation against bg->start is to handle block groups
1595 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1596 	 */
1597 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1598 			  bg->start;
1599 	stripe->physical = physical + stripe->logical - logical_start;
1600 	stripe->dev = dev;
1601 	stripe->bg = bg;
1602 	stripe->mirror_num = mirror_num;
1603 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1604 
1605 	/* Fill the first extent info into stripe->sectors[] array. */
1606 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1607 			     extent_flags, extent_gen);
1608 	cur_logical = extent_start + extent_len;
1609 
1610 	/* Fill the extent info for the remaining sectors. */
1611 	while (cur_logical <= stripe_end) {
1612 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1613 					     stripe_end - cur_logical + 1);
1614 		if (ret < 0)
1615 			goto out;
1616 		if (ret > 0) {
1617 			ret = 0;
1618 			break;
1619 		}
1620 		get_extent_info(extent_path, &extent_start, &extent_len,
1621 				&extent_flags, &extent_gen);
1622 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1623 			stripe->nr_meta_extents++;
1624 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1625 			stripe->nr_data_extents++;
1626 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1627 				     extent_flags, extent_gen);
1628 		cur_logical = extent_start + extent_len;
1629 	}
1630 
1631 	/* Now fill the data csum. */
1632 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1633 		int sector_nr;
1634 		unsigned long csum_bitmap = 0;
1635 
1636 		/* Csum space should have already been allocated. */
1637 		ASSERT(stripe->csums);
1638 
1639 		/*
1640 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1641 		 * should contain at most 16 sectors.
1642 		 */
1643 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1644 
1645 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1646 						stripe->logical, stripe_end,
1647 						stripe->csums, &csum_bitmap);
1648 		if (ret < 0)
1649 			goto out;
1650 		if (ret > 0)
1651 			ret = 0;
1652 
1653 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1654 			stripe->sectors[sector_nr].csum = stripe->csums +
1655 				sector_nr * fs_info->csum_size;
1656 		}
1657 	}
1658 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1659 out:
1660 	return ret;
1661 }
1662 
scrub_reset_stripe(struct scrub_stripe * stripe)1663 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1664 {
1665 	scrub_stripe_reset_bitmaps(stripe);
1666 
1667 	stripe->nr_meta_extents = 0;
1668 	stripe->nr_data_extents = 0;
1669 	stripe->state = 0;
1670 
1671 	for (int i = 0; i < stripe->nr_sectors; i++) {
1672 		stripe->sectors[i].is_metadata = false;
1673 		stripe->sectors[i].csum = NULL;
1674 		stripe->sectors[i].generation = 0;
1675 	}
1676 }
1677 
scrub_submit_initial_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1678 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1679 				      struct scrub_stripe *stripe)
1680 {
1681 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1682 	struct btrfs_bio *bbio;
1683 	unsigned int nr_sectors = min_t(u64, BTRFS_STRIPE_LEN, stripe->bg->start +
1684 				      stripe->bg->length - stripe->logical) >>
1685 				  fs_info->sectorsize_bits;
1686 	int mirror = stripe->mirror_num;
1687 
1688 	ASSERT(stripe->bg);
1689 	ASSERT(stripe->mirror_num > 0);
1690 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1691 
1692 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1693 			       scrub_read_endio, stripe);
1694 
1695 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1696 	/* Read the whole range inside the chunk boundary. */
1697 	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1698 		struct page *page = scrub_stripe_get_page(stripe, cur);
1699 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1700 		int ret;
1701 
1702 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1703 		/* We should have allocated enough bio vectors. */
1704 		ASSERT(ret == fs_info->sectorsize);
1705 	}
1706 	atomic_inc(&stripe->pending_io);
1707 
1708 	/*
1709 	 * For dev-replace, either user asks to avoid the source dev, or
1710 	 * the device is missing, we try the next mirror instead.
1711 	 */
1712 	if (sctx->is_dev_replace &&
1713 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1714 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1715 	     !stripe->dev->bdev)) {
1716 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1717 						  stripe->bg->length);
1718 
1719 		mirror = calc_next_mirror(mirror, num_copies);
1720 	}
1721 	btrfs_submit_bio(bbio, mirror);
1722 }
1723 
stripe_has_metadata_error(struct scrub_stripe * stripe)1724 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1725 {
1726 	int i;
1727 
1728 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1729 		if (stripe->sectors[i].is_metadata) {
1730 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1731 
1732 			btrfs_err(fs_info,
1733 			"stripe %llu has unrepaired metadata sector at %llu",
1734 				  stripe->logical,
1735 				  stripe->logical + (i << fs_info->sectorsize_bits));
1736 			return true;
1737 		}
1738 	}
1739 	return false;
1740 }
1741 
submit_initial_group_read(struct scrub_ctx * sctx,unsigned int first_slot,unsigned int nr_stripes)1742 static void submit_initial_group_read(struct scrub_ctx *sctx,
1743 				      unsigned int first_slot,
1744 				      unsigned int nr_stripes)
1745 {
1746 	struct blk_plug plug;
1747 
1748 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1749 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1750 
1751 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1752 			      btrfs_stripe_nr_to_offset(nr_stripes));
1753 	blk_start_plug(&plug);
1754 	for (int i = 0; i < nr_stripes; i++) {
1755 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1756 
1757 		/* Those stripes should be initialized. */
1758 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1759 		scrub_submit_initial_read(sctx, stripe);
1760 	}
1761 	blk_finish_plug(&plug);
1762 }
1763 
flush_scrub_stripes(struct scrub_ctx * sctx)1764 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1765 {
1766 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1767 	struct scrub_stripe *stripe;
1768 	const int nr_stripes = sctx->cur_stripe;
1769 	int ret = 0;
1770 
1771 	if (!nr_stripes)
1772 		return 0;
1773 
1774 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1775 
1776 	/* Submit the stripes which are populated but not submitted. */
1777 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1778 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1779 
1780 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1781 	}
1782 
1783 	for (int i = 0; i < nr_stripes; i++) {
1784 		stripe = &sctx->stripes[i];
1785 
1786 		wait_event(stripe->repair_wait,
1787 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1788 	}
1789 
1790 	/* Submit for dev-replace. */
1791 	if (sctx->is_dev_replace) {
1792 		/*
1793 		 * For dev-replace, if we know there is something wrong with
1794 		 * metadata, we should immedately abort.
1795 		 */
1796 		for (int i = 0; i < nr_stripes; i++) {
1797 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1798 				ret = -EIO;
1799 				goto out;
1800 			}
1801 		}
1802 		for (int i = 0; i < nr_stripes; i++) {
1803 			unsigned long good;
1804 
1805 			stripe = &sctx->stripes[i];
1806 
1807 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1808 
1809 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1810 				      &stripe->error_bitmap, stripe->nr_sectors);
1811 			scrub_write_sectors(sctx, stripe, good, true);
1812 		}
1813 	}
1814 
1815 	/* Wait for the above writebacks to finish. */
1816 	for (int i = 0; i < nr_stripes; i++) {
1817 		stripe = &sctx->stripes[i];
1818 
1819 		wait_scrub_stripe_io(stripe);
1820 		scrub_reset_stripe(stripe);
1821 	}
1822 out:
1823 	sctx->cur_stripe = 0;
1824 	return ret;
1825 }
1826 
raid56_scrub_wait_endio(struct bio * bio)1827 static void raid56_scrub_wait_endio(struct bio *bio)
1828 {
1829 	complete(bio->bi_private);
1830 }
1831 
queue_scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * dev,int mirror_num,u64 logical,u32 length,u64 physical,u64 * found_logical_ret)1832 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1833 			      struct btrfs_device *dev, int mirror_num,
1834 			      u64 logical, u32 length, u64 physical,
1835 			      u64 *found_logical_ret)
1836 {
1837 	struct scrub_stripe *stripe;
1838 	int ret;
1839 
1840 	/*
1841 	 * There should always be one slot left, as caller filling the last
1842 	 * slot should flush them all.
1843 	 */
1844 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1845 
1846 	/* @found_logical_ret must be specified. */
1847 	ASSERT(found_logical_ret);
1848 
1849 	stripe = &sctx->stripes[sctx->cur_stripe];
1850 	scrub_reset_stripe(stripe);
1851 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1852 					   &sctx->csum_path, dev, physical,
1853 					   mirror_num, logical, length, stripe);
1854 	/* Either >0 as no more extents or <0 for error. */
1855 	if (ret)
1856 		return ret;
1857 	*found_logical_ret = stripe->logical;
1858 	sctx->cur_stripe++;
1859 
1860 	/* We filled one group, submit it. */
1861 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1862 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1863 
1864 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1865 	}
1866 
1867 	/* Last slot used, flush them all. */
1868 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1869 		return flush_scrub_stripes(sctx);
1870 	return 0;
1871 }
1872 
scrub_raid56_parity_stripe(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_block_group * bg,struct map_lookup * map,u64 full_stripe_start)1873 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1874 				      struct btrfs_device *scrub_dev,
1875 				      struct btrfs_block_group *bg,
1876 				      struct map_lookup *map,
1877 				      u64 full_stripe_start)
1878 {
1879 	DECLARE_COMPLETION_ONSTACK(io_done);
1880 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1881 	struct btrfs_raid_bio *rbio;
1882 	struct btrfs_io_context *bioc = NULL;
1883 	struct btrfs_path extent_path = { 0 };
1884 	struct btrfs_path csum_path = { 0 };
1885 	struct bio *bio;
1886 	struct scrub_stripe *stripe;
1887 	bool all_empty = true;
1888 	const int data_stripes = nr_data_stripes(map);
1889 	unsigned long extent_bitmap = 0;
1890 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1891 	int ret;
1892 
1893 	ASSERT(sctx->raid56_data_stripes);
1894 
1895 	/*
1896 	 * For data stripe search, we cannot re-use the same extent/csum paths,
1897 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1898 	 * we have to use our own extent/csum paths.
1899 	 */
1900 	extent_path.search_commit_root = 1;
1901 	extent_path.skip_locking = 1;
1902 	csum_path.search_commit_root = 1;
1903 	csum_path.skip_locking = 1;
1904 
1905 	for (int i = 0; i < data_stripes; i++) {
1906 		int stripe_index;
1907 		int rot;
1908 		u64 physical;
1909 
1910 		stripe = &sctx->raid56_data_stripes[i];
1911 		rot = div_u64(full_stripe_start - bg->start,
1912 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1913 		stripe_index = (i + rot) % map->num_stripes;
1914 		physical = map->stripes[stripe_index].physical +
1915 			   btrfs_stripe_nr_to_offset(rot);
1916 
1917 		scrub_reset_stripe(stripe);
1918 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1919 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1920 				map->stripes[stripe_index].dev, physical, 1,
1921 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1922 				BTRFS_STRIPE_LEN, stripe);
1923 		if (ret < 0)
1924 			goto out;
1925 		/*
1926 		 * No extent in this data stripe, need to manually mark them
1927 		 * initialized to make later read submission happy.
1928 		 */
1929 		if (ret > 0) {
1930 			stripe->logical = full_stripe_start +
1931 					  btrfs_stripe_nr_to_offset(i);
1932 			stripe->dev = map->stripes[stripe_index].dev;
1933 			stripe->mirror_num = 1;
1934 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1935 		}
1936 	}
1937 
1938 	/* Check if all data stripes are empty. */
1939 	for (int i = 0; i < data_stripes; i++) {
1940 		stripe = &sctx->raid56_data_stripes[i];
1941 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1942 			all_empty = false;
1943 			break;
1944 		}
1945 	}
1946 	if (all_empty) {
1947 		ret = 0;
1948 		goto out;
1949 	}
1950 
1951 	for (int i = 0; i < data_stripes; i++) {
1952 		stripe = &sctx->raid56_data_stripes[i];
1953 		scrub_submit_initial_read(sctx, stripe);
1954 	}
1955 	for (int i = 0; i < data_stripes; i++) {
1956 		stripe = &sctx->raid56_data_stripes[i];
1957 
1958 		wait_event(stripe->repair_wait,
1959 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1960 	}
1961 	/* For now, no zoned support for RAID56. */
1962 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1963 
1964 	/*
1965 	 * Now all data stripes are properly verified. Check if we have any
1966 	 * unrepaired, if so abort immediately or we could further corrupt the
1967 	 * P/Q stripes.
1968 	 *
1969 	 * During the loop, also populate extent_bitmap.
1970 	 */
1971 	for (int i = 0; i < data_stripes; i++) {
1972 		unsigned long error;
1973 
1974 		stripe = &sctx->raid56_data_stripes[i];
1975 
1976 		/*
1977 		 * We should only check the errors where there is an extent.
1978 		 * As we may hit an empty data stripe while it's missing.
1979 		 */
1980 		bitmap_and(&error, &stripe->error_bitmap,
1981 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
1982 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
1983 			btrfs_err(fs_info,
1984 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1985 				  full_stripe_start, i, stripe->nr_sectors,
1986 				  &error);
1987 			ret = -EIO;
1988 			goto out;
1989 		}
1990 		bitmap_or(&extent_bitmap, &extent_bitmap,
1991 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
1992 	}
1993 
1994 	/* Now we can check and regenerate the P/Q stripe. */
1995 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1996 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1997 	bio->bi_private = &io_done;
1998 	bio->bi_end_io = raid56_scrub_wait_endio;
1999 
2000 	btrfs_bio_counter_inc_blocked(fs_info);
2001 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2002 			      &length, &bioc, NULL, NULL, 1);
2003 	if (ret < 0) {
2004 		btrfs_put_bioc(bioc);
2005 		btrfs_bio_counter_dec(fs_info);
2006 		goto out;
2007 	}
2008 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2009 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2010 	btrfs_put_bioc(bioc);
2011 	if (!rbio) {
2012 		ret = -ENOMEM;
2013 		btrfs_bio_counter_dec(fs_info);
2014 		goto out;
2015 	}
2016 	/* Use the recovered stripes as cache to avoid read them from disk again. */
2017 	for (int i = 0; i < data_stripes; i++) {
2018 		stripe = &sctx->raid56_data_stripes[i];
2019 
2020 		raid56_parity_cache_data_pages(rbio, stripe->pages,
2021 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2022 	}
2023 	raid56_parity_submit_scrub_rbio(rbio);
2024 	wait_for_completion_io(&io_done);
2025 	ret = blk_status_to_errno(bio->bi_status);
2026 	bio_put(bio);
2027 	btrfs_bio_counter_dec(fs_info);
2028 
2029 	btrfs_release_path(&extent_path);
2030 	btrfs_release_path(&csum_path);
2031 out:
2032 	return ret;
2033 }
2034 
2035 /*
2036  * Scrub one range which can only has simple mirror based profile.
2037  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2038  *  RAID0/RAID10).
2039  *
2040  * Since we may need to handle a subset of block group, we need @logical_start
2041  * and @logical_length parameter.
2042  */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct map_lookup * map,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)2043 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2044 			       struct btrfs_block_group *bg,
2045 			       struct map_lookup *map,
2046 			       u64 logical_start, u64 logical_length,
2047 			       struct btrfs_device *device,
2048 			       u64 physical, int mirror_num)
2049 {
2050 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2051 	const u64 logical_end = logical_start + logical_length;
2052 	u64 cur_logical = logical_start;
2053 	int ret = 0;
2054 
2055 	/* The range must be inside the bg */
2056 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2057 
2058 	/* Go through each extent items inside the logical range */
2059 	while (cur_logical < logical_end) {
2060 		u64 found_logical = U64_MAX;
2061 		u64 cur_physical = physical + cur_logical - logical_start;
2062 
2063 		/* Canceled? */
2064 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2065 		    atomic_read(&sctx->cancel_req)) {
2066 			ret = -ECANCELED;
2067 			break;
2068 		}
2069 		/* Paused? */
2070 		if (atomic_read(&fs_info->scrub_pause_req)) {
2071 			/* Push queued extents */
2072 			scrub_blocked_if_needed(fs_info);
2073 		}
2074 		/* Block group removed? */
2075 		spin_lock(&bg->lock);
2076 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2077 			spin_unlock(&bg->lock);
2078 			ret = 0;
2079 			break;
2080 		}
2081 		spin_unlock(&bg->lock);
2082 
2083 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2084 					 cur_logical, logical_end - cur_logical,
2085 					 cur_physical, &found_logical);
2086 		if (ret > 0) {
2087 			/* No more extent, just update the accounting */
2088 			sctx->stat.last_physical = physical + logical_length;
2089 			ret = 0;
2090 			break;
2091 		}
2092 		if (ret < 0)
2093 			break;
2094 
2095 		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2096 		ASSERT(found_logical != U64_MAX);
2097 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2098 
2099 		/* Don't hold CPU for too long time */
2100 		cond_resched();
2101 	}
2102 	return ret;
2103 }
2104 
2105 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct map_lookup * map)2106 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2107 {
2108 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2109 			    BTRFS_BLOCK_GROUP_RAID10));
2110 
2111 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2112 }
2113 
2114 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct map_lookup * map,struct btrfs_block_group * bg,int stripe_index)2115 static u64 simple_stripe_get_logical(struct map_lookup *map,
2116 				     struct btrfs_block_group *bg,
2117 				     int stripe_index)
2118 {
2119 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2120 			    BTRFS_BLOCK_GROUP_RAID10));
2121 	ASSERT(stripe_index < map->num_stripes);
2122 
2123 	/*
2124 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2125 	 * skip.
2126 	 */
2127 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2128 	       bg->start;
2129 }
2130 
2131 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct map_lookup * map,int stripe_index)2132 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2133 {
2134 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2135 			    BTRFS_BLOCK_GROUP_RAID10));
2136 	ASSERT(stripe_index < map->num_stripes);
2137 
2138 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2139 	return stripe_index % map->sub_stripes + 1;
2140 }
2141 
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct map_lookup * map,struct btrfs_device * device,int stripe_index)2142 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2143 			       struct btrfs_block_group *bg,
2144 			       struct map_lookup *map,
2145 			       struct btrfs_device *device,
2146 			       int stripe_index)
2147 {
2148 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2149 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2150 	const u64 orig_physical = map->stripes[stripe_index].physical;
2151 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2152 	u64 cur_logical = orig_logical;
2153 	u64 cur_physical = orig_physical;
2154 	int ret = 0;
2155 
2156 	while (cur_logical < bg->start + bg->length) {
2157 		/*
2158 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2159 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2160 		 * this stripe.
2161 		 */
2162 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2163 					  BTRFS_STRIPE_LEN, device, cur_physical,
2164 					  mirror_num);
2165 		if (ret)
2166 			return ret;
2167 		/* Skip to next stripe which belongs to the target device */
2168 		cur_logical += logical_increment;
2169 		/* For physical offset, we just go to next stripe */
2170 		cur_physical += BTRFS_STRIPE_LEN;
2171 	}
2172 	return ret;
2173 }
2174 
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct extent_map * em,struct btrfs_device * scrub_dev,int stripe_index)2175 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2176 					   struct btrfs_block_group *bg,
2177 					   struct extent_map *em,
2178 					   struct btrfs_device *scrub_dev,
2179 					   int stripe_index)
2180 {
2181 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2182 	struct map_lookup *map = em->map_lookup;
2183 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2184 	const u64 chunk_logical = bg->start;
2185 	int ret;
2186 	int ret2;
2187 	u64 physical = map->stripes[stripe_index].physical;
2188 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2189 	const u64 physical_end = physical + dev_stripe_len;
2190 	u64 logical;
2191 	u64 logic_end;
2192 	/* The logical increment after finishing one stripe */
2193 	u64 increment;
2194 	/* Offset inside the chunk */
2195 	u64 offset;
2196 	u64 stripe_logical;
2197 	int stop_loop = 0;
2198 
2199 	/* Extent_path should be released by now. */
2200 	ASSERT(sctx->extent_path.nodes[0] == NULL);
2201 
2202 	scrub_blocked_if_needed(fs_info);
2203 
2204 	if (sctx->is_dev_replace &&
2205 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2206 		mutex_lock(&sctx->wr_lock);
2207 		sctx->write_pointer = physical;
2208 		mutex_unlock(&sctx->wr_lock);
2209 	}
2210 
2211 	/* Prepare the extra data stripes used by RAID56. */
2212 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2213 		ASSERT(sctx->raid56_data_stripes == NULL);
2214 
2215 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2216 						    sizeof(struct scrub_stripe),
2217 						    GFP_KERNEL);
2218 		if (!sctx->raid56_data_stripes) {
2219 			ret = -ENOMEM;
2220 			goto out;
2221 		}
2222 		for (int i = 0; i < nr_data_stripes(map); i++) {
2223 			ret = init_scrub_stripe(fs_info,
2224 						&sctx->raid56_data_stripes[i]);
2225 			if (ret < 0)
2226 				goto out;
2227 			sctx->raid56_data_stripes[i].bg = bg;
2228 			sctx->raid56_data_stripes[i].sctx = sctx;
2229 		}
2230 	}
2231 	/*
2232 	 * There used to be a big double loop to handle all profiles using the
2233 	 * same routine, which grows larger and more gross over time.
2234 	 *
2235 	 * So here we handle each profile differently, so simpler profiles
2236 	 * have simpler scrubbing function.
2237 	 */
2238 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2239 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2240 		/*
2241 		 * Above check rules out all complex profile, the remaining
2242 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2243 		 * mirrored duplication without stripe.
2244 		 *
2245 		 * Only @physical and @mirror_num needs to calculated using
2246 		 * @stripe_index.
2247 		 */
2248 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2249 				scrub_dev, map->stripes[stripe_index].physical,
2250 				stripe_index + 1);
2251 		offset = 0;
2252 		goto out;
2253 	}
2254 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2255 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2256 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2257 		goto out;
2258 	}
2259 
2260 	/* Only RAID56 goes through the old code */
2261 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2262 	ret = 0;
2263 
2264 	/* Calculate the logical end of the stripe */
2265 	get_raid56_logic_offset(physical_end, stripe_index,
2266 				map, &logic_end, NULL);
2267 	logic_end += chunk_logical;
2268 
2269 	/* Initialize @offset in case we need to go to out: label */
2270 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2271 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2272 
2273 	/*
2274 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2275 	 * using their physical offset.
2276 	 */
2277 	while (physical < physical_end) {
2278 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2279 					      &logical, &stripe_logical);
2280 		logical += chunk_logical;
2281 		if (ret) {
2282 			/* it is parity strip */
2283 			stripe_logical += chunk_logical;
2284 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2285 							 map, stripe_logical);
2286 			if (ret)
2287 				goto out;
2288 			goto next;
2289 		}
2290 
2291 		/*
2292 		 * Now we're at a data stripe, scrub each extents in the range.
2293 		 *
2294 		 * At this stage, if we ignore the repair part, inside each data
2295 		 * stripe it is no different than SINGLE profile.
2296 		 * We can reuse scrub_simple_mirror() here, as the repair part
2297 		 * is still based on @mirror_num.
2298 		 */
2299 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2300 					  scrub_dev, physical, 1);
2301 		if (ret < 0)
2302 			goto out;
2303 next:
2304 		logical += increment;
2305 		physical += BTRFS_STRIPE_LEN;
2306 		spin_lock(&sctx->stat_lock);
2307 		if (stop_loop)
2308 			sctx->stat.last_physical =
2309 				map->stripes[stripe_index].physical + dev_stripe_len;
2310 		else
2311 			sctx->stat.last_physical = physical;
2312 		spin_unlock(&sctx->stat_lock);
2313 		if (stop_loop)
2314 			break;
2315 	}
2316 out:
2317 	ret2 = flush_scrub_stripes(sctx);
2318 	if (!ret)
2319 		ret = ret2;
2320 	btrfs_release_path(&sctx->extent_path);
2321 	btrfs_release_path(&sctx->csum_path);
2322 
2323 	if (sctx->raid56_data_stripes) {
2324 		for (int i = 0; i < nr_data_stripes(map); i++)
2325 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2326 		kfree(sctx->raid56_data_stripes);
2327 		sctx->raid56_data_stripes = NULL;
2328 	}
2329 
2330 	if (sctx->is_dev_replace && ret >= 0) {
2331 		int ret2;
2332 
2333 		ret2 = sync_write_pointer_for_zoned(sctx,
2334 				chunk_logical + offset,
2335 				map->stripes[stripe_index].physical,
2336 				physical_end);
2337 		if (ret2)
2338 			ret = ret2;
2339 	}
2340 
2341 	return ret < 0 ? ret : 0;
2342 }
2343 
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)2344 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2345 					  struct btrfs_block_group *bg,
2346 					  struct btrfs_device *scrub_dev,
2347 					  u64 dev_offset,
2348 					  u64 dev_extent_len)
2349 {
2350 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2351 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2352 	struct map_lookup *map;
2353 	struct extent_map *em;
2354 	int i;
2355 	int ret = 0;
2356 
2357 	read_lock(&map_tree->lock);
2358 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2359 	read_unlock(&map_tree->lock);
2360 
2361 	if (!em) {
2362 		/*
2363 		 * Might have been an unused block group deleted by the cleaner
2364 		 * kthread or relocation.
2365 		 */
2366 		spin_lock(&bg->lock);
2367 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2368 			ret = -EINVAL;
2369 		spin_unlock(&bg->lock);
2370 
2371 		return ret;
2372 	}
2373 	if (em->start != bg->start)
2374 		goto out;
2375 	if (em->len < dev_extent_len)
2376 		goto out;
2377 
2378 	map = em->map_lookup;
2379 	for (i = 0; i < map->num_stripes; ++i) {
2380 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2381 		    map->stripes[i].physical == dev_offset) {
2382 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2383 			if (ret)
2384 				goto out;
2385 		}
2386 	}
2387 out:
2388 	free_extent_map(em);
2389 
2390 	return ret;
2391 }
2392 
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)2393 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2394 					  struct btrfs_block_group *cache)
2395 {
2396 	struct btrfs_fs_info *fs_info = cache->fs_info;
2397 	struct btrfs_trans_handle *trans;
2398 
2399 	if (!btrfs_is_zoned(fs_info))
2400 		return 0;
2401 
2402 	btrfs_wait_block_group_reservations(cache);
2403 	btrfs_wait_nocow_writers(cache);
2404 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2405 
2406 	trans = btrfs_join_transaction(root);
2407 	if (IS_ERR(trans))
2408 		return PTR_ERR(trans);
2409 	return btrfs_commit_transaction(trans);
2410 }
2411 
2412 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)2413 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2414 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2415 {
2416 	struct btrfs_dev_extent *dev_extent = NULL;
2417 	struct btrfs_path *path;
2418 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2419 	struct btrfs_root *root = fs_info->dev_root;
2420 	u64 chunk_offset;
2421 	int ret = 0;
2422 	int ro_set;
2423 	int slot;
2424 	struct extent_buffer *l;
2425 	struct btrfs_key key;
2426 	struct btrfs_key found_key;
2427 	struct btrfs_block_group *cache;
2428 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2429 
2430 	path = btrfs_alloc_path();
2431 	if (!path)
2432 		return -ENOMEM;
2433 
2434 	path->reada = READA_FORWARD;
2435 	path->search_commit_root = 1;
2436 	path->skip_locking = 1;
2437 
2438 	key.objectid = scrub_dev->devid;
2439 	key.offset = 0ull;
2440 	key.type = BTRFS_DEV_EXTENT_KEY;
2441 
2442 	while (1) {
2443 		u64 dev_extent_len;
2444 
2445 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2446 		if (ret < 0)
2447 			break;
2448 		if (ret > 0) {
2449 			if (path->slots[0] >=
2450 			    btrfs_header_nritems(path->nodes[0])) {
2451 				ret = btrfs_next_leaf(root, path);
2452 				if (ret < 0)
2453 					break;
2454 				if (ret > 0) {
2455 					ret = 0;
2456 					break;
2457 				}
2458 			} else {
2459 				ret = 0;
2460 			}
2461 		}
2462 
2463 		l = path->nodes[0];
2464 		slot = path->slots[0];
2465 
2466 		btrfs_item_key_to_cpu(l, &found_key, slot);
2467 
2468 		if (found_key.objectid != scrub_dev->devid)
2469 			break;
2470 
2471 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2472 			break;
2473 
2474 		if (found_key.offset >= end)
2475 			break;
2476 
2477 		if (found_key.offset < key.offset)
2478 			break;
2479 
2480 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2481 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2482 
2483 		if (found_key.offset + dev_extent_len <= start)
2484 			goto skip;
2485 
2486 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2487 
2488 		/*
2489 		 * get a reference on the corresponding block group to prevent
2490 		 * the chunk from going away while we scrub it
2491 		 */
2492 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2493 
2494 		/* some chunks are removed but not committed to disk yet,
2495 		 * continue scrubbing */
2496 		if (!cache)
2497 			goto skip;
2498 
2499 		ASSERT(cache->start <= chunk_offset);
2500 		/*
2501 		 * We are using the commit root to search for device extents, so
2502 		 * that means we could have found a device extent item from a
2503 		 * block group that was deleted in the current transaction. The
2504 		 * logical start offset of the deleted block group, stored at
2505 		 * @chunk_offset, might be part of the logical address range of
2506 		 * a new block group (which uses different physical extents).
2507 		 * In this case btrfs_lookup_block_group() has returned the new
2508 		 * block group, and its start address is less than @chunk_offset.
2509 		 *
2510 		 * We skip such new block groups, because it's pointless to
2511 		 * process them, as we won't find their extents because we search
2512 		 * for them using the commit root of the extent tree. For a device
2513 		 * replace it's also fine to skip it, we won't miss copying them
2514 		 * to the target device because we have the write duplication
2515 		 * setup through the regular write path (by btrfs_map_block()),
2516 		 * and we have committed a transaction when we started the device
2517 		 * replace, right after setting up the device replace state.
2518 		 */
2519 		if (cache->start < chunk_offset) {
2520 			btrfs_put_block_group(cache);
2521 			goto skip;
2522 		}
2523 
2524 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2525 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2526 				btrfs_put_block_group(cache);
2527 				goto skip;
2528 			}
2529 		}
2530 
2531 		/*
2532 		 * Make sure that while we are scrubbing the corresponding block
2533 		 * group doesn't get its logical address and its device extents
2534 		 * reused for another block group, which can possibly be of a
2535 		 * different type and different profile. We do this to prevent
2536 		 * false error detections and crashes due to bogus attempts to
2537 		 * repair extents.
2538 		 */
2539 		spin_lock(&cache->lock);
2540 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2541 			spin_unlock(&cache->lock);
2542 			btrfs_put_block_group(cache);
2543 			goto skip;
2544 		}
2545 		btrfs_freeze_block_group(cache);
2546 		spin_unlock(&cache->lock);
2547 
2548 		/*
2549 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2550 		 * to avoid deadlock caused by:
2551 		 * btrfs_inc_block_group_ro()
2552 		 * -> btrfs_wait_for_commit()
2553 		 * -> btrfs_commit_transaction()
2554 		 * -> btrfs_scrub_pause()
2555 		 */
2556 		scrub_pause_on(fs_info);
2557 
2558 		/*
2559 		 * Don't do chunk preallocation for scrub.
2560 		 *
2561 		 * This is especially important for SYSTEM bgs, or we can hit
2562 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2563 		 * 1. The only SYSTEM bg is marked RO.
2564 		 *    Since SYSTEM bg is small, that's pretty common.
2565 		 * 2. New SYSTEM bg will be allocated
2566 		 *    Due to regular version will allocate new chunk.
2567 		 * 3. New SYSTEM bg is empty and will get cleaned up
2568 		 *    Before cleanup really happens, it's marked RO again.
2569 		 * 4. Empty SYSTEM bg get scrubbed
2570 		 *    We go back to 2.
2571 		 *
2572 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2573 		 * thread can't be triggered fast enough, and use up all space
2574 		 * of btrfs_super_block::sys_chunk_array
2575 		 *
2576 		 * While for dev replace, we need to try our best to mark block
2577 		 * group RO, to prevent race between:
2578 		 * - Write duplication
2579 		 *   Contains latest data
2580 		 * - Scrub copy
2581 		 *   Contains data from commit tree
2582 		 *
2583 		 * If target block group is not marked RO, nocow writes can
2584 		 * be overwritten by scrub copy, causing data corruption.
2585 		 * So for dev-replace, it's not allowed to continue if a block
2586 		 * group is not RO.
2587 		 */
2588 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2589 		if (!ret && sctx->is_dev_replace) {
2590 			ret = finish_extent_writes_for_zoned(root, cache);
2591 			if (ret) {
2592 				btrfs_dec_block_group_ro(cache);
2593 				scrub_pause_off(fs_info);
2594 				btrfs_put_block_group(cache);
2595 				break;
2596 			}
2597 		}
2598 
2599 		if (ret == 0) {
2600 			ro_set = 1;
2601 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2602 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2603 			/*
2604 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2605 			 * failed in creating new chunk for metadata.
2606 			 * It is not a problem for scrub, because
2607 			 * metadata are always cowed, and our scrub paused
2608 			 * commit_transactions.
2609 			 *
2610 			 * For RAID56 chunks, we have to mark them read-only
2611 			 * for scrub, as later we would use our own cache
2612 			 * out of RAID56 realm.
2613 			 * Thus we want the RAID56 bg to be marked RO to
2614 			 * prevent RMW from screwing up out cache.
2615 			 */
2616 			ro_set = 0;
2617 		} else if (ret == -ETXTBSY) {
2618 			btrfs_warn(fs_info,
2619 		   "skipping scrub of block group %llu due to active swapfile",
2620 				   cache->start);
2621 			scrub_pause_off(fs_info);
2622 			ret = 0;
2623 			goto skip_unfreeze;
2624 		} else {
2625 			btrfs_warn(fs_info,
2626 				   "failed setting block group ro: %d", ret);
2627 			btrfs_unfreeze_block_group(cache);
2628 			btrfs_put_block_group(cache);
2629 			scrub_pause_off(fs_info);
2630 			break;
2631 		}
2632 
2633 		/*
2634 		 * Now the target block is marked RO, wait for nocow writes to
2635 		 * finish before dev-replace.
2636 		 * COW is fine, as COW never overwrites extents in commit tree.
2637 		 */
2638 		if (sctx->is_dev_replace) {
2639 			btrfs_wait_nocow_writers(cache);
2640 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2641 					cache->length);
2642 		}
2643 
2644 		scrub_pause_off(fs_info);
2645 		down_write(&dev_replace->rwsem);
2646 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2647 		dev_replace->cursor_left = found_key.offset;
2648 		dev_replace->item_needs_writeback = 1;
2649 		up_write(&dev_replace->rwsem);
2650 
2651 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2652 				  dev_extent_len);
2653 		if (sctx->is_dev_replace &&
2654 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2655 						      cache, found_key.offset))
2656 			ro_set = 0;
2657 
2658 		down_write(&dev_replace->rwsem);
2659 		dev_replace->cursor_left = dev_replace->cursor_right;
2660 		dev_replace->item_needs_writeback = 1;
2661 		up_write(&dev_replace->rwsem);
2662 
2663 		if (ro_set)
2664 			btrfs_dec_block_group_ro(cache);
2665 
2666 		/*
2667 		 * We might have prevented the cleaner kthread from deleting
2668 		 * this block group if it was already unused because we raced
2669 		 * and set it to RO mode first. So add it back to the unused
2670 		 * list, otherwise it might not ever be deleted unless a manual
2671 		 * balance is triggered or it becomes used and unused again.
2672 		 */
2673 		spin_lock(&cache->lock);
2674 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2675 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2676 			spin_unlock(&cache->lock);
2677 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2678 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2679 							 cache);
2680 			else
2681 				btrfs_mark_bg_unused(cache);
2682 		} else {
2683 			spin_unlock(&cache->lock);
2684 		}
2685 skip_unfreeze:
2686 		btrfs_unfreeze_block_group(cache);
2687 		btrfs_put_block_group(cache);
2688 		if (ret)
2689 			break;
2690 		if (sctx->is_dev_replace &&
2691 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2692 			ret = -EIO;
2693 			break;
2694 		}
2695 		if (sctx->stat.malloc_errors > 0) {
2696 			ret = -ENOMEM;
2697 			break;
2698 		}
2699 skip:
2700 		key.offset = found_key.offset + dev_extent_len;
2701 		btrfs_release_path(path);
2702 	}
2703 
2704 	btrfs_free_path(path);
2705 
2706 	return ret;
2707 }
2708 
scrub_one_super(struct scrub_ctx * sctx,struct btrfs_device * dev,struct page * page,u64 physical,u64 generation)2709 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2710 			   struct page *page, u64 physical, u64 generation)
2711 {
2712 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2713 	struct bio_vec bvec;
2714 	struct bio bio;
2715 	struct btrfs_super_block *sb = page_address(page);
2716 	int ret;
2717 
2718 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2719 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2720 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2721 	ret = submit_bio_wait(&bio);
2722 	bio_uninit(&bio);
2723 
2724 	if (ret < 0)
2725 		return ret;
2726 	ret = btrfs_check_super_csum(fs_info, sb);
2727 	if (ret != 0) {
2728 		btrfs_err_rl(fs_info,
2729 			"super block at physical %llu devid %llu has bad csum",
2730 			physical, dev->devid);
2731 		return -EIO;
2732 	}
2733 	if (btrfs_super_generation(sb) != generation) {
2734 		btrfs_err_rl(fs_info,
2735 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2736 			     physical, dev->devid,
2737 			     btrfs_super_generation(sb), generation);
2738 		return -EUCLEAN;
2739 	}
2740 
2741 	return btrfs_validate_super(fs_info, sb, -1);
2742 }
2743 
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)2744 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2745 					   struct btrfs_device *scrub_dev)
2746 {
2747 	int	i;
2748 	u64	bytenr;
2749 	u64	gen;
2750 	int ret = 0;
2751 	struct page *page;
2752 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2753 
2754 	if (BTRFS_FS_ERROR(fs_info))
2755 		return -EROFS;
2756 
2757 	page = alloc_page(GFP_KERNEL);
2758 	if (!page) {
2759 		spin_lock(&sctx->stat_lock);
2760 		sctx->stat.malloc_errors++;
2761 		spin_unlock(&sctx->stat_lock);
2762 		return -ENOMEM;
2763 	}
2764 
2765 	/* Seed devices of a new filesystem has their own generation. */
2766 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2767 		gen = scrub_dev->generation;
2768 	else
2769 		gen = fs_info->last_trans_committed;
2770 
2771 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2772 		ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2773 		if (ret == -ENOENT)
2774 			break;
2775 
2776 		if (ret) {
2777 			spin_lock(&sctx->stat_lock);
2778 			sctx->stat.super_errors++;
2779 			spin_unlock(&sctx->stat_lock);
2780 			continue;
2781 		}
2782 
2783 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2784 		    scrub_dev->commit_total_bytes)
2785 			break;
2786 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2787 			continue;
2788 
2789 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2790 		if (ret) {
2791 			spin_lock(&sctx->stat_lock);
2792 			sctx->stat.super_errors++;
2793 			spin_unlock(&sctx->stat_lock);
2794 		}
2795 	}
2796 	__free_page(page);
2797 	return 0;
2798 }
2799 
scrub_workers_put(struct btrfs_fs_info * fs_info)2800 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2801 {
2802 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2803 					&fs_info->scrub_lock)) {
2804 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2805 
2806 		fs_info->scrub_workers = NULL;
2807 		mutex_unlock(&fs_info->scrub_lock);
2808 
2809 		if (scrub_workers)
2810 			destroy_workqueue(scrub_workers);
2811 	}
2812 }
2813 
2814 /*
2815  * get a reference count on fs_info->scrub_workers. start worker if necessary
2816  */
scrub_workers_get(struct btrfs_fs_info * fs_info)2817 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2818 {
2819 	struct workqueue_struct *scrub_workers = NULL;
2820 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2821 	int max_active = fs_info->thread_pool_size;
2822 	int ret = -ENOMEM;
2823 
2824 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2825 		return 0;
2826 
2827 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2828 	if (!scrub_workers)
2829 		return -ENOMEM;
2830 
2831 	mutex_lock(&fs_info->scrub_lock);
2832 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2833 		ASSERT(fs_info->scrub_workers == NULL);
2834 		fs_info->scrub_workers = scrub_workers;
2835 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2836 		mutex_unlock(&fs_info->scrub_lock);
2837 		return 0;
2838 	}
2839 	/* Other thread raced in and created the workers for us */
2840 	refcount_inc(&fs_info->scrub_workers_refcnt);
2841 	mutex_unlock(&fs_info->scrub_lock);
2842 
2843 	ret = 0;
2844 
2845 	destroy_workqueue(scrub_workers);
2846 	return ret;
2847 }
2848 
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)2849 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2850 		    u64 end, struct btrfs_scrub_progress *progress,
2851 		    int readonly, int is_dev_replace)
2852 {
2853 	struct btrfs_dev_lookup_args args = { .devid = devid };
2854 	struct scrub_ctx *sctx;
2855 	int ret;
2856 	struct btrfs_device *dev;
2857 	unsigned int nofs_flag;
2858 	bool need_commit = false;
2859 
2860 	if (btrfs_fs_closing(fs_info))
2861 		return -EAGAIN;
2862 
2863 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2864 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2865 
2866 	/*
2867 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2868 	 * value (max nodesize / min sectorsize), thus nodesize should always
2869 	 * be fine.
2870 	 */
2871 	ASSERT(fs_info->nodesize <=
2872 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2873 
2874 	/* Allocate outside of device_list_mutex */
2875 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2876 	if (IS_ERR(sctx))
2877 		return PTR_ERR(sctx);
2878 
2879 	ret = scrub_workers_get(fs_info);
2880 	if (ret)
2881 		goto out_free_ctx;
2882 
2883 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2884 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2885 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2886 		     !is_dev_replace)) {
2887 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2888 		ret = -ENODEV;
2889 		goto out;
2890 	}
2891 
2892 	if (!is_dev_replace && !readonly &&
2893 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2894 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2895 		btrfs_err_in_rcu(fs_info,
2896 			"scrub on devid %llu: filesystem on %s is not writable",
2897 				 devid, btrfs_dev_name(dev));
2898 		ret = -EROFS;
2899 		goto out;
2900 	}
2901 
2902 	mutex_lock(&fs_info->scrub_lock);
2903 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2904 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2905 		mutex_unlock(&fs_info->scrub_lock);
2906 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2907 		ret = -EIO;
2908 		goto out;
2909 	}
2910 
2911 	down_read(&fs_info->dev_replace.rwsem);
2912 	if (dev->scrub_ctx ||
2913 	    (!is_dev_replace &&
2914 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2915 		up_read(&fs_info->dev_replace.rwsem);
2916 		mutex_unlock(&fs_info->scrub_lock);
2917 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2918 		ret = -EINPROGRESS;
2919 		goto out;
2920 	}
2921 	up_read(&fs_info->dev_replace.rwsem);
2922 
2923 	sctx->readonly = readonly;
2924 	dev->scrub_ctx = sctx;
2925 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2926 
2927 	/*
2928 	 * checking @scrub_pause_req here, we can avoid
2929 	 * race between committing transaction and scrubbing.
2930 	 */
2931 	__scrub_blocked_if_needed(fs_info);
2932 	atomic_inc(&fs_info->scrubs_running);
2933 	mutex_unlock(&fs_info->scrub_lock);
2934 
2935 	/*
2936 	 * In order to avoid deadlock with reclaim when there is a transaction
2937 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2938 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2939 	 * invoked by our callees. The pausing request is done when the
2940 	 * transaction commit starts, and it blocks the transaction until scrub
2941 	 * is paused (done at specific points at scrub_stripe() or right above
2942 	 * before incrementing fs_info->scrubs_running).
2943 	 */
2944 	nofs_flag = memalloc_nofs_save();
2945 	if (!is_dev_replace) {
2946 		u64 old_super_errors;
2947 
2948 		spin_lock(&sctx->stat_lock);
2949 		old_super_errors = sctx->stat.super_errors;
2950 		spin_unlock(&sctx->stat_lock);
2951 
2952 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2953 		/*
2954 		 * by holding device list mutex, we can
2955 		 * kick off writing super in log tree sync.
2956 		 */
2957 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2958 		ret = scrub_supers(sctx, dev);
2959 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2960 
2961 		spin_lock(&sctx->stat_lock);
2962 		/*
2963 		 * Super block errors found, but we can not commit transaction
2964 		 * at current context, since btrfs_commit_transaction() needs
2965 		 * to pause the current running scrub (hold by ourselves).
2966 		 */
2967 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2968 			need_commit = true;
2969 		spin_unlock(&sctx->stat_lock);
2970 	}
2971 
2972 	if (!ret)
2973 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2974 	memalloc_nofs_restore(nofs_flag);
2975 
2976 	atomic_dec(&fs_info->scrubs_running);
2977 	wake_up(&fs_info->scrub_pause_wait);
2978 
2979 	if (progress)
2980 		memcpy(progress, &sctx->stat, sizeof(*progress));
2981 
2982 	if (!is_dev_replace)
2983 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2984 			ret ? "not finished" : "finished", devid, ret);
2985 
2986 	mutex_lock(&fs_info->scrub_lock);
2987 	dev->scrub_ctx = NULL;
2988 	mutex_unlock(&fs_info->scrub_lock);
2989 
2990 	scrub_workers_put(fs_info);
2991 	scrub_put_ctx(sctx);
2992 
2993 	/*
2994 	 * We found some super block errors before, now try to force a
2995 	 * transaction commit, as scrub has finished.
2996 	 */
2997 	if (need_commit) {
2998 		struct btrfs_trans_handle *trans;
2999 
3000 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3001 		if (IS_ERR(trans)) {
3002 			ret = PTR_ERR(trans);
3003 			btrfs_err(fs_info,
3004 	"scrub: failed to start transaction to fix super block errors: %d", ret);
3005 			return ret;
3006 		}
3007 		ret = btrfs_commit_transaction(trans);
3008 		if (ret < 0)
3009 			btrfs_err(fs_info,
3010 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3011 	}
3012 	return ret;
3013 out:
3014 	scrub_workers_put(fs_info);
3015 out_free_ctx:
3016 	scrub_free_ctx(sctx);
3017 
3018 	return ret;
3019 }
3020 
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3021 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3022 {
3023 	mutex_lock(&fs_info->scrub_lock);
3024 	atomic_inc(&fs_info->scrub_pause_req);
3025 	while (atomic_read(&fs_info->scrubs_paused) !=
3026 	       atomic_read(&fs_info->scrubs_running)) {
3027 		mutex_unlock(&fs_info->scrub_lock);
3028 		wait_event(fs_info->scrub_pause_wait,
3029 			   atomic_read(&fs_info->scrubs_paused) ==
3030 			   atomic_read(&fs_info->scrubs_running));
3031 		mutex_lock(&fs_info->scrub_lock);
3032 	}
3033 	mutex_unlock(&fs_info->scrub_lock);
3034 }
3035 
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3036 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3037 {
3038 	atomic_dec(&fs_info->scrub_pause_req);
3039 	wake_up(&fs_info->scrub_pause_wait);
3040 }
3041 
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3042 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3043 {
3044 	mutex_lock(&fs_info->scrub_lock);
3045 	if (!atomic_read(&fs_info->scrubs_running)) {
3046 		mutex_unlock(&fs_info->scrub_lock);
3047 		return -ENOTCONN;
3048 	}
3049 
3050 	atomic_inc(&fs_info->scrub_cancel_req);
3051 	while (atomic_read(&fs_info->scrubs_running)) {
3052 		mutex_unlock(&fs_info->scrub_lock);
3053 		wait_event(fs_info->scrub_pause_wait,
3054 			   atomic_read(&fs_info->scrubs_running) == 0);
3055 		mutex_lock(&fs_info->scrub_lock);
3056 	}
3057 	atomic_dec(&fs_info->scrub_cancel_req);
3058 	mutex_unlock(&fs_info->scrub_lock);
3059 
3060 	return 0;
3061 }
3062 
btrfs_scrub_cancel_dev(struct btrfs_device * dev)3063 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3064 {
3065 	struct btrfs_fs_info *fs_info = dev->fs_info;
3066 	struct scrub_ctx *sctx;
3067 
3068 	mutex_lock(&fs_info->scrub_lock);
3069 	sctx = dev->scrub_ctx;
3070 	if (!sctx) {
3071 		mutex_unlock(&fs_info->scrub_lock);
3072 		return -ENOTCONN;
3073 	}
3074 	atomic_inc(&sctx->cancel_req);
3075 	while (dev->scrub_ctx) {
3076 		mutex_unlock(&fs_info->scrub_lock);
3077 		wait_event(fs_info->scrub_pause_wait,
3078 			   dev->scrub_ctx == NULL);
3079 		mutex_lock(&fs_info->scrub_lock);
3080 	}
3081 	mutex_unlock(&fs_info->scrub_lock);
3082 
3083 	return 0;
3084 }
3085 
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3086 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3087 			 struct btrfs_scrub_progress *progress)
3088 {
3089 	struct btrfs_dev_lookup_args args = { .devid = devid };
3090 	struct btrfs_device *dev;
3091 	struct scrub_ctx *sctx = NULL;
3092 
3093 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3094 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3095 	if (dev)
3096 		sctx = dev->scrub_ctx;
3097 	if (sctx)
3098 		memcpy(progress, &sctx->stat, sizeof(*progress));
3099 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3100 
3101 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3102 }
3103