1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Message Protocol driver
4 *
5 * SCMI Message Protocol is used between the System Control Processor(SCP)
6 * and the Application Processors(AP). The Message Handling Unit(MHU)
7 * provides a mechanism for inter-processor communication between SCP's
8 * Cortex M3 and AP.
9 *
10 * SCP offers control and management of the core/cluster power states,
11 * various power domain DVFS including the core/cluster, certain system
12 * clocks configuration, thermal sensors and many others.
13 *
14 * Copyright (C) 2018-2021 ARM Ltd.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36
37 #include "common.h"
38 #include "notify.h"
39
40 #include "raw_mode.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/scmi.h>
44
45 static DEFINE_IDA(scmi_id);
46
47 static DEFINE_IDR(scmi_protocols);
48 static DEFINE_SPINLOCK(protocol_lock);
49
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56
57 static struct dentry *scmi_top_dentry;
58
59 /**
60 * struct scmi_xfers_info - Structure to manage transfer information
61 *
62 * @xfer_alloc_table: Bitmap table for allocated messages.
63 * Index of this bitmap table is also used for message
64 * sequence identifier.
65 * @xfer_lock: Protection for message allocation
66 * @max_msg: Maximum number of messages that can be pending
67 * @free_xfers: A free list for available to use xfers. It is initialized with
68 * a number of xfers equal to the maximum allowed in-flight
69 * messages.
70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71 * currently in-flight messages.
72 */
73 struct scmi_xfers_info {
74 unsigned long *xfer_alloc_table;
75 spinlock_t xfer_lock;
76 int max_msg;
77 struct hlist_head free_xfers;
78 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80
81 /**
82 * struct scmi_protocol_instance - Describe an initialized protocol instance.
83 * @handle: Reference to the SCMI handle associated to this protocol instance.
84 * @proto: A reference to the protocol descriptor.
85 * @gid: A reference for per-protocol devres management.
86 * @users: A refcount to track effective users of this protocol.
87 * @priv: Reference for optional protocol private data.
88 * @ph: An embedded protocol handle that will be passed down to protocol
89 * initialization code to identify this instance.
90 *
91 * Each protocol is initialized independently once for each SCMI platform in
92 * which is defined by DT and implemented by the SCMI server fw.
93 */
94 struct scmi_protocol_instance {
95 const struct scmi_handle *handle;
96 const struct scmi_protocol *proto;
97 void *gid;
98 refcount_t users;
99 void *priv;
100 struct scmi_protocol_handle ph;
101 };
102
103 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph)
104
105 /**
106 * struct scmi_debug_info - Debug common info
107 * @top_dentry: A reference to the top debugfs dentry
108 * @name: Name of this SCMI instance
109 * @type: Type of this SCMI instance
110 * @is_atomic: Flag to state if the transport of this instance is atomic
111 * @counters: An array of atomic_c's used for tracking statistics (if enabled)
112 */
113 struct scmi_debug_info {
114 struct dentry *top_dentry;
115 const char *name;
116 const char *type;
117 bool is_atomic;
118 atomic_t counters[SCMI_DEBUG_COUNTERS_LAST];
119 };
120
121 /**
122 * struct scmi_info - Structure representing a SCMI instance
123 *
124 * @id: A sequence number starting from zero identifying this instance
125 * @dev: Device pointer
126 * @desc: SoC description for this instance
127 * @version: SCMI revision information containing protocol version,
128 * implementation version and (sub-)vendor identification.
129 * @handle: Instance of SCMI handle to send to clients
130 * @tx_minfo: Universal Transmit Message management info
131 * @rx_minfo: Universal Receive Message management info
132 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
133 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
134 * @protocols: IDR for protocols' instance descriptors initialized for
135 * this SCMI instance: populated on protocol's first attempted
136 * usage.
137 * @protocols_mtx: A mutex to protect protocols instances initialization.
138 * @protocols_imp: List of protocols implemented, currently maximum of
139 * scmi_revision_info.num_protocols elements allocated by the
140 * base protocol
141 * @active_protocols: IDR storing device_nodes for protocols actually defined
142 * in the DT and confirmed as implemented by fw.
143 * @atomic_threshold: Optional system wide DT-configured threshold, expressed
144 * in microseconds, for atomic operations.
145 * Only SCMI synchronous commands reported by the platform
146 * to have an execution latency lesser-equal to the threshold
147 * should be considered for atomic mode operation: such
148 * decision is finally left up to the SCMI drivers.
149 * @notify_priv: Pointer to private data structure specific to notifications.
150 * @node: List head
151 * @users: Number of users of this instance
152 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
153 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
154 * bus
155 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
156 * @dbg: A pointer to debugfs related data (if any)
157 * @raw: An opaque reference handle used by SCMI Raw mode.
158 */
159 struct scmi_info {
160 int id;
161 struct device *dev;
162 const struct scmi_desc *desc;
163 struct scmi_revision_info version;
164 struct scmi_handle handle;
165 struct scmi_xfers_info tx_minfo;
166 struct scmi_xfers_info rx_minfo;
167 struct idr tx_idr;
168 struct idr rx_idr;
169 struct idr protocols;
170 /* Ensure mutual exclusive access to protocols instance array */
171 struct mutex protocols_mtx;
172 u8 *protocols_imp;
173 struct idr active_protocols;
174 unsigned int atomic_threshold;
175 void *notify_priv;
176 struct list_head node;
177 int users;
178 struct notifier_block bus_nb;
179 struct notifier_block dev_req_nb;
180 /* Serialize device creation process for this instance */
181 struct mutex devreq_mtx;
182 struct scmi_debug_info *dbg;
183 void *raw;
184 };
185
186 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
187 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb)
188 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb)
189
scmi_protocol_get(int protocol_id)190 static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
191 {
192 const struct scmi_protocol *proto;
193
194 proto = idr_find(&scmi_protocols, protocol_id);
195 if (!proto || !try_module_get(proto->owner)) {
196 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
197 return NULL;
198 }
199
200 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
201
202 return proto;
203 }
204
scmi_protocol_put(int protocol_id)205 static void scmi_protocol_put(int protocol_id)
206 {
207 const struct scmi_protocol *proto;
208
209 proto = idr_find(&scmi_protocols, protocol_id);
210 if (proto)
211 module_put(proto->owner);
212 }
213
scmi_protocol_register(const struct scmi_protocol * proto)214 int scmi_protocol_register(const struct scmi_protocol *proto)
215 {
216 int ret;
217
218 if (!proto) {
219 pr_err("invalid protocol\n");
220 return -EINVAL;
221 }
222
223 if (!proto->instance_init) {
224 pr_err("missing init for protocol 0x%x\n", proto->id);
225 return -EINVAL;
226 }
227
228 spin_lock(&protocol_lock);
229 ret = idr_alloc(&scmi_protocols, (void *)proto,
230 proto->id, proto->id + 1, GFP_ATOMIC);
231 spin_unlock(&protocol_lock);
232 if (ret != proto->id) {
233 pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
234 proto->id, ret);
235 return ret;
236 }
237
238 pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
239
240 return 0;
241 }
242 EXPORT_SYMBOL_GPL(scmi_protocol_register);
243
scmi_protocol_unregister(const struct scmi_protocol * proto)244 void scmi_protocol_unregister(const struct scmi_protocol *proto)
245 {
246 spin_lock(&protocol_lock);
247 idr_remove(&scmi_protocols, proto->id);
248 spin_unlock(&protocol_lock);
249
250 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
251 }
252 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
253
254 /**
255 * scmi_create_protocol_devices - Create devices for all pending requests for
256 * this SCMI instance.
257 *
258 * @np: The device node describing the protocol
259 * @info: The SCMI instance descriptor
260 * @prot_id: The protocol ID
261 * @name: The optional name of the device to be created: if not provided this
262 * call will lead to the creation of all the devices currently requested
263 * for the specified protocol.
264 */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)265 static void scmi_create_protocol_devices(struct device_node *np,
266 struct scmi_info *info,
267 int prot_id, const char *name)
268 {
269 struct scmi_device *sdev;
270
271 mutex_lock(&info->devreq_mtx);
272 sdev = scmi_device_create(np, info->dev, prot_id, name);
273 if (name && !sdev)
274 dev_err(info->dev,
275 "failed to create device for protocol 0x%X (%s)\n",
276 prot_id, name);
277 mutex_unlock(&info->devreq_mtx);
278 }
279
scmi_destroy_protocol_devices(struct scmi_info * info,int prot_id,const char * name)280 static void scmi_destroy_protocol_devices(struct scmi_info *info,
281 int prot_id, const char *name)
282 {
283 mutex_lock(&info->devreq_mtx);
284 scmi_device_destroy(info->dev, prot_id, name);
285 mutex_unlock(&info->devreq_mtx);
286 }
287
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)288 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
289 void *priv)
290 {
291 struct scmi_info *info = handle_to_scmi_info(handle);
292
293 info->notify_priv = priv;
294 /* Ensure updated protocol private date are visible */
295 smp_wmb();
296 }
297
scmi_notification_instance_data_get(const struct scmi_handle * handle)298 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
299 {
300 struct scmi_info *info = handle_to_scmi_info(handle);
301
302 /* Ensure protocols_private_data has been updated */
303 smp_rmb();
304 return info->notify_priv;
305 }
306
307 /**
308 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand
309 *
310 * @minfo: Pointer to Tx/Rx Message management info based on channel type
311 * @xfer: The xfer to act upon
312 *
313 * Pick the next unused monotonically increasing token and set it into
314 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
315 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
316 * of incorrect association of a late and expired xfer with a live in-flight
317 * transaction, both happening to re-use the same token identifier.
318 *
319 * Since platform is NOT required to answer our request in-order we should
320 * account for a few rare but possible scenarios:
321 *
322 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
323 * using find_next_zero_bit() starting from candidate next_token bit
324 *
325 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
326 * are plenty of free tokens at start, so try a second pass using
327 * find_next_zero_bit() and starting from 0.
328 *
329 * X = used in-flight
330 *
331 * Normal
332 * ------
333 *
334 * |- xfer_id picked
335 * -----------+----------------------------------------------------------
336 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
337 * ----------------------------------------------------------------------
338 * ^
339 * |- next_token
340 *
341 * Out-of-order pending at start
342 * -----------------------------
343 *
344 * |- xfer_id picked, last_token fixed
345 * -----+----------------------------------------------------------------
346 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
347 * ----------------------------------------------------------------------
348 * ^
349 * |- next_token
350 *
351 *
352 * Out-of-order pending at end
353 * ---------------------------
354 *
355 * |- xfer_id picked, last_token fixed
356 * -----+----------------------------------------------------------------
357 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
358 * ----------------------------------------------------------------------
359 * ^
360 * |- next_token
361 *
362 * Context: Assumes to be called with @xfer_lock already acquired.
363 *
364 * Return: 0 on Success or error
365 */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)366 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
367 struct scmi_xfer *xfer)
368 {
369 unsigned long xfer_id, next_token;
370
371 /*
372 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
373 * using the pre-allocated transfer_id as a base.
374 * Note that the global transfer_id is shared across all message types
375 * so there could be holes in the allocated set of monotonic sequence
376 * numbers, but that is going to limit the effectiveness of the
377 * mitigation only in very rare limit conditions.
378 */
379 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
380
381 /* Pick the next available xfer_id >= next_token */
382 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
383 MSG_TOKEN_MAX, next_token);
384 if (xfer_id == MSG_TOKEN_MAX) {
385 /*
386 * After heavily out-of-order responses, there are no free
387 * tokens ahead, but only at start of xfer_alloc_table so
388 * try again from the beginning.
389 */
390 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
391 MSG_TOKEN_MAX, 0);
392 /*
393 * Something is wrong if we got here since there can be a
394 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
395 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
396 */
397 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
398 return -ENOMEM;
399 }
400
401 /* Update +/- last_token accordingly if we skipped some hole */
402 if (xfer_id != next_token)
403 atomic_add((int)(xfer_id - next_token), &transfer_last_id);
404
405 xfer->hdr.seq = (u16)xfer_id;
406
407 return 0;
408 }
409
410 /**
411 * scmi_xfer_token_clear - Release the token
412 *
413 * @minfo: Pointer to Tx/Rx Message management info based on channel type
414 * @xfer: The xfer to act upon
415 */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)416 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
417 struct scmi_xfer *xfer)
418 {
419 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
420 }
421
422 /**
423 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight
424 *
425 * @xfer: The xfer to register
426 * @minfo: Pointer to Tx/Rx Message management info based on channel type
427 *
428 * Note that this helper assumes that the xfer to be registered as in-flight
429 * had been built using an xfer sequence number which still corresponds to a
430 * free slot in the xfer_alloc_table.
431 *
432 * Context: Assumes to be called with @xfer_lock already acquired.
433 */
434 static inline void
scmi_xfer_inflight_register_unlocked(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)435 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
436 struct scmi_xfers_info *minfo)
437 {
438 /* Set in-flight */
439 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
440 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
441 xfer->pending = true;
442 }
443
444 /**
445 * scmi_xfer_inflight_register - Try to register an xfer as in-flight
446 *
447 * @xfer: The xfer to register
448 * @minfo: Pointer to Tx/Rx Message management info based on channel type
449 *
450 * Note that this helper does NOT assume anything about the sequence number
451 * that was baked into the provided xfer, so it checks at first if it can
452 * be mapped to a free slot and fails with an error if another xfer with the
453 * same sequence number is currently still registered as in-flight.
454 *
455 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
456 * could not rbe mapped to a free slot in the xfer_alloc_table.
457 */
scmi_xfer_inflight_register(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)458 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
459 struct scmi_xfers_info *minfo)
460 {
461 int ret = 0;
462 unsigned long flags;
463
464 spin_lock_irqsave(&minfo->xfer_lock, flags);
465 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
466 scmi_xfer_inflight_register_unlocked(xfer, minfo);
467 else
468 ret = -EBUSY;
469 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
470
471 return ret;
472 }
473
474 /**
475 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in
476 * flight on the TX channel, if possible.
477 *
478 * @handle: Pointer to SCMI entity handle
479 * @xfer: The xfer to register
480 *
481 * Return: 0 on Success, error otherwise
482 */
scmi_xfer_raw_inflight_register(const struct scmi_handle * handle,struct scmi_xfer * xfer)483 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
484 struct scmi_xfer *xfer)
485 {
486 struct scmi_info *info = handle_to_scmi_info(handle);
487
488 return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
489 }
490
491 /**
492 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer
493 * as pending in-flight
494 *
495 * @xfer: The xfer to act upon
496 * @minfo: Pointer to Tx/Rx Message management info based on channel type
497 *
498 * Return: 0 on Success or error otherwise
499 */
scmi_xfer_pending_set(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)500 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
501 struct scmi_xfers_info *minfo)
502 {
503 int ret;
504 unsigned long flags;
505
506 spin_lock_irqsave(&minfo->xfer_lock, flags);
507 /* Set a new monotonic token as the xfer sequence number */
508 ret = scmi_xfer_token_set(minfo, xfer);
509 if (!ret)
510 scmi_xfer_inflight_register_unlocked(xfer, minfo);
511 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
512
513 return ret;
514 }
515
516 /**
517 * scmi_xfer_get() - Allocate one message
518 *
519 * @handle: Pointer to SCMI entity handle
520 * @minfo: Pointer to Tx/Rx Message management info based on channel type
521 *
522 * Helper function which is used by various message functions that are
523 * exposed to clients of this driver for allocating a message traffic event.
524 *
525 * Picks an xfer from the free list @free_xfers (if any available) and perform
526 * a basic initialization.
527 *
528 * Note that, at this point, still no sequence number is assigned to the
529 * allocated xfer, nor it is registered as a pending transaction.
530 *
531 * The successfully initialized xfer is refcounted.
532 *
533 * Context: Holds @xfer_lock while manipulating @free_xfers.
534 *
535 * Return: An initialized xfer if all went fine, else pointer error.
536 */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo)537 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
538 struct scmi_xfers_info *minfo)
539 {
540 unsigned long flags;
541 struct scmi_xfer *xfer;
542
543 spin_lock_irqsave(&minfo->xfer_lock, flags);
544 if (hlist_empty(&minfo->free_xfers)) {
545 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
546 return ERR_PTR(-ENOMEM);
547 }
548
549 /* grab an xfer from the free_list */
550 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
551 hlist_del_init(&xfer->node);
552
553 /*
554 * Allocate transfer_id early so that can be used also as base for
555 * monotonic sequence number generation if needed.
556 */
557 xfer->transfer_id = atomic_inc_return(&transfer_last_id);
558
559 refcount_set(&xfer->users, 1);
560 atomic_set(&xfer->busy, SCMI_XFER_FREE);
561 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
562
563 return xfer;
564 }
565
566 /**
567 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel
568 *
569 * @handle: Pointer to SCMI entity handle
570 *
571 * Note that xfer is taken from the TX channel structures.
572 *
573 * Return: A valid xfer on Success, or an error-pointer otherwise
574 */
scmi_xfer_raw_get(const struct scmi_handle * handle)575 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
576 {
577 struct scmi_xfer *xfer;
578 struct scmi_info *info = handle_to_scmi_info(handle);
579
580 xfer = scmi_xfer_get(handle, &info->tx_minfo);
581 if (!IS_ERR(xfer))
582 xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
583
584 return xfer;
585 }
586
587 /**
588 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel
589 * to use for a specific protocol_id Raw transaction.
590 *
591 * @handle: Pointer to SCMI entity handle
592 * @protocol_id: Identifier of the protocol
593 *
594 * Note that in a regular SCMI stack, usually, a protocol has to be defined in
595 * the DT to have an associated channel and be usable; but in Raw mode any
596 * protocol in range is allowed, re-using the Base channel, so as to enable
597 * fuzzing on any protocol without the need of a fully compiled DT.
598 *
599 * Return: A reference to the channel to use, or an ERR_PTR
600 */
601 struct scmi_chan_info *
scmi_xfer_raw_channel_get(const struct scmi_handle * handle,u8 protocol_id)602 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
603 {
604 struct scmi_chan_info *cinfo;
605 struct scmi_info *info = handle_to_scmi_info(handle);
606
607 cinfo = idr_find(&info->tx_idr, protocol_id);
608 if (!cinfo) {
609 if (protocol_id == SCMI_PROTOCOL_BASE)
610 return ERR_PTR(-EINVAL);
611 /* Use Base channel for protocols not defined for DT */
612 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
613 if (!cinfo)
614 return ERR_PTR(-EINVAL);
615 dev_warn_once(handle->dev,
616 "Using Base channel for protocol 0x%X\n",
617 protocol_id);
618 }
619
620 return cinfo;
621 }
622
623 /**
624 * __scmi_xfer_put() - Release a message
625 *
626 * @minfo: Pointer to Tx/Rx Message management info based on channel type
627 * @xfer: message that was reserved by scmi_xfer_get
628 *
629 * After refcount check, possibly release an xfer, clearing the token slot,
630 * removing xfer from @pending_xfers and putting it back into free_xfers.
631 *
632 * This holds a spinlock to maintain integrity of internal data structures.
633 */
634 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)635 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
636 {
637 unsigned long flags;
638
639 spin_lock_irqsave(&minfo->xfer_lock, flags);
640 if (refcount_dec_and_test(&xfer->users)) {
641 if (xfer->pending) {
642 scmi_xfer_token_clear(minfo, xfer);
643 hash_del(&xfer->node);
644 xfer->pending = false;
645 }
646 hlist_add_head(&xfer->node, &minfo->free_xfers);
647 }
648 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
649 }
650
651 /**
652 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get
653 *
654 * @handle: Pointer to SCMI entity handle
655 * @xfer: A reference to the xfer to put
656 *
657 * Note that as with other xfer_put() handlers the xfer is really effectively
658 * released only if there are no more users on the system.
659 */
scmi_xfer_raw_put(const struct scmi_handle * handle,struct scmi_xfer * xfer)660 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
661 {
662 struct scmi_info *info = handle_to_scmi_info(handle);
663
664 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
665 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
666 return __scmi_xfer_put(&info->tx_minfo, xfer);
667 }
668
669 /**
670 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id
671 *
672 * @minfo: Pointer to Tx/Rx Message management info based on channel type
673 * @xfer_id: Token ID to lookup in @pending_xfers
674 *
675 * Refcounting is untouched.
676 *
677 * Context: Assumes to be called with @xfer_lock already acquired.
678 *
679 * Return: A valid xfer on Success or error otherwise
680 */
681 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)682 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
683 {
684 struct scmi_xfer *xfer = NULL;
685
686 if (test_bit(xfer_id, minfo->xfer_alloc_table))
687 xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
688
689 return xfer ?: ERR_PTR(-EINVAL);
690 }
691
692 /**
693 * scmi_bad_message_trace - A helper to trace weird messages
694 *
695 * @cinfo: A reference to the channel descriptor on which the message was
696 * received
697 * @msg_hdr: Message header to track
698 * @err: A specific error code used as a status value in traces.
699 *
700 * This helper can be used to trace any kind of weird, incomplete, unexpected,
701 * timed-out message that arrives and as such, can be traced only referring to
702 * the header content, since the payload is missing/unreliable.
703 */
scmi_bad_message_trace(struct scmi_chan_info * cinfo,u32 msg_hdr,enum scmi_bad_msg err)704 void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr,
705 enum scmi_bad_msg err)
706 {
707 char *tag;
708 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
709
710 switch (MSG_XTRACT_TYPE(msg_hdr)) {
711 case MSG_TYPE_COMMAND:
712 tag = "!RESP";
713 break;
714 case MSG_TYPE_DELAYED_RESP:
715 tag = "!DLYD";
716 break;
717 case MSG_TYPE_NOTIFICATION:
718 tag = "!NOTI";
719 break;
720 default:
721 tag = "!UNKN";
722 break;
723 }
724
725 trace_scmi_msg_dump(info->id, cinfo->id,
726 MSG_XTRACT_PROT_ID(msg_hdr),
727 MSG_XTRACT_ID(msg_hdr), tag,
728 MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0);
729 }
730
731 /**
732 * scmi_msg_response_validate - Validate message type against state of related
733 * xfer
734 *
735 * @cinfo: A reference to the channel descriptor.
736 * @msg_type: Message type to check
737 * @xfer: A reference to the xfer to validate against @msg_type
738 *
739 * This function checks if @msg_type is congruent with the current state of
740 * a pending @xfer; if an asynchronous delayed response is received before the
741 * related synchronous response (Out-of-Order Delayed Response) the missing
742 * synchronous response is assumed to be OK and completed, carrying on with the
743 * Delayed Response: this is done to address the case in which the underlying
744 * SCMI transport can deliver such out-of-order responses.
745 *
746 * Context: Assumes to be called with xfer->lock already acquired.
747 *
748 * Return: 0 on Success, error otherwise
749 */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)750 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
751 u8 msg_type,
752 struct scmi_xfer *xfer)
753 {
754 /*
755 * Even if a response was indeed expected on this slot at this point,
756 * a buggy platform could wrongly reply feeding us an unexpected
757 * delayed response we're not prepared to handle: bail-out safely
758 * blaming firmware.
759 */
760 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
761 dev_err(cinfo->dev,
762 "Delayed Response for %d not expected! Buggy F/W ?\n",
763 xfer->hdr.seq);
764 return -EINVAL;
765 }
766
767 switch (xfer->state) {
768 case SCMI_XFER_SENT_OK:
769 if (msg_type == MSG_TYPE_DELAYED_RESP) {
770 /*
771 * Delayed Response expected but delivered earlier.
772 * Assume message RESPONSE was OK and skip state.
773 */
774 xfer->hdr.status = SCMI_SUCCESS;
775 xfer->state = SCMI_XFER_RESP_OK;
776 complete(&xfer->done);
777 dev_warn(cinfo->dev,
778 "Received valid OoO Delayed Response for %d\n",
779 xfer->hdr.seq);
780 }
781 break;
782 case SCMI_XFER_RESP_OK:
783 if (msg_type != MSG_TYPE_DELAYED_RESP)
784 return -EINVAL;
785 break;
786 case SCMI_XFER_DRESP_OK:
787 /* No further message expected once in SCMI_XFER_DRESP_OK */
788 return -EINVAL;
789 }
790
791 return 0;
792 }
793
794 /**
795 * scmi_xfer_state_update - Update xfer state
796 *
797 * @xfer: A reference to the xfer to update
798 * @msg_type: Type of message being processed.
799 *
800 * Note that this message is assumed to have been already successfully validated
801 * by @scmi_msg_response_validate(), so here we just update the state.
802 *
803 * Context: Assumes to be called on an xfer exclusively acquired using the
804 * busy flag.
805 */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)806 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
807 {
808 xfer->hdr.type = msg_type;
809
810 /* Unknown command types were already discarded earlier */
811 if (xfer->hdr.type == MSG_TYPE_COMMAND)
812 xfer->state = SCMI_XFER_RESP_OK;
813 else
814 xfer->state = SCMI_XFER_DRESP_OK;
815 }
816
scmi_xfer_acquired(struct scmi_xfer * xfer)817 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
818 {
819 int ret;
820
821 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
822
823 return ret == SCMI_XFER_FREE;
824 }
825
826 /**
827 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer
828 *
829 * @cinfo: A reference to the channel descriptor.
830 * @msg_hdr: A message header to use as lookup key
831 *
832 * When a valid xfer is found for the sequence number embedded in the provided
833 * msg_hdr, reference counting is properly updated and exclusive access to this
834 * xfer is granted till released with @scmi_xfer_command_release.
835 *
836 * Return: A valid @xfer on Success or error otherwise.
837 */
838 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)839 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
840 {
841 int ret;
842 unsigned long flags;
843 struct scmi_xfer *xfer;
844 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
845 struct scmi_xfers_info *minfo = &info->tx_minfo;
846 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
847 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
848
849 /* Are we even expecting this? */
850 spin_lock_irqsave(&minfo->xfer_lock, flags);
851 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
852 if (IS_ERR(xfer)) {
853 dev_err(cinfo->dev,
854 "Message for %d type %d is not expected!\n",
855 xfer_id, msg_type);
856 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
857
858 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED);
859 scmi_inc_count(info->dbg->counters, ERR_MSG_UNEXPECTED);
860
861 return xfer;
862 }
863 refcount_inc(&xfer->users);
864 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
865
866 spin_lock_irqsave(&xfer->lock, flags);
867 ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
868 /*
869 * If a pending xfer was found which was also in a congruent state with
870 * the received message, acquire exclusive access to it setting the busy
871 * flag.
872 * Spins only on the rare limit condition of concurrent reception of
873 * RESP and DRESP for the same xfer.
874 */
875 if (!ret) {
876 spin_until_cond(scmi_xfer_acquired(xfer));
877 scmi_xfer_state_update(xfer, msg_type);
878 }
879 spin_unlock_irqrestore(&xfer->lock, flags);
880
881 if (ret) {
882 dev_err(cinfo->dev,
883 "Invalid message type:%d for %d - HDR:0x%X state:%d\n",
884 msg_type, xfer_id, msg_hdr, xfer->state);
885
886 scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID);
887 scmi_inc_count(info->dbg->counters, ERR_MSG_INVALID);
888
889
890 /* On error the refcount incremented above has to be dropped */
891 __scmi_xfer_put(minfo, xfer);
892 xfer = ERR_PTR(-EINVAL);
893 }
894
895 return xfer;
896 }
897
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)898 static inline void scmi_xfer_command_release(struct scmi_info *info,
899 struct scmi_xfer *xfer)
900 {
901 atomic_set(&xfer->busy, SCMI_XFER_FREE);
902 __scmi_xfer_put(&info->tx_minfo, xfer);
903 }
904
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)905 static inline void scmi_clear_channel(struct scmi_info *info,
906 struct scmi_chan_info *cinfo)
907 {
908 if (!cinfo->is_p2a) {
909 dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n");
910 return;
911 }
912
913 if (info->desc->ops->clear_channel)
914 info->desc->ops->clear_channel(cinfo);
915 }
916
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)917 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
918 u32 msg_hdr, void *priv)
919 {
920 struct scmi_xfer *xfer;
921 struct device *dev = cinfo->dev;
922 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
923 struct scmi_xfers_info *minfo = &info->rx_minfo;
924 ktime_t ts;
925
926 ts = ktime_get_boottime();
927 xfer = scmi_xfer_get(cinfo->handle, minfo);
928 if (IS_ERR(xfer)) {
929 dev_err(dev, "failed to get free message slot (%ld)\n",
930 PTR_ERR(xfer));
931
932 scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM);
933 scmi_inc_count(info->dbg->counters, ERR_MSG_NOMEM);
934
935 scmi_clear_channel(info, cinfo);
936 return;
937 }
938
939 unpack_scmi_header(msg_hdr, &xfer->hdr);
940 if (priv)
941 /* Ensure order between xfer->priv store and following ops */
942 smp_store_mb(xfer->priv, priv);
943 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
944 xfer);
945
946 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
947 xfer->hdr.id, "NOTI", xfer->hdr.seq,
948 xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
949 scmi_inc_count(info->dbg->counters, NOTIFICATION_OK);
950
951 scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
952 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
953
954 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
955 xfer->hdr.protocol_id, xfer->hdr.seq,
956 MSG_TYPE_NOTIFICATION);
957
958 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
959 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
960 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
961 cinfo->id);
962 }
963
964 __scmi_xfer_put(minfo, xfer);
965
966 scmi_clear_channel(info, cinfo);
967 }
968
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)969 static void scmi_handle_response(struct scmi_chan_info *cinfo,
970 u32 msg_hdr, void *priv)
971 {
972 struct scmi_xfer *xfer;
973 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
974
975 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
976 if (IS_ERR(xfer)) {
977 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
978 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
979
980 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
981 scmi_clear_channel(info, cinfo);
982 return;
983 }
984
985 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
986 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
987 xfer->rx.len = info->desc->max_msg_size;
988
989 if (priv)
990 /* Ensure order between xfer->priv store and following ops */
991 smp_store_mb(xfer->priv, priv);
992 info->desc->ops->fetch_response(cinfo, xfer);
993
994 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
995 xfer->hdr.id,
996 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
997 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
998 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
999 xfer->hdr.seq, xfer->hdr.status,
1000 xfer->rx.buf, xfer->rx.len);
1001
1002 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1003 xfer->hdr.protocol_id, xfer->hdr.seq,
1004 xfer->hdr.type);
1005
1006 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
1007 scmi_clear_channel(info, cinfo);
1008 complete(xfer->async_done);
1009 scmi_inc_count(info->dbg->counters, DELAYED_RESPONSE_OK);
1010 } else {
1011 complete(&xfer->done);
1012 scmi_inc_count(info->dbg->counters, RESPONSE_OK);
1013 }
1014
1015 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1016 /*
1017 * When in polling mode avoid to queue the Raw xfer on the IRQ
1018 * RX path since it will be already queued at the end of the TX
1019 * poll loop.
1020 */
1021 if (!xfer->hdr.poll_completion)
1022 scmi_raw_message_report(info->raw, xfer,
1023 SCMI_RAW_REPLY_QUEUE,
1024 cinfo->id);
1025 }
1026
1027 scmi_xfer_command_release(info, xfer);
1028 }
1029
1030 /**
1031 * scmi_rx_callback() - callback for receiving messages
1032 *
1033 * @cinfo: SCMI channel info
1034 * @msg_hdr: Message header
1035 * @priv: Transport specific private data.
1036 *
1037 * Processes one received message to appropriate transfer information and
1038 * signals completion of the transfer.
1039 *
1040 * NOTE: This function will be invoked in IRQ context, hence should be
1041 * as optimal as possible.
1042 */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)1043 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
1044 {
1045 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1046
1047 switch (msg_type) {
1048 case MSG_TYPE_NOTIFICATION:
1049 scmi_handle_notification(cinfo, msg_hdr, priv);
1050 break;
1051 case MSG_TYPE_COMMAND:
1052 case MSG_TYPE_DELAYED_RESP:
1053 scmi_handle_response(cinfo, msg_hdr, priv);
1054 break;
1055 default:
1056 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1057 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN);
1058 break;
1059 }
1060 }
1061
1062 /**
1063 * xfer_put() - Release a transmit message
1064 *
1065 * @ph: Pointer to SCMI protocol handle
1066 * @xfer: message that was reserved by xfer_get_init
1067 */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1068 static void xfer_put(const struct scmi_protocol_handle *ph,
1069 struct scmi_xfer *xfer)
1070 {
1071 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1072 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1073
1074 __scmi_xfer_put(&info->tx_minfo, xfer);
1075 }
1076
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop,bool * ooo)1077 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1078 struct scmi_xfer *xfer, ktime_t stop,
1079 bool *ooo)
1080 {
1081 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1082
1083 /*
1084 * Poll also on xfer->done so that polling can be forcibly terminated
1085 * in case of out-of-order receptions of delayed responses
1086 */
1087 return info->desc->ops->poll_done(cinfo, xfer) ||
1088 (*ooo = try_wait_for_completion(&xfer->done)) ||
1089 ktime_after(ktime_get(), stop);
1090 }
1091
scmi_wait_for_reply(struct device * dev,const struct scmi_desc * desc,struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1092 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1093 struct scmi_chan_info *cinfo,
1094 struct scmi_xfer *xfer, unsigned int timeout_ms)
1095 {
1096 int ret = 0;
1097 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1098
1099 if (xfer->hdr.poll_completion) {
1100 /*
1101 * Real polling is needed only if transport has NOT declared
1102 * itself to support synchronous commands replies.
1103 */
1104 if (!desc->sync_cmds_completed_on_ret) {
1105 bool ooo = false;
1106
1107 /*
1108 * Poll on xfer using transport provided .poll_done();
1109 * assumes no completion interrupt was available.
1110 */
1111 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1112
1113 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer,
1114 stop, &ooo));
1115 if (!ooo && !info->desc->ops->poll_done(cinfo, xfer)) {
1116 dev_err(dev,
1117 "timed out in resp(caller: %pS) - polling\n",
1118 (void *)_RET_IP_);
1119 ret = -ETIMEDOUT;
1120 scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_POLLED_TIMEOUT);
1121 }
1122 }
1123
1124 if (!ret) {
1125 unsigned long flags;
1126
1127 /*
1128 * Do not fetch_response if an out-of-order delayed
1129 * response is being processed.
1130 */
1131 spin_lock_irqsave(&xfer->lock, flags);
1132 if (xfer->state == SCMI_XFER_SENT_OK) {
1133 desc->ops->fetch_response(cinfo, xfer);
1134 xfer->state = SCMI_XFER_RESP_OK;
1135 }
1136 spin_unlock_irqrestore(&xfer->lock, flags);
1137
1138 /* Trace polled replies. */
1139 trace_scmi_msg_dump(info->id, cinfo->id,
1140 xfer->hdr.protocol_id, xfer->hdr.id,
1141 !SCMI_XFER_IS_RAW(xfer) ?
1142 "RESP" : "resp",
1143 xfer->hdr.seq, xfer->hdr.status,
1144 xfer->rx.buf, xfer->rx.len);
1145 scmi_inc_count(info->dbg->counters, RESPONSE_POLLED_OK);
1146
1147 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1148 struct scmi_info *info =
1149 handle_to_scmi_info(cinfo->handle);
1150
1151 scmi_raw_message_report(info->raw, xfer,
1152 SCMI_RAW_REPLY_QUEUE,
1153 cinfo->id);
1154 }
1155 }
1156 } else {
1157 /* And we wait for the response. */
1158 if (!wait_for_completion_timeout(&xfer->done,
1159 msecs_to_jiffies(timeout_ms))) {
1160 dev_err(dev, "timed out in resp(caller: %pS)\n",
1161 (void *)_RET_IP_);
1162 ret = -ETIMEDOUT;
1163 scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_TIMEOUT);
1164 }
1165 }
1166
1167 return ret;
1168 }
1169
1170 /**
1171 * scmi_wait_for_message_response - An helper to group all the possible ways of
1172 * waiting for a synchronous message response.
1173 *
1174 * @cinfo: SCMI channel info
1175 * @xfer: Reference to the transfer being waited for.
1176 *
1177 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1178 * configuration flags like xfer->hdr.poll_completion.
1179 *
1180 * Return: 0 on Success, error otherwise.
1181 */
scmi_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer)1182 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1183 struct scmi_xfer *xfer)
1184 {
1185 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1186 struct device *dev = info->dev;
1187
1188 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1189 xfer->hdr.protocol_id, xfer->hdr.seq,
1190 info->desc->max_rx_timeout_ms,
1191 xfer->hdr.poll_completion);
1192
1193 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1194 info->desc->max_rx_timeout_ms);
1195 }
1196
1197 /**
1198 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message
1199 * reply to an xfer raw request on a specific channel for the required timeout.
1200 *
1201 * @cinfo: SCMI channel info
1202 * @xfer: Reference to the transfer being waited for.
1203 * @timeout_ms: The maximum timeout in milliseconds
1204 *
1205 * Return: 0 on Success, error otherwise.
1206 */
scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1207 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1208 struct scmi_xfer *xfer,
1209 unsigned int timeout_ms)
1210 {
1211 int ret;
1212 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1213 struct device *dev = info->dev;
1214
1215 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1216 if (ret)
1217 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1218 pack_scmi_header(&xfer->hdr));
1219
1220 return ret;
1221 }
1222
1223 /**
1224 * do_xfer() - Do one transfer
1225 *
1226 * @ph: Pointer to SCMI protocol handle
1227 * @xfer: Transfer to initiate and wait for response
1228 *
1229 * Return: -ETIMEDOUT in case of no response, if transmit error,
1230 * return corresponding error, else if all goes well,
1231 * return 0.
1232 */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1233 static int do_xfer(const struct scmi_protocol_handle *ph,
1234 struct scmi_xfer *xfer)
1235 {
1236 int ret;
1237 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1238 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1239 struct device *dev = info->dev;
1240 struct scmi_chan_info *cinfo;
1241
1242 /* Check for polling request on custom command xfers at first */
1243 if (xfer->hdr.poll_completion &&
1244 !is_transport_polling_capable(info->desc)) {
1245 dev_warn_once(dev,
1246 "Polling mode is not supported by transport.\n");
1247 scmi_inc_count(info->dbg->counters, SENT_FAIL_POLLING_UNSUPPORTED);
1248 return -EINVAL;
1249 }
1250
1251 cinfo = idr_find(&info->tx_idr, pi->proto->id);
1252 if (unlikely(!cinfo)) {
1253 scmi_inc_count(info->dbg->counters, SENT_FAIL_CHANNEL_NOT_FOUND);
1254 return -EINVAL;
1255 }
1256 /* True ONLY if also supported by transport. */
1257 if (is_polling_enabled(cinfo, info->desc))
1258 xfer->hdr.poll_completion = true;
1259
1260 /*
1261 * Initialise protocol id now from protocol handle to avoid it being
1262 * overridden by mistake (or malice) by the protocol code mangling with
1263 * the scmi_xfer structure prior to this.
1264 */
1265 xfer->hdr.protocol_id = pi->proto->id;
1266 reinit_completion(&xfer->done);
1267
1268 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1269 xfer->hdr.protocol_id, xfer->hdr.seq,
1270 xfer->hdr.poll_completion);
1271
1272 /* Clear any stale status */
1273 xfer->hdr.status = SCMI_SUCCESS;
1274 xfer->state = SCMI_XFER_SENT_OK;
1275 /*
1276 * Even though spinlocking is not needed here since no race is possible
1277 * on xfer->state due to the monotonically increasing tokens allocation,
1278 * we must anyway ensure xfer->state initialization is not re-ordered
1279 * after the .send_message() to be sure that on the RX path an early
1280 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1281 */
1282 smp_mb();
1283
1284 ret = info->desc->ops->send_message(cinfo, xfer);
1285 if (ret < 0) {
1286 dev_dbg(dev, "Failed to send message %d\n", ret);
1287 scmi_inc_count(info->dbg->counters, SENT_FAIL);
1288 return ret;
1289 }
1290
1291 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1292 xfer->hdr.id, "CMND", xfer->hdr.seq,
1293 xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1294 scmi_inc_count(info->dbg->counters, SENT_OK);
1295
1296 ret = scmi_wait_for_message_response(cinfo, xfer);
1297 if (!ret && xfer->hdr.status) {
1298 ret = scmi_to_linux_errno(xfer->hdr.status);
1299 scmi_inc_count(info->dbg->counters, ERR_PROTOCOL);
1300 }
1301
1302 if (info->desc->ops->mark_txdone)
1303 info->desc->ops->mark_txdone(cinfo, ret, xfer);
1304
1305 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1306 xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1307
1308 return ret;
1309 }
1310
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1311 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1312 struct scmi_xfer *xfer)
1313 {
1314 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1315 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1316
1317 xfer->rx.len = info->desc->max_msg_size;
1318 }
1319
1320 /**
1321 * do_xfer_with_response() - Do one transfer and wait until the delayed
1322 * response is received
1323 *
1324 * @ph: Pointer to SCMI protocol handle
1325 * @xfer: Transfer to initiate and wait for response
1326 *
1327 * Using asynchronous commands in atomic/polling mode should be avoided since
1328 * it could cause long busy-waiting here, so ignore polling for the delayed
1329 * response and WARN if it was requested for this command transaction since
1330 * upper layers should refrain from issuing such kind of requests.
1331 *
1332 * The only other option would have been to refrain from using any asynchronous
1333 * command even if made available, when an atomic transport is detected, and
1334 * instead forcibly use the synchronous version (thing that can be easily
1335 * attained at the protocol layer), but this would also have led to longer
1336 * stalls of the channel for synchronous commands and possibly timeouts.
1337 * (in other words there is usually a good reason if a platform provides an
1338 * asynchronous version of a command and we should prefer to use it...just not
1339 * when using atomic/polling mode)
1340 *
1341 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1342 * return corresponding error, else if all goes well, return 0.
1343 */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1344 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1345 struct scmi_xfer *xfer)
1346 {
1347 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1348 DECLARE_COMPLETION_ONSTACK(async_response);
1349
1350 xfer->async_done = &async_response;
1351
1352 /*
1353 * Delayed responses should not be polled, so an async command should
1354 * not have been used when requiring an atomic/poll context; WARN and
1355 * perform instead a sleeping wait.
1356 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1357 */
1358 WARN_ON_ONCE(xfer->hdr.poll_completion);
1359
1360 ret = do_xfer(ph, xfer);
1361 if (!ret) {
1362 if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1363 dev_err(ph->dev,
1364 "timed out in delayed resp(caller: %pS)\n",
1365 (void *)_RET_IP_);
1366 ret = -ETIMEDOUT;
1367 } else if (xfer->hdr.status) {
1368 ret = scmi_to_linux_errno(xfer->hdr.status);
1369 }
1370 }
1371
1372 xfer->async_done = NULL;
1373 return ret;
1374 }
1375
1376 /**
1377 * xfer_get_init() - Allocate and initialise one message for transmit
1378 *
1379 * @ph: Pointer to SCMI protocol handle
1380 * @msg_id: Message identifier
1381 * @tx_size: transmit message size
1382 * @rx_size: receive message size
1383 * @p: pointer to the allocated and initialised message
1384 *
1385 * This function allocates the message using @scmi_xfer_get and
1386 * initialise the header.
1387 *
1388 * Return: 0 if all went fine with @p pointing to message, else
1389 * corresponding error.
1390 */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)1391 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1392 u8 msg_id, size_t tx_size, size_t rx_size,
1393 struct scmi_xfer **p)
1394 {
1395 int ret;
1396 struct scmi_xfer *xfer;
1397 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1398 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1399 struct scmi_xfers_info *minfo = &info->tx_minfo;
1400 struct device *dev = info->dev;
1401
1402 /* Ensure we have sane transfer sizes */
1403 if (rx_size > info->desc->max_msg_size ||
1404 tx_size > info->desc->max_msg_size)
1405 return -ERANGE;
1406
1407 xfer = scmi_xfer_get(pi->handle, minfo);
1408 if (IS_ERR(xfer)) {
1409 ret = PTR_ERR(xfer);
1410 dev_err(dev, "failed to get free message slot(%d)\n", ret);
1411 return ret;
1412 }
1413
1414 /* Pick a sequence number and register this xfer as in-flight */
1415 ret = scmi_xfer_pending_set(xfer, minfo);
1416 if (ret) {
1417 dev_err(pi->handle->dev,
1418 "Failed to get monotonic token %d\n", ret);
1419 __scmi_xfer_put(minfo, xfer);
1420 return ret;
1421 }
1422
1423 xfer->tx.len = tx_size;
1424 xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1425 xfer->hdr.type = MSG_TYPE_COMMAND;
1426 xfer->hdr.id = msg_id;
1427 xfer->hdr.poll_completion = false;
1428
1429 *p = xfer;
1430
1431 return 0;
1432 }
1433
1434 /**
1435 * version_get() - command to get the revision of the SCMI entity
1436 *
1437 * @ph: Pointer to SCMI protocol handle
1438 * @version: Holds returned version of protocol.
1439 *
1440 * Updates the SCMI information in the internal data structure.
1441 *
1442 * Return: 0 if all went fine, else return appropriate error.
1443 */
version_get(const struct scmi_protocol_handle * ph,u32 * version)1444 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1445 {
1446 int ret;
1447 __le32 *rev_info;
1448 struct scmi_xfer *t;
1449
1450 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1451 if (ret)
1452 return ret;
1453
1454 ret = do_xfer(ph, t);
1455 if (!ret) {
1456 rev_info = t->rx.buf;
1457 *version = le32_to_cpu(*rev_info);
1458 }
1459
1460 xfer_put(ph, t);
1461 return ret;
1462 }
1463
1464 /**
1465 * scmi_set_protocol_priv - Set protocol specific data at init time
1466 *
1467 * @ph: A reference to the protocol handle.
1468 * @priv: The private data to set.
1469 *
1470 * Return: 0 on Success
1471 */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv)1472 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1473 void *priv)
1474 {
1475 struct scmi_protocol_instance *pi = ph_to_pi(ph);
1476
1477 pi->priv = priv;
1478
1479 return 0;
1480 }
1481
1482 /**
1483 * scmi_get_protocol_priv - Set protocol specific data at init time
1484 *
1485 * @ph: A reference to the protocol handle.
1486 *
1487 * Return: Protocol private data if any was set.
1488 */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)1489 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1490 {
1491 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1492
1493 return pi->priv;
1494 }
1495
1496 static const struct scmi_xfer_ops xfer_ops = {
1497 .version_get = version_get,
1498 .xfer_get_init = xfer_get_init,
1499 .reset_rx_to_maxsz = reset_rx_to_maxsz,
1500 .do_xfer = do_xfer,
1501 .do_xfer_with_response = do_xfer_with_response,
1502 .xfer_put = xfer_put,
1503 };
1504
1505 struct scmi_msg_resp_domain_name_get {
1506 __le32 flags;
1507 u8 name[SCMI_MAX_STR_SIZE];
1508 };
1509
1510 /**
1511 * scmi_common_extended_name_get - Common helper to get extended resources name
1512 * @ph: A protocol handle reference.
1513 * @cmd_id: The specific command ID to use.
1514 * @res_id: The specific resource ID to use.
1515 * @name: A pointer to the preallocated area where the retrieved name will be
1516 * stored as a NULL terminated string.
1517 * @len: The len in bytes of the @name char array.
1518 *
1519 * Return: 0 on Succcess
1520 */
scmi_common_extended_name_get(const struct scmi_protocol_handle * ph,u8 cmd_id,u32 res_id,char * name,size_t len)1521 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1522 u8 cmd_id, u32 res_id, char *name,
1523 size_t len)
1524 {
1525 int ret;
1526 struct scmi_xfer *t;
1527 struct scmi_msg_resp_domain_name_get *resp;
1528
1529 ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id),
1530 sizeof(*resp), &t);
1531 if (ret)
1532 goto out;
1533
1534 put_unaligned_le32(res_id, t->tx.buf);
1535 resp = t->rx.buf;
1536
1537 ret = ph->xops->do_xfer(ph, t);
1538 if (!ret)
1539 strscpy(name, resp->name, len);
1540
1541 ph->xops->xfer_put(ph, t);
1542 out:
1543 if (ret)
1544 dev_warn(ph->dev,
1545 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1546 res_id, ret, name);
1547 return ret;
1548 }
1549
1550 /**
1551 * scmi_protocol_msg_check - Check protocol message attributes
1552 *
1553 * @ph: A reference to the protocol handle.
1554 * @message_id: The ID of the message to check.
1555 * @attributes: A parameter to optionally return the retrieved message
1556 * attributes, in case of Success.
1557 *
1558 * An helper to check protocol message attributes for a specific protocol
1559 * and message pair.
1560 *
1561 * Return: 0 on SUCCESS
1562 */
scmi_protocol_msg_check(const struct scmi_protocol_handle * ph,u32 message_id,u32 * attributes)1563 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1564 u32 message_id, u32 *attributes)
1565 {
1566 int ret;
1567 struct scmi_xfer *t;
1568
1569 ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
1570 sizeof(__le32), 0, &t);
1571 if (ret)
1572 return ret;
1573
1574 put_unaligned_le32(message_id, t->tx.buf);
1575 ret = do_xfer(ph, t);
1576 if (!ret && attributes)
1577 *attributes = get_unaligned_le32(t->rx.buf);
1578 xfer_put(ph, t);
1579
1580 return ret;
1581 }
1582
1583 /**
1584 * struct scmi_iterator - Iterator descriptor
1585 * @msg: A reference to the message TX buffer; filled by @prepare_message with
1586 * a proper custom command payload for each multi-part command request.
1587 * @resp: A reference to the response RX buffer; used by @update_state and
1588 * @process_response to parse the multi-part replies.
1589 * @t: A reference to the underlying xfer initialized and used transparently by
1590 * the iterator internal routines.
1591 * @ph: A reference to the associated protocol handle to be used.
1592 * @ops: A reference to the custom provided iterator operations.
1593 * @state: The current iterator state; used and updated in turn by the iterators
1594 * internal routines and by the caller-provided @scmi_iterator_ops.
1595 * @priv: A reference to optional private data as provided by the caller and
1596 * passed back to the @@scmi_iterator_ops.
1597 */
1598 struct scmi_iterator {
1599 void *msg;
1600 void *resp;
1601 struct scmi_xfer *t;
1602 const struct scmi_protocol_handle *ph;
1603 struct scmi_iterator_ops *ops;
1604 struct scmi_iterator_state state;
1605 void *priv;
1606 };
1607
scmi_iterator_init(const struct scmi_protocol_handle * ph,struct scmi_iterator_ops * ops,unsigned int max_resources,u8 msg_id,size_t tx_size,void * priv)1608 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1609 struct scmi_iterator_ops *ops,
1610 unsigned int max_resources, u8 msg_id,
1611 size_t tx_size, void *priv)
1612 {
1613 int ret;
1614 struct scmi_iterator *i;
1615
1616 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1617 if (!i)
1618 return ERR_PTR(-ENOMEM);
1619
1620 i->ph = ph;
1621 i->ops = ops;
1622 i->priv = priv;
1623
1624 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1625 if (ret) {
1626 devm_kfree(ph->dev, i);
1627 return ERR_PTR(ret);
1628 }
1629
1630 i->state.max_resources = max_resources;
1631 i->msg = i->t->tx.buf;
1632 i->resp = i->t->rx.buf;
1633
1634 return i;
1635 }
1636
scmi_iterator_run(void * iter)1637 static int scmi_iterator_run(void *iter)
1638 {
1639 int ret = -EINVAL;
1640 struct scmi_iterator_ops *iops;
1641 const struct scmi_protocol_handle *ph;
1642 struct scmi_iterator_state *st;
1643 struct scmi_iterator *i = iter;
1644
1645 if (!i || !i->ops || !i->ph)
1646 return ret;
1647
1648 iops = i->ops;
1649 ph = i->ph;
1650 st = &i->state;
1651
1652 do {
1653 iops->prepare_message(i->msg, st->desc_index, i->priv);
1654 ret = ph->xops->do_xfer(ph, i->t);
1655 if (ret)
1656 break;
1657
1658 st->rx_len = i->t->rx.len;
1659 ret = iops->update_state(st, i->resp, i->priv);
1660 if (ret)
1661 break;
1662
1663 if (st->num_returned > st->max_resources - st->desc_index) {
1664 dev_err(ph->dev,
1665 "No. of resources can't exceed %d\n",
1666 st->max_resources);
1667 ret = -EINVAL;
1668 break;
1669 }
1670
1671 for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1672 st->loop_idx++) {
1673 ret = iops->process_response(ph, i->resp, st, i->priv);
1674 if (ret)
1675 goto out;
1676 }
1677
1678 st->desc_index += st->num_returned;
1679 ph->xops->reset_rx_to_maxsz(ph, i->t);
1680 /*
1681 * check for both returned and remaining to avoid infinite
1682 * loop due to buggy firmware
1683 */
1684 } while (st->num_returned && st->num_remaining);
1685
1686 out:
1687 /* Finalize and destroy iterator */
1688 ph->xops->xfer_put(ph, i->t);
1689 devm_kfree(ph->dev, i);
1690
1691 return ret;
1692 }
1693
1694 struct scmi_msg_get_fc_info {
1695 __le32 domain;
1696 __le32 message_id;
1697 };
1698
1699 struct scmi_msg_resp_desc_fc {
1700 __le32 attr;
1701 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0))
1702 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x))
1703 __le32 rate_limit;
1704 __le32 chan_addr_low;
1705 __le32 chan_addr_high;
1706 __le32 chan_size;
1707 __le32 db_addr_low;
1708 __le32 db_addr_high;
1709 __le32 db_set_lmask;
1710 __le32 db_set_hmask;
1711 __le32 db_preserve_lmask;
1712 __le32 db_preserve_hmask;
1713 };
1714
1715 static void
scmi_common_fastchannel_init(const struct scmi_protocol_handle * ph,u8 describe_id,u32 message_id,u32 valid_size,u32 domain,void __iomem ** p_addr,struct scmi_fc_db_info ** p_db)1716 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1717 u8 describe_id, u32 message_id, u32 valid_size,
1718 u32 domain, void __iomem **p_addr,
1719 struct scmi_fc_db_info **p_db)
1720 {
1721 int ret;
1722 u32 flags;
1723 u64 phys_addr;
1724 u32 attributes;
1725 u8 size;
1726 void __iomem *addr;
1727 struct scmi_xfer *t;
1728 struct scmi_fc_db_info *db = NULL;
1729 struct scmi_msg_get_fc_info *info;
1730 struct scmi_msg_resp_desc_fc *resp;
1731 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1732
1733 /* Check if the MSG_ID supports fastchannel */
1734 ret = scmi_protocol_msg_check(ph, message_id, &attributes);
1735 if (ret || !MSG_SUPPORTS_FASTCHANNEL(attributes)) {
1736 dev_dbg(ph->dev,
1737 "Skip FC init for 0x%02X/%d domain:%d - ret:%d\n",
1738 pi->proto->id, message_id, domain, ret);
1739 return;
1740 }
1741
1742 if (!p_addr) {
1743 ret = -EINVAL;
1744 goto err_out;
1745 }
1746
1747 ret = ph->xops->xfer_get_init(ph, describe_id,
1748 sizeof(*info), sizeof(*resp), &t);
1749 if (ret)
1750 goto err_out;
1751
1752 info = t->tx.buf;
1753 info->domain = cpu_to_le32(domain);
1754 info->message_id = cpu_to_le32(message_id);
1755
1756 /*
1757 * Bail out on error leaving fc_info addresses zeroed; this includes
1758 * the case in which the requested domain/message_id does NOT support
1759 * fastchannels at all.
1760 */
1761 ret = ph->xops->do_xfer(ph, t);
1762 if (ret)
1763 goto err_xfer;
1764
1765 resp = t->rx.buf;
1766 flags = le32_to_cpu(resp->attr);
1767 size = le32_to_cpu(resp->chan_size);
1768 if (size != valid_size) {
1769 ret = -EINVAL;
1770 goto err_xfer;
1771 }
1772
1773 phys_addr = le32_to_cpu(resp->chan_addr_low);
1774 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1775 addr = devm_ioremap(ph->dev, phys_addr, size);
1776 if (!addr) {
1777 ret = -EADDRNOTAVAIL;
1778 goto err_xfer;
1779 }
1780
1781 *p_addr = addr;
1782
1783 if (p_db && SUPPORTS_DOORBELL(flags)) {
1784 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1785 if (!db) {
1786 ret = -ENOMEM;
1787 goto err_db;
1788 }
1789
1790 size = 1 << DOORBELL_REG_WIDTH(flags);
1791 phys_addr = le32_to_cpu(resp->db_addr_low);
1792 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1793 addr = devm_ioremap(ph->dev, phys_addr, size);
1794 if (!addr) {
1795 ret = -EADDRNOTAVAIL;
1796 goto err_db_mem;
1797 }
1798
1799 db->addr = addr;
1800 db->width = size;
1801 db->set = le32_to_cpu(resp->db_set_lmask);
1802 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1803 db->mask = le32_to_cpu(resp->db_preserve_lmask);
1804 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1805
1806 *p_db = db;
1807 }
1808
1809 ph->xops->xfer_put(ph, t);
1810
1811 dev_dbg(ph->dev,
1812 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1813 pi->proto->id, message_id, domain);
1814
1815 return;
1816
1817 err_db_mem:
1818 devm_kfree(ph->dev, db);
1819
1820 err_db:
1821 *p_addr = NULL;
1822
1823 err_xfer:
1824 ph->xops->xfer_put(ph, t);
1825
1826 err_out:
1827 dev_warn(ph->dev,
1828 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1829 pi->proto->id, message_id, domain, ret);
1830 }
1831
1832 #define SCMI_PROTO_FC_RING_DB(w) \
1833 do { \
1834 u##w val = 0; \
1835 \
1836 if (db->mask) \
1837 val = ioread##w(db->addr) & db->mask; \
1838 iowrite##w((u##w)db->set | val, db->addr); \
1839 } while (0)
1840
scmi_common_fastchannel_db_ring(struct scmi_fc_db_info * db)1841 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1842 {
1843 if (!db || !db->addr)
1844 return;
1845
1846 if (db->width == 1)
1847 SCMI_PROTO_FC_RING_DB(8);
1848 else if (db->width == 2)
1849 SCMI_PROTO_FC_RING_DB(16);
1850 else if (db->width == 4)
1851 SCMI_PROTO_FC_RING_DB(32);
1852 else /* db->width == 8 */
1853 #ifdef CONFIG_64BIT
1854 SCMI_PROTO_FC_RING_DB(64);
1855 #else
1856 {
1857 u64 val = 0;
1858
1859 if (db->mask)
1860 val = ioread64_hi_lo(db->addr) & db->mask;
1861 iowrite64_hi_lo(db->set | val, db->addr);
1862 }
1863 #endif
1864 }
1865
1866 static const struct scmi_proto_helpers_ops helpers_ops = {
1867 .extended_name_get = scmi_common_extended_name_get,
1868 .iter_response_init = scmi_iterator_init,
1869 .iter_response_run = scmi_iterator_run,
1870 .protocol_msg_check = scmi_protocol_msg_check,
1871 .fastchannel_init = scmi_common_fastchannel_init,
1872 .fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1873 };
1874
1875 /**
1876 * scmi_revision_area_get - Retrieve version memory area.
1877 *
1878 * @ph: A reference to the protocol handle.
1879 *
1880 * A helper to grab the version memory area reference during SCMI Base protocol
1881 * initialization.
1882 *
1883 * Return: A reference to the version memory area associated to the SCMI
1884 * instance underlying this protocol handle.
1885 */
1886 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)1887 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1888 {
1889 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1890
1891 return pi->handle->version;
1892 }
1893
1894 /**
1895 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol
1896 * instance descriptor.
1897 * @info: The reference to the related SCMI instance.
1898 * @proto: The protocol descriptor.
1899 *
1900 * Allocate a new protocol instance descriptor, using the provided @proto
1901 * description, against the specified SCMI instance @info, and initialize it;
1902 * all resources management is handled via a dedicated per-protocol devres
1903 * group.
1904 *
1905 * Context: Assumes to be called with @protocols_mtx already acquired.
1906 * Return: A reference to a freshly allocated and initialized protocol instance
1907 * or ERR_PTR on failure. On failure the @proto reference is at first
1908 * put using @scmi_protocol_put() before releasing all the devres group.
1909 */
1910 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)1911 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1912 const struct scmi_protocol *proto)
1913 {
1914 int ret = -ENOMEM;
1915 void *gid;
1916 struct scmi_protocol_instance *pi;
1917 const struct scmi_handle *handle = &info->handle;
1918
1919 /* Protocol specific devres group */
1920 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1921 if (!gid) {
1922 scmi_protocol_put(proto->id);
1923 goto out;
1924 }
1925
1926 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1927 if (!pi)
1928 goto clean;
1929
1930 pi->gid = gid;
1931 pi->proto = proto;
1932 pi->handle = handle;
1933 pi->ph.dev = handle->dev;
1934 pi->ph.xops = &xfer_ops;
1935 pi->ph.hops = &helpers_ops;
1936 pi->ph.set_priv = scmi_set_protocol_priv;
1937 pi->ph.get_priv = scmi_get_protocol_priv;
1938 refcount_set(&pi->users, 1);
1939 /* proto->init is assured NON NULL by scmi_protocol_register */
1940 ret = pi->proto->instance_init(&pi->ph);
1941 if (ret)
1942 goto clean;
1943
1944 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1945 GFP_KERNEL);
1946 if (ret != proto->id)
1947 goto clean;
1948
1949 /*
1950 * Warn but ignore events registration errors since we do not want
1951 * to skip whole protocols if their notifications are messed up.
1952 */
1953 if (pi->proto->events) {
1954 ret = scmi_register_protocol_events(handle, pi->proto->id,
1955 &pi->ph,
1956 pi->proto->events);
1957 if (ret)
1958 dev_warn(handle->dev,
1959 "Protocol:%X - Events Registration Failed - err:%d\n",
1960 pi->proto->id, ret);
1961 }
1962
1963 devres_close_group(handle->dev, pi->gid);
1964 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1965
1966 return pi;
1967
1968 clean:
1969 /* Take care to put the protocol module's owner before releasing all */
1970 scmi_protocol_put(proto->id);
1971 devres_release_group(handle->dev, gid);
1972 out:
1973 return ERR_PTR(ret);
1974 }
1975
1976 /**
1977 * scmi_get_protocol_instance - Protocol initialization helper.
1978 * @handle: A reference to the SCMI platform instance.
1979 * @protocol_id: The protocol being requested.
1980 *
1981 * In case the required protocol has never been requested before for this
1982 * instance, allocate and initialize all the needed structures while handling
1983 * resource allocation with a dedicated per-protocol devres subgroup.
1984 *
1985 * Return: A reference to an initialized protocol instance or error on failure:
1986 * in particular returns -EPROBE_DEFER when the desired protocol could
1987 * NOT be found.
1988 */
1989 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)1990 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1991 {
1992 struct scmi_protocol_instance *pi;
1993 struct scmi_info *info = handle_to_scmi_info(handle);
1994
1995 mutex_lock(&info->protocols_mtx);
1996 pi = idr_find(&info->protocols, protocol_id);
1997
1998 if (pi) {
1999 refcount_inc(&pi->users);
2000 } else {
2001 const struct scmi_protocol *proto;
2002
2003 /* Fails if protocol not registered on bus */
2004 proto = scmi_protocol_get(protocol_id);
2005 if (proto)
2006 pi = scmi_alloc_init_protocol_instance(info, proto);
2007 else
2008 pi = ERR_PTR(-EPROBE_DEFER);
2009 }
2010 mutex_unlock(&info->protocols_mtx);
2011
2012 return pi;
2013 }
2014
2015 /**
2016 * scmi_protocol_acquire - Protocol acquire
2017 * @handle: A reference to the SCMI platform instance.
2018 * @protocol_id: The protocol being requested.
2019 *
2020 * Register a new user for the requested protocol on the specified SCMI
2021 * platform instance, possibly triggering its initialization on first user.
2022 *
2023 * Return: 0 if protocol was acquired successfully.
2024 */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)2025 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2026 {
2027 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2028 }
2029
2030 /**
2031 * scmi_protocol_release - Protocol de-initialization helper.
2032 * @handle: A reference to the SCMI platform instance.
2033 * @protocol_id: The protocol being requested.
2034 *
2035 * Remove one user for the specified protocol and triggers de-initialization
2036 * and resources de-allocation once the last user has gone.
2037 */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)2038 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2039 {
2040 struct scmi_info *info = handle_to_scmi_info(handle);
2041 struct scmi_protocol_instance *pi;
2042
2043 mutex_lock(&info->protocols_mtx);
2044 pi = idr_find(&info->protocols, protocol_id);
2045 if (WARN_ON(!pi))
2046 goto out;
2047
2048 if (refcount_dec_and_test(&pi->users)) {
2049 void *gid = pi->gid;
2050
2051 if (pi->proto->events)
2052 scmi_deregister_protocol_events(handle, protocol_id);
2053
2054 if (pi->proto->instance_deinit)
2055 pi->proto->instance_deinit(&pi->ph);
2056
2057 idr_remove(&info->protocols, protocol_id);
2058
2059 scmi_protocol_put(protocol_id);
2060
2061 devres_release_group(handle->dev, gid);
2062 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2063 protocol_id);
2064 }
2065
2066 out:
2067 mutex_unlock(&info->protocols_mtx);
2068 }
2069
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)2070 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2071 u8 *prot_imp)
2072 {
2073 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2074 struct scmi_info *info = handle_to_scmi_info(pi->handle);
2075
2076 info->protocols_imp = prot_imp;
2077 }
2078
2079 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)2080 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2081 {
2082 int i;
2083 struct scmi_info *info = handle_to_scmi_info(handle);
2084 struct scmi_revision_info *rev = handle->version;
2085
2086 if (!info->protocols_imp)
2087 return false;
2088
2089 for (i = 0; i < rev->num_protocols; i++)
2090 if (info->protocols_imp[i] == prot_id)
2091 return true;
2092 return false;
2093 }
2094
2095 struct scmi_protocol_devres {
2096 const struct scmi_handle *handle;
2097 u8 protocol_id;
2098 };
2099
scmi_devm_release_protocol(struct device * dev,void * res)2100 static void scmi_devm_release_protocol(struct device *dev, void *res)
2101 {
2102 struct scmi_protocol_devres *dres = res;
2103
2104 scmi_protocol_release(dres->handle, dres->protocol_id);
2105 }
2106
2107 static struct scmi_protocol_instance __must_check *
scmi_devres_protocol_instance_get(struct scmi_device * sdev,u8 protocol_id)2108 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2109 {
2110 struct scmi_protocol_instance *pi;
2111 struct scmi_protocol_devres *dres;
2112
2113 dres = devres_alloc(scmi_devm_release_protocol,
2114 sizeof(*dres), GFP_KERNEL);
2115 if (!dres)
2116 return ERR_PTR(-ENOMEM);
2117
2118 pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2119 if (IS_ERR(pi)) {
2120 devres_free(dres);
2121 return pi;
2122 }
2123
2124 dres->handle = sdev->handle;
2125 dres->protocol_id = protocol_id;
2126 devres_add(&sdev->dev, dres);
2127
2128 return pi;
2129 }
2130
2131 /**
2132 * scmi_devm_protocol_get - Devres managed get protocol operations and handle
2133 * @sdev: A reference to an scmi_device whose embedded struct device is to
2134 * be used for devres accounting.
2135 * @protocol_id: The protocol being requested.
2136 * @ph: A pointer reference used to pass back the associated protocol handle.
2137 *
2138 * Get hold of a protocol accounting for its usage, eventually triggering its
2139 * initialization, and returning the protocol specific operations and related
2140 * protocol handle which will be used as first argument in most of the
2141 * protocols operations methods.
2142 * Being a devres based managed method, protocol hold will be automatically
2143 * released, and possibly de-initialized on last user, once the SCMI driver
2144 * owning the scmi_device is unbound from it.
2145 *
2146 * Return: A reference to the requested protocol operations or error.
2147 * Must be checked for errors by caller.
2148 */
2149 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)2150 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2151 struct scmi_protocol_handle **ph)
2152 {
2153 struct scmi_protocol_instance *pi;
2154
2155 if (!ph)
2156 return ERR_PTR(-EINVAL);
2157
2158 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2159 if (IS_ERR(pi))
2160 return pi;
2161
2162 *ph = &pi->ph;
2163
2164 return pi->proto->ops;
2165 }
2166
2167 /**
2168 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol
2169 * @sdev: A reference to an scmi_device whose embedded struct device is to
2170 * be used for devres accounting.
2171 * @protocol_id: The protocol being requested.
2172 *
2173 * Get hold of a protocol accounting for its usage, possibly triggering its
2174 * initialization but without getting access to its protocol specific operations
2175 * and handle.
2176 *
2177 * Being a devres based managed method, protocol hold will be automatically
2178 * released, and possibly de-initialized on last user, once the SCMI driver
2179 * owning the scmi_device is unbound from it.
2180 *
2181 * Return: 0 on SUCCESS
2182 */
scmi_devm_protocol_acquire(struct scmi_device * sdev,u8 protocol_id)2183 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2184 u8 protocol_id)
2185 {
2186 struct scmi_protocol_instance *pi;
2187
2188 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2189 if (IS_ERR(pi))
2190 return PTR_ERR(pi);
2191
2192 return 0;
2193 }
2194
scmi_devm_protocol_match(struct device * dev,void * res,void * data)2195 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2196 {
2197 struct scmi_protocol_devres *dres = res;
2198
2199 if (WARN_ON(!dres || !data))
2200 return 0;
2201
2202 return dres->protocol_id == *((u8 *)data);
2203 }
2204
2205 /**
2206 * scmi_devm_protocol_put - Devres managed put protocol operations and handle
2207 * @sdev: A reference to an scmi_device whose embedded struct device is to
2208 * be used for devres accounting.
2209 * @protocol_id: The protocol being requested.
2210 *
2211 * Explicitly release a protocol hold previously obtained calling the above
2212 * @scmi_devm_protocol_get.
2213 */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)2214 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2215 {
2216 int ret;
2217
2218 ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2219 scmi_devm_protocol_match, &protocol_id);
2220 WARN_ON(ret);
2221 }
2222
2223 /**
2224 * scmi_is_transport_atomic - Method to check if underlying transport for an
2225 * SCMI instance is configured as atomic.
2226 *
2227 * @handle: A reference to the SCMI platform instance.
2228 * @atomic_threshold: An optional return value for the system wide currently
2229 * configured threshold for atomic operations.
2230 *
2231 * Return: True if transport is configured as atomic
2232 */
scmi_is_transport_atomic(const struct scmi_handle * handle,unsigned int * atomic_threshold)2233 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2234 unsigned int *atomic_threshold)
2235 {
2236 bool ret;
2237 struct scmi_info *info = handle_to_scmi_info(handle);
2238
2239 ret = info->desc->atomic_enabled &&
2240 is_transport_polling_capable(info->desc);
2241 if (ret && atomic_threshold)
2242 *atomic_threshold = info->atomic_threshold;
2243
2244 return ret;
2245 }
2246
2247 /**
2248 * scmi_handle_get() - Get the SCMI handle for a device
2249 *
2250 * @dev: pointer to device for which we want SCMI handle
2251 *
2252 * NOTE: The function does not track individual clients of the framework
2253 * and is expected to be maintained by caller of SCMI protocol library.
2254 * scmi_handle_put must be balanced with successful scmi_handle_get
2255 *
2256 * Return: pointer to handle if successful, NULL on error
2257 */
scmi_handle_get(struct device * dev)2258 static struct scmi_handle *scmi_handle_get(struct device *dev)
2259 {
2260 struct list_head *p;
2261 struct scmi_info *info;
2262 struct scmi_handle *handle = NULL;
2263
2264 mutex_lock(&scmi_list_mutex);
2265 list_for_each(p, &scmi_list) {
2266 info = list_entry(p, struct scmi_info, node);
2267 if (dev->parent == info->dev) {
2268 info->users++;
2269 handle = &info->handle;
2270 break;
2271 }
2272 }
2273 mutex_unlock(&scmi_list_mutex);
2274
2275 return handle;
2276 }
2277
2278 /**
2279 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2280 *
2281 * @handle: handle acquired by scmi_handle_get
2282 *
2283 * NOTE: The function does not track individual clients of the framework
2284 * and is expected to be maintained by caller of SCMI protocol library.
2285 * scmi_handle_put must be balanced with successful scmi_handle_get
2286 *
2287 * Return: 0 is successfully released
2288 * if null was passed, it returns -EINVAL;
2289 */
scmi_handle_put(const struct scmi_handle * handle)2290 static int scmi_handle_put(const struct scmi_handle *handle)
2291 {
2292 struct scmi_info *info;
2293
2294 if (!handle)
2295 return -EINVAL;
2296
2297 info = handle_to_scmi_info(handle);
2298 mutex_lock(&scmi_list_mutex);
2299 if (!WARN_ON(!info->users))
2300 info->users--;
2301 mutex_unlock(&scmi_list_mutex);
2302
2303 return 0;
2304 }
2305
scmi_device_link_add(struct device * consumer,struct device * supplier)2306 static void scmi_device_link_add(struct device *consumer,
2307 struct device *supplier)
2308 {
2309 struct device_link *link;
2310
2311 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2312
2313 WARN_ON(!link);
2314 }
2315
scmi_set_handle(struct scmi_device * scmi_dev)2316 static void scmi_set_handle(struct scmi_device *scmi_dev)
2317 {
2318 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2319 if (scmi_dev->handle)
2320 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2321 }
2322
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)2323 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2324 struct scmi_xfers_info *info)
2325 {
2326 int i;
2327 struct scmi_xfer *xfer;
2328 struct device *dev = sinfo->dev;
2329 const struct scmi_desc *desc = sinfo->desc;
2330
2331 /* Pre-allocated messages, no more than what hdr.seq can support */
2332 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2333 dev_err(dev,
2334 "Invalid maximum messages %d, not in range [1 - %lu]\n",
2335 info->max_msg, MSG_TOKEN_MAX);
2336 return -EINVAL;
2337 }
2338
2339 hash_init(info->pending_xfers);
2340
2341 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2342 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2343 GFP_KERNEL);
2344 if (!info->xfer_alloc_table)
2345 return -ENOMEM;
2346
2347 /*
2348 * Preallocate a number of xfers equal to max inflight messages,
2349 * pre-initialize the buffer pointer to pre-allocated buffers and
2350 * attach all of them to the free list
2351 */
2352 INIT_HLIST_HEAD(&info->free_xfers);
2353 for (i = 0; i < info->max_msg; i++) {
2354 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2355 if (!xfer)
2356 return -ENOMEM;
2357
2358 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2359 GFP_KERNEL);
2360 if (!xfer->rx.buf)
2361 return -ENOMEM;
2362
2363 xfer->tx.buf = xfer->rx.buf;
2364 init_completion(&xfer->done);
2365 spin_lock_init(&xfer->lock);
2366
2367 /* Add initialized xfer to the free list */
2368 hlist_add_head(&xfer->node, &info->free_xfers);
2369 }
2370
2371 spin_lock_init(&info->xfer_lock);
2372
2373 return 0;
2374 }
2375
scmi_channels_max_msg_configure(struct scmi_info * sinfo)2376 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2377 {
2378 const struct scmi_desc *desc = sinfo->desc;
2379
2380 if (!desc->ops->get_max_msg) {
2381 sinfo->tx_minfo.max_msg = desc->max_msg;
2382 sinfo->rx_minfo.max_msg = desc->max_msg;
2383 } else {
2384 struct scmi_chan_info *base_cinfo;
2385
2386 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2387 if (!base_cinfo)
2388 return -EINVAL;
2389 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2390
2391 /* RX channel is optional so can be skipped */
2392 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2393 if (base_cinfo)
2394 sinfo->rx_minfo.max_msg =
2395 desc->ops->get_max_msg(base_cinfo);
2396 }
2397
2398 return 0;
2399 }
2400
scmi_xfer_info_init(struct scmi_info * sinfo)2401 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2402 {
2403 int ret;
2404
2405 ret = scmi_channels_max_msg_configure(sinfo);
2406 if (ret)
2407 return ret;
2408
2409 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2410 if (!ret && !idr_is_empty(&sinfo->rx_idr))
2411 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2412
2413 return ret;
2414 }
2415
scmi_chan_setup(struct scmi_info * info,struct device_node * of_node,int prot_id,bool tx)2416 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2417 int prot_id, bool tx)
2418 {
2419 int ret, idx;
2420 char name[32];
2421 struct scmi_chan_info *cinfo;
2422 struct idr *idr;
2423 struct scmi_device *tdev = NULL;
2424
2425 /* Transmit channel is first entry i.e. index 0 */
2426 idx = tx ? 0 : 1;
2427 idr = tx ? &info->tx_idr : &info->rx_idr;
2428
2429 if (!info->desc->ops->chan_available(of_node, idx)) {
2430 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2431 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2432 return -EINVAL;
2433 goto idr_alloc;
2434 }
2435
2436 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2437 if (!cinfo)
2438 return -ENOMEM;
2439
2440 cinfo->is_p2a = !tx;
2441 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2442
2443 /* Create a unique name for this transport device */
2444 snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2445 idx ? "rx" : "tx", prot_id);
2446 /* Create a uniquely named, dedicated transport device for this chan */
2447 tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2448 if (!tdev) {
2449 dev_err(info->dev,
2450 "failed to create transport device (%s)\n", name);
2451 devm_kfree(info->dev, cinfo);
2452 return -EINVAL;
2453 }
2454 of_node_get(of_node);
2455
2456 cinfo->id = prot_id;
2457 cinfo->dev = &tdev->dev;
2458 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2459 if (ret) {
2460 of_node_put(of_node);
2461 scmi_device_destroy(info->dev, prot_id, name);
2462 devm_kfree(info->dev, cinfo);
2463 return ret;
2464 }
2465
2466 if (tx && is_polling_required(cinfo, info->desc)) {
2467 if (is_transport_polling_capable(info->desc))
2468 dev_info(&tdev->dev,
2469 "Enabled polling mode TX channel - prot_id:%d\n",
2470 prot_id);
2471 else
2472 dev_warn(&tdev->dev,
2473 "Polling mode NOT supported by transport.\n");
2474 }
2475
2476 idr_alloc:
2477 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2478 if (ret != prot_id) {
2479 dev_err(info->dev,
2480 "unable to allocate SCMI idr slot err %d\n", ret);
2481 /* Destroy channel and device only if created by this call. */
2482 if (tdev) {
2483 of_node_put(of_node);
2484 scmi_device_destroy(info->dev, prot_id, name);
2485 devm_kfree(info->dev, cinfo);
2486 }
2487 return ret;
2488 }
2489
2490 cinfo->handle = &info->handle;
2491 return 0;
2492 }
2493
2494 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device_node * of_node,int prot_id)2495 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2496 int prot_id)
2497 {
2498 int ret = scmi_chan_setup(info, of_node, prot_id, true);
2499
2500 if (!ret) {
2501 /* Rx is optional, report only memory errors */
2502 ret = scmi_chan_setup(info, of_node, prot_id, false);
2503 if (ret && ret != -ENOMEM)
2504 ret = 0;
2505 }
2506
2507 return ret;
2508 }
2509
2510 /**
2511 * scmi_channels_setup - Helper to initialize all required channels
2512 *
2513 * @info: The SCMI instance descriptor.
2514 *
2515 * Initialize all the channels found described in the DT against the underlying
2516 * configured transport using custom defined dedicated devices instead of
2517 * borrowing devices from the SCMI drivers; this way channels are initialized
2518 * upfront during core SCMI stack probing and are no more coupled with SCMI
2519 * devices used by SCMI drivers.
2520 *
2521 * Note that, even though a pair of TX/RX channels is associated to each
2522 * protocol defined in the DT, a distinct freshly initialized channel is
2523 * created only if the DT node for the protocol at hand describes a dedicated
2524 * channel: in all the other cases the common BASE protocol channel is reused.
2525 *
2526 * Return: 0 on Success
2527 */
scmi_channels_setup(struct scmi_info * info)2528 static int scmi_channels_setup(struct scmi_info *info)
2529 {
2530 int ret;
2531 struct device_node *child, *top_np = info->dev->of_node;
2532
2533 /* Initialize a common generic channel at first */
2534 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2535 if (ret)
2536 return ret;
2537
2538 for_each_available_child_of_node(top_np, child) {
2539 u32 prot_id;
2540
2541 if (of_property_read_u32(child, "reg", &prot_id))
2542 continue;
2543
2544 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2545 dev_err(info->dev,
2546 "Out of range protocol %d\n", prot_id);
2547
2548 ret = scmi_txrx_setup(info, child, prot_id);
2549 if (ret) {
2550 of_node_put(child);
2551 return ret;
2552 }
2553 }
2554
2555 return 0;
2556 }
2557
scmi_chan_destroy(int id,void * p,void * idr)2558 static int scmi_chan_destroy(int id, void *p, void *idr)
2559 {
2560 struct scmi_chan_info *cinfo = p;
2561
2562 if (cinfo->dev) {
2563 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2564 struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2565
2566 of_node_put(cinfo->dev->of_node);
2567 scmi_device_destroy(info->dev, id, sdev->name);
2568 cinfo->dev = NULL;
2569 }
2570
2571 idr_remove(idr, id);
2572
2573 return 0;
2574 }
2575
scmi_cleanup_channels(struct scmi_info * info,struct idr * idr)2576 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2577 {
2578 /* At first free all channels at the transport layer ... */
2579 idr_for_each(idr, info->desc->ops->chan_free, idr);
2580
2581 /* ...then destroy all underlying devices */
2582 idr_for_each(idr, scmi_chan_destroy, idr);
2583
2584 idr_destroy(idr);
2585 }
2586
scmi_cleanup_txrx_channels(struct scmi_info * info)2587 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2588 {
2589 scmi_cleanup_channels(info, &info->tx_idr);
2590
2591 scmi_cleanup_channels(info, &info->rx_idr);
2592 }
2593
scmi_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2594 static int scmi_bus_notifier(struct notifier_block *nb,
2595 unsigned long action, void *data)
2596 {
2597 struct scmi_info *info = bus_nb_to_scmi_info(nb);
2598 struct scmi_device *sdev = to_scmi_dev(data);
2599
2600 /* Skip transport devices and devices of different SCMI instances */
2601 if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2602 sdev->dev.parent != info->dev)
2603 return NOTIFY_DONE;
2604
2605 switch (action) {
2606 case BUS_NOTIFY_BIND_DRIVER:
2607 /* setup handle now as the transport is ready */
2608 scmi_set_handle(sdev);
2609 break;
2610 case BUS_NOTIFY_UNBOUND_DRIVER:
2611 scmi_handle_put(sdev->handle);
2612 sdev->handle = NULL;
2613 break;
2614 default:
2615 return NOTIFY_DONE;
2616 }
2617
2618 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2619 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2620 "about to be BOUND." : "UNBOUND.");
2621
2622 return NOTIFY_OK;
2623 }
2624
scmi_device_request_notifier(struct notifier_block * nb,unsigned long action,void * data)2625 static int scmi_device_request_notifier(struct notifier_block *nb,
2626 unsigned long action, void *data)
2627 {
2628 struct device_node *np;
2629 struct scmi_device_id *id_table = data;
2630 struct scmi_info *info = req_nb_to_scmi_info(nb);
2631
2632 np = idr_find(&info->active_protocols, id_table->protocol_id);
2633 if (!np)
2634 return NOTIFY_DONE;
2635
2636 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2637 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2638 id_table->name, id_table->protocol_id);
2639
2640 switch (action) {
2641 case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2642 scmi_create_protocol_devices(np, info, id_table->protocol_id,
2643 id_table->name);
2644 break;
2645 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2646 scmi_destroy_protocol_devices(info, id_table->protocol_id,
2647 id_table->name);
2648 break;
2649 default:
2650 return NOTIFY_DONE;
2651 }
2652
2653 return NOTIFY_OK;
2654 }
2655
scmi_debugfs_common_cleanup(void * d)2656 static void scmi_debugfs_common_cleanup(void *d)
2657 {
2658 struct scmi_debug_info *dbg = d;
2659
2660 if (!dbg)
2661 return;
2662
2663 debugfs_remove_recursive(dbg->top_dentry);
2664 kfree(dbg->name);
2665 kfree(dbg->type);
2666 }
2667
scmi_debugfs_common_setup(struct scmi_info * info)2668 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2669 {
2670 char top_dir[16];
2671 struct dentry *trans, *top_dentry;
2672 struct scmi_debug_info *dbg;
2673 const char *c_ptr = NULL;
2674
2675 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2676 if (!dbg)
2677 return NULL;
2678
2679 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2680 if (!dbg->name) {
2681 devm_kfree(info->dev, dbg);
2682 return NULL;
2683 }
2684
2685 of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2686 dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2687 if (!dbg->type) {
2688 kfree(dbg->name);
2689 devm_kfree(info->dev, dbg);
2690 return NULL;
2691 }
2692
2693 snprintf(top_dir, 16, "%d", info->id);
2694 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2695 trans = debugfs_create_dir("transport", top_dentry);
2696
2697 dbg->is_atomic = info->desc->atomic_enabled &&
2698 is_transport_polling_capable(info->desc);
2699
2700 debugfs_create_str("instance_name", 0400, top_dentry,
2701 (char **)&dbg->name);
2702
2703 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2704 &info->atomic_threshold);
2705
2706 debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2707
2708 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2709
2710 debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2711 (u32 *)&info->desc->max_rx_timeout_ms);
2712
2713 debugfs_create_u32("max_msg_size", 0400, trans,
2714 (u32 *)&info->desc->max_msg_size);
2715
2716 debugfs_create_u32("tx_max_msg", 0400, trans,
2717 (u32 *)&info->tx_minfo.max_msg);
2718
2719 debugfs_create_u32("rx_max_msg", 0400, trans,
2720 (u32 *)&info->rx_minfo.max_msg);
2721
2722 dbg->top_dentry = top_dentry;
2723
2724 if (devm_add_action_or_reset(info->dev,
2725 scmi_debugfs_common_cleanup, dbg))
2726 return NULL;
2727
2728 return dbg;
2729 }
2730
scmi_debugfs_raw_mode_setup(struct scmi_info * info)2731 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2732 {
2733 int id, num_chans = 0, ret = 0;
2734 struct scmi_chan_info *cinfo;
2735 u8 channels[SCMI_MAX_CHANNELS] = {};
2736 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2737
2738 if (!info->dbg)
2739 return -EINVAL;
2740
2741 /* Enumerate all channels to collect their ids */
2742 idr_for_each_entry(&info->tx_idr, cinfo, id) {
2743 /*
2744 * Cannot happen, but be defensive.
2745 * Zero as num_chans is ok, warn and carry on.
2746 */
2747 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2748 dev_warn(info->dev,
2749 "SCMI RAW - Error enumerating channels\n");
2750 break;
2751 }
2752
2753 if (!test_bit(cinfo->id, protos)) {
2754 channels[num_chans++] = cinfo->id;
2755 set_bit(cinfo->id, protos);
2756 }
2757 }
2758
2759 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2760 info->id, channels, num_chans,
2761 info->desc, info->tx_minfo.max_msg);
2762 if (IS_ERR(info->raw)) {
2763 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2764 ret = PTR_ERR(info->raw);
2765 info->raw = NULL;
2766 }
2767
2768 return ret;
2769 }
2770
scmi_probe(struct platform_device * pdev)2771 static int scmi_probe(struct platform_device *pdev)
2772 {
2773 int ret;
2774 struct scmi_handle *handle;
2775 const struct scmi_desc *desc;
2776 struct scmi_info *info;
2777 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2778 struct device *dev = &pdev->dev;
2779 struct device_node *child, *np = dev->of_node;
2780
2781 desc = of_device_get_match_data(dev);
2782 if (!desc)
2783 return -EINVAL;
2784
2785 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2786 if (!info)
2787 return -ENOMEM;
2788
2789 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2790 if (info->id < 0)
2791 return info->id;
2792
2793 info->dev = dev;
2794 info->desc = desc;
2795 info->bus_nb.notifier_call = scmi_bus_notifier;
2796 info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2797 INIT_LIST_HEAD(&info->node);
2798 idr_init(&info->protocols);
2799 mutex_init(&info->protocols_mtx);
2800 idr_init(&info->active_protocols);
2801 mutex_init(&info->devreq_mtx);
2802
2803 platform_set_drvdata(pdev, info);
2804 idr_init(&info->tx_idr);
2805 idr_init(&info->rx_idr);
2806
2807 handle = &info->handle;
2808 handle->dev = info->dev;
2809 handle->version = &info->version;
2810 handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2811 handle->devm_protocol_get = scmi_devm_protocol_get;
2812 handle->devm_protocol_put = scmi_devm_protocol_put;
2813
2814 /* System wide atomic threshold for atomic ops .. if any */
2815 if (!of_property_read_u32(np, "atomic-threshold-us",
2816 &info->atomic_threshold))
2817 dev_info(dev,
2818 "SCMI System wide atomic threshold set to %d us\n",
2819 info->atomic_threshold);
2820 handle->is_transport_atomic = scmi_is_transport_atomic;
2821
2822 if (desc->ops->link_supplier) {
2823 ret = desc->ops->link_supplier(dev);
2824 if (ret)
2825 goto clear_ida;
2826 }
2827
2828 /* Setup all channels described in the DT at first */
2829 ret = scmi_channels_setup(info);
2830 if (ret)
2831 goto clear_ida;
2832
2833 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2834 if (ret)
2835 goto clear_txrx_setup;
2836
2837 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2838 &info->dev_req_nb);
2839 if (ret)
2840 goto clear_bus_notifier;
2841
2842 ret = scmi_xfer_info_init(info);
2843 if (ret)
2844 goto clear_dev_req_notifier;
2845
2846 if (scmi_top_dentry) {
2847 info->dbg = scmi_debugfs_common_setup(info);
2848 if (!info->dbg)
2849 dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2850
2851 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2852 ret = scmi_debugfs_raw_mode_setup(info);
2853 if (!coex) {
2854 if (ret)
2855 goto clear_dev_req_notifier;
2856
2857 /* Bail out anyway when coex disabled. */
2858 return 0;
2859 }
2860
2861 /* Coex enabled, carry on in any case. */
2862 dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2863 }
2864 }
2865
2866 if (scmi_notification_init(handle))
2867 dev_err(dev, "SCMI Notifications NOT available.\n");
2868
2869 if (info->desc->atomic_enabled &&
2870 !is_transport_polling_capable(info->desc))
2871 dev_err(dev,
2872 "Transport is not polling capable. Atomic mode not supported.\n");
2873
2874 /*
2875 * Trigger SCMI Base protocol initialization.
2876 * It's mandatory and won't be ever released/deinit until the
2877 * SCMI stack is shutdown/unloaded as a whole.
2878 */
2879 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2880 if (ret) {
2881 dev_err(dev, "unable to communicate with SCMI\n");
2882 if (coex)
2883 return 0;
2884 goto notification_exit;
2885 }
2886
2887 mutex_lock(&scmi_list_mutex);
2888 list_add_tail(&info->node, &scmi_list);
2889 mutex_unlock(&scmi_list_mutex);
2890
2891 for_each_available_child_of_node(np, child) {
2892 u32 prot_id;
2893
2894 if (of_property_read_u32(child, "reg", &prot_id))
2895 continue;
2896
2897 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2898 dev_err(dev, "Out of range protocol %d\n", prot_id);
2899
2900 if (!scmi_is_protocol_implemented(handle, prot_id)) {
2901 dev_err(dev, "SCMI protocol %d not implemented\n",
2902 prot_id);
2903 continue;
2904 }
2905
2906 /*
2907 * Save this valid DT protocol descriptor amongst
2908 * @active_protocols for this SCMI instance/
2909 */
2910 ret = idr_alloc(&info->active_protocols, child,
2911 prot_id, prot_id + 1, GFP_KERNEL);
2912 if (ret != prot_id) {
2913 dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2914 prot_id);
2915 continue;
2916 }
2917
2918 of_node_get(child);
2919 scmi_create_protocol_devices(child, info, prot_id, NULL);
2920 }
2921
2922 return 0;
2923
2924 notification_exit:
2925 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2926 scmi_raw_mode_cleanup(info->raw);
2927 scmi_notification_exit(&info->handle);
2928 clear_dev_req_notifier:
2929 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2930 &info->dev_req_nb);
2931 clear_bus_notifier:
2932 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2933 clear_txrx_setup:
2934 scmi_cleanup_txrx_channels(info);
2935 clear_ida:
2936 ida_free(&scmi_id, info->id);
2937 return ret;
2938 }
2939
scmi_remove(struct platform_device * pdev)2940 static int scmi_remove(struct platform_device *pdev)
2941 {
2942 int id;
2943 struct scmi_info *info = platform_get_drvdata(pdev);
2944 struct device_node *child;
2945
2946 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2947 scmi_raw_mode_cleanup(info->raw);
2948
2949 mutex_lock(&scmi_list_mutex);
2950 if (info->users)
2951 dev_warn(&pdev->dev,
2952 "Still active SCMI users will be forcibly unbound.\n");
2953 list_del(&info->node);
2954 mutex_unlock(&scmi_list_mutex);
2955
2956 scmi_notification_exit(&info->handle);
2957
2958 mutex_lock(&info->protocols_mtx);
2959 idr_destroy(&info->protocols);
2960 mutex_unlock(&info->protocols_mtx);
2961
2962 idr_for_each_entry(&info->active_protocols, child, id)
2963 of_node_put(child);
2964 idr_destroy(&info->active_protocols);
2965
2966 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2967 &info->dev_req_nb);
2968 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2969
2970 /* Safe to free channels since no more users */
2971 scmi_cleanup_txrx_channels(info);
2972
2973 ida_free(&scmi_id, info->id);
2974
2975 return 0;
2976 }
2977
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)2978 static ssize_t protocol_version_show(struct device *dev,
2979 struct device_attribute *attr, char *buf)
2980 {
2981 struct scmi_info *info = dev_get_drvdata(dev);
2982
2983 return sprintf(buf, "%u.%u\n", info->version.major_ver,
2984 info->version.minor_ver);
2985 }
2986 static DEVICE_ATTR_RO(protocol_version);
2987
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)2988 static ssize_t firmware_version_show(struct device *dev,
2989 struct device_attribute *attr, char *buf)
2990 {
2991 struct scmi_info *info = dev_get_drvdata(dev);
2992
2993 return sprintf(buf, "0x%x\n", info->version.impl_ver);
2994 }
2995 static DEVICE_ATTR_RO(firmware_version);
2996
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)2997 static ssize_t vendor_id_show(struct device *dev,
2998 struct device_attribute *attr, char *buf)
2999 {
3000 struct scmi_info *info = dev_get_drvdata(dev);
3001
3002 return sprintf(buf, "%s\n", info->version.vendor_id);
3003 }
3004 static DEVICE_ATTR_RO(vendor_id);
3005
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)3006 static ssize_t sub_vendor_id_show(struct device *dev,
3007 struct device_attribute *attr, char *buf)
3008 {
3009 struct scmi_info *info = dev_get_drvdata(dev);
3010
3011 return sprintf(buf, "%s\n", info->version.sub_vendor_id);
3012 }
3013 static DEVICE_ATTR_RO(sub_vendor_id);
3014
3015 static struct attribute *versions_attrs[] = {
3016 &dev_attr_firmware_version.attr,
3017 &dev_attr_protocol_version.attr,
3018 &dev_attr_vendor_id.attr,
3019 &dev_attr_sub_vendor_id.attr,
3020 NULL,
3021 };
3022 ATTRIBUTE_GROUPS(versions);
3023
3024 /* Each compatible listed below must have descriptor associated with it */
3025 static const struct of_device_id scmi_of_match[] = {
3026 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
3027 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
3028 #endif
3029 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
3030 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
3031 #endif
3032 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
3033 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
3034 { .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
3035 #endif
3036 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
3037 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
3038 #endif
3039 { /* Sentinel */ },
3040 };
3041
3042 MODULE_DEVICE_TABLE(of, scmi_of_match);
3043
3044 static struct platform_driver scmi_driver = {
3045 .driver = {
3046 .name = "arm-scmi",
3047 .suppress_bind_attrs = true,
3048 .of_match_table = scmi_of_match,
3049 .dev_groups = versions_groups,
3050 },
3051 .probe = scmi_probe,
3052 .remove = scmi_remove,
3053 };
3054
3055 /**
3056 * __scmi_transports_setup - Common helper to call transport-specific
3057 * .init/.exit code if provided.
3058 *
3059 * @init: A flag to distinguish between init and exit.
3060 *
3061 * Note that, if provided, we invoke .init/.exit functions for all the
3062 * transports currently compiled in.
3063 *
3064 * Return: 0 on Success.
3065 */
__scmi_transports_setup(bool init)3066 static inline int __scmi_transports_setup(bool init)
3067 {
3068 int ret = 0;
3069 const struct of_device_id *trans;
3070
3071 for (trans = scmi_of_match; trans->data; trans++) {
3072 const struct scmi_desc *tdesc = trans->data;
3073
3074 if ((init && !tdesc->transport_init) ||
3075 (!init && !tdesc->transport_exit))
3076 continue;
3077
3078 if (init)
3079 ret = tdesc->transport_init();
3080 else
3081 tdesc->transport_exit();
3082
3083 if (ret) {
3084 pr_err("SCMI transport %s FAILED initialization!\n",
3085 trans->compatible);
3086 break;
3087 }
3088 }
3089
3090 return ret;
3091 }
3092
scmi_transports_init(void)3093 static int __init scmi_transports_init(void)
3094 {
3095 return __scmi_transports_setup(true);
3096 }
3097
scmi_transports_exit(void)3098 static void __exit scmi_transports_exit(void)
3099 {
3100 __scmi_transports_setup(false);
3101 }
3102
scmi_debugfs_init(void)3103 static struct dentry *scmi_debugfs_init(void)
3104 {
3105 struct dentry *d;
3106
3107 d = debugfs_create_dir("scmi", NULL);
3108 if (IS_ERR(d)) {
3109 pr_err("Could NOT create SCMI top dentry.\n");
3110 return NULL;
3111 }
3112
3113 return d;
3114 }
3115
scmi_driver_init(void)3116 static int __init scmi_driver_init(void)
3117 {
3118 int ret;
3119
3120 /* Bail out if no SCMI transport was configured */
3121 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3122 return -EINVAL;
3123
3124 /* Initialize any compiled-in transport which provided an init/exit */
3125 ret = scmi_transports_init();
3126 if (ret)
3127 return ret;
3128
3129 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3130 scmi_top_dentry = scmi_debugfs_init();
3131
3132 scmi_base_register();
3133
3134 scmi_clock_register();
3135 scmi_perf_register();
3136 scmi_power_register();
3137 scmi_reset_register();
3138 scmi_sensors_register();
3139 scmi_voltage_register();
3140 scmi_system_register();
3141 scmi_powercap_register();
3142
3143 return platform_driver_register(&scmi_driver);
3144 }
3145 module_init(scmi_driver_init);
3146
scmi_driver_exit(void)3147 static void __exit scmi_driver_exit(void)
3148 {
3149 scmi_base_unregister();
3150
3151 scmi_clock_unregister();
3152 scmi_perf_unregister();
3153 scmi_power_unregister();
3154 scmi_reset_unregister();
3155 scmi_sensors_unregister();
3156 scmi_voltage_unregister();
3157 scmi_system_unregister();
3158 scmi_powercap_unregister();
3159
3160 scmi_transports_exit();
3161
3162 platform_driver_unregister(&scmi_driver);
3163
3164 debugfs_remove_recursive(scmi_top_dentry);
3165 }
3166 module_exit(scmi_driver_exit);
3167
3168 MODULE_ALIAS("platform:arm-scmi");
3169 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3170 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3171 MODULE_LICENSE("GPL v2");
3172