1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
102 /*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122 * Debugging: various feature bits
123 *
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
127 */
128 #define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 0;
133 #undef SCHED_FEAT
134
135 /*
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
138 *
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140 * per boot.
141 */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145
146 /*
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
149 */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151
152 __read_mostly int scheduler_running;
153
154 #ifdef CONFIG_SCHED_CORE
155
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157
158 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)159 static inline int __task_prio(const struct task_struct *p)
160 {
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 return -2;
163
164 if (rt_prio(p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
166
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172
173 /*
174 * l(a,b)
175 * le(a,b) := !l(b,a)
176 * g(a,b) := l(b,a)
177 * ge(a,b) := !l(a,b)
178 */
179
180 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)181 static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
183 {
184
185 int pa = __task_prio(a), pb = __task_prio(b);
186
187 if (-pa < -pb)
188 return true;
189
190 if (-pb < -pa)
191 return false;
192
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a->dl.deadline, b->dl.deadline);
195
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, in_fi);
198
199 return false;
200 }
201
__sched_core_less(const struct task_struct * a,const struct task_struct * b)202 static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
204 {
205 if (a->core_cookie < b->core_cookie)
206 return true;
207
208 if (a->core_cookie > b->core_cookie)
209 return false;
210
211 /* flip prio, so high prio is leftmost */
212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 return true;
214
215 return false;
216 }
217
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224
rb_sched_core_cmp(const void * key,const struct rb_node * node)225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
229
230 if (cookie < p->core_cookie)
231 return -1;
232
233 if (cookie > p->core_cookie)
234 return 1;
235
236 return 0;
237 }
238
sched_core_enqueue(struct rq * rq,struct task_struct * p)239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 rq->core->core_task_seq++;
242
243 if (!p->core_cookie)
244 return;
245
246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 rq->core->core_task_seq++;
252
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
256 }
257
258 /*
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
262 */
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
265 resched_curr(rq);
266 }
267
sched_task_is_throttled(struct task_struct * p,int cpu)268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
272
273 return 0;
274 }
275
sched_core_next(struct task_struct * p,unsigned long cookie)276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 struct rb_node *node = &p->core_node;
279 int cpu = task_cpu(p);
280
281 do {
282 node = rb_next(node);
283 if (!node)
284 return NULL;
285
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
288 return NULL;
289
290 } while (sched_task_is_throttled(p, cpu));
291
292 return p;
293 }
294
295 /*
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
298 */
sched_core_find(struct rq * rq,unsigned long cookie)299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 struct task_struct *p;
302 struct rb_node *node;
303
304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 if (!node)
306 return NULL;
307
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, rq->cpu))
310 return p;
311
312 return sched_core_next(p, cookie);
313 }
314
315 /*
316 * Magic required such that:
317 *
318 * raw_spin_rq_lock(rq);
319 * ...
320 * raw_spin_rq_unlock(rq);
321 *
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
324 *
325 * XXX entirely possible to selectively enable cores, don't bother for now.
326 */
327
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331
sched_core_lock(int cpu,unsigned long * flags)332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 int t, i = 0;
336
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341
sched_core_unlock(int cpu,unsigned long * flags)342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 int t;
346
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
350 }
351
__sched_core_flip(bool enabled)352 static void __sched_core_flip(bool enabled)
353 {
354 unsigned long flags;
355 int cpu, t;
356
357 cpus_read_lock();
358
359 /*
360 * Toggle the online cores, one by one.
361 */
362 cpumask_copy(&sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365
366 sched_core_lock(cpu, &flags);
367
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
370
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
372
373 sched_core_unlock(cpu, &flags);
374
375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 }
377
378 /*
379 * Toggle the offline CPUs.
380 */
381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 cpu_rq(cpu)->core_enabled = enabled;
383
384 cpus_read_unlock();
385 }
386
sched_core_assert_empty(void)387 static void sched_core_assert_empty(void)
388 {
389 int cpu;
390
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394
__sched_core_enable(void)395 static void __sched_core_enable(void)
396 {
397 static_branch_enable(&__sched_core_enabled);
398 /*
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
401 */
402 synchronize_rcu();
403 __sched_core_flip(true);
404 sched_core_assert_empty();
405 }
406
__sched_core_disable(void)407 static void __sched_core_disable(void)
408 {
409 sched_core_assert_empty();
410 __sched_core_flip(false);
411 static_branch_disable(&__sched_core_enabled);
412 }
413
sched_core_get(void)414 void sched_core_get(void)
415 {
416 if (atomic_inc_not_zero(&sched_core_count))
417 return;
418
419 mutex_lock(&sched_core_mutex);
420 if (!atomic_read(&sched_core_count))
421 __sched_core_enable();
422
423 smp_mb__before_atomic();
424 atomic_inc(&sched_core_count);
425 mutex_unlock(&sched_core_mutex);
426 }
427
__sched_core_put(struct work_struct * work)428 static void __sched_core_put(struct work_struct *work)
429 {
430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 __sched_core_disable();
432 mutex_unlock(&sched_core_mutex);
433 }
434 }
435
sched_core_put(void)436 void sched_core_put(void)
437 {
438 static DECLARE_WORK(_work, __sched_core_put);
439
440 /*
441 * "There can be only one"
442 *
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
446 */
447 if (!atomic_add_unless(&sched_core_count, -1, 1))
448 schedule_work(&_work);
449 }
450
451 #else /* !CONFIG_SCHED_CORE */
452
sched_core_enqueue(struct rq * rq,struct task_struct * p)453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456
457 #endif /* CONFIG_SCHED_CORE */
458
459 /*
460 * Serialization rules:
461 *
462 * Lock order:
463 *
464 * p->pi_lock
465 * rq->lock
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467 *
468 * rq1->lock
469 * rq2->lock where: rq1 < rq2
470 *
471 * Regular state:
472 *
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
475 * always looks at the local rq data structures to find the most eligible task
476 * to run next.
477 *
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
482 *
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
485 *
486 * Special state:
487 *
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
491 *
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
499 * - sched_move_task(): p->sched_task_group
500 * - uclamp_update_active() p->uclamp*
501 *
502 * p->state <- TASK_*:
503 *
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
507 * concurrent self.
508 *
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510 *
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515 *
516 * p->on_cpu <- { 0, 1 }:
517 *
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
521 *
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
524 *
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
526 *
527 * - Don't call set_task_cpu() on a blocked task:
528 *
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
531 *
532 * - for try_to_wake_up(), called under p->pi_lock:
533 *
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
535 *
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
538 *
539 * o move_queued_task()
540 * o detach_task()
541 *
542 * - for migration called under double_rq_lock():
543 *
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
548 *
549 */
550
raw_spin_rq_lock_nested(struct rq * rq,int subclass)551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 raw_spinlock_t *lock;
554
555 /* Matches synchronize_rcu() in __sched_core_enable() */
556 preempt_disable();
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
561 return;
562 }
563
564 for (;;) {
565 lock = __rq_lockp(rq);
566 raw_spin_lock_nested(lock, subclass);
567 if (likely(lock == __rq_lockp(rq))) {
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
570 return;
571 }
572 raw_spin_unlock(lock);
573 }
574 }
575
raw_spin_rq_trylock(struct rq * rq)576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 raw_spinlock_t *lock;
579 bool ret;
580
581 /* Matches synchronize_rcu() in __sched_core_enable() */
582 preempt_disable();
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
585 preempt_enable();
586 return ret;
587 }
588
589 for (;;) {
590 lock = __rq_lockp(rq);
591 ret = raw_spin_trylock(lock);
592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 preempt_enable();
594 return ret;
595 }
596 raw_spin_unlock(lock);
597 }
598 }
599
raw_spin_rq_unlock(struct rq * rq)600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 raw_spin_unlock(rq_lockp(rq));
603 }
604
605 #ifdef CONFIG_SMP
606 /*
607 * double_rq_lock - safely lock two runqueues
608 */
double_rq_lock(struct rq * rq1,struct rq * rq2)609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 lockdep_assert_irqs_disabled();
612
613 if (rq_order_less(rq2, rq1))
614 swap(rq1, rq2);
615
616 raw_spin_rq_lock(rq1);
617 if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619
620 double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623
624 /*
625 * __task_rq_lock - lock the rq @p resides on.
626 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 __acquires(rq->lock)
629 {
630 struct rq *rq;
631
632 lockdep_assert_held(&p->pi_lock);
633
634 for (;;) {
635 rq = task_rq(p);
636 raw_spin_rq_lock(rq);
637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 rq_pin_lock(rq, rf);
639 return rq;
640 }
641 raw_spin_rq_unlock(rq);
642
643 while (unlikely(task_on_rq_migrating(p)))
644 cpu_relax();
645 }
646 }
647
648 /*
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 __acquires(p->pi_lock)
653 __acquires(rq->lock)
654 {
655 struct rq *rq;
656
657 for (;;) {
658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 rq = task_rq(p);
660 raw_spin_rq_lock(rq);
661 /*
662 * move_queued_task() task_rq_lock()
663 *
664 * ACQUIRE (rq->lock)
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
668 * [L] ->on_rq
669 * RELEASE (rq->lock)
670 *
671 * If we observe the old CPU in task_rq_lock(), the acquire of
672 * the old rq->lock will fully serialize against the stores.
673 *
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
677 */
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 rq_pin_lock(rq, rf);
680 return rq;
681 }
682 raw_spin_rq_unlock(rq);
683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684
685 while (unlikely(task_on_rq_migrating(p)))
686 cpu_relax();
687 }
688 }
689
690 /*
691 * RQ-clock updating methods:
692 */
693
update_rq_clock_task(struct rq * rq,s64 delta)694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
699 */
700 s64 __maybe_unused steal = 0, irq_delta = 0;
701
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704
705 /*
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
708 * {soft,}irq region.
709 *
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
713 * monotonic.
714 *
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
718 * atomic ops.
719 */
720 if (irq_delta > delta)
721 irq_delta = delta;
722
723 rq->prev_irq_time += irq_delta;
724 delta -= irq_delta;
725 delayacct_irq(rq->curr, irq_delta);
726 #endif
727 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
728 if (static_key_false((¶virt_steal_rq_enabled))) {
729 u64 prev_steal;
730
731 steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
732 steal -= rq->prev_steal_time_rq;
733
734 if (unlikely(steal > delta))
735 steal = delta;
736
737 rq->prev_steal_time_rq = prev_steal;
738 delta -= steal;
739 }
740 #endif
741
742 rq->clock_task += delta;
743
744 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
745 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
746 update_irq_load_avg(rq, irq_delta + steal);
747 #endif
748 update_rq_clock_pelt(rq, delta);
749 }
750
update_rq_clock(struct rq * rq)751 void update_rq_clock(struct rq *rq)
752 {
753 s64 delta;
754
755 lockdep_assert_rq_held(rq);
756
757 if (rq->clock_update_flags & RQCF_ACT_SKIP)
758 return;
759
760 #ifdef CONFIG_SCHED_DEBUG
761 if (sched_feat(WARN_DOUBLE_CLOCK))
762 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
763 rq->clock_update_flags |= RQCF_UPDATED;
764 #endif
765
766 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
767 if (delta < 0)
768 return;
769 rq->clock += delta;
770 update_rq_clock_task(rq, delta);
771 }
772
773 #ifdef CONFIG_SCHED_HRTICK
774 /*
775 * Use HR-timers to deliver accurate preemption points.
776 */
777
hrtick_clear(struct rq * rq)778 static void hrtick_clear(struct rq *rq)
779 {
780 if (hrtimer_active(&rq->hrtick_timer))
781 hrtimer_cancel(&rq->hrtick_timer);
782 }
783
784 /*
785 * High-resolution timer tick.
786 * Runs from hardirq context with interrupts disabled.
787 */
hrtick(struct hrtimer * timer)788 static enum hrtimer_restart hrtick(struct hrtimer *timer)
789 {
790 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
791 struct rq_flags rf;
792
793 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
794
795 rq_lock(rq, &rf);
796 update_rq_clock(rq);
797 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
798 rq_unlock(rq, &rf);
799
800 return HRTIMER_NORESTART;
801 }
802
803 #ifdef CONFIG_SMP
804
__hrtick_restart(struct rq * rq)805 static void __hrtick_restart(struct rq *rq)
806 {
807 struct hrtimer *timer = &rq->hrtick_timer;
808 ktime_t time = rq->hrtick_time;
809
810 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
811 }
812
813 /*
814 * called from hardirq (IPI) context
815 */
__hrtick_start(void * arg)816 static void __hrtick_start(void *arg)
817 {
818 struct rq *rq = arg;
819 struct rq_flags rf;
820
821 rq_lock(rq, &rf);
822 __hrtick_restart(rq);
823 rq_unlock(rq, &rf);
824 }
825
826 /*
827 * Called to set the hrtick timer state.
828 *
829 * called with rq->lock held and irqs disabled
830 */
hrtick_start(struct rq * rq,u64 delay)831 void hrtick_start(struct rq *rq, u64 delay)
832 {
833 struct hrtimer *timer = &rq->hrtick_timer;
834 s64 delta;
835
836 /*
837 * Don't schedule slices shorter than 10000ns, that just
838 * doesn't make sense and can cause timer DoS.
839 */
840 delta = max_t(s64, delay, 10000LL);
841 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
842
843 if (rq == this_rq())
844 __hrtick_restart(rq);
845 else
846 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
847 }
848
849 #else
850 /*
851 * Called to set the hrtick timer state.
852 *
853 * called with rq->lock held and irqs disabled
854 */
hrtick_start(struct rq * rq,u64 delay)855 void hrtick_start(struct rq *rq, u64 delay)
856 {
857 /*
858 * Don't schedule slices shorter than 10000ns, that just
859 * doesn't make sense. Rely on vruntime for fairness.
860 */
861 delay = max_t(u64, delay, 10000LL);
862 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
863 HRTIMER_MODE_REL_PINNED_HARD);
864 }
865
866 #endif /* CONFIG_SMP */
867
hrtick_rq_init(struct rq * rq)868 static void hrtick_rq_init(struct rq *rq)
869 {
870 #ifdef CONFIG_SMP
871 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
872 #endif
873 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
874 rq->hrtick_timer.function = hrtick;
875 }
876 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)877 static inline void hrtick_clear(struct rq *rq)
878 {
879 }
880
hrtick_rq_init(struct rq * rq)881 static inline void hrtick_rq_init(struct rq *rq)
882 {
883 }
884 #endif /* CONFIG_SCHED_HRTICK */
885
886 /*
887 * cmpxchg based fetch_or, macro so it works for different integer types
888 */
889 #define fetch_or(ptr, mask) \
890 ({ \
891 typeof(ptr) _ptr = (ptr); \
892 typeof(mask) _mask = (mask); \
893 typeof(*_ptr) _val = *_ptr; \
894 \
895 do { \
896 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
897 _val; \
898 })
899
900 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901 /*
902 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
903 * this avoids any races wrt polling state changes and thereby avoids
904 * spurious IPIs.
905 */
set_nr_and_not_polling(struct task_struct * p)906 static inline bool set_nr_and_not_polling(struct task_struct *p)
907 {
908 struct thread_info *ti = task_thread_info(p);
909 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
910 }
911
912 /*
913 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914 *
915 * If this returns true, then the idle task promises to call
916 * sched_ttwu_pending() and reschedule soon.
917 */
set_nr_if_polling(struct task_struct * p)918 static bool set_nr_if_polling(struct task_struct *p)
919 {
920 struct thread_info *ti = task_thread_info(p);
921 typeof(ti->flags) val = READ_ONCE(ti->flags);
922
923 for (;;) {
924 if (!(val & _TIF_POLLING_NRFLAG))
925 return false;
926 if (val & _TIF_NEED_RESCHED)
927 return true;
928 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
929 break;
930 }
931 return true;
932 }
933
934 #else
set_nr_and_not_polling(struct task_struct * p)935 static inline bool set_nr_and_not_polling(struct task_struct *p)
936 {
937 set_tsk_need_resched(p);
938 return true;
939 }
940
941 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)942 static inline bool set_nr_if_polling(struct task_struct *p)
943 {
944 return false;
945 }
946 #endif
947 #endif
948
__wake_q_add(struct wake_q_head * head,struct task_struct * task)949 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
950 {
951 struct wake_q_node *node = &task->wake_q;
952
953 /*
954 * Atomically grab the task, if ->wake_q is !nil already it means
955 * it's already queued (either by us or someone else) and will get the
956 * wakeup due to that.
957 *
958 * In order to ensure that a pending wakeup will observe our pending
959 * state, even in the failed case, an explicit smp_mb() must be used.
960 */
961 smp_mb__before_atomic();
962 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
963 return false;
964
965 /*
966 * The head is context local, there can be no concurrency.
967 */
968 *head->lastp = node;
969 head->lastp = &node->next;
970 return true;
971 }
972
973 /**
974 * wake_q_add() - queue a wakeup for 'later' waking.
975 * @head: the wake_q_head to add @task to
976 * @task: the task to queue for 'later' wakeup
977 *
978 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
979 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
980 * instantly.
981 *
982 * This function must be used as-if it were wake_up_process(); IOW the task
983 * must be ready to be woken at this location.
984 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)985 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
986 {
987 if (__wake_q_add(head, task))
988 get_task_struct(task);
989 }
990
991 /**
992 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
993 * @head: the wake_q_head to add @task to
994 * @task: the task to queue for 'later' wakeup
995 *
996 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
997 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
998 * instantly.
999 *
1000 * This function must be used as-if it were wake_up_process(); IOW the task
1001 * must be ready to be woken at this location.
1002 *
1003 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1004 * that already hold reference to @task can call the 'safe' version and trust
1005 * wake_q to do the right thing depending whether or not the @task is already
1006 * queued for wakeup.
1007 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1008 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1009 {
1010 if (!__wake_q_add(head, task))
1011 put_task_struct(task);
1012 }
1013
wake_up_q(struct wake_q_head * head)1014 void wake_up_q(struct wake_q_head *head)
1015 {
1016 struct wake_q_node *node = head->first;
1017
1018 while (node != WAKE_Q_TAIL) {
1019 struct task_struct *task;
1020
1021 task = container_of(node, struct task_struct, wake_q);
1022 node = node->next;
1023 /* pairs with cmpxchg_relaxed() in __wake_q_add() */
1024 WRITE_ONCE(task->wake_q.next, NULL);
1025 /* Task can safely be re-inserted now. */
1026
1027 /*
1028 * wake_up_process() executes a full barrier, which pairs with
1029 * the queueing in wake_q_add() so as not to miss wakeups.
1030 */
1031 wake_up_process(task);
1032 put_task_struct(task);
1033 }
1034 }
1035
1036 /*
1037 * resched_curr - mark rq's current task 'to be rescheduled now'.
1038 *
1039 * On UP this means the setting of the need_resched flag, on SMP it
1040 * might also involve a cross-CPU call to trigger the scheduler on
1041 * the target CPU.
1042 */
resched_curr(struct rq * rq)1043 void resched_curr(struct rq *rq)
1044 {
1045 struct task_struct *curr = rq->curr;
1046 int cpu;
1047
1048 lockdep_assert_rq_held(rq);
1049
1050 if (test_tsk_need_resched(curr))
1051 return;
1052
1053 cpu = cpu_of(rq);
1054
1055 if (cpu == smp_processor_id()) {
1056 set_tsk_need_resched(curr);
1057 set_preempt_need_resched();
1058 return;
1059 }
1060
1061 if (set_nr_and_not_polling(curr))
1062 smp_send_reschedule(cpu);
1063 else
1064 trace_sched_wake_idle_without_ipi(cpu);
1065 }
1066
resched_cpu(int cpu)1067 void resched_cpu(int cpu)
1068 {
1069 struct rq *rq = cpu_rq(cpu);
1070 unsigned long flags;
1071
1072 raw_spin_rq_lock_irqsave(rq, flags);
1073 if (cpu_online(cpu) || cpu == smp_processor_id())
1074 resched_curr(rq);
1075 raw_spin_rq_unlock_irqrestore(rq, flags);
1076 }
1077
1078 #ifdef CONFIG_SMP
1079 #ifdef CONFIG_NO_HZ_COMMON
1080 /*
1081 * In the semi idle case, use the nearest busy CPU for migrating timers
1082 * from an idle CPU. This is good for power-savings.
1083 *
1084 * We don't do similar optimization for completely idle system, as
1085 * selecting an idle CPU will add more delays to the timers than intended
1086 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1087 */
get_nohz_timer_target(void)1088 int get_nohz_timer_target(void)
1089 {
1090 int i, cpu = smp_processor_id(), default_cpu = -1;
1091 struct sched_domain *sd;
1092 const struct cpumask *hk_mask;
1093
1094 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1095 if (!idle_cpu(cpu))
1096 return cpu;
1097 default_cpu = cpu;
1098 }
1099
1100 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1101
1102 guard(rcu)();
1103
1104 for_each_domain(cpu, sd) {
1105 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1106 if (cpu == i)
1107 continue;
1108
1109 if (!idle_cpu(i))
1110 return i;
1111 }
1112 }
1113
1114 if (default_cpu == -1)
1115 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1116
1117 return default_cpu;
1118 }
1119
1120 /*
1121 * When add_timer_on() enqueues a timer into the timer wheel of an
1122 * idle CPU then this timer might expire before the next timer event
1123 * which is scheduled to wake up that CPU. In case of a completely
1124 * idle system the next event might even be infinite time into the
1125 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1126 * leaves the inner idle loop so the newly added timer is taken into
1127 * account when the CPU goes back to idle and evaluates the timer
1128 * wheel for the next timer event.
1129 */
wake_up_idle_cpu(int cpu)1130 static void wake_up_idle_cpu(int cpu)
1131 {
1132 struct rq *rq = cpu_rq(cpu);
1133
1134 if (cpu == smp_processor_id())
1135 return;
1136
1137 if (set_nr_and_not_polling(rq->idle))
1138 smp_send_reschedule(cpu);
1139 else
1140 trace_sched_wake_idle_without_ipi(cpu);
1141 }
1142
wake_up_full_nohz_cpu(int cpu)1143 static bool wake_up_full_nohz_cpu(int cpu)
1144 {
1145 /*
1146 * We just need the target to call irq_exit() and re-evaluate
1147 * the next tick. The nohz full kick at least implies that.
1148 * If needed we can still optimize that later with an
1149 * empty IRQ.
1150 */
1151 if (cpu_is_offline(cpu))
1152 return true; /* Don't try to wake offline CPUs. */
1153 if (tick_nohz_full_cpu(cpu)) {
1154 if (cpu != smp_processor_id() ||
1155 tick_nohz_tick_stopped())
1156 tick_nohz_full_kick_cpu(cpu);
1157 return true;
1158 }
1159
1160 return false;
1161 }
1162
1163 /*
1164 * Wake up the specified CPU. If the CPU is going offline, it is the
1165 * caller's responsibility to deal with the lost wakeup, for example,
1166 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1167 */
wake_up_nohz_cpu(int cpu)1168 void wake_up_nohz_cpu(int cpu)
1169 {
1170 if (!wake_up_full_nohz_cpu(cpu))
1171 wake_up_idle_cpu(cpu);
1172 }
1173
nohz_csd_func(void * info)1174 static void nohz_csd_func(void *info)
1175 {
1176 struct rq *rq = info;
1177 int cpu = cpu_of(rq);
1178 unsigned int flags;
1179
1180 /*
1181 * Release the rq::nohz_csd.
1182 */
1183 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1184 WARN_ON(!(flags & NOHZ_KICK_MASK));
1185
1186 rq->idle_balance = idle_cpu(cpu);
1187 if (rq->idle_balance) {
1188 rq->nohz_idle_balance = flags;
1189 __raise_softirq_irqoff(SCHED_SOFTIRQ);
1190 }
1191 }
1192
1193 #endif /* CONFIG_NO_HZ_COMMON */
1194
1195 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1196 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1197 {
1198 if (rq->nr_running != 1)
1199 return false;
1200
1201 if (p->sched_class != &fair_sched_class)
1202 return false;
1203
1204 if (!task_on_rq_queued(p))
1205 return false;
1206
1207 return true;
1208 }
1209
sched_can_stop_tick(struct rq * rq)1210 bool sched_can_stop_tick(struct rq *rq)
1211 {
1212 int fifo_nr_running;
1213
1214 /* Deadline tasks, even if single, need the tick */
1215 if (rq->dl.dl_nr_running)
1216 return false;
1217
1218 /*
1219 * If there are more than one RR tasks, we need the tick to affect the
1220 * actual RR behaviour.
1221 */
1222 if (rq->rt.rr_nr_running) {
1223 if (rq->rt.rr_nr_running == 1)
1224 return true;
1225 else
1226 return false;
1227 }
1228
1229 /*
1230 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1231 * forced preemption between FIFO tasks.
1232 */
1233 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1234 if (fifo_nr_running)
1235 return true;
1236
1237 /*
1238 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1239 * if there's more than one we need the tick for involuntary
1240 * preemption.
1241 */
1242 if (rq->nr_running > 1)
1243 return false;
1244
1245 /*
1246 * If there is one task and it has CFS runtime bandwidth constraints
1247 * and it's on the cpu now we don't want to stop the tick.
1248 * This check prevents clearing the bit if a newly enqueued task here is
1249 * dequeued by migrating while the constrained task continues to run.
1250 * E.g. going from 2->1 without going through pick_next_task().
1251 */
1252 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1253 if (cfs_task_bw_constrained(rq->curr))
1254 return false;
1255 }
1256
1257 return true;
1258 }
1259 #endif /* CONFIG_NO_HZ_FULL */
1260 #endif /* CONFIG_SMP */
1261
1262 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1263 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1264 /*
1265 * Iterate task_group tree rooted at *from, calling @down when first entering a
1266 * node and @up when leaving it for the final time.
1267 *
1268 * Caller must hold rcu_lock or sufficient equivalent.
1269 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1270 int walk_tg_tree_from(struct task_group *from,
1271 tg_visitor down, tg_visitor up, void *data)
1272 {
1273 struct task_group *parent, *child;
1274 int ret;
1275
1276 parent = from;
1277
1278 down:
1279 ret = (*down)(parent, data);
1280 if (ret)
1281 goto out;
1282 list_for_each_entry_rcu(child, &parent->children, siblings) {
1283 parent = child;
1284 goto down;
1285
1286 up:
1287 continue;
1288 }
1289 ret = (*up)(parent, data);
1290 if (ret || parent == from)
1291 goto out;
1292
1293 child = parent;
1294 parent = parent->parent;
1295 if (parent)
1296 goto up;
1297 out:
1298 return ret;
1299 }
1300
tg_nop(struct task_group * tg,void * data)1301 int tg_nop(struct task_group *tg, void *data)
1302 {
1303 return 0;
1304 }
1305 #endif
1306
set_load_weight(struct task_struct * p,bool update_load)1307 static void set_load_weight(struct task_struct *p, bool update_load)
1308 {
1309 int prio = p->static_prio - MAX_RT_PRIO;
1310 struct load_weight lw;
1311
1312 if (task_has_idle_policy(p)) {
1313 lw.weight = scale_load(WEIGHT_IDLEPRIO);
1314 lw.inv_weight = WMULT_IDLEPRIO;
1315 } else {
1316 lw.weight = scale_load(sched_prio_to_weight[prio]);
1317 lw.inv_weight = sched_prio_to_wmult[prio];
1318 }
1319
1320 /*
1321 * SCHED_OTHER tasks have to update their load when changing their
1322 * weight
1323 */
1324 if (update_load && p->sched_class == &fair_sched_class)
1325 reweight_task(p, &lw);
1326 else
1327 p->se.load = lw;
1328 }
1329
1330 #ifdef CONFIG_UCLAMP_TASK
1331 /*
1332 * Serializes updates of utilization clamp values
1333 *
1334 * The (slow-path) user-space triggers utilization clamp value updates which
1335 * can require updates on (fast-path) scheduler's data structures used to
1336 * support enqueue/dequeue operations.
1337 * While the per-CPU rq lock protects fast-path update operations, user-space
1338 * requests are serialized using a mutex to reduce the risk of conflicting
1339 * updates or API abuses.
1340 */
1341 static DEFINE_MUTEX(uclamp_mutex);
1342
1343 /* Max allowed minimum utilization */
1344 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1345
1346 /* Max allowed maximum utilization */
1347 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1348
1349 /*
1350 * By default RT tasks run at the maximum performance point/capacity of the
1351 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1352 * SCHED_CAPACITY_SCALE.
1353 *
1354 * This knob allows admins to change the default behavior when uclamp is being
1355 * used. In battery powered devices, particularly, running at the maximum
1356 * capacity and frequency will increase energy consumption and shorten the
1357 * battery life.
1358 *
1359 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1360 *
1361 * This knob will not override the system default sched_util_clamp_min defined
1362 * above.
1363 */
1364 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1365
1366 /* All clamps are required to be less or equal than these values */
1367 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1368
1369 /*
1370 * This static key is used to reduce the uclamp overhead in the fast path. It
1371 * primarily disables the call to uclamp_rq_{inc, dec}() in
1372 * enqueue/dequeue_task().
1373 *
1374 * This allows users to continue to enable uclamp in their kernel config with
1375 * minimum uclamp overhead in the fast path.
1376 *
1377 * As soon as userspace modifies any of the uclamp knobs, the static key is
1378 * enabled, since we have an actual users that make use of uclamp
1379 * functionality.
1380 *
1381 * The knobs that would enable this static key are:
1382 *
1383 * * A task modifying its uclamp value with sched_setattr().
1384 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1385 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1386 */
1387 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1388
1389 /* Integer rounded range for each bucket */
1390 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1391
1392 #define for_each_clamp_id(clamp_id) \
1393 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1394
uclamp_bucket_id(unsigned int clamp_value)1395 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1396 {
1397 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1398 }
1399
uclamp_none(enum uclamp_id clamp_id)1400 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1401 {
1402 if (clamp_id == UCLAMP_MIN)
1403 return 0;
1404 return SCHED_CAPACITY_SCALE;
1405 }
1406
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1407 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1408 unsigned int value, bool user_defined)
1409 {
1410 uc_se->value = value;
1411 uc_se->bucket_id = uclamp_bucket_id(value);
1412 uc_se->user_defined = user_defined;
1413 }
1414
1415 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1416 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1417 unsigned int clamp_value)
1418 {
1419 /*
1420 * Avoid blocked utilization pushing up the frequency when we go
1421 * idle (which drops the max-clamp) by retaining the last known
1422 * max-clamp.
1423 */
1424 if (clamp_id == UCLAMP_MAX) {
1425 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1426 return clamp_value;
1427 }
1428
1429 return uclamp_none(UCLAMP_MIN);
1430 }
1431
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1432 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1433 unsigned int clamp_value)
1434 {
1435 /* Reset max-clamp retention only on idle exit */
1436 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1437 return;
1438
1439 uclamp_rq_set(rq, clamp_id, clamp_value);
1440 }
1441
1442 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1443 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1444 unsigned int clamp_value)
1445 {
1446 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1447 int bucket_id = UCLAMP_BUCKETS - 1;
1448
1449 /*
1450 * Since both min and max clamps are max aggregated, find the
1451 * top most bucket with tasks in.
1452 */
1453 for ( ; bucket_id >= 0; bucket_id--) {
1454 if (!bucket[bucket_id].tasks)
1455 continue;
1456 return bucket[bucket_id].value;
1457 }
1458
1459 /* No tasks -- default clamp values */
1460 return uclamp_idle_value(rq, clamp_id, clamp_value);
1461 }
1462
__uclamp_update_util_min_rt_default(struct task_struct * p)1463 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1464 {
1465 unsigned int default_util_min;
1466 struct uclamp_se *uc_se;
1467
1468 lockdep_assert_held(&p->pi_lock);
1469
1470 uc_se = &p->uclamp_req[UCLAMP_MIN];
1471
1472 /* Only sync if user didn't override the default */
1473 if (uc_se->user_defined)
1474 return;
1475
1476 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1477 uclamp_se_set(uc_se, default_util_min, false);
1478 }
1479
uclamp_update_util_min_rt_default(struct task_struct * p)1480 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1481 {
1482 struct rq_flags rf;
1483 struct rq *rq;
1484
1485 if (!rt_task(p))
1486 return;
1487
1488 /* Protect updates to p->uclamp_* */
1489 rq = task_rq_lock(p, &rf);
1490 __uclamp_update_util_min_rt_default(p);
1491 task_rq_unlock(rq, p, &rf);
1492 }
1493
1494 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1495 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1496 {
1497 /* Copy by value as we could modify it */
1498 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1499 #ifdef CONFIG_UCLAMP_TASK_GROUP
1500 unsigned int tg_min, tg_max, value;
1501
1502 /*
1503 * Tasks in autogroups or root task group will be
1504 * restricted by system defaults.
1505 */
1506 if (task_group_is_autogroup(task_group(p)))
1507 return uc_req;
1508 if (task_group(p) == &root_task_group)
1509 return uc_req;
1510
1511 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1512 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1513 value = uc_req.value;
1514 value = clamp(value, tg_min, tg_max);
1515 uclamp_se_set(&uc_req, value, false);
1516 #endif
1517
1518 return uc_req;
1519 }
1520
1521 /*
1522 * The effective clamp bucket index of a task depends on, by increasing
1523 * priority:
1524 * - the task specific clamp value, when explicitly requested from userspace
1525 * - the task group effective clamp value, for tasks not either in the root
1526 * group or in an autogroup
1527 * - the system default clamp value, defined by the sysadmin
1528 */
1529 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1530 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1531 {
1532 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1533 struct uclamp_se uc_max = uclamp_default[clamp_id];
1534
1535 /* System default restrictions always apply */
1536 if (unlikely(uc_req.value > uc_max.value))
1537 return uc_max;
1538
1539 return uc_req;
1540 }
1541
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1542 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1543 {
1544 struct uclamp_se uc_eff;
1545
1546 /* Task currently refcounted: use back-annotated (effective) value */
1547 if (p->uclamp[clamp_id].active)
1548 return (unsigned long)p->uclamp[clamp_id].value;
1549
1550 uc_eff = uclamp_eff_get(p, clamp_id);
1551
1552 return (unsigned long)uc_eff.value;
1553 }
1554
1555 /*
1556 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1557 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1558 * updates the rq's clamp value if required.
1559 *
1560 * Tasks can have a task-specific value requested from user-space, track
1561 * within each bucket the maximum value for tasks refcounted in it.
1562 * This "local max aggregation" allows to track the exact "requested" value
1563 * for each bucket when all its RUNNABLE tasks require the same clamp.
1564 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1565 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1566 enum uclamp_id clamp_id)
1567 {
1568 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1569 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1570 struct uclamp_bucket *bucket;
1571
1572 lockdep_assert_rq_held(rq);
1573
1574 /* Update task effective clamp */
1575 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1576
1577 bucket = &uc_rq->bucket[uc_se->bucket_id];
1578 bucket->tasks++;
1579 uc_se->active = true;
1580
1581 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1582
1583 /*
1584 * Local max aggregation: rq buckets always track the max
1585 * "requested" clamp value of its RUNNABLE tasks.
1586 */
1587 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1588 bucket->value = uc_se->value;
1589
1590 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1591 uclamp_rq_set(rq, clamp_id, uc_se->value);
1592 }
1593
1594 /*
1595 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1596 * is released. If this is the last task reference counting the rq's max
1597 * active clamp value, then the rq's clamp value is updated.
1598 *
1599 * Both refcounted tasks and rq's cached clamp values are expected to be
1600 * always valid. If it's detected they are not, as defensive programming,
1601 * enforce the expected state and warn.
1602 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1603 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1604 enum uclamp_id clamp_id)
1605 {
1606 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1607 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1608 struct uclamp_bucket *bucket;
1609 unsigned int bkt_clamp;
1610 unsigned int rq_clamp;
1611
1612 lockdep_assert_rq_held(rq);
1613
1614 /*
1615 * If sched_uclamp_used was enabled after task @p was enqueued,
1616 * we could end up with unbalanced call to uclamp_rq_dec_id().
1617 *
1618 * In this case the uc_se->active flag should be false since no uclamp
1619 * accounting was performed at enqueue time and we can just return
1620 * here.
1621 *
1622 * Need to be careful of the following enqueue/dequeue ordering
1623 * problem too
1624 *
1625 * enqueue(taskA)
1626 * // sched_uclamp_used gets enabled
1627 * enqueue(taskB)
1628 * dequeue(taskA)
1629 * // Must not decrement bucket->tasks here
1630 * dequeue(taskB)
1631 *
1632 * where we could end up with stale data in uc_se and
1633 * bucket[uc_se->bucket_id].
1634 *
1635 * The following check here eliminates the possibility of such race.
1636 */
1637 if (unlikely(!uc_se->active))
1638 return;
1639
1640 bucket = &uc_rq->bucket[uc_se->bucket_id];
1641
1642 SCHED_WARN_ON(!bucket->tasks);
1643 if (likely(bucket->tasks))
1644 bucket->tasks--;
1645
1646 uc_se->active = false;
1647
1648 /*
1649 * Keep "local max aggregation" simple and accept to (possibly)
1650 * overboost some RUNNABLE tasks in the same bucket.
1651 * The rq clamp bucket value is reset to its base value whenever
1652 * there are no more RUNNABLE tasks refcounting it.
1653 */
1654 if (likely(bucket->tasks))
1655 return;
1656
1657 rq_clamp = uclamp_rq_get(rq, clamp_id);
1658 /*
1659 * Defensive programming: this should never happen. If it happens,
1660 * e.g. due to future modification, warn and fixup the expected value.
1661 */
1662 SCHED_WARN_ON(bucket->value > rq_clamp);
1663 if (bucket->value >= rq_clamp) {
1664 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1665 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1666 }
1667 }
1668
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1669 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1670 {
1671 enum uclamp_id clamp_id;
1672
1673 /*
1674 * Avoid any overhead until uclamp is actually used by the userspace.
1675 *
1676 * The condition is constructed such that a NOP is generated when
1677 * sched_uclamp_used is disabled.
1678 */
1679 if (!static_branch_unlikely(&sched_uclamp_used))
1680 return;
1681
1682 if (unlikely(!p->sched_class->uclamp_enabled))
1683 return;
1684
1685 for_each_clamp_id(clamp_id)
1686 uclamp_rq_inc_id(rq, p, clamp_id);
1687
1688 /* Reset clamp idle holding when there is one RUNNABLE task */
1689 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1690 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1691 }
1692
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1693 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1694 {
1695 enum uclamp_id clamp_id;
1696
1697 /*
1698 * Avoid any overhead until uclamp is actually used by the userspace.
1699 *
1700 * The condition is constructed such that a NOP is generated when
1701 * sched_uclamp_used is disabled.
1702 */
1703 if (!static_branch_unlikely(&sched_uclamp_used))
1704 return;
1705
1706 if (unlikely(!p->sched_class->uclamp_enabled))
1707 return;
1708
1709 for_each_clamp_id(clamp_id)
1710 uclamp_rq_dec_id(rq, p, clamp_id);
1711 }
1712
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1713 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1714 enum uclamp_id clamp_id)
1715 {
1716 if (!p->uclamp[clamp_id].active)
1717 return;
1718
1719 uclamp_rq_dec_id(rq, p, clamp_id);
1720 uclamp_rq_inc_id(rq, p, clamp_id);
1721
1722 /*
1723 * Make sure to clear the idle flag if we've transiently reached 0
1724 * active tasks on rq.
1725 */
1726 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1727 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1728 }
1729
1730 static inline void
uclamp_update_active(struct task_struct * p)1731 uclamp_update_active(struct task_struct *p)
1732 {
1733 enum uclamp_id clamp_id;
1734 struct rq_flags rf;
1735 struct rq *rq;
1736
1737 /*
1738 * Lock the task and the rq where the task is (or was) queued.
1739 *
1740 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1741 * price to pay to safely serialize util_{min,max} updates with
1742 * enqueues, dequeues and migration operations.
1743 * This is the same locking schema used by __set_cpus_allowed_ptr().
1744 */
1745 rq = task_rq_lock(p, &rf);
1746
1747 /*
1748 * Setting the clamp bucket is serialized by task_rq_lock().
1749 * If the task is not yet RUNNABLE and its task_struct is not
1750 * affecting a valid clamp bucket, the next time it's enqueued,
1751 * it will already see the updated clamp bucket value.
1752 */
1753 for_each_clamp_id(clamp_id)
1754 uclamp_rq_reinc_id(rq, p, clamp_id);
1755
1756 task_rq_unlock(rq, p, &rf);
1757 }
1758
1759 #ifdef CONFIG_UCLAMP_TASK_GROUP
1760 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1761 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1762 {
1763 struct css_task_iter it;
1764 struct task_struct *p;
1765
1766 css_task_iter_start(css, 0, &it);
1767 while ((p = css_task_iter_next(&it)))
1768 uclamp_update_active(p);
1769 css_task_iter_end(&it);
1770 }
1771
1772 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1773 #endif
1774
1775 #ifdef CONFIG_SYSCTL
1776 #ifdef CONFIG_UCLAMP_TASK
1777 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1778 static void uclamp_update_root_tg(void)
1779 {
1780 struct task_group *tg = &root_task_group;
1781
1782 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1783 sysctl_sched_uclamp_util_min, false);
1784 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1785 sysctl_sched_uclamp_util_max, false);
1786
1787 rcu_read_lock();
1788 cpu_util_update_eff(&root_task_group.css);
1789 rcu_read_unlock();
1790 }
1791 #else
uclamp_update_root_tg(void)1792 static void uclamp_update_root_tg(void) { }
1793 #endif
1794
uclamp_sync_util_min_rt_default(void)1795 static void uclamp_sync_util_min_rt_default(void)
1796 {
1797 struct task_struct *g, *p;
1798
1799 /*
1800 * copy_process() sysctl_uclamp
1801 * uclamp_min_rt = X;
1802 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1803 * // link thread smp_mb__after_spinlock()
1804 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1805 * sched_post_fork() for_each_process_thread()
1806 * __uclamp_sync_rt() __uclamp_sync_rt()
1807 *
1808 * Ensures that either sched_post_fork() will observe the new
1809 * uclamp_min_rt or for_each_process_thread() will observe the new
1810 * task.
1811 */
1812 read_lock(&tasklist_lock);
1813 smp_mb__after_spinlock();
1814 read_unlock(&tasklist_lock);
1815
1816 rcu_read_lock();
1817 for_each_process_thread(g, p)
1818 uclamp_update_util_min_rt_default(p);
1819 rcu_read_unlock();
1820 }
1821
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1822 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1823 void *buffer, size_t *lenp, loff_t *ppos)
1824 {
1825 bool update_root_tg = false;
1826 int old_min, old_max, old_min_rt;
1827 int result;
1828
1829 guard(mutex)(&uclamp_mutex);
1830
1831 old_min = sysctl_sched_uclamp_util_min;
1832 old_max = sysctl_sched_uclamp_util_max;
1833 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1834
1835 result = proc_dointvec(table, write, buffer, lenp, ppos);
1836 if (result)
1837 goto undo;
1838 if (!write)
1839 return 0;
1840
1841 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1842 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1843 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1844
1845 result = -EINVAL;
1846 goto undo;
1847 }
1848
1849 if (old_min != sysctl_sched_uclamp_util_min) {
1850 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1851 sysctl_sched_uclamp_util_min, false);
1852 update_root_tg = true;
1853 }
1854 if (old_max != sysctl_sched_uclamp_util_max) {
1855 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1856 sysctl_sched_uclamp_util_max, false);
1857 update_root_tg = true;
1858 }
1859
1860 if (update_root_tg) {
1861 static_branch_enable(&sched_uclamp_used);
1862 uclamp_update_root_tg();
1863 }
1864
1865 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1866 static_branch_enable(&sched_uclamp_used);
1867 uclamp_sync_util_min_rt_default();
1868 }
1869
1870 /*
1871 * We update all RUNNABLE tasks only when task groups are in use.
1872 * Otherwise, keep it simple and do just a lazy update at each next
1873 * task enqueue time.
1874 */
1875 return 0;
1876
1877 undo:
1878 sysctl_sched_uclamp_util_min = old_min;
1879 sysctl_sched_uclamp_util_max = old_max;
1880 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1881 return result;
1882 }
1883 #endif
1884 #endif
1885
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1886 static int uclamp_validate(struct task_struct *p,
1887 const struct sched_attr *attr)
1888 {
1889 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1890 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1891
1892 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1893 util_min = attr->sched_util_min;
1894
1895 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1896 return -EINVAL;
1897 }
1898
1899 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1900 util_max = attr->sched_util_max;
1901
1902 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1903 return -EINVAL;
1904 }
1905
1906 if (util_min != -1 && util_max != -1 && util_min > util_max)
1907 return -EINVAL;
1908
1909 /*
1910 * We have valid uclamp attributes; make sure uclamp is enabled.
1911 *
1912 * We need to do that here, because enabling static branches is a
1913 * blocking operation which obviously cannot be done while holding
1914 * scheduler locks.
1915 */
1916 static_branch_enable(&sched_uclamp_used);
1917
1918 return 0;
1919 }
1920
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1921 static bool uclamp_reset(const struct sched_attr *attr,
1922 enum uclamp_id clamp_id,
1923 struct uclamp_se *uc_se)
1924 {
1925 /* Reset on sched class change for a non user-defined clamp value. */
1926 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1927 !uc_se->user_defined)
1928 return true;
1929
1930 /* Reset on sched_util_{min,max} == -1. */
1931 if (clamp_id == UCLAMP_MIN &&
1932 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1933 attr->sched_util_min == -1) {
1934 return true;
1935 }
1936
1937 if (clamp_id == UCLAMP_MAX &&
1938 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1939 attr->sched_util_max == -1) {
1940 return true;
1941 }
1942
1943 return false;
1944 }
1945
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1946 static void __setscheduler_uclamp(struct task_struct *p,
1947 const struct sched_attr *attr)
1948 {
1949 enum uclamp_id clamp_id;
1950
1951 for_each_clamp_id(clamp_id) {
1952 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1953 unsigned int value;
1954
1955 if (!uclamp_reset(attr, clamp_id, uc_se))
1956 continue;
1957
1958 /*
1959 * RT by default have a 100% boost value that could be modified
1960 * at runtime.
1961 */
1962 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1963 value = sysctl_sched_uclamp_util_min_rt_default;
1964 else
1965 value = uclamp_none(clamp_id);
1966
1967 uclamp_se_set(uc_se, value, false);
1968
1969 }
1970
1971 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1972 return;
1973
1974 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1975 attr->sched_util_min != -1) {
1976 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1977 attr->sched_util_min, true);
1978 }
1979
1980 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1981 attr->sched_util_max != -1) {
1982 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1983 attr->sched_util_max, true);
1984 }
1985 }
1986
uclamp_fork(struct task_struct * p)1987 static void uclamp_fork(struct task_struct *p)
1988 {
1989 enum uclamp_id clamp_id;
1990
1991 /*
1992 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1993 * as the task is still at its early fork stages.
1994 */
1995 for_each_clamp_id(clamp_id)
1996 p->uclamp[clamp_id].active = false;
1997
1998 if (likely(!p->sched_reset_on_fork))
1999 return;
2000
2001 for_each_clamp_id(clamp_id) {
2002 uclamp_se_set(&p->uclamp_req[clamp_id],
2003 uclamp_none(clamp_id), false);
2004 }
2005 }
2006
uclamp_post_fork(struct task_struct * p)2007 static void uclamp_post_fork(struct task_struct *p)
2008 {
2009 uclamp_update_util_min_rt_default(p);
2010 }
2011
init_uclamp_rq(struct rq * rq)2012 static void __init init_uclamp_rq(struct rq *rq)
2013 {
2014 enum uclamp_id clamp_id;
2015 struct uclamp_rq *uc_rq = rq->uclamp;
2016
2017 for_each_clamp_id(clamp_id) {
2018 uc_rq[clamp_id] = (struct uclamp_rq) {
2019 .value = uclamp_none(clamp_id)
2020 };
2021 }
2022
2023 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2024 }
2025
init_uclamp(void)2026 static void __init init_uclamp(void)
2027 {
2028 struct uclamp_se uc_max = {};
2029 enum uclamp_id clamp_id;
2030 int cpu;
2031
2032 for_each_possible_cpu(cpu)
2033 init_uclamp_rq(cpu_rq(cpu));
2034
2035 for_each_clamp_id(clamp_id) {
2036 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2037 uclamp_none(clamp_id), false);
2038 }
2039
2040 /* System defaults allow max clamp values for both indexes */
2041 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2042 for_each_clamp_id(clamp_id) {
2043 uclamp_default[clamp_id] = uc_max;
2044 #ifdef CONFIG_UCLAMP_TASK_GROUP
2045 root_task_group.uclamp_req[clamp_id] = uc_max;
2046 root_task_group.uclamp[clamp_id] = uc_max;
2047 #endif
2048 }
2049 }
2050
2051 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2052 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2053 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2054 static inline int uclamp_validate(struct task_struct *p,
2055 const struct sched_attr *attr)
2056 {
2057 return -EOPNOTSUPP;
2058 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2059 static void __setscheduler_uclamp(struct task_struct *p,
2060 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2061 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2062 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2063 static inline void init_uclamp(void) { }
2064 #endif /* CONFIG_UCLAMP_TASK */
2065
sched_task_on_rq(struct task_struct * p)2066 bool sched_task_on_rq(struct task_struct *p)
2067 {
2068 return task_on_rq_queued(p);
2069 }
2070
get_wchan(struct task_struct * p)2071 unsigned long get_wchan(struct task_struct *p)
2072 {
2073 unsigned long ip = 0;
2074 unsigned int state;
2075
2076 if (!p || p == current)
2077 return 0;
2078
2079 /* Only get wchan if task is blocked and we can keep it that way. */
2080 raw_spin_lock_irq(&p->pi_lock);
2081 state = READ_ONCE(p->__state);
2082 smp_rmb(); /* see try_to_wake_up() */
2083 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2084 ip = __get_wchan(p);
2085 raw_spin_unlock_irq(&p->pi_lock);
2086
2087 return ip;
2088 }
2089
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2090 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 if (!(flags & ENQUEUE_NOCLOCK))
2093 update_rq_clock(rq);
2094
2095 if (!(flags & ENQUEUE_RESTORE)) {
2096 sched_info_enqueue(rq, p);
2097 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2098 }
2099
2100 uclamp_rq_inc(rq, p);
2101 p->sched_class->enqueue_task(rq, p, flags);
2102
2103 if (sched_core_enabled(rq))
2104 sched_core_enqueue(rq, p);
2105 }
2106
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2107 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2108 {
2109 if (sched_core_enabled(rq))
2110 sched_core_dequeue(rq, p, flags);
2111
2112 if (!(flags & DEQUEUE_NOCLOCK))
2113 update_rq_clock(rq);
2114
2115 if (!(flags & DEQUEUE_SAVE)) {
2116 sched_info_dequeue(rq, p);
2117 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2118 }
2119
2120 uclamp_rq_dec(rq, p);
2121 p->sched_class->dequeue_task(rq, p, flags);
2122 }
2123
activate_task(struct rq * rq,struct task_struct * p,int flags)2124 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2125 {
2126 if (task_on_rq_migrating(p))
2127 flags |= ENQUEUE_MIGRATED;
2128 if (flags & ENQUEUE_MIGRATED)
2129 sched_mm_cid_migrate_to(rq, p);
2130
2131 enqueue_task(rq, p, flags);
2132
2133 p->on_rq = TASK_ON_RQ_QUEUED;
2134 }
2135
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2136 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2137 {
2138 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2139
2140 dequeue_task(rq, p, flags);
2141 }
2142
__normal_prio(int policy,int rt_prio,int nice)2143 static inline int __normal_prio(int policy, int rt_prio, int nice)
2144 {
2145 int prio;
2146
2147 if (dl_policy(policy))
2148 prio = MAX_DL_PRIO - 1;
2149 else if (rt_policy(policy))
2150 prio = MAX_RT_PRIO - 1 - rt_prio;
2151 else
2152 prio = NICE_TO_PRIO(nice);
2153
2154 return prio;
2155 }
2156
2157 /*
2158 * Calculate the expected normal priority: i.e. priority
2159 * without taking RT-inheritance into account. Might be
2160 * boosted by interactivity modifiers. Changes upon fork,
2161 * setprio syscalls, and whenever the interactivity
2162 * estimator recalculates.
2163 */
normal_prio(struct task_struct * p)2164 static inline int normal_prio(struct task_struct *p)
2165 {
2166 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2167 }
2168
2169 /*
2170 * Calculate the current priority, i.e. the priority
2171 * taken into account by the scheduler. This value might
2172 * be boosted by RT tasks, or might be boosted by
2173 * interactivity modifiers. Will be RT if the task got
2174 * RT-boosted. If not then it returns p->normal_prio.
2175 */
effective_prio(struct task_struct * p)2176 static int effective_prio(struct task_struct *p)
2177 {
2178 p->normal_prio = normal_prio(p);
2179 /*
2180 * If we are RT tasks or we were boosted to RT priority,
2181 * keep the priority unchanged. Otherwise, update priority
2182 * to the normal priority:
2183 */
2184 if (!rt_prio(p->prio))
2185 return p->normal_prio;
2186 return p->prio;
2187 }
2188
2189 /**
2190 * task_curr - is this task currently executing on a CPU?
2191 * @p: the task in question.
2192 *
2193 * Return: 1 if the task is currently executing. 0 otherwise.
2194 */
task_curr(const struct task_struct * p)2195 inline int task_curr(const struct task_struct *p)
2196 {
2197 return cpu_curr(task_cpu(p)) == p;
2198 }
2199
2200 /*
2201 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2202 * use the balance_callback list if you want balancing.
2203 *
2204 * this means any call to check_class_changed() must be followed by a call to
2205 * balance_callback().
2206 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2207 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2208 const struct sched_class *prev_class,
2209 int oldprio)
2210 {
2211 if (prev_class != p->sched_class) {
2212 if (prev_class->switched_from)
2213 prev_class->switched_from(rq, p);
2214
2215 p->sched_class->switched_to(rq, p);
2216 } else if (oldprio != p->prio || dl_task(p))
2217 p->sched_class->prio_changed(rq, p, oldprio);
2218 }
2219
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2220 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2221 {
2222 if (p->sched_class == rq->curr->sched_class)
2223 rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2224 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2225 resched_curr(rq);
2226
2227 /*
2228 * A queue event has occurred, and we're going to schedule. In
2229 * this case, we can save a useless back to back clock update.
2230 */
2231 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2232 rq_clock_skip_update(rq);
2233 }
2234
2235 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2236 int __task_state_match(struct task_struct *p, unsigned int state)
2237 {
2238 if (READ_ONCE(p->__state) & state)
2239 return 1;
2240
2241 #ifdef CONFIG_PREEMPT_RT
2242 if (READ_ONCE(p->saved_state) & state)
2243 return -1;
2244 #endif
2245 return 0;
2246 }
2247
2248 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2249 int task_state_match(struct task_struct *p, unsigned int state)
2250 {
2251 #ifdef CONFIG_PREEMPT_RT
2252 int match;
2253
2254 /*
2255 * Serialize against current_save_and_set_rtlock_wait_state() and
2256 * current_restore_rtlock_saved_state().
2257 */
2258 raw_spin_lock_irq(&p->pi_lock);
2259 match = __task_state_match(p, state);
2260 raw_spin_unlock_irq(&p->pi_lock);
2261
2262 return match;
2263 #else
2264 return __task_state_match(p, state);
2265 #endif
2266 }
2267
2268 /*
2269 * wait_task_inactive - wait for a thread to unschedule.
2270 *
2271 * Wait for the thread to block in any of the states set in @match_state.
2272 * If it changes, i.e. @p might have woken up, then return zero. When we
2273 * succeed in waiting for @p to be off its CPU, we return a positive number
2274 * (its total switch count). If a second call a short while later returns the
2275 * same number, the caller can be sure that @p has remained unscheduled the
2276 * whole time.
2277 *
2278 * The caller must ensure that the task *will* unschedule sometime soon,
2279 * else this function might spin for a *long* time. This function can't
2280 * be called with interrupts off, or it may introduce deadlock with
2281 * smp_call_function() if an IPI is sent by the same process we are
2282 * waiting to become inactive.
2283 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2284 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2285 {
2286 int running, queued, match;
2287 struct rq_flags rf;
2288 unsigned long ncsw;
2289 struct rq *rq;
2290
2291 for (;;) {
2292 /*
2293 * We do the initial early heuristics without holding
2294 * any task-queue locks at all. We'll only try to get
2295 * the runqueue lock when things look like they will
2296 * work out!
2297 */
2298 rq = task_rq(p);
2299
2300 /*
2301 * If the task is actively running on another CPU
2302 * still, just relax and busy-wait without holding
2303 * any locks.
2304 *
2305 * NOTE! Since we don't hold any locks, it's not
2306 * even sure that "rq" stays as the right runqueue!
2307 * But we don't care, since "task_on_cpu()" will
2308 * return false if the runqueue has changed and p
2309 * is actually now running somewhere else!
2310 */
2311 while (task_on_cpu(rq, p)) {
2312 if (!task_state_match(p, match_state))
2313 return 0;
2314 cpu_relax();
2315 }
2316
2317 /*
2318 * Ok, time to look more closely! We need the rq
2319 * lock now, to be *sure*. If we're wrong, we'll
2320 * just go back and repeat.
2321 */
2322 rq = task_rq_lock(p, &rf);
2323 trace_sched_wait_task(p);
2324 running = task_on_cpu(rq, p);
2325 queued = task_on_rq_queued(p);
2326 ncsw = 0;
2327 if ((match = __task_state_match(p, match_state))) {
2328 /*
2329 * When matching on p->saved_state, consider this task
2330 * still queued so it will wait.
2331 */
2332 if (match < 0)
2333 queued = 1;
2334 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2335 }
2336 task_rq_unlock(rq, p, &rf);
2337
2338 /*
2339 * If it changed from the expected state, bail out now.
2340 */
2341 if (unlikely(!ncsw))
2342 break;
2343
2344 /*
2345 * Was it really running after all now that we
2346 * checked with the proper locks actually held?
2347 *
2348 * Oops. Go back and try again..
2349 */
2350 if (unlikely(running)) {
2351 cpu_relax();
2352 continue;
2353 }
2354
2355 /*
2356 * It's not enough that it's not actively running,
2357 * it must be off the runqueue _entirely_, and not
2358 * preempted!
2359 *
2360 * So if it was still runnable (but just not actively
2361 * running right now), it's preempted, and we should
2362 * yield - it could be a while.
2363 */
2364 if (unlikely(queued)) {
2365 ktime_t to = NSEC_PER_SEC / HZ;
2366
2367 set_current_state(TASK_UNINTERRUPTIBLE);
2368 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2369 continue;
2370 }
2371
2372 /*
2373 * Ahh, all good. It wasn't running, and it wasn't
2374 * runnable, which means that it will never become
2375 * running in the future either. We're all done!
2376 */
2377 break;
2378 }
2379
2380 return ncsw;
2381 }
2382
2383 #ifdef CONFIG_SMP
2384
2385 static void
2386 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2387
2388 static int __set_cpus_allowed_ptr(struct task_struct *p,
2389 struct affinity_context *ctx);
2390
migrate_disable_switch(struct rq * rq,struct task_struct * p)2391 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2392 {
2393 struct affinity_context ac = {
2394 .new_mask = cpumask_of(rq->cpu),
2395 .flags = SCA_MIGRATE_DISABLE,
2396 };
2397
2398 if (likely(!p->migration_disabled))
2399 return;
2400
2401 if (p->cpus_ptr != &p->cpus_mask)
2402 return;
2403
2404 /*
2405 * Violates locking rules! see comment in __do_set_cpus_allowed().
2406 */
2407 __do_set_cpus_allowed(p, &ac);
2408 }
2409
migrate_disable(void)2410 void migrate_disable(void)
2411 {
2412 struct task_struct *p = current;
2413
2414 if (p->migration_disabled) {
2415 p->migration_disabled++;
2416 return;
2417 }
2418
2419 preempt_disable();
2420 this_rq()->nr_pinned++;
2421 p->migration_disabled = 1;
2422 preempt_enable();
2423 }
2424 EXPORT_SYMBOL_GPL(migrate_disable);
2425
migrate_enable(void)2426 void migrate_enable(void)
2427 {
2428 struct task_struct *p = current;
2429 struct affinity_context ac = {
2430 .new_mask = &p->cpus_mask,
2431 .flags = SCA_MIGRATE_ENABLE,
2432 };
2433
2434 if (p->migration_disabled > 1) {
2435 p->migration_disabled--;
2436 return;
2437 }
2438
2439 if (WARN_ON_ONCE(!p->migration_disabled))
2440 return;
2441
2442 /*
2443 * Ensure stop_task runs either before or after this, and that
2444 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2445 */
2446 preempt_disable();
2447 if (p->cpus_ptr != &p->cpus_mask)
2448 __set_cpus_allowed_ptr(p, &ac);
2449 /*
2450 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2451 * regular cpus_mask, otherwise things that race (eg.
2452 * select_fallback_rq) get confused.
2453 */
2454 barrier();
2455 p->migration_disabled = 0;
2456 this_rq()->nr_pinned--;
2457 preempt_enable();
2458 }
2459 EXPORT_SYMBOL_GPL(migrate_enable);
2460
rq_has_pinned_tasks(struct rq * rq)2461 static inline bool rq_has_pinned_tasks(struct rq *rq)
2462 {
2463 return rq->nr_pinned;
2464 }
2465
2466 /*
2467 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2468 * __set_cpus_allowed_ptr() and select_fallback_rq().
2469 */
is_cpu_allowed(struct task_struct * p,int cpu)2470 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2471 {
2472 /* When not in the task's cpumask, no point in looking further. */
2473 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2474 return false;
2475
2476 /* migrate_disabled() must be allowed to finish. */
2477 if (is_migration_disabled(p))
2478 return cpu_online(cpu);
2479
2480 /* Non kernel threads are not allowed during either online or offline. */
2481 if (!(p->flags & PF_KTHREAD))
2482 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2483
2484 /* KTHREAD_IS_PER_CPU is always allowed. */
2485 if (kthread_is_per_cpu(p))
2486 return cpu_online(cpu);
2487
2488 /* Regular kernel threads don't get to stay during offline. */
2489 if (cpu_dying(cpu))
2490 return false;
2491
2492 /* But are allowed during online. */
2493 return cpu_online(cpu);
2494 }
2495
2496 /*
2497 * This is how migration works:
2498 *
2499 * 1) we invoke migration_cpu_stop() on the target CPU using
2500 * stop_one_cpu().
2501 * 2) stopper starts to run (implicitly forcing the migrated thread
2502 * off the CPU)
2503 * 3) it checks whether the migrated task is still in the wrong runqueue.
2504 * 4) if it's in the wrong runqueue then the migration thread removes
2505 * it and puts it into the right queue.
2506 * 5) stopper completes and stop_one_cpu() returns and the migration
2507 * is done.
2508 */
2509
2510 /*
2511 * move_queued_task - move a queued task to new rq.
2512 *
2513 * Returns (locked) new rq. Old rq's lock is released.
2514 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2515 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2516 struct task_struct *p, int new_cpu)
2517 {
2518 lockdep_assert_rq_held(rq);
2519
2520 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2521 set_task_cpu(p, new_cpu);
2522 rq_unlock(rq, rf);
2523
2524 rq = cpu_rq(new_cpu);
2525
2526 rq_lock(rq, rf);
2527 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2528 activate_task(rq, p, 0);
2529 wakeup_preempt(rq, p, 0);
2530
2531 return rq;
2532 }
2533
2534 struct migration_arg {
2535 struct task_struct *task;
2536 int dest_cpu;
2537 struct set_affinity_pending *pending;
2538 };
2539
2540 /*
2541 * @refs: number of wait_for_completion()
2542 * @stop_pending: is @stop_work in use
2543 */
2544 struct set_affinity_pending {
2545 refcount_t refs;
2546 unsigned int stop_pending;
2547 struct completion done;
2548 struct cpu_stop_work stop_work;
2549 struct migration_arg arg;
2550 };
2551
2552 /*
2553 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2554 * this because either it can't run here any more (set_cpus_allowed()
2555 * away from this CPU, or CPU going down), or because we're
2556 * attempting to rebalance this task on exec (sched_exec).
2557 *
2558 * So we race with normal scheduler movements, but that's OK, as long
2559 * as the task is no longer on this CPU.
2560 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2561 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2562 struct task_struct *p, int dest_cpu)
2563 {
2564 /* Affinity changed (again). */
2565 if (!is_cpu_allowed(p, dest_cpu))
2566 return rq;
2567
2568 rq = move_queued_task(rq, rf, p, dest_cpu);
2569
2570 return rq;
2571 }
2572
2573 /*
2574 * migration_cpu_stop - this will be executed by a highprio stopper thread
2575 * and performs thread migration by bumping thread off CPU then
2576 * 'pushing' onto another runqueue.
2577 */
migration_cpu_stop(void * data)2578 static int migration_cpu_stop(void *data)
2579 {
2580 struct migration_arg *arg = data;
2581 struct set_affinity_pending *pending = arg->pending;
2582 struct task_struct *p = arg->task;
2583 struct rq *rq = this_rq();
2584 bool complete = false;
2585 struct rq_flags rf;
2586
2587 /*
2588 * The original target CPU might have gone down and we might
2589 * be on another CPU but it doesn't matter.
2590 */
2591 local_irq_save(rf.flags);
2592 /*
2593 * We need to explicitly wake pending tasks before running
2594 * __migrate_task() such that we will not miss enforcing cpus_ptr
2595 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2596 */
2597 flush_smp_call_function_queue();
2598
2599 raw_spin_lock(&p->pi_lock);
2600 rq_lock(rq, &rf);
2601
2602 /*
2603 * If we were passed a pending, then ->stop_pending was set, thus
2604 * p->migration_pending must have remained stable.
2605 */
2606 WARN_ON_ONCE(pending && pending != p->migration_pending);
2607
2608 /*
2609 * If task_rq(p) != rq, it cannot be migrated here, because we're
2610 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2611 * we're holding p->pi_lock.
2612 */
2613 if (task_rq(p) == rq) {
2614 if (is_migration_disabled(p))
2615 goto out;
2616
2617 if (pending) {
2618 p->migration_pending = NULL;
2619 complete = true;
2620
2621 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2622 goto out;
2623 }
2624
2625 if (task_on_rq_queued(p)) {
2626 update_rq_clock(rq);
2627 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2628 } else {
2629 p->wake_cpu = arg->dest_cpu;
2630 }
2631
2632 /*
2633 * XXX __migrate_task() can fail, at which point we might end
2634 * up running on a dodgy CPU, AFAICT this can only happen
2635 * during CPU hotplug, at which point we'll get pushed out
2636 * anyway, so it's probably not a big deal.
2637 */
2638
2639 } else if (pending) {
2640 /*
2641 * This happens when we get migrated between migrate_enable()'s
2642 * preempt_enable() and scheduling the stopper task. At that
2643 * point we're a regular task again and not current anymore.
2644 *
2645 * A !PREEMPT kernel has a giant hole here, which makes it far
2646 * more likely.
2647 */
2648
2649 /*
2650 * The task moved before the stopper got to run. We're holding
2651 * ->pi_lock, so the allowed mask is stable - if it got
2652 * somewhere allowed, we're done.
2653 */
2654 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2655 p->migration_pending = NULL;
2656 complete = true;
2657 goto out;
2658 }
2659
2660 /*
2661 * When migrate_enable() hits a rq mis-match we can't reliably
2662 * determine is_migration_disabled() and so have to chase after
2663 * it.
2664 */
2665 WARN_ON_ONCE(!pending->stop_pending);
2666 preempt_disable();
2667 task_rq_unlock(rq, p, &rf);
2668 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2669 &pending->arg, &pending->stop_work);
2670 preempt_enable();
2671 return 0;
2672 }
2673 out:
2674 if (pending)
2675 pending->stop_pending = false;
2676 task_rq_unlock(rq, p, &rf);
2677
2678 if (complete)
2679 complete_all(&pending->done);
2680
2681 return 0;
2682 }
2683
push_cpu_stop(void * arg)2684 int push_cpu_stop(void *arg)
2685 {
2686 struct rq *lowest_rq = NULL, *rq = this_rq();
2687 struct task_struct *p = arg;
2688
2689 raw_spin_lock_irq(&p->pi_lock);
2690 raw_spin_rq_lock(rq);
2691
2692 if (task_rq(p) != rq)
2693 goto out_unlock;
2694
2695 if (is_migration_disabled(p)) {
2696 p->migration_flags |= MDF_PUSH;
2697 goto out_unlock;
2698 }
2699
2700 p->migration_flags &= ~MDF_PUSH;
2701
2702 if (p->sched_class->find_lock_rq)
2703 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2704
2705 if (!lowest_rq)
2706 goto out_unlock;
2707
2708 // XXX validate p is still the highest prio task
2709 if (task_rq(p) == rq) {
2710 deactivate_task(rq, p, 0);
2711 set_task_cpu(p, lowest_rq->cpu);
2712 activate_task(lowest_rq, p, 0);
2713 resched_curr(lowest_rq);
2714 }
2715
2716 double_unlock_balance(rq, lowest_rq);
2717
2718 out_unlock:
2719 rq->push_busy = false;
2720 raw_spin_rq_unlock(rq);
2721 raw_spin_unlock_irq(&p->pi_lock);
2722
2723 put_task_struct(p);
2724 return 0;
2725 }
2726
2727 /*
2728 * sched_class::set_cpus_allowed must do the below, but is not required to
2729 * actually call this function.
2730 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2731 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2732 {
2733 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2734 p->cpus_ptr = ctx->new_mask;
2735 return;
2736 }
2737
2738 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2739 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2740
2741 /*
2742 * Swap in a new user_cpus_ptr if SCA_USER flag set
2743 */
2744 if (ctx->flags & SCA_USER)
2745 swap(p->user_cpus_ptr, ctx->user_mask);
2746 }
2747
2748 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2749 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2750 {
2751 struct rq *rq = task_rq(p);
2752 bool queued, running;
2753
2754 /*
2755 * This here violates the locking rules for affinity, since we're only
2756 * supposed to change these variables while holding both rq->lock and
2757 * p->pi_lock.
2758 *
2759 * HOWEVER, it magically works, because ttwu() is the only code that
2760 * accesses these variables under p->pi_lock and only does so after
2761 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2762 * before finish_task().
2763 *
2764 * XXX do further audits, this smells like something putrid.
2765 */
2766 if (ctx->flags & SCA_MIGRATE_DISABLE)
2767 SCHED_WARN_ON(!p->on_cpu);
2768 else
2769 lockdep_assert_held(&p->pi_lock);
2770
2771 queued = task_on_rq_queued(p);
2772 running = task_current(rq, p);
2773
2774 if (queued) {
2775 /*
2776 * Because __kthread_bind() calls this on blocked tasks without
2777 * holding rq->lock.
2778 */
2779 lockdep_assert_rq_held(rq);
2780 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2781 }
2782 if (running)
2783 put_prev_task(rq, p);
2784
2785 p->sched_class->set_cpus_allowed(p, ctx);
2786
2787 if (queued)
2788 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2789 if (running)
2790 set_next_task(rq, p);
2791 }
2792
2793 /*
2794 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2795 * affinity (if any) should be destroyed too.
2796 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2797 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2798 {
2799 struct affinity_context ac = {
2800 .new_mask = new_mask,
2801 .user_mask = NULL,
2802 .flags = SCA_USER, /* clear the user requested mask */
2803 };
2804 union cpumask_rcuhead {
2805 cpumask_t cpumask;
2806 struct rcu_head rcu;
2807 };
2808
2809 __do_set_cpus_allowed(p, &ac);
2810
2811 /*
2812 * Because this is called with p->pi_lock held, it is not possible
2813 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2814 * kfree_rcu().
2815 */
2816 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2817 }
2818
alloc_user_cpus_ptr(int node)2819 static cpumask_t *alloc_user_cpus_ptr(int node)
2820 {
2821 /*
2822 * See do_set_cpus_allowed() above for the rcu_head usage.
2823 */
2824 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2825
2826 return kmalloc_node(size, GFP_KERNEL, node);
2827 }
2828
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2829 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2830 int node)
2831 {
2832 cpumask_t *user_mask;
2833 unsigned long flags;
2834
2835 /*
2836 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2837 * may differ by now due to racing.
2838 */
2839 dst->user_cpus_ptr = NULL;
2840
2841 /*
2842 * This check is racy and losing the race is a valid situation.
2843 * It is not worth the extra overhead of taking the pi_lock on
2844 * every fork/clone.
2845 */
2846 if (data_race(!src->user_cpus_ptr))
2847 return 0;
2848
2849 user_mask = alloc_user_cpus_ptr(node);
2850 if (!user_mask)
2851 return -ENOMEM;
2852
2853 /*
2854 * Use pi_lock to protect content of user_cpus_ptr
2855 *
2856 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2857 * do_set_cpus_allowed().
2858 */
2859 raw_spin_lock_irqsave(&src->pi_lock, flags);
2860 if (src->user_cpus_ptr) {
2861 swap(dst->user_cpus_ptr, user_mask);
2862 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2863 }
2864 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2865
2866 if (unlikely(user_mask))
2867 kfree(user_mask);
2868
2869 return 0;
2870 }
2871
clear_user_cpus_ptr(struct task_struct * p)2872 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2873 {
2874 struct cpumask *user_mask = NULL;
2875
2876 swap(p->user_cpus_ptr, user_mask);
2877
2878 return user_mask;
2879 }
2880
release_user_cpus_ptr(struct task_struct * p)2881 void release_user_cpus_ptr(struct task_struct *p)
2882 {
2883 kfree(clear_user_cpus_ptr(p));
2884 }
2885
2886 /*
2887 * This function is wildly self concurrent; here be dragons.
2888 *
2889 *
2890 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2891 * designated task is enqueued on an allowed CPU. If that task is currently
2892 * running, we have to kick it out using the CPU stopper.
2893 *
2894 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2895 * Consider:
2896 *
2897 * Initial conditions: P0->cpus_mask = [0, 1]
2898 *
2899 * P0@CPU0 P1
2900 *
2901 * migrate_disable();
2902 * <preempted>
2903 * set_cpus_allowed_ptr(P0, [1]);
2904 *
2905 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2906 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2907 * This means we need the following scheme:
2908 *
2909 * P0@CPU0 P1
2910 *
2911 * migrate_disable();
2912 * <preempted>
2913 * set_cpus_allowed_ptr(P0, [1]);
2914 * <blocks>
2915 * <resumes>
2916 * migrate_enable();
2917 * __set_cpus_allowed_ptr();
2918 * <wakes local stopper>
2919 * `--> <woken on migration completion>
2920 *
2921 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2922 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2923 * task p are serialized by p->pi_lock, which we can leverage: the one that
2924 * should come into effect at the end of the Migrate-Disable region is the last
2925 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2926 * but we still need to properly signal those waiting tasks at the appropriate
2927 * moment.
2928 *
2929 * This is implemented using struct set_affinity_pending. The first
2930 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2931 * setup an instance of that struct and install it on the targeted task_struct.
2932 * Any and all further callers will reuse that instance. Those then wait for
2933 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2934 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2935 *
2936 *
2937 * (1) In the cases covered above. There is one more where the completion is
2938 * signaled within affine_move_task() itself: when a subsequent affinity request
2939 * occurs after the stopper bailed out due to the targeted task still being
2940 * Migrate-Disable. Consider:
2941 *
2942 * Initial conditions: P0->cpus_mask = [0, 1]
2943 *
2944 * CPU0 P1 P2
2945 * <P0>
2946 * migrate_disable();
2947 * <preempted>
2948 * set_cpus_allowed_ptr(P0, [1]);
2949 * <blocks>
2950 * <migration/0>
2951 * migration_cpu_stop()
2952 * is_migration_disabled()
2953 * <bails>
2954 * set_cpus_allowed_ptr(P0, [0, 1]);
2955 * <signal completion>
2956 * <awakes>
2957 *
2958 * Note that the above is safe vs a concurrent migrate_enable(), as any
2959 * pending affinity completion is preceded by an uninstallation of
2960 * p->migration_pending done with p->pi_lock held.
2961 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2962 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2963 int dest_cpu, unsigned int flags)
2964 __releases(rq->lock)
2965 __releases(p->pi_lock)
2966 {
2967 struct set_affinity_pending my_pending = { }, *pending = NULL;
2968 bool stop_pending, complete = false;
2969
2970 /* Can the task run on the task's current CPU? If so, we're done */
2971 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2972 struct task_struct *push_task = NULL;
2973
2974 if ((flags & SCA_MIGRATE_ENABLE) &&
2975 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2976 rq->push_busy = true;
2977 push_task = get_task_struct(p);
2978 }
2979
2980 /*
2981 * If there are pending waiters, but no pending stop_work,
2982 * then complete now.
2983 */
2984 pending = p->migration_pending;
2985 if (pending && !pending->stop_pending) {
2986 p->migration_pending = NULL;
2987 complete = true;
2988 }
2989
2990 preempt_disable();
2991 task_rq_unlock(rq, p, rf);
2992 if (push_task) {
2993 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2994 p, &rq->push_work);
2995 }
2996 preempt_enable();
2997
2998 if (complete)
2999 complete_all(&pending->done);
3000
3001 return 0;
3002 }
3003
3004 if (!(flags & SCA_MIGRATE_ENABLE)) {
3005 /* serialized by p->pi_lock */
3006 if (!p->migration_pending) {
3007 /* Install the request */
3008 refcount_set(&my_pending.refs, 1);
3009 init_completion(&my_pending.done);
3010 my_pending.arg = (struct migration_arg) {
3011 .task = p,
3012 .dest_cpu = dest_cpu,
3013 .pending = &my_pending,
3014 };
3015
3016 p->migration_pending = &my_pending;
3017 } else {
3018 pending = p->migration_pending;
3019 refcount_inc(&pending->refs);
3020 /*
3021 * Affinity has changed, but we've already installed a
3022 * pending. migration_cpu_stop() *must* see this, else
3023 * we risk a completion of the pending despite having a
3024 * task on a disallowed CPU.
3025 *
3026 * Serialized by p->pi_lock, so this is safe.
3027 */
3028 pending->arg.dest_cpu = dest_cpu;
3029 }
3030 }
3031 pending = p->migration_pending;
3032 /*
3033 * - !MIGRATE_ENABLE:
3034 * we'll have installed a pending if there wasn't one already.
3035 *
3036 * - MIGRATE_ENABLE:
3037 * we're here because the current CPU isn't matching anymore,
3038 * the only way that can happen is because of a concurrent
3039 * set_cpus_allowed_ptr() call, which should then still be
3040 * pending completion.
3041 *
3042 * Either way, we really should have a @pending here.
3043 */
3044 if (WARN_ON_ONCE(!pending)) {
3045 task_rq_unlock(rq, p, rf);
3046 return -EINVAL;
3047 }
3048
3049 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3050 /*
3051 * MIGRATE_ENABLE gets here because 'p == current', but for
3052 * anything else we cannot do is_migration_disabled(), punt
3053 * and have the stopper function handle it all race-free.
3054 */
3055 stop_pending = pending->stop_pending;
3056 if (!stop_pending)
3057 pending->stop_pending = true;
3058
3059 if (flags & SCA_MIGRATE_ENABLE)
3060 p->migration_flags &= ~MDF_PUSH;
3061
3062 preempt_disable();
3063 task_rq_unlock(rq, p, rf);
3064 if (!stop_pending) {
3065 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3066 &pending->arg, &pending->stop_work);
3067 }
3068 preempt_enable();
3069
3070 if (flags & SCA_MIGRATE_ENABLE)
3071 return 0;
3072 } else {
3073
3074 if (!is_migration_disabled(p)) {
3075 if (task_on_rq_queued(p))
3076 rq = move_queued_task(rq, rf, p, dest_cpu);
3077
3078 if (!pending->stop_pending) {
3079 p->migration_pending = NULL;
3080 complete = true;
3081 }
3082 }
3083 task_rq_unlock(rq, p, rf);
3084
3085 if (complete)
3086 complete_all(&pending->done);
3087 }
3088
3089 wait_for_completion(&pending->done);
3090
3091 if (refcount_dec_and_test(&pending->refs))
3092 wake_up_var(&pending->refs); /* No UaF, just an address */
3093
3094 /*
3095 * Block the original owner of &pending until all subsequent callers
3096 * have seen the completion and decremented the refcount
3097 */
3098 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3099
3100 /* ARGH */
3101 WARN_ON_ONCE(my_pending.stop_pending);
3102
3103 return 0;
3104 }
3105
3106 /*
3107 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3108 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3109 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3110 struct affinity_context *ctx,
3111 struct rq *rq,
3112 struct rq_flags *rf)
3113 __releases(rq->lock)
3114 __releases(p->pi_lock)
3115 {
3116 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3117 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3118 bool kthread = p->flags & PF_KTHREAD;
3119 unsigned int dest_cpu;
3120 int ret = 0;
3121
3122 update_rq_clock(rq);
3123
3124 if (kthread || is_migration_disabled(p)) {
3125 /*
3126 * Kernel threads are allowed on online && !active CPUs,
3127 * however, during cpu-hot-unplug, even these might get pushed
3128 * away if not KTHREAD_IS_PER_CPU.
3129 *
3130 * Specifically, migration_disabled() tasks must not fail the
3131 * cpumask_any_and_distribute() pick below, esp. so on
3132 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3133 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3134 */
3135 cpu_valid_mask = cpu_online_mask;
3136 }
3137
3138 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3139 ret = -EINVAL;
3140 goto out;
3141 }
3142
3143 /*
3144 * Must re-check here, to close a race against __kthread_bind(),
3145 * sched_setaffinity() is not guaranteed to observe the flag.
3146 */
3147 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3148 ret = -EINVAL;
3149 goto out;
3150 }
3151
3152 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3153 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3154 if (ctx->flags & SCA_USER)
3155 swap(p->user_cpus_ptr, ctx->user_mask);
3156 goto out;
3157 }
3158
3159 if (WARN_ON_ONCE(p == current &&
3160 is_migration_disabled(p) &&
3161 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3162 ret = -EBUSY;
3163 goto out;
3164 }
3165 }
3166
3167 /*
3168 * Picking a ~random cpu helps in cases where we are changing affinity
3169 * for groups of tasks (ie. cpuset), so that load balancing is not
3170 * immediately required to distribute the tasks within their new mask.
3171 */
3172 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3173 if (dest_cpu >= nr_cpu_ids) {
3174 ret = -EINVAL;
3175 goto out;
3176 }
3177
3178 __do_set_cpus_allowed(p, ctx);
3179
3180 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3181
3182 out:
3183 task_rq_unlock(rq, p, rf);
3184
3185 return ret;
3186 }
3187
3188 /*
3189 * Change a given task's CPU affinity. Migrate the thread to a
3190 * proper CPU and schedule it away if the CPU it's executing on
3191 * is removed from the allowed bitmask.
3192 *
3193 * NOTE: the caller must have a valid reference to the task, the
3194 * task must not exit() & deallocate itself prematurely. The
3195 * call is not atomic; no spinlocks may be held.
3196 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3197 static int __set_cpus_allowed_ptr(struct task_struct *p,
3198 struct affinity_context *ctx)
3199 {
3200 struct rq_flags rf;
3201 struct rq *rq;
3202
3203 rq = task_rq_lock(p, &rf);
3204 /*
3205 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3206 * flags are set.
3207 */
3208 if (p->user_cpus_ptr &&
3209 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3210 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3211 ctx->new_mask = rq->scratch_mask;
3212
3213 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3214 }
3215
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3216 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3217 {
3218 struct affinity_context ac = {
3219 .new_mask = new_mask,
3220 .flags = 0,
3221 };
3222
3223 return __set_cpus_allowed_ptr(p, &ac);
3224 }
3225 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3226
3227 /*
3228 * Change a given task's CPU affinity to the intersection of its current
3229 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3230 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3231 * affinity or use cpu_online_mask instead.
3232 *
3233 * If the resulting mask is empty, leave the affinity unchanged and return
3234 * -EINVAL.
3235 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3236 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3237 struct cpumask *new_mask,
3238 const struct cpumask *subset_mask)
3239 {
3240 struct affinity_context ac = {
3241 .new_mask = new_mask,
3242 .flags = 0,
3243 };
3244 struct rq_flags rf;
3245 struct rq *rq;
3246 int err;
3247
3248 rq = task_rq_lock(p, &rf);
3249
3250 /*
3251 * Forcefully restricting the affinity of a deadline task is
3252 * likely to cause problems, so fail and noisily override the
3253 * mask entirely.
3254 */
3255 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3256 err = -EPERM;
3257 goto err_unlock;
3258 }
3259
3260 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3261 err = -EINVAL;
3262 goto err_unlock;
3263 }
3264
3265 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3266
3267 err_unlock:
3268 task_rq_unlock(rq, p, &rf);
3269 return err;
3270 }
3271
3272 /*
3273 * Restrict the CPU affinity of task @p so that it is a subset of
3274 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3275 * old affinity mask. If the resulting mask is empty, we warn and walk
3276 * up the cpuset hierarchy until we find a suitable mask.
3277 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3278 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3279 {
3280 cpumask_var_t new_mask;
3281 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3282
3283 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3284
3285 /*
3286 * __migrate_task() can fail silently in the face of concurrent
3287 * offlining of the chosen destination CPU, so take the hotplug
3288 * lock to ensure that the migration succeeds.
3289 */
3290 cpus_read_lock();
3291 if (!cpumask_available(new_mask))
3292 goto out_set_mask;
3293
3294 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3295 goto out_free_mask;
3296
3297 /*
3298 * We failed to find a valid subset of the affinity mask for the
3299 * task, so override it based on its cpuset hierarchy.
3300 */
3301 cpuset_cpus_allowed(p, new_mask);
3302 override_mask = new_mask;
3303
3304 out_set_mask:
3305 if (printk_ratelimit()) {
3306 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3307 task_pid_nr(p), p->comm,
3308 cpumask_pr_args(override_mask));
3309 }
3310
3311 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3312 out_free_mask:
3313 cpus_read_unlock();
3314 free_cpumask_var(new_mask);
3315 }
3316
3317 static int
3318 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3319
3320 /*
3321 * Restore the affinity of a task @p which was previously restricted by a
3322 * call to force_compatible_cpus_allowed_ptr().
3323 *
3324 * It is the caller's responsibility to serialise this with any calls to
3325 * force_compatible_cpus_allowed_ptr(@p).
3326 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3327 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3328 {
3329 struct affinity_context ac = {
3330 .new_mask = task_user_cpus(p),
3331 .flags = 0,
3332 };
3333 int ret;
3334
3335 /*
3336 * Try to restore the old affinity mask with __sched_setaffinity().
3337 * Cpuset masking will be done there too.
3338 */
3339 ret = __sched_setaffinity(p, &ac);
3340 WARN_ON_ONCE(ret);
3341 }
3342
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3343 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3344 {
3345 #ifdef CONFIG_SCHED_DEBUG
3346 unsigned int state = READ_ONCE(p->__state);
3347
3348 /*
3349 * We should never call set_task_cpu() on a blocked task,
3350 * ttwu() will sort out the placement.
3351 */
3352 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3353
3354 /*
3355 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3356 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3357 * time relying on p->on_rq.
3358 */
3359 WARN_ON_ONCE(state == TASK_RUNNING &&
3360 p->sched_class == &fair_sched_class &&
3361 (p->on_rq && !task_on_rq_migrating(p)));
3362
3363 #ifdef CONFIG_LOCKDEP
3364 /*
3365 * The caller should hold either p->pi_lock or rq->lock, when changing
3366 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3367 *
3368 * sched_move_task() holds both and thus holding either pins the cgroup,
3369 * see task_group().
3370 *
3371 * Furthermore, all task_rq users should acquire both locks, see
3372 * task_rq_lock().
3373 */
3374 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3375 lockdep_is_held(__rq_lockp(task_rq(p)))));
3376 #endif
3377 /*
3378 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3379 */
3380 WARN_ON_ONCE(!cpu_online(new_cpu));
3381
3382 WARN_ON_ONCE(is_migration_disabled(p));
3383 #endif
3384
3385 trace_sched_migrate_task(p, new_cpu);
3386
3387 if (task_cpu(p) != new_cpu) {
3388 if (p->sched_class->migrate_task_rq)
3389 p->sched_class->migrate_task_rq(p, new_cpu);
3390 p->se.nr_migrations++;
3391 rseq_migrate(p);
3392 sched_mm_cid_migrate_from(p);
3393 perf_event_task_migrate(p);
3394 }
3395
3396 __set_task_cpu(p, new_cpu);
3397 }
3398
3399 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3400 static void __migrate_swap_task(struct task_struct *p, int cpu)
3401 {
3402 if (task_on_rq_queued(p)) {
3403 struct rq *src_rq, *dst_rq;
3404 struct rq_flags srf, drf;
3405
3406 src_rq = task_rq(p);
3407 dst_rq = cpu_rq(cpu);
3408
3409 rq_pin_lock(src_rq, &srf);
3410 rq_pin_lock(dst_rq, &drf);
3411
3412 deactivate_task(src_rq, p, 0);
3413 set_task_cpu(p, cpu);
3414 activate_task(dst_rq, p, 0);
3415 wakeup_preempt(dst_rq, p, 0);
3416
3417 rq_unpin_lock(dst_rq, &drf);
3418 rq_unpin_lock(src_rq, &srf);
3419
3420 } else {
3421 /*
3422 * Task isn't running anymore; make it appear like we migrated
3423 * it before it went to sleep. This means on wakeup we make the
3424 * previous CPU our target instead of where it really is.
3425 */
3426 p->wake_cpu = cpu;
3427 }
3428 }
3429
3430 struct migration_swap_arg {
3431 struct task_struct *src_task, *dst_task;
3432 int src_cpu, dst_cpu;
3433 };
3434
migrate_swap_stop(void * data)3435 static int migrate_swap_stop(void *data)
3436 {
3437 struct migration_swap_arg *arg = data;
3438 struct rq *src_rq, *dst_rq;
3439
3440 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3441 return -EAGAIN;
3442
3443 src_rq = cpu_rq(arg->src_cpu);
3444 dst_rq = cpu_rq(arg->dst_cpu);
3445
3446 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3447 guard(double_rq_lock)(src_rq, dst_rq);
3448
3449 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3450 return -EAGAIN;
3451
3452 if (task_cpu(arg->src_task) != arg->src_cpu)
3453 return -EAGAIN;
3454
3455 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3456 return -EAGAIN;
3457
3458 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3459 return -EAGAIN;
3460
3461 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3462 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3463
3464 return 0;
3465 }
3466
3467 /*
3468 * Cross migrate two tasks
3469 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3470 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3471 int target_cpu, int curr_cpu)
3472 {
3473 struct migration_swap_arg arg;
3474 int ret = -EINVAL;
3475
3476 arg = (struct migration_swap_arg){
3477 .src_task = cur,
3478 .src_cpu = curr_cpu,
3479 .dst_task = p,
3480 .dst_cpu = target_cpu,
3481 };
3482
3483 if (arg.src_cpu == arg.dst_cpu)
3484 goto out;
3485
3486 /*
3487 * These three tests are all lockless; this is OK since all of them
3488 * will be re-checked with proper locks held further down the line.
3489 */
3490 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3491 goto out;
3492
3493 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3494 goto out;
3495
3496 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3497 goto out;
3498
3499 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3500 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3501
3502 out:
3503 return ret;
3504 }
3505 #endif /* CONFIG_NUMA_BALANCING */
3506
3507 /***
3508 * kick_process - kick a running thread to enter/exit the kernel
3509 * @p: the to-be-kicked thread
3510 *
3511 * Cause a process which is running on another CPU to enter
3512 * kernel-mode, without any delay. (to get signals handled.)
3513 *
3514 * NOTE: this function doesn't have to take the runqueue lock,
3515 * because all it wants to ensure is that the remote task enters
3516 * the kernel. If the IPI races and the task has been migrated
3517 * to another CPU then no harm is done and the purpose has been
3518 * achieved as well.
3519 */
kick_process(struct task_struct * p)3520 void kick_process(struct task_struct *p)
3521 {
3522 int cpu;
3523
3524 preempt_disable();
3525 cpu = task_cpu(p);
3526 if ((cpu != smp_processor_id()) && task_curr(p))
3527 smp_send_reschedule(cpu);
3528 preempt_enable();
3529 }
3530 EXPORT_SYMBOL_GPL(kick_process);
3531
3532 /*
3533 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3534 *
3535 * A few notes on cpu_active vs cpu_online:
3536 *
3537 * - cpu_active must be a subset of cpu_online
3538 *
3539 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3540 * see __set_cpus_allowed_ptr(). At this point the newly online
3541 * CPU isn't yet part of the sched domains, and balancing will not
3542 * see it.
3543 *
3544 * - on CPU-down we clear cpu_active() to mask the sched domains and
3545 * avoid the load balancer to place new tasks on the to be removed
3546 * CPU. Existing tasks will remain running there and will be taken
3547 * off.
3548 *
3549 * This means that fallback selection must not select !active CPUs.
3550 * And can assume that any active CPU must be online. Conversely
3551 * select_task_rq() below may allow selection of !active CPUs in order
3552 * to satisfy the above rules.
3553 */
select_fallback_rq(int cpu,struct task_struct * p)3554 static int select_fallback_rq(int cpu, struct task_struct *p)
3555 {
3556 int nid = cpu_to_node(cpu);
3557 const struct cpumask *nodemask = NULL;
3558 enum { cpuset, possible, fail } state = cpuset;
3559 int dest_cpu;
3560
3561 /*
3562 * If the node that the CPU is on has been offlined, cpu_to_node()
3563 * will return -1. There is no CPU on the node, and we should
3564 * select the CPU on the other node.
3565 */
3566 if (nid != -1) {
3567 nodemask = cpumask_of_node(nid);
3568
3569 /* Look for allowed, online CPU in same node. */
3570 for_each_cpu(dest_cpu, nodemask) {
3571 if (is_cpu_allowed(p, dest_cpu))
3572 return dest_cpu;
3573 }
3574 }
3575
3576 for (;;) {
3577 /* Any allowed, online CPU? */
3578 for_each_cpu(dest_cpu, p->cpus_ptr) {
3579 if (!is_cpu_allowed(p, dest_cpu))
3580 continue;
3581
3582 goto out;
3583 }
3584
3585 /* No more Mr. Nice Guy. */
3586 switch (state) {
3587 case cpuset:
3588 if (cpuset_cpus_allowed_fallback(p)) {
3589 state = possible;
3590 break;
3591 }
3592 fallthrough;
3593 case possible:
3594 /*
3595 * XXX When called from select_task_rq() we only
3596 * hold p->pi_lock and again violate locking order.
3597 *
3598 * More yuck to audit.
3599 */
3600 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3601 state = fail;
3602 break;
3603 case fail:
3604 BUG();
3605 break;
3606 }
3607 }
3608
3609 out:
3610 if (state != cpuset) {
3611 /*
3612 * Don't tell them about moving exiting tasks or
3613 * kernel threads (both mm NULL), since they never
3614 * leave kernel.
3615 */
3616 if (p->mm && printk_ratelimit()) {
3617 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3618 task_pid_nr(p), p->comm, cpu);
3619 }
3620 }
3621
3622 return dest_cpu;
3623 }
3624
3625 /*
3626 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3627 */
3628 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3629 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3630 {
3631 lockdep_assert_held(&p->pi_lock);
3632
3633 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3634 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3635 else
3636 cpu = cpumask_any(p->cpus_ptr);
3637
3638 /*
3639 * In order not to call set_task_cpu() on a blocking task we need
3640 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3641 * CPU.
3642 *
3643 * Since this is common to all placement strategies, this lives here.
3644 *
3645 * [ this allows ->select_task() to simply return task_cpu(p) and
3646 * not worry about this generic constraint ]
3647 */
3648 if (unlikely(!is_cpu_allowed(p, cpu)))
3649 cpu = select_fallback_rq(task_cpu(p), p);
3650
3651 return cpu;
3652 }
3653
sched_set_stop_task(int cpu,struct task_struct * stop)3654 void sched_set_stop_task(int cpu, struct task_struct *stop)
3655 {
3656 static struct lock_class_key stop_pi_lock;
3657 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3658 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3659
3660 if (stop) {
3661 /*
3662 * Make it appear like a SCHED_FIFO task, its something
3663 * userspace knows about and won't get confused about.
3664 *
3665 * Also, it will make PI more or less work without too
3666 * much confusion -- but then, stop work should not
3667 * rely on PI working anyway.
3668 */
3669 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3670
3671 stop->sched_class = &stop_sched_class;
3672
3673 /*
3674 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3675 * adjust the effective priority of a task. As a result,
3676 * rt_mutex_setprio() can trigger (RT) balancing operations,
3677 * which can then trigger wakeups of the stop thread to push
3678 * around the current task.
3679 *
3680 * The stop task itself will never be part of the PI-chain, it
3681 * never blocks, therefore that ->pi_lock recursion is safe.
3682 * Tell lockdep about this by placing the stop->pi_lock in its
3683 * own class.
3684 */
3685 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3686 }
3687
3688 cpu_rq(cpu)->stop = stop;
3689
3690 if (old_stop) {
3691 /*
3692 * Reset it back to a normal scheduling class so that
3693 * it can die in pieces.
3694 */
3695 old_stop->sched_class = &rt_sched_class;
3696 }
3697 }
3698
3699 #else /* CONFIG_SMP */
3700
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3701 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3702 struct affinity_context *ctx)
3703 {
3704 return set_cpus_allowed_ptr(p, ctx->new_mask);
3705 }
3706
migrate_disable_switch(struct rq * rq,struct task_struct * p)3707 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3708
rq_has_pinned_tasks(struct rq * rq)3709 static inline bool rq_has_pinned_tasks(struct rq *rq)
3710 {
3711 return false;
3712 }
3713
alloc_user_cpus_ptr(int node)3714 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3715 {
3716 return NULL;
3717 }
3718
3719 #endif /* !CONFIG_SMP */
3720
3721 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3722 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3723 {
3724 struct rq *rq;
3725
3726 if (!schedstat_enabled())
3727 return;
3728
3729 rq = this_rq();
3730
3731 #ifdef CONFIG_SMP
3732 if (cpu == rq->cpu) {
3733 __schedstat_inc(rq->ttwu_local);
3734 __schedstat_inc(p->stats.nr_wakeups_local);
3735 } else {
3736 struct sched_domain *sd;
3737
3738 __schedstat_inc(p->stats.nr_wakeups_remote);
3739
3740 guard(rcu)();
3741 for_each_domain(rq->cpu, sd) {
3742 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3743 __schedstat_inc(sd->ttwu_wake_remote);
3744 break;
3745 }
3746 }
3747 }
3748
3749 if (wake_flags & WF_MIGRATED)
3750 __schedstat_inc(p->stats.nr_wakeups_migrate);
3751 #endif /* CONFIG_SMP */
3752
3753 __schedstat_inc(rq->ttwu_count);
3754 __schedstat_inc(p->stats.nr_wakeups);
3755
3756 if (wake_flags & WF_SYNC)
3757 __schedstat_inc(p->stats.nr_wakeups_sync);
3758 }
3759
3760 /*
3761 * Mark the task runnable.
3762 */
ttwu_do_wakeup(struct task_struct * p)3763 static inline void ttwu_do_wakeup(struct task_struct *p)
3764 {
3765 WRITE_ONCE(p->__state, TASK_RUNNING);
3766 trace_sched_wakeup(p);
3767 }
3768
3769 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3770 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3771 struct rq_flags *rf)
3772 {
3773 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3774
3775 lockdep_assert_rq_held(rq);
3776
3777 if (p->sched_contributes_to_load)
3778 rq->nr_uninterruptible--;
3779
3780 #ifdef CONFIG_SMP
3781 if (wake_flags & WF_MIGRATED)
3782 en_flags |= ENQUEUE_MIGRATED;
3783 else
3784 #endif
3785 if (p->in_iowait) {
3786 delayacct_blkio_end(p);
3787 atomic_dec(&task_rq(p)->nr_iowait);
3788 }
3789
3790 activate_task(rq, p, en_flags);
3791 wakeup_preempt(rq, p, wake_flags);
3792
3793 ttwu_do_wakeup(p);
3794
3795 #ifdef CONFIG_SMP
3796 if (p->sched_class->task_woken) {
3797 /*
3798 * Our task @p is fully woken up and running; so it's safe to
3799 * drop the rq->lock, hereafter rq is only used for statistics.
3800 */
3801 rq_unpin_lock(rq, rf);
3802 p->sched_class->task_woken(rq, p);
3803 rq_repin_lock(rq, rf);
3804 }
3805
3806 if (rq->idle_stamp) {
3807 u64 delta = rq_clock(rq) - rq->idle_stamp;
3808 u64 max = 2*rq->max_idle_balance_cost;
3809
3810 update_avg(&rq->avg_idle, delta);
3811
3812 if (rq->avg_idle > max)
3813 rq->avg_idle = max;
3814
3815 rq->wake_stamp = jiffies;
3816 rq->wake_avg_idle = rq->avg_idle / 2;
3817
3818 rq->idle_stamp = 0;
3819 }
3820 #endif
3821 }
3822
3823 /*
3824 * Consider @p being inside a wait loop:
3825 *
3826 * for (;;) {
3827 * set_current_state(TASK_UNINTERRUPTIBLE);
3828 *
3829 * if (CONDITION)
3830 * break;
3831 *
3832 * schedule();
3833 * }
3834 * __set_current_state(TASK_RUNNING);
3835 *
3836 * between set_current_state() and schedule(). In this case @p is still
3837 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3838 * an atomic manner.
3839 *
3840 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3841 * then schedule() must still happen and p->state can be changed to
3842 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3843 * need to do a full wakeup with enqueue.
3844 *
3845 * Returns: %true when the wakeup is done,
3846 * %false otherwise.
3847 */
ttwu_runnable(struct task_struct * p,int wake_flags)3848 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3849 {
3850 struct rq_flags rf;
3851 struct rq *rq;
3852 int ret = 0;
3853
3854 rq = __task_rq_lock(p, &rf);
3855 if (task_on_rq_queued(p)) {
3856 if (!task_on_cpu(rq, p)) {
3857 /*
3858 * When on_rq && !on_cpu the task is preempted, see if
3859 * it should preempt the task that is current now.
3860 */
3861 update_rq_clock(rq);
3862 wakeup_preempt(rq, p, wake_flags);
3863 }
3864 ttwu_do_wakeup(p);
3865 ret = 1;
3866 }
3867 __task_rq_unlock(rq, &rf);
3868
3869 return ret;
3870 }
3871
3872 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3873 void sched_ttwu_pending(void *arg)
3874 {
3875 struct llist_node *llist = arg;
3876 struct rq *rq = this_rq();
3877 struct task_struct *p, *t;
3878 struct rq_flags rf;
3879
3880 if (!llist)
3881 return;
3882
3883 rq_lock_irqsave(rq, &rf);
3884 update_rq_clock(rq);
3885
3886 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3887 if (WARN_ON_ONCE(p->on_cpu))
3888 smp_cond_load_acquire(&p->on_cpu, !VAL);
3889
3890 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3891 set_task_cpu(p, cpu_of(rq));
3892
3893 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3894 }
3895
3896 /*
3897 * Must be after enqueueing at least once task such that
3898 * idle_cpu() does not observe a false-negative -- if it does,
3899 * it is possible for select_idle_siblings() to stack a number
3900 * of tasks on this CPU during that window.
3901 *
3902 * It is ok to clear ttwu_pending when another task pending.
3903 * We will receive IPI after local irq enabled and then enqueue it.
3904 * Since now nr_running > 0, idle_cpu() will always get correct result.
3905 */
3906 WRITE_ONCE(rq->ttwu_pending, 0);
3907 rq_unlock_irqrestore(rq, &rf);
3908 }
3909
3910 /*
3911 * Prepare the scene for sending an IPI for a remote smp_call
3912 *
3913 * Returns true if the caller can proceed with sending the IPI.
3914 * Returns false otherwise.
3915 */
call_function_single_prep_ipi(int cpu)3916 bool call_function_single_prep_ipi(int cpu)
3917 {
3918 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3919 trace_sched_wake_idle_without_ipi(cpu);
3920 return false;
3921 }
3922
3923 return true;
3924 }
3925
3926 /*
3927 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3928 * necessary. The wakee CPU on receipt of the IPI will queue the task
3929 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3930 * of the wakeup instead of the waker.
3931 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3932 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3933 {
3934 struct rq *rq = cpu_rq(cpu);
3935
3936 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3937
3938 WRITE_ONCE(rq->ttwu_pending, 1);
3939 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3940 }
3941
wake_up_if_idle(int cpu)3942 void wake_up_if_idle(int cpu)
3943 {
3944 struct rq *rq = cpu_rq(cpu);
3945
3946 guard(rcu)();
3947 if (is_idle_task(rcu_dereference(rq->curr))) {
3948 guard(rq_lock_irqsave)(rq);
3949 if (is_idle_task(rq->curr))
3950 resched_curr(rq);
3951 }
3952 }
3953
cpus_share_cache(int this_cpu,int that_cpu)3954 bool cpus_share_cache(int this_cpu, int that_cpu)
3955 {
3956 if (this_cpu == that_cpu)
3957 return true;
3958
3959 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3960 }
3961
ttwu_queue_cond(struct task_struct * p,int cpu)3962 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3963 {
3964 /*
3965 * Do not complicate things with the async wake_list while the CPU is
3966 * in hotplug state.
3967 */
3968 if (!cpu_active(cpu))
3969 return false;
3970
3971 /* Ensure the task will still be allowed to run on the CPU. */
3972 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3973 return false;
3974
3975 /*
3976 * If the CPU does not share cache, then queue the task on the
3977 * remote rqs wakelist to avoid accessing remote data.
3978 */
3979 if (!cpus_share_cache(smp_processor_id(), cpu))
3980 return true;
3981
3982 if (cpu == smp_processor_id())
3983 return false;
3984
3985 /*
3986 * If the wakee cpu is idle, or the task is descheduling and the
3987 * only running task on the CPU, then use the wakelist to offload
3988 * the task activation to the idle (or soon-to-be-idle) CPU as
3989 * the current CPU is likely busy. nr_running is checked to
3990 * avoid unnecessary task stacking.
3991 *
3992 * Note that we can only get here with (wakee) p->on_rq=0,
3993 * p->on_cpu can be whatever, we've done the dequeue, so
3994 * the wakee has been accounted out of ->nr_running.
3995 */
3996 if (!cpu_rq(cpu)->nr_running)
3997 return true;
3998
3999 return false;
4000 }
4001
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4002 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4003 {
4004 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4005 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4006 __ttwu_queue_wakelist(p, cpu, wake_flags);
4007 return true;
4008 }
4009
4010 return false;
4011 }
4012
4013 #else /* !CONFIG_SMP */
4014
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4015 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4016 {
4017 return false;
4018 }
4019
4020 #endif /* CONFIG_SMP */
4021
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4022 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4023 {
4024 struct rq *rq = cpu_rq(cpu);
4025 struct rq_flags rf;
4026
4027 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4028 return;
4029
4030 rq_lock(rq, &rf);
4031 update_rq_clock(rq);
4032 ttwu_do_activate(rq, p, wake_flags, &rf);
4033 rq_unlock(rq, &rf);
4034 }
4035
4036 /*
4037 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4038 *
4039 * The caller holds p::pi_lock if p != current or has preemption
4040 * disabled when p == current.
4041 *
4042 * The rules of PREEMPT_RT saved_state:
4043 *
4044 * The related locking code always holds p::pi_lock when updating
4045 * p::saved_state, which means the code is fully serialized in both cases.
4046 *
4047 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4048 * bits set. This allows to distinguish all wakeup scenarios.
4049 */
4050 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4051 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4052 {
4053 int match;
4054
4055 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4056 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4057 state != TASK_RTLOCK_WAIT);
4058 }
4059
4060 *success = !!(match = __task_state_match(p, state));
4061
4062 #ifdef CONFIG_PREEMPT_RT
4063 /*
4064 * Saved state preserves the task state across blocking on
4065 * an RT lock. If the state matches, set p::saved_state to
4066 * TASK_RUNNING, but do not wake the task because it waits
4067 * for a lock wakeup. Also indicate success because from
4068 * the regular waker's point of view this has succeeded.
4069 *
4070 * After acquiring the lock the task will restore p::__state
4071 * from p::saved_state which ensures that the regular
4072 * wakeup is not lost. The restore will also set
4073 * p::saved_state to TASK_RUNNING so any further tests will
4074 * not result in false positives vs. @success
4075 */
4076 if (match < 0)
4077 p->saved_state = TASK_RUNNING;
4078 #endif
4079 return match > 0;
4080 }
4081
4082 /*
4083 * Notes on Program-Order guarantees on SMP systems.
4084 *
4085 * MIGRATION
4086 *
4087 * The basic program-order guarantee on SMP systems is that when a task [t]
4088 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4089 * execution on its new CPU [c1].
4090 *
4091 * For migration (of runnable tasks) this is provided by the following means:
4092 *
4093 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4094 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4095 * rq(c1)->lock (if not at the same time, then in that order).
4096 * C) LOCK of the rq(c1)->lock scheduling in task
4097 *
4098 * Release/acquire chaining guarantees that B happens after A and C after B.
4099 * Note: the CPU doing B need not be c0 or c1
4100 *
4101 * Example:
4102 *
4103 * CPU0 CPU1 CPU2
4104 *
4105 * LOCK rq(0)->lock
4106 * sched-out X
4107 * sched-in Y
4108 * UNLOCK rq(0)->lock
4109 *
4110 * LOCK rq(0)->lock // orders against CPU0
4111 * dequeue X
4112 * UNLOCK rq(0)->lock
4113 *
4114 * LOCK rq(1)->lock
4115 * enqueue X
4116 * UNLOCK rq(1)->lock
4117 *
4118 * LOCK rq(1)->lock // orders against CPU2
4119 * sched-out Z
4120 * sched-in X
4121 * UNLOCK rq(1)->lock
4122 *
4123 *
4124 * BLOCKING -- aka. SLEEP + WAKEUP
4125 *
4126 * For blocking we (obviously) need to provide the same guarantee as for
4127 * migration. However the means are completely different as there is no lock
4128 * chain to provide order. Instead we do:
4129 *
4130 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4131 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4132 *
4133 * Example:
4134 *
4135 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4136 *
4137 * LOCK rq(0)->lock LOCK X->pi_lock
4138 * dequeue X
4139 * sched-out X
4140 * smp_store_release(X->on_cpu, 0);
4141 *
4142 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4143 * X->state = WAKING
4144 * set_task_cpu(X,2)
4145 *
4146 * LOCK rq(2)->lock
4147 * enqueue X
4148 * X->state = RUNNING
4149 * UNLOCK rq(2)->lock
4150 *
4151 * LOCK rq(2)->lock // orders against CPU1
4152 * sched-out Z
4153 * sched-in X
4154 * UNLOCK rq(2)->lock
4155 *
4156 * UNLOCK X->pi_lock
4157 * UNLOCK rq(0)->lock
4158 *
4159 *
4160 * However, for wakeups there is a second guarantee we must provide, namely we
4161 * must ensure that CONDITION=1 done by the caller can not be reordered with
4162 * accesses to the task state; see try_to_wake_up() and set_current_state().
4163 */
4164
4165 /**
4166 * try_to_wake_up - wake up a thread
4167 * @p: the thread to be awakened
4168 * @state: the mask of task states that can be woken
4169 * @wake_flags: wake modifier flags (WF_*)
4170 *
4171 * Conceptually does:
4172 *
4173 * If (@state & @p->state) @p->state = TASK_RUNNING.
4174 *
4175 * If the task was not queued/runnable, also place it back on a runqueue.
4176 *
4177 * This function is atomic against schedule() which would dequeue the task.
4178 *
4179 * It issues a full memory barrier before accessing @p->state, see the comment
4180 * with set_current_state().
4181 *
4182 * Uses p->pi_lock to serialize against concurrent wake-ups.
4183 *
4184 * Relies on p->pi_lock stabilizing:
4185 * - p->sched_class
4186 * - p->cpus_ptr
4187 * - p->sched_task_group
4188 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4189 *
4190 * Tries really hard to only take one task_rq(p)->lock for performance.
4191 * Takes rq->lock in:
4192 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4193 * - ttwu_queue() -- new rq, for enqueue of the task;
4194 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4195 *
4196 * As a consequence we race really badly with just about everything. See the
4197 * many memory barriers and their comments for details.
4198 *
4199 * Return: %true if @p->state changes (an actual wakeup was done),
4200 * %false otherwise.
4201 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4202 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4203 {
4204 guard(preempt)();
4205 int cpu, success = 0;
4206
4207 if (p == current) {
4208 /*
4209 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4210 * == smp_processor_id()'. Together this means we can special
4211 * case the whole 'p->on_rq && ttwu_runnable()' case below
4212 * without taking any locks.
4213 *
4214 * In particular:
4215 * - we rely on Program-Order guarantees for all the ordering,
4216 * - we're serialized against set_special_state() by virtue of
4217 * it disabling IRQs (this allows not taking ->pi_lock).
4218 */
4219 if (!ttwu_state_match(p, state, &success))
4220 goto out;
4221
4222 trace_sched_waking(p);
4223 ttwu_do_wakeup(p);
4224 goto out;
4225 }
4226
4227 /*
4228 * If we are going to wake up a thread waiting for CONDITION we
4229 * need to ensure that CONDITION=1 done by the caller can not be
4230 * reordered with p->state check below. This pairs with smp_store_mb()
4231 * in set_current_state() that the waiting thread does.
4232 */
4233 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4234 smp_mb__after_spinlock();
4235 if (!ttwu_state_match(p, state, &success))
4236 break;
4237
4238 trace_sched_waking(p);
4239
4240 /*
4241 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4242 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4243 * in smp_cond_load_acquire() below.
4244 *
4245 * sched_ttwu_pending() try_to_wake_up()
4246 * STORE p->on_rq = 1 LOAD p->state
4247 * UNLOCK rq->lock
4248 *
4249 * __schedule() (switch to task 'p')
4250 * LOCK rq->lock smp_rmb();
4251 * smp_mb__after_spinlock();
4252 * UNLOCK rq->lock
4253 *
4254 * [task p]
4255 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4256 *
4257 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4258 * __schedule(). See the comment for smp_mb__after_spinlock().
4259 *
4260 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4261 */
4262 smp_rmb();
4263 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4264 break;
4265
4266 #ifdef CONFIG_SMP
4267 /*
4268 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4269 * possible to, falsely, observe p->on_cpu == 0.
4270 *
4271 * One must be running (->on_cpu == 1) in order to remove oneself
4272 * from the runqueue.
4273 *
4274 * __schedule() (switch to task 'p') try_to_wake_up()
4275 * STORE p->on_cpu = 1 LOAD p->on_rq
4276 * UNLOCK rq->lock
4277 *
4278 * __schedule() (put 'p' to sleep)
4279 * LOCK rq->lock smp_rmb();
4280 * smp_mb__after_spinlock();
4281 * STORE p->on_rq = 0 LOAD p->on_cpu
4282 *
4283 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4284 * __schedule(). See the comment for smp_mb__after_spinlock().
4285 *
4286 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4287 * schedule()'s deactivate_task() has 'happened' and p will no longer
4288 * care about it's own p->state. See the comment in __schedule().
4289 */
4290 smp_acquire__after_ctrl_dep();
4291
4292 /*
4293 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4294 * == 0), which means we need to do an enqueue, change p->state to
4295 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4296 * enqueue, such as ttwu_queue_wakelist().
4297 */
4298 WRITE_ONCE(p->__state, TASK_WAKING);
4299
4300 /*
4301 * If the owning (remote) CPU is still in the middle of schedule() with
4302 * this task as prev, considering queueing p on the remote CPUs wake_list
4303 * which potentially sends an IPI instead of spinning on p->on_cpu to
4304 * let the waker make forward progress. This is safe because IRQs are
4305 * disabled and the IPI will deliver after on_cpu is cleared.
4306 *
4307 * Ensure we load task_cpu(p) after p->on_cpu:
4308 *
4309 * set_task_cpu(p, cpu);
4310 * STORE p->cpu = @cpu
4311 * __schedule() (switch to task 'p')
4312 * LOCK rq->lock
4313 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4314 * STORE p->on_cpu = 1 LOAD p->cpu
4315 *
4316 * to ensure we observe the correct CPU on which the task is currently
4317 * scheduling.
4318 */
4319 if (smp_load_acquire(&p->on_cpu) &&
4320 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4321 break;
4322
4323 /*
4324 * If the owning (remote) CPU is still in the middle of schedule() with
4325 * this task as prev, wait until it's done referencing the task.
4326 *
4327 * Pairs with the smp_store_release() in finish_task().
4328 *
4329 * This ensures that tasks getting woken will be fully ordered against
4330 * their previous state and preserve Program Order.
4331 */
4332 smp_cond_load_acquire(&p->on_cpu, !VAL);
4333
4334 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4335 if (task_cpu(p) != cpu) {
4336 if (p->in_iowait) {
4337 delayacct_blkio_end(p);
4338 atomic_dec(&task_rq(p)->nr_iowait);
4339 }
4340
4341 wake_flags |= WF_MIGRATED;
4342 psi_ttwu_dequeue(p);
4343 set_task_cpu(p, cpu);
4344 }
4345 #else
4346 cpu = task_cpu(p);
4347 #endif /* CONFIG_SMP */
4348
4349 ttwu_queue(p, cpu, wake_flags);
4350 }
4351 out:
4352 if (success)
4353 ttwu_stat(p, task_cpu(p), wake_flags);
4354
4355 return success;
4356 }
4357
__task_needs_rq_lock(struct task_struct * p)4358 static bool __task_needs_rq_lock(struct task_struct *p)
4359 {
4360 unsigned int state = READ_ONCE(p->__state);
4361
4362 /*
4363 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4364 * the task is blocked. Make sure to check @state since ttwu() can drop
4365 * locks at the end, see ttwu_queue_wakelist().
4366 */
4367 if (state == TASK_RUNNING || state == TASK_WAKING)
4368 return true;
4369
4370 /*
4371 * Ensure we load p->on_rq after p->__state, otherwise it would be
4372 * possible to, falsely, observe p->on_rq == 0.
4373 *
4374 * See try_to_wake_up() for a longer comment.
4375 */
4376 smp_rmb();
4377 if (p->on_rq)
4378 return true;
4379
4380 #ifdef CONFIG_SMP
4381 /*
4382 * Ensure the task has finished __schedule() and will not be referenced
4383 * anymore. Again, see try_to_wake_up() for a longer comment.
4384 */
4385 smp_rmb();
4386 smp_cond_load_acquire(&p->on_cpu, !VAL);
4387 #endif
4388
4389 return false;
4390 }
4391
4392 /**
4393 * task_call_func - Invoke a function on task in fixed state
4394 * @p: Process for which the function is to be invoked, can be @current.
4395 * @func: Function to invoke.
4396 * @arg: Argument to function.
4397 *
4398 * Fix the task in it's current state by avoiding wakeups and or rq operations
4399 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4400 * to work out what the state is, if required. Given that @func can be invoked
4401 * with a runqueue lock held, it had better be quite lightweight.
4402 *
4403 * Returns:
4404 * Whatever @func returns
4405 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4406 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4407 {
4408 struct rq *rq = NULL;
4409 struct rq_flags rf;
4410 int ret;
4411
4412 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4413
4414 if (__task_needs_rq_lock(p))
4415 rq = __task_rq_lock(p, &rf);
4416
4417 /*
4418 * At this point the task is pinned; either:
4419 * - blocked and we're holding off wakeups (pi->lock)
4420 * - woken, and we're holding off enqueue (rq->lock)
4421 * - queued, and we're holding off schedule (rq->lock)
4422 * - running, and we're holding off de-schedule (rq->lock)
4423 *
4424 * The called function (@func) can use: task_curr(), p->on_rq and
4425 * p->__state to differentiate between these states.
4426 */
4427 ret = func(p, arg);
4428
4429 if (rq)
4430 rq_unlock(rq, &rf);
4431
4432 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4433 return ret;
4434 }
4435
4436 /**
4437 * cpu_curr_snapshot - Return a snapshot of the currently running task
4438 * @cpu: The CPU on which to snapshot the task.
4439 *
4440 * Returns the task_struct pointer of the task "currently" running on
4441 * the specified CPU.
4442 *
4443 * If the specified CPU was offline, the return value is whatever it
4444 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4445 * task, but there is no guarantee. Callers wishing a useful return
4446 * value must take some action to ensure that the specified CPU remains
4447 * online throughout.
4448 *
4449 * This function executes full memory barriers before and after fetching
4450 * the pointer, which permits the caller to confine this function's fetch
4451 * with respect to the caller's accesses to other shared variables.
4452 */
cpu_curr_snapshot(int cpu)4453 struct task_struct *cpu_curr_snapshot(int cpu)
4454 {
4455 struct rq *rq = cpu_rq(cpu);
4456 struct task_struct *t;
4457 struct rq_flags rf;
4458
4459 rq_lock_irqsave(rq, &rf);
4460 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4461 t = rcu_dereference(cpu_curr(cpu));
4462 rq_unlock_irqrestore(rq, &rf);
4463 smp_mb(); /* Pairing determined by caller's synchronization design. */
4464
4465 return t;
4466 }
4467
4468 /**
4469 * wake_up_process - Wake up a specific process
4470 * @p: The process to be woken up.
4471 *
4472 * Attempt to wake up the nominated process and move it to the set of runnable
4473 * processes.
4474 *
4475 * Return: 1 if the process was woken up, 0 if it was already running.
4476 *
4477 * This function executes a full memory barrier before accessing the task state.
4478 */
wake_up_process(struct task_struct * p)4479 int wake_up_process(struct task_struct *p)
4480 {
4481 return try_to_wake_up(p, TASK_NORMAL, 0);
4482 }
4483 EXPORT_SYMBOL(wake_up_process);
4484
wake_up_state(struct task_struct * p,unsigned int state)4485 int wake_up_state(struct task_struct *p, unsigned int state)
4486 {
4487 return try_to_wake_up(p, state, 0);
4488 }
4489
4490 /*
4491 * Perform scheduler related setup for a newly forked process p.
4492 * p is forked by current.
4493 *
4494 * __sched_fork() is basic setup which is also used by sched_init() to
4495 * initialize the boot CPU's idle task.
4496 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4497 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4498 {
4499 p->on_rq = 0;
4500
4501 p->se.on_rq = 0;
4502 p->se.exec_start = 0;
4503 p->se.sum_exec_runtime = 0;
4504 p->se.prev_sum_exec_runtime = 0;
4505 p->se.nr_migrations = 0;
4506 p->se.vruntime = 0;
4507 p->se.vlag = 0;
4508 p->se.slice = sysctl_sched_base_slice;
4509 INIT_LIST_HEAD(&p->se.group_node);
4510
4511 #ifdef CONFIG_FAIR_GROUP_SCHED
4512 p->se.cfs_rq = NULL;
4513 #endif
4514
4515 #ifdef CONFIG_SCHEDSTATS
4516 /* Even if schedstat is disabled, there should not be garbage */
4517 memset(&p->stats, 0, sizeof(p->stats));
4518 #endif
4519
4520 init_dl_entity(&p->dl);
4521
4522 INIT_LIST_HEAD(&p->rt.run_list);
4523 p->rt.timeout = 0;
4524 p->rt.time_slice = sched_rr_timeslice;
4525 p->rt.on_rq = 0;
4526 p->rt.on_list = 0;
4527
4528 #ifdef CONFIG_PREEMPT_NOTIFIERS
4529 INIT_HLIST_HEAD(&p->preempt_notifiers);
4530 #endif
4531
4532 #ifdef CONFIG_COMPACTION
4533 p->capture_control = NULL;
4534 #endif
4535 init_numa_balancing(clone_flags, p);
4536 #ifdef CONFIG_SMP
4537 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4538 p->migration_pending = NULL;
4539 #endif
4540 init_sched_mm_cid(p);
4541 }
4542
4543 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4544
4545 #ifdef CONFIG_NUMA_BALANCING
4546
4547 int sysctl_numa_balancing_mode;
4548
__set_numabalancing_state(bool enabled)4549 static void __set_numabalancing_state(bool enabled)
4550 {
4551 if (enabled)
4552 static_branch_enable(&sched_numa_balancing);
4553 else
4554 static_branch_disable(&sched_numa_balancing);
4555 }
4556
set_numabalancing_state(bool enabled)4557 void set_numabalancing_state(bool enabled)
4558 {
4559 if (enabled)
4560 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4561 else
4562 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4563 __set_numabalancing_state(enabled);
4564 }
4565
4566 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4567 static void reset_memory_tiering(void)
4568 {
4569 struct pglist_data *pgdat;
4570
4571 for_each_online_pgdat(pgdat) {
4572 pgdat->nbp_threshold = 0;
4573 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4574 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4575 }
4576 }
4577
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4578 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4579 void *buffer, size_t *lenp, loff_t *ppos)
4580 {
4581 struct ctl_table t;
4582 int err;
4583 int state = sysctl_numa_balancing_mode;
4584
4585 if (write && !capable(CAP_SYS_ADMIN))
4586 return -EPERM;
4587
4588 t = *table;
4589 t.data = &state;
4590 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4591 if (err < 0)
4592 return err;
4593 if (write) {
4594 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4595 (state & NUMA_BALANCING_MEMORY_TIERING))
4596 reset_memory_tiering();
4597 sysctl_numa_balancing_mode = state;
4598 __set_numabalancing_state(state);
4599 }
4600 return err;
4601 }
4602 #endif
4603 #endif
4604
4605 #ifdef CONFIG_SCHEDSTATS
4606
4607 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4608
set_schedstats(bool enabled)4609 static void set_schedstats(bool enabled)
4610 {
4611 if (enabled)
4612 static_branch_enable(&sched_schedstats);
4613 else
4614 static_branch_disable(&sched_schedstats);
4615 }
4616
force_schedstat_enabled(void)4617 void force_schedstat_enabled(void)
4618 {
4619 if (!schedstat_enabled()) {
4620 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4621 static_branch_enable(&sched_schedstats);
4622 }
4623 }
4624
setup_schedstats(char * str)4625 static int __init setup_schedstats(char *str)
4626 {
4627 int ret = 0;
4628 if (!str)
4629 goto out;
4630
4631 if (!strcmp(str, "enable")) {
4632 set_schedstats(true);
4633 ret = 1;
4634 } else if (!strcmp(str, "disable")) {
4635 set_schedstats(false);
4636 ret = 1;
4637 }
4638 out:
4639 if (!ret)
4640 pr_warn("Unable to parse schedstats=\n");
4641
4642 return ret;
4643 }
4644 __setup("schedstats=", setup_schedstats);
4645
4646 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4647 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4648 size_t *lenp, loff_t *ppos)
4649 {
4650 struct ctl_table t;
4651 int err;
4652 int state = static_branch_likely(&sched_schedstats);
4653
4654 if (write && !capable(CAP_SYS_ADMIN))
4655 return -EPERM;
4656
4657 t = *table;
4658 t.data = &state;
4659 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4660 if (err < 0)
4661 return err;
4662 if (write)
4663 set_schedstats(state);
4664 return err;
4665 }
4666 #endif /* CONFIG_PROC_SYSCTL */
4667 #endif /* CONFIG_SCHEDSTATS */
4668
4669 #ifdef CONFIG_SYSCTL
4670 static struct ctl_table sched_core_sysctls[] = {
4671 #ifdef CONFIG_SCHEDSTATS
4672 {
4673 .procname = "sched_schedstats",
4674 .data = NULL,
4675 .maxlen = sizeof(unsigned int),
4676 .mode = 0644,
4677 .proc_handler = sysctl_schedstats,
4678 .extra1 = SYSCTL_ZERO,
4679 .extra2 = SYSCTL_ONE,
4680 },
4681 #endif /* CONFIG_SCHEDSTATS */
4682 #ifdef CONFIG_UCLAMP_TASK
4683 {
4684 .procname = "sched_util_clamp_min",
4685 .data = &sysctl_sched_uclamp_util_min,
4686 .maxlen = sizeof(unsigned int),
4687 .mode = 0644,
4688 .proc_handler = sysctl_sched_uclamp_handler,
4689 },
4690 {
4691 .procname = "sched_util_clamp_max",
4692 .data = &sysctl_sched_uclamp_util_max,
4693 .maxlen = sizeof(unsigned int),
4694 .mode = 0644,
4695 .proc_handler = sysctl_sched_uclamp_handler,
4696 },
4697 {
4698 .procname = "sched_util_clamp_min_rt_default",
4699 .data = &sysctl_sched_uclamp_util_min_rt_default,
4700 .maxlen = sizeof(unsigned int),
4701 .mode = 0644,
4702 .proc_handler = sysctl_sched_uclamp_handler,
4703 },
4704 #endif /* CONFIG_UCLAMP_TASK */
4705 #ifdef CONFIG_NUMA_BALANCING
4706 {
4707 .procname = "numa_balancing",
4708 .data = NULL, /* filled in by handler */
4709 .maxlen = sizeof(unsigned int),
4710 .mode = 0644,
4711 .proc_handler = sysctl_numa_balancing,
4712 .extra1 = SYSCTL_ZERO,
4713 .extra2 = SYSCTL_FOUR,
4714 },
4715 #endif /* CONFIG_NUMA_BALANCING */
4716 {}
4717 };
sched_core_sysctl_init(void)4718 static int __init sched_core_sysctl_init(void)
4719 {
4720 register_sysctl_init("kernel", sched_core_sysctls);
4721 return 0;
4722 }
4723 late_initcall(sched_core_sysctl_init);
4724 #endif /* CONFIG_SYSCTL */
4725
4726 /*
4727 * fork()/clone()-time setup:
4728 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4729 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4730 {
4731 __sched_fork(clone_flags, p);
4732 /*
4733 * We mark the process as NEW here. This guarantees that
4734 * nobody will actually run it, and a signal or other external
4735 * event cannot wake it up and insert it on the runqueue either.
4736 */
4737 p->__state = TASK_NEW;
4738
4739 /*
4740 * Make sure we do not leak PI boosting priority to the child.
4741 */
4742 p->prio = current->normal_prio;
4743
4744 uclamp_fork(p);
4745
4746 /*
4747 * Revert to default priority/policy on fork if requested.
4748 */
4749 if (unlikely(p->sched_reset_on_fork)) {
4750 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4751 p->policy = SCHED_NORMAL;
4752 p->static_prio = NICE_TO_PRIO(0);
4753 p->rt_priority = 0;
4754 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4755 p->static_prio = NICE_TO_PRIO(0);
4756
4757 p->prio = p->normal_prio = p->static_prio;
4758 set_load_weight(p, false);
4759
4760 /*
4761 * We don't need the reset flag anymore after the fork. It has
4762 * fulfilled its duty:
4763 */
4764 p->sched_reset_on_fork = 0;
4765 }
4766
4767 if (dl_prio(p->prio))
4768 return -EAGAIN;
4769 else if (rt_prio(p->prio))
4770 p->sched_class = &rt_sched_class;
4771 else
4772 p->sched_class = &fair_sched_class;
4773
4774 init_entity_runnable_average(&p->se);
4775
4776
4777 #ifdef CONFIG_SCHED_INFO
4778 if (likely(sched_info_on()))
4779 memset(&p->sched_info, 0, sizeof(p->sched_info));
4780 #endif
4781 #if defined(CONFIG_SMP)
4782 p->on_cpu = 0;
4783 #endif
4784 init_task_preempt_count(p);
4785 #ifdef CONFIG_SMP
4786 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4787 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4788 #endif
4789 return 0;
4790 }
4791
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4792 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4793 {
4794 unsigned long flags;
4795
4796 /*
4797 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4798 * required yet, but lockdep gets upset if rules are violated.
4799 */
4800 raw_spin_lock_irqsave(&p->pi_lock, flags);
4801 #ifdef CONFIG_CGROUP_SCHED
4802 if (1) {
4803 struct task_group *tg;
4804 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4805 struct task_group, css);
4806 tg = autogroup_task_group(p, tg);
4807 p->sched_task_group = tg;
4808 }
4809 #endif
4810 rseq_migrate(p);
4811 /*
4812 * We're setting the CPU for the first time, we don't migrate,
4813 * so use __set_task_cpu().
4814 */
4815 __set_task_cpu(p, smp_processor_id());
4816 if (p->sched_class->task_fork)
4817 p->sched_class->task_fork(p);
4818 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4819 }
4820
sched_post_fork(struct task_struct * p)4821 void sched_post_fork(struct task_struct *p)
4822 {
4823 uclamp_post_fork(p);
4824 }
4825
to_ratio(u64 period,u64 runtime)4826 unsigned long to_ratio(u64 period, u64 runtime)
4827 {
4828 if (runtime == RUNTIME_INF)
4829 return BW_UNIT;
4830
4831 /*
4832 * Doing this here saves a lot of checks in all
4833 * the calling paths, and returning zero seems
4834 * safe for them anyway.
4835 */
4836 if (period == 0)
4837 return 0;
4838
4839 return div64_u64(runtime << BW_SHIFT, period);
4840 }
4841
4842 /*
4843 * wake_up_new_task - wake up a newly created task for the first time.
4844 *
4845 * This function will do some initial scheduler statistics housekeeping
4846 * that must be done for every newly created context, then puts the task
4847 * on the runqueue and wakes it.
4848 */
wake_up_new_task(struct task_struct * p)4849 void wake_up_new_task(struct task_struct *p)
4850 {
4851 struct rq_flags rf;
4852 struct rq *rq;
4853
4854 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4855 WRITE_ONCE(p->__state, TASK_RUNNING);
4856 #ifdef CONFIG_SMP
4857 /*
4858 * Fork balancing, do it here and not earlier because:
4859 * - cpus_ptr can change in the fork path
4860 * - any previously selected CPU might disappear through hotplug
4861 *
4862 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4863 * as we're not fully set-up yet.
4864 */
4865 p->recent_used_cpu = task_cpu(p);
4866 rseq_migrate(p);
4867 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4868 #endif
4869 rq = __task_rq_lock(p, &rf);
4870 update_rq_clock(rq);
4871 post_init_entity_util_avg(p);
4872
4873 activate_task(rq, p, ENQUEUE_NOCLOCK);
4874 trace_sched_wakeup_new(p);
4875 wakeup_preempt(rq, p, WF_FORK);
4876 #ifdef CONFIG_SMP
4877 if (p->sched_class->task_woken) {
4878 /*
4879 * Nothing relies on rq->lock after this, so it's fine to
4880 * drop it.
4881 */
4882 rq_unpin_lock(rq, &rf);
4883 p->sched_class->task_woken(rq, p);
4884 rq_repin_lock(rq, &rf);
4885 }
4886 #endif
4887 task_rq_unlock(rq, p, &rf);
4888 }
4889
4890 #ifdef CONFIG_PREEMPT_NOTIFIERS
4891
4892 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4893
preempt_notifier_inc(void)4894 void preempt_notifier_inc(void)
4895 {
4896 static_branch_inc(&preempt_notifier_key);
4897 }
4898 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4899
preempt_notifier_dec(void)4900 void preempt_notifier_dec(void)
4901 {
4902 static_branch_dec(&preempt_notifier_key);
4903 }
4904 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4905
4906 /**
4907 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4908 * @notifier: notifier struct to register
4909 */
preempt_notifier_register(struct preempt_notifier * notifier)4910 void preempt_notifier_register(struct preempt_notifier *notifier)
4911 {
4912 if (!static_branch_unlikely(&preempt_notifier_key))
4913 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4914
4915 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4916 }
4917 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4918
4919 /**
4920 * preempt_notifier_unregister - no longer interested in preemption notifications
4921 * @notifier: notifier struct to unregister
4922 *
4923 * This is *not* safe to call from within a preemption notifier.
4924 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4925 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4926 {
4927 hlist_del(¬ifier->link);
4928 }
4929 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4930
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4931 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4932 {
4933 struct preempt_notifier *notifier;
4934
4935 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4936 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4937 }
4938
fire_sched_in_preempt_notifiers(struct task_struct * curr)4939 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4940 {
4941 if (static_branch_unlikely(&preempt_notifier_key))
4942 __fire_sched_in_preempt_notifiers(curr);
4943 }
4944
4945 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4946 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4947 struct task_struct *next)
4948 {
4949 struct preempt_notifier *notifier;
4950
4951 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4952 notifier->ops->sched_out(notifier, next);
4953 }
4954
4955 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4956 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4957 struct task_struct *next)
4958 {
4959 if (static_branch_unlikely(&preempt_notifier_key))
4960 __fire_sched_out_preempt_notifiers(curr, next);
4961 }
4962
4963 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4964
fire_sched_in_preempt_notifiers(struct task_struct * curr)4965 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4966 {
4967 }
4968
4969 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4970 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4971 struct task_struct *next)
4972 {
4973 }
4974
4975 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4976
prepare_task(struct task_struct * next)4977 static inline void prepare_task(struct task_struct *next)
4978 {
4979 #ifdef CONFIG_SMP
4980 /*
4981 * Claim the task as running, we do this before switching to it
4982 * such that any running task will have this set.
4983 *
4984 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4985 * its ordering comment.
4986 */
4987 WRITE_ONCE(next->on_cpu, 1);
4988 #endif
4989 }
4990
finish_task(struct task_struct * prev)4991 static inline void finish_task(struct task_struct *prev)
4992 {
4993 #ifdef CONFIG_SMP
4994 /*
4995 * This must be the very last reference to @prev from this CPU. After
4996 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4997 * must ensure this doesn't happen until the switch is completely
4998 * finished.
4999 *
5000 * In particular, the load of prev->state in finish_task_switch() must
5001 * happen before this.
5002 *
5003 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5004 */
5005 smp_store_release(&prev->on_cpu, 0);
5006 #endif
5007 }
5008
5009 #ifdef CONFIG_SMP
5010
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5011 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5012 {
5013 void (*func)(struct rq *rq);
5014 struct balance_callback *next;
5015
5016 lockdep_assert_rq_held(rq);
5017
5018 while (head) {
5019 func = (void (*)(struct rq *))head->func;
5020 next = head->next;
5021 head->next = NULL;
5022 head = next;
5023
5024 func(rq);
5025 }
5026 }
5027
5028 static void balance_push(struct rq *rq);
5029
5030 /*
5031 * balance_push_callback is a right abuse of the callback interface and plays
5032 * by significantly different rules.
5033 *
5034 * Where the normal balance_callback's purpose is to be ran in the same context
5035 * that queued it (only later, when it's safe to drop rq->lock again),
5036 * balance_push_callback is specifically targeted at __schedule().
5037 *
5038 * This abuse is tolerated because it places all the unlikely/odd cases behind
5039 * a single test, namely: rq->balance_callback == NULL.
5040 */
5041 struct balance_callback balance_push_callback = {
5042 .next = NULL,
5043 .func = balance_push,
5044 };
5045
5046 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5047 __splice_balance_callbacks(struct rq *rq, bool split)
5048 {
5049 struct balance_callback *head = rq->balance_callback;
5050
5051 if (likely(!head))
5052 return NULL;
5053
5054 lockdep_assert_rq_held(rq);
5055 /*
5056 * Must not take balance_push_callback off the list when
5057 * splice_balance_callbacks() and balance_callbacks() are not
5058 * in the same rq->lock section.
5059 *
5060 * In that case it would be possible for __schedule() to interleave
5061 * and observe the list empty.
5062 */
5063 if (split && head == &balance_push_callback)
5064 head = NULL;
5065 else
5066 rq->balance_callback = NULL;
5067
5068 return head;
5069 }
5070
splice_balance_callbacks(struct rq * rq)5071 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5072 {
5073 return __splice_balance_callbacks(rq, true);
5074 }
5075
__balance_callbacks(struct rq * rq)5076 static void __balance_callbacks(struct rq *rq)
5077 {
5078 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5079 }
5080
balance_callbacks(struct rq * rq,struct balance_callback * head)5081 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5082 {
5083 unsigned long flags;
5084
5085 if (unlikely(head)) {
5086 raw_spin_rq_lock_irqsave(rq, flags);
5087 do_balance_callbacks(rq, head);
5088 raw_spin_rq_unlock_irqrestore(rq, flags);
5089 }
5090 }
5091
5092 #else
5093
__balance_callbacks(struct rq * rq)5094 static inline void __balance_callbacks(struct rq *rq)
5095 {
5096 }
5097
splice_balance_callbacks(struct rq * rq)5098 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5099 {
5100 return NULL;
5101 }
5102
balance_callbacks(struct rq * rq,struct balance_callback * head)5103 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5104 {
5105 }
5106
5107 #endif
5108
5109 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5110 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5111 {
5112 /*
5113 * Since the runqueue lock will be released by the next
5114 * task (which is an invalid locking op but in the case
5115 * of the scheduler it's an obvious special-case), so we
5116 * do an early lockdep release here:
5117 */
5118 rq_unpin_lock(rq, rf);
5119 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5120 #ifdef CONFIG_DEBUG_SPINLOCK
5121 /* this is a valid case when another task releases the spinlock */
5122 rq_lockp(rq)->owner = next;
5123 #endif
5124 }
5125
finish_lock_switch(struct rq * rq)5126 static inline void finish_lock_switch(struct rq *rq)
5127 {
5128 /*
5129 * If we are tracking spinlock dependencies then we have to
5130 * fix up the runqueue lock - which gets 'carried over' from
5131 * prev into current:
5132 */
5133 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5134 __balance_callbacks(rq);
5135 raw_spin_rq_unlock_irq(rq);
5136 }
5137
5138 /*
5139 * NOP if the arch has not defined these:
5140 */
5141
5142 #ifndef prepare_arch_switch
5143 # define prepare_arch_switch(next) do { } while (0)
5144 #endif
5145
5146 #ifndef finish_arch_post_lock_switch
5147 # define finish_arch_post_lock_switch() do { } while (0)
5148 #endif
5149
kmap_local_sched_out(void)5150 static inline void kmap_local_sched_out(void)
5151 {
5152 #ifdef CONFIG_KMAP_LOCAL
5153 if (unlikely(current->kmap_ctrl.idx))
5154 __kmap_local_sched_out();
5155 #endif
5156 }
5157
kmap_local_sched_in(void)5158 static inline void kmap_local_sched_in(void)
5159 {
5160 #ifdef CONFIG_KMAP_LOCAL
5161 if (unlikely(current->kmap_ctrl.idx))
5162 __kmap_local_sched_in();
5163 #endif
5164 }
5165
5166 /**
5167 * prepare_task_switch - prepare to switch tasks
5168 * @rq: the runqueue preparing to switch
5169 * @prev: the current task that is being switched out
5170 * @next: the task we are going to switch to.
5171 *
5172 * This is called with the rq lock held and interrupts off. It must
5173 * be paired with a subsequent finish_task_switch after the context
5174 * switch.
5175 *
5176 * prepare_task_switch sets up locking and calls architecture specific
5177 * hooks.
5178 */
5179 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5180 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5181 struct task_struct *next)
5182 {
5183 kcov_prepare_switch(prev);
5184 sched_info_switch(rq, prev, next);
5185 perf_event_task_sched_out(prev, next);
5186 rseq_preempt(prev);
5187 fire_sched_out_preempt_notifiers(prev, next);
5188 kmap_local_sched_out();
5189 prepare_task(next);
5190 prepare_arch_switch(next);
5191 }
5192
5193 /**
5194 * finish_task_switch - clean up after a task-switch
5195 * @prev: the thread we just switched away from.
5196 *
5197 * finish_task_switch must be called after the context switch, paired
5198 * with a prepare_task_switch call before the context switch.
5199 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5200 * and do any other architecture-specific cleanup actions.
5201 *
5202 * Note that we may have delayed dropping an mm in context_switch(). If
5203 * so, we finish that here outside of the runqueue lock. (Doing it
5204 * with the lock held can cause deadlocks; see schedule() for
5205 * details.)
5206 *
5207 * The context switch have flipped the stack from under us and restored the
5208 * local variables which were saved when this task called schedule() in the
5209 * past. prev == current is still correct but we need to recalculate this_rq
5210 * because prev may have moved to another CPU.
5211 */
finish_task_switch(struct task_struct * prev)5212 static struct rq *finish_task_switch(struct task_struct *prev)
5213 __releases(rq->lock)
5214 {
5215 struct rq *rq = this_rq();
5216 struct mm_struct *mm = rq->prev_mm;
5217 unsigned int prev_state;
5218
5219 /*
5220 * The previous task will have left us with a preempt_count of 2
5221 * because it left us after:
5222 *
5223 * schedule()
5224 * preempt_disable(); // 1
5225 * __schedule()
5226 * raw_spin_lock_irq(&rq->lock) // 2
5227 *
5228 * Also, see FORK_PREEMPT_COUNT.
5229 */
5230 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5231 "corrupted preempt_count: %s/%d/0x%x\n",
5232 current->comm, current->pid, preempt_count()))
5233 preempt_count_set(FORK_PREEMPT_COUNT);
5234
5235 rq->prev_mm = NULL;
5236
5237 /*
5238 * A task struct has one reference for the use as "current".
5239 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5240 * schedule one last time. The schedule call will never return, and
5241 * the scheduled task must drop that reference.
5242 *
5243 * We must observe prev->state before clearing prev->on_cpu (in
5244 * finish_task), otherwise a concurrent wakeup can get prev
5245 * running on another CPU and we could rave with its RUNNING -> DEAD
5246 * transition, resulting in a double drop.
5247 */
5248 prev_state = READ_ONCE(prev->__state);
5249 vtime_task_switch(prev);
5250 perf_event_task_sched_in(prev, current);
5251 finish_task(prev);
5252 tick_nohz_task_switch();
5253 finish_lock_switch(rq);
5254 finish_arch_post_lock_switch();
5255 kcov_finish_switch(current);
5256 /*
5257 * kmap_local_sched_out() is invoked with rq::lock held and
5258 * interrupts disabled. There is no requirement for that, but the
5259 * sched out code does not have an interrupt enabled section.
5260 * Restoring the maps on sched in does not require interrupts being
5261 * disabled either.
5262 */
5263 kmap_local_sched_in();
5264
5265 fire_sched_in_preempt_notifiers(current);
5266 /*
5267 * When switching through a kernel thread, the loop in
5268 * membarrier_{private,global}_expedited() may have observed that
5269 * kernel thread and not issued an IPI. It is therefore possible to
5270 * schedule between user->kernel->user threads without passing though
5271 * switch_mm(). Membarrier requires a barrier after storing to
5272 * rq->curr, before returning to userspace, so provide them here:
5273 *
5274 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5275 * provided by mmdrop_lazy_tlb(),
5276 * - a sync_core for SYNC_CORE.
5277 */
5278 if (mm) {
5279 membarrier_mm_sync_core_before_usermode(mm);
5280 mmdrop_lazy_tlb_sched(mm);
5281 }
5282
5283 if (unlikely(prev_state == TASK_DEAD)) {
5284 if (prev->sched_class->task_dead)
5285 prev->sched_class->task_dead(prev);
5286
5287 /* Task is done with its stack. */
5288 put_task_stack(prev);
5289
5290 put_task_struct_rcu_user(prev);
5291 }
5292
5293 return rq;
5294 }
5295
5296 /**
5297 * schedule_tail - first thing a freshly forked thread must call.
5298 * @prev: the thread we just switched away from.
5299 */
schedule_tail(struct task_struct * prev)5300 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5301 __releases(rq->lock)
5302 {
5303 /*
5304 * New tasks start with FORK_PREEMPT_COUNT, see there and
5305 * finish_task_switch() for details.
5306 *
5307 * finish_task_switch() will drop rq->lock() and lower preempt_count
5308 * and the preempt_enable() will end up enabling preemption (on
5309 * PREEMPT_COUNT kernels).
5310 */
5311
5312 finish_task_switch(prev);
5313 preempt_enable();
5314
5315 if (current->set_child_tid)
5316 put_user(task_pid_vnr(current), current->set_child_tid);
5317
5318 calculate_sigpending();
5319 }
5320
5321 /*
5322 * context_switch - switch to the new MM and the new thread's register state.
5323 */
5324 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5325 context_switch(struct rq *rq, struct task_struct *prev,
5326 struct task_struct *next, struct rq_flags *rf)
5327 {
5328 prepare_task_switch(rq, prev, next);
5329
5330 /*
5331 * For paravirt, this is coupled with an exit in switch_to to
5332 * combine the page table reload and the switch backend into
5333 * one hypercall.
5334 */
5335 arch_start_context_switch(prev);
5336
5337 /*
5338 * kernel -> kernel lazy + transfer active
5339 * user -> kernel lazy + mmgrab_lazy_tlb() active
5340 *
5341 * kernel -> user switch + mmdrop_lazy_tlb() active
5342 * user -> user switch
5343 *
5344 * switch_mm_cid() needs to be updated if the barriers provided
5345 * by context_switch() are modified.
5346 */
5347 if (!next->mm) { // to kernel
5348 enter_lazy_tlb(prev->active_mm, next);
5349
5350 next->active_mm = prev->active_mm;
5351 if (prev->mm) // from user
5352 mmgrab_lazy_tlb(prev->active_mm);
5353 else
5354 prev->active_mm = NULL;
5355 } else { // to user
5356 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5357 /*
5358 * sys_membarrier() requires an smp_mb() between setting
5359 * rq->curr / membarrier_switch_mm() and returning to userspace.
5360 *
5361 * The below provides this either through switch_mm(), or in
5362 * case 'prev->active_mm == next->mm' through
5363 * finish_task_switch()'s mmdrop().
5364 */
5365 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5366 lru_gen_use_mm(next->mm);
5367
5368 if (!prev->mm) { // from kernel
5369 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5370 rq->prev_mm = prev->active_mm;
5371 prev->active_mm = NULL;
5372 }
5373 }
5374
5375 /* switch_mm_cid() requires the memory barriers above. */
5376 switch_mm_cid(rq, prev, next);
5377
5378 prepare_lock_switch(rq, next, rf);
5379
5380 /* Here we just switch the register state and the stack. */
5381 switch_to(prev, next, prev);
5382 barrier();
5383
5384 return finish_task_switch(prev);
5385 }
5386
5387 /*
5388 * nr_running and nr_context_switches:
5389 *
5390 * externally visible scheduler statistics: current number of runnable
5391 * threads, total number of context switches performed since bootup.
5392 */
nr_running(void)5393 unsigned int nr_running(void)
5394 {
5395 unsigned int i, sum = 0;
5396
5397 for_each_online_cpu(i)
5398 sum += cpu_rq(i)->nr_running;
5399
5400 return sum;
5401 }
5402
5403 /*
5404 * Check if only the current task is running on the CPU.
5405 *
5406 * Caution: this function does not check that the caller has disabled
5407 * preemption, thus the result might have a time-of-check-to-time-of-use
5408 * race. The caller is responsible to use it correctly, for example:
5409 *
5410 * - from a non-preemptible section (of course)
5411 *
5412 * - from a thread that is bound to a single CPU
5413 *
5414 * - in a loop with very short iterations (e.g. a polling loop)
5415 */
single_task_running(void)5416 bool single_task_running(void)
5417 {
5418 return raw_rq()->nr_running == 1;
5419 }
5420 EXPORT_SYMBOL(single_task_running);
5421
nr_context_switches_cpu(int cpu)5422 unsigned long long nr_context_switches_cpu(int cpu)
5423 {
5424 return cpu_rq(cpu)->nr_switches;
5425 }
5426
nr_context_switches(void)5427 unsigned long long nr_context_switches(void)
5428 {
5429 int i;
5430 unsigned long long sum = 0;
5431
5432 for_each_possible_cpu(i)
5433 sum += cpu_rq(i)->nr_switches;
5434
5435 return sum;
5436 }
5437
5438 /*
5439 * Consumers of these two interfaces, like for example the cpuidle menu
5440 * governor, are using nonsensical data. Preferring shallow idle state selection
5441 * for a CPU that has IO-wait which might not even end up running the task when
5442 * it does become runnable.
5443 */
5444
nr_iowait_cpu(int cpu)5445 unsigned int nr_iowait_cpu(int cpu)
5446 {
5447 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5448 }
5449
5450 /*
5451 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5452 *
5453 * The idea behind IO-wait account is to account the idle time that we could
5454 * have spend running if it were not for IO. That is, if we were to improve the
5455 * storage performance, we'd have a proportional reduction in IO-wait time.
5456 *
5457 * This all works nicely on UP, where, when a task blocks on IO, we account
5458 * idle time as IO-wait, because if the storage were faster, it could've been
5459 * running and we'd not be idle.
5460 *
5461 * This has been extended to SMP, by doing the same for each CPU. This however
5462 * is broken.
5463 *
5464 * Imagine for instance the case where two tasks block on one CPU, only the one
5465 * CPU will have IO-wait accounted, while the other has regular idle. Even
5466 * though, if the storage were faster, both could've ran at the same time,
5467 * utilising both CPUs.
5468 *
5469 * This means, that when looking globally, the current IO-wait accounting on
5470 * SMP is a lower bound, by reason of under accounting.
5471 *
5472 * Worse, since the numbers are provided per CPU, they are sometimes
5473 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5474 * associated with any one particular CPU, it can wake to another CPU than it
5475 * blocked on. This means the per CPU IO-wait number is meaningless.
5476 *
5477 * Task CPU affinities can make all that even more 'interesting'.
5478 */
5479
nr_iowait(void)5480 unsigned int nr_iowait(void)
5481 {
5482 unsigned int i, sum = 0;
5483
5484 for_each_possible_cpu(i)
5485 sum += nr_iowait_cpu(i);
5486
5487 return sum;
5488 }
5489
5490 #ifdef CONFIG_SMP
5491
5492 /*
5493 * sched_exec - execve() is a valuable balancing opportunity, because at
5494 * this point the task has the smallest effective memory and cache footprint.
5495 */
sched_exec(void)5496 void sched_exec(void)
5497 {
5498 struct task_struct *p = current;
5499 struct migration_arg arg;
5500 int dest_cpu;
5501
5502 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5503 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5504 if (dest_cpu == smp_processor_id())
5505 return;
5506
5507 if (unlikely(!cpu_active(dest_cpu)))
5508 return;
5509
5510 arg = (struct migration_arg){ p, dest_cpu };
5511 }
5512 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5513 }
5514
5515 #endif
5516
5517 DEFINE_PER_CPU(struct kernel_stat, kstat);
5518 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5519
5520 EXPORT_PER_CPU_SYMBOL(kstat);
5521 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5522
5523 /*
5524 * The function fair_sched_class.update_curr accesses the struct curr
5525 * and its field curr->exec_start; when called from task_sched_runtime(),
5526 * we observe a high rate of cache misses in practice.
5527 * Prefetching this data results in improved performance.
5528 */
prefetch_curr_exec_start(struct task_struct * p)5529 static inline void prefetch_curr_exec_start(struct task_struct *p)
5530 {
5531 #ifdef CONFIG_FAIR_GROUP_SCHED
5532 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5533 #else
5534 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5535 #endif
5536 prefetch(curr);
5537 prefetch(&curr->exec_start);
5538 }
5539
5540 /*
5541 * Return accounted runtime for the task.
5542 * In case the task is currently running, return the runtime plus current's
5543 * pending runtime that have not been accounted yet.
5544 */
task_sched_runtime(struct task_struct * p)5545 unsigned long long task_sched_runtime(struct task_struct *p)
5546 {
5547 struct rq_flags rf;
5548 struct rq *rq;
5549 u64 ns;
5550
5551 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5552 /*
5553 * 64-bit doesn't need locks to atomically read a 64-bit value.
5554 * So we have a optimization chance when the task's delta_exec is 0.
5555 * Reading ->on_cpu is racy, but this is ok.
5556 *
5557 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5558 * If we race with it entering CPU, unaccounted time is 0. This is
5559 * indistinguishable from the read occurring a few cycles earlier.
5560 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5561 * been accounted, so we're correct here as well.
5562 */
5563 if (!p->on_cpu || !task_on_rq_queued(p))
5564 return p->se.sum_exec_runtime;
5565 #endif
5566
5567 rq = task_rq_lock(p, &rf);
5568 /*
5569 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5570 * project cycles that may never be accounted to this
5571 * thread, breaking clock_gettime().
5572 */
5573 if (task_current(rq, p) && task_on_rq_queued(p)) {
5574 prefetch_curr_exec_start(p);
5575 update_rq_clock(rq);
5576 p->sched_class->update_curr(rq);
5577 }
5578 ns = p->se.sum_exec_runtime;
5579 task_rq_unlock(rq, p, &rf);
5580
5581 return ns;
5582 }
5583
5584 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5585 static u64 cpu_resched_latency(struct rq *rq)
5586 {
5587 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5588 u64 resched_latency, now = rq_clock(rq);
5589 static bool warned_once;
5590
5591 if (sysctl_resched_latency_warn_once && warned_once)
5592 return 0;
5593
5594 if (!need_resched() || !latency_warn_ms)
5595 return 0;
5596
5597 if (system_state == SYSTEM_BOOTING)
5598 return 0;
5599
5600 if (!rq->last_seen_need_resched_ns) {
5601 rq->last_seen_need_resched_ns = now;
5602 rq->ticks_without_resched = 0;
5603 return 0;
5604 }
5605
5606 rq->ticks_without_resched++;
5607 resched_latency = now - rq->last_seen_need_resched_ns;
5608 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5609 return 0;
5610
5611 warned_once = true;
5612
5613 return resched_latency;
5614 }
5615
setup_resched_latency_warn_ms(char * str)5616 static int __init setup_resched_latency_warn_ms(char *str)
5617 {
5618 long val;
5619
5620 if ((kstrtol(str, 0, &val))) {
5621 pr_warn("Unable to set resched_latency_warn_ms\n");
5622 return 1;
5623 }
5624
5625 sysctl_resched_latency_warn_ms = val;
5626 return 1;
5627 }
5628 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5629 #else
cpu_resched_latency(struct rq * rq)5630 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5631 #endif /* CONFIG_SCHED_DEBUG */
5632
5633 /*
5634 * This function gets called by the timer code, with HZ frequency.
5635 * We call it with interrupts disabled.
5636 */
scheduler_tick(void)5637 void scheduler_tick(void)
5638 {
5639 int cpu = smp_processor_id();
5640 struct rq *rq = cpu_rq(cpu);
5641 struct task_struct *curr;
5642 struct rq_flags rf;
5643 unsigned long thermal_pressure;
5644 u64 resched_latency;
5645
5646 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5647 arch_scale_freq_tick();
5648
5649 sched_clock_tick();
5650
5651 rq_lock(rq, &rf);
5652
5653 curr = rq->curr;
5654 psi_account_irqtime(rq, curr, NULL);
5655
5656 update_rq_clock(rq);
5657 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5658 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5659 curr->sched_class->task_tick(rq, curr, 0);
5660 if (sched_feat(LATENCY_WARN))
5661 resched_latency = cpu_resched_latency(rq);
5662 calc_global_load_tick(rq);
5663 sched_core_tick(rq);
5664 task_tick_mm_cid(rq, curr);
5665
5666 rq_unlock(rq, &rf);
5667
5668 if (sched_feat(LATENCY_WARN) && resched_latency)
5669 resched_latency_warn(cpu, resched_latency);
5670
5671 perf_event_task_tick();
5672
5673 if (curr->flags & PF_WQ_WORKER)
5674 wq_worker_tick(curr);
5675
5676 #ifdef CONFIG_SMP
5677 rq->idle_balance = idle_cpu(cpu);
5678 trigger_load_balance(rq);
5679 #endif
5680 }
5681
5682 #ifdef CONFIG_NO_HZ_FULL
5683
5684 struct tick_work {
5685 int cpu;
5686 atomic_t state;
5687 struct delayed_work work;
5688 };
5689 /* Values for ->state, see diagram below. */
5690 #define TICK_SCHED_REMOTE_OFFLINE 0
5691 #define TICK_SCHED_REMOTE_OFFLINING 1
5692 #define TICK_SCHED_REMOTE_RUNNING 2
5693
5694 /*
5695 * State diagram for ->state:
5696 *
5697 *
5698 * TICK_SCHED_REMOTE_OFFLINE
5699 * | ^
5700 * | |
5701 * | | sched_tick_remote()
5702 * | |
5703 * | |
5704 * +--TICK_SCHED_REMOTE_OFFLINING
5705 * | ^
5706 * | |
5707 * sched_tick_start() | | sched_tick_stop()
5708 * | |
5709 * V |
5710 * TICK_SCHED_REMOTE_RUNNING
5711 *
5712 *
5713 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5714 * and sched_tick_start() are happy to leave the state in RUNNING.
5715 */
5716
5717 static struct tick_work __percpu *tick_work_cpu;
5718
sched_tick_remote(struct work_struct * work)5719 static void sched_tick_remote(struct work_struct *work)
5720 {
5721 struct delayed_work *dwork = to_delayed_work(work);
5722 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5723 int cpu = twork->cpu;
5724 struct rq *rq = cpu_rq(cpu);
5725 int os;
5726
5727 /*
5728 * Handle the tick only if it appears the remote CPU is running in full
5729 * dynticks mode. The check is racy by nature, but missing a tick or
5730 * having one too much is no big deal because the scheduler tick updates
5731 * statistics and checks timeslices in a time-independent way, regardless
5732 * of when exactly it is running.
5733 */
5734 if (tick_nohz_tick_stopped_cpu(cpu)) {
5735 guard(rq_lock_irq)(rq);
5736 struct task_struct *curr = rq->curr;
5737
5738 if (cpu_online(cpu)) {
5739 update_rq_clock(rq);
5740
5741 if (!is_idle_task(curr)) {
5742 /*
5743 * Make sure the next tick runs within a
5744 * reasonable amount of time.
5745 */
5746 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5747 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5748 }
5749 curr->sched_class->task_tick(rq, curr, 0);
5750
5751 calc_load_nohz_remote(rq);
5752 }
5753 }
5754
5755 /*
5756 * Run the remote tick once per second (1Hz). This arbitrary
5757 * frequency is large enough to avoid overload but short enough
5758 * to keep scheduler internal stats reasonably up to date. But
5759 * first update state to reflect hotplug activity if required.
5760 */
5761 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5762 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5763 if (os == TICK_SCHED_REMOTE_RUNNING)
5764 queue_delayed_work(system_unbound_wq, dwork, HZ);
5765 }
5766
sched_tick_start(int cpu)5767 static void sched_tick_start(int cpu)
5768 {
5769 int os;
5770 struct tick_work *twork;
5771
5772 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5773 return;
5774
5775 WARN_ON_ONCE(!tick_work_cpu);
5776
5777 twork = per_cpu_ptr(tick_work_cpu, cpu);
5778 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5779 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5780 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5781 twork->cpu = cpu;
5782 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5783 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5784 }
5785 }
5786
5787 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5788 static void sched_tick_stop(int cpu)
5789 {
5790 struct tick_work *twork;
5791 int os;
5792
5793 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5794 return;
5795
5796 WARN_ON_ONCE(!tick_work_cpu);
5797
5798 twork = per_cpu_ptr(tick_work_cpu, cpu);
5799 /* There cannot be competing actions, but don't rely on stop-machine. */
5800 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5801 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5802 /* Don't cancel, as this would mess up the state machine. */
5803 }
5804 #endif /* CONFIG_HOTPLUG_CPU */
5805
sched_tick_offload_init(void)5806 int __init sched_tick_offload_init(void)
5807 {
5808 tick_work_cpu = alloc_percpu(struct tick_work);
5809 BUG_ON(!tick_work_cpu);
5810 return 0;
5811 }
5812
5813 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5814 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5815 static inline void sched_tick_stop(int cpu) { }
5816 #endif
5817
5818 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5819 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5820 /*
5821 * If the value passed in is equal to the current preempt count
5822 * then we just disabled preemption. Start timing the latency.
5823 */
preempt_latency_start(int val)5824 static inline void preempt_latency_start(int val)
5825 {
5826 if (preempt_count() == val) {
5827 unsigned long ip = get_lock_parent_ip();
5828 #ifdef CONFIG_DEBUG_PREEMPT
5829 current->preempt_disable_ip = ip;
5830 #endif
5831 trace_preempt_off(CALLER_ADDR0, ip);
5832 }
5833 }
5834
preempt_count_add(int val)5835 void preempt_count_add(int val)
5836 {
5837 #ifdef CONFIG_DEBUG_PREEMPT
5838 /*
5839 * Underflow?
5840 */
5841 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5842 return;
5843 #endif
5844 __preempt_count_add(val);
5845 #ifdef CONFIG_DEBUG_PREEMPT
5846 /*
5847 * Spinlock count overflowing soon?
5848 */
5849 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5850 PREEMPT_MASK - 10);
5851 #endif
5852 preempt_latency_start(val);
5853 }
5854 EXPORT_SYMBOL(preempt_count_add);
5855 NOKPROBE_SYMBOL(preempt_count_add);
5856
5857 /*
5858 * If the value passed in equals to the current preempt count
5859 * then we just enabled preemption. Stop timing the latency.
5860 */
preempt_latency_stop(int val)5861 static inline void preempt_latency_stop(int val)
5862 {
5863 if (preempt_count() == val)
5864 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5865 }
5866
preempt_count_sub(int val)5867 void preempt_count_sub(int val)
5868 {
5869 #ifdef CONFIG_DEBUG_PREEMPT
5870 /*
5871 * Underflow?
5872 */
5873 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5874 return;
5875 /*
5876 * Is the spinlock portion underflowing?
5877 */
5878 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5879 !(preempt_count() & PREEMPT_MASK)))
5880 return;
5881 #endif
5882
5883 preempt_latency_stop(val);
5884 __preempt_count_sub(val);
5885 }
5886 EXPORT_SYMBOL(preempt_count_sub);
5887 NOKPROBE_SYMBOL(preempt_count_sub);
5888
5889 #else
preempt_latency_start(int val)5890 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5891 static inline void preempt_latency_stop(int val) { }
5892 #endif
5893
get_preempt_disable_ip(struct task_struct * p)5894 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5895 {
5896 #ifdef CONFIG_DEBUG_PREEMPT
5897 return p->preempt_disable_ip;
5898 #else
5899 return 0;
5900 #endif
5901 }
5902
5903 /*
5904 * Print scheduling while atomic bug:
5905 */
__schedule_bug(struct task_struct * prev)5906 static noinline void __schedule_bug(struct task_struct *prev)
5907 {
5908 /* Save this before calling printk(), since that will clobber it */
5909 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5910
5911 if (oops_in_progress)
5912 return;
5913
5914 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5915 prev->comm, prev->pid, preempt_count());
5916
5917 debug_show_held_locks(prev);
5918 print_modules();
5919 if (irqs_disabled())
5920 print_irqtrace_events(prev);
5921 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5922 && in_atomic_preempt_off()) {
5923 pr_err("Preemption disabled at:");
5924 print_ip_sym(KERN_ERR, preempt_disable_ip);
5925 }
5926 check_panic_on_warn("scheduling while atomic");
5927
5928 dump_stack();
5929 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5930 }
5931
5932 /*
5933 * Various schedule()-time debugging checks and statistics:
5934 */
schedule_debug(struct task_struct * prev,bool preempt)5935 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5936 {
5937 #ifdef CONFIG_SCHED_STACK_END_CHECK
5938 if (task_stack_end_corrupted(prev))
5939 panic("corrupted stack end detected inside scheduler\n");
5940
5941 if (task_scs_end_corrupted(prev))
5942 panic("corrupted shadow stack detected inside scheduler\n");
5943 #endif
5944
5945 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5946 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5947 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5948 prev->comm, prev->pid, prev->non_block_count);
5949 dump_stack();
5950 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5951 }
5952 #endif
5953
5954 if (unlikely(in_atomic_preempt_off())) {
5955 __schedule_bug(prev);
5956 preempt_count_set(PREEMPT_DISABLED);
5957 }
5958 rcu_sleep_check();
5959 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5960
5961 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5962
5963 schedstat_inc(this_rq()->sched_count);
5964 }
5965
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5966 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5967 struct rq_flags *rf)
5968 {
5969 #ifdef CONFIG_SMP
5970 const struct sched_class *class;
5971 /*
5972 * We must do the balancing pass before put_prev_task(), such
5973 * that when we release the rq->lock the task is in the same
5974 * state as before we took rq->lock.
5975 *
5976 * We can terminate the balance pass as soon as we know there is
5977 * a runnable task of @class priority or higher.
5978 */
5979 for_class_range(class, prev->sched_class, &idle_sched_class) {
5980 if (class->balance(rq, prev, rf))
5981 break;
5982 }
5983 #endif
5984
5985 put_prev_task(rq, prev);
5986 }
5987
5988 /*
5989 * Pick up the highest-prio task:
5990 */
5991 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5992 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5993 {
5994 const struct sched_class *class;
5995 struct task_struct *p;
5996
5997 /*
5998 * Optimization: we know that if all tasks are in the fair class we can
5999 * call that function directly, but only if the @prev task wasn't of a
6000 * higher scheduling class, because otherwise those lose the
6001 * opportunity to pull in more work from other CPUs.
6002 */
6003 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6004 rq->nr_running == rq->cfs.h_nr_running)) {
6005
6006 p = pick_next_task_fair(rq, prev, rf);
6007 if (unlikely(p == RETRY_TASK))
6008 goto restart;
6009
6010 /* Assume the next prioritized class is idle_sched_class */
6011 if (!p) {
6012 put_prev_task(rq, prev);
6013 p = pick_next_task_idle(rq);
6014 }
6015
6016 return p;
6017 }
6018
6019 restart:
6020 put_prev_task_balance(rq, prev, rf);
6021
6022 for_each_class(class) {
6023 p = class->pick_next_task(rq);
6024 if (p)
6025 return p;
6026 }
6027
6028 BUG(); /* The idle class should always have a runnable task. */
6029 }
6030
6031 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6032 static inline bool is_task_rq_idle(struct task_struct *t)
6033 {
6034 return (task_rq(t)->idle == t);
6035 }
6036
cookie_equals(struct task_struct * a,unsigned long cookie)6037 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6038 {
6039 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6040 }
6041
cookie_match(struct task_struct * a,struct task_struct * b)6042 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6043 {
6044 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6045 return true;
6046
6047 return a->core_cookie == b->core_cookie;
6048 }
6049
pick_task(struct rq * rq)6050 static inline struct task_struct *pick_task(struct rq *rq)
6051 {
6052 const struct sched_class *class;
6053 struct task_struct *p;
6054
6055 for_each_class(class) {
6056 p = class->pick_task(rq);
6057 if (p)
6058 return p;
6059 }
6060
6061 BUG(); /* The idle class should always have a runnable task. */
6062 }
6063
6064 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6065
6066 static void queue_core_balance(struct rq *rq);
6067
6068 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6069 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6070 {
6071 struct task_struct *next, *p, *max = NULL;
6072 const struct cpumask *smt_mask;
6073 bool fi_before = false;
6074 bool core_clock_updated = (rq == rq->core);
6075 unsigned long cookie;
6076 int i, cpu, occ = 0;
6077 struct rq *rq_i;
6078 bool need_sync;
6079
6080 if (!sched_core_enabled(rq))
6081 return __pick_next_task(rq, prev, rf);
6082
6083 cpu = cpu_of(rq);
6084
6085 /* Stopper task is switching into idle, no need core-wide selection. */
6086 if (cpu_is_offline(cpu)) {
6087 /*
6088 * Reset core_pick so that we don't enter the fastpath when
6089 * coming online. core_pick would already be migrated to
6090 * another cpu during offline.
6091 */
6092 rq->core_pick = NULL;
6093 return __pick_next_task(rq, prev, rf);
6094 }
6095
6096 /*
6097 * If there were no {en,de}queues since we picked (IOW, the task
6098 * pointers are all still valid), and we haven't scheduled the last
6099 * pick yet, do so now.
6100 *
6101 * rq->core_pick can be NULL if no selection was made for a CPU because
6102 * it was either offline or went offline during a sibling's core-wide
6103 * selection. In this case, do a core-wide selection.
6104 */
6105 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6106 rq->core->core_pick_seq != rq->core_sched_seq &&
6107 rq->core_pick) {
6108 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6109
6110 next = rq->core_pick;
6111 if (next != prev) {
6112 put_prev_task(rq, prev);
6113 set_next_task(rq, next);
6114 }
6115
6116 rq->core_pick = NULL;
6117 goto out;
6118 }
6119
6120 put_prev_task_balance(rq, prev, rf);
6121
6122 smt_mask = cpu_smt_mask(cpu);
6123 need_sync = !!rq->core->core_cookie;
6124
6125 /* reset state */
6126 rq->core->core_cookie = 0UL;
6127 if (rq->core->core_forceidle_count) {
6128 if (!core_clock_updated) {
6129 update_rq_clock(rq->core);
6130 core_clock_updated = true;
6131 }
6132 sched_core_account_forceidle(rq);
6133 /* reset after accounting force idle */
6134 rq->core->core_forceidle_start = 0;
6135 rq->core->core_forceidle_count = 0;
6136 rq->core->core_forceidle_occupation = 0;
6137 need_sync = true;
6138 fi_before = true;
6139 }
6140
6141 /*
6142 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6143 *
6144 * @task_seq guards the task state ({en,de}queues)
6145 * @pick_seq is the @task_seq we did a selection on
6146 * @sched_seq is the @pick_seq we scheduled
6147 *
6148 * However, preemptions can cause multiple picks on the same task set.
6149 * 'Fix' this by also increasing @task_seq for every pick.
6150 */
6151 rq->core->core_task_seq++;
6152
6153 /*
6154 * Optimize for common case where this CPU has no cookies
6155 * and there are no cookied tasks running on siblings.
6156 */
6157 if (!need_sync) {
6158 next = pick_task(rq);
6159 if (!next->core_cookie) {
6160 rq->core_pick = NULL;
6161 /*
6162 * For robustness, update the min_vruntime_fi for
6163 * unconstrained picks as well.
6164 */
6165 WARN_ON_ONCE(fi_before);
6166 task_vruntime_update(rq, next, false);
6167 goto out_set_next;
6168 }
6169 }
6170
6171 /*
6172 * For each thread: do the regular task pick and find the max prio task
6173 * amongst them.
6174 *
6175 * Tie-break prio towards the current CPU
6176 */
6177 for_each_cpu_wrap(i, smt_mask, cpu) {
6178 rq_i = cpu_rq(i);
6179
6180 /*
6181 * Current cpu always has its clock updated on entrance to
6182 * pick_next_task(). If the current cpu is not the core,
6183 * the core may also have been updated above.
6184 */
6185 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6186 update_rq_clock(rq_i);
6187
6188 p = rq_i->core_pick = pick_task(rq_i);
6189 if (!max || prio_less(max, p, fi_before))
6190 max = p;
6191 }
6192
6193 cookie = rq->core->core_cookie = max->core_cookie;
6194
6195 /*
6196 * For each thread: try and find a runnable task that matches @max or
6197 * force idle.
6198 */
6199 for_each_cpu(i, smt_mask) {
6200 rq_i = cpu_rq(i);
6201 p = rq_i->core_pick;
6202
6203 if (!cookie_equals(p, cookie)) {
6204 p = NULL;
6205 if (cookie)
6206 p = sched_core_find(rq_i, cookie);
6207 if (!p)
6208 p = idle_sched_class.pick_task(rq_i);
6209 }
6210
6211 rq_i->core_pick = p;
6212
6213 if (p == rq_i->idle) {
6214 if (rq_i->nr_running) {
6215 rq->core->core_forceidle_count++;
6216 if (!fi_before)
6217 rq->core->core_forceidle_seq++;
6218 }
6219 } else {
6220 occ++;
6221 }
6222 }
6223
6224 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6225 rq->core->core_forceidle_start = rq_clock(rq->core);
6226 rq->core->core_forceidle_occupation = occ;
6227 }
6228
6229 rq->core->core_pick_seq = rq->core->core_task_seq;
6230 next = rq->core_pick;
6231 rq->core_sched_seq = rq->core->core_pick_seq;
6232
6233 /* Something should have been selected for current CPU */
6234 WARN_ON_ONCE(!next);
6235
6236 /*
6237 * Reschedule siblings
6238 *
6239 * NOTE: L1TF -- at this point we're no longer running the old task and
6240 * sending an IPI (below) ensures the sibling will no longer be running
6241 * their task. This ensures there is no inter-sibling overlap between
6242 * non-matching user state.
6243 */
6244 for_each_cpu(i, smt_mask) {
6245 rq_i = cpu_rq(i);
6246
6247 /*
6248 * An online sibling might have gone offline before a task
6249 * could be picked for it, or it might be offline but later
6250 * happen to come online, but its too late and nothing was
6251 * picked for it. That's Ok - it will pick tasks for itself,
6252 * so ignore it.
6253 */
6254 if (!rq_i->core_pick)
6255 continue;
6256
6257 /*
6258 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6259 * fi_before fi update?
6260 * 0 0 1
6261 * 0 1 1
6262 * 1 0 1
6263 * 1 1 0
6264 */
6265 if (!(fi_before && rq->core->core_forceidle_count))
6266 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6267
6268 rq_i->core_pick->core_occupation = occ;
6269
6270 if (i == cpu) {
6271 rq_i->core_pick = NULL;
6272 continue;
6273 }
6274
6275 /* Did we break L1TF mitigation requirements? */
6276 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6277
6278 if (rq_i->curr == rq_i->core_pick) {
6279 rq_i->core_pick = NULL;
6280 continue;
6281 }
6282
6283 resched_curr(rq_i);
6284 }
6285
6286 out_set_next:
6287 set_next_task(rq, next);
6288 out:
6289 if (rq->core->core_forceidle_count && next == rq->idle)
6290 queue_core_balance(rq);
6291
6292 return next;
6293 }
6294
try_steal_cookie(int this,int that)6295 static bool try_steal_cookie(int this, int that)
6296 {
6297 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6298 struct task_struct *p;
6299 unsigned long cookie;
6300 bool success = false;
6301
6302 guard(irq)();
6303 guard(double_rq_lock)(dst, src);
6304
6305 cookie = dst->core->core_cookie;
6306 if (!cookie)
6307 return false;
6308
6309 if (dst->curr != dst->idle)
6310 return false;
6311
6312 p = sched_core_find(src, cookie);
6313 if (!p)
6314 return false;
6315
6316 do {
6317 if (p == src->core_pick || p == src->curr)
6318 goto next;
6319
6320 if (!is_cpu_allowed(p, this))
6321 goto next;
6322
6323 if (p->core_occupation > dst->idle->core_occupation)
6324 goto next;
6325 /*
6326 * sched_core_find() and sched_core_next() will ensure
6327 * that task @p is not throttled now, we also need to
6328 * check whether the runqueue of the destination CPU is
6329 * being throttled.
6330 */
6331 if (sched_task_is_throttled(p, this))
6332 goto next;
6333
6334 deactivate_task(src, p, 0);
6335 set_task_cpu(p, this);
6336 activate_task(dst, p, 0);
6337
6338 resched_curr(dst);
6339
6340 success = true;
6341 break;
6342
6343 next:
6344 p = sched_core_next(p, cookie);
6345 } while (p);
6346
6347 return success;
6348 }
6349
steal_cookie_task(int cpu,struct sched_domain * sd)6350 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6351 {
6352 int i;
6353
6354 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6355 if (i == cpu)
6356 continue;
6357
6358 if (need_resched())
6359 break;
6360
6361 if (try_steal_cookie(cpu, i))
6362 return true;
6363 }
6364
6365 return false;
6366 }
6367
sched_core_balance(struct rq * rq)6368 static void sched_core_balance(struct rq *rq)
6369 {
6370 struct sched_domain *sd;
6371 int cpu = cpu_of(rq);
6372
6373 preempt_disable();
6374 rcu_read_lock();
6375 raw_spin_rq_unlock_irq(rq);
6376 for_each_domain(cpu, sd) {
6377 if (need_resched())
6378 break;
6379
6380 if (steal_cookie_task(cpu, sd))
6381 break;
6382 }
6383 raw_spin_rq_lock_irq(rq);
6384 rcu_read_unlock();
6385 preempt_enable();
6386 }
6387
6388 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6389
queue_core_balance(struct rq * rq)6390 static void queue_core_balance(struct rq *rq)
6391 {
6392 if (!sched_core_enabled(rq))
6393 return;
6394
6395 if (!rq->core->core_cookie)
6396 return;
6397
6398 if (!rq->nr_running) /* not forced idle */
6399 return;
6400
6401 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6402 }
6403
6404 DEFINE_LOCK_GUARD_1(core_lock, int,
6405 sched_core_lock(*_T->lock, &_T->flags),
6406 sched_core_unlock(*_T->lock, &_T->flags),
6407 unsigned long flags)
6408
sched_core_cpu_starting(unsigned int cpu)6409 static void sched_core_cpu_starting(unsigned int cpu)
6410 {
6411 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6412 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6413 int t;
6414
6415 guard(core_lock)(&cpu);
6416
6417 WARN_ON_ONCE(rq->core != rq);
6418
6419 /* if we're the first, we'll be our own leader */
6420 if (cpumask_weight(smt_mask) == 1)
6421 return;
6422
6423 /* find the leader */
6424 for_each_cpu(t, smt_mask) {
6425 if (t == cpu)
6426 continue;
6427 rq = cpu_rq(t);
6428 if (rq->core == rq) {
6429 core_rq = rq;
6430 break;
6431 }
6432 }
6433
6434 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6435 return;
6436
6437 /* install and validate core_rq */
6438 for_each_cpu(t, smt_mask) {
6439 rq = cpu_rq(t);
6440
6441 if (t == cpu)
6442 rq->core = core_rq;
6443
6444 WARN_ON_ONCE(rq->core != core_rq);
6445 }
6446 }
6447
sched_core_cpu_deactivate(unsigned int cpu)6448 static void sched_core_cpu_deactivate(unsigned int cpu)
6449 {
6450 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6451 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6452 int t;
6453
6454 guard(core_lock)(&cpu);
6455
6456 /* if we're the last man standing, nothing to do */
6457 if (cpumask_weight(smt_mask) == 1) {
6458 WARN_ON_ONCE(rq->core != rq);
6459 return;
6460 }
6461
6462 /* if we're not the leader, nothing to do */
6463 if (rq->core != rq)
6464 return;
6465
6466 /* find a new leader */
6467 for_each_cpu(t, smt_mask) {
6468 if (t == cpu)
6469 continue;
6470 core_rq = cpu_rq(t);
6471 break;
6472 }
6473
6474 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6475 return;
6476
6477 /* copy the shared state to the new leader */
6478 core_rq->core_task_seq = rq->core_task_seq;
6479 core_rq->core_pick_seq = rq->core_pick_seq;
6480 core_rq->core_cookie = rq->core_cookie;
6481 core_rq->core_forceidle_count = rq->core_forceidle_count;
6482 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6483 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6484
6485 /*
6486 * Accounting edge for forced idle is handled in pick_next_task().
6487 * Don't need another one here, since the hotplug thread shouldn't
6488 * have a cookie.
6489 */
6490 core_rq->core_forceidle_start = 0;
6491
6492 /* install new leader */
6493 for_each_cpu(t, smt_mask) {
6494 rq = cpu_rq(t);
6495 rq->core = core_rq;
6496 }
6497 }
6498
sched_core_cpu_dying(unsigned int cpu)6499 static inline void sched_core_cpu_dying(unsigned int cpu)
6500 {
6501 struct rq *rq = cpu_rq(cpu);
6502
6503 if (rq->core != rq)
6504 rq->core = rq;
6505 }
6506
6507 #else /* !CONFIG_SCHED_CORE */
6508
sched_core_cpu_starting(unsigned int cpu)6509 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6510 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6511 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6512
6513 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6514 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6515 {
6516 return __pick_next_task(rq, prev, rf);
6517 }
6518
6519 #endif /* CONFIG_SCHED_CORE */
6520
6521 /*
6522 * Constants for the sched_mode argument of __schedule().
6523 *
6524 * The mode argument allows RT enabled kernels to differentiate a
6525 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6526 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6527 * optimize the AND operation out and just check for zero.
6528 */
6529 #define SM_NONE 0x0
6530 #define SM_PREEMPT 0x1
6531 #define SM_RTLOCK_WAIT 0x2
6532
6533 #ifndef CONFIG_PREEMPT_RT
6534 # define SM_MASK_PREEMPT (~0U)
6535 #else
6536 # define SM_MASK_PREEMPT SM_PREEMPT
6537 #endif
6538
6539 /*
6540 * __schedule() is the main scheduler function.
6541 *
6542 * The main means of driving the scheduler and thus entering this function are:
6543 *
6544 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6545 *
6546 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6547 * paths. For example, see arch/x86/entry_64.S.
6548 *
6549 * To drive preemption between tasks, the scheduler sets the flag in timer
6550 * interrupt handler scheduler_tick().
6551 *
6552 * 3. Wakeups don't really cause entry into schedule(). They add a
6553 * task to the run-queue and that's it.
6554 *
6555 * Now, if the new task added to the run-queue preempts the current
6556 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6557 * called on the nearest possible occasion:
6558 *
6559 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6560 *
6561 * - in syscall or exception context, at the next outmost
6562 * preempt_enable(). (this might be as soon as the wake_up()'s
6563 * spin_unlock()!)
6564 *
6565 * - in IRQ context, return from interrupt-handler to
6566 * preemptible context
6567 *
6568 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6569 * then at the next:
6570 *
6571 * - cond_resched() call
6572 * - explicit schedule() call
6573 * - return from syscall or exception to user-space
6574 * - return from interrupt-handler to user-space
6575 *
6576 * WARNING: must be called with preemption disabled!
6577 */
__schedule(unsigned int sched_mode)6578 static void __sched notrace __schedule(unsigned int sched_mode)
6579 {
6580 struct task_struct *prev, *next;
6581 unsigned long *switch_count;
6582 unsigned long prev_state;
6583 struct rq_flags rf;
6584 struct rq *rq;
6585 int cpu;
6586
6587 cpu = smp_processor_id();
6588 rq = cpu_rq(cpu);
6589 prev = rq->curr;
6590
6591 schedule_debug(prev, !!sched_mode);
6592
6593 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6594 hrtick_clear(rq);
6595
6596 local_irq_disable();
6597 rcu_note_context_switch(!!sched_mode);
6598
6599 /*
6600 * Make sure that signal_pending_state()->signal_pending() below
6601 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6602 * done by the caller to avoid the race with signal_wake_up():
6603 *
6604 * __set_current_state(@state) signal_wake_up()
6605 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6606 * wake_up_state(p, state)
6607 * LOCK rq->lock LOCK p->pi_state
6608 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6609 * if (signal_pending_state()) if (p->state & @state)
6610 *
6611 * Also, the membarrier system call requires a full memory barrier
6612 * after coming from user-space, before storing to rq->curr.
6613 */
6614 rq_lock(rq, &rf);
6615 smp_mb__after_spinlock();
6616
6617 /* Promote REQ to ACT */
6618 rq->clock_update_flags <<= 1;
6619 update_rq_clock(rq);
6620 rq->clock_update_flags = RQCF_UPDATED;
6621
6622 switch_count = &prev->nivcsw;
6623
6624 /*
6625 * We must load prev->state once (task_struct::state is volatile), such
6626 * that we form a control dependency vs deactivate_task() below.
6627 */
6628 prev_state = READ_ONCE(prev->__state);
6629 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6630 if (signal_pending_state(prev_state, prev)) {
6631 WRITE_ONCE(prev->__state, TASK_RUNNING);
6632 } else {
6633 prev->sched_contributes_to_load =
6634 (prev_state & TASK_UNINTERRUPTIBLE) &&
6635 !(prev_state & TASK_NOLOAD) &&
6636 !(prev_state & TASK_FROZEN);
6637
6638 if (prev->sched_contributes_to_load)
6639 rq->nr_uninterruptible++;
6640
6641 /*
6642 * __schedule() ttwu()
6643 * prev_state = prev->state; if (p->on_rq && ...)
6644 * if (prev_state) goto out;
6645 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6646 * p->state = TASK_WAKING
6647 *
6648 * Where __schedule() and ttwu() have matching control dependencies.
6649 *
6650 * After this, schedule() must not care about p->state any more.
6651 */
6652 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6653
6654 if (prev->in_iowait) {
6655 atomic_inc(&rq->nr_iowait);
6656 delayacct_blkio_start();
6657 }
6658 }
6659 switch_count = &prev->nvcsw;
6660 }
6661
6662 next = pick_next_task(rq, prev, &rf);
6663 clear_tsk_need_resched(prev);
6664 clear_preempt_need_resched();
6665 #ifdef CONFIG_SCHED_DEBUG
6666 rq->last_seen_need_resched_ns = 0;
6667 #endif
6668
6669 if (likely(prev != next)) {
6670 rq->nr_switches++;
6671 /*
6672 * RCU users of rcu_dereference(rq->curr) may not see
6673 * changes to task_struct made by pick_next_task().
6674 */
6675 RCU_INIT_POINTER(rq->curr, next);
6676 /*
6677 * The membarrier system call requires each architecture
6678 * to have a full memory barrier after updating
6679 * rq->curr, before returning to user-space.
6680 *
6681 * Here are the schemes providing that barrier on the
6682 * various architectures:
6683 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6684 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
6685 * on PowerPC and on RISC-V.
6686 * - finish_lock_switch() for weakly-ordered
6687 * architectures where spin_unlock is a full barrier,
6688 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6689 * is a RELEASE barrier),
6690 */
6691 ++*switch_count;
6692
6693 migrate_disable_switch(rq, prev);
6694 psi_account_irqtime(rq, prev, next);
6695 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6696
6697 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6698
6699 /* Also unlocks the rq: */
6700 rq = context_switch(rq, prev, next, &rf);
6701 } else {
6702 rq_unpin_lock(rq, &rf);
6703 __balance_callbacks(rq);
6704 raw_spin_rq_unlock_irq(rq);
6705 }
6706 }
6707
do_task_dead(void)6708 void __noreturn do_task_dead(void)
6709 {
6710 /* Causes final put_task_struct in finish_task_switch(): */
6711 set_special_state(TASK_DEAD);
6712
6713 /* Tell freezer to ignore us: */
6714 current->flags |= PF_NOFREEZE;
6715
6716 __schedule(SM_NONE);
6717 BUG();
6718
6719 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6720 for (;;)
6721 cpu_relax();
6722 }
6723
sched_submit_work(struct task_struct * tsk)6724 static inline void sched_submit_work(struct task_struct *tsk)
6725 {
6726 unsigned int task_flags;
6727
6728 if (task_is_running(tsk))
6729 return;
6730
6731 task_flags = tsk->flags;
6732 /*
6733 * If a worker goes to sleep, notify and ask workqueue whether it
6734 * wants to wake up a task to maintain concurrency.
6735 */
6736 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6737 if (task_flags & PF_WQ_WORKER)
6738 wq_worker_sleeping(tsk);
6739 else
6740 io_wq_worker_sleeping(tsk);
6741 }
6742
6743 /*
6744 * spinlock and rwlock must not flush block requests. This will
6745 * deadlock if the callback attempts to acquire a lock which is
6746 * already acquired.
6747 */
6748 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6749
6750 /*
6751 * If we are going to sleep and we have plugged IO queued,
6752 * make sure to submit it to avoid deadlocks.
6753 */
6754 blk_flush_plug(tsk->plug, true);
6755 }
6756
sched_update_worker(struct task_struct * tsk)6757 static void sched_update_worker(struct task_struct *tsk)
6758 {
6759 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6760 if (tsk->flags & PF_WQ_WORKER)
6761 wq_worker_running(tsk);
6762 else
6763 io_wq_worker_running(tsk);
6764 }
6765 }
6766
schedule(void)6767 asmlinkage __visible void __sched schedule(void)
6768 {
6769 struct task_struct *tsk = current;
6770
6771 sched_submit_work(tsk);
6772 do {
6773 preempt_disable();
6774 __schedule(SM_NONE);
6775 sched_preempt_enable_no_resched();
6776 } while (need_resched());
6777 sched_update_worker(tsk);
6778 }
6779 EXPORT_SYMBOL(schedule);
6780
6781 /*
6782 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6783 * state (have scheduled out non-voluntarily) by making sure that all
6784 * tasks have either left the run queue or have gone into user space.
6785 * As idle tasks do not do either, they must not ever be preempted
6786 * (schedule out non-voluntarily).
6787 *
6788 * schedule_idle() is similar to schedule_preempt_disable() except that it
6789 * never enables preemption because it does not call sched_submit_work().
6790 */
schedule_idle(void)6791 void __sched schedule_idle(void)
6792 {
6793 /*
6794 * As this skips calling sched_submit_work(), which the idle task does
6795 * regardless because that function is a nop when the task is in a
6796 * TASK_RUNNING state, make sure this isn't used someplace that the
6797 * current task can be in any other state. Note, idle is always in the
6798 * TASK_RUNNING state.
6799 */
6800 WARN_ON_ONCE(current->__state);
6801 do {
6802 __schedule(SM_NONE);
6803 } while (need_resched());
6804 }
6805
6806 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6807 asmlinkage __visible void __sched schedule_user(void)
6808 {
6809 /*
6810 * If we come here after a random call to set_need_resched(),
6811 * or we have been woken up remotely but the IPI has not yet arrived,
6812 * we haven't yet exited the RCU idle mode. Do it here manually until
6813 * we find a better solution.
6814 *
6815 * NB: There are buggy callers of this function. Ideally we
6816 * should warn if prev_state != CONTEXT_USER, but that will trigger
6817 * too frequently to make sense yet.
6818 */
6819 enum ctx_state prev_state = exception_enter();
6820 schedule();
6821 exception_exit(prev_state);
6822 }
6823 #endif
6824
6825 /**
6826 * schedule_preempt_disabled - called with preemption disabled
6827 *
6828 * Returns with preemption disabled. Note: preempt_count must be 1
6829 */
schedule_preempt_disabled(void)6830 void __sched schedule_preempt_disabled(void)
6831 {
6832 sched_preempt_enable_no_resched();
6833 schedule();
6834 preempt_disable();
6835 }
6836
6837 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6838 void __sched notrace schedule_rtlock(void)
6839 {
6840 do {
6841 preempt_disable();
6842 __schedule(SM_RTLOCK_WAIT);
6843 sched_preempt_enable_no_resched();
6844 } while (need_resched());
6845 }
6846 NOKPROBE_SYMBOL(schedule_rtlock);
6847 #endif
6848
preempt_schedule_common(void)6849 static void __sched notrace preempt_schedule_common(void)
6850 {
6851 do {
6852 /*
6853 * Because the function tracer can trace preempt_count_sub()
6854 * and it also uses preempt_enable/disable_notrace(), if
6855 * NEED_RESCHED is set, the preempt_enable_notrace() called
6856 * by the function tracer will call this function again and
6857 * cause infinite recursion.
6858 *
6859 * Preemption must be disabled here before the function
6860 * tracer can trace. Break up preempt_disable() into two
6861 * calls. One to disable preemption without fear of being
6862 * traced. The other to still record the preemption latency,
6863 * which can also be traced by the function tracer.
6864 */
6865 preempt_disable_notrace();
6866 preempt_latency_start(1);
6867 __schedule(SM_PREEMPT);
6868 preempt_latency_stop(1);
6869 preempt_enable_no_resched_notrace();
6870
6871 /*
6872 * Check again in case we missed a preemption opportunity
6873 * between schedule and now.
6874 */
6875 } while (need_resched());
6876 }
6877
6878 #ifdef CONFIG_PREEMPTION
6879 /*
6880 * This is the entry point to schedule() from in-kernel preemption
6881 * off of preempt_enable.
6882 */
preempt_schedule(void)6883 asmlinkage __visible void __sched notrace preempt_schedule(void)
6884 {
6885 /*
6886 * If there is a non-zero preempt_count or interrupts are disabled,
6887 * we do not want to preempt the current task. Just return..
6888 */
6889 if (likely(!preemptible()))
6890 return;
6891 preempt_schedule_common();
6892 }
6893 NOKPROBE_SYMBOL(preempt_schedule);
6894 EXPORT_SYMBOL(preempt_schedule);
6895
6896 #ifdef CONFIG_PREEMPT_DYNAMIC
6897 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6898 #ifndef preempt_schedule_dynamic_enabled
6899 #define preempt_schedule_dynamic_enabled preempt_schedule
6900 #define preempt_schedule_dynamic_disabled NULL
6901 #endif
6902 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6903 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6904 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6905 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6906 void __sched notrace dynamic_preempt_schedule(void)
6907 {
6908 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6909 return;
6910 preempt_schedule();
6911 }
6912 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6913 EXPORT_SYMBOL(dynamic_preempt_schedule);
6914 #endif
6915 #endif
6916
6917 /**
6918 * preempt_schedule_notrace - preempt_schedule called by tracing
6919 *
6920 * The tracing infrastructure uses preempt_enable_notrace to prevent
6921 * recursion and tracing preempt enabling caused by the tracing
6922 * infrastructure itself. But as tracing can happen in areas coming
6923 * from userspace or just about to enter userspace, a preempt enable
6924 * can occur before user_exit() is called. This will cause the scheduler
6925 * to be called when the system is still in usermode.
6926 *
6927 * To prevent this, the preempt_enable_notrace will use this function
6928 * instead of preempt_schedule() to exit user context if needed before
6929 * calling the scheduler.
6930 */
preempt_schedule_notrace(void)6931 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6932 {
6933 enum ctx_state prev_ctx;
6934
6935 if (likely(!preemptible()))
6936 return;
6937
6938 do {
6939 /*
6940 * Because the function tracer can trace preempt_count_sub()
6941 * and it also uses preempt_enable/disable_notrace(), if
6942 * NEED_RESCHED is set, the preempt_enable_notrace() called
6943 * by the function tracer will call this function again and
6944 * cause infinite recursion.
6945 *
6946 * Preemption must be disabled here before the function
6947 * tracer can trace. Break up preempt_disable() into two
6948 * calls. One to disable preemption without fear of being
6949 * traced. The other to still record the preemption latency,
6950 * which can also be traced by the function tracer.
6951 */
6952 preempt_disable_notrace();
6953 preempt_latency_start(1);
6954 /*
6955 * Needs preempt disabled in case user_exit() is traced
6956 * and the tracer calls preempt_enable_notrace() causing
6957 * an infinite recursion.
6958 */
6959 prev_ctx = exception_enter();
6960 __schedule(SM_PREEMPT);
6961 exception_exit(prev_ctx);
6962
6963 preempt_latency_stop(1);
6964 preempt_enable_no_resched_notrace();
6965 } while (need_resched());
6966 }
6967 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6968
6969 #ifdef CONFIG_PREEMPT_DYNAMIC
6970 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6971 #ifndef preempt_schedule_notrace_dynamic_enabled
6972 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6973 #define preempt_schedule_notrace_dynamic_disabled NULL
6974 #endif
6975 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6976 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6977 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6978 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)6979 void __sched notrace dynamic_preempt_schedule_notrace(void)
6980 {
6981 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6982 return;
6983 preempt_schedule_notrace();
6984 }
6985 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6986 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6987 #endif
6988 #endif
6989
6990 #endif /* CONFIG_PREEMPTION */
6991
6992 /*
6993 * This is the entry point to schedule() from kernel preemption
6994 * off of irq context.
6995 * Note, that this is called and return with irqs disabled. This will
6996 * protect us against recursive calling from irq.
6997 */
preempt_schedule_irq(void)6998 asmlinkage __visible void __sched preempt_schedule_irq(void)
6999 {
7000 enum ctx_state prev_state;
7001
7002 /* Catch callers which need to be fixed */
7003 BUG_ON(preempt_count() || !irqs_disabled());
7004
7005 prev_state = exception_enter();
7006
7007 do {
7008 preempt_disable();
7009 local_irq_enable();
7010 __schedule(SM_PREEMPT);
7011 local_irq_disable();
7012 sched_preempt_enable_no_resched();
7013 } while (need_resched());
7014
7015 exception_exit(prev_state);
7016 }
7017
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7018 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7019 void *key)
7020 {
7021 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7022 return try_to_wake_up(curr->private, mode, wake_flags);
7023 }
7024 EXPORT_SYMBOL(default_wake_function);
7025
__setscheduler_prio(struct task_struct * p,int prio)7026 static void __setscheduler_prio(struct task_struct *p, int prio)
7027 {
7028 if (dl_prio(prio))
7029 p->sched_class = &dl_sched_class;
7030 else if (rt_prio(prio))
7031 p->sched_class = &rt_sched_class;
7032 else
7033 p->sched_class = &fair_sched_class;
7034
7035 p->prio = prio;
7036 }
7037
7038 #ifdef CONFIG_RT_MUTEXES
7039
__rt_effective_prio(struct task_struct * pi_task,int prio)7040 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7041 {
7042 if (pi_task)
7043 prio = min(prio, pi_task->prio);
7044
7045 return prio;
7046 }
7047
rt_effective_prio(struct task_struct * p,int prio)7048 static inline int rt_effective_prio(struct task_struct *p, int prio)
7049 {
7050 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7051
7052 return __rt_effective_prio(pi_task, prio);
7053 }
7054
7055 /*
7056 * rt_mutex_setprio - set the current priority of a task
7057 * @p: task to boost
7058 * @pi_task: donor task
7059 *
7060 * This function changes the 'effective' priority of a task. It does
7061 * not touch ->normal_prio like __setscheduler().
7062 *
7063 * Used by the rt_mutex code to implement priority inheritance
7064 * logic. Call site only calls if the priority of the task changed.
7065 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7066 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7067 {
7068 int prio, oldprio, queued, running, queue_flag =
7069 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7070 const struct sched_class *prev_class;
7071 struct rq_flags rf;
7072 struct rq *rq;
7073
7074 /* XXX used to be waiter->prio, not waiter->task->prio */
7075 prio = __rt_effective_prio(pi_task, p->normal_prio);
7076
7077 /*
7078 * If nothing changed; bail early.
7079 */
7080 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7081 return;
7082
7083 rq = __task_rq_lock(p, &rf);
7084 update_rq_clock(rq);
7085 /*
7086 * Set under pi_lock && rq->lock, such that the value can be used under
7087 * either lock.
7088 *
7089 * Note that there is loads of tricky to make this pointer cache work
7090 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7091 * ensure a task is de-boosted (pi_task is set to NULL) before the
7092 * task is allowed to run again (and can exit). This ensures the pointer
7093 * points to a blocked task -- which guarantees the task is present.
7094 */
7095 p->pi_top_task = pi_task;
7096
7097 /*
7098 * For FIFO/RR we only need to set prio, if that matches we're done.
7099 */
7100 if (prio == p->prio && !dl_prio(prio))
7101 goto out_unlock;
7102
7103 /*
7104 * Idle task boosting is a nono in general. There is one
7105 * exception, when PREEMPT_RT and NOHZ is active:
7106 *
7107 * The idle task calls get_next_timer_interrupt() and holds
7108 * the timer wheel base->lock on the CPU and another CPU wants
7109 * to access the timer (probably to cancel it). We can safely
7110 * ignore the boosting request, as the idle CPU runs this code
7111 * with interrupts disabled and will complete the lock
7112 * protected section without being interrupted. So there is no
7113 * real need to boost.
7114 */
7115 if (unlikely(p == rq->idle)) {
7116 WARN_ON(p != rq->curr);
7117 WARN_ON(p->pi_blocked_on);
7118 goto out_unlock;
7119 }
7120
7121 trace_sched_pi_setprio(p, pi_task);
7122 oldprio = p->prio;
7123
7124 if (oldprio == prio)
7125 queue_flag &= ~DEQUEUE_MOVE;
7126
7127 prev_class = p->sched_class;
7128 queued = task_on_rq_queued(p);
7129 running = task_current(rq, p);
7130 if (queued)
7131 dequeue_task(rq, p, queue_flag);
7132 if (running)
7133 put_prev_task(rq, p);
7134
7135 /*
7136 * Boosting condition are:
7137 * 1. -rt task is running and holds mutex A
7138 * --> -dl task blocks on mutex A
7139 *
7140 * 2. -dl task is running and holds mutex A
7141 * --> -dl task blocks on mutex A and could preempt the
7142 * running task
7143 */
7144 if (dl_prio(prio)) {
7145 if (!dl_prio(p->normal_prio) ||
7146 (pi_task && dl_prio(pi_task->prio) &&
7147 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7148 p->dl.pi_se = pi_task->dl.pi_se;
7149 queue_flag |= ENQUEUE_REPLENISH;
7150 } else {
7151 p->dl.pi_se = &p->dl;
7152 }
7153 } else if (rt_prio(prio)) {
7154 if (dl_prio(oldprio))
7155 p->dl.pi_se = &p->dl;
7156 if (oldprio < prio)
7157 queue_flag |= ENQUEUE_HEAD;
7158 } else {
7159 if (dl_prio(oldprio))
7160 p->dl.pi_se = &p->dl;
7161 if (rt_prio(oldprio))
7162 p->rt.timeout = 0;
7163 }
7164
7165 __setscheduler_prio(p, prio);
7166
7167 if (queued)
7168 enqueue_task(rq, p, queue_flag);
7169 if (running)
7170 set_next_task(rq, p);
7171
7172 check_class_changed(rq, p, prev_class, oldprio);
7173 out_unlock:
7174 /* Avoid rq from going away on us: */
7175 preempt_disable();
7176
7177 rq_unpin_lock(rq, &rf);
7178 __balance_callbacks(rq);
7179 raw_spin_rq_unlock(rq);
7180
7181 preempt_enable();
7182 }
7183 #else
rt_effective_prio(struct task_struct * p,int prio)7184 static inline int rt_effective_prio(struct task_struct *p, int prio)
7185 {
7186 return prio;
7187 }
7188 #endif
7189
set_user_nice(struct task_struct * p,long nice)7190 void set_user_nice(struct task_struct *p, long nice)
7191 {
7192 bool queued, running;
7193 int old_prio;
7194 struct rq_flags rf;
7195 struct rq *rq;
7196
7197 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7198 return;
7199 /*
7200 * We have to be careful, if called from sys_setpriority(),
7201 * the task might be in the middle of scheduling on another CPU.
7202 */
7203 rq = task_rq_lock(p, &rf);
7204 update_rq_clock(rq);
7205
7206 /*
7207 * The RT priorities are set via sched_setscheduler(), but we still
7208 * allow the 'normal' nice value to be set - but as expected
7209 * it won't have any effect on scheduling until the task is
7210 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7211 */
7212 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7213 p->static_prio = NICE_TO_PRIO(nice);
7214 goto out_unlock;
7215 }
7216 queued = task_on_rq_queued(p);
7217 running = task_current(rq, p);
7218 if (queued)
7219 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7220 if (running)
7221 put_prev_task(rq, p);
7222
7223 p->static_prio = NICE_TO_PRIO(nice);
7224 set_load_weight(p, true);
7225 old_prio = p->prio;
7226 p->prio = effective_prio(p);
7227
7228 if (queued)
7229 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7230 if (running)
7231 set_next_task(rq, p);
7232
7233 /*
7234 * If the task increased its priority or is running and
7235 * lowered its priority, then reschedule its CPU:
7236 */
7237 p->sched_class->prio_changed(rq, p, old_prio);
7238
7239 out_unlock:
7240 task_rq_unlock(rq, p, &rf);
7241 }
7242 EXPORT_SYMBOL(set_user_nice);
7243
7244 /*
7245 * is_nice_reduction - check if nice value is an actual reduction
7246 *
7247 * Similar to can_nice() but does not perform a capability check.
7248 *
7249 * @p: task
7250 * @nice: nice value
7251 */
is_nice_reduction(const struct task_struct * p,const int nice)7252 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7253 {
7254 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7255 int nice_rlim = nice_to_rlimit(nice);
7256
7257 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7258 }
7259
7260 /*
7261 * can_nice - check if a task can reduce its nice value
7262 * @p: task
7263 * @nice: nice value
7264 */
can_nice(const struct task_struct * p,const int nice)7265 int can_nice(const struct task_struct *p, const int nice)
7266 {
7267 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7268 }
7269
7270 #ifdef __ARCH_WANT_SYS_NICE
7271
7272 /*
7273 * sys_nice - change the priority of the current process.
7274 * @increment: priority increment
7275 *
7276 * sys_setpriority is a more generic, but much slower function that
7277 * does similar things.
7278 */
SYSCALL_DEFINE1(nice,int,increment)7279 SYSCALL_DEFINE1(nice, int, increment)
7280 {
7281 long nice, retval;
7282
7283 /*
7284 * Setpriority might change our priority at the same moment.
7285 * We don't have to worry. Conceptually one call occurs first
7286 * and we have a single winner.
7287 */
7288 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7289 nice = task_nice(current) + increment;
7290
7291 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7292 if (increment < 0 && !can_nice(current, nice))
7293 return -EPERM;
7294
7295 retval = security_task_setnice(current, nice);
7296 if (retval)
7297 return retval;
7298
7299 set_user_nice(current, nice);
7300 return 0;
7301 }
7302
7303 #endif
7304
7305 /**
7306 * task_prio - return the priority value of a given task.
7307 * @p: the task in question.
7308 *
7309 * Return: The priority value as seen by users in /proc.
7310 *
7311 * sched policy return value kernel prio user prio/nice
7312 *
7313 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7314 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7315 * deadline -101 -1 0
7316 */
task_prio(const struct task_struct * p)7317 int task_prio(const struct task_struct *p)
7318 {
7319 return p->prio - MAX_RT_PRIO;
7320 }
7321
7322 /**
7323 * idle_cpu - is a given CPU idle currently?
7324 * @cpu: the processor in question.
7325 *
7326 * Return: 1 if the CPU is currently idle. 0 otherwise.
7327 */
idle_cpu(int cpu)7328 int idle_cpu(int cpu)
7329 {
7330 struct rq *rq = cpu_rq(cpu);
7331
7332 if (rq->curr != rq->idle)
7333 return 0;
7334
7335 if (rq->nr_running)
7336 return 0;
7337
7338 #ifdef CONFIG_SMP
7339 if (rq->ttwu_pending)
7340 return 0;
7341 #endif
7342
7343 return 1;
7344 }
7345
7346 /**
7347 * available_idle_cpu - is a given CPU idle for enqueuing work.
7348 * @cpu: the CPU in question.
7349 *
7350 * Return: 1 if the CPU is currently idle. 0 otherwise.
7351 */
available_idle_cpu(int cpu)7352 int available_idle_cpu(int cpu)
7353 {
7354 if (!idle_cpu(cpu))
7355 return 0;
7356
7357 if (vcpu_is_preempted(cpu))
7358 return 0;
7359
7360 return 1;
7361 }
7362
7363 /**
7364 * idle_task - return the idle task for a given CPU.
7365 * @cpu: the processor in question.
7366 *
7367 * Return: The idle task for the CPU @cpu.
7368 */
idle_task(int cpu)7369 struct task_struct *idle_task(int cpu)
7370 {
7371 return cpu_rq(cpu)->idle;
7372 }
7373
7374 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7375 int sched_core_idle_cpu(int cpu)
7376 {
7377 struct rq *rq = cpu_rq(cpu);
7378
7379 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7380 return 1;
7381
7382 return idle_cpu(cpu);
7383 }
7384
7385 #endif
7386
7387 #ifdef CONFIG_SMP
7388 /*
7389 * This function computes an effective utilization for the given CPU, to be
7390 * used for frequency selection given the linear relation: f = u * f_max.
7391 *
7392 * The scheduler tracks the following metrics:
7393 *
7394 * cpu_util_{cfs,rt,dl,irq}()
7395 * cpu_bw_dl()
7396 *
7397 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7398 * synchronized windows and are thus directly comparable.
7399 *
7400 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7401 * which excludes things like IRQ and steal-time. These latter are then accrued
7402 * in the irq utilization.
7403 *
7404 * The DL bandwidth number otoh is not a measured metric but a value computed
7405 * based on the task model parameters and gives the minimal utilization
7406 * required to meet deadlines.
7407 */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7408 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7409 enum cpu_util_type type,
7410 struct task_struct *p)
7411 {
7412 unsigned long dl_util, util, irq, max;
7413 struct rq *rq = cpu_rq(cpu);
7414
7415 max = arch_scale_cpu_capacity(cpu);
7416
7417 if (!uclamp_is_used() &&
7418 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7419 return max;
7420 }
7421
7422 /*
7423 * Early check to see if IRQ/steal time saturates the CPU, can be
7424 * because of inaccuracies in how we track these -- see
7425 * update_irq_load_avg().
7426 */
7427 irq = cpu_util_irq(rq);
7428 if (unlikely(irq >= max))
7429 return max;
7430
7431 /*
7432 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7433 * CFS tasks and we use the same metric to track the effective
7434 * utilization (PELT windows are synchronized) we can directly add them
7435 * to obtain the CPU's actual utilization.
7436 *
7437 * CFS and RT utilization can be boosted or capped, depending on
7438 * utilization clamp constraints requested by currently RUNNABLE
7439 * tasks.
7440 * When there are no CFS RUNNABLE tasks, clamps are released and
7441 * frequency will be gracefully reduced with the utilization decay.
7442 */
7443 util = util_cfs + cpu_util_rt(rq);
7444 if (type == FREQUENCY_UTIL)
7445 util = uclamp_rq_util_with(rq, util, p);
7446
7447 dl_util = cpu_util_dl(rq);
7448
7449 /*
7450 * For frequency selection we do not make cpu_util_dl() a permanent part
7451 * of this sum because we want to use cpu_bw_dl() later on, but we need
7452 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7453 * that we select f_max when there is no idle time.
7454 *
7455 * NOTE: numerical errors or stop class might cause us to not quite hit
7456 * saturation when we should -- something for later.
7457 */
7458 if (util + dl_util >= max)
7459 return max;
7460
7461 /*
7462 * OTOH, for energy computation we need the estimated running time, so
7463 * include util_dl and ignore dl_bw.
7464 */
7465 if (type == ENERGY_UTIL)
7466 util += dl_util;
7467
7468 /*
7469 * There is still idle time; further improve the number by using the
7470 * irq metric. Because IRQ/steal time is hidden from the task clock we
7471 * need to scale the task numbers:
7472 *
7473 * max - irq
7474 * U' = irq + --------- * U
7475 * max
7476 */
7477 util = scale_irq_capacity(util, irq, max);
7478 util += irq;
7479
7480 /*
7481 * Bandwidth required by DEADLINE must always be granted while, for
7482 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7483 * to gracefully reduce the frequency when no tasks show up for longer
7484 * periods of time.
7485 *
7486 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7487 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7488 * an interface. So, we only do the latter for now.
7489 */
7490 if (type == FREQUENCY_UTIL)
7491 util += cpu_bw_dl(rq);
7492
7493 return min(max, util);
7494 }
7495
sched_cpu_util(int cpu)7496 unsigned long sched_cpu_util(int cpu)
7497 {
7498 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7499 }
7500 #endif /* CONFIG_SMP */
7501
7502 /**
7503 * find_process_by_pid - find a process with a matching PID value.
7504 * @pid: the pid in question.
7505 *
7506 * The task of @pid, if found. %NULL otherwise.
7507 */
find_process_by_pid(pid_t pid)7508 static struct task_struct *find_process_by_pid(pid_t pid)
7509 {
7510 return pid ? find_task_by_vpid(pid) : current;
7511 }
7512
7513 /*
7514 * sched_setparam() passes in -1 for its policy, to let the functions
7515 * it calls know not to change it.
7516 */
7517 #define SETPARAM_POLICY -1
7518
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7519 static void __setscheduler_params(struct task_struct *p,
7520 const struct sched_attr *attr)
7521 {
7522 int policy = attr->sched_policy;
7523
7524 if (policy == SETPARAM_POLICY)
7525 policy = p->policy;
7526
7527 p->policy = policy;
7528
7529 if (dl_policy(policy))
7530 __setparam_dl(p, attr);
7531 else if (fair_policy(policy))
7532 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7533
7534 /* rt-policy tasks do not have a timerslack */
7535 if (task_is_realtime(p)) {
7536 p->timer_slack_ns = 0;
7537 } else if (p->timer_slack_ns == 0) {
7538 /* when switching back to non-rt policy, restore timerslack */
7539 p->timer_slack_ns = p->default_timer_slack_ns;
7540 }
7541
7542 /*
7543 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7544 * !rt_policy. Always setting this ensures that things like
7545 * getparam()/getattr() don't report silly values for !rt tasks.
7546 */
7547 p->rt_priority = attr->sched_priority;
7548 p->normal_prio = normal_prio(p);
7549 set_load_weight(p, true);
7550 }
7551
7552 /*
7553 * Check the target process has a UID that matches the current process's:
7554 */
check_same_owner(struct task_struct * p)7555 static bool check_same_owner(struct task_struct *p)
7556 {
7557 const struct cred *cred = current_cred(), *pcred;
7558 bool match;
7559
7560 rcu_read_lock();
7561 pcred = __task_cred(p);
7562 match = (uid_eq(cred->euid, pcred->euid) ||
7563 uid_eq(cred->euid, pcred->uid));
7564 rcu_read_unlock();
7565 return match;
7566 }
7567
7568 /*
7569 * Allow unprivileged RT tasks to decrease priority.
7570 * Only issue a capable test if needed and only once to avoid an audit
7571 * event on permitted non-privileged operations:
7572 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7573 static int user_check_sched_setscheduler(struct task_struct *p,
7574 const struct sched_attr *attr,
7575 int policy, int reset_on_fork)
7576 {
7577 if (fair_policy(policy)) {
7578 if (attr->sched_nice < task_nice(p) &&
7579 !is_nice_reduction(p, attr->sched_nice))
7580 goto req_priv;
7581 }
7582
7583 if (rt_policy(policy)) {
7584 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7585
7586 /* Can't set/change the rt policy: */
7587 if (policy != p->policy && !rlim_rtprio)
7588 goto req_priv;
7589
7590 /* Can't increase priority: */
7591 if (attr->sched_priority > p->rt_priority &&
7592 attr->sched_priority > rlim_rtprio)
7593 goto req_priv;
7594 }
7595
7596 /*
7597 * Can't set/change SCHED_DEADLINE policy at all for now
7598 * (safest behavior); in the future we would like to allow
7599 * unprivileged DL tasks to increase their relative deadline
7600 * or reduce their runtime (both ways reducing utilization)
7601 */
7602 if (dl_policy(policy))
7603 goto req_priv;
7604
7605 /*
7606 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7607 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7608 */
7609 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7610 if (!is_nice_reduction(p, task_nice(p)))
7611 goto req_priv;
7612 }
7613
7614 /* Can't change other user's priorities: */
7615 if (!check_same_owner(p))
7616 goto req_priv;
7617
7618 /* Normal users shall not reset the sched_reset_on_fork flag: */
7619 if (p->sched_reset_on_fork && !reset_on_fork)
7620 goto req_priv;
7621
7622 return 0;
7623
7624 req_priv:
7625 if (!capable(CAP_SYS_NICE))
7626 return -EPERM;
7627
7628 return 0;
7629 }
7630
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7631 static int __sched_setscheduler(struct task_struct *p,
7632 const struct sched_attr *attr,
7633 bool user, bool pi)
7634 {
7635 int oldpolicy = -1, policy = attr->sched_policy;
7636 int retval, oldprio, newprio, queued, running;
7637 const struct sched_class *prev_class;
7638 struct balance_callback *head;
7639 struct rq_flags rf;
7640 int reset_on_fork;
7641 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7642 struct rq *rq;
7643 bool cpuset_locked = false;
7644
7645 /* The pi code expects interrupts enabled */
7646 BUG_ON(pi && in_interrupt());
7647 recheck:
7648 /* Double check policy once rq lock held: */
7649 if (policy < 0) {
7650 reset_on_fork = p->sched_reset_on_fork;
7651 policy = oldpolicy = p->policy;
7652 } else {
7653 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7654
7655 if (!valid_policy(policy))
7656 return -EINVAL;
7657 }
7658
7659 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7660 return -EINVAL;
7661
7662 /*
7663 * Valid priorities for SCHED_FIFO and SCHED_RR are
7664 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7665 * SCHED_BATCH and SCHED_IDLE is 0.
7666 */
7667 if (attr->sched_priority > MAX_RT_PRIO-1)
7668 return -EINVAL;
7669 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7670 (rt_policy(policy) != (attr->sched_priority != 0)))
7671 return -EINVAL;
7672
7673 if (user) {
7674 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7675 if (retval)
7676 return retval;
7677
7678 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7679 return -EINVAL;
7680
7681 retval = security_task_setscheduler(p);
7682 if (retval)
7683 return retval;
7684 }
7685
7686 /* Update task specific "requested" clamps */
7687 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7688 retval = uclamp_validate(p, attr);
7689 if (retval)
7690 return retval;
7691 }
7692
7693 /*
7694 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7695 * information.
7696 */
7697 if (dl_policy(policy) || dl_policy(p->policy)) {
7698 cpuset_locked = true;
7699 cpuset_lock();
7700 }
7701
7702 /*
7703 * Make sure no PI-waiters arrive (or leave) while we are
7704 * changing the priority of the task:
7705 *
7706 * To be able to change p->policy safely, the appropriate
7707 * runqueue lock must be held.
7708 */
7709 rq = task_rq_lock(p, &rf);
7710 update_rq_clock(rq);
7711
7712 /*
7713 * Changing the policy of the stop threads its a very bad idea:
7714 */
7715 if (p == rq->stop) {
7716 retval = -EINVAL;
7717 goto unlock;
7718 }
7719
7720 /*
7721 * If not changing anything there's no need to proceed further,
7722 * but store a possible modification of reset_on_fork.
7723 */
7724 if (unlikely(policy == p->policy)) {
7725 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7726 goto change;
7727 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7728 goto change;
7729 if (dl_policy(policy) && dl_param_changed(p, attr))
7730 goto change;
7731 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7732 goto change;
7733
7734 p->sched_reset_on_fork = reset_on_fork;
7735 retval = 0;
7736 goto unlock;
7737 }
7738 change:
7739
7740 if (user) {
7741 #ifdef CONFIG_RT_GROUP_SCHED
7742 /*
7743 * Do not allow realtime tasks into groups that have no runtime
7744 * assigned.
7745 */
7746 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7747 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7748 !task_group_is_autogroup(task_group(p))) {
7749 retval = -EPERM;
7750 goto unlock;
7751 }
7752 #endif
7753 #ifdef CONFIG_SMP
7754 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7755 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7756 cpumask_t *span = rq->rd->span;
7757
7758 /*
7759 * Don't allow tasks with an affinity mask smaller than
7760 * the entire root_domain to become SCHED_DEADLINE. We
7761 * will also fail if there's no bandwidth available.
7762 */
7763 if (!cpumask_subset(span, p->cpus_ptr) ||
7764 rq->rd->dl_bw.bw == 0) {
7765 retval = -EPERM;
7766 goto unlock;
7767 }
7768 }
7769 #endif
7770 }
7771
7772 /* Re-check policy now with rq lock held: */
7773 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7774 policy = oldpolicy = -1;
7775 task_rq_unlock(rq, p, &rf);
7776 if (cpuset_locked)
7777 cpuset_unlock();
7778 goto recheck;
7779 }
7780
7781 /*
7782 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7783 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7784 * is available.
7785 */
7786 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7787 retval = -EBUSY;
7788 goto unlock;
7789 }
7790
7791 p->sched_reset_on_fork = reset_on_fork;
7792 oldprio = p->prio;
7793
7794 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7795 if (pi) {
7796 /*
7797 * Take priority boosted tasks into account. If the new
7798 * effective priority is unchanged, we just store the new
7799 * normal parameters and do not touch the scheduler class and
7800 * the runqueue. This will be done when the task deboost
7801 * itself.
7802 */
7803 newprio = rt_effective_prio(p, newprio);
7804 if (newprio == oldprio)
7805 queue_flags &= ~DEQUEUE_MOVE;
7806 }
7807
7808 queued = task_on_rq_queued(p);
7809 running = task_current(rq, p);
7810 if (queued)
7811 dequeue_task(rq, p, queue_flags);
7812 if (running)
7813 put_prev_task(rq, p);
7814
7815 prev_class = p->sched_class;
7816
7817 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7818 __setscheduler_params(p, attr);
7819 __setscheduler_prio(p, newprio);
7820 }
7821 __setscheduler_uclamp(p, attr);
7822
7823 if (queued) {
7824 /*
7825 * We enqueue to tail when the priority of a task is
7826 * increased (user space view).
7827 */
7828 if (oldprio < p->prio)
7829 queue_flags |= ENQUEUE_HEAD;
7830
7831 enqueue_task(rq, p, queue_flags);
7832 }
7833 if (running)
7834 set_next_task(rq, p);
7835
7836 check_class_changed(rq, p, prev_class, oldprio);
7837
7838 /* Avoid rq from going away on us: */
7839 preempt_disable();
7840 head = splice_balance_callbacks(rq);
7841 task_rq_unlock(rq, p, &rf);
7842
7843 if (pi) {
7844 if (cpuset_locked)
7845 cpuset_unlock();
7846 rt_mutex_adjust_pi(p);
7847 }
7848
7849 /* Run balance callbacks after we've adjusted the PI chain: */
7850 balance_callbacks(rq, head);
7851 preempt_enable();
7852
7853 return 0;
7854
7855 unlock:
7856 task_rq_unlock(rq, p, &rf);
7857 if (cpuset_locked)
7858 cpuset_unlock();
7859 return retval;
7860 }
7861
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7862 static int _sched_setscheduler(struct task_struct *p, int policy,
7863 const struct sched_param *param, bool check)
7864 {
7865 struct sched_attr attr = {
7866 .sched_policy = policy,
7867 .sched_priority = param->sched_priority,
7868 .sched_nice = PRIO_TO_NICE(p->static_prio),
7869 };
7870
7871 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7872 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7873 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7874 policy &= ~SCHED_RESET_ON_FORK;
7875 attr.sched_policy = policy;
7876 }
7877
7878 return __sched_setscheduler(p, &attr, check, true);
7879 }
7880 /**
7881 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7882 * @p: the task in question.
7883 * @policy: new policy.
7884 * @param: structure containing the new RT priority.
7885 *
7886 * Use sched_set_fifo(), read its comment.
7887 *
7888 * Return: 0 on success. An error code otherwise.
7889 *
7890 * NOTE that the task may be already dead.
7891 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7892 int sched_setscheduler(struct task_struct *p, int policy,
7893 const struct sched_param *param)
7894 {
7895 return _sched_setscheduler(p, policy, param, true);
7896 }
7897
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7898 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7899 {
7900 return __sched_setscheduler(p, attr, true, true);
7901 }
7902
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7903 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7904 {
7905 return __sched_setscheduler(p, attr, false, true);
7906 }
7907 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7908
7909 /**
7910 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7911 * @p: the task in question.
7912 * @policy: new policy.
7913 * @param: structure containing the new RT priority.
7914 *
7915 * Just like sched_setscheduler, only don't bother checking if the
7916 * current context has permission. For example, this is needed in
7917 * stop_machine(): we create temporary high priority worker threads,
7918 * but our caller might not have that capability.
7919 *
7920 * Return: 0 on success. An error code otherwise.
7921 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7922 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7923 const struct sched_param *param)
7924 {
7925 return _sched_setscheduler(p, policy, param, false);
7926 }
7927
7928 /*
7929 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7930 * incapable of resource management, which is the one thing an OS really should
7931 * be doing.
7932 *
7933 * This is of course the reason it is limited to privileged users only.
7934 *
7935 * Worse still; it is fundamentally impossible to compose static priority
7936 * workloads. You cannot take two correctly working static prio workloads
7937 * and smash them together and still expect them to work.
7938 *
7939 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7940 *
7941 * MAX_RT_PRIO / 2
7942 *
7943 * The administrator _MUST_ configure the system, the kernel simply doesn't
7944 * know enough information to make a sensible choice.
7945 */
sched_set_fifo(struct task_struct * p)7946 void sched_set_fifo(struct task_struct *p)
7947 {
7948 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7949 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7950 }
7951 EXPORT_SYMBOL_GPL(sched_set_fifo);
7952
7953 /*
7954 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7955 */
sched_set_fifo_low(struct task_struct * p)7956 void sched_set_fifo_low(struct task_struct *p)
7957 {
7958 struct sched_param sp = { .sched_priority = 1 };
7959 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7960 }
7961 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7962
sched_set_normal(struct task_struct * p,int nice)7963 void sched_set_normal(struct task_struct *p, int nice)
7964 {
7965 struct sched_attr attr = {
7966 .sched_policy = SCHED_NORMAL,
7967 .sched_nice = nice,
7968 };
7969 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7970 }
7971 EXPORT_SYMBOL_GPL(sched_set_normal);
7972
7973 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7974 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7975 {
7976 struct sched_param lparam;
7977 struct task_struct *p;
7978 int retval;
7979
7980 if (!param || pid < 0)
7981 return -EINVAL;
7982 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7983 return -EFAULT;
7984
7985 rcu_read_lock();
7986 retval = -ESRCH;
7987 p = find_process_by_pid(pid);
7988 if (likely(p))
7989 get_task_struct(p);
7990 rcu_read_unlock();
7991
7992 if (likely(p)) {
7993 retval = sched_setscheduler(p, policy, &lparam);
7994 put_task_struct(p);
7995 }
7996
7997 return retval;
7998 }
7999
8000 /*
8001 * Mimics kernel/events/core.c perf_copy_attr().
8002 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)8003 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8004 {
8005 u32 size;
8006 int ret;
8007
8008 /* Zero the full structure, so that a short copy will be nice: */
8009 memset(attr, 0, sizeof(*attr));
8010
8011 ret = get_user(size, &uattr->size);
8012 if (ret)
8013 return ret;
8014
8015 /* ABI compatibility quirk: */
8016 if (!size)
8017 size = SCHED_ATTR_SIZE_VER0;
8018 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8019 goto err_size;
8020
8021 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8022 if (ret) {
8023 if (ret == -E2BIG)
8024 goto err_size;
8025 return ret;
8026 }
8027
8028 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8029 size < SCHED_ATTR_SIZE_VER1)
8030 return -EINVAL;
8031
8032 /*
8033 * XXX: Do we want to be lenient like existing syscalls; or do we want
8034 * to be strict and return an error on out-of-bounds values?
8035 */
8036 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8037
8038 return 0;
8039
8040 err_size:
8041 put_user(sizeof(*attr), &uattr->size);
8042 return -E2BIG;
8043 }
8044
get_params(struct task_struct * p,struct sched_attr * attr)8045 static void get_params(struct task_struct *p, struct sched_attr *attr)
8046 {
8047 if (task_has_dl_policy(p))
8048 __getparam_dl(p, attr);
8049 else if (task_has_rt_policy(p))
8050 attr->sched_priority = p->rt_priority;
8051 else
8052 attr->sched_nice = task_nice(p);
8053 }
8054
8055 /**
8056 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8057 * @pid: the pid in question.
8058 * @policy: new policy.
8059 * @param: structure containing the new RT priority.
8060 *
8061 * Return: 0 on success. An error code otherwise.
8062 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8063 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8064 {
8065 if (policy < 0)
8066 return -EINVAL;
8067
8068 return do_sched_setscheduler(pid, policy, param);
8069 }
8070
8071 /**
8072 * sys_sched_setparam - set/change the RT priority of a thread
8073 * @pid: the pid in question.
8074 * @param: structure containing the new RT priority.
8075 *
8076 * Return: 0 on success. An error code otherwise.
8077 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8078 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8079 {
8080 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8081 }
8082
8083 /**
8084 * sys_sched_setattr - same as above, but with extended sched_attr
8085 * @pid: the pid in question.
8086 * @uattr: structure containing the extended parameters.
8087 * @flags: for future extension.
8088 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8089 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8090 unsigned int, flags)
8091 {
8092 struct sched_attr attr;
8093 struct task_struct *p;
8094 int retval;
8095
8096 if (!uattr || pid < 0 || flags)
8097 return -EINVAL;
8098
8099 retval = sched_copy_attr(uattr, &attr);
8100 if (retval)
8101 return retval;
8102
8103 if ((int)attr.sched_policy < 0)
8104 return -EINVAL;
8105 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8106 attr.sched_policy = SETPARAM_POLICY;
8107
8108 rcu_read_lock();
8109 retval = -ESRCH;
8110 p = find_process_by_pid(pid);
8111 if (likely(p))
8112 get_task_struct(p);
8113 rcu_read_unlock();
8114
8115 if (likely(p)) {
8116 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8117 get_params(p, &attr);
8118 retval = sched_setattr(p, &attr);
8119 put_task_struct(p);
8120 }
8121
8122 return retval;
8123 }
8124
8125 /**
8126 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8127 * @pid: the pid in question.
8128 *
8129 * Return: On success, the policy of the thread. Otherwise, a negative error
8130 * code.
8131 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8132 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8133 {
8134 struct task_struct *p;
8135 int retval;
8136
8137 if (pid < 0)
8138 return -EINVAL;
8139
8140 retval = -ESRCH;
8141 rcu_read_lock();
8142 p = find_process_by_pid(pid);
8143 if (p) {
8144 retval = security_task_getscheduler(p);
8145 if (!retval)
8146 retval = p->policy
8147 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8148 }
8149 rcu_read_unlock();
8150 return retval;
8151 }
8152
8153 /**
8154 * sys_sched_getparam - get the RT priority of a thread
8155 * @pid: the pid in question.
8156 * @param: structure containing the RT priority.
8157 *
8158 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8159 * code.
8160 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8161 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8162 {
8163 struct sched_param lp = { .sched_priority = 0 };
8164 struct task_struct *p;
8165 int retval;
8166
8167 if (!param || pid < 0)
8168 return -EINVAL;
8169
8170 rcu_read_lock();
8171 p = find_process_by_pid(pid);
8172 retval = -ESRCH;
8173 if (!p)
8174 goto out_unlock;
8175
8176 retval = security_task_getscheduler(p);
8177 if (retval)
8178 goto out_unlock;
8179
8180 if (task_has_rt_policy(p))
8181 lp.sched_priority = p->rt_priority;
8182 rcu_read_unlock();
8183
8184 /*
8185 * This one might sleep, we cannot do it with a spinlock held ...
8186 */
8187 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8188
8189 return retval;
8190
8191 out_unlock:
8192 rcu_read_unlock();
8193 return retval;
8194 }
8195
8196 /*
8197 * Copy the kernel size attribute structure (which might be larger
8198 * than what user-space knows about) to user-space.
8199 *
8200 * Note that all cases are valid: user-space buffer can be larger or
8201 * smaller than the kernel-space buffer. The usual case is that both
8202 * have the same size.
8203 */
8204 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8205 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8206 struct sched_attr *kattr,
8207 unsigned int usize)
8208 {
8209 unsigned int ksize = sizeof(*kattr);
8210
8211 if (!access_ok(uattr, usize))
8212 return -EFAULT;
8213
8214 /*
8215 * sched_getattr() ABI forwards and backwards compatibility:
8216 *
8217 * If usize == ksize then we just copy everything to user-space and all is good.
8218 *
8219 * If usize < ksize then we only copy as much as user-space has space for,
8220 * this keeps ABI compatibility as well. We skip the rest.
8221 *
8222 * If usize > ksize then user-space is using a newer version of the ABI,
8223 * which part the kernel doesn't know about. Just ignore it - tooling can
8224 * detect the kernel's knowledge of attributes from the attr->size value
8225 * which is set to ksize in this case.
8226 */
8227 kattr->size = min(usize, ksize);
8228
8229 if (copy_to_user(uattr, kattr, kattr->size))
8230 return -EFAULT;
8231
8232 return 0;
8233 }
8234
8235 /**
8236 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8237 * @pid: the pid in question.
8238 * @uattr: structure containing the extended parameters.
8239 * @usize: sizeof(attr) for fwd/bwd comp.
8240 * @flags: for future extension.
8241 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8242 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8243 unsigned int, usize, unsigned int, flags)
8244 {
8245 struct sched_attr kattr = { };
8246 struct task_struct *p;
8247 int retval;
8248
8249 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8250 usize < SCHED_ATTR_SIZE_VER0 || flags)
8251 return -EINVAL;
8252
8253 rcu_read_lock();
8254 p = find_process_by_pid(pid);
8255 retval = -ESRCH;
8256 if (!p)
8257 goto out_unlock;
8258
8259 retval = security_task_getscheduler(p);
8260 if (retval)
8261 goto out_unlock;
8262
8263 kattr.sched_policy = p->policy;
8264 if (p->sched_reset_on_fork)
8265 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8266 get_params(p, &kattr);
8267 kattr.sched_flags &= SCHED_FLAG_ALL;
8268
8269 #ifdef CONFIG_UCLAMP_TASK
8270 /*
8271 * This could race with another potential updater, but this is fine
8272 * because it'll correctly read the old or the new value. We don't need
8273 * to guarantee who wins the race as long as it doesn't return garbage.
8274 */
8275 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8276 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8277 #endif
8278
8279 rcu_read_unlock();
8280
8281 return sched_attr_copy_to_user(uattr, &kattr, usize);
8282
8283 out_unlock:
8284 rcu_read_unlock();
8285 return retval;
8286 }
8287
8288 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8289 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8290 {
8291 int ret = 0;
8292
8293 /*
8294 * If the task isn't a deadline task or admission control is
8295 * disabled then we don't care about affinity changes.
8296 */
8297 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8298 return 0;
8299
8300 /*
8301 * Since bandwidth control happens on root_domain basis,
8302 * if admission test is enabled, we only admit -deadline
8303 * tasks allowed to run on all the CPUs in the task's
8304 * root_domain.
8305 */
8306 rcu_read_lock();
8307 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8308 ret = -EBUSY;
8309 rcu_read_unlock();
8310 return ret;
8311 }
8312 #endif
8313
8314 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8315 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8316 {
8317 int retval;
8318 cpumask_var_t cpus_allowed, new_mask;
8319
8320 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8321 return -ENOMEM;
8322
8323 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8324 retval = -ENOMEM;
8325 goto out_free_cpus_allowed;
8326 }
8327
8328 cpuset_cpus_allowed(p, cpus_allowed);
8329 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8330
8331 ctx->new_mask = new_mask;
8332 ctx->flags |= SCA_CHECK;
8333
8334 retval = dl_task_check_affinity(p, new_mask);
8335 if (retval)
8336 goto out_free_new_mask;
8337
8338 retval = __set_cpus_allowed_ptr(p, ctx);
8339 if (retval)
8340 goto out_free_new_mask;
8341
8342 cpuset_cpus_allowed(p, cpus_allowed);
8343 if (!cpumask_subset(new_mask, cpus_allowed)) {
8344 /*
8345 * We must have raced with a concurrent cpuset update.
8346 * Just reset the cpumask to the cpuset's cpus_allowed.
8347 */
8348 cpumask_copy(new_mask, cpus_allowed);
8349
8350 /*
8351 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8352 * will restore the previous user_cpus_ptr value.
8353 *
8354 * In the unlikely event a previous user_cpus_ptr exists,
8355 * we need to further restrict the mask to what is allowed
8356 * by that old user_cpus_ptr.
8357 */
8358 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8359 bool empty = !cpumask_and(new_mask, new_mask,
8360 ctx->user_mask);
8361
8362 if (WARN_ON_ONCE(empty))
8363 cpumask_copy(new_mask, cpus_allowed);
8364 }
8365 __set_cpus_allowed_ptr(p, ctx);
8366 retval = -EINVAL;
8367 }
8368
8369 out_free_new_mask:
8370 free_cpumask_var(new_mask);
8371 out_free_cpus_allowed:
8372 free_cpumask_var(cpus_allowed);
8373 return retval;
8374 }
8375
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8376 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8377 {
8378 struct affinity_context ac;
8379 struct cpumask *user_mask;
8380 struct task_struct *p;
8381 int retval;
8382
8383 rcu_read_lock();
8384
8385 p = find_process_by_pid(pid);
8386 if (!p) {
8387 rcu_read_unlock();
8388 return -ESRCH;
8389 }
8390
8391 /* Prevent p going away */
8392 get_task_struct(p);
8393 rcu_read_unlock();
8394
8395 if (p->flags & PF_NO_SETAFFINITY) {
8396 retval = -EINVAL;
8397 goto out_put_task;
8398 }
8399
8400 if (!check_same_owner(p)) {
8401 rcu_read_lock();
8402 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8403 rcu_read_unlock();
8404 retval = -EPERM;
8405 goto out_put_task;
8406 }
8407 rcu_read_unlock();
8408 }
8409
8410 retval = security_task_setscheduler(p);
8411 if (retval)
8412 goto out_put_task;
8413
8414 /*
8415 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8416 * alloc_user_cpus_ptr() returns NULL.
8417 */
8418 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8419 if (user_mask) {
8420 cpumask_copy(user_mask, in_mask);
8421 } else if (IS_ENABLED(CONFIG_SMP)) {
8422 retval = -ENOMEM;
8423 goto out_put_task;
8424 }
8425
8426 ac = (struct affinity_context){
8427 .new_mask = in_mask,
8428 .user_mask = user_mask,
8429 .flags = SCA_USER,
8430 };
8431
8432 retval = __sched_setaffinity(p, &ac);
8433 kfree(ac.user_mask);
8434
8435 out_put_task:
8436 put_task_struct(p);
8437 return retval;
8438 }
8439
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8440 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8441 struct cpumask *new_mask)
8442 {
8443 if (len < cpumask_size())
8444 cpumask_clear(new_mask);
8445 else if (len > cpumask_size())
8446 len = cpumask_size();
8447
8448 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8449 }
8450
8451 /**
8452 * sys_sched_setaffinity - set the CPU affinity of a process
8453 * @pid: pid of the process
8454 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8455 * @user_mask_ptr: user-space pointer to the new CPU mask
8456 *
8457 * Return: 0 on success. An error code otherwise.
8458 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8459 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8460 unsigned long __user *, user_mask_ptr)
8461 {
8462 cpumask_var_t new_mask;
8463 int retval;
8464
8465 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8466 return -ENOMEM;
8467
8468 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8469 if (retval == 0)
8470 retval = sched_setaffinity(pid, new_mask);
8471 free_cpumask_var(new_mask);
8472 return retval;
8473 }
8474
sched_getaffinity(pid_t pid,struct cpumask * mask)8475 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8476 {
8477 struct task_struct *p;
8478 unsigned long flags;
8479 int retval;
8480
8481 rcu_read_lock();
8482
8483 retval = -ESRCH;
8484 p = find_process_by_pid(pid);
8485 if (!p)
8486 goto out_unlock;
8487
8488 retval = security_task_getscheduler(p);
8489 if (retval)
8490 goto out_unlock;
8491
8492 raw_spin_lock_irqsave(&p->pi_lock, flags);
8493 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8494 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8495
8496 out_unlock:
8497 rcu_read_unlock();
8498
8499 return retval;
8500 }
8501
8502 /**
8503 * sys_sched_getaffinity - get the CPU affinity of a process
8504 * @pid: pid of the process
8505 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8506 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8507 *
8508 * Return: size of CPU mask copied to user_mask_ptr on success. An
8509 * error code otherwise.
8510 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8511 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8512 unsigned long __user *, user_mask_ptr)
8513 {
8514 int ret;
8515 cpumask_var_t mask;
8516
8517 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8518 return -EINVAL;
8519 if (len & (sizeof(unsigned long)-1))
8520 return -EINVAL;
8521
8522 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8523 return -ENOMEM;
8524
8525 ret = sched_getaffinity(pid, mask);
8526 if (ret == 0) {
8527 unsigned int retlen = min(len, cpumask_size());
8528
8529 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8530 ret = -EFAULT;
8531 else
8532 ret = retlen;
8533 }
8534 free_cpumask_var(mask);
8535
8536 return ret;
8537 }
8538
do_sched_yield(void)8539 static void do_sched_yield(void)
8540 {
8541 struct rq_flags rf;
8542 struct rq *rq;
8543
8544 rq = this_rq_lock_irq(&rf);
8545
8546 schedstat_inc(rq->yld_count);
8547 current->sched_class->yield_task(rq);
8548
8549 preempt_disable();
8550 rq_unlock_irq(rq, &rf);
8551 sched_preempt_enable_no_resched();
8552
8553 schedule();
8554 }
8555
8556 /**
8557 * sys_sched_yield - yield the current processor to other threads.
8558 *
8559 * This function yields the current CPU to other tasks. If there are no
8560 * other threads running on this CPU then this function will return.
8561 *
8562 * Return: 0.
8563 */
SYSCALL_DEFINE0(sched_yield)8564 SYSCALL_DEFINE0(sched_yield)
8565 {
8566 do_sched_yield();
8567 return 0;
8568 }
8569
8570 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8571 int __sched __cond_resched(void)
8572 {
8573 if (should_resched(0) && !irqs_disabled()) {
8574 preempt_schedule_common();
8575 return 1;
8576 }
8577 /*
8578 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8579 * whether the current CPU is in an RCU read-side critical section,
8580 * so the tick can report quiescent states even for CPUs looping
8581 * in kernel context. In contrast, in non-preemptible kernels,
8582 * RCU readers leave no in-memory hints, which means that CPU-bound
8583 * processes executing in kernel context might never report an
8584 * RCU quiescent state. Therefore, the following code causes
8585 * cond_resched() to report a quiescent state, but only when RCU
8586 * is in urgent need of one.
8587 */
8588 #ifndef CONFIG_PREEMPT_RCU
8589 rcu_all_qs();
8590 #endif
8591 return 0;
8592 }
8593 EXPORT_SYMBOL(__cond_resched);
8594 #endif
8595
8596 #ifdef CONFIG_PREEMPT_DYNAMIC
8597 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8598 #define cond_resched_dynamic_enabled __cond_resched
8599 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8600 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8601 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8602
8603 #define might_resched_dynamic_enabled __cond_resched
8604 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8605 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8606 EXPORT_STATIC_CALL_TRAMP(might_resched);
8607 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8608 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8609 int __sched dynamic_cond_resched(void)
8610 {
8611 klp_sched_try_switch();
8612 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8613 return 0;
8614 return __cond_resched();
8615 }
8616 EXPORT_SYMBOL(dynamic_cond_resched);
8617
8618 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8619 int __sched dynamic_might_resched(void)
8620 {
8621 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8622 return 0;
8623 return __cond_resched();
8624 }
8625 EXPORT_SYMBOL(dynamic_might_resched);
8626 #endif
8627 #endif
8628
8629 /*
8630 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8631 * call schedule, and on return reacquire the lock.
8632 *
8633 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8634 * operations here to prevent schedule() from being called twice (once via
8635 * spin_unlock(), once by hand).
8636 */
__cond_resched_lock(spinlock_t * lock)8637 int __cond_resched_lock(spinlock_t *lock)
8638 {
8639 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8640 int ret = 0;
8641
8642 lockdep_assert_held(lock);
8643
8644 if (spin_needbreak(lock) || resched) {
8645 spin_unlock(lock);
8646 if (!_cond_resched())
8647 cpu_relax();
8648 ret = 1;
8649 spin_lock(lock);
8650 }
8651 return ret;
8652 }
8653 EXPORT_SYMBOL(__cond_resched_lock);
8654
__cond_resched_rwlock_read(rwlock_t * lock)8655 int __cond_resched_rwlock_read(rwlock_t *lock)
8656 {
8657 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8658 int ret = 0;
8659
8660 lockdep_assert_held_read(lock);
8661
8662 if (rwlock_needbreak(lock) || resched) {
8663 read_unlock(lock);
8664 if (!_cond_resched())
8665 cpu_relax();
8666 ret = 1;
8667 read_lock(lock);
8668 }
8669 return ret;
8670 }
8671 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8672
__cond_resched_rwlock_write(rwlock_t * lock)8673 int __cond_resched_rwlock_write(rwlock_t *lock)
8674 {
8675 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8676 int ret = 0;
8677
8678 lockdep_assert_held_write(lock);
8679
8680 if (rwlock_needbreak(lock) || resched) {
8681 write_unlock(lock);
8682 if (!_cond_resched())
8683 cpu_relax();
8684 ret = 1;
8685 write_lock(lock);
8686 }
8687 return ret;
8688 }
8689 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8690
8691 #ifdef CONFIG_PREEMPT_DYNAMIC
8692
8693 #ifdef CONFIG_GENERIC_ENTRY
8694 #include <linux/entry-common.h>
8695 #endif
8696
8697 /*
8698 * SC:cond_resched
8699 * SC:might_resched
8700 * SC:preempt_schedule
8701 * SC:preempt_schedule_notrace
8702 * SC:irqentry_exit_cond_resched
8703 *
8704 *
8705 * NONE:
8706 * cond_resched <- __cond_resched
8707 * might_resched <- RET0
8708 * preempt_schedule <- NOP
8709 * preempt_schedule_notrace <- NOP
8710 * irqentry_exit_cond_resched <- NOP
8711 *
8712 * VOLUNTARY:
8713 * cond_resched <- __cond_resched
8714 * might_resched <- __cond_resched
8715 * preempt_schedule <- NOP
8716 * preempt_schedule_notrace <- NOP
8717 * irqentry_exit_cond_resched <- NOP
8718 *
8719 * FULL:
8720 * cond_resched <- RET0
8721 * might_resched <- RET0
8722 * preempt_schedule <- preempt_schedule
8723 * preempt_schedule_notrace <- preempt_schedule_notrace
8724 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8725 */
8726
8727 enum {
8728 preempt_dynamic_undefined = -1,
8729 preempt_dynamic_none,
8730 preempt_dynamic_voluntary,
8731 preempt_dynamic_full,
8732 };
8733
8734 int preempt_dynamic_mode = preempt_dynamic_undefined;
8735
sched_dynamic_mode(const char * str)8736 int sched_dynamic_mode(const char *str)
8737 {
8738 if (!strcmp(str, "none"))
8739 return preempt_dynamic_none;
8740
8741 if (!strcmp(str, "voluntary"))
8742 return preempt_dynamic_voluntary;
8743
8744 if (!strcmp(str, "full"))
8745 return preempt_dynamic_full;
8746
8747 return -EINVAL;
8748 }
8749
8750 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8751 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8752 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8753 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8754 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8755 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8756 #else
8757 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8758 #endif
8759
8760 static DEFINE_MUTEX(sched_dynamic_mutex);
8761 static bool klp_override;
8762
__sched_dynamic_update(int mode)8763 static void __sched_dynamic_update(int mode)
8764 {
8765 /*
8766 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8767 * the ZERO state, which is invalid.
8768 */
8769 if (!klp_override)
8770 preempt_dynamic_enable(cond_resched);
8771 preempt_dynamic_enable(might_resched);
8772 preempt_dynamic_enable(preempt_schedule);
8773 preempt_dynamic_enable(preempt_schedule_notrace);
8774 preempt_dynamic_enable(irqentry_exit_cond_resched);
8775
8776 switch (mode) {
8777 case preempt_dynamic_none:
8778 if (!klp_override)
8779 preempt_dynamic_enable(cond_resched);
8780 preempt_dynamic_disable(might_resched);
8781 preempt_dynamic_disable(preempt_schedule);
8782 preempt_dynamic_disable(preempt_schedule_notrace);
8783 preempt_dynamic_disable(irqentry_exit_cond_resched);
8784 if (mode != preempt_dynamic_mode)
8785 pr_info("Dynamic Preempt: none\n");
8786 break;
8787
8788 case preempt_dynamic_voluntary:
8789 if (!klp_override)
8790 preempt_dynamic_enable(cond_resched);
8791 preempt_dynamic_enable(might_resched);
8792 preempt_dynamic_disable(preempt_schedule);
8793 preempt_dynamic_disable(preempt_schedule_notrace);
8794 preempt_dynamic_disable(irqentry_exit_cond_resched);
8795 if (mode != preempt_dynamic_mode)
8796 pr_info("Dynamic Preempt: voluntary\n");
8797 break;
8798
8799 case preempt_dynamic_full:
8800 if (!klp_override)
8801 preempt_dynamic_disable(cond_resched);
8802 preempt_dynamic_disable(might_resched);
8803 preempt_dynamic_enable(preempt_schedule);
8804 preempt_dynamic_enable(preempt_schedule_notrace);
8805 preempt_dynamic_enable(irqentry_exit_cond_resched);
8806 if (mode != preempt_dynamic_mode)
8807 pr_info("Dynamic Preempt: full\n");
8808 break;
8809 }
8810
8811 preempt_dynamic_mode = mode;
8812 }
8813
sched_dynamic_update(int mode)8814 void sched_dynamic_update(int mode)
8815 {
8816 mutex_lock(&sched_dynamic_mutex);
8817 __sched_dynamic_update(mode);
8818 mutex_unlock(&sched_dynamic_mutex);
8819 }
8820
8821 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8822
klp_cond_resched(void)8823 static int klp_cond_resched(void)
8824 {
8825 __klp_sched_try_switch();
8826 return __cond_resched();
8827 }
8828
sched_dynamic_klp_enable(void)8829 void sched_dynamic_klp_enable(void)
8830 {
8831 mutex_lock(&sched_dynamic_mutex);
8832
8833 klp_override = true;
8834 static_call_update(cond_resched, klp_cond_resched);
8835
8836 mutex_unlock(&sched_dynamic_mutex);
8837 }
8838
sched_dynamic_klp_disable(void)8839 void sched_dynamic_klp_disable(void)
8840 {
8841 mutex_lock(&sched_dynamic_mutex);
8842
8843 klp_override = false;
8844 __sched_dynamic_update(preempt_dynamic_mode);
8845
8846 mutex_unlock(&sched_dynamic_mutex);
8847 }
8848
8849 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8850
setup_preempt_mode(char * str)8851 static int __init setup_preempt_mode(char *str)
8852 {
8853 int mode = sched_dynamic_mode(str);
8854 if (mode < 0) {
8855 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8856 return 0;
8857 }
8858
8859 sched_dynamic_update(mode);
8860 return 1;
8861 }
8862 __setup("preempt=", setup_preempt_mode);
8863
preempt_dynamic_init(void)8864 static void __init preempt_dynamic_init(void)
8865 {
8866 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8867 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8868 sched_dynamic_update(preempt_dynamic_none);
8869 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8870 sched_dynamic_update(preempt_dynamic_voluntary);
8871 } else {
8872 /* Default static call setting, nothing to do */
8873 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8874 preempt_dynamic_mode = preempt_dynamic_full;
8875 pr_info("Dynamic Preempt: full\n");
8876 }
8877 }
8878 }
8879
8880 #define PREEMPT_MODEL_ACCESSOR(mode) \
8881 bool preempt_model_##mode(void) \
8882 { \
8883 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8884 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8885 } \
8886 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8887
8888 PREEMPT_MODEL_ACCESSOR(none);
8889 PREEMPT_MODEL_ACCESSOR(voluntary);
8890 PREEMPT_MODEL_ACCESSOR(full);
8891
8892 #else /* !CONFIG_PREEMPT_DYNAMIC */
8893
preempt_dynamic_init(void)8894 static inline void preempt_dynamic_init(void) { }
8895
8896 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8897
8898 /**
8899 * yield - yield the current processor to other threads.
8900 *
8901 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8902 *
8903 * The scheduler is at all times free to pick the calling task as the most
8904 * eligible task to run, if removing the yield() call from your code breaks
8905 * it, it's already broken.
8906 *
8907 * Typical broken usage is:
8908 *
8909 * while (!event)
8910 * yield();
8911 *
8912 * where one assumes that yield() will let 'the other' process run that will
8913 * make event true. If the current task is a SCHED_FIFO task that will never
8914 * happen. Never use yield() as a progress guarantee!!
8915 *
8916 * If you want to use yield() to wait for something, use wait_event().
8917 * If you want to use yield() to be 'nice' for others, use cond_resched().
8918 * If you still want to use yield(), do not!
8919 */
yield(void)8920 void __sched yield(void)
8921 {
8922 set_current_state(TASK_RUNNING);
8923 do_sched_yield();
8924 }
8925 EXPORT_SYMBOL(yield);
8926
8927 /**
8928 * yield_to - yield the current processor to another thread in
8929 * your thread group, or accelerate that thread toward the
8930 * processor it's on.
8931 * @p: target task
8932 * @preempt: whether task preemption is allowed or not
8933 *
8934 * It's the caller's job to ensure that the target task struct
8935 * can't go away on us before we can do any checks.
8936 *
8937 * Return:
8938 * true (>0) if we indeed boosted the target task.
8939 * false (0) if we failed to boost the target.
8940 * -ESRCH if there's no task to yield to.
8941 */
yield_to(struct task_struct * p,bool preempt)8942 int __sched yield_to(struct task_struct *p, bool preempt)
8943 {
8944 struct task_struct *curr = current;
8945 struct rq *rq, *p_rq;
8946 unsigned long flags;
8947 int yielded = 0;
8948
8949 local_irq_save(flags);
8950 rq = this_rq();
8951
8952 again:
8953 p_rq = task_rq(p);
8954 /*
8955 * If we're the only runnable task on the rq and target rq also
8956 * has only one task, there's absolutely no point in yielding.
8957 */
8958 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8959 yielded = -ESRCH;
8960 goto out_irq;
8961 }
8962
8963 double_rq_lock(rq, p_rq);
8964 if (task_rq(p) != p_rq) {
8965 double_rq_unlock(rq, p_rq);
8966 goto again;
8967 }
8968
8969 if (!curr->sched_class->yield_to_task)
8970 goto out_unlock;
8971
8972 if (curr->sched_class != p->sched_class)
8973 goto out_unlock;
8974
8975 if (task_on_cpu(p_rq, p) || !task_is_running(p))
8976 goto out_unlock;
8977
8978 yielded = curr->sched_class->yield_to_task(rq, p);
8979 if (yielded) {
8980 schedstat_inc(rq->yld_count);
8981 /*
8982 * Make p's CPU reschedule; pick_next_entity takes care of
8983 * fairness.
8984 */
8985 if (preempt && rq != p_rq)
8986 resched_curr(p_rq);
8987 }
8988
8989 out_unlock:
8990 double_rq_unlock(rq, p_rq);
8991 out_irq:
8992 local_irq_restore(flags);
8993
8994 if (yielded > 0)
8995 schedule();
8996
8997 return yielded;
8998 }
8999 EXPORT_SYMBOL_GPL(yield_to);
9000
io_schedule_prepare(void)9001 int io_schedule_prepare(void)
9002 {
9003 int old_iowait = current->in_iowait;
9004
9005 current->in_iowait = 1;
9006 blk_flush_plug(current->plug, true);
9007 return old_iowait;
9008 }
9009
io_schedule_finish(int token)9010 void io_schedule_finish(int token)
9011 {
9012 current->in_iowait = token;
9013 }
9014
9015 /*
9016 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9017 * that process accounting knows that this is a task in IO wait state.
9018 */
io_schedule_timeout(long timeout)9019 long __sched io_schedule_timeout(long timeout)
9020 {
9021 int token;
9022 long ret;
9023
9024 token = io_schedule_prepare();
9025 ret = schedule_timeout(timeout);
9026 io_schedule_finish(token);
9027
9028 return ret;
9029 }
9030 EXPORT_SYMBOL(io_schedule_timeout);
9031
io_schedule(void)9032 void __sched io_schedule(void)
9033 {
9034 int token;
9035
9036 token = io_schedule_prepare();
9037 schedule();
9038 io_schedule_finish(token);
9039 }
9040 EXPORT_SYMBOL(io_schedule);
9041
9042 /**
9043 * sys_sched_get_priority_max - return maximum RT priority.
9044 * @policy: scheduling class.
9045 *
9046 * Return: On success, this syscall returns the maximum
9047 * rt_priority that can be used by a given scheduling class.
9048 * On failure, a negative error code is returned.
9049 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9050 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9051 {
9052 int ret = -EINVAL;
9053
9054 switch (policy) {
9055 case SCHED_FIFO:
9056 case SCHED_RR:
9057 ret = MAX_RT_PRIO-1;
9058 break;
9059 case SCHED_DEADLINE:
9060 case SCHED_NORMAL:
9061 case SCHED_BATCH:
9062 case SCHED_IDLE:
9063 ret = 0;
9064 break;
9065 }
9066 return ret;
9067 }
9068
9069 /**
9070 * sys_sched_get_priority_min - return minimum RT priority.
9071 * @policy: scheduling class.
9072 *
9073 * Return: On success, this syscall returns the minimum
9074 * rt_priority that can be used by a given scheduling class.
9075 * On failure, a negative error code is returned.
9076 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9077 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9078 {
9079 int ret = -EINVAL;
9080
9081 switch (policy) {
9082 case SCHED_FIFO:
9083 case SCHED_RR:
9084 ret = 1;
9085 break;
9086 case SCHED_DEADLINE:
9087 case SCHED_NORMAL:
9088 case SCHED_BATCH:
9089 case SCHED_IDLE:
9090 ret = 0;
9091 }
9092 return ret;
9093 }
9094
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9095 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9096 {
9097 struct task_struct *p;
9098 unsigned int time_slice;
9099 struct rq_flags rf;
9100 struct rq *rq;
9101 int retval;
9102
9103 if (pid < 0)
9104 return -EINVAL;
9105
9106 retval = -ESRCH;
9107 rcu_read_lock();
9108 p = find_process_by_pid(pid);
9109 if (!p)
9110 goto out_unlock;
9111
9112 retval = security_task_getscheduler(p);
9113 if (retval)
9114 goto out_unlock;
9115
9116 rq = task_rq_lock(p, &rf);
9117 time_slice = 0;
9118 if (p->sched_class->get_rr_interval)
9119 time_slice = p->sched_class->get_rr_interval(rq, p);
9120 task_rq_unlock(rq, p, &rf);
9121
9122 rcu_read_unlock();
9123 jiffies_to_timespec64(time_slice, t);
9124 return 0;
9125
9126 out_unlock:
9127 rcu_read_unlock();
9128 return retval;
9129 }
9130
9131 /**
9132 * sys_sched_rr_get_interval - return the default timeslice of a process.
9133 * @pid: pid of the process.
9134 * @interval: userspace pointer to the timeslice value.
9135 *
9136 * this syscall writes the default timeslice value of a given process
9137 * into the user-space timespec buffer. A value of '0' means infinity.
9138 *
9139 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9140 * an error code.
9141 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9142 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9143 struct __kernel_timespec __user *, interval)
9144 {
9145 struct timespec64 t;
9146 int retval = sched_rr_get_interval(pid, &t);
9147
9148 if (retval == 0)
9149 retval = put_timespec64(&t, interval);
9150
9151 return retval;
9152 }
9153
9154 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9155 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9156 struct old_timespec32 __user *, interval)
9157 {
9158 struct timespec64 t;
9159 int retval = sched_rr_get_interval(pid, &t);
9160
9161 if (retval == 0)
9162 retval = put_old_timespec32(&t, interval);
9163 return retval;
9164 }
9165 #endif
9166
sched_show_task(struct task_struct * p)9167 void sched_show_task(struct task_struct *p)
9168 {
9169 unsigned long free = 0;
9170 int ppid;
9171
9172 if (!try_get_task_stack(p))
9173 return;
9174
9175 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9176
9177 if (task_is_running(p))
9178 pr_cont(" running task ");
9179 #ifdef CONFIG_DEBUG_STACK_USAGE
9180 free = stack_not_used(p);
9181 #endif
9182 ppid = 0;
9183 rcu_read_lock();
9184 if (pid_alive(p))
9185 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9186 rcu_read_unlock();
9187 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9188 free, task_pid_nr(p), ppid,
9189 read_task_thread_flags(p));
9190
9191 print_worker_info(KERN_INFO, p);
9192 print_stop_info(KERN_INFO, p);
9193 show_stack(p, NULL, KERN_INFO);
9194 put_task_stack(p);
9195 }
9196 EXPORT_SYMBOL_GPL(sched_show_task);
9197
9198 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9199 state_filter_match(unsigned long state_filter, struct task_struct *p)
9200 {
9201 unsigned int state = READ_ONCE(p->__state);
9202
9203 /* no filter, everything matches */
9204 if (!state_filter)
9205 return true;
9206
9207 /* filter, but doesn't match */
9208 if (!(state & state_filter))
9209 return false;
9210
9211 /*
9212 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9213 * TASK_KILLABLE).
9214 */
9215 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9216 return false;
9217
9218 return true;
9219 }
9220
9221
show_state_filter(unsigned int state_filter)9222 void show_state_filter(unsigned int state_filter)
9223 {
9224 struct task_struct *g, *p;
9225
9226 rcu_read_lock();
9227 for_each_process_thread(g, p) {
9228 /*
9229 * reset the NMI-timeout, listing all files on a slow
9230 * console might take a lot of time:
9231 * Also, reset softlockup watchdogs on all CPUs, because
9232 * another CPU might be blocked waiting for us to process
9233 * an IPI.
9234 */
9235 touch_nmi_watchdog();
9236 touch_all_softlockup_watchdogs();
9237 if (state_filter_match(state_filter, p))
9238 sched_show_task(p);
9239 }
9240
9241 #ifdef CONFIG_SCHED_DEBUG
9242 if (!state_filter)
9243 sysrq_sched_debug_show();
9244 #endif
9245 rcu_read_unlock();
9246 /*
9247 * Only show locks if all tasks are dumped:
9248 */
9249 if (!state_filter)
9250 debug_show_all_locks();
9251 }
9252
9253 /**
9254 * init_idle - set up an idle thread for a given CPU
9255 * @idle: task in question
9256 * @cpu: CPU the idle task belongs to
9257 *
9258 * NOTE: this function does not set the idle thread's NEED_RESCHED
9259 * flag, to make booting more robust.
9260 */
init_idle(struct task_struct * idle,int cpu)9261 void __init init_idle(struct task_struct *idle, int cpu)
9262 {
9263 #ifdef CONFIG_SMP
9264 struct affinity_context ac = (struct affinity_context) {
9265 .new_mask = cpumask_of(cpu),
9266 .flags = 0,
9267 };
9268 #endif
9269 struct rq *rq = cpu_rq(cpu);
9270 unsigned long flags;
9271
9272 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9273 raw_spin_rq_lock(rq);
9274
9275 idle->__state = TASK_RUNNING;
9276 idle->se.exec_start = sched_clock();
9277 /*
9278 * PF_KTHREAD should already be set at this point; regardless, make it
9279 * look like a proper per-CPU kthread.
9280 */
9281 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9282 kthread_set_per_cpu(idle, cpu);
9283
9284 #ifdef CONFIG_SMP
9285 /*
9286 * No validation and serialization required at boot time and for
9287 * setting up the idle tasks of not yet online CPUs.
9288 */
9289 set_cpus_allowed_common(idle, &ac);
9290 #endif
9291 /*
9292 * We're having a chicken and egg problem, even though we are
9293 * holding rq->lock, the CPU isn't yet set to this CPU so the
9294 * lockdep check in task_group() will fail.
9295 *
9296 * Similar case to sched_fork(). / Alternatively we could
9297 * use task_rq_lock() here and obtain the other rq->lock.
9298 *
9299 * Silence PROVE_RCU
9300 */
9301 rcu_read_lock();
9302 __set_task_cpu(idle, cpu);
9303 rcu_read_unlock();
9304
9305 rq->idle = idle;
9306 rcu_assign_pointer(rq->curr, idle);
9307 idle->on_rq = TASK_ON_RQ_QUEUED;
9308 #ifdef CONFIG_SMP
9309 idle->on_cpu = 1;
9310 #endif
9311 raw_spin_rq_unlock(rq);
9312 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9313
9314 /* Set the preempt count _outside_ the spinlocks! */
9315 init_idle_preempt_count(idle, cpu);
9316
9317 /*
9318 * The idle tasks have their own, simple scheduling class:
9319 */
9320 idle->sched_class = &idle_sched_class;
9321 ftrace_graph_init_idle_task(idle, cpu);
9322 vtime_init_idle(idle, cpu);
9323 #ifdef CONFIG_SMP
9324 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9325 #endif
9326 }
9327
9328 #ifdef CONFIG_SMP
9329
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9330 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9331 const struct cpumask *trial)
9332 {
9333 int ret = 1;
9334
9335 if (cpumask_empty(cur))
9336 return ret;
9337
9338 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9339
9340 return ret;
9341 }
9342
task_can_attach(struct task_struct * p)9343 int task_can_attach(struct task_struct *p)
9344 {
9345 int ret = 0;
9346
9347 /*
9348 * Kthreads which disallow setaffinity shouldn't be moved
9349 * to a new cpuset; we don't want to change their CPU
9350 * affinity and isolating such threads by their set of
9351 * allowed nodes is unnecessary. Thus, cpusets are not
9352 * applicable for such threads. This prevents checking for
9353 * success of set_cpus_allowed_ptr() on all attached tasks
9354 * before cpus_mask may be changed.
9355 */
9356 if (p->flags & PF_NO_SETAFFINITY)
9357 ret = -EINVAL;
9358
9359 return ret;
9360 }
9361
9362 bool sched_smp_initialized __read_mostly;
9363
9364 #ifdef CONFIG_NUMA_BALANCING
9365 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9366 int migrate_task_to(struct task_struct *p, int target_cpu)
9367 {
9368 struct migration_arg arg = { p, target_cpu };
9369 int curr_cpu = task_cpu(p);
9370
9371 if (curr_cpu == target_cpu)
9372 return 0;
9373
9374 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9375 return -EINVAL;
9376
9377 /* TODO: This is not properly updating schedstats */
9378
9379 trace_sched_move_numa(p, curr_cpu, target_cpu);
9380 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9381 }
9382
9383 /*
9384 * Requeue a task on a given node and accurately track the number of NUMA
9385 * tasks on the runqueues
9386 */
sched_setnuma(struct task_struct * p,int nid)9387 void sched_setnuma(struct task_struct *p, int nid)
9388 {
9389 bool queued, running;
9390 struct rq_flags rf;
9391 struct rq *rq;
9392
9393 rq = task_rq_lock(p, &rf);
9394 queued = task_on_rq_queued(p);
9395 running = task_current(rq, p);
9396
9397 if (queued)
9398 dequeue_task(rq, p, DEQUEUE_SAVE);
9399 if (running)
9400 put_prev_task(rq, p);
9401
9402 p->numa_preferred_nid = nid;
9403
9404 if (queued)
9405 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9406 if (running)
9407 set_next_task(rq, p);
9408 task_rq_unlock(rq, p, &rf);
9409 }
9410 #endif /* CONFIG_NUMA_BALANCING */
9411
9412 #ifdef CONFIG_HOTPLUG_CPU
9413 /*
9414 * Ensure that the idle task is using init_mm right before its CPU goes
9415 * offline.
9416 */
idle_task_exit(void)9417 void idle_task_exit(void)
9418 {
9419 struct mm_struct *mm = current->active_mm;
9420
9421 BUG_ON(cpu_online(smp_processor_id()));
9422 BUG_ON(current != this_rq()->idle);
9423
9424 if (mm != &init_mm) {
9425 switch_mm(mm, &init_mm, current);
9426 finish_arch_post_lock_switch();
9427 }
9428
9429 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9430 }
9431
__balance_push_cpu_stop(void * arg)9432 static int __balance_push_cpu_stop(void *arg)
9433 {
9434 struct task_struct *p = arg;
9435 struct rq *rq = this_rq();
9436 struct rq_flags rf;
9437 int cpu;
9438
9439 raw_spin_lock_irq(&p->pi_lock);
9440 rq_lock(rq, &rf);
9441
9442 update_rq_clock(rq);
9443
9444 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9445 cpu = select_fallback_rq(rq->cpu, p);
9446 rq = __migrate_task(rq, &rf, p, cpu);
9447 }
9448
9449 rq_unlock(rq, &rf);
9450 raw_spin_unlock_irq(&p->pi_lock);
9451
9452 put_task_struct(p);
9453
9454 return 0;
9455 }
9456
9457 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9458
9459 /*
9460 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9461 *
9462 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9463 * effective when the hotplug motion is down.
9464 */
balance_push(struct rq * rq)9465 static void balance_push(struct rq *rq)
9466 {
9467 struct task_struct *push_task = rq->curr;
9468
9469 lockdep_assert_rq_held(rq);
9470
9471 /*
9472 * Ensure the thing is persistent until balance_push_set(.on = false);
9473 */
9474 rq->balance_callback = &balance_push_callback;
9475
9476 /*
9477 * Only active while going offline and when invoked on the outgoing
9478 * CPU.
9479 */
9480 if (!cpu_dying(rq->cpu) || rq != this_rq())
9481 return;
9482
9483 /*
9484 * Both the cpu-hotplug and stop task are in this case and are
9485 * required to complete the hotplug process.
9486 */
9487 if (kthread_is_per_cpu(push_task) ||
9488 is_migration_disabled(push_task)) {
9489
9490 /*
9491 * If this is the idle task on the outgoing CPU try to wake
9492 * up the hotplug control thread which might wait for the
9493 * last task to vanish. The rcuwait_active() check is
9494 * accurate here because the waiter is pinned on this CPU
9495 * and can't obviously be running in parallel.
9496 *
9497 * On RT kernels this also has to check whether there are
9498 * pinned and scheduled out tasks on the runqueue. They
9499 * need to leave the migrate disabled section first.
9500 */
9501 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9502 rcuwait_active(&rq->hotplug_wait)) {
9503 raw_spin_rq_unlock(rq);
9504 rcuwait_wake_up(&rq->hotplug_wait);
9505 raw_spin_rq_lock(rq);
9506 }
9507 return;
9508 }
9509
9510 get_task_struct(push_task);
9511 /*
9512 * Temporarily drop rq->lock such that we can wake-up the stop task.
9513 * Both preemption and IRQs are still disabled.
9514 */
9515 preempt_disable();
9516 raw_spin_rq_unlock(rq);
9517 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9518 this_cpu_ptr(&push_work));
9519 preempt_enable();
9520 /*
9521 * At this point need_resched() is true and we'll take the loop in
9522 * schedule(). The next pick is obviously going to be the stop task
9523 * which kthread_is_per_cpu() and will push this task away.
9524 */
9525 raw_spin_rq_lock(rq);
9526 }
9527
balance_push_set(int cpu,bool on)9528 static void balance_push_set(int cpu, bool on)
9529 {
9530 struct rq *rq = cpu_rq(cpu);
9531 struct rq_flags rf;
9532
9533 rq_lock_irqsave(rq, &rf);
9534 if (on) {
9535 WARN_ON_ONCE(rq->balance_callback);
9536 rq->balance_callback = &balance_push_callback;
9537 } else if (rq->balance_callback == &balance_push_callback) {
9538 rq->balance_callback = NULL;
9539 }
9540 rq_unlock_irqrestore(rq, &rf);
9541 }
9542
9543 /*
9544 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9545 * inactive. All tasks which are not per CPU kernel threads are either
9546 * pushed off this CPU now via balance_push() or placed on a different CPU
9547 * during wakeup. Wait until the CPU is quiescent.
9548 */
balance_hotplug_wait(void)9549 static void balance_hotplug_wait(void)
9550 {
9551 struct rq *rq = this_rq();
9552
9553 rcuwait_wait_event(&rq->hotplug_wait,
9554 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9555 TASK_UNINTERRUPTIBLE);
9556 }
9557
9558 #else
9559
balance_push(struct rq * rq)9560 static inline void balance_push(struct rq *rq)
9561 {
9562 }
9563
balance_push_set(int cpu,bool on)9564 static inline void balance_push_set(int cpu, bool on)
9565 {
9566 }
9567
balance_hotplug_wait(void)9568 static inline void balance_hotplug_wait(void)
9569 {
9570 }
9571
9572 #endif /* CONFIG_HOTPLUG_CPU */
9573
set_rq_online(struct rq * rq)9574 void set_rq_online(struct rq *rq)
9575 {
9576 if (!rq->online) {
9577 const struct sched_class *class;
9578
9579 cpumask_set_cpu(rq->cpu, rq->rd->online);
9580 rq->online = 1;
9581
9582 for_each_class(class) {
9583 if (class->rq_online)
9584 class->rq_online(rq);
9585 }
9586 }
9587 }
9588
set_rq_offline(struct rq * rq)9589 void set_rq_offline(struct rq *rq)
9590 {
9591 if (rq->online) {
9592 const struct sched_class *class;
9593
9594 update_rq_clock(rq);
9595 for_each_class(class) {
9596 if (class->rq_offline)
9597 class->rq_offline(rq);
9598 }
9599
9600 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9601 rq->online = 0;
9602 }
9603 }
9604
sched_set_rq_online(struct rq * rq,int cpu)9605 static inline void sched_set_rq_online(struct rq *rq, int cpu)
9606 {
9607 struct rq_flags rf;
9608
9609 rq_lock_irqsave(rq, &rf);
9610 if (rq->rd) {
9611 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9612 set_rq_online(rq);
9613 }
9614 rq_unlock_irqrestore(rq, &rf);
9615 }
9616
sched_set_rq_offline(struct rq * rq,int cpu)9617 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
9618 {
9619 struct rq_flags rf;
9620
9621 rq_lock_irqsave(rq, &rf);
9622 if (rq->rd) {
9623 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9624 set_rq_offline(rq);
9625 }
9626 rq_unlock_irqrestore(rq, &rf);
9627 }
9628
9629 /*
9630 * used to mark begin/end of suspend/resume:
9631 */
9632 static int num_cpus_frozen;
9633
9634 /*
9635 * Update cpusets according to cpu_active mask. If cpusets are
9636 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9637 * around partition_sched_domains().
9638 *
9639 * If we come here as part of a suspend/resume, don't touch cpusets because we
9640 * want to restore it back to its original state upon resume anyway.
9641 */
cpuset_cpu_active(void)9642 static void cpuset_cpu_active(void)
9643 {
9644 if (cpuhp_tasks_frozen) {
9645 /*
9646 * num_cpus_frozen tracks how many CPUs are involved in suspend
9647 * resume sequence. As long as this is not the last online
9648 * operation in the resume sequence, just build a single sched
9649 * domain, ignoring cpusets.
9650 */
9651 partition_sched_domains(1, NULL, NULL);
9652 if (--num_cpus_frozen)
9653 return;
9654 /*
9655 * This is the last CPU online operation. So fall through and
9656 * restore the original sched domains by considering the
9657 * cpuset configurations.
9658 */
9659 cpuset_force_rebuild();
9660 }
9661 cpuset_update_active_cpus();
9662 }
9663
cpuset_cpu_inactive(unsigned int cpu)9664 static int cpuset_cpu_inactive(unsigned int cpu)
9665 {
9666 if (!cpuhp_tasks_frozen) {
9667 int ret = dl_bw_check_overflow(cpu);
9668
9669 if (ret)
9670 return ret;
9671 cpuset_update_active_cpus();
9672 } else {
9673 num_cpus_frozen++;
9674 partition_sched_domains(1, NULL, NULL);
9675 }
9676 return 0;
9677 }
9678
sched_smt_present_inc(int cpu)9679 static inline void sched_smt_present_inc(int cpu)
9680 {
9681 #ifdef CONFIG_SCHED_SMT
9682 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9683 static_branch_inc_cpuslocked(&sched_smt_present);
9684 #endif
9685 }
9686
sched_smt_present_dec(int cpu)9687 static inline void sched_smt_present_dec(int cpu)
9688 {
9689 #ifdef CONFIG_SCHED_SMT
9690 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9691 static_branch_dec_cpuslocked(&sched_smt_present);
9692 #endif
9693 }
9694
sched_cpu_activate(unsigned int cpu)9695 int sched_cpu_activate(unsigned int cpu)
9696 {
9697 struct rq *rq = cpu_rq(cpu);
9698
9699 /*
9700 * Clear the balance_push callback and prepare to schedule
9701 * regular tasks.
9702 */
9703 balance_push_set(cpu, false);
9704
9705 /*
9706 * When going up, increment the number of cores with SMT present.
9707 */
9708 sched_smt_present_inc(cpu);
9709 set_cpu_active(cpu, true);
9710
9711 if (sched_smp_initialized) {
9712 sched_update_numa(cpu, true);
9713 sched_domains_numa_masks_set(cpu);
9714 cpuset_cpu_active();
9715 }
9716
9717 /*
9718 * Put the rq online, if not already. This happens:
9719 *
9720 * 1) In the early boot process, because we build the real domains
9721 * after all CPUs have been brought up.
9722 *
9723 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9724 * domains.
9725 */
9726 sched_set_rq_online(rq, cpu);
9727
9728 return 0;
9729 }
9730
sched_cpu_deactivate(unsigned int cpu)9731 int sched_cpu_deactivate(unsigned int cpu)
9732 {
9733 struct rq *rq = cpu_rq(cpu);
9734 int ret;
9735
9736 /*
9737 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9738 * load balancing when not active
9739 */
9740 nohz_balance_exit_idle(rq);
9741
9742 set_cpu_active(cpu, false);
9743
9744 /*
9745 * From this point forward, this CPU will refuse to run any task that
9746 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9747 * push those tasks away until this gets cleared, see
9748 * sched_cpu_dying().
9749 */
9750 balance_push_set(cpu, true);
9751
9752 /*
9753 * We've cleared cpu_active_mask / set balance_push, wait for all
9754 * preempt-disabled and RCU users of this state to go away such that
9755 * all new such users will observe it.
9756 *
9757 * Specifically, we rely on ttwu to no longer target this CPU, see
9758 * ttwu_queue_cond() and is_cpu_allowed().
9759 *
9760 * Do sync before park smpboot threads to take care the rcu boost case.
9761 */
9762 synchronize_rcu();
9763
9764 sched_set_rq_offline(rq, cpu);
9765
9766 /*
9767 * When going down, decrement the number of cores with SMT present.
9768 */
9769 sched_smt_present_dec(cpu);
9770
9771 #ifdef CONFIG_SCHED_SMT
9772 sched_core_cpu_deactivate(cpu);
9773 #endif
9774
9775 if (!sched_smp_initialized)
9776 return 0;
9777
9778 sched_update_numa(cpu, false);
9779 ret = cpuset_cpu_inactive(cpu);
9780 if (ret) {
9781 sched_smt_present_inc(cpu);
9782 sched_set_rq_online(rq, cpu);
9783 balance_push_set(cpu, false);
9784 set_cpu_active(cpu, true);
9785 sched_update_numa(cpu, true);
9786 return ret;
9787 }
9788 sched_domains_numa_masks_clear(cpu);
9789 return 0;
9790 }
9791
sched_rq_cpu_starting(unsigned int cpu)9792 static void sched_rq_cpu_starting(unsigned int cpu)
9793 {
9794 struct rq *rq = cpu_rq(cpu);
9795
9796 rq->calc_load_update = calc_load_update;
9797 update_max_interval();
9798 }
9799
sched_cpu_starting(unsigned int cpu)9800 int sched_cpu_starting(unsigned int cpu)
9801 {
9802 sched_core_cpu_starting(cpu);
9803 sched_rq_cpu_starting(cpu);
9804 sched_tick_start(cpu);
9805 return 0;
9806 }
9807
9808 #ifdef CONFIG_HOTPLUG_CPU
9809
9810 /*
9811 * Invoked immediately before the stopper thread is invoked to bring the
9812 * CPU down completely. At this point all per CPU kthreads except the
9813 * hotplug thread (current) and the stopper thread (inactive) have been
9814 * either parked or have been unbound from the outgoing CPU. Ensure that
9815 * any of those which might be on the way out are gone.
9816 *
9817 * If after this point a bound task is being woken on this CPU then the
9818 * responsible hotplug callback has failed to do it's job.
9819 * sched_cpu_dying() will catch it with the appropriate fireworks.
9820 */
sched_cpu_wait_empty(unsigned int cpu)9821 int sched_cpu_wait_empty(unsigned int cpu)
9822 {
9823 balance_hotplug_wait();
9824 return 0;
9825 }
9826
9827 /*
9828 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9829 * might have. Called from the CPU stopper task after ensuring that the
9830 * stopper is the last running task on the CPU, so nr_active count is
9831 * stable. We need to take the teardown thread which is calling this into
9832 * account, so we hand in adjust = 1 to the load calculation.
9833 *
9834 * Also see the comment "Global load-average calculations".
9835 */
calc_load_migrate(struct rq * rq)9836 static void calc_load_migrate(struct rq *rq)
9837 {
9838 long delta = calc_load_fold_active(rq, 1);
9839
9840 if (delta)
9841 atomic_long_add(delta, &calc_load_tasks);
9842 }
9843
dump_rq_tasks(struct rq * rq,const char * loglvl)9844 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9845 {
9846 struct task_struct *g, *p;
9847 int cpu = cpu_of(rq);
9848
9849 lockdep_assert_rq_held(rq);
9850
9851 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9852 for_each_process_thread(g, p) {
9853 if (task_cpu(p) != cpu)
9854 continue;
9855
9856 if (!task_on_rq_queued(p))
9857 continue;
9858
9859 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9860 }
9861 }
9862
sched_cpu_dying(unsigned int cpu)9863 int sched_cpu_dying(unsigned int cpu)
9864 {
9865 struct rq *rq = cpu_rq(cpu);
9866 struct rq_flags rf;
9867
9868 /* Handle pending wakeups and then migrate everything off */
9869 sched_tick_stop(cpu);
9870
9871 rq_lock_irqsave(rq, &rf);
9872 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9873 WARN(true, "Dying CPU not properly vacated!");
9874 dump_rq_tasks(rq, KERN_WARNING);
9875 }
9876 rq_unlock_irqrestore(rq, &rf);
9877
9878 calc_load_migrate(rq);
9879 update_max_interval();
9880 hrtick_clear(rq);
9881 sched_core_cpu_dying(cpu);
9882 return 0;
9883 }
9884 #endif
9885
sched_init_smp(void)9886 void __init sched_init_smp(void)
9887 {
9888 sched_init_numa(NUMA_NO_NODE);
9889
9890 /*
9891 * There's no userspace yet to cause hotplug operations; hence all the
9892 * CPU masks are stable and all blatant races in the below code cannot
9893 * happen.
9894 */
9895 mutex_lock(&sched_domains_mutex);
9896 sched_init_domains(cpu_active_mask);
9897 mutex_unlock(&sched_domains_mutex);
9898
9899 /* Move init over to a non-isolated CPU */
9900 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9901 BUG();
9902 current->flags &= ~PF_NO_SETAFFINITY;
9903 sched_init_granularity();
9904
9905 init_sched_rt_class();
9906 init_sched_dl_class();
9907
9908 sched_smp_initialized = true;
9909 }
9910
migration_init(void)9911 static int __init migration_init(void)
9912 {
9913 sched_cpu_starting(smp_processor_id());
9914 return 0;
9915 }
9916 early_initcall(migration_init);
9917
9918 #else
sched_init_smp(void)9919 void __init sched_init_smp(void)
9920 {
9921 sched_init_granularity();
9922 }
9923 #endif /* CONFIG_SMP */
9924
in_sched_functions(unsigned long addr)9925 int in_sched_functions(unsigned long addr)
9926 {
9927 return in_lock_functions(addr) ||
9928 (addr >= (unsigned long)__sched_text_start
9929 && addr < (unsigned long)__sched_text_end);
9930 }
9931
9932 #ifdef CONFIG_CGROUP_SCHED
9933 /*
9934 * Default task group.
9935 * Every task in system belongs to this group at bootup.
9936 */
9937 struct task_group root_task_group;
9938 LIST_HEAD(task_groups);
9939
9940 /* Cacheline aligned slab cache for task_group */
9941 static struct kmem_cache *task_group_cache __read_mostly;
9942 #endif
9943
sched_init(void)9944 void __init sched_init(void)
9945 {
9946 unsigned long ptr = 0;
9947 int i;
9948
9949 /* Make sure the linker didn't screw up */
9950 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9951 &fair_sched_class != &rt_sched_class + 1 ||
9952 &rt_sched_class != &dl_sched_class + 1);
9953 #ifdef CONFIG_SMP
9954 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9955 #endif
9956
9957 wait_bit_init();
9958
9959 #ifdef CONFIG_FAIR_GROUP_SCHED
9960 ptr += 2 * nr_cpu_ids * sizeof(void **);
9961 #endif
9962 #ifdef CONFIG_RT_GROUP_SCHED
9963 ptr += 2 * nr_cpu_ids * sizeof(void **);
9964 #endif
9965 if (ptr) {
9966 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9967
9968 #ifdef CONFIG_FAIR_GROUP_SCHED
9969 root_task_group.se = (struct sched_entity **)ptr;
9970 ptr += nr_cpu_ids * sizeof(void **);
9971
9972 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9973 ptr += nr_cpu_ids * sizeof(void **);
9974
9975 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9976 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9977 #endif /* CONFIG_FAIR_GROUP_SCHED */
9978 #ifdef CONFIG_RT_GROUP_SCHED
9979 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9980 ptr += nr_cpu_ids * sizeof(void **);
9981
9982 root_task_group.rt_rq = (struct rt_rq **)ptr;
9983 ptr += nr_cpu_ids * sizeof(void **);
9984
9985 #endif /* CONFIG_RT_GROUP_SCHED */
9986 }
9987
9988 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9989
9990 #ifdef CONFIG_SMP
9991 init_defrootdomain();
9992 #endif
9993
9994 #ifdef CONFIG_RT_GROUP_SCHED
9995 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9996 global_rt_period(), global_rt_runtime());
9997 #endif /* CONFIG_RT_GROUP_SCHED */
9998
9999 #ifdef CONFIG_CGROUP_SCHED
10000 task_group_cache = KMEM_CACHE(task_group, 0);
10001
10002 list_add(&root_task_group.list, &task_groups);
10003 INIT_LIST_HEAD(&root_task_group.children);
10004 INIT_LIST_HEAD(&root_task_group.siblings);
10005 autogroup_init(&init_task);
10006 #endif /* CONFIG_CGROUP_SCHED */
10007
10008 for_each_possible_cpu(i) {
10009 struct rq *rq;
10010
10011 rq = cpu_rq(i);
10012 raw_spin_lock_init(&rq->__lock);
10013 rq->nr_running = 0;
10014 rq->calc_load_active = 0;
10015 rq->calc_load_update = jiffies + LOAD_FREQ;
10016 init_cfs_rq(&rq->cfs);
10017 init_rt_rq(&rq->rt);
10018 init_dl_rq(&rq->dl);
10019 #ifdef CONFIG_FAIR_GROUP_SCHED
10020 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10021 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10022 /*
10023 * How much CPU bandwidth does root_task_group get?
10024 *
10025 * In case of task-groups formed thr' the cgroup filesystem, it
10026 * gets 100% of the CPU resources in the system. This overall
10027 * system CPU resource is divided among the tasks of
10028 * root_task_group and its child task-groups in a fair manner,
10029 * based on each entity's (task or task-group's) weight
10030 * (se->load.weight).
10031 *
10032 * In other words, if root_task_group has 10 tasks of weight
10033 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10034 * then A0's share of the CPU resource is:
10035 *
10036 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10037 *
10038 * We achieve this by letting root_task_group's tasks sit
10039 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10040 */
10041 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10042 #endif /* CONFIG_FAIR_GROUP_SCHED */
10043
10044 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10045 #ifdef CONFIG_RT_GROUP_SCHED
10046 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10047 #endif
10048 #ifdef CONFIG_SMP
10049 rq->sd = NULL;
10050 rq->rd = NULL;
10051 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10052 rq->balance_callback = &balance_push_callback;
10053 rq->active_balance = 0;
10054 rq->next_balance = jiffies;
10055 rq->push_cpu = 0;
10056 rq->cpu = i;
10057 rq->online = 0;
10058 rq->idle_stamp = 0;
10059 rq->avg_idle = 2*sysctl_sched_migration_cost;
10060 rq->wake_stamp = jiffies;
10061 rq->wake_avg_idle = rq->avg_idle;
10062 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10063
10064 INIT_LIST_HEAD(&rq->cfs_tasks);
10065
10066 rq_attach_root(rq, &def_root_domain);
10067 #ifdef CONFIG_NO_HZ_COMMON
10068 rq->last_blocked_load_update_tick = jiffies;
10069 atomic_set(&rq->nohz_flags, 0);
10070
10071 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10072 #endif
10073 #ifdef CONFIG_HOTPLUG_CPU
10074 rcuwait_init(&rq->hotplug_wait);
10075 #endif
10076 #endif /* CONFIG_SMP */
10077 hrtick_rq_init(rq);
10078 atomic_set(&rq->nr_iowait, 0);
10079
10080 #ifdef CONFIG_SCHED_CORE
10081 rq->core = rq;
10082 rq->core_pick = NULL;
10083 rq->core_enabled = 0;
10084 rq->core_tree = RB_ROOT;
10085 rq->core_forceidle_count = 0;
10086 rq->core_forceidle_occupation = 0;
10087 rq->core_forceidle_start = 0;
10088
10089 rq->core_cookie = 0UL;
10090 #endif
10091 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10092 }
10093
10094 set_load_weight(&init_task, false);
10095
10096 /*
10097 * The boot idle thread does lazy MMU switching as well:
10098 */
10099 mmgrab_lazy_tlb(&init_mm);
10100 enter_lazy_tlb(&init_mm, current);
10101
10102 /*
10103 * The idle task doesn't need the kthread struct to function, but it
10104 * is dressed up as a per-CPU kthread and thus needs to play the part
10105 * if we want to avoid special-casing it in code that deals with per-CPU
10106 * kthreads.
10107 */
10108 WARN_ON(!set_kthread_struct(current));
10109
10110 /*
10111 * Make us the idle thread. Technically, schedule() should not be
10112 * called from this thread, however somewhere below it might be,
10113 * but because we are the idle thread, we just pick up running again
10114 * when this runqueue becomes "idle".
10115 */
10116 __sched_fork(0, current);
10117 init_idle(current, smp_processor_id());
10118
10119 calc_load_update = jiffies + LOAD_FREQ;
10120
10121 #ifdef CONFIG_SMP
10122 idle_thread_set_boot_cpu();
10123 balance_push_set(smp_processor_id(), false);
10124 #endif
10125 init_sched_fair_class();
10126
10127 psi_init();
10128
10129 init_uclamp();
10130
10131 preempt_dynamic_init();
10132
10133 scheduler_running = 1;
10134 }
10135
10136 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10137
__might_sleep(const char * file,int line)10138 void __might_sleep(const char *file, int line)
10139 {
10140 unsigned int state = get_current_state();
10141 /*
10142 * Blocking primitives will set (and therefore destroy) current->state,
10143 * since we will exit with TASK_RUNNING make sure we enter with it,
10144 * otherwise we will destroy state.
10145 */
10146 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10147 "do not call blocking ops when !TASK_RUNNING; "
10148 "state=%x set at [<%p>] %pS\n", state,
10149 (void *)current->task_state_change,
10150 (void *)current->task_state_change);
10151
10152 __might_resched(file, line, 0);
10153 }
10154 EXPORT_SYMBOL(__might_sleep);
10155
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10156 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10157 {
10158 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10159 return;
10160
10161 if (preempt_count() == preempt_offset)
10162 return;
10163
10164 pr_err("Preemption disabled at:");
10165 print_ip_sym(KERN_ERR, ip);
10166 }
10167
resched_offsets_ok(unsigned int offsets)10168 static inline bool resched_offsets_ok(unsigned int offsets)
10169 {
10170 unsigned int nested = preempt_count();
10171
10172 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10173
10174 return nested == offsets;
10175 }
10176
__might_resched(const char * file,int line,unsigned int offsets)10177 void __might_resched(const char *file, int line, unsigned int offsets)
10178 {
10179 /* Ratelimiting timestamp: */
10180 static unsigned long prev_jiffy;
10181
10182 unsigned long preempt_disable_ip;
10183
10184 /* WARN_ON_ONCE() by default, no rate limit required: */
10185 rcu_sleep_check();
10186
10187 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10188 !is_idle_task(current) && !current->non_block_count) ||
10189 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10190 oops_in_progress)
10191 return;
10192
10193 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10194 return;
10195 prev_jiffy = jiffies;
10196
10197 /* Save this before calling printk(), since that will clobber it: */
10198 preempt_disable_ip = get_preempt_disable_ip(current);
10199
10200 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10201 file, line);
10202 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10203 in_atomic(), irqs_disabled(), current->non_block_count,
10204 current->pid, current->comm);
10205 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10206 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10207
10208 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10209 pr_err("RCU nest depth: %d, expected: %u\n",
10210 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10211 }
10212
10213 if (task_stack_end_corrupted(current))
10214 pr_emerg("Thread overran stack, or stack corrupted\n");
10215
10216 debug_show_held_locks(current);
10217 if (irqs_disabled())
10218 print_irqtrace_events(current);
10219
10220 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10221 preempt_disable_ip);
10222
10223 dump_stack();
10224 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10225 }
10226 EXPORT_SYMBOL(__might_resched);
10227
__cant_sleep(const char * file,int line,int preempt_offset)10228 void __cant_sleep(const char *file, int line, int preempt_offset)
10229 {
10230 static unsigned long prev_jiffy;
10231
10232 if (irqs_disabled())
10233 return;
10234
10235 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10236 return;
10237
10238 if (preempt_count() > preempt_offset)
10239 return;
10240
10241 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10242 return;
10243 prev_jiffy = jiffies;
10244
10245 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10246 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10247 in_atomic(), irqs_disabled(),
10248 current->pid, current->comm);
10249
10250 debug_show_held_locks(current);
10251 dump_stack();
10252 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10253 }
10254 EXPORT_SYMBOL_GPL(__cant_sleep);
10255
10256 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10257 void __cant_migrate(const char *file, int line)
10258 {
10259 static unsigned long prev_jiffy;
10260
10261 if (irqs_disabled())
10262 return;
10263
10264 if (is_migration_disabled(current))
10265 return;
10266
10267 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10268 return;
10269
10270 if (preempt_count() > 0)
10271 return;
10272
10273 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10274 return;
10275 prev_jiffy = jiffies;
10276
10277 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10278 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10279 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10280 current->pid, current->comm);
10281
10282 debug_show_held_locks(current);
10283 dump_stack();
10284 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10285 }
10286 EXPORT_SYMBOL_GPL(__cant_migrate);
10287 #endif
10288 #endif
10289
10290 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10291 void normalize_rt_tasks(void)
10292 {
10293 struct task_struct *g, *p;
10294 struct sched_attr attr = {
10295 .sched_policy = SCHED_NORMAL,
10296 };
10297
10298 read_lock(&tasklist_lock);
10299 for_each_process_thread(g, p) {
10300 /*
10301 * Only normalize user tasks:
10302 */
10303 if (p->flags & PF_KTHREAD)
10304 continue;
10305
10306 p->se.exec_start = 0;
10307 schedstat_set(p->stats.wait_start, 0);
10308 schedstat_set(p->stats.sleep_start, 0);
10309 schedstat_set(p->stats.block_start, 0);
10310
10311 if (!dl_task(p) && !rt_task(p)) {
10312 /*
10313 * Renice negative nice level userspace
10314 * tasks back to 0:
10315 */
10316 if (task_nice(p) < 0)
10317 set_user_nice(p, 0);
10318 continue;
10319 }
10320
10321 __sched_setscheduler(p, &attr, false, false);
10322 }
10323 read_unlock(&tasklist_lock);
10324 }
10325
10326 #endif /* CONFIG_MAGIC_SYSRQ */
10327
10328 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10329 /*
10330 * These functions are only useful for the IA64 MCA handling, or kdb.
10331 *
10332 * They can only be called when the whole system has been
10333 * stopped - every CPU needs to be quiescent, and no scheduling
10334 * activity can take place. Using them for anything else would
10335 * be a serious bug, and as a result, they aren't even visible
10336 * under any other configuration.
10337 */
10338
10339 /**
10340 * curr_task - return the current task for a given CPU.
10341 * @cpu: the processor in question.
10342 *
10343 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10344 *
10345 * Return: The current task for @cpu.
10346 */
curr_task(int cpu)10347 struct task_struct *curr_task(int cpu)
10348 {
10349 return cpu_curr(cpu);
10350 }
10351
10352 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10353
10354 #ifdef CONFIG_IA64
10355 /**
10356 * ia64_set_curr_task - set the current task for a given CPU.
10357 * @cpu: the processor in question.
10358 * @p: the task pointer to set.
10359 *
10360 * Description: This function must only be used when non-maskable interrupts
10361 * are serviced on a separate stack. It allows the architecture to switch the
10362 * notion of the current task on a CPU in a non-blocking manner. This function
10363 * must be called with all CPU's synchronized, and interrupts disabled, the
10364 * and caller must save the original value of the current task (see
10365 * curr_task() above) and restore that value before reenabling interrupts and
10366 * re-starting the system.
10367 *
10368 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10369 */
ia64_set_curr_task(int cpu,struct task_struct * p)10370 void ia64_set_curr_task(int cpu, struct task_struct *p)
10371 {
10372 cpu_curr(cpu) = p;
10373 }
10374
10375 #endif
10376
10377 #ifdef CONFIG_CGROUP_SCHED
10378 /* task_group_lock serializes the addition/removal of task groups */
10379 static DEFINE_SPINLOCK(task_group_lock);
10380
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10381 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10382 struct task_group *parent)
10383 {
10384 #ifdef CONFIG_UCLAMP_TASK_GROUP
10385 enum uclamp_id clamp_id;
10386
10387 for_each_clamp_id(clamp_id) {
10388 uclamp_se_set(&tg->uclamp_req[clamp_id],
10389 uclamp_none(clamp_id), false);
10390 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10391 }
10392 #endif
10393 }
10394
sched_free_group(struct task_group * tg)10395 static void sched_free_group(struct task_group *tg)
10396 {
10397 free_fair_sched_group(tg);
10398 free_rt_sched_group(tg);
10399 autogroup_free(tg);
10400 kmem_cache_free(task_group_cache, tg);
10401 }
10402
sched_free_group_rcu(struct rcu_head * rcu)10403 static void sched_free_group_rcu(struct rcu_head *rcu)
10404 {
10405 sched_free_group(container_of(rcu, struct task_group, rcu));
10406 }
10407
sched_unregister_group(struct task_group * tg)10408 static void sched_unregister_group(struct task_group *tg)
10409 {
10410 unregister_fair_sched_group(tg);
10411 unregister_rt_sched_group(tg);
10412 /*
10413 * We have to wait for yet another RCU grace period to expire, as
10414 * print_cfs_stats() might run concurrently.
10415 */
10416 call_rcu(&tg->rcu, sched_free_group_rcu);
10417 }
10418
10419 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10420 struct task_group *sched_create_group(struct task_group *parent)
10421 {
10422 struct task_group *tg;
10423
10424 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10425 if (!tg)
10426 return ERR_PTR(-ENOMEM);
10427
10428 if (!alloc_fair_sched_group(tg, parent))
10429 goto err;
10430
10431 if (!alloc_rt_sched_group(tg, parent))
10432 goto err;
10433
10434 alloc_uclamp_sched_group(tg, parent);
10435
10436 return tg;
10437
10438 err:
10439 sched_free_group(tg);
10440 return ERR_PTR(-ENOMEM);
10441 }
10442
sched_online_group(struct task_group * tg,struct task_group * parent)10443 void sched_online_group(struct task_group *tg, struct task_group *parent)
10444 {
10445 unsigned long flags;
10446
10447 spin_lock_irqsave(&task_group_lock, flags);
10448 list_add_rcu(&tg->list, &task_groups);
10449
10450 /* Root should already exist: */
10451 WARN_ON(!parent);
10452
10453 tg->parent = parent;
10454 INIT_LIST_HEAD(&tg->children);
10455 list_add_rcu(&tg->siblings, &parent->children);
10456 spin_unlock_irqrestore(&task_group_lock, flags);
10457
10458 online_fair_sched_group(tg);
10459 }
10460
10461 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10462 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10463 {
10464 /* Now it should be safe to free those cfs_rqs: */
10465 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10466 }
10467
sched_destroy_group(struct task_group * tg)10468 void sched_destroy_group(struct task_group *tg)
10469 {
10470 /* Wait for possible concurrent references to cfs_rqs complete: */
10471 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10472 }
10473
sched_release_group(struct task_group * tg)10474 void sched_release_group(struct task_group *tg)
10475 {
10476 unsigned long flags;
10477
10478 /*
10479 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10480 * sched_cfs_period_timer()).
10481 *
10482 * For this to be effective, we have to wait for all pending users of
10483 * this task group to leave their RCU critical section to ensure no new
10484 * user will see our dying task group any more. Specifically ensure
10485 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10486 *
10487 * We therefore defer calling unregister_fair_sched_group() to
10488 * sched_unregister_group() which is guarantied to get called only after the
10489 * current RCU grace period has expired.
10490 */
10491 spin_lock_irqsave(&task_group_lock, flags);
10492 list_del_rcu(&tg->list);
10493 list_del_rcu(&tg->siblings);
10494 spin_unlock_irqrestore(&task_group_lock, flags);
10495 }
10496
sched_get_task_group(struct task_struct * tsk)10497 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10498 {
10499 struct task_group *tg;
10500
10501 /*
10502 * All callers are synchronized by task_rq_lock(); we do not use RCU
10503 * which is pointless here. Thus, we pass "true" to task_css_check()
10504 * to prevent lockdep warnings.
10505 */
10506 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10507 struct task_group, css);
10508 tg = autogroup_task_group(tsk, tg);
10509
10510 return tg;
10511 }
10512
sched_change_group(struct task_struct * tsk,struct task_group * group)10513 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10514 {
10515 tsk->sched_task_group = group;
10516
10517 #ifdef CONFIG_FAIR_GROUP_SCHED
10518 if (tsk->sched_class->task_change_group)
10519 tsk->sched_class->task_change_group(tsk);
10520 else
10521 #endif
10522 set_task_rq(tsk, task_cpu(tsk));
10523 }
10524
10525 /*
10526 * Change task's runqueue when it moves between groups.
10527 *
10528 * The caller of this function should have put the task in its new group by
10529 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10530 * its new group.
10531 */
sched_move_task(struct task_struct * tsk)10532 void sched_move_task(struct task_struct *tsk)
10533 {
10534 int queued, running, queue_flags =
10535 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10536 struct task_group *group;
10537 struct rq_flags rf;
10538 struct rq *rq;
10539
10540 rq = task_rq_lock(tsk, &rf);
10541 /*
10542 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10543 * group changes.
10544 */
10545 group = sched_get_task_group(tsk);
10546 if (group == tsk->sched_task_group)
10547 goto unlock;
10548
10549 update_rq_clock(rq);
10550
10551 running = task_current(rq, tsk);
10552 queued = task_on_rq_queued(tsk);
10553
10554 if (queued)
10555 dequeue_task(rq, tsk, queue_flags);
10556 if (running)
10557 put_prev_task(rq, tsk);
10558
10559 sched_change_group(tsk, group);
10560
10561 if (queued)
10562 enqueue_task(rq, tsk, queue_flags);
10563 if (running) {
10564 set_next_task(rq, tsk);
10565 /*
10566 * After changing group, the running task may have joined a
10567 * throttled one but it's still the running task. Trigger a
10568 * resched to make sure that task can still run.
10569 */
10570 resched_curr(rq);
10571 }
10572
10573 unlock:
10574 task_rq_unlock(rq, tsk, &rf);
10575 }
10576
css_tg(struct cgroup_subsys_state * css)10577 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10578 {
10579 return css ? container_of(css, struct task_group, css) : NULL;
10580 }
10581
10582 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10583 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10584 {
10585 struct task_group *parent = css_tg(parent_css);
10586 struct task_group *tg;
10587
10588 if (!parent) {
10589 /* This is early initialization for the top cgroup */
10590 return &root_task_group.css;
10591 }
10592
10593 tg = sched_create_group(parent);
10594 if (IS_ERR(tg))
10595 return ERR_PTR(-ENOMEM);
10596
10597 return &tg->css;
10598 }
10599
10600 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10601 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10602 {
10603 struct task_group *tg = css_tg(css);
10604 struct task_group *parent = css_tg(css->parent);
10605
10606 if (parent)
10607 sched_online_group(tg, parent);
10608
10609 #ifdef CONFIG_UCLAMP_TASK_GROUP
10610 /* Propagate the effective uclamp value for the new group */
10611 mutex_lock(&uclamp_mutex);
10612 rcu_read_lock();
10613 cpu_util_update_eff(css);
10614 rcu_read_unlock();
10615 mutex_unlock(&uclamp_mutex);
10616 #endif
10617
10618 return 0;
10619 }
10620
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10621 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10622 {
10623 struct task_group *tg = css_tg(css);
10624
10625 sched_release_group(tg);
10626 }
10627
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10628 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10629 {
10630 struct task_group *tg = css_tg(css);
10631
10632 /*
10633 * Relies on the RCU grace period between css_released() and this.
10634 */
10635 sched_unregister_group(tg);
10636 }
10637
10638 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10639 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10640 {
10641 struct task_struct *task;
10642 struct cgroup_subsys_state *css;
10643
10644 cgroup_taskset_for_each(task, css, tset) {
10645 if (!sched_rt_can_attach(css_tg(css), task))
10646 return -EINVAL;
10647 }
10648 return 0;
10649 }
10650 #endif
10651
cpu_cgroup_attach(struct cgroup_taskset * tset)10652 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10653 {
10654 struct task_struct *task;
10655 struct cgroup_subsys_state *css;
10656
10657 cgroup_taskset_for_each(task, css, tset)
10658 sched_move_task(task);
10659 }
10660
10661 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10662 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10663 {
10664 struct cgroup_subsys_state *top_css = css;
10665 struct uclamp_se *uc_parent = NULL;
10666 struct uclamp_se *uc_se = NULL;
10667 unsigned int eff[UCLAMP_CNT];
10668 enum uclamp_id clamp_id;
10669 unsigned int clamps;
10670
10671 lockdep_assert_held(&uclamp_mutex);
10672 SCHED_WARN_ON(!rcu_read_lock_held());
10673
10674 css_for_each_descendant_pre(css, top_css) {
10675 uc_parent = css_tg(css)->parent
10676 ? css_tg(css)->parent->uclamp : NULL;
10677
10678 for_each_clamp_id(clamp_id) {
10679 /* Assume effective clamps matches requested clamps */
10680 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10681 /* Cap effective clamps with parent's effective clamps */
10682 if (uc_parent &&
10683 eff[clamp_id] > uc_parent[clamp_id].value) {
10684 eff[clamp_id] = uc_parent[clamp_id].value;
10685 }
10686 }
10687 /* Ensure protection is always capped by limit */
10688 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10689
10690 /* Propagate most restrictive effective clamps */
10691 clamps = 0x0;
10692 uc_se = css_tg(css)->uclamp;
10693 for_each_clamp_id(clamp_id) {
10694 if (eff[clamp_id] == uc_se[clamp_id].value)
10695 continue;
10696 uc_se[clamp_id].value = eff[clamp_id];
10697 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10698 clamps |= (0x1 << clamp_id);
10699 }
10700 if (!clamps) {
10701 css = css_rightmost_descendant(css);
10702 continue;
10703 }
10704
10705 /* Immediately update descendants RUNNABLE tasks */
10706 uclamp_update_active_tasks(css);
10707 }
10708 }
10709
10710 /*
10711 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10712 * C expression. Since there is no way to convert a macro argument (N) into a
10713 * character constant, use two levels of macros.
10714 */
10715 #define _POW10(exp) ((unsigned int)1e##exp)
10716 #define POW10(exp) _POW10(exp)
10717
10718 struct uclamp_request {
10719 #define UCLAMP_PERCENT_SHIFT 2
10720 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10721 s64 percent;
10722 u64 util;
10723 int ret;
10724 };
10725
10726 static inline struct uclamp_request
capacity_from_percent(char * buf)10727 capacity_from_percent(char *buf)
10728 {
10729 struct uclamp_request req = {
10730 .percent = UCLAMP_PERCENT_SCALE,
10731 .util = SCHED_CAPACITY_SCALE,
10732 .ret = 0,
10733 };
10734
10735 buf = strim(buf);
10736 if (strcmp(buf, "max")) {
10737 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10738 &req.percent);
10739 if (req.ret)
10740 return req;
10741 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10742 req.ret = -ERANGE;
10743 return req;
10744 }
10745
10746 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10747 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10748 }
10749
10750 return req;
10751 }
10752
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10753 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10754 size_t nbytes, loff_t off,
10755 enum uclamp_id clamp_id)
10756 {
10757 struct uclamp_request req;
10758 struct task_group *tg;
10759
10760 req = capacity_from_percent(buf);
10761 if (req.ret)
10762 return req.ret;
10763
10764 static_branch_enable(&sched_uclamp_used);
10765
10766 mutex_lock(&uclamp_mutex);
10767 rcu_read_lock();
10768
10769 tg = css_tg(of_css(of));
10770 if (tg->uclamp_req[clamp_id].value != req.util)
10771 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10772
10773 /*
10774 * Because of not recoverable conversion rounding we keep track of the
10775 * exact requested value
10776 */
10777 tg->uclamp_pct[clamp_id] = req.percent;
10778
10779 /* Update effective clamps to track the most restrictive value */
10780 cpu_util_update_eff(of_css(of));
10781
10782 rcu_read_unlock();
10783 mutex_unlock(&uclamp_mutex);
10784
10785 return nbytes;
10786 }
10787
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10788 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10789 char *buf, size_t nbytes,
10790 loff_t off)
10791 {
10792 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10793 }
10794
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10795 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10796 char *buf, size_t nbytes,
10797 loff_t off)
10798 {
10799 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10800 }
10801
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10802 static inline void cpu_uclamp_print(struct seq_file *sf,
10803 enum uclamp_id clamp_id)
10804 {
10805 struct task_group *tg;
10806 u64 util_clamp;
10807 u64 percent;
10808 u32 rem;
10809
10810 rcu_read_lock();
10811 tg = css_tg(seq_css(sf));
10812 util_clamp = tg->uclamp_req[clamp_id].value;
10813 rcu_read_unlock();
10814
10815 if (util_clamp == SCHED_CAPACITY_SCALE) {
10816 seq_puts(sf, "max\n");
10817 return;
10818 }
10819
10820 percent = tg->uclamp_pct[clamp_id];
10821 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10822 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10823 }
10824
cpu_uclamp_min_show(struct seq_file * sf,void * v)10825 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10826 {
10827 cpu_uclamp_print(sf, UCLAMP_MIN);
10828 return 0;
10829 }
10830
cpu_uclamp_max_show(struct seq_file * sf,void * v)10831 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10832 {
10833 cpu_uclamp_print(sf, UCLAMP_MAX);
10834 return 0;
10835 }
10836 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10837
10838 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10839 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10840 struct cftype *cftype, u64 shareval)
10841 {
10842 if (shareval > scale_load_down(ULONG_MAX))
10843 shareval = MAX_SHARES;
10844 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10845 }
10846
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10847 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10848 struct cftype *cft)
10849 {
10850 struct task_group *tg = css_tg(css);
10851
10852 return (u64) scale_load_down(tg->shares);
10853 }
10854
10855 #ifdef CONFIG_CFS_BANDWIDTH
10856 static DEFINE_MUTEX(cfs_constraints_mutex);
10857
10858 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10859 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10860 /* More than 203 days if BW_SHIFT equals 20. */
10861 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10862
10863 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10864
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10865 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10866 u64 burst)
10867 {
10868 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10869 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10870
10871 if (tg == &root_task_group)
10872 return -EINVAL;
10873
10874 /*
10875 * Ensure we have at some amount of bandwidth every period. This is
10876 * to prevent reaching a state of large arrears when throttled via
10877 * entity_tick() resulting in prolonged exit starvation.
10878 */
10879 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10880 return -EINVAL;
10881
10882 /*
10883 * Likewise, bound things on the other side by preventing insane quota
10884 * periods. This also allows us to normalize in computing quota
10885 * feasibility.
10886 */
10887 if (period > max_cfs_quota_period)
10888 return -EINVAL;
10889
10890 /*
10891 * Bound quota to defend quota against overflow during bandwidth shift.
10892 */
10893 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10894 return -EINVAL;
10895
10896 if (quota != RUNTIME_INF && (burst > quota ||
10897 burst + quota > max_cfs_runtime))
10898 return -EINVAL;
10899
10900 /*
10901 * Prevent race between setting of cfs_rq->runtime_enabled and
10902 * unthrottle_offline_cfs_rqs().
10903 */
10904 guard(cpus_read_lock)();
10905 guard(mutex)(&cfs_constraints_mutex);
10906
10907 ret = __cfs_schedulable(tg, period, quota);
10908 if (ret)
10909 return ret;
10910
10911 runtime_enabled = quota != RUNTIME_INF;
10912 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10913 /*
10914 * If we need to toggle cfs_bandwidth_used, off->on must occur
10915 * before making related changes, and on->off must occur afterwards
10916 */
10917 if (runtime_enabled && !runtime_was_enabled)
10918 cfs_bandwidth_usage_inc();
10919
10920 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10921 cfs_b->period = ns_to_ktime(period);
10922 cfs_b->quota = quota;
10923 cfs_b->burst = burst;
10924
10925 __refill_cfs_bandwidth_runtime(cfs_b);
10926
10927 /*
10928 * Restart the period timer (if active) to handle new
10929 * period expiry:
10930 */
10931 if (runtime_enabled)
10932 start_cfs_bandwidth(cfs_b);
10933 }
10934
10935 for_each_online_cpu(i) {
10936 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10937 struct rq *rq = cfs_rq->rq;
10938
10939 guard(rq_lock_irq)(rq);
10940 cfs_rq->runtime_enabled = runtime_enabled;
10941 cfs_rq->runtime_remaining = 0;
10942
10943 if (cfs_rq->throttled)
10944 unthrottle_cfs_rq(cfs_rq);
10945 }
10946
10947 if (runtime_was_enabled && !runtime_enabled)
10948 cfs_bandwidth_usage_dec();
10949
10950 return 0;
10951 }
10952
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10953 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10954 {
10955 u64 quota, period, burst;
10956
10957 period = ktime_to_ns(tg->cfs_bandwidth.period);
10958 burst = tg->cfs_bandwidth.burst;
10959 if (cfs_quota_us < 0)
10960 quota = RUNTIME_INF;
10961 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10962 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10963 else
10964 return -EINVAL;
10965
10966 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10967 }
10968
tg_get_cfs_quota(struct task_group * tg)10969 static long tg_get_cfs_quota(struct task_group *tg)
10970 {
10971 u64 quota_us;
10972
10973 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10974 return -1;
10975
10976 quota_us = tg->cfs_bandwidth.quota;
10977 do_div(quota_us, NSEC_PER_USEC);
10978
10979 return quota_us;
10980 }
10981
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10982 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10983 {
10984 u64 quota, period, burst;
10985
10986 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10987 return -EINVAL;
10988
10989 period = (u64)cfs_period_us * NSEC_PER_USEC;
10990 quota = tg->cfs_bandwidth.quota;
10991 burst = tg->cfs_bandwidth.burst;
10992
10993 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10994 }
10995
tg_get_cfs_period(struct task_group * tg)10996 static long tg_get_cfs_period(struct task_group *tg)
10997 {
10998 u64 cfs_period_us;
10999
11000 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
11001 do_div(cfs_period_us, NSEC_PER_USEC);
11002
11003 return cfs_period_us;
11004 }
11005
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)11006 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
11007 {
11008 u64 quota, period, burst;
11009
11010 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11011 return -EINVAL;
11012
11013 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11014 period = ktime_to_ns(tg->cfs_bandwidth.period);
11015 quota = tg->cfs_bandwidth.quota;
11016
11017 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11018 }
11019
tg_get_cfs_burst(struct task_group * tg)11020 static long tg_get_cfs_burst(struct task_group *tg)
11021 {
11022 u64 burst_us;
11023
11024 burst_us = tg->cfs_bandwidth.burst;
11025 do_div(burst_us, NSEC_PER_USEC);
11026
11027 return burst_us;
11028 }
11029
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11030 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11031 struct cftype *cft)
11032 {
11033 return tg_get_cfs_quota(css_tg(css));
11034 }
11035
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11036 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11037 struct cftype *cftype, s64 cfs_quota_us)
11038 {
11039 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11040 }
11041
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11042 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11043 struct cftype *cft)
11044 {
11045 return tg_get_cfs_period(css_tg(css));
11046 }
11047
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11048 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11049 struct cftype *cftype, u64 cfs_period_us)
11050 {
11051 return tg_set_cfs_period(css_tg(css), cfs_period_us);
11052 }
11053
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11054 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11055 struct cftype *cft)
11056 {
11057 return tg_get_cfs_burst(css_tg(css));
11058 }
11059
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11060 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11061 struct cftype *cftype, u64 cfs_burst_us)
11062 {
11063 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11064 }
11065
11066 struct cfs_schedulable_data {
11067 struct task_group *tg;
11068 u64 period, quota;
11069 };
11070
11071 /*
11072 * normalize group quota/period to be quota/max_period
11073 * note: units are usecs
11074 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11075 static u64 normalize_cfs_quota(struct task_group *tg,
11076 struct cfs_schedulable_data *d)
11077 {
11078 u64 quota, period;
11079
11080 if (tg == d->tg) {
11081 period = d->period;
11082 quota = d->quota;
11083 } else {
11084 period = tg_get_cfs_period(tg);
11085 quota = tg_get_cfs_quota(tg);
11086 }
11087
11088 /* note: these should typically be equivalent */
11089 if (quota == RUNTIME_INF || quota == -1)
11090 return RUNTIME_INF;
11091
11092 return to_ratio(period, quota);
11093 }
11094
tg_cfs_schedulable_down(struct task_group * tg,void * data)11095 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11096 {
11097 struct cfs_schedulable_data *d = data;
11098 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11099 s64 quota = 0, parent_quota = -1;
11100
11101 if (!tg->parent) {
11102 quota = RUNTIME_INF;
11103 } else {
11104 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11105
11106 quota = normalize_cfs_quota(tg, d);
11107 parent_quota = parent_b->hierarchical_quota;
11108
11109 /*
11110 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11111 * always take the non-RUNTIME_INF min. On cgroup1, only
11112 * inherit when no limit is set. In both cases this is used
11113 * by the scheduler to determine if a given CFS task has a
11114 * bandwidth constraint at some higher level.
11115 */
11116 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11117 if (quota == RUNTIME_INF)
11118 quota = parent_quota;
11119 else if (parent_quota != RUNTIME_INF)
11120 quota = min(quota, parent_quota);
11121 } else {
11122 if (quota == RUNTIME_INF)
11123 quota = parent_quota;
11124 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11125 return -EINVAL;
11126 }
11127 }
11128 cfs_b->hierarchical_quota = quota;
11129
11130 return 0;
11131 }
11132
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11133 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11134 {
11135 int ret;
11136 struct cfs_schedulable_data data = {
11137 .tg = tg,
11138 .period = period,
11139 .quota = quota,
11140 };
11141
11142 if (quota != RUNTIME_INF) {
11143 do_div(data.period, NSEC_PER_USEC);
11144 do_div(data.quota, NSEC_PER_USEC);
11145 }
11146
11147 rcu_read_lock();
11148 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11149 rcu_read_unlock();
11150
11151 return ret;
11152 }
11153
cpu_cfs_stat_show(struct seq_file * sf,void * v)11154 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11155 {
11156 struct task_group *tg = css_tg(seq_css(sf));
11157 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11158
11159 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11160 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11161 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11162
11163 if (schedstat_enabled() && tg != &root_task_group) {
11164 struct sched_statistics *stats;
11165 u64 ws = 0;
11166 int i;
11167
11168 for_each_possible_cpu(i) {
11169 stats = __schedstats_from_se(tg->se[i]);
11170 ws += schedstat_val(stats->wait_sum);
11171 }
11172
11173 seq_printf(sf, "wait_sum %llu\n", ws);
11174 }
11175
11176 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11177 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11178
11179 return 0;
11180 }
11181
throttled_time_self(struct task_group * tg)11182 static u64 throttled_time_self(struct task_group *tg)
11183 {
11184 int i;
11185 u64 total = 0;
11186
11187 for_each_possible_cpu(i) {
11188 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11189 }
11190
11191 return total;
11192 }
11193
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11194 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11195 {
11196 struct task_group *tg = css_tg(seq_css(sf));
11197
11198 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11199
11200 return 0;
11201 }
11202 #endif /* CONFIG_CFS_BANDWIDTH */
11203 #endif /* CONFIG_FAIR_GROUP_SCHED */
11204
11205 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11206 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11207 struct cftype *cft, s64 val)
11208 {
11209 return sched_group_set_rt_runtime(css_tg(css), val);
11210 }
11211
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11212 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11213 struct cftype *cft)
11214 {
11215 return sched_group_rt_runtime(css_tg(css));
11216 }
11217
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11218 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11219 struct cftype *cftype, u64 rt_period_us)
11220 {
11221 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11222 }
11223
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11224 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11225 struct cftype *cft)
11226 {
11227 return sched_group_rt_period(css_tg(css));
11228 }
11229 #endif /* CONFIG_RT_GROUP_SCHED */
11230
11231 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11232 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11233 struct cftype *cft)
11234 {
11235 return css_tg(css)->idle;
11236 }
11237
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11238 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11239 struct cftype *cft, s64 idle)
11240 {
11241 return sched_group_set_idle(css_tg(css), idle);
11242 }
11243 #endif
11244
11245 static struct cftype cpu_legacy_files[] = {
11246 #ifdef CONFIG_FAIR_GROUP_SCHED
11247 {
11248 .name = "shares",
11249 .read_u64 = cpu_shares_read_u64,
11250 .write_u64 = cpu_shares_write_u64,
11251 },
11252 {
11253 .name = "idle",
11254 .read_s64 = cpu_idle_read_s64,
11255 .write_s64 = cpu_idle_write_s64,
11256 },
11257 #endif
11258 #ifdef CONFIG_CFS_BANDWIDTH
11259 {
11260 .name = "cfs_quota_us",
11261 .read_s64 = cpu_cfs_quota_read_s64,
11262 .write_s64 = cpu_cfs_quota_write_s64,
11263 },
11264 {
11265 .name = "cfs_period_us",
11266 .read_u64 = cpu_cfs_period_read_u64,
11267 .write_u64 = cpu_cfs_period_write_u64,
11268 },
11269 {
11270 .name = "cfs_burst_us",
11271 .read_u64 = cpu_cfs_burst_read_u64,
11272 .write_u64 = cpu_cfs_burst_write_u64,
11273 },
11274 {
11275 .name = "stat",
11276 .seq_show = cpu_cfs_stat_show,
11277 },
11278 {
11279 .name = "stat.local",
11280 .seq_show = cpu_cfs_local_stat_show,
11281 },
11282 #endif
11283 #ifdef CONFIG_RT_GROUP_SCHED
11284 {
11285 .name = "rt_runtime_us",
11286 .read_s64 = cpu_rt_runtime_read,
11287 .write_s64 = cpu_rt_runtime_write,
11288 },
11289 {
11290 .name = "rt_period_us",
11291 .read_u64 = cpu_rt_period_read_uint,
11292 .write_u64 = cpu_rt_period_write_uint,
11293 },
11294 #endif
11295 #ifdef CONFIG_UCLAMP_TASK_GROUP
11296 {
11297 .name = "uclamp.min",
11298 .flags = CFTYPE_NOT_ON_ROOT,
11299 .seq_show = cpu_uclamp_min_show,
11300 .write = cpu_uclamp_min_write,
11301 },
11302 {
11303 .name = "uclamp.max",
11304 .flags = CFTYPE_NOT_ON_ROOT,
11305 .seq_show = cpu_uclamp_max_show,
11306 .write = cpu_uclamp_max_write,
11307 },
11308 #endif
11309 { } /* Terminate */
11310 };
11311
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11312 static int cpu_extra_stat_show(struct seq_file *sf,
11313 struct cgroup_subsys_state *css)
11314 {
11315 #ifdef CONFIG_CFS_BANDWIDTH
11316 {
11317 struct task_group *tg = css_tg(css);
11318 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11319 u64 throttled_usec, burst_usec;
11320
11321 throttled_usec = cfs_b->throttled_time;
11322 do_div(throttled_usec, NSEC_PER_USEC);
11323 burst_usec = cfs_b->burst_time;
11324 do_div(burst_usec, NSEC_PER_USEC);
11325
11326 seq_printf(sf, "nr_periods %d\n"
11327 "nr_throttled %d\n"
11328 "throttled_usec %llu\n"
11329 "nr_bursts %d\n"
11330 "burst_usec %llu\n",
11331 cfs_b->nr_periods, cfs_b->nr_throttled,
11332 throttled_usec, cfs_b->nr_burst, burst_usec);
11333 }
11334 #endif
11335 return 0;
11336 }
11337
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11338 static int cpu_local_stat_show(struct seq_file *sf,
11339 struct cgroup_subsys_state *css)
11340 {
11341 #ifdef CONFIG_CFS_BANDWIDTH
11342 {
11343 struct task_group *tg = css_tg(css);
11344 u64 throttled_self_usec;
11345
11346 throttled_self_usec = throttled_time_self(tg);
11347 do_div(throttled_self_usec, NSEC_PER_USEC);
11348
11349 seq_printf(sf, "throttled_usec %llu\n",
11350 throttled_self_usec);
11351 }
11352 #endif
11353 return 0;
11354 }
11355
11356 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11357 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11358 struct cftype *cft)
11359 {
11360 struct task_group *tg = css_tg(css);
11361 u64 weight = scale_load_down(tg->shares);
11362
11363 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11364 }
11365
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11366 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11367 struct cftype *cft, u64 weight)
11368 {
11369 /*
11370 * cgroup weight knobs should use the common MIN, DFL and MAX
11371 * values which are 1, 100 and 10000 respectively. While it loses
11372 * a bit of range on both ends, it maps pretty well onto the shares
11373 * value used by scheduler and the round-trip conversions preserve
11374 * the original value over the entire range.
11375 */
11376 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11377 return -ERANGE;
11378
11379 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11380
11381 return sched_group_set_shares(css_tg(css), scale_load(weight));
11382 }
11383
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11384 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11385 struct cftype *cft)
11386 {
11387 unsigned long weight = scale_load_down(css_tg(css)->shares);
11388 int last_delta = INT_MAX;
11389 int prio, delta;
11390
11391 /* find the closest nice value to the current weight */
11392 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11393 delta = abs(sched_prio_to_weight[prio] - weight);
11394 if (delta >= last_delta)
11395 break;
11396 last_delta = delta;
11397 }
11398
11399 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11400 }
11401
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11402 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11403 struct cftype *cft, s64 nice)
11404 {
11405 unsigned long weight;
11406 int idx;
11407
11408 if (nice < MIN_NICE || nice > MAX_NICE)
11409 return -ERANGE;
11410
11411 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11412 idx = array_index_nospec(idx, 40);
11413 weight = sched_prio_to_weight[idx];
11414
11415 return sched_group_set_shares(css_tg(css), scale_load(weight));
11416 }
11417 #endif
11418
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11419 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11420 long period, long quota)
11421 {
11422 if (quota < 0)
11423 seq_puts(sf, "max");
11424 else
11425 seq_printf(sf, "%ld", quota);
11426
11427 seq_printf(sf, " %ld\n", period);
11428 }
11429
11430 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11431 static int __maybe_unused cpu_period_quota_parse(char *buf,
11432 u64 *periodp, u64 *quotap)
11433 {
11434 char tok[21]; /* U64_MAX */
11435
11436 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11437 return -EINVAL;
11438
11439 *periodp *= NSEC_PER_USEC;
11440
11441 if (sscanf(tok, "%llu", quotap))
11442 *quotap *= NSEC_PER_USEC;
11443 else if (!strcmp(tok, "max"))
11444 *quotap = RUNTIME_INF;
11445 else
11446 return -EINVAL;
11447
11448 return 0;
11449 }
11450
11451 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11452 static int cpu_max_show(struct seq_file *sf, void *v)
11453 {
11454 struct task_group *tg = css_tg(seq_css(sf));
11455
11456 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11457 return 0;
11458 }
11459
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11460 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11461 char *buf, size_t nbytes, loff_t off)
11462 {
11463 struct task_group *tg = css_tg(of_css(of));
11464 u64 period = tg_get_cfs_period(tg);
11465 u64 burst = tg->cfs_bandwidth.burst;
11466 u64 quota;
11467 int ret;
11468
11469 ret = cpu_period_quota_parse(buf, &period, "a);
11470 if (!ret)
11471 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11472 return ret ?: nbytes;
11473 }
11474 #endif
11475
11476 static struct cftype cpu_files[] = {
11477 #ifdef CONFIG_FAIR_GROUP_SCHED
11478 {
11479 .name = "weight",
11480 .flags = CFTYPE_NOT_ON_ROOT,
11481 .read_u64 = cpu_weight_read_u64,
11482 .write_u64 = cpu_weight_write_u64,
11483 },
11484 {
11485 .name = "weight.nice",
11486 .flags = CFTYPE_NOT_ON_ROOT,
11487 .read_s64 = cpu_weight_nice_read_s64,
11488 .write_s64 = cpu_weight_nice_write_s64,
11489 },
11490 {
11491 .name = "idle",
11492 .flags = CFTYPE_NOT_ON_ROOT,
11493 .read_s64 = cpu_idle_read_s64,
11494 .write_s64 = cpu_idle_write_s64,
11495 },
11496 #endif
11497 #ifdef CONFIG_CFS_BANDWIDTH
11498 {
11499 .name = "max",
11500 .flags = CFTYPE_NOT_ON_ROOT,
11501 .seq_show = cpu_max_show,
11502 .write = cpu_max_write,
11503 },
11504 {
11505 .name = "max.burst",
11506 .flags = CFTYPE_NOT_ON_ROOT,
11507 .read_u64 = cpu_cfs_burst_read_u64,
11508 .write_u64 = cpu_cfs_burst_write_u64,
11509 },
11510 #endif
11511 #ifdef CONFIG_UCLAMP_TASK_GROUP
11512 {
11513 .name = "uclamp.min",
11514 .flags = CFTYPE_NOT_ON_ROOT,
11515 .seq_show = cpu_uclamp_min_show,
11516 .write = cpu_uclamp_min_write,
11517 },
11518 {
11519 .name = "uclamp.max",
11520 .flags = CFTYPE_NOT_ON_ROOT,
11521 .seq_show = cpu_uclamp_max_show,
11522 .write = cpu_uclamp_max_write,
11523 },
11524 #endif
11525 { } /* terminate */
11526 };
11527
11528 struct cgroup_subsys cpu_cgrp_subsys = {
11529 .css_alloc = cpu_cgroup_css_alloc,
11530 .css_online = cpu_cgroup_css_online,
11531 .css_released = cpu_cgroup_css_released,
11532 .css_free = cpu_cgroup_css_free,
11533 .css_extra_stat_show = cpu_extra_stat_show,
11534 .css_local_stat_show = cpu_local_stat_show,
11535 #ifdef CONFIG_RT_GROUP_SCHED
11536 .can_attach = cpu_cgroup_can_attach,
11537 #endif
11538 .attach = cpu_cgroup_attach,
11539 .legacy_cftypes = cpu_legacy_files,
11540 .dfl_cftypes = cpu_files,
11541 .early_init = true,
11542 .threaded = true,
11543 };
11544
11545 #endif /* CONFIG_CGROUP_SCHED */
11546
dump_cpu_task(int cpu)11547 void dump_cpu_task(int cpu)
11548 {
11549 if (cpu == smp_processor_id() && in_hardirq()) {
11550 struct pt_regs *regs;
11551
11552 regs = get_irq_regs();
11553 if (regs) {
11554 show_regs(regs);
11555 return;
11556 }
11557 }
11558
11559 if (trigger_single_cpu_backtrace(cpu))
11560 return;
11561
11562 pr_info("Task dump for CPU %d:\n", cpu);
11563 sched_show_task(cpu_curr(cpu));
11564 }
11565
11566 /*
11567 * Nice levels are multiplicative, with a gentle 10% change for every
11568 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11569 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11570 * that remained on nice 0.
11571 *
11572 * The "10% effect" is relative and cumulative: from _any_ nice level,
11573 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11574 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11575 * If a task goes up by ~10% and another task goes down by ~10% then
11576 * the relative distance between them is ~25%.)
11577 */
11578 const int sched_prio_to_weight[40] = {
11579 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11580 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11581 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11582 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11583 /* 0 */ 1024, 820, 655, 526, 423,
11584 /* 5 */ 335, 272, 215, 172, 137,
11585 /* 10 */ 110, 87, 70, 56, 45,
11586 /* 15 */ 36, 29, 23, 18, 15,
11587 };
11588
11589 /*
11590 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11591 *
11592 * In cases where the weight does not change often, we can use the
11593 * precalculated inverse to speed up arithmetics by turning divisions
11594 * into multiplications:
11595 */
11596 const u32 sched_prio_to_wmult[40] = {
11597 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11598 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11599 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11600 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11601 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11602 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11603 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11604 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11605 };
11606
call_trace_sched_update_nr_running(struct rq * rq,int count)11607 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11608 {
11609 trace_sched_update_nr_running_tp(rq, count);
11610 }
11611
11612 #ifdef CONFIG_SCHED_MM_CID
11613
11614 /*
11615 * @cid_lock: Guarantee forward-progress of cid allocation.
11616 *
11617 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11618 * is only used when contention is detected by the lock-free allocation so
11619 * forward progress can be guaranteed.
11620 */
11621 DEFINE_RAW_SPINLOCK(cid_lock);
11622
11623 /*
11624 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11625 *
11626 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11627 * detected, it is set to 1 to ensure that all newly coming allocations are
11628 * serialized by @cid_lock until the allocation which detected contention
11629 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11630 * of a cid allocation.
11631 */
11632 int use_cid_lock;
11633
11634 /*
11635 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11636 * concurrently with respect to the execution of the source runqueue context
11637 * switch.
11638 *
11639 * There is one basic properties we want to guarantee here:
11640 *
11641 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11642 * used by a task. That would lead to concurrent allocation of the cid and
11643 * userspace corruption.
11644 *
11645 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11646 * that a pair of loads observe at least one of a pair of stores, which can be
11647 * shown as:
11648 *
11649 * X = Y = 0
11650 *
11651 * w[X]=1 w[Y]=1
11652 * MB MB
11653 * r[Y]=y r[X]=x
11654 *
11655 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11656 * values 0 and 1, this algorithm cares about specific state transitions of the
11657 * runqueue current task (as updated by the scheduler context switch), and the
11658 * per-mm/cpu cid value.
11659 *
11660 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11661 * task->mm != mm for the rest of the discussion. There are two scheduler state
11662 * transitions on context switch we care about:
11663 *
11664 * (TSA) Store to rq->curr with transition from (N) to (Y)
11665 *
11666 * (TSB) Store to rq->curr with transition from (Y) to (N)
11667 *
11668 * On the remote-clear side, there is one transition we care about:
11669 *
11670 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11671 *
11672 * There is also a transition to UNSET state which can be performed from all
11673 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11674 * guarantees that only a single thread will succeed:
11675 *
11676 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11677 *
11678 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11679 * when a thread is actively using the cid (property (1)).
11680 *
11681 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11682 *
11683 * Scenario A) (TSA)+(TMA) (from next task perspective)
11684 *
11685 * CPU0 CPU1
11686 *
11687 * Context switch CS-1 Remote-clear
11688 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11689 * (implied barrier after cmpxchg)
11690 * - switch_mm_cid()
11691 * - memory barrier (see switch_mm_cid()
11692 * comment explaining how this barrier
11693 * is combined with other scheduler
11694 * barriers)
11695 * - mm_cid_get (next)
11696 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11697 *
11698 * This Dekker ensures that either task (Y) is observed by the
11699 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11700 * observed.
11701 *
11702 * If task (Y) store is observed by rcu_dereference(), it means that there is
11703 * still an active task on the cpu. Remote-clear will therefore not transition
11704 * to UNSET, which fulfills property (1).
11705 *
11706 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11707 * it will move its state to UNSET, which clears the percpu cid perhaps
11708 * uselessly (which is not an issue for correctness). Because task (Y) is not
11709 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11710 * state to UNSET is done with a cmpxchg expecting that the old state has the
11711 * LAZY flag set, only one thread will successfully UNSET.
11712 *
11713 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11714 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11715 * CPU1 will observe task (Y) and do nothing more, which is fine.
11716 *
11717 * What we are effectively preventing with this Dekker is a scenario where
11718 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11719 * because this would UNSET a cid which is actively used.
11720 */
11721
sched_mm_cid_migrate_from(struct task_struct * t)11722 void sched_mm_cid_migrate_from(struct task_struct *t)
11723 {
11724 t->migrate_from_cpu = task_cpu(t);
11725 }
11726
11727 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11728 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11729 struct task_struct *t,
11730 struct mm_cid *src_pcpu_cid)
11731 {
11732 struct mm_struct *mm = t->mm;
11733 struct task_struct *src_task;
11734 int src_cid, last_mm_cid;
11735
11736 if (!mm)
11737 return -1;
11738
11739 last_mm_cid = t->last_mm_cid;
11740 /*
11741 * If the migrated task has no last cid, or if the current
11742 * task on src rq uses the cid, it means the source cid does not need
11743 * to be moved to the destination cpu.
11744 */
11745 if (last_mm_cid == -1)
11746 return -1;
11747 src_cid = READ_ONCE(src_pcpu_cid->cid);
11748 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11749 return -1;
11750
11751 /*
11752 * If we observe an active task using the mm on this rq, it means we
11753 * are not the last task to be migrated from this cpu for this mm, so
11754 * there is no need to move src_cid to the destination cpu.
11755 */
11756 rcu_read_lock();
11757 src_task = rcu_dereference(src_rq->curr);
11758 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11759 rcu_read_unlock();
11760 t->last_mm_cid = -1;
11761 return -1;
11762 }
11763 rcu_read_unlock();
11764
11765 return src_cid;
11766 }
11767
11768 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)11769 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11770 struct task_struct *t,
11771 struct mm_cid *src_pcpu_cid,
11772 int src_cid)
11773 {
11774 struct task_struct *src_task;
11775 struct mm_struct *mm = t->mm;
11776 int lazy_cid;
11777
11778 if (src_cid == -1)
11779 return -1;
11780
11781 /*
11782 * Attempt to clear the source cpu cid to move it to the destination
11783 * cpu.
11784 */
11785 lazy_cid = mm_cid_set_lazy_put(src_cid);
11786 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11787 return -1;
11788
11789 /*
11790 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11791 * rq->curr->mm matches the scheduler barrier in context_switch()
11792 * between store to rq->curr and load of prev and next task's
11793 * per-mm/cpu cid.
11794 *
11795 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11796 * rq->curr->mm_cid_active matches the barrier in
11797 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11798 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11799 * load of per-mm/cpu cid.
11800 */
11801
11802 /*
11803 * If we observe an active task using the mm on this rq after setting
11804 * the lazy-put flag, this task will be responsible for transitioning
11805 * from lazy-put flag set to MM_CID_UNSET.
11806 */
11807 rcu_read_lock();
11808 src_task = rcu_dereference(src_rq->curr);
11809 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11810 rcu_read_unlock();
11811 /*
11812 * We observed an active task for this mm, there is therefore
11813 * no point in moving this cid to the destination cpu.
11814 */
11815 t->last_mm_cid = -1;
11816 return -1;
11817 }
11818 rcu_read_unlock();
11819
11820 /*
11821 * The src_cid is unused, so it can be unset.
11822 */
11823 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11824 return -1;
11825 return src_cid;
11826 }
11827
11828 /*
11829 * Migration to dst cpu. Called with dst_rq lock held.
11830 * Interrupts are disabled, which keeps the window of cid ownership without the
11831 * source rq lock held small.
11832 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)11833 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11834 {
11835 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11836 struct mm_struct *mm = t->mm;
11837 int src_cid, dst_cid, src_cpu;
11838 struct rq *src_rq;
11839
11840 lockdep_assert_rq_held(dst_rq);
11841
11842 if (!mm)
11843 return;
11844 src_cpu = t->migrate_from_cpu;
11845 if (src_cpu == -1) {
11846 t->last_mm_cid = -1;
11847 return;
11848 }
11849 /*
11850 * Move the src cid if the dst cid is unset. This keeps id
11851 * allocation closest to 0 in cases where few threads migrate around
11852 * many cpus.
11853 *
11854 * If destination cid is already set, we may have to just clear
11855 * the src cid to ensure compactness in frequent migrations
11856 * scenarios.
11857 *
11858 * It is not useful to clear the src cid when the number of threads is
11859 * greater or equal to the number of allowed cpus, because user-space
11860 * can expect that the number of allowed cids can reach the number of
11861 * allowed cpus.
11862 */
11863 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11864 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11865 if (!mm_cid_is_unset(dst_cid) &&
11866 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11867 return;
11868 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11869 src_rq = cpu_rq(src_cpu);
11870 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11871 if (src_cid == -1)
11872 return;
11873 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11874 src_cid);
11875 if (src_cid == -1)
11876 return;
11877 if (!mm_cid_is_unset(dst_cid)) {
11878 __mm_cid_put(mm, src_cid);
11879 return;
11880 }
11881 /* Move src_cid to dst cpu. */
11882 mm_cid_snapshot_time(dst_rq, mm);
11883 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11884 }
11885
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)11886 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11887 int cpu)
11888 {
11889 struct rq *rq = cpu_rq(cpu);
11890 struct task_struct *t;
11891 unsigned long flags;
11892 int cid, lazy_cid;
11893
11894 cid = READ_ONCE(pcpu_cid->cid);
11895 if (!mm_cid_is_valid(cid))
11896 return;
11897
11898 /*
11899 * Clear the cpu cid if it is set to keep cid allocation compact. If
11900 * there happens to be other tasks left on the source cpu using this
11901 * mm, the next task using this mm will reallocate its cid on context
11902 * switch.
11903 */
11904 lazy_cid = mm_cid_set_lazy_put(cid);
11905 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11906 return;
11907
11908 /*
11909 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11910 * rq->curr->mm matches the scheduler barrier in context_switch()
11911 * between store to rq->curr and load of prev and next task's
11912 * per-mm/cpu cid.
11913 *
11914 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11915 * rq->curr->mm_cid_active matches the barrier in
11916 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11917 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11918 * load of per-mm/cpu cid.
11919 */
11920
11921 /*
11922 * If we observe an active task using the mm on this rq after setting
11923 * the lazy-put flag, that task will be responsible for transitioning
11924 * from lazy-put flag set to MM_CID_UNSET.
11925 */
11926 rcu_read_lock();
11927 t = rcu_dereference(rq->curr);
11928 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11929 rcu_read_unlock();
11930 return;
11931 }
11932 rcu_read_unlock();
11933
11934 /*
11935 * The cid is unused, so it can be unset.
11936 * Disable interrupts to keep the window of cid ownership without rq
11937 * lock small.
11938 */
11939 local_irq_save(flags);
11940 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11941 __mm_cid_put(mm, cid);
11942 local_irq_restore(flags);
11943 }
11944
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)11945 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11946 {
11947 struct rq *rq = cpu_rq(cpu);
11948 struct mm_cid *pcpu_cid;
11949 struct task_struct *curr;
11950 u64 rq_clock;
11951
11952 /*
11953 * rq->clock load is racy on 32-bit but one spurious clear once in a
11954 * while is irrelevant.
11955 */
11956 rq_clock = READ_ONCE(rq->clock);
11957 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11958
11959 /*
11960 * In order to take care of infrequently scheduled tasks, bump the time
11961 * snapshot associated with this cid if an active task using the mm is
11962 * observed on this rq.
11963 */
11964 rcu_read_lock();
11965 curr = rcu_dereference(rq->curr);
11966 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11967 WRITE_ONCE(pcpu_cid->time, rq_clock);
11968 rcu_read_unlock();
11969 return;
11970 }
11971 rcu_read_unlock();
11972
11973 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11974 return;
11975 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11976 }
11977
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)11978 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11979 int weight)
11980 {
11981 struct mm_cid *pcpu_cid;
11982 int cid;
11983
11984 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11985 cid = READ_ONCE(pcpu_cid->cid);
11986 if (!mm_cid_is_valid(cid) || cid < weight)
11987 return;
11988 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11989 }
11990
task_mm_cid_work(struct callback_head * work)11991 static void task_mm_cid_work(struct callback_head *work)
11992 {
11993 unsigned long now = jiffies, old_scan, next_scan;
11994 struct task_struct *t = current;
11995 struct cpumask *cidmask;
11996 struct mm_struct *mm;
11997 int weight, cpu;
11998
11999 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
12000
12001 work->next = work; /* Prevent double-add */
12002 if (t->flags & PF_EXITING)
12003 return;
12004 mm = t->mm;
12005 if (!mm)
12006 return;
12007 old_scan = READ_ONCE(mm->mm_cid_next_scan);
12008 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12009 if (!old_scan) {
12010 unsigned long res;
12011
12012 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12013 if (res != old_scan)
12014 old_scan = res;
12015 else
12016 old_scan = next_scan;
12017 }
12018 if (time_before(now, old_scan))
12019 return;
12020 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12021 return;
12022 cidmask = mm_cidmask(mm);
12023 /* Clear cids that were not recently used. */
12024 for_each_possible_cpu(cpu)
12025 sched_mm_cid_remote_clear_old(mm, cpu);
12026 weight = cpumask_weight(cidmask);
12027 /*
12028 * Clear cids that are greater or equal to the cidmask weight to
12029 * recompact it.
12030 */
12031 for_each_possible_cpu(cpu)
12032 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12033 }
12034
init_sched_mm_cid(struct task_struct * t)12035 void init_sched_mm_cid(struct task_struct *t)
12036 {
12037 struct mm_struct *mm = t->mm;
12038 int mm_users = 0;
12039
12040 if (mm) {
12041 mm_users = atomic_read(&mm->mm_users);
12042 if (mm_users == 1)
12043 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12044 }
12045 t->cid_work.next = &t->cid_work; /* Protect against double add */
12046 init_task_work(&t->cid_work, task_mm_cid_work);
12047 }
12048
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12049 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12050 {
12051 struct callback_head *work = &curr->cid_work;
12052 unsigned long now = jiffies;
12053
12054 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12055 work->next != work)
12056 return;
12057 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12058 return;
12059
12060 /* No page allocation under rq lock */
12061 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
12062 }
12063
sched_mm_cid_exit_signals(struct task_struct * t)12064 void sched_mm_cid_exit_signals(struct task_struct *t)
12065 {
12066 struct mm_struct *mm = t->mm;
12067 struct rq_flags rf;
12068 struct rq *rq;
12069
12070 if (!mm)
12071 return;
12072
12073 preempt_disable();
12074 rq = this_rq();
12075 rq_lock_irqsave(rq, &rf);
12076 preempt_enable_no_resched(); /* holding spinlock */
12077 WRITE_ONCE(t->mm_cid_active, 0);
12078 /*
12079 * Store t->mm_cid_active before loading per-mm/cpu cid.
12080 * Matches barrier in sched_mm_cid_remote_clear_old().
12081 */
12082 smp_mb();
12083 mm_cid_put(mm);
12084 t->last_mm_cid = t->mm_cid = -1;
12085 rq_unlock_irqrestore(rq, &rf);
12086 }
12087
sched_mm_cid_before_execve(struct task_struct * t)12088 void sched_mm_cid_before_execve(struct task_struct *t)
12089 {
12090 struct mm_struct *mm = t->mm;
12091 struct rq_flags rf;
12092 struct rq *rq;
12093
12094 if (!mm)
12095 return;
12096
12097 preempt_disable();
12098 rq = this_rq();
12099 rq_lock_irqsave(rq, &rf);
12100 preempt_enable_no_resched(); /* holding spinlock */
12101 WRITE_ONCE(t->mm_cid_active, 0);
12102 /*
12103 * Store t->mm_cid_active before loading per-mm/cpu cid.
12104 * Matches barrier in sched_mm_cid_remote_clear_old().
12105 */
12106 smp_mb();
12107 mm_cid_put(mm);
12108 t->last_mm_cid = t->mm_cid = -1;
12109 rq_unlock_irqrestore(rq, &rf);
12110 }
12111
sched_mm_cid_after_execve(struct task_struct * t)12112 void sched_mm_cid_after_execve(struct task_struct *t)
12113 {
12114 struct mm_struct *mm = t->mm;
12115 struct rq_flags rf;
12116 struct rq *rq;
12117
12118 if (!mm)
12119 return;
12120
12121 preempt_disable();
12122 rq = this_rq();
12123 rq_lock_irqsave(rq, &rf);
12124 preempt_enable_no_resched(); /* holding spinlock */
12125 WRITE_ONCE(t->mm_cid_active, 1);
12126 /*
12127 * Store t->mm_cid_active before loading per-mm/cpu cid.
12128 * Matches barrier in sched_mm_cid_remote_clear_old().
12129 */
12130 smp_mb();
12131 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12132 rq_unlock_irqrestore(rq, &rf);
12133 rseq_set_notify_resume(t);
12134 }
12135
sched_mm_cid_fork(struct task_struct * t)12136 void sched_mm_cid_fork(struct task_struct *t)
12137 {
12138 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12139 t->mm_cid_active = 1;
12140 }
12141 #endif
12142