1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Procedures for interfacing to the RTAS on CHRP machines.
5 *
6 * Peter Bergner, IBM March 2001.
7 * Copyright (C) 2001 IBM.
8 */
9
10 #define pr_fmt(fmt) "rtas: " fmt
11
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/lockdep.h>
20 #include <linux/memblock.h>
21 #include <linux/nospec.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/reboot.h>
25 #include <linux/sched.h>
26 #include <linux/security.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stdarg.h>
30 #include <linux/syscalls.h>
31 #include <linux/types.h>
32 #include <linux/uaccess.h>
33 #include <linux/xarray.h>
34
35 #include <asm/delay.h>
36 #include <asm/firmware.h>
37 #include <asm/interrupt.h>
38 #include <asm/machdep.h>
39 #include <asm/mmu.h>
40 #include <asm/page.h>
41 #include <asm/rtas-work-area.h>
42 #include <asm/rtas.h>
43 #include <asm/time.h>
44 #include <asm/trace.h>
45 #include <asm/udbg.h>
46
47 struct rtas_filter {
48 /* Indexes into the args buffer, -1 if not used */
49 const int buf_idx1;
50 const int size_idx1;
51 const int buf_idx2;
52 const int size_idx2;
53 /*
54 * Assumed buffer size per the spec if the function does not
55 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
56 */
57 const int fixed_size;
58 };
59
60 /**
61 * struct rtas_function - Descriptor for RTAS functions.
62 *
63 * @token: Value of @name if it exists under the /rtas node.
64 * @name: Function name.
65 * @filter: If non-NULL, invoking this function via the rtas syscall is
66 * generally allowed, and @filter describes constraints on the
67 * arguments. See also @banned_for_syscall_on_le.
68 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
69 * but specifically restricted on ppc64le. Such
70 * functions are believed to have no users on
71 * ppc64le, and we want to keep it that way. It does
72 * not make sense for this to be set when @filter
73 * is NULL.
74 */
75 struct rtas_function {
76 s32 token;
77 const bool banned_for_syscall_on_le:1;
78 const char * const name;
79 const struct rtas_filter *filter;
80 };
81
82 static struct rtas_function rtas_function_table[] __ro_after_init = {
83 [RTAS_FNIDX__CHECK_EXCEPTION] = {
84 .name = "check-exception",
85 },
86 [RTAS_FNIDX__DISPLAY_CHARACTER] = {
87 .name = "display-character",
88 .filter = &(const struct rtas_filter) {
89 .buf_idx1 = -1, .size_idx1 = -1,
90 .buf_idx2 = -1, .size_idx2 = -1,
91 },
92 },
93 [RTAS_FNIDX__EVENT_SCAN] = {
94 .name = "event-scan",
95 },
96 [RTAS_FNIDX__FREEZE_TIME_BASE] = {
97 .name = "freeze-time-base",
98 },
99 [RTAS_FNIDX__GET_POWER_LEVEL] = {
100 .name = "get-power-level",
101 .filter = &(const struct rtas_filter) {
102 .buf_idx1 = -1, .size_idx1 = -1,
103 .buf_idx2 = -1, .size_idx2 = -1,
104 },
105 },
106 [RTAS_FNIDX__GET_SENSOR_STATE] = {
107 .name = "get-sensor-state",
108 .filter = &(const struct rtas_filter) {
109 .buf_idx1 = -1, .size_idx1 = -1,
110 .buf_idx2 = -1, .size_idx2 = -1,
111 },
112 },
113 [RTAS_FNIDX__GET_TERM_CHAR] = {
114 .name = "get-term-char",
115 },
116 [RTAS_FNIDX__GET_TIME_OF_DAY] = {
117 .name = "get-time-of-day",
118 .filter = &(const struct rtas_filter) {
119 .buf_idx1 = -1, .size_idx1 = -1,
120 .buf_idx2 = -1, .size_idx2 = -1,
121 },
122 },
123 [RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
124 .name = "ibm,activate-firmware",
125 .filter = &(const struct rtas_filter) {
126 .buf_idx1 = -1, .size_idx1 = -1,
127 .buf_idx2 = -1, .size_idx2 = -1,
128 },
129 },
130 [RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
131 .name = "ibm,cbe-start-ptcal",
132 },
133 [RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
134 .name = "ibm,cbe-stop-ptcal",
135 },
136 [RTAS_FNIDX__IBM_CHANGE_MSI] = {
137 .name = "ibm,change-msi",
138 },
139 [RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
140 .name = "ibm,close-errinjct",
141 .filter = &(const struct rtas_filter) {
142 .buf_idx1 = -1, .size_idx1 = -1,
143 .buf_idx2 = -1, .size_idx2 = -1,
144 },
145 },
146 [RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
147 .name = "ibm,configure-bridge",
148 },
149 [RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
150 .name = "ibm,configure-connector",
151 .filter = &(const struct rtas_filter) {
152 .buf_idx1 = 0, .size_idx1 = -1,
153 .buf_idx2 = 1, .size_idx2 = -1,
154 .fixed_size = 4096,
155 },
156 },
157 [RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
158 .name = "ibm,configure-kernel-dump",
159 },
160 [RTAS_FNIDX__IBM_CONFIGURE_PE] = {
161 .name = "ibm,configure-pe",
162 },
163 [RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
164 .name = "ibm,create-pe-dma-window",
165 },
166 [RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
167 .name = "ibm,display-message",
168 .filter = &(const struct rtas_filter) {
169 .buf_idx1 = 0, .size_idx1 = -1,
170 .buf_idx2 = -1, .size_idx2 = -1,
171 },
172 },
173 [RTAS_FNIDX__IBM_ERRINJCT] = {
174 .name = "ibm,errinjct",
175 .filter = &(const struct rtas_filter) {
176 .buf_idx1 = 2, .size_idx1 = -1,
177 .buf_idx2 = -1, .size_idx2 = -1,
178 .fixed_size = 1024,
179 },
180 },
181 [RTAS_FNIDX__IBM_EXTI2C] = {
182 .name = "ibm,exti2c",
183 },
184 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
185 .name = "ibm,get-config-addr-info",
186 },
187 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
188 .name = "ibm,get-config-addr-info2",
189 .filter = &(const struct rtas_filter) {
190 .buf_idx1 = -1, .size_idx1 = -1,
191 .buf_idx2 = -1, .size_idx2 = -1,
192 },
193 },
194 [RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
195 .name = "ibm,get-dynamic-sensor-state",
196 .filter = &(const struct rtas_filter) {
197 .buf_idx1 = 1, .size_idx1 = -1,
198 .buf_idx2 = -1, .size_idx2 = -1,
199 },
200 },
201 [RTAS_FNIDX__IBM_GET_INDICES] = {
202 .name = "ibm,get-indices",
203 .filter = &(const struct rtas_filter) {
204 .buf_idx1 = 2, .size_idx1 = 3,
205 .buf_idx2 = -1, .size_idx2 = -1,
206 },
207 },
208 [RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
209 .name = "ibm,get-rio-topology",
210 },
211 [RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
212 .name = "ibm,get-system-parameter",
213 .filter = &(const struct rtas_filter) {
214 .buf_idx1 = 1, .size_idx1 = 2,
215 .buf_idx2 = -1, .size_idx2 = -1,
216 },
217 },
218 [RTAS_FNIDX__IBM_GET_VPD] = {
219 .name = "ibm,get-vpd",
220 .filter = &(const struct rtas_filter) {
221 .buf_idx1 = 0, .size_idx1 = -1,
222 .buf_idx2 = 1, .size_idx2 = 2,
223 },
224 },
225 [RTAS_FNIDX__IBM_GET_XIVE] = {
226 .name = "ibm,get-xive",
227 },
228 [RTAS_FNIDX__IBM_INT_OFF] = {
229 .name = "ibm,int-off",
230 },
231 [RTAS_FNIDX__IBM_INT_ON] = {
232 .name = "ibm,int-on",
233 },
234 [RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
235 .name = "ibm,io-quiesce-ack",
236 },
237 [RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
238 .name = "ibm,lpar-perftools",
239 .filter = &(const struct rtas_filter) {
240 .buf_idx1 = 2, .size_idx1 = 3,
241 .buf_idx2 = -1, .size_idx2 = -1,
242 },
243 },
244 [RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
245 .name = "ibm,manage-flash-image",
246 },
247 [RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
248 .name = "ibm,manage-storage-preservation",
249 },
250 [RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
251 .name = "ibm,nmi-interlock",
252 },
253 [RTAS_FNIDX__IBM_NMI_REGISTER] = {
254 .name = "ibm,nmi-register",
255 },
256 [RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
257 .name = "ibm,open-errinjct",
258 .filter = &(const struct rtas_filter) {
259 .buf_idx1 = -1, .size_idx1 = -1,
260 .buf_idx2 = -1, .size_idx2 = -1,
261 },
262 },
263 [RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
264 .name = "ibm,open-sriov-allow-unfreeze",
265 },
266 [RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
267 .name = "ibm,open-sriov-map-pe-number",
268 },
269 [RTAS_FNIDX__IBM_OS_TERM] = {
270 .name = "ibm,os-term",
271 },
272 [RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
273 .name = "ibm,partner-control",
274 },
275 [RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
276 .name = "ibm,physical-attestation",
277 .filter = &(const struct rtas_filter) {
278 .buf_idx1 = 0, .size_idx1 = 1,
279 .buf_idx2 = -1, .size_idx2 = -1,
280 },
281 },
282 [RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
283 .name = "ibm,platform-dump",
284 .filter = &(const struct rtas_filter) {
285 .buf_idx1 = 4, .size_idx1 = 5,
286 .buf_idx2 = -1, .size_idx2 = -1,
287 },
288 },
289 [RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
290 .name = "ibm,power-off-ups",
291 },
292 [RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
293 .name = "ibm,query-interrupt-source-number",
294 },
295 [RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
296 .name = "ibm,query-pe-dma-window",
297 },
298 [RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
299 .name = "ibm,read-pci-config",
300 },
301 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
302 .name = "ibm,read-slot-reset-state",
303 .filter = &(const struct rtas_filter) {
304 .buf_idx1 = -1, .size_idx1 = -1,
305 .buf_idx2 = -1, .size_idx2 = -1,
306 },
307 },
308 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
309 .name = "ibm,read-slot-reset-state2",
310 },
311 [RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
312 .name = "ibm,remove-pe-dma-window",
313 },
314 [RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
315 /*
316 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
317 * "ibm,reset-pe-dma-windows" (plural), but RTAS
318 * implementations use the singular form in practice.
319 */
320 .name = "ibm,reset-pe-dma-window",
321 },
322 [RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
323 .name = "ibm,scan-log-dump",
324 .filter = &(const struct rtas_filter) {
325 .buf_idx1 = 0, .size_idx1 = 1,
326 .buf_idx2 = -1, .size_idx2 = -1,
327 },
328 },
329 [RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
330 .name = "ibm,set-dynamic-indicator",
331 .filter = &(const struct rtas_filter) {
332 .buf_idx1 = 2, .size_idx1 = -1,
333 .buf_idx2 = -1, .size_idx2 = -1,
334 },
335 },
336 [RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
337 .name = "ibm,set-eeh-option",
338 .filter = &(const struct rtas_filter) {
339 .buf_idx1 = -1, .size_idx1 = -1,
340 .buf_idx2 = -1, .size_idx2 = -1,
341 },
342 },
343 [RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
344 .name = "ibm,set-slot-reset",
345 },
346 [RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
347 .name = "ibm,set-system-parameter",
348 .filter = &(const struct rtas_filter) {
349 .buf_idx1 = 1, .size_idx1 = -1,
350 .buf_idx2 = -1, .size_idx2 = -1,
351 },
352 },
353 [RTAS_FNIDX__IBM_SET_XIVE] = {
354 .name = "ibm,set-xive",
355 },
356 [RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
357 .name = "ibm,slot-error-detail",
358 },
359 [RTAS_FNIDX__IBM_SUSPEND_ME] = {
360 .name = "ibm,suspend-me",
361 .banned_for_syscall_on_le = true,
362 .filter = &(const struct rtas_filter) {
363 .buf_idx1 = -1, .size_idx1 = -1,
364 .buf_idx2 = -1, .size_idx2 = -1,
365 },
366 },
367 [RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
368 .name = "ibm,tune-dma-parms",
369 },
370 [RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
371 .name = "ibm,update-flash-64-and-reboot",
372 },
373 [RTAS_FNIDX__IBM_UPDATE_NODES] = {
374 .name = "ibm,update-nodes",
375 .banned_for_syscall_on_le = true,
376 .filter = &(const struct rtas_filter) {
377 .buf_idx1 = 0, .size_idx1 = -1,
378 .buf_idx2 = -1, .size_idx2 = -1,
379 .fixed_size = 4096,
380 },
381 },
382 [RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
383 .name = "ibm,update-properties",
384 .banned_for_syscall_on_le = true,
385 .filter = &(const struct rtas_filter) {
386 .buf_idx1 = 0, .size_idx1 = -1,
387 .buf_idx2 = -1, .size_idx2 = -1,
388 .fixed_size = 4096,
389 },
390 },
391 [RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
392 .name = "ibm,validate-flash-image",
393 },
394 [RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
395 .name = "ibm,write-pci-config",
396 },
397 [RTAS_FNIDX__NVRAM_FETCH] = {
398 .name = "nvram-fetch",
399 },
400 [RTAS_FNIDX__NVRAM_STORE] = {
401 .name = "nvram-store",
402 },
403 [RTAS_FNIDX__POWER_OFF] = {
404 .name = "power-off",
405 },
406 [RTAS_FNIDX__PUT_TERM_CHAR] = {
407 .name = "put-term-char",
408 },
409 [RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
410 .name = "query-cpu-stopped-state",
411 },
412 [RTAS_FNIDX__READ_PCI_CONFIG] = {
413 .name = "read-pci-config",
414 },
415 [RTAS_FNIDX__RTAS_LAST_ERROR] = {
416 .name = "rtas-last-error",
417 },
418 [RTAS_FNIDX__SET_INDICATOR] = {
419 .name = "set-indicator",
420 .filter = &(const struct rtas_filter) {
421 .buf_idx1 = -1, .size_idx1 = -1,
422 .buf_idx2 = -1, .size_idx2 = -1,
423 },
424 },
425 [RTAS_FNIDX__SET_POWER_LEVEL] = {
426 .name = "set-power-level",
427 .filter = &(const struct rtas_filter) {
428 .buf_idx1 = -1, .size_idx1 = -1,
429 .buf_idx2 = -1, .size_idx2 = -1,
430 },
431 },
432 [RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
433 .name = "set-time-for-power-on",
434 .filter = &(const struct rtas_filter) {
435 .buf_idx1 = -1, .size_idx1 = -1,
436 .buf_idx2 = -1, .size_idx2 = -1,
437 },
438 },
439 [RTAS_FNIDX__SET_TIME_OF_DAY] = {
440 .name = "set-time-of-day",
441 .filter = &(const struct rtas_filter) {
442 .buf_idx1 = -1, .size_idx1 = -1,
443 .buf_idx2 = -1, .size_idx2 = -1,
444 },
445 },
446 [RTAS_FNIDX__START_CPU] = {
447 .name = "start-cpu",
448 },
449 [RTAS_FNIDX__STOP_SELF] = {
450 .name = "stop-self",
451 },
452 [RTAS_FNIDX__SYSTEM_REBOOT] = {
453 .name = "system-reboot",
454 },
455 [RTAS_FNIDX__THAW_TIME_BASE] = {
456 .name = "thaw-time-base",
457 },
458 [RTAS_FNIDX__WRITE_PCI_CONFIG] = {
459 .name = "write-pci-config",
460 },
461 };
462
463 /*
464 * Nearly all RTAS calls need to be serialized. All uses of the
465 * default rtas_args block must hold rtas_lock.
466 *
467 * Exceptions to the RTAS serialization requirement (e.g. stop-self)
468 * must use a separate rtas_args structure.
469 */
470 static DEFINE_RAW_SPINLOCK(rtas_lock);
471 static struct rtas_args rtas_args;
472
473 /**
474 * rtas_function_token() - RTAS function token lookup.
475 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
476 *
477 * Context: Any context.
478 * Return: the token value for the function if implemented by this platform,
479 * otherwise RTAS_UNKNOWN_SERVICE.
480 */
rtas_function_token(const rtas_fn_handle_t handle)481 s32 rtas_function_token(const rtas_fn_handle_t handle)
482 {
483 const size_t index = handle.index;
484 const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
485
486 if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
487 return RTAS_UNKNOWN_SERVICE;
488 /*
489 * Various drivers attempt token lookups on non-RTAS
490 * platforms.
491 */
492 if (!rtas.dev)
493 return RTAS_UNKNOWN_SERVICE;
494
495 return rtas_function_table[index].token;
496 }
497 EXPORT_SYMBOL_GPL(rtas_function_token);
498
rtas_function_cmp(const void * a,const void * b)499 static int rtas_function_cmp(const void *a, const void *b)
500 {
501 const struct rtas_function *f1 = a;
502 const struct rtas_function *f2 = b;
503
504 return strcmp(f1->name, f2->name);
505 }
506
507 /*
508 * Boot-time initialization of the function table needs the lookup to
509 * return a non-const-qualified object. Use rtas_name_to_function()
510 * in all other contexts.
511 */
__rtas_name_to_function(const char * name)512 static struct rtas_function *__rtas_name_to_function(const char *name)
513 {
514 const struct rtas_function key = {
515 .name = name,
516 };
517 struct rtas_function *found;
518
519 found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
520 sizeof(rtas_function_table[0]), rtas_function_cmp);
521
522 return found;
523 }
524
rtas_name_to_function(const char * name)525 static const struct rtas_function *rtas_name_to_function(const char *name)
526 {
527 return __rtas_name_to_function(name);
528 }
529
530 static DEFINE_XARRAY(rtas_token_to_function_xarray);
531
rtas_token_to_function_xarray_init(void)532 static int __init rtas_token_to_function_xarray_init(void)
533 {
534 int err = 0;
535
536 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
537 const struct rtas_function *func = &rtas_function_table[i];
538 const s32 token = func->token;
539
540 if (token == RTAS_UNKNOWN_SERVICE)
541 continue;
542
543 err = xa_err(xa_store(&rtas_token_to_function_xarray,
544 token, (void *)func, GFP_KERNEL));
545 if (err)
546 break;
547 }
548
549 return err;
550 }
551 arch_initcall(rtas_token_to_function_xarray_init);
552
553 /*
554 * For use by sys_rtas(), where the token value is provided by user
555 * space and we don't want to warn on failed lookups.
556 */
rtas_token_to_function_untrusted(s32 token)557 static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
558 {
559 return xa_load(&rtas_token_to_function_xarray, token);
560 }
561
562 /*
563 * Reverse lookup for deriving the function descriptor from a
564 * known-good token value in contexts where the former is not already
565 * available. @token must be valid, e.g. derived from the result of a
566 * prior lookup against the function table.
567 */
rtas_token_to_function(s32 token)568 static const struct rtas_function *rtas_token_to_function(s32 token)
569 {
570 const struct rtas_function *func;
571
572 if (WARN_ONCE(token < 0, "invalid token %d", token))
573 return NULL;
574
575 func = rtas_token_to_function_untrusted(token);
576
577 if (WARN_ONCE(!func, "unexpected failed lookup for token %d", token))
578 return NULL;
579
580 return func;
581 }
582
583 /* This is here deliberately so it's only used in this file */
584 void enter_rtas(unsigned long);
585
__do_enter_rtas(struct rtas_args * args)586 static void __do_enter_rtas(struct rtas_args *args)
587 {
588 enter_rtas(__pa(args));
589 srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
590 }
591
__do_enter_rtas_trace(struct rtas_args * args)592 static void __do_enter_rtas_trace(struct rtas_args *args)
593 {
594 const char *name = NULL;
595
596 if (args == &rtas_args)
597 lockdep_assert_held(&rtas_lock);
598 /*
599 * If the tracepoints that consume the function name aren't
600 * active, avoid the lookup.
601 */
602 if ((trace_rtas_input_enabled() || trace_rtas_output_enabled())) {
603 const s32 token = be32_to_cpu(args->token);
604 const struct rtas_function *func = rtas_token_to_function(token);
605
606 name = func->name;
607 }
608
609 trace_rtas_input(args, name);
610 trace_rtas_ll_entry(args);
611
612 __do_enter_rtas(args);
613
614 trace_rtas_ll_exit(args);
615 trace_rtas_output(args, name);
616 }
617
do_enter_rtas(struct rtas_args * args)618 static void do_enter_rtas(struct rtas_args *args)
619 {
620 const unsigned long msr = mfmsr();
621 /*
622 * Situations where we want to skip any active tracepoints for
623 * safety reasons:
624 *
625 * 1. The last code executed on an offline CPU as it stops,
626 * i.e. we're about to call stop-self. The tracepoints'
627 * function name lookup uses xarray, which uses RCU, which
628 * isn't valid to call on an offline CPU. Any events
629 * emitted on an offline CPU will be discarded anyway.
630 *
631 * 2. In real mode, as when invoking ibm,nmi-interlock from
632 * the pseries MCE handler. We cannot count on trace
633 * buffers or the entries in rtas_token_to_function_xarray
634 * to be contained in the RMO.
635 */
636 const unsigned long mask = MSR_IR | MSR_DR;
637 const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
638 (msr & mask) == mask);
639 /*
640 * Make sure MSR[RI] is currently enabled as it will be forced later
641 * in enter_rtas.
642 */
643 BUG_ON(!(msr & MSR_RI));
644
645 BUG_ON(!irqs_disabled());
646
647 hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
648
649 if (can_trace)
650 __do_enter_rtas_trace(args);
651 else
652 __do_enter_rtas(args);
653 }
654
655 struct rtas_t rtas;
656
657 DEFINE_SPINLOCK(rtas_data_buf_lock);
658 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
659
660 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
661 EXPORT_SYMBOL_GPL(rtas_data_buf);
662
663 unsigned long rtas_rmo_buf;
664
665 /*
666 * If non-NULL, this gets called when the kernel terminates.
667 * This is done like this so rtas_flash can be a module.
668 */
669 void (*rtas_flash_term_hook)(int);
670 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
671
672 /*
673 * call_rtas_display_status and call_rtas_display_status_delay
674 * are designed only for very early low-level debugging, which
675 * is why the token is hard-coded to 10.
676 */
call_rtas_display_status(unsigned char c)677 static void call_rtas_display_status(unsigned char c)
678 {
679 unsigned long flags;
680
681 if (!rtas.base)
682 return;
683
684 raw_spin_lock_irqsave(&rtas_lock, flags);
685 rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
686 raw_spin_unlock_irqrestore(&rtas_lock, flags);
687 }
688
call_rtas_display_status_delay(char c)689 static void call_rtas_display_status_delay(char c)
690 {
691 static int pending_newline = 0; /* did last write end with unprinted newline? */
692 static int width = 16;
693
694 if (c == '\n') {
695 while (width-- > 0)
696 call_rtas_display_status(' ');
697 width = 16;
698 mdelay(500);
699 pending_newline = 1;
700 } else {
701 if (pending_newline) {
702 call_rtas_display_status('\r');
703 call_rtas_display_status('\n');
704 }
705 pending_newline = 0;
706 if (width--) {
707 call_rtas_display_status(c);
708 udelay(10000);
709 }
710 }
711 }
712
udbg_init_rtas_panel(void)713 void __init udbg_init_rtas_panel(void)
714 {
715 udbg_putc = call_rtas_display_status_delay;
716 }
717
718 #ifdef CONFIG_UDBG_RTAS_CONSOLE
719
720 /* If you think you're dying before early_init_dt_scan_rtas() does its
721 * work, you can hard code the token values for your firmware here and
722 * hardcode rtas.base/entry etc.
723 */
724 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
725 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
726
udbg_rtascon_putc(char c)727 static void udbg_rtascon_putc(char c)
728 {
729 int tries;
730
731 if (!rtas.base)
732 return;
733
734 /* Add CRs before LFs */
735 if (c == '\n')
736 udbg_rtascon_putc('\r');
737
738 /* if there is more than one character to be displayed, wait a bit */
739 for (tries = 0; tries < 16; tries++) {
740 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
741 break;
742 udelay(1000);
743 }
744 }
745
udbg_rtascon_getc_poll(void)746 static int udbg_rtascon_getc_poll(void)
747 {
748 int c;
749
750 if (!rtas.base)
751 return -1;
752
753 if (rtas_call(rtas_getchar_token, 0, 2, &c))
754 return -1;
755
756 return c;
757 }
758
udbg_rtascon_getc(void)759 static int udbg_rtascon_getc(void)
760 {
761 int c;
762
763 while ((c = udbg_rtascon_getc_poll()) == -1)
764 ;
765
766 return c;
767 }
768
769
udbg_init_rtas_console(void)770 void __init udbg_init_rtas_console(void)
771 {
772 udbg_putc = udbg_rtascon_putc;
773 udbg_getc = udbg_rtascon_getc;
774 udbg_getc_poll = udbg_rtascon_getc_poll;
775 }
776 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
777
rtas_progress(char * s,unsigned short hex)778 void rtas_progress(char *s, unsigned short hex)
779 {
780 struct device_node *root;
781 int width;
782 const __be32 *p;
783 char *os;
784 static int display_character, set_indicator;
785 static int display_width, display_lines, form_feed;
786 static const int *row_width;
787 static DEFINE_SPINLOCK(progress_lock);
788 static int current_line;
789 static int pending_newline = 0; /* did last write end with unprinted newline? */
790
791 if (!rtas.base)
792 return;
793
794 if (display_width == 0) {
795 display_width = 0x10;
796 if ((root = of_find_node_by_path("/rtas"))) {
797 if ((p = of_get_property(root,
798 "ibm,display-line-length", NULL)))
799 display_width = be32_to_cpu(*p);
800 if ((p = of_get_property(root,
801 "ibm,form-feed", NULL)))
802 form_feed = be32_to_cpu(*p);
803 if ((p = of_get_property(root,
804 "ibm,display-number-of-lines", NULL)))
805 display_lines = be32_to_cpu(*p);
806 row_width = of_get_property(root,
807 "ibm,display-truncation-length", NULL);
808 of_node_put(root);
809 }
810 display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
811 set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
812 }
813
814 if (display_character == RTAS_UNKNOWN_SERVICE) {
815 /* use hex display if available */
816 if (set_indicator != RTAS_UNKNOWN_SERVICE)
817 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
818 return;
819 }
820
821 spin_lock(&progress_lock);
822
823 /*
824 * Last write ended with newline, but we didn't print it since
825 * it would just clear the bottom line of output. Print it now
826 * instead.
827 *
828 * If no newline is pending and form feed is supported, clear the
829 * display with a form feed; otherwise, print a CR to start output
830 * at the beginning of the line.
831 */
832 if (pending_newline) {
833 rtas_call(display_character, 1, 1, NULL, '\r');
834 rtas_call(display_character, 1, 1, NULL, '\n');
835 pending_newline = 0;
836 } else {
837 current_line = 0;
838 if (form_feed)
839 rtas_call(display_character, 1, 1, NULL,
840 (char)form_feed);
841 else
842 rtas_call(display_character, 1, 1, NULL, '\r');
843 }
844
845 if (row_width)
846 width = row_width[current_line];
847 else
848 width = display_width;
849 os = s;
850 while (*os) {
851 if (*os == '\n' || *os == '\r') {
852 /* If newline is the last character, save it
853 * until next call to avoid bumping up the
854 * display output.
855 */
856 if (*os == '\n' && !os[1]) {
857 pending_newline = 1;
858 current_line++;
859 if (current_line > display_lines-1)
860 current_line = display_lines-1;
861 spin_unlock(&progress_lock);
862 return;
863 }
864
865 /* RTAS wants CR-LF, not just LF */
866
867 if (*os == '\n') {
868 rtas_call(display_character, 1, 1, NULL, '\r');
869 rtas_call(display_character, 1, 1, NULL, '\n');
870 } else {
871 /* CR might be used to re-draw a line, so we'll
872 * leave it alone and not add LF.
873 */
874 rtas_call(display_character, 1, 1, NULL, *os);
875 }
876
877 if (row_width)
878 width = row_width[current_line];
879 else
880 width = display_width;
881 } else {
882 width--;
883 rtas_call(display_character, 1, 1, NULL, *os);
884 }
885
886 os++;
887
888 /* if we overwrite the screen length */
889 if (width <= 0)
890 while ((*os != 0) && (*os != '\n') && (*os != '\r'))
891 os++;
892 }
893
894 spin_unlock(&progress_lock);
895 }
896 EXPORT_SYMBOL_GPL(rtas_progress); /* needed by rtas_flash module */
897
rtas_token(const char * service)898 int rtas_token(const char *service)
899 {
900 const struct rtas_function *func;
901 const __be32 *tokp;
902
903 if (rtas.dev == NULL)
904 return RTAS_UNKNOWN_SERVICE;
905
906 func = rtas_name_to_function(service);
907 if (func)
908 return func->token;
909 /*
910 * The caller is looking up a name that is not known to be an
911 * RTAS function. Either it's a function that needs to be
912 * added to the table, or they're misusing rtas_token() to
913 * access non-function properties of the /rtas node. Warn and
914 * fall back to the legacy behavior.
915 */
916 WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
917 service);
918
919 tokp = of_get_property(rtas.dev, service, NULL);
920 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
921 }
922 EXPORT_SYMBOL_GPL(rtas_token);
923
rtas_service_present(const char * service)924 int rtas_service_present(const char *service)
925 {
926 return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
927 }
928
929 #ifdef CONFIG_RTAS_ERROR_LOGGING
930
931 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
932
933 /*
934 * Return the firmware-specified size of the error log buffer
935 * for all rtas calls that require an error buffer argument.
936 * This includes 'check-exception' and 'rtas-last-error'.
937 */
rtas_get_error_log_max(void)938 int rtas_get_error_log_max(void)
939 {
940 return rtas_error_log_max;
941 }
942
init_error_log_max(void)943 static void __init init_error_log_max(void)
944 {
945 static const char propname[] __initconst = "rtas-error-log-max";
946 u32 max;
947
948 if (of_property_read_u32(rtas.dev, propname, &max)) {
949 pr_warn("%s not found, using default of %u\n",
950 propname, RTAS_ERROR_LOG_MAX);
951 max = RTAS_ERROR_LOG_MAX;
952 }
953
954 if (max > RTAS_ERROR_LOG_MAX) {
955 pr_warn("%s = %u, clamping max error log size to %u\n",
956 propname, max, RTAS_ERROR_LOG_MAX);
957 max = RTAS_ERROR_LOG_MAX;
958 }
959
960 rtas_error_log_max = max;
961 }
962
963
964 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
965
966 /** Return a copy of the detailed error text associated with the
967 * most recent failed call to rtas. Because the error text
968 * might go stale if there are any other intervening rtas calls,
969 * this routine must be called atomically with whatever produced
970 * the error (i.e. with rtas_lock still held from the previous call).
971 */
__fetch_rtas_last_error(char * altbuf)972 static char *__fetch_rtas_last_error(char *altbuf)
973 {
974 const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
975 struct rtas_args err_args, save_args;
976 u32 bufsz;
977 char *buf = NULL;
978
979 lockdep_assert_held(&rtas_lock);
980
981 if (token == -1)
982 return NULL;
983
984 bufsz = rtas_get_error_log_max();
985
986 err_args.token = cpu_to_be32(token);
987 err_args.nargs = cpu_to_be32(2);
988 err_args.nret = cpu_to_be32(1);
989 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
990 err_args.args[1] = cpu_to_be32(bufsz);
991 err_args.args[2] = 0;
992
993 save_args = rtas_args;
994 rtas_args = err_args;
995
996 do_enter_rtas(&rtas_args);
997
998 err_args = rtas_args;
999 rtas_args = save_args;
1000
1001 /* Log the error in the unlikely case that there was one. */
1002 if (unlikely(err_args.args[2] == 0)) {
1003 if (altbuf) {
1004 buf = altbuf;
1005 } else {
1006 buf = rtas_err_buf;
1007 if (slab_is_available())
1008 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1009 }
1010 if (buf)
1011 memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1012 }
1013
1014 return buf;
1015 }
1016
1017 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1018
1019 #else /* CONFIG_RTAS_ERROR_LOGGING */
1020 #define __fetch_rtas_last_error(x) NULL
1021 #define get_errorlog_buffer() NULL
init_error_log_max(void)1022 static void __init init_error_log_max(void) {}
1023 #endif
1024
1025
1026 static void
va_rtas_call_unlocked(struct rtas_args * args,int token,int nargs,int nret,va_list list)1027 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1028 va_list list)
1029 {
1030 int i;
1031
1032 args->token = cpu_to_be32(token);
1033 args->nargs = cpu_to_be32(nargs);
1034 args->nret = cpu_to_be32(nret);
1035 args->rets = &(args->args[nargs]);
1036
1037 for (i = 0; i < nargs; ++i)
1038 args->args[i] = cpu_to_be32(va_arg(list, __u32));
1039
1040 for (i = 0; i < nret; ++i)
1041 args->rets[i] = 0;
1042
1043 do_enter_rtas(args);
1044 }
1045
1046 /**
1047 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1048 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1049 * constraints.
1050 * @token: Identifies the function being invoked.
1051 * @nargs: Number of input parameters. Does not include token.
1052 * @nret: Number of output parameters, including the call status.
1053 * @....: List of @nargs input parameters.
1054 *
1055 * Invokes the RTAS function indicated by @token, which the caller
1056 * should obtain via rtas_function_token().
1057 *
1058 * This function is similar to rtas_call(), but must be used with a
1059 * limited set of RTAS calls specifically exempted from the general
1060 * requirement that only one RTAS call may be in progress at any
1061 * time. Examples include stop-self and ibm,nmi-interlock.
1062 */
rtas_call_unlocked(struct rtas_args * args,int token,int nargs,int nret,...)1063 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1064 {
1065 va_list list;
1066
1067 va_start(list, nret);
1068 va_rtas_call_unlocked(args, token, nargs, nret, list);
1069 va_end(list);
1070 }
1071
token_is_restricted_errinjct(s32 token)1072 static bool token_is_restricted_errinjct(s32 token)
1073 {
1074 return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1075 token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1076 }
1077
1078 /**
1079 * rtas_call() - Invoke an RTAS firmware function.
1080 * @token: Identifies the function being invoked.
1081 * @nargs: Number of input parameters. Does not include token.
1082 * @nret: Number of output parameters, including the call status.
1083 * @outputs: Array of @nret output words.
1084 * @....: List of @nargs input parameters.
1085 *
1086 * Invokes the RTAS function indicated by @token, which the caller
1087 * should obtain via rtas_function_token().
1088 *
1089 * The @nargs and @nret arguments must match the number of input and
1090 * output parameters specified for the RTAS function.
1091 *
1092 * rtas_call() returns RTAS status codes, not conventional Linux errno
1093 * values. Callers must translate any failure to an appropriate errno
1094 * in syscall context. Most callers of RTAS functions that can return
1095 * -2 or 990x should use rtas_busy_delay() to correctly handle those
1096 * statuses before calling again.
1097 *
1098 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1099 * Codes of the PAPR and CHRP specifications.
1100 *
1101 * Context: Process context preferably, interrupt context if
1102 * necessary. Acquires an internal spinlock and may perform
1103 * GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1104 * context.
1105 * Return:
1106 * * 0 - RTAS function call succeeded.
1107 * * -1 - RTAS function encountered a hardware or
1108 * platform error, or the token is invalid,
1109 * or the function is restricted by kernel policy.
1110 * * -2 - Specs say "A necessary hardware device was busy,
1111 * and the requested function could not be
1112 * performed. The operation should be retried at
1113 * a later time." This is misleading, at least with
1114 * respect to current RTAS implementations. What it
1115 * usually means in practice is that the function
1116 * could not be completed while meeting RTAS's
1117 * deadline for returning control to the OS (250us
1118 * for PAPR/PowerVM, typically), but the call may be
1119 * immediately reattempted to resume work on it.
1120 * * -3 - Parameter error.
1121 * * -7 - Unexpected state change.
1122 * * 9000...9899 - Vendor-specific success codes.
1123 * * 9900...9905 - Advisory extended delay. Caller should try
1124 * again after ~10^x ms has elapsed, where x is
1125 * the last digit of the status [0-5]. Again going
1126 * beyond the PAPR text, 990x on PowerVM indicates
1127 * contention for RTAS-internal resources. Other
1128 * RTAS call sequences in progress should be
1129 * allowed to complete before reattempting the
1130 * call.
1131 * * -9000 - Multi-level isolation error.
1132 * * -9999...-9004 - Vendor-specific error codes.
1133 * * Additional negative values - Function-specific error.
1134 * * Additional positive values - Function-specific success.
1135 */
rtas_call(int token,int nargs,int nret,int * outputs,...)1136 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1137 {
1138 struct pin_cookie cookie;
1139 va_list list;
1140 int i;
1141 unsigned long flags;
1142 struct rtas_args *args;
1143 char *buff_copy = NULL;
1144 int ret;
1145
1146 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1147 return -1;
1148
1149 if (token_is_restricted_errinjct(token)) {
1150 /*
1151 * It would be nicer to not discard the error value
1152 * from security_locked_down(), but callers expect an
1153 * RTAS status, not an errno.
1154 */
1155 if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1156 return -1;
1157 }
1158
1159 if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1160 WARN_ON_ONCE(1);
1161 return -1;
1162 }
1163
1164 raw_spin_lock_irqsave(&rtas_lock, flags);
1165 cookie = lockdep_pin_lock(&rtas_lock);
1166
1167 /* We use the global rtas args buffer */
1168 args = &rtas_args;
1169
1170 va_start(list, outputs);
1171 va_rtas_call_unlocked(args, token, nargs, nret, list);
1172 va_end(list);
1173
1174 /* A -1 return code indicates that the last command couldn't
1175 be completed due to a hardware error. */
1176 if (be32_to_cpu(args->rets[0]) == -1)
1177 buff_copy = __fetch_rtas_last_error(NULL);
1178
1179 if (nret > 1 && outputs != NULL)
1180 for (i = 0; i < nret-1; ++i)
1181 outputs[i] = be32_to_cpu(args->rets[i + 1]);
1182 ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1183
1184 lockdep_unpin_lock(&rtas_lock, cookie);
1185 raw_spin_unlock_irqrestore(&rtas_lock, flags);
1186
1187 if (buff_copy) {
1188 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1189 if (slab_is_available())
1190 kfree(buff_copy);
1191 }
1192 return ret;
1193 }
1194 EXPORT_SYMBOL_GPL(rtas_call);
1195
1196 /**
1197 * rtas_busy_delay_time() - From an RTAS status value, calculate the
1198 * suggested delay time in milliseconds.
1199 *
1200 * @status: a value returned from rtas_call() or similar APIs which return
1201 * the status of a RTAS function call.
1202 *
1203 * Context: Any context.
1204 *
1205 * Return:
1206 * * 100000 - If @status is 9905.
1207 * * 10000 - If @status is 9904.
1208 * * 1000 - If @status is 9903.
1209 * * 100 - If @status is 9902.
1210 * * 10 - If @status is 9901.
1211 * * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but
1212 * some callers depend on this behavior, and the worst outcome
1213 * is that they will delay for longer than necessary.
1214 * * 0 - If @status is not a busy or extended delay value.
1215 */
rtas_busy_delay_time(int status)1216 unsigned int rtas_busy_delay_time(int status)
1217 {
1218 int order;
1219 unsigned int ms = 0;
1220
1221 if (status == RTAS_BUSY) {
1222 ms = 1;
1223 } else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1224 status <= RTAS_EXTENDED_DELAY_MAX) {
1225 order = status - RTAS_EXTENDED_DELAY_MIN;
1226 for (ms = 1; order > 0; order--)
1227 ms *= 10;
1228 }
1229
1230 return ms;
1231 }
1232
1233 /*
1234 * Early boot fallback for rtas_busy_delay().
1235 */
rtas_busy_delay_early(int status)1236 static bool __init rtas_busy_delay_early(int status)
1237 {
1238 static size_t successive_ext_delays __initdata;
1239 bool retry;
1240
1241 switch (status) {
1242 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1243 /*
1244 * In the unlikely case that we receive an extended
1245 * delay status in early boot, the OS is probably not
1246 * the cause, and there's nothing we can do to clear
1247 * the condition. Best we can do is delay for a bit
1248 * and hope it's transient. Lie to the caller if it
1249 * seems like we're stuck in a retry loop.
1250 */
1251 mdelay(1);
1252 retry = true;
1253 successive_ext_delays += 1;
1254 if (successive_ext_delays > 1000) {
1255 pr_err("too many extended delays, giving up\n");
1256 dump_stack();
1257 retry = false;
1258 successive_ext_delays = 0;
1259 }
1260 break;
1261 case RTAS_BUSY:
1262 retry = true;
1263 successive_ext_delays = 0;
1264 break;
1265 default:
1266 retry = false;
1267 successive_ext_delays = 0;
1268 break;
1269 }
1270
1271 return retry;
1272 }
1273
1274 /**
1275 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1276 *
1277 * @status: a value returned from rtas_call() or similar APIs which return
1278 * the status of a RTAS function call.
1279 *
1280 * Context: Process context. May sleep or schedule.
1281 *
1282 * Return:
1283 * * true - @status is RTAS_BUSY or an extended delay hint. The
1284 * caller may assume that the CPU has been yielded if necessary,
1285 * and that an appropriate delay for @status has elapsed.
1286 * Generally the caller should reattempt the RTAS call which
1287 * yielded @status.
1288 *
1289 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1290 * caller is responsible for handling @status.
1291 */
rtas_busy_delay(int status)1292 bool __ref rtas_busy_delay(int status)
1293 {
1294 unsigned int ms;
1295 bool ret;
1296
1297 /*
1298 * Can't do timed sleeps before timekeeping is up.
1299 */
1300 if (system_state < SYSTEM_SCHEDULING)
1301 return rtas_busy_delay_early(status);
1302
1303 switch (status) {
1304 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1305 ret = true;
1306 ms = rtas_busy_delay_time(status);
1307 /*
1308 * The extended delay hint can be as high as 100 seconds.
1309 * Surely any function returning such a status is either
1310 * buggy or isn't going to be significantly slowed by us
1311 * polling at 1HZ. Clamp the sleep time to one second.
1312 */
1313 ms = clamp(ms, 1U, 1000U);
1314 /*
1315 * The delay hint is an order-of-magnitude suggestion, not
1316 * a minimum. It is fine, possibly even advantageous, for
1317 * us to pause for less time than hinted. For small values,
1318 * use usleep_range() to ensure we don't sleep much longer
1319 * than actually needed.
1320 *
1321 * See Documentation/timers/timers-howto.rst for
1322 * explanation of the threshold used here. In effect we use
1323 * usleep_range() for 9900 and 9901, msleep() for
1324 * 9902-9905.
1325 */
1326 if (ms <= 20)
1327 usleep_range(ms * 100, ms * 1000);
1328 else
1329 msleep(ms);
1330 break;
1331 case RTAS_BUSY:
1332 ret = true;
1333 /*
1334 * We should call again immediately if there's no other
1335 * work to do.
1336 */
1337 cond_resched();
1338 break;
1339 default:
1340 ret = false;
1341 /*
1342 * Not a busy or extended delay status; the caller should
1343 * handle @status itself. Ensure we warn on misuses in
1344 * atomic context regardless.
1345 */
1346 might_sleep();
1347 break;
1348 }
1349
1350 return ret;
1351 }
1352 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1353
rtas_error_rc(int rtas_rc)1354 int rtas_error_rc(int rtas_rc)
1355 {
1356 int rc;
1357
1358 switch (rtas_rc) {
1359 case RTAS_HARDWARE_ERROR: /* Hardware Error */
1360 rc = -EIO;
1361 break;
1362 case RTAS_INVALID_PARAMETER: /* Bad indicator/domain/etc */
1363 rc = -EINVAL;
1364 break;
1365 case -9000: /* Isolation error */
1366 rc = -EFAULT;
1367 break;
1368 case -9001: /* Outstanding TCE/PTE */
1369 rc = -EEXIST;
1370 break;
1371 case -9002: /* No usable slot */
1372 rc = -ENODEV;
1373 break;
1374 default:
1375 pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1376 rc = -ERANGE;
1377 break;
1378 }
1379 return rc;
1380 }
1381 EXPORT_SYMBOL_GPL(rtas_error_rc);
1382
rtas_get_power_level(int powerdomain,int * level)1383 int rtas_get_power_level(int powerdomain, int *level)
1384 {
1385 int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1386 int rc;
1387
1388 if (token == RTAS_UNKNOWN_SERVICE)
1389 return -ENOENT;
1390
1391 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1392 udelay(1);
1393
1394 if (rc < 0)
1395 return rtas_error_rc(rc);
1396 return rc;
1397 }
1398 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1399
rtas_set_power_level(int powerdomain,int level,int * setlevel)1400 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1401 {
1402 int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1403 int rc;
1404
1405 if (token == RTAS_UNKNOWN_SERVICE)
1406 return -ENOENT;
1407
1408 do {
1409 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1410 } while (rtas_busy_delay(rc));
1411
1412 if (rc < 0)
1413 return rtas_error_rc(rc);
1414 return rc;
1415 }
1416 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1417
rtas_get_sensor(int sensor,int index,int * state)1418 int rtas_get_sensor(int sensor, int index, int *state)
1419 {
1420 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1421 int rc;
1422
1423 if (token == RTAS_UNKNOWN_SERVICE)
1424 return -ENOENT;
1425
1426 do {
1427 rc = rtas_call(token, 2, 2, state, sensor, index);
1428 } while (rtas_busy_delay(rc));
1429
1430 if (rc < 0)
1431 return rtas_error_rc(rc);
1432 return rc;
1433 }
1434 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1435
rtas_get_sensor_fast(int sensor,int index,int * state)1436 int rtas_get_sensor_fast(int sensor, int index, int *state)
1437 {
1438 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1439 int rc;
1440
1441 if (token == RTAS_UNKNOWN_SERVICE)
1442 return -ENOENT;
1443
1444 rc = rtas_call(token, 2, 2, state, sensor, index);
1445 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1446 rc <= RTAS_EXTENDED_DELAY_MAX));
1447
1448 if (rc < 0)
1449 return rtas_error_rc(rc);
1450 return rc;
1451 }
1452
rtas_indicator_present(int token,int * maxindex)1453 bool rtas_indicator_present(int token, int *maxindex)
1454 {
1455 int proplen, count, i;
1456 const struct indicator_elem {
1457 __be32 token;
1458 __be32 maxindex;
1459 } *indicators;
1460
1461 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1462 if (!indicators)
1463 return false;
1464
1465 count = proplen / sizeof(struct indicator_elem);
1466
1467 for (i = 0; i < count; i++) {
1468 if (__be32_to_cpu(indicators[i].token) != token)
1469 continue;
1470 if (maxindex)
1471 *maxindex = __be32_to_cpu(indicators[i].maxindex);
1472 return true;
1473 }
1474
1475 return false;
1476 }
1477
rtas_set_indicator(int indicator,int index,int new_value)1478 int rtas_set_indicator(int indicator, int index, int new_value)
1479 {
1480 int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1481 int rc;
1482
1483 if (token == RTAS_UNKNOWN_SERVICE)
1484 return -ENOENT;
1485
1486 do {
1487 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1488 } while (rtas_busy_delay(rc));
1489
1490 if (rc < 0)
1491 return rtas_error_rc(rc);
1492 return rc;
1493 }
1494 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1495
1496 /*
1497 * Ignoring RTAS extended delay
1498 */
rtas_set_indicator_fast(int indicator,int index,int new_value)1499 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1500 {
1501 int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1502 int rc;
1503
1504 if (token == RTAS_UNKNOWN_SERVICE)
1505 return -ENOENT;
1506
1507 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1508
1509 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1510 rc <= RTAS_EXTENDED_DELAY_MAX));
1511
1512 if (rc < 0)
1513 return rtas_error_rc(rc);
1514
1515 return rc;
1516 }
1517
1518 /**
1519 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1520 *
1521 * @fw_status: RTAS call status will be placed here if not NULL.
1522 *
1523 * rtas_ibm_suspend_me() should be called only on a CPU which has
1524 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1525 * should be waiting to return from H_JOIN.
1526 *
1527 * rtas_ibm_suspend_me() may suspend execution of the OS
1528 * indefinitely. Callers should take appropriate measures upon return, such as
1529 * resetting watchdog facilities.
1530 *
1531 * Callers may choose to retry this call if @fw_status is
1532 * %RTAS_THREADS_ACTIVE.
1533 *
1534 * Return:
1535 * 0 - The partition has resumed from suspend, possibly after
1536 * migration to a different host.
1537 * -ECANCELED - The operation was aborted.
1538 * -EAGAIN - There were other CPUs not in H_JOIN at the time of the call.
1539 * -EBUSY - Some other condition prevented the suspend from succeeding.
1540 * -EIO - Hardware/platform error.
1541 */
rtas_ibm_suspend_me(int * fw_status)1542 int rtas_ibm_suspend_me(int *fw_status)
1543 {
1544 int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1545 int fwrc;
1546 int ret;
1547
1548 fwrc = rtas_call(token, 0, 1, NULL);
1549
1550 switch (fwrc) {
1551 case 0:
1552 ret = 0;
1553 break;
1554 case RTAS_SUSPEND_ABORTED:
1555 ret = -ECANCELED;
1556 break;
1557 case RTAS_THREADS_ACTIVE:
1558 ret = -EAGAIN;
1559 break;
1560 case RTAS_NOT_SUSPENDABLE:
1561 case RTAS_OUTSTANDING_COPROC:
1562 ret = -EBUSY;
1563 break;
1564 case -1:
1565 default:
1566 ret = -EIO;
1567 break;
1568 }
1569
1570 if (fw_status)
1571 *fw_status = fwrc;
1572
1573 return ret;
1574 }
1575
rtas_restart(char * cmd)1576 void __noreturn rtas_restart(char *cmd)
1577 {
1578 if (rtas_flash_term_hook)
1579 rtas_flash_term_hook(SYS_RESTART);
1580 pr_emerg("system-reboot returned %d\n",
1581 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1582 for (;;);
1583 }
1584
rtas_power_off(void)1585 void rtas_power_off(void)
1586 {
1587 if (rtas_flash_term_hook)
1588 rtas_flash_term_hook(SYS_POWER_OFF);
1589 /* allow power on only with power button press */
1590 pr_emerg("power-off returned %d\n",
1591 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1592 for (;;);
1593 }
1594
rtas_halt(void)1595 void __noreturn rtas_halt(void)
1596 {
1597 if (rtas_flash_term_hook)
1598 rtas_flash_term_hook(SYS_HALT);
1599 /* allow power on only with power button press */
1600 pr_emerg("power-off returned %d\n",
1601 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1602 for (;;);
1603 }
1604
1605 /* Must be in the RMO region, so we place it here */
1606 static char rtas_os_term_buf[2048];
1607 static bool ibm_extended_os_term;
1608
rtas_os_term(char * str)1609 void rtas_os_term(char *str)
1610 {
1611 s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1612 static struct rtas_args args;
1613 int status;
1614
1615 /*
1616 * Firmware with the ibm,extended-os-term property is guaranteed
1617 * to always return from an ibm,os-term call. Earlier versions without
1618 * this property may terminate the partition which we want to avoid
1619 * since it interferes with panic_timeout.
1620 */
1621
1622 if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1623 return;
1624
1625 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1626
1627 /*
1628 * Keep calling as long as RTAS returns a "try again" status,
1629 * but don't use rtas_busy_delay(), which potentially
1630 * schedules.
1631 */
1632 do {
1633 rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1634 status = be32_to_cpu(args.rets[0]);
1635 } while (rtas_busy_delay_time(status));
1636
1637 if (status != 0)
1638 pr_emerg("ibm,os-term call failed %d\n", status);
1639 }
1640
1641 /**
1642 * rtas_activate_firmware() - Activate a new version of firmware.
1643 *
1644 * Context: This function may sleep.
1645 *
1646 * Activate a new version of partition firmware. The OS must call this
1647 * after resuming from a partition hibernation or migration in order
1648 * to maintain the ability to perform live firmware updates. It's not
1649 * catastrophic for this method to be absent or to fail; just log the
1650 * condition in that case.
1651 */
rtas_activate_firmware(void)1652 void rtas_activate_firmware(void)
1653 {
1654 int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1655 int fwrc;
1656
1657 if (token == RTAS_UNKNOWN_SERVICE) {
1658 pr_notice("ibm,activate-firmware method unavailable\n");
1659 return;
1660 }
1661
1662 do {
1663 fwrc = rtas_call(token, 0, 1, NULL);
1664 } while (rtas_busy_delay(fwrc));
1665
1666 if (fwrc)
1667 pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1668 }
1669
1670 /**
1671 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1672 * extended event log.
1673 * @log: RTAS error/event log
1674 * @section_id: two character section identifier
1675 *
1676 * Return: A pointer to the specified errorlog or NULL if not found.
1677 */
get_pseries_errorlog(struct rtas_error_log * log,uint16_t section_id)1678 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1679 uint16_t section_id)
1680 {
1681 struct rtas_ext_event_log_v6 *ext_log =
1682 (struct rtas_ext_event_log_v6 *)log->buffer;
1683 struct pseries_errorlog *sect;
1684 unsigned char *p, *log_end;
1685 uint32_t ext_log_length = rtas_error_extended_log_length(log);
1686 uint8_t log_format = rtas_ext_event_log_format(ext_log);
1687 uint32_t company_id = rtas_ext_event_company_id(ext_log);
1688
1689 /* Check that we understand the format */
1690 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1691 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1692 company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1693 return NULL;
1694
1695 log_end = log->buffer + ext_log_length;
1696 p = ext_log->vendor_log;
1697
1698 while (p < log_end) {
1699 sect = (struct pseries_errorlog *)p;
1700 if (pseries_errorlog_id(sect) == section_id)
1701 return sect;
1702 p += pseries_errorlog_length(sect);
1703 }
1704
1705 return NULL;
1706 }
1707
1708 /*
1709 * The sys_rtas syscall, as originally designed, allows root to pass
1710 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1711 * can be abused to write to arbitrary memory and do other things that
1712 * are potentially harmful to system integrity, and thus should only
1713 * be used inside the kernel and not exposed to userspace.
1714 *
1715 * All known legitimate users of the sys_rtas syscall will only ever
1716 * pass addresses that fall within the RMO buffer, and use a known
1717 * subset of RTAS calls.
1718 *
1719 * Accordingly, we filter RTAS requests to check that the call is
1720 * permitted, and that provided pointers fall within the RMO buffer.
1721 * If a function is allowed to be invoked via the syscall, then its
1722 * entry in the rtas_functions table points to a rtas_filter that
1723 * describes its constraints, with the indexes of the parameters which
1724 * are expected to contain addresses and sizes of buffers allocated
1725 * inside the RMO buffer.
1726 */
1727
in_rmo_buf(u32 base,u32 end)1728 static bool in_rmo_buf(u32 base, u32 end)
1729 {
1730 return base >= rtas_rmo_buf &&
1731 base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1732 base <= end &&
1733 end >= rtas_rmo_buf &&
1734 end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1735 }
1736
block_rtas_call(int token,int nargs,struct rtas_args * args)1737 static bool block_rtas_call(int token, int nargs,
1738 struct rtas_args *args)
1739 {
1740 const struct rtas_function *func;
1741 const struct rtas_filter *f;
1742 const bool is_platform_dump = token == rtas_function_token(RTAS_FN_IBM_PLATFORM_DUMP);
1743 const bool is_config_conn = token == rtas_function_token(RTAS_FN_IBM_CONFIGURE_CONNECTOR);
1744 u32 base, size, end;
1745
1746 /*
1747 * If this token doesn't correspond to a function the kernel
1748 * understands, you're not allowed to call it.
1749 */
1750 func = rtas_token_to_function_untrusted(token);
1751 if (!func)
1752 goto err;
1753 /*
1754 * And only functions with filters attached are allowed.
1755 */
1756 f = func->filter;
1757 if (!f)
1758 goto err;
1759 /*
1760 * And some functions aren't allowed on LE.
1761 */
1762 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1763 goto err;
1764
1765 if (f->buf_idx1 != -1) {
1766 base = be32_to_cpu(args->args[f->buf_idx1]);
1767 if (f->size_idx1 != -1)
1768 size = be32_to_cpu(args->args[f->size_idx1]);
1769 else if (f->fixed_size)
1770 size = f->fixed_size;
1771 else
1772 size = 1;
1773
1774 end = base + size - 1;
1775
1776 /*
1777 * Special case for ibm,platform-dump - NULL buffer
1778 * address is used to indicate end of dump processing
1779 */
1780 if (is_platform_dump && base == 0)
1781 return false;
1782
1783 if (!in_rmo_buf(base, end))
1784 goto err;
1785 }
1786
1787 if (f->buf_idx2 != -1) {
1788 base = be32_to_cpu(args->args[f->buf_idx2]);
1789 if (f->size_idx2 != -1)
1790 size = be32_to_cpu(args->args[f->size_idx2]);
1791 else if (f->fixed_size)
1792 size = f->fixed_size;
1793 else
1794 size = 1;
1795 end = base + size - 1;
1796
1797 /*
1798 * Special case for ibm,configure-connector where the
1799 * address can be 0
1800 */
1801 if (is_config_conn && base == 0)
1802 return false;
1803
1804 if (!in_rmo_buf(base, end))
1805 goto err;
1806 }
1807
1808 return false;
1809 err:
1810 pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1811 pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
1812 token, nargs, current->comm);
1813 return true;
1814 }
1815
1816 /* We assume to be passed big endian arguments */
SYSCALL_DEFINE1(rtas,struct rtas_args __user *,uargs)1817 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1818 {
1819 struct pin_cookie cookie;
1820 struct rtas_args args;
1821 unsigned long flags;
1822 char *buff_copy, *errbuf = NULL;
1823 int nargs, nret, token;
1824
1825 if (!capable(CAP_SYS_ADMIN))
1826 return -EPERM;
1827
1828 if (!rtas.entry)
1829 return -EINVAL;
1830
1831 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1832 return -EFAULT;
1833
1834 nargs = be32_to_cpu(args.nargs);
1835 nret = be32_to_cpu(args.nret);
1836 token = be32_to_cpu(args.token);
1837
1838 if (nargs >= ARRAY_SIZE(args.args)
1839 || nret > ARRAY_SIZE(args.args)
1840 || nargs + nret > ARRAY_SIZE(args.args))
1841 return -EINVAL;
1842
1843 nargs = array_index_nospec(nargs, ARRAY_SIZE(args.args));
1844 nret = array_index_nospec(nret, ARRAY_SIZE(args.args) - nargs);
1845
1846 /* Copy in args. */
1847 if (copy_from_user(args.args, uargs->args,
1848 nargs * sizeof(rtas_arg_t)) != 0)
1849 return -EFAULT;
1850
1851 if (token == RTAS_UNKNOWN_SERVICE)
1852 return -EINVAL;
1853
1854 args.rets = &args.args[nargs];
1855 memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1856
1857 if (block_rtas_call(token, nargs, &args))
1858 return -EINVAL;
1859
1860 if (token_is_restricted_errinjct(token)) {
1861 int err;
1862
1863 err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1864 if (err)
1865 return err;
1866 }
1867
1868 /* Need to handle ibm,suspend_me call specially */
1869 if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1870
1871 /*
1872 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1873 * endian, or at least the hcall within it requires it.
1874 */
1875 int rc = 0;
1876 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1877 | be32_to_cpu(args.args[1]);
1878 rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1879 if (rc == -EAGAIN)
1880 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1881 else if (rc == -EIO)
1882 args.rets[0] = cpu_to_be32(-1);
1883 else if (rc)
1884 return rc;
1885 goto copy_return;
1886 }
1887
1888 buff_copy = get_errorlog_buffer();
1889
1890 raw_spin_lock_irqsave(&rtas_lock, flags);
1891 cookie = lockdep_pin_lock(&rtas_lock);
1892
1893 rtas_args = args;
1894 do_enter_rtas(&rtas_args);
1895 args = rtas_args;
1896
1897 /* A -1 return code indicates that the last command couldn't
1898 be completed due to a hardware error. */
1899 if (be32_to_cpu(args.rets[0]) == -1)
1900 errbuf = __fetch_rtas_last_error(buff_copy);
1901
1902 lockdep_unpin_lock(&rtas_lock, cookie);
1903 raw_spin_unlock_irqrestore(&rtas_lock, flags);
1904
1905 if (buff_copy) {
1906 if (errbuf)
1907 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1908 kfree(buff_copy);
1909 }
1910
1911 copy_return:
1912 /* Copy out args. */
1913 if (copy_to_user(uargs->args + nargs,
1914 args.args + nargs,
1915 nret * sizeof(rtas_arg_t)) != 0)
1916 return -EFAULT;
1917
1918 return 0;
1919 }
1920
rtas_function_table_init(void)1921 static void __init rtas_function_table_init(void)
1922 {
1923 struct property *prop;
1924
1925 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
1926 struct rtas_function *curr = &rtas_function_table[i];
1927 struct rtas_function *prior;
1928 int cmp;
1929
1930 curr->token = RTAS_UNKNOWN_SERVICE;
1931
1932 if (i == 0)
1933 continue;
1934 /*
1935 * Ensure table is sorted correctly for binary search
1936 * on function names.
1937 */
1938 prior = &rtas_function_table[i - 1];
1939
1940 cmp = strcmp(prior->name, curr->name);
1941 if (cmp < 0)
1942 continue;
1943
1944 if (cmp == 0) {
1945 pr_err("'%s' has duplicate function table entries\n",
1946 curr->name);
1947 } else {
1948 pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
1949 prior->name, curr->name);
1950 }
1951 }
1952
1953 for_each_property_of_node(rtas.dev, prop) {
1954 struct rtas_function *func;
1955
1956 if (prop->length != sizeof(u32))
1957 continue;
1958
1959 func = __rtas_name_to_function(prop->name);
1960 if (!func)
1961 continue;
1962
1963 func->token = be32_to_cpup((__be32 *)prop->value);
1964
1965 pr_debug("function %s has token %u\n", func->name, func->token);
1966 }
1967 }
1968
1969 /*
1970 * Call early during boot, before mem init, to retrieve the RTAS
1971 * information from the device-tree and allocate the RMO buffer for userland
1972 * accesses.
1973 */
rtas_initialize(void)1974 void __init rtas_initialize(void)
1975 {
1976 unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1977 u32 base, size, entry;
1978 int no_base, no_size, no_entry;
1979
1980 /* Get RTAS dev node and fill up our "rtas" structure with infos
1981 * about it.
1982 */
1983 rtas.dev = of_find_node_by_name(NULL, "rtas");
1984 if (!rtas.dev)
1985 return;
1986
1987 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1988 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1989 if (no_base || no_size) {
1990 of_node_put(rtas.dev);
1991 rtas.dev = NULL;
1992 return;
1993 }
1994
1995 rtas.base = base;
1996 rtas.size = size;
1997 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1998 rtas.entry = no_entry ? rtas.base : entry;
1999
2000 init_error_log_max();
2001
2002 /* Must be called before any function token lookups */
2003 rtas_function_table_init();
2004
2005 /*
2006 * Discover this now to avoid a device tree lookup in the
2007 * panic path.
2008 */
2009 ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2010
2011 /* If RTAS was found, allocate the RMO buffer for it and look for
2012 * the stop-self token if any
2013 */
2014 #ifdef CONFIG_PPC64
2015 if (firmware_has_feature(FW_FEATURE_LPAR))
2016 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2017 #endif
2018 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2019 0, rtas_region);
2020 if (!rtas_rmo_buf)
2021 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2022 PAGE_SIZE, &rtas_region);
2023
2024 rtas_work_area_reserve_arena(rtas_region);
2025 }
2026
early_init_dt_scan_rtas(unsigned long node,const char * uname,int depth,void * data)2027 int __init early_init_dt_scan_rtas(unsigned long node,
2028 const char *uname, int depth, void *data)
2029 {
2030 const u32 *basep, *entryp, *sizep;
2031
2032 if (depth != 1 || strcmp(uname, "rtas") != 0)
2033 return 0;
2034
2035 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2036 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2037 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
2038
2039 #ifdef CONFIG_PPC64
2040 /* need this feature to decide the crashkernel offset */
2041 if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2042 powerpc_firmware_features |= FW_FEATURE_LPAR;
2043 #endif
2044
2045 if (basep && entryp && sizep) {
2046 rtas.base = *basep;
2047 rtas.entry = *entryp;
2048 rtas.size = *sizep;
2049 }
2050
2051 #ifdef CONFIG_UDBG_RTAS_CONSOLE
2052 basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2053 if (basep)
2054 rtas_putchar_token = *basep;
2055
2056 basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2057 if (basep)
2058 rtas_getchar_token = *basep;
2059
2060 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2061 rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2062 udbg_init_rtas_console();
2063
2064 #endif
2065
2066 /* break now */
2067 return 1;
2068 }
2069
2070 static DEFINE_RAW_SPINLOCK(timebase_lock);
2071 static u64 timebase = 0;
2072
rtas_give_timebase(void)2073 void rtas_give_timebase(void)
2074 {
2075 unsigned long flags;
2076
2077 raw_spin_lock_irqsave(&timebase_lock, flags);
2078 hard_irq_disable();
2079 rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2080 timebase = get_tb();
2081 raw_spin_unlock(&timebase_lock);
2082
2083 while (timebase)
2084 barrier();
2085 rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2086 local_irq_restore(flags);
2087 }
2088
rtas_take_timebase(void)2089 void rtas_take_timebase(void)
2090 {
2091 while (!timebase)
2092 barrier();
2093 raw_spin_lock(&timebase_lock);
2094 set_tb(timebase >> 32, timebase & 0xffffffff);
2095 timebase = 0;
2096 raw_spin_unlock(&timebase_lock);
2097 }
2098