1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62
63 /* No special request */
64 #define FPI_NONE ((__force fpi_t)0)
65
66 /*
67 * Skip free page reporting notification for the (possibly merged) page.
68 * This does not hinder free page reporting from grabbing the page,
69 * reporting it and marking it "reported" - it only skips notifying
70 * the free page reporting infrastructure about a newly freed page. For
71 * example, used when temporarily pulling a page from a freelist and
72 * putting it back unmodified.
73 */
74 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
75
76 /*
77 * Place the (possibly merged) page to the tail of the freelist. Will ignore
78 * page shuffling (relevant code - e.g., memory onlining - is expected to
79 * shuffle the whole zone).
80 *
81 * Note: No code should rely on this flag for correctness - it's purely
82 * to allow for optimizations when handing back either fresh pages
83 * (memory onlining) or untouched pages (page isolation, free page
84 * reporting).
85 */
86 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
87
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94 * On SMP, spin_trylock is sufficient protection.
95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96 */
97 #define pcp_trylock_prepare(flags) do { } while (0)
98 #define pcp_trylock_finish(flag) do { } while (0)
99 #else
100
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags) local_irq_save(flags)
103 #define pcp_trylock_finish(flags) local_irq_restore(flags)
104 #endif
105
106 /*
107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108 * a migration causing the wrong PCP to be locked and remote memory being
109 * potentially allocated, pin the task to the CPU for the lookup+lock.
110 * preempt_disable is used on !RT because it is faster than migrate_disable.
111 * migrate_disable is used on RT because otherwise RT spinlock usage is
112 * interfered with and a high priority task cannot preempt the allocator.
113 */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin() preempt_disable()
116 #define pcpu_task_unpin() preempt_enable()
117 #else
118 #define pcpu_task_pin() migrate_disable()
119 #define pcpu_task_unpin() migrate_enable()
120 #endif
121
122 /*
123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124 * Return value should be used with equivalent unlock helper.
125 */
126 #define pcpu_spin_lock(type, member, ptr) \
127 ({ \
128 type *_ret; \
129 pcpu_task_pin(); \
130 _ret = this_cpu_ptr(ptr); \
131 spin_lock(&_ret->member); \
132 _ret; \
133 })
134
135 #define pcpu_spin_trylock(type, member, ptr) \
136 ({ \
137 type *_ret; \
138 pcpu_task_pin(); \
139 _ret = this_cpu_ptr(ptr); \
140 if (!spin_trylock(&_ret->member)) { \
141 pcpu_task_unpin(); \
142 _ret = NULL; \
143 } \
144 _ret; \
145 })
146
147 #define pcpu_spin_unlock(member, ptr) \
148 ({ \
149 spin_unlock(&ptr->member); \
150 pcpu_task_unpin(); \
151 })
152
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr) \
155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156
157 #define pcp_spin_trylock(ptr) \
158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159
160 #define pcp_spin_unlock(ptr) \
161 pcpu_spin_unlock(lock, ptr)
162
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175 * defined in <linux/topology.h>.
176 */
177 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187
188 /*
189 * Array of node states.
190 */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 [N_POSSIBLE] = NODE_MASK_ALL,
193 [N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 [N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 [N_MEMORY] = { { [0] = 1UL } },
200 [N_CPU] = { { [0] = 1UL } },
201 #endif /* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206
207 /*
208 * A cached value of the page's pageblock's migratetype, used when the page is
209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211 * Also the migratetype set in the page does not necessarily match the pcplist
212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213 * other index - this ensures that it will be put on the correct CMA freelist.
214 */
get_pcppage_migratetype(struct page * page)215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 return page->index;
218 }
219
set_pcppage_migratetype(struct page * page,int migratetype)220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 page->index = migratetype;
223 }
224
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 fpi_t fpi_flags);
231
232 /*
233 * results with 256, 32 in the lowmem_reserve sysctl:
234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235 * 1G machine -> (16M dma, 784M normal, 224M high)
236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239 *
240 * TBD: should special case ZONE_DMA32 machines here - in those we normally
241 * don't need any ZONE_NORMAL reservation
242 */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 [ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 [ZONE_DMA32] = 256,
249 #endif
250 [ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 [ZONE_HIGHMEM] = 0,
253 #endif
254 [ZONE_MOVABLE] = 0,
255 };
256
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 "DMA32",
263 #endif
264 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 "HighMem",
267 #endif
268 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 "Device",
271 #endif
272 };
273
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 "Unmovable",
276 "Movable",
277 "Reclaimable",
278 "HighAtomic",
279 #ifdef CONFIG_CMA
280 "CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 "Isolate",
284 #endif
285 };
286
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool cond_accept_memory(struct zone *zone, unsigned int order);
306 static bool __free_unaccepted(struct page *page);
307
308 int page_group_by_mobility_disabled __read_mostly;
309
310 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
311 /*
312 * During boot we initialize deferred pages on-demand, as needed, but once
313 * page_alloc_init_late() has finished, the deferred pages are all initialized,
314 * and we can permanently disable that path.
315 */
316 DEFINE_STATIC_KEY_TRUE(deferred_pages);
317
deferred_pages_enabled(void)318 static inline bool deferred_pages_enabled(void)
319 {
320 return static_branch_unlikely(&deferred_pages);
321 }
322
323 /*
324 * deferred_grow_zone() is __init, but it is called from
325 * get_page_from_freelist() during early boot until deferred_pages permanently
326 * disables this call. This is why we have refdata wrapper to avoid warning,
327 * and to ensure that the function body gets unloaded.
328 */
329 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)330 _deferred_grow_zone(struct zone *zone, unsigned int order)
331 {
332 return deferred_grow_zone(zone, order);
333 }
334 #else
deferred_pages_enabled(void)335 static inline bool deferred_pages_enabled(void)
336 {
337 return false;
338 }
339 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
340
341 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)342 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
343 unsigned long pfn)
344 {
345 #ifdef CONFIG_SPARSEMEM
346 return section_to_usemap(__pfn_to_section(pfn));
347 #else
348 return page_zone(page)->pageblock_flags;
349 #endif /* CONFIG_SPARSEMEM */
350 }
351
pfn_to_bitidx(const struct page * page,unsigned long pfn)352 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 pfn &= (PAGES_PER_SECTION-1);
356 #else
357 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
358 #endif /* CONFIG_SPARSEMEM */
359 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
360 }
361
362 /**
363 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
364 * @page: The page within the block of interest
365 * @pfn: The target page frame number
366 * @mask: mask of bits that the caller is interested in
367 *
368 * Return: pageblock_bits flags
369 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)370 unsigned long get_pfnblock_flags_mask(const struct page *page,
371 unsigned long pfn, unsigned long mask)
372 {
373 unsigned long *bitmap;
374 unsigned long bitidx, word_bitidx;
375 unsigned long word;
376
377 bitmap = get_pageblock_bitmap(page, pfn);
378 bitidx = pfn_to_bitidx(page, pfn);
379 word_bitidx = bitidx / BITS_PER_LONG;
380 bitidx &= (BITS_PER_LONG-1);
381 /*
382 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
383 * a consistent read of the memory array, so that results, even though
384 * racy, are not corrupted.
385 */
386 word = READ_ONCE(bitmap[word_bitidx]);
387 return (word >> bitidx) & mask;
388 }
389
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)390 static __always_inline int get_pfnblock_migratetype(const struct page *page,
391 unsigned long pfn)
392 {
393 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
394 }
395
396 /**
397 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
398 * @page: The page within the block of interest
399 * @flags: The flags to set
400 * @pfn: The target page frame number
401 * @mask: mask of bits that the caller is interested in
402 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)403 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
404 unsigned long pfn,
405 unsigned long mask)
406 {
407 unsigned long *bitmap;
408 unsigned long bitidx, word_bitidx;
409 unsigned long word;
410
411 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
412 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
413
414 bitmap = get_pageblock_bitmap(page, pfn);
415 bitidx = pfn_to_bitidx(page, pfn);
416 word_bitidx = bitidx / BITS_PER_LONG;
417 bitidx &= (BITS_PER_LONG-1);
418
419 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
420
421 mask <<= bitidx;
422 flags <<= bitidx;
423
424 word = READ_ONCE(bitmap[word_bitidx]);
425 do {
426 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
427 }
428
set_pageblock_migratetype(struct page * page,int migratetype)429 void set_pageblock_migratetype(struct page *page, int migratetype)
430 {
431 if (unlikely(page_group_by_mobility_disabled &&
432 migratetype < MIGRATE_PCPTYPES))
433 migratetype = MIGRATE_UNMOVABLE;
434
435 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
436 page_to_pfn(page), MIGRATETYPE_MASK);
437 }
438
439 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)440 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
441 {
442 int ret;
443 unsigned seq;
444 unsigned long pfn = page_to_pfn(page);
445 unsigned long sp, start_pfn;
446
447 do {
448 seq = zone_span_seqbegin(zone);
449 start_pfn = zone->zone_start_pfn;
450 sp = zone->spanned_pages;
451 ret = !zone_spans_pfn(zone, pfn);
452 } while (zone_span_seqretry(zone, seq));
453
454 if (ret)
455 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
456 pfn, zone_to_nid(zone), zone->name,
457 start_pfn, start_pfn + sp);
458
459 return ret;
460 }
461
462 /*
463 * Temporary debugging check for pages not lying within a given zone.
464 */
bad_range(struct zone * zone,struct page * page)465 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
466 {
467 if (page_outside_zone_boundaries(zone, page))
468 return 1;
469 if (zone != page_zone(page))
470 return 1;
471
472 return 0;
473 }
474 #else
bad_range(struct zone * zone,struct page * page)475 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
476 {
477 return 0;
478 }
479 #endif
480
bad_page(struct page * page,const char * reason)481 static void bad_page(struct page *page, const char *reason)
482 {
483 static unsigned long resume;
484 static unsigned long nr_shown;
485 static unsigned long nr_unshown;
486
487 /*
488 * Allow a burst of 60 reports, then keep quiet for that minute;
489 * or allow a steady drip of one report per second.
490 */
491 if (nr_shown == 60) {
492 if (time_before(jiffies, resume)) {
493 nr_unshown++;
494 goto out;
495 }
496 if (nr_unshown) {
497 pr_alert(
498 "BUG: Bad page state: %lu messages suppressed\n",
499 nr_unshown);
500 nr_unshown = 0;
501 }
502 nr_shown = 0;
503 }
504 if (nr_shown++ == 0)
505 resume = jiffies + 60 * HZ;
506
507 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
508 current->comm, page_to_pfn(page));
509 dump_page(page, reason);
510
511 print_modules();
512 dump_stack();
513 out:
514 /* Leave bad fields for debug, except PageBuddy could make trouble */
515 page_mapcount_reset(page); /* remove PageBuddy */
516 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
517 }
518
order_to_pindex(int migratetype,int order)519 static inline unsigned int order_to_pindex(int migratetype, int order)
520 {
521 bool __maybe_unused movable;
522
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 VM_BUG_ON(order != pageblock_order);
526
527 movable = migratetype == MIGRATE_MOVABLE;
528
529 return NR_LOWORDER_PCP_LISTS + movable;
530 }
531 #else
532 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
533 #endif
534
535 return (MIGRATE_PCPTYPES * order) + migratetype;
536 }
537
pindex_to_order(unsigned int pindex)538 static inline int pindex_to_order(unsigned int pindex)
539 {
540 int order = pindex / MIGRATE_PCPTYPES;
541
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 if (pindex >= NR_LOWORDER_PCP_LISTS)
544 order = pageblock_order;
545 #else
546 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
547 #endif
548
549 return order;
550 }
551
pcp_allowed_order(unsigned int order)552 static inline bool pcp_allowed_order(unsigned int order)
553 {
554 if (order <= PAGE_ALLOC_COSTLY_ORDER)
555 return true;
556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
557 if (order == pageblock_order)
558 return true;
559 #endif
560 return false;
561 }
562
free_the_page(struct page * page,unsigned int order)563 static inline void free_the_page(struct page *page, unsigned int order)
564 {
565 if (pcp_allowed_order(order)) /* Via pcp? */
566 free_unref_page(page, order);
567 else
568 __free_pages_ok(page, order, FPI_NONE);
569 }
570
571 /*
572 * Higher-order pages are called "compound pages". They are structured thusly:
573 *
574 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
575 *
576 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
577 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
578 *
579 * The first tail page's ->compound_order holds the order of allocation.
580 * This usage means that zero-order pages may not be compound.
581 */
582
prep_compound_page(struct page * page,unsigned int order)583 void prep_compound_page(struct page *page, unsigned int order)
584 {
585 int i;
586 int nr_pages = 1 << order;
587
588 __SetPageHead(page);
589 for (i = 1; i < nr_pages; i++)
590 prep_compound_tail(page, i);
591
592 prep_compound_head(page, order);
593 }
594
destroy_large_folio(struct folio * folio)595 void destroy_large_folio(struct folio *folio)
596 {
597 if (folio_test_hugetlb(folio)) {
598 free_huge_folio(folio);
599 return;
600 }
601
602 folio_unqueue_deferred_split(folio);
603 mem_cgroup_uncharge(folio);
604 free_the_page(&folio->page, folio_order(folio));
605 }
606
set_buddy_order(struct page * page,unsigned int order)607 static inline void set_buddy_order(struct page *page, unsigned int order)
608 {
609 set_page_private(page, order);
610 __SetPageBuddy(page);
611 }
612
613 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)614 static inline struct capture_control *task_capc(struct zone *zone)
615 {
616 struct capture_control *capc = current->capture_control;
617
618 return unlikely(capc) &&
619 !(current->flags & PF_KTHREAD) &&
620 !capc->page &&
621 capc->cc->zone == zone ? capc : NULL;
622 }
623
624 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)625 compaction_capture(struct capture_control *capc, struct page *page,
626 int order, int migratetype)
627 {
628 if (!capc || order != capc->cc->order)
629 return false;
630
631 /* Do not accidentally pollute CMA or isolated regions*/
632 if (is_migrate_cma(migratetype) ||
633 is_migrate_isolate(migratetype))
634 return false;
635
636 /*
637 * Do not let lower order allocations pollute a movable pageblock.
638 * This might let an unmovable request use a reclaimable pageblock
639 * and vice-versa but no more than normal fallback logic which can
640 * have trouble finding a high-order free page.
641 */
642 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
643 return false;
644
645 capc->page = page;
646 return true;
647 }
648
649 #else
task_capc(struct zone * zone)650 static inline struct capture_control *task_capc(struct zone *zone)
651 {
652 return NULL;
653 }
654
655 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)656 compaction_capture(struct capture_control *capc, struct page *page,
657 int order, int migratetype)
658 {
659 return false;
660 }
661 #endif /* CONFIG_COMPACTION */
662
663 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)664 static inline void add_to_free_list(struct page *page, struct zone *zone,
665 unsigned int order, int migratetype)
666 {
667 struct free_area *area = &zone->free_area[order];
668
669 list_add(&page->buddy_list, &area->free_list[migratetype]);
670 area->nr_free++;
671 }
672
673 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)674 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
675 unsigned int order, int migratetype)
676 {
677 struct free_area *area = &zone->free_area[order];
678
679 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
680 area->nr_free++;
681 }
682
683 /*
684 * Used for pages which are on another list. Move the pages to the tail
685 * of the list - so the moved pages won't immediately be considered for
686 * allocation again (e.g., optimization for memory onlining).
687 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)688 static inline void move_to_free_list(struct page *page, struct zone *zone,
689 unsigned int order, int migratetype)
690 {
691 struct free_area *area = &zone->free_area[order];
692
693 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
694 }
695
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)696 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
697 unsigned int order)
698 {
699 /* clear reported state and update reported page count */
700 if (page_reported(page))
701 __ClearPageReported(page);
702
703 list_del(&page->buddy_list);
704 __ClearPageBuddy(page);
705 set_page_private(page, 0);
706 zone->free_area[order].nr_free--;
707 }
708
get_page_from_free_area(struct free_area * area,int migratetype)709 static inline struct page *get_page_from_free_area(struct free_area *area,
710 int migratetype)
711 {
712 return list_first_entry_or_null(&area->free_list[migratetype],
713 struct page, buddy_list);
714 }
715
716 /*
717 * If this is not the largest possible page, check if the buddy
718 * of the next-highest order is free. If it is, it's possible
719 * that pages are being freed that will coalesce soon. In case,
720 * that is happening, add the free page to the tail of the list
721 * so it's less likely to be used soon and more likely to be merged
722 * as a higher order page
723 */
724 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)725 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
726 struct page *page, unsigned int order)
727 {
728 unsigned long higher_page_pfn;
729 struct page *higher_page;
730
731 if (order >= MAX_ORDER - 1)
732 return false;
733
734 higher_page_pfn = buddy_pfn & pfn;
735 higher_page = page + (higher_page_pfn - pfn);
736
737 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
738 NULL) != NULL;
739 }
740
741 /*
742 * Freeing function for a buddy system allocator.
743 *
744 * The concept of a buddy system is to maintain direct-mapped table
745 * (containing bit values) for memory blocks of various "orders".
746 * The bottom level table contains the map for the smallest allocatable
747 * units of memory (here, pages), and each level above it describes
748 * pairs of units from the levels below, hence, "buddies".
749 * At a high level, all that happens here is marking the table entry
750 * at the bottom level available, and propagating the changes upward
751 * as necessary, plus some accounting needed to play nicely with other
752 * parts of the VM system.
753 * At each level, we keep a list of pages, which are heads of continuous
754 * free pages of length of (1 << order) and marked with PageBuddy.
755 * Page's order is recorded in page_private(page) field.
756 * So when we are allocating or freeing one, we can derive the state of the
757 * other. That is, if we allocate a small block, and both were
758 * free, the remainder of the region must be split into blocks.
759 * If a block is freed, and its buddy is also free, then this
760 * triggers coalescing into a block of larger size.
761 *
762 * -- nyc
763 */
764
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)765 static inline void __free_one_page(struct page *page,
766 unsigned long pfn,
767 struct zone *zone, unsigned int order,
768 int migratetype, fpi_t fpi_flags)
769 {
770 struct capture_control *capc = task_capc(zone);
771 unsigned long buddy_pfn = 0;
772 unsigned long combined_pfn;
773 struct page *buddy;
774 bool to_tail;
775
776 VM_BUG_ON(!zone_is_initialized(zone));
777 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
778
779 VM_BUG_ON(migratetype == -1);
780 if (likely(!is_migrate_isolate(migratetype)))
781 __mod_zone_freepage_state(zone, 1 << order, migratetype);
782
783 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
784 VM_BUG_ON_PAGE(bad_range(zone, page), page);
785
786 while (order < MAX_ORDER) {
787 if (compaction_capture(capc, page, order, migratetype)) {
788 __mod_zone_freepage_state(zone, -(1 << order),
789 migratetype);
790 return;
791 }
792
793 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
794 if (!buddy)
795 goto done_merging;
796
797 if (unlikely(order >= pageblock_order)) {
798 /*
799 * We want to prevent merge between freepages on pageblock
800 * without fallbacks and normal pageblock. Without this,
801 * pageblock isolation could cause incorrect freepage or CMA
802 * accounting or HIGHATOMIC accounting.
803 */
804 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
805
806 if (migratetype != buddy_mt
807 && (!migratetype_is_mergeable(migratetype) ||
808 !migratetype_is_mergeable(buddy_mt)))
809 goto done_merging;
810 }
811
812 /*
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
815 */
816 if (page_is_guard(buddy))
817 clear_page_guard(zone, buddy, order, migratetype);
818 else
819 del_page_from_free_list(buddy, zone, order);
820 combined_pfn = buddy_pfn & pfn;
821 page = page + (combined_pfn - pfn);
822 pfn = combined_pfn;
823 order++;
824 }
825
826 done_merging:
827 set_buddy_order(page, order);
828
829 if (fpi_flags & FPI_TO_TAIL)
830 to_tail = true;
831 else if (is_shuffle_order(order))
832 to_tail = shuffle_pick_tail();
833 else
834 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
835
836 if (to_tail)
837 add_to_free_list_tail(page, zone, order, migratetype);
838 else
839 add_to_free_list(page, zone, order, migratetype);
840
841 /* Notify page reporting subsystem of freed page */
842 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
843 page_reporting_notify_free(order);
844 }
845
846 /**
847 * split_free_page() -- split a free page at split_pfn_offset
848 * @free_page: the original free page
849 * @order: the order of the page
850 * @split_pfn_offset: split offset within the page
851 *
852 * Return -ENOENT if the free page is changed, otherwise 0
853 *
854 * It is used when the free page crosses two pageblocks with different migratetypes
855 * at split_pfn_offset within the page. The split free page will be put into
856 * separate migratetype lists afterwards. Otherwise, the function achieves
857 * nothing.
858 */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)859 int split_free_page(struct page *free_page,
860 unsigned int order, unsigned long split_pfn_offset)
861 {
862 struct zone *zone = page_zone(free_page);
863 unsigned long free_page_pfn = page_to_pfn(free_page);
864 unsigned long pfn;
865 unsigned long flags;
866 int free_page_order;
867 int mt;
868 int ret = 0;
869
870 if (split_pfn_offset == 0)
871 return ret;
872
873 spin_lock_irqsave(&zone->lock, flags);
874
875 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
876 ret = -ENOENT;
877 goto out;
878 }
879
880 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
881 if (likely(!is_migrate_isolate(mt)))
882 __mod_zone_freepage_state(zone, -(1UL << order), mt);
883
884 del_page_from_free_list(free_page, zone, order);
885 for (pfn = free_page_pfn;
886 pfn < free_page_pfn + (1UL << order);) {
887 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
888
889 free_page_order = min_t(unsigned int,
890 pfn ? __ffs(pfn) : order,
891 __fls(split_pfn_offset));
892 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
893 mt, FPI_NONE);
894 pfn += 1UL << free_page_order;
895 split_pfn_offset -= (1UL << free_page_order);
896 /* we have done the first part, now switch to second part */
897 if (split_pfn_offset == 0)
898 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
899 }
900 out:
901 spin_unlock_irqrestore(&zone->lock, flags);
902 return ret;
903 }
904 /*
905 * A bad page could be due to a number of fields. Instead of multiple branches,
906 * try and check multiple fields with one check. The caller must do a detailed
907 * check if necessary.
908 */
page_expected_state(struct page * page,unsigned long check_flags)909 static inline bool page_expected_state(struct page *page,
910 unsigned long check_flags)
911 {
912 if (unlikely(atomic_read(&page->_mapcount) != -1))
913 return false;
914
915 if (unlikely((unsigned long)page->mapping |
916 page_ref_count(page) |
917 #ifdef CONFIG_MEMCG
918 page->memcg_data |
919 #endif
920 (page->flags & check_flags)))
921 return false;
922
923 return true;
924 }
925
page_bad_reason(struct page * page,unsigned long flags)926 static const char *page_bad_reason(struct page *page, unsigned long flags)
927 {
928 const char *bad_reason = NULL;
929
930 if (unlikely(atomic_read(&page->_mapcount) != -1))
931 bad_reason = "nonzero mapcount";
932 if (unlikely(page->mapping != NULL))
933 bad_reason = "non-NULL mapping";
934 if (unlikely(page_ref_count(page) != 0))
935 bad_reason = "nonzero _refcount";
936 if (unlikely(page->flags & flags)) {
937 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
938 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
939 else
940 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
941 }
942 #ifdef CONFIG_MEMCG
943 if (unlikely(page->memcg_data))
944 bad_reason = "page still charged to cgroup";
945 #endif
946 return bad_reason;
947 }
948
free_page_is_bad_report(struct page * page)949 static void free_page_is_bad_report(struct page *page)
950 {
951 bad_page(page,
952 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
953 }
954
free_page_is_bad(struct page * page)955 static inline bool free_page_is_bad(struct page *page)
956 {
957 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
958 return false;
959
960 /* Something has gone sideways, find it */
961 free_page_is_bad_report(page);
962 return true;
963 }
964
is_check_pages_enabled(void)965 static inline bool is_check_pages_enabled(void)
966 {
967 return static_branch_unlikely(&check_pages_enabled);
968 }
969
free_tail_page_prepare(struct page * head_page,struct page * page)970 static int free_tail_page_prepare(struct page *head_page, struct page *page)
971 {
972 struct folio *folio = (struct folio *)head_page;
973 int ret = 1;
974
975 /*
976 * We rely page->lru.next never has bit 0 set, unless the page
977 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
978 */
979 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
980
981 if (!is_check_pages_enabled()) {
982 ret = 0;
983 goto out;
984 }
985 switch (page - head_page) {
986 case 1:
987 /* the first tail page: these may be in place of ->mapping */
988 if (unlikely(folio_entire_mapcount(folio))) {
989 bad_page(page, "nonzero entire_mapcount");
990 goto out;
991 }
992 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
993 bad_page(page, "nonzero nr_pages_mapped");
994 goto out;
995 }
996 if (unlikely(atomic_read(&folio->_pincount))) {
997 bad_page(page, "nonzero pincount");
998 goto out;
999 }
1000 break;
1001 case 2:
1002 /* the second tail page: deferred_list overlaps ->mapping */
1003 if (unlikely(!list_empty(&folio->_deferred_list))) {
1004 bad_page(page, "on deferred list");
1005 goto out;
1006 }
1007 break;
1008 default:
1009 if (page->mapping != TAIL_MAPPING) {
1010 bad_page(page, "corrupted mapping in tail page");
1011 goto out;
1012 }
1013 break;
1014 }
1015 if (unlikely(!PageTail(page))) {
1016 bad_page(page, "PageTail not set");
1017 goto out;
1018 }
1019 if (unlikely(compound_head(page) != head_page)) {
1020 bad_page(page, "compound_head not consistent");
1021 goto out;
1022 }
1023 ret = 0;
1024 out:
1025 page->mapping = NULL;
1026 clear_compound_head(page);
1027 return ret;
1028 }
1029
1030 /*
1031 * Skip KASAN memory poisoning when either:
1032 *
1033 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1034 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1035 * using page tags instead (see below).
1036 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1037 * that error detection is disabled for accesses via the page address.
1038 *
1039 * Pages will have match-all tags in the following circumstances:
1040 *
1041 * 1. Pages are being initialized for the first time, including during deferred
1042 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1043 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1044 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1045 * 3. The allocation was excluded from being checked due to sampling,
1046 * see the call to kasan_unpoison_pages.
1047 *
1048 * Poisoning pages during deferred memory init will greatly lengthen the
1049 * process and cause problem in large memory systems as the deferred pages
1050 * initialization is done with interrupt disabled.
1051 *
1052 * Assuming that there will be no reference to those newly initialized
1053 * pages before they are ever allocated, this should have no effect on
1054 * KASAN memory tracking as the poison will be properly inserted at page
1055 * allocation time. The only corner case is when pages are allocated by
1056 * on-demand allocation and then freed again before the deferred pages
1057 * initialization is done, but this is not likely to happen.
1058 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1059 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1060 {
1061 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1062 return deferred_pages_enabled();
1063
1064 return page_kasan_tag(page) == 0xff;
1065 }
1066
kernel_init_pages(struct page * page,int numpages)1067 static void kernel_init_pages(struct page *page, int numpages)
1068 {
1069 int i;
1070
1071 /* s390's use of memset() could override KASAN redzones. */
1072 kasan_disable_current();
1073 for (i = 0; i < numpages; i++)
1074 clear_highpage_kasan_tagged(page + i);
1075 kasan_enable_current();
1076 }
1077
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1078 static __always_inline bool free_pages_prepare(struct page *page,
1079 unsigned int order, fpi_t fpi_flags)
1080 {
1081 int bad = 0;
1082 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1083 bool init = want_init_on_free();
1084 struct folio *folio = page_folio(page);
1085
1086 VM_BUG_ON_PAGE(PageTail(page), page);
1087
1088 trace_mm_page_free(page, order);
1089 kmsan_free_page(page, order);
1090
1091 /*
1092 * In rare cases, when truncation or holepunching raced with
1093 * munlock after VM_LOCKED was cleared, Mlocked may still be
1094 * found set here. This does not indicate a problem, unless
1095 * "unevictable_pgs_cleared" appears worryingly large.
1096 */
1097 if (unlikely(folio_test_mlocked(folio))) {
1098 long nr_pages = folio_nr_pages(folio);
1099
1100 __folio_clear_mlocked(folio);
1101 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1102 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1103 }
1104
1105 if (unlikely(PageHWPoison(page)) && !order) {
1106 /*
1107 * Do not let hwpoison pages hit pcplists/buddy
1108 * Untie memcg state and reset page's owner
1109 */
1110 if (memcg_kmem_online() && PageMemcgKmem(page))
1111 __memcg_kmem_uncharge_page(page, order);
1112 reset_page_owner(page, order);
1113 page_table_check_free(page, order);
1114 return false;
1115 }
1116
1117 /*
1118 * Check tail pages before head page information is cleared to
1119 * avoid checking PageCompound for order-0 pages.
1120 */
1121 if (unlikely(order)) {
1122 bool compound = PageCompound(page);
1123 int i;
1124
1125 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1126
1127 if (compound)
1128 page[1].flags &= ~PAGE_FLAGS_SECOND;
1129 for (i = 1; i < (1 << order); i++) {
1130 if (compound)
1131 bad += free_tail_page_prepare(page, page + i);
1132 if (is_check_pages_enabled()) {
1133 if (free_page_is_bad(page + i)) {
1134 bad++;
1135 continue;
1136 }
1137 }
1138 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1139 }
1140 }
1141 if (PageMappingFlags(page))
1142 page->mapping = NULL;
1143 if (memcg_kmem_online() && PageMemcgKmem(page))
1144 __memcg_kmem_uncharge_page(page, order);
1145 if (is_check_pages_enabled()) {
1146 if (free_page_is_bad(page))
1147 bad++;
1148 if (bad)
1149 return false;
1150 }
1151
1152 page_cpupid_reset_last(page);
1153 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1154 reset_page_owner(page, order);
1155 page_table_check_free(page, order);
1156
1157 if (!PageHighMem(page)) {
1158 debug_check_no_locks_freed(page_address(page),
1159 PAGE_SIZE << order);
1160 debug_check_no_obj_freed(page_address(page),
1161 PAGE_SIZE << order);
1162 }
1163
1164 kernel_poison_pages(page, 1 << order);
1165
1166 /*
1167 * As memory initialization might be integrated into KASAN,
1168 * KASAN poisoning and memory initialization code must be
1169 * kept together to avoid discrepancies in behavior.
1170 *
1171 * With hardware tag-based KASAN, memory tags must be set before the
1172 * page becomes unavailable via debug_pagealloc or arch_free_page.
1173 */
1174 if (!skip_kasan_poison) {
1175 kasan_poison_pages(page, order, init);
1176
1177 /* Memory is already initialized if KASAN did it internally. */
1178 if (kasan_has_integrated_init())
1179 init = false;
1180 }
1181 if (init)
1182 kernel_init_pages(page, 1 << order);
1183
1184 /*
1185 * arch_free_page() can make the page's contents inaccessible. s390
1186 * does this. So nothing which can access the page's contents should
1187 * happen after this.
1188 */
1189 arch_free_page(page, order);
1190
1191 debug_pagealloc_unmap_pages(page, 1 << order);
1192
1193 return true;
1194 }
1195
1196 /*
1197 * Frees a number of pages from the PCP lists
1198 * Assumes all pages on list are in same zone.
1199 * count is the number of pages to free.
1200 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1201 static void free_pcppages_bulk(struct zone *zone, int count,
1202 struct per_cpu_pages *pcp,
1203 int pindex)
1204 {
1205 unsigned long flags;
1206 unsigned int order;
1207 bool isolated_pageblocks;
1208 struct page *page;
1209
1210 /*
1211 * Ensure proper count is passed which otherwise would stuck in the
1212 * below while (list_empty(list)) loop.
1213 */
1214 count = min(pcp->count, count);
1215
1216 /* Ensure requested pindex is drained first. */
1217 pindex = pindex - 1;
1218
1219 spin_lock_irqsave(&zone->lock, flags);
1220 isolated_pageblocks = has_isolate_pageblock(zone);
1221
1222 while (count > 0) {
1223 struct list_head *list;
1224 int nr_pages;
1225
1226 /* Remove pages from lists in a round-robin fashion. */
1227 do {
1228 if (++pindex > NR_PCP_LISTS - 1)
1229 pindex = 0;
1230 list = &pcp->lists[pindex];
1231 } while (list_empty(list));
1232
1233 order = pindex_to_order(pindex);
1234 nr_pages = 1 << order;
1235 do {
1236 int mt;
1237
1238 page = list_last_entry(list, struct page, pcp_list);
1239 mt = get_pcppage_migratetype(page);
1240
1241 /* must delete to avoid corrupting pcp list */
1242 list_del(&page->pcp_list);
1243 count -= nr_pages;
1244 pcp->count -= nr_pages;
1245
1246 /* MIGRATE_ISOLATE page should not go to pcplists */
1247 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1248 /* Pageblock could have been isolated meanwhile */
1249 if (unlikely(isolated_pageblocks))
1250 mt = get_pageblock_migratetype(page);
1251
1252 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1253 trace_mm_page_pcpu_drain(page, order, mt);
1254 } while (count > 0 && !list_empty(list));
1255 }
1256
1257 spin_unlock_irqrestore(&zone->lock, flags);
1258 }
1259
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1260 static void free_one_page(struct zone *zone,
1261 struct page *page, unsigned long pfn,
1262 unsigned int order,
1263 int migratetype, fpi_t fpi_flags)
1264 {
1265 unsigned long flags;
1266
1267 spin_lock_irqsave(&zone->lock, flags);
1268 if (unlikely(has_isolate_pageblock(zone) ||
1269 is_migrate_isolate(migratetype))) {
1270 migratetype = get_pfnblock_migratetype(page, pfn);
1271 }
1272 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1273 spin_unlock_irqrestore(&zone->lock, flags);
1274 }
1275
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1276 static void __free_pages_ok(struct page *page, unsigned int order,
1277 fpi_t fpi_flags)
1278 {
1279 unsigned long flags;
1280 int migratetype;
1281 unsigned long pfn = page_to_pfn(page);
1282 struct zone *zone = page_zone(page);
1283
1284 if (!free_pages_prepare(page, order, fpi_flags))
1285 return;
1286
1287 /*
1288 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1289 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1290 * This will reduce the lock holding time.
1291 */
1292 migratetype = get_pfnblock_migratetype(page, pfn);
1293
1294 spin_lock_irqsave(&zone->lock, flags);
1295 if (unlikely(has_isolate_pageblock(zone) ||
1296 is_migrate_isolate(migratetype))) {
1297 migratetype = get_pfnblock_migratetype(page, pfn);
1298 }
1299 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1300 spin_unlock_irqrestore(&zone->lock, flags);
1301
1302 __count_vm_events(PGFREE, 1 << order);
1303 }
1304
__free_pages_core(struct page * page,unsigned int order)1305 void __free_pages_core(struct page *page, unsigned int order)
1306 {
1307 unsigned int nr_pages = 1 << order;
1308 struct page *p = page;
1309 unsigned int loop;
1310
1311 /*
1312 * When initializing the memmap, __init_single_page() sets the refcount
1313 * of all pages to 1 ("allocated"/"not free"). We have to set the
1314 * refcount of all involved pages to 0.
1315 */
1316 prefetchw(p);
1317 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1318 prefetchw(p + 1);
1319 __ClearPageReserved(p);
1320 set_page_count(p, 0);
1321 }
1322 __ClearPageReserved(p);
1323 set_page_count(p, 0);
1324
1325 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1326
1327 if (page_contains_unaccepted(page, order)) {
1328 if (order == MAX_ORDER && __free_unaccepted(page))
1329 return;
1330
1331 accept_page(page, order);
1332 }
1333
1334 /*
1335 * Bypass PCP and place fresh pages right to the tail, primarily
1336 * relevant for memory onlining.
1337 */
1338 __free_pages_ok(page, order, FPI_TO_TAIL);
1339 }
1340
1341 /*
1342 * Check that the whole (or subset of) a pageblock given by the interval of
1343 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1344 * with the migration of free compaction scanner.
1345 *
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347 *
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1355 *
1356 * Note: the function may return non-NULL struct page even for a page block
1357 * which contains a memory hole (i.e. there is no physical memory for a subset
1358 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1359 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1360 * even though the start pfn is online and valid. This should be safe most of
1361 * the time because struct pages are still initialized via init_unavailable_range()
1362 * and pfn walkers shouldn't touch any physical memory range for which they do
1363 * not recognize any specific metadata in struct pages.
1364 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1365 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1366 unsigned long end_pfn, struct zone *zone)
1367 {
1368 struct page *start_page;
1369 struct page *end_page;
1370
1371 /* end_pfn is one past the range we are checking */
1372 end_pfn--;
1373
1374 if (!pfn_valid(end_pfn))
1375 return NULL;
1376
1377 start_page = pfn_to_online_page(start_pfn);
1378 if (!start_page)
1379 return NULL;
1380
1381 if (page_zone(start_page) != zone)
1382 return NULL;
1383
1384 end_page = pfn_to_page(end_pfn);
1385
1386 /* This gives a shorter code than deriving page_zone(end_page) */
1387 if (page_zone_id(start_page) != page_zone_id(end_page))
1388 return NULL;
1389
1390 return start_page;
1391 }
1392
1393 /*
1394 * The order of subdivision here is critical for the IO subsystem.
1395 * Please do not alter this order without good reasons and regression
1396 * testing. Specifically, as large blocks of memory are subdivided,
1397 * the order in which smaller blocks are delivered depends on the order
1398 * they're subdivided in this function. This is the primary factor
1399 * influencing the order in which pages are delivered to the IO
1400 * subsystem according to empirical testing, and this is also justified
1401 * by considering the behavior of a buddy system containing a single
1402 * large block of memory acted on by a series of small allocations.
1403 * This behavior is a critical factor in sglist merging's success.
1404 *
1405 * -- nyc
1406 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1407 static inline void expand(struct zone *zone, struct page *page,
1408 int low, int high, int migratetype)
1409 {
1410 unsigned long size = 1 << high;
1411
1412 while (high > low) {
1413 high--;
1414 size >>= 1;
1415 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1416
1417 /*
1418 * Mark as guard pages (or page), that will allow to
1419 * merge back to allocator when buddy will be freed.
1420 * Corresponding page table entries will not be touched,
1421 * pages will stay not present in virtual address space
1422 */
1423 if (set_page_guard(zone, &page[size], high, migratetype))
1424 continue;
1425
1426 add_to_free_list(&page[size], zone, high, migratetype);
1427 set_buddy_order(&page[size], high);
1428 }
1429 }
1430
check_new_page_bad(struct page * page)1431 static void check_new_page_bad(struct page *page)
1432 {
1433 if (unlikely(page->flags & __PG_HWPOISON)) {
1434 /* Don't complain about hwpoisoned pages */
1435 page_mapcount_reset(page); /* remove PageBuddy */
1436 return;
1437 }
1438
1439 bad_page(page,
1440 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1441 }
1442
1443 /*
1444 * This page is about to be returned from the page allocator
1445 */
check_new_page(struct page * page)1446 static int check_new_page(struct page *page)
1447 {
1448 if (likely(page_expected_state(page,
1449 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1450 return 0;
1451
1452 check_new_page_bad(page);
1453 return 1;
1454 }
1455
check_new_pages(struct page * page,unsigned int order)1456 static inline bool check_new_pages(struct page *page, unsigned int order)
1457 {
1458 if (is_check_pages_enabled()) {
1459 for (int i = 0; i < (1 << order); i++) {
1460 struct page *p = page + i;
1461
1462 if (check_new_page(p))
1463 return true;
1464 }
1465 }
1466
1467 return false;
1468 }
1469
should_skip_kasan_unpoison(gfp_t flags)1470 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1471 {
1472 /* Don't skip if a software KASAN mode is enabled. */
1473 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1474 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1475 return false;
1476
1477 /* Skip, if hardware tag-based KASAN is not enabled. */
1478 if (!kasan_hw_tags_enabled())
1479 return true;
1480
1481 /*
1482 * With hardware tag-based KASAN enabled, skip if this has been
1483 * requested via __GFP_SKIP_KASAN.
1484 */
1485 return flags & __GFP_SKIP_KASAN;
1486 }
1487
should_skip_init(gfp_t flags)1488 static inline bool should_skip_init(gfp_t flags)
1489 {
1490 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1491 if (!kasan_hw_tags_enabled())
1492 return false;
1493
1494 /* For hardware tag-based KASAN, skip if requested. */
1495 return (flags & __GFP_SKIP_ZERO);
1496 }
1497
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1498 inline void post_alloc_hook(struct page *page, unsigned int order,
1499 gfp_t gfp_flags)
1500 {
1501 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1502 !should_skip_init(gfp_flags);
1503 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1504 int i;
1505
1506 set_page_private(page, 0);
1507 set_page_refcounted(page);
1508
1509 arch_alloc_page(page, order);
1510 debug_pagealloc_map_pages(page, 1 << order);
1511
1512 /*
1513 * Page unpoisoning must happen before memory initialization.
1514 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1515 * allocations and the page unpoisoning code will complain.
1516 */
1517 kernel_unpoison_pages(page, 1 << order);
1518
1519 /*
1520 * As memory initialization might be integrated into KASAN,
1521 * KASAN unpoisoning and memory initializion code must be
1522 * kept together to avoid discrepancies in behavior.
1523 */
1524
1525 /*
1526 * If memory tags should be zeroed
1527 * (which happens only when memory should be initialized as well).
1528 */
1529 if (zero_tags) {
1530 /* Initialize both memory and memory tags. */
1531 for (i = 0; i != 1 << order; ++i)
1532 tag_clear_highpage(page + i);
1533
1534 /* Take note that memory was initialized by the loop above. */
1535 init = false;
1536 }
1537 if (!should_skip_kasan_unpoison(gfp_flags) &&
1538 kasan_unpoison_pages(page, order, init)) {
1539 /* Take note that memory was initialized by KASAN. */
1540 if (kasan_has_integrated_init())
1541 init = false;
1542 } else {
1543 /*
1544 * If memory tags have not been set by KASAN, reset the page
1545 * tags to ensure page_address() dereferencing does not fault.
1546 */
1547 for (i = 0; i != 1 << order; ++i)
1548 page_kasan_tag_reset(page + i);
1549 }
1550 /* If memory is still not initialized, initialize it now. */
1551 if (init)
1552 kernel_init_pages(page, 1 << order);
1553
1554 set_page_owner(page, order, gfp_flags);
1555 page_table_check_alloc(page, order);
1556 }
1557
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1558 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1559 unsigned int alloc_flags)
1560 {
1561 post_alloc_hook(page, order, gfp_flags);
1562
1563 if (order && (gfp_flags & __GFP_COMP))
1564 prep_compound_page(page, order);
1565
1566 /*
1567 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1568 * allocate the page. The expectation is that the caller is taking
1569 * steps that will free more memory. The caller should avoid the page
1570 * being used for !PFMEMALLOC purposes.
1571 */
1572 if (alloc_flags & ALLOC_NO_WATERMARKS)
1573 set_page_pfmemalloc(page);
1574 else
1575 clear_page_pfmemalloc(page);
1576 }
1577
1578 /*
1579 * Go through the free lists for the given migratetype and remove
1580 * the smallest available page from the freelists
1581 */
1582 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1583 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1584 int migratetype)
1585 {
1586 unsigned int current_order;
1587 struct free_area *area;
1588 struct page *page;
1589
1590 /* Find a page of the appropriate size in the preferred list */
1591 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1592 area = &(zone->free_area[current_order]);
1593 page = get_page_from_free_area(area, migratetype);
1594 if (!page)
1595 continue;
1596 del_page_from_free_list(page, zone, current_order);
1597 expand(zone, page, order, current_order, migratetype);
1598 set_pcppage_migratetype(page, migratetype);
1599 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1600 pcp_allowed_order(order) &&
1601 migratetype < MIGRATE_PCPTYPES);
1602 return page;
1603 }
1604
1605 return NULL;
1606 }
1607
1608
1609 /*
1610 * This array describes the order lists are fallen back to when
1611 * the free lists for the desirable migrate type are depleted
1612 *
1613 * The other migratetypes do not have fallbacks.
1614 */
1615 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1616 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1617 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1618 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1619 };
1620
1621 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1622 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1623 unsigned int order)
1624 {
1625 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1626 }
1627 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1628 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1629 unsigned int order) { return NULL; }
1630 #endif
1631
1632 /*
1633 * Move the free pages in a range to the freelist tail of the requested type.
1634 * Note that start_page and end_pages are not aligned on a pageblock
1635 * boundary. If alignment is required, use move_freepages_block()
1636 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1637 static int move_freepages(struct zone *zone,
1638 unsigned long start_pfn, unsigned long end_pfn,
1639 int migratetype, int *num_movable)
1640 {
1641 struct page *page;
1642 unsigned long pfn;
1643 unsigned int order;
1644 int pages_moved = 0;
1645
1646 for (pfn = start_pfn; pfn <= end_pfn;) {
1647 page = pfn_to_page(pfn);
1648 if (!PageBuddy(page)) {
1649 /*
1650 * We assume that pages that could be isolated for
1651 * migration are movable. But we don't actually try
1652 * isolating, as that would be expensive.
1653 */
1654 if (num_movable &&
1655 (PageLRU(page) || __PageMovable(page)))
1656 (*num_movable)++;
1657 pfn++;
1658 continue;
1659 }
1660
1661 /* Make sure we are not inadvertently changing nodes */
1662 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1663 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1664
1665 order = buddy_order(page);
1666 move_to_free_list(page, zone, order, migratetype);
1667 pfn += 1 << order;
1668 pages_moved += 1 << order;
1669 }
1670
1671 return pages_moved;
1672 }
1673
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1674 int move_freepages_block(struct zone *zone, struct page *page,
1675 int migratetype, int *num_movable)
1676 {
1677 unsigned long start_pfn, end_pfn, pfn;
1678
1679 if (num_movable)
1680 *num_movable = 0;
1681
1682 pfn = page_to_pfn(page);
1683 start_pfn = pageblock_start_pfn(pfn);
1684 end_pfn = pageblock_end_pfn(pfn) - 1;
1685
1686 /* Do not cross zone boundaries */
1687 if (!zone_spans_pfn(zone, start_pfn))
1688 start_pfn = pfn;
1689 if (!zone_spans_pfn(zone, end_pfn))
1690 return 0;
1691
1692 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1693 num_movable);
1694 }
1695
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1696 static void change_pageblock_range(struct page *pageblock_page,
1697 int start_order, int migratetype)
1698 {
1699 int nr_pageblocks = 1 << (start_order - pageblock_order);
1700
1701 while (nr_pageblocks--) {
1702 set_pageblock_migratetype(pageblock_page, migratetype);
1703 pageblock_page += pageblock_nr_pages;
1704 }
1705 }
1706
1707 /*
1708 * When we are falling back to another migratetype during allocation, try to
1709 * steal extra free pages from the same pageblocks to satisfy further
1710 * allocations, instead of polluting multiple pageblocks.
1711 *
1712 * If we are stealing a relatively large buddy page, it is likely there will
1713 * be more free pages in the pageblock, so try to steal them all. For
1714 * reclaimable and unmovable allocations, we steal regardless of page size,
1715 * as fragmentation caused by those allocations polluting movable pageblocks
1716 * is worse than movable allocations stealing from unmovable and reclaimable
1717 * pageblocks.
1718 */
can_steal_fallback(unsigned int order,int start_mt)1719 static bool can_steal_fallback(unsigned int order, int start_mt)
1720 {
1721 /*
1722 * Leaving this order check is intended, although there is
1723 * relaxed order check in next check. The reason is that
1724 * we can actually steal whole pageblock if this condition met,
1725 * but, below check doesn't guarantee it and that is just heuristic
1726 * so could be changed anytime.
1727 */
1728 if (order >= pageblock_order)
1729 return true;
1730
1731 if (order >= pageblock_order / 2 ||
1732 start_mt == MIGRATE_RECLAIMABLE ||
1733 start_mt == MIGRATE_UNMOVABLE ||
1734 page_group_by_mobility_disabled)
1735 return true;
1736
1737 return false;
1738 }
1739
boost_watermark(struct zone * zone)1740 static inline bool boost_watermark(struct zone *zone)
1741 {
1742 unsigned long max_boost;
1743
1744 if (!watermark_boost_factor)
1745 return false;
1746 /*
1747 * Don't bother in zones that are unlikely to produce results.
1748 * On small machines, including kdump capture kernels running
1749 * in a small area, boosting the watermark can cause an out of
1750 * memory situation immediately.
1751 */
1752 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1753 return false;
1754
1755 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1756 watermark_boost_factor, 10000);
1757
1758 /*
1759 * high watermark may be uninitialised if fragmentation occurs
1760 * very early in boot so do not boost. We do not fall
1761 * through and boost by pageblock_nr_pages as failing
1762 * allocations that early means that reclaim is not going
1763 * to help and it may even be impossible to reclaim the
1764 * boosted watermark resulting in a hang.
1765 */
1766 if (!max_boost)
1767 return false;
1768
1769 max_boost = max(pageblock_nr_pages, max_boost);
1770
1771 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1772 max_boost);
1773
1774 return true;
1775 }
1776
1777 /*
1778 * This function implements actual steal behaviour. If order is large enough,
1779 * we can steal whole pageblock. If not, we first move freepages in this
1780 * pageblock to our migratetype and determine how many already-allocated pages
1781 * are there in the pageblock with a compatible migratetype. If at least half
1782 * of pages are free or compatible, we can change migratetype of the pageblock
1783 * itself, so pages freed in the future will be put on the correct free list.
1784 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1785 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1786 unsigned int alloc_flags, int start_type, bool whole_block)
1787 {
1788 unsigned int current_order = buddy_order(page);
1789 int free_pages, movable_pages, alike_pages;
1790 int old_block_type;
1791
1792 old_block_type = get_pageblock_migratetype(page);
1793
1794 /*
1795 * This can happen due to races and we want to prevent broken
1796 * highatomic accounting.
1797 */
1798 if (is_migrate_highatomic(old_block_type))
1799 goto single_page;
1800
1801 /* Take ownership for orders >= pageblock_order */
1802 if (current_order >= pageblock_order) {
1803 change_pageblock_range(page, current_order, start_type);
1804 goto single_page;
1805 }
1806
1807 /*
1808 * Boost watermarks to increase reclaim pressure to reduce the
1809 * likelihood of future fallbacks. Wake kswapd now as the node
1810 * may be balanced overall and kswapd will not wake naturally.
1811 */
1812 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1813 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1814
1815 /* We are not allowed to try stealing from the whole block */
1816 if (!whole_block)
1817 goto single_page;
1818
1819 free_pages = move_freepages_block(zone, page, start_type,
1820 &movable_pages);
1821 /* moving whole block can fail due to zone boundary conditions */
1822 if (!free_pages)
1823 goto single_page;
1824
1825 /*
1826 * Determine how many pages are compatible with our allocation.
1827 * For movable allocation, it's the number of movable pages which
1828 * we just obtained. For other types it's a bit more tricky.
1829 */
1830 if (start_type == MIGRATE_MOVABLE) {
1831 alike_pages = movable_pages;
1832 } else {
1833 /*
1834 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1835 * to MOVABLE pageblock, consider all non-movable pages as
1836 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1837 * vice versa, be conservative since we can't distinguish the
1838 * exact migratetype of non-movable pages.
1839 */
1840 if (old_block_type == MIGRATE_MOVABLE)
1841 alike_pages = pageblock_nr_pages
1842 - (free_pages + movable_pages);
1843 else
1844 alike_pages = 0;
1845 }
1846 /*
1847 * If a sufficient number of pages in the block are either free or of
1848 * compatible migratability as our allocation, claim the whole block.
1849 */
1850 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1851 page_group_by_mobility_disabled)
1852 set_pageblock_migratetype(page, start_type);
1853
1854 return;
1855
1856 single_page:
1857 move_to_free_list(page, zone, current_order, start_type);
1858 }
1859
1860 /*
1861 * Check whether there is a suitable fallback freepage with requested order.
1862 * If only_stealable is true, this function returns fallback_mt only if
1863 * we can steal other freepages all together. This would help to reduce
1864 * fragmentation due to mixed migratetype pages in one pageblock.
1865 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1866 int find_suitable_fallback(struct free_area *area, unsigned int order,
1867 int migratetype, bool only_stealable, bool *can_steal)
1868 {
1869 int i;
1870 int fallback_mt;
1871
1872 if (area->nr_free == 0)
1873 return -1;
1874
1875 *can_steal = false;
1876 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1877 fallback_mt = fallbacks[migratetype][i];
1878 if (free_area_empty(area, fallback_mt))
1879 continue;
1880
1881 if (can_steal_fallback(order, migratetype))
1882 *can_steal = true;
1883
1884 if (!only_stealable)
1885 return fallback_mt;
1886
1887 if (*can_steal)
1888 return fallback_mt;
1889 }
1890
1891 return -1;
1892 }
1893
1894 /*
1895 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1896 * there are no empty page blocks that contain a page with a suitable order
1897 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1898 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1899 {
1900 int mt;
1901 unsigned long max_managed, flags;
1902
1903 /*
1904 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1905 * Check is race-prone but harmless.
1906 */
1907 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1908 if (zone->nr_reserved_highatomic >= max_managed)
1909 return;
1910
1911 spin_lock_irqsave(&zone->lock, flags);
1912
1913 /* Recheck the nr_reserved_highatomic limit under the lock */
1914 if (zone->nr_reserved_highatomic >= max_managed)
1915 goto out_unlock;
1916
1917 /* Yoink! */
1918 mt = get_pageblock_migratetype(page);
1919 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1920 if (migratetype_is_mergeable(mt)) {
1921 zone->nr_reserved_highatomic += pageblock_nr_pages;
1922 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1923 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1924 }
1925
1926 out_unlock:
1927 spin_unlock_irqrestore(&zone->lock, flags);
1928 }
1929
1930 /*
1931 * Used when an allocation is about to fail under memory pressure. This
1932 * potentially hurts the reliability of high-order allocations when under
1933 * intense memory pressure but failed atomic allocations should be easier
1934 * to recover from than an OOM.
1935 *
1936 * If @force is true, try to unreserve a pageblock even though highatomic
1937 * pageblock is exhausted.
1938 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1939 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1940 bool force)
1941 {
1942 struct zonelist *zonelist = ac->zonelist;
1943 unsigned long flags;
1944 struct zoneref *z;
1945 struct zone *zone;
1946 struct page *page;
1947 int order;
1948 bool ret;
1949
1950 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1951 ac->nodemask) {
1952 /*
1953 * Preserve at least one pageblock unless memory pressure
1954 * is really high.
1955 */
1956 if (!force && zone->nr_reserved_highatomic <=
1957 pageblock_nr_pages)
1958 continue;
1959
1960 spin_lock_irqsave(&zone->lock, flags);
1961 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1962 struct free_area *area = &(zone->free_area[order]);
1963
1964 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1965 if (!page)
1966 continue;
1967
1968 /*
1969 * In page freeing path, migratetype change is racy so
1970 * we can counter several free pages in a pageblock
1971 * in this loop although we changed the pageblock type
1972 * from highatomic to ac->migratetype. So we should
1973 * adjust the count once.
1974 */
1975 if (is_migrate_highatomic_page(page)) {
1976 /*
1977 * It should never happen but changes to
1978 * locking could inadvertently allow a per-cpu
1979 * drain to add pages to MIGRATE_HIGHATOMIC
1980 * while unreserving so be safe and watch for
1981 * underflows.
1982 */
1983 zone->nr_reserved_highatomic -= min(
1984 pageblock_nr_pages,
1985 zone->nr_reserved_highatomic);
1986 }
1987
1988 /*
1989 * Convert to ac->migratetype and avoid the normal
1990 * pageblock stealing heuristics. Minimally, the caller
1991 * is doing the work and needs the pages. More
1992 * importantly, if the block was always converted to
1993 * MIGRATE_UNMOVABLE or another type then the number
1994 * of pageblocks that cannot be completely freed
1995 * may increase.
1996 */
1997 set_pageblock_migratetype(page, ac->migratetype);
1998 ret = move_freepages_block(zone, page, ac->migratetype,
1999 NULL);
2000 if (ret) {
2001 spin_unlock_irqrestore(&zone->lock, flags);
2002 return ret;
2003 }
2004 }
2005 spin_unlock_irqrestore(&zone->lock, flags);
2006 }
2007
2008 return false;
2009 }
2010
2011 /*
2012 * Try finding a free buddy page on the fallback list and put it on the free
2013 * list of requested migratetype, possibly along with other pages from the same
2014 * block, depending on fragmentation avoidance heuristics. Returns true if
2015 * fallback was found so that __rmqueue_smallest() can grab it.
2016 *
2017 * The use of signed ints for order and current_order is a deliberate
2018 * deviation from the rest of this file, to make the for loop
2019 * condition simpler.
2020 */
2021 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2022 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2023 unsigned int alloc_flags)
2024 {
2025 struct free_area *area;
2026 int current_order;
2027 int min_order = order;
2028 struct page *page;
2029 int fallback_mt;
2030 bool can_steal;
2031
2032 /*
2033 * Do not steal pages from freelists belonging to other pageblocks
2034 * i.e. orders < pageblock_order. If there are no local zones free,
2035 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2036 */
2037 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2038 min_order = pageblock_order;
2039
2040 /*
2041 * Find the largest available free page in the other list. This roughly
2042 * approximates finding the pageblock with the most free pages, which
2043 * would be too costly to do exactly.
2044 */
2045 for (current_order = MAX_ORDER; current_order >= min_order;
2046 --current_order) {
2047 area = &(zone->free_area[current_order]);
2048 fallback_mt = find_suitable_fallback(area, current_order,
2049 start_migratetype, false, &can_steal);
2050 if (fallback_mt == -1)
2051 continue;
2052
2053 /*
2054 * We cannot steal all free pages from the pageblock and the
2055 * requested migratetype is movable. In that case it's better to
2056 * steal and split the smallest available page instead of the
2057 * largest available page, because even if the next movable
2058 * allocation falls back into a different pageblock than this
2059 * one, it won't cause permanent fragmentation.
2060 */
2061 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2062 && current_order > order)
2063 goto find_smallest;
2064
2065 goto do_steal;
2066 }
2067
2068 return false;
2069
2070 find_smallest:
2071 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2072 area = &(zone->free_area[current_order]);
2073 fallback_mt = find_suitable_fallback(area, current_order,
2074 start_migratetype, false, &can_steal);
2075 if (fallback_mt != -1)
2076 break;
2077 }
2078
2079 /*
2080 * This should not happen - we already found a suitable fallback
2081 * when looking for the largest page.
2082 */
2083 VM_BUG_ON(current_order > MAX_ORDER);
2084
2085 do_steal:
2086 page = get_page_from_free_area(area, fallback_mt);
2087
2088 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2089 can_steal);
2090
2091 trace_mm_page_alloc_extfrag(page, order, current_order,
2092 start_migratetype, fallback_mt);
2093
2094 return true;
2095
2096 }
2097
2098 /*
2099 * Do the hard work of removing an element from the buddy allocator.
2100 * Call me with the zone->lock already held.
2101 */
2102 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2103 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2104 unsigned int alloc_flags)
2105 {
2106 struct page *page;
2107
2108 if (IS_ENABLED(CONFIG_CMA)) {
2109 /*
2110 * Balance movable allocations between regular and CMA areas by
2111 * allocating from CMA when over half of the zone's free memory
2112 * is in the CMA area.
2113 */
2114 if (alloc_flags & ALLOC_CMA &&
2115 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2116 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2117 page = __rmqueue_cma_fallback(zone, order);
2118 if (page)
2119 return page;
2120 }
2121 }
2122 retry:
2123 page = __rmqueue_smallest(zone, order, migratetype);
2124 if (unlikely(!page)) {
2125 if (alloc_flags & ALLOC_CMA)
2126 page = __rmqueue_cma_fallback(zone, order);
2127
2128 if (!page && __rmqueue_fallback(zone, order, migratetype,
2129 alloc_flags))
2130 goto retry;
2131 }
2132 return page;
2133 }
2134
2135 /*
2136 * Obtain a specified number of elements from the buddy allocator, all under
2137 * a single hold of the lock, for efficiency. Add them to the supplied list.
2138 * Returns the number of new pages which were placed at *list.
2139 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2140 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2141 unsigned long count, struct list_head *list,
2142 int migratetype, unsigned int alloc_flags)
2143 {
2144 unsigned long flags;
2145 int i;
2146
2147 spin_lock_irqsave(&zone->lock, flags);
2148 for (i = 0; i < count; ++i) {
2149 struct page *page = __rmqueue(zone, order, migratetype,
2150 alloc_flags);
2151 if (unlikely(page == NULL))
2152 break;
2153
2154 /*
2155 * Split buddy pages returned by expand() are received here in
2156 * physical page order. The page is added to the tail of
2157 * caller's list. From the callers perspective, the linked list
2158 * is ordered by page number under some conditions. This is
2159 * useful for IO devices that can forward direction from the
2160 * head, thus also in the physical page order. This is useful
2161 * for IO devices that can merge IO requests if the physical
2162 * pages are ordered properly.
2163 */
2164 list_add_tail(&page->pcp_list, list);
2165 if (is_migrate_cma(get_pcppage_migratetype(page)))
2166 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2167 -(1 << order));
2168 }
2169
2170 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2171 spin_unlock_irqrestore(&zone->lock, flags);
2172
2173 return i;
2174 }
2175
2176 #ifdef CONFIG_NUMA
2177 /*
2178 * Called from the vmstat counter updater to drain pagesets of this
2179 * currently executing processor on remote nodes after they have
2180 * expired.
2181 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2182 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2183 {
2184 int to_drain, batch;
2185
2186 batch = READ_ONCE(pcp->batch);
2187 to_drain = min(pcp->count, batch);
2188 if (to_drain > 0) {
2189 spin_lock(&pcp->lock);
2190 free_pcppages_bulk(zone, to_drain, pcp, 0);
2191 spin_unlock(&pcp->lock);
2192 }
2193 }
2194 #endif
2195
2196 /*
2197 * Drain pcplists of the indicated processor and zone.
2198 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2199 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2200 {
2201 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2202 int count;
2203
2204 do {
2205 spin_lock(&pcp->lock);
2206 count = pcp->count;
2207 if (count) {
2208 int to_drain = min(count,
2209 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2210
2211 free_pcppages_bulk(zone, to_drain, pcp, 0);
2212 count -= to_drain;
2213 }
2214 spin_unlock(&pcp->lock);
2215 } while (count);
2216 }
2217
2218 /*
2219 * Drain pcplists of all zones on the indicated processor.
2220 */
drain_pages(unsigned int cpu)2221 static void drain_pages(unsigned int cpu)
2222 {
2223 struct zone *zone;
2224
2225 for_each_populated_zone(zone) {
2226 drain_pages_zone(cpu, zone);
2227 }
2228 }
2229
2230 /*
2231 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2232 */
drain_local_pages(struct zone * zone)2233 void drain_local_pages(struct zone *zone)
2234 {
2235 int cpu = smp_processor_id();
2236
2237 if (zone)
2238 drain_pages_zone(cpu, zone);
2239 else
2240 drain_pages(cpu);
2241 }
2242
2243 /*
2244 * The implementation of drain_all_pages(), exposing an extra parameter to
2245 * drain on all cpus.
2246 *
2247 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2248 * not empty. The check for non-emptiness can however race with a free to
2249 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2250 * that need the guarantee that every CPU has drained can disable the
2251 * optimizing racy check.
2252 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2253 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2254 {
2255 int cpu;
2256
2257 /*
2258 * Allocate in the BSS so we won't require allocation in
2259 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2260 */
2261 static cpumask_t cpus_with_pcps;
2262
2263 /*
2264 * Do not drain if one is already in progress unless it's specific to
2265 * a zone. Such callers are primarily CMA and memory hotplug and need
2266 * the drain to be complete when the call returns.
2267 */
2268 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2269 if (!zone)
2270 return;
2271 mutex_lock(&pcpu_drain_mutex);
2272 }
2273
2274 /*
2275 * We don't care about racing with CPU hotplug event
2276 * as offline notification will cause the notified
2277 * cpu to drain that CPU pcps and on_each_cpu_mask
2278 * disables preemption as part of its processing
2279 */
2280 for_each_online_cpu(cpu) {
2281 struct per_cpu_pages *pcp;
2282 struct zone *z;
2283 bool has_pcps = false;
2284
2285 if (force_all_cpus) {
2286 /*
2287 * The pcp.count check is racy, some callers need a
2288 * guarantee that no cpu is missed.
2289 */
2290 has_pcps = true;
2291 } else if (zone) {
2292 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2293 if (pcp->count)
2294 has_pcps = true;
2295 } else {
2296 for_each_populated_zone(z) {
2297 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2298 if (pcp->count) {
2299 has_pcps = true;
2300 break;
2301 }
2302 }
2303 }
2304
2305 if (has_pcps)
2306 cpumask_set_cpu(cpu, &cpus_with_pcps);
2307 else
2308 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2309 }
2310
2311 for_each_cpu(cpu, &cpus_with_pcps) {
2312 if (zone)
2313 drain_pages_zone(cpu, zone);
2314 else
2315 drain_pages(cpu);
2316 }
2317
2318 mutex_unlock(&pcpu_drain_mutex);
2319 }
2320
2321 /*
2322 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2323 *
2324 * When zone parameter is non-NULL, spill just the single zone's pages.
2325 */
drain_all_pages(struct zone * zone)2326 void drain_all_pages(struct zone *zone)
2327 {
2328 __drain_all_pages(zone, false);
2329 }
2330
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2331 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2332 unsigned int order)
2333 {
2334 int migratetype;
2335
2336 if (!free_pages_prepare(page, order, FPI_NONE))
2337 return false;
2338
2339 migratetype = get_pfnblock_migratetype(page, pfn);
2340 set_pcppage_migratetype(page, migratetype);
2341 return true;
2342 }
2343
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2344 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2345 {
2346 int min_nr_free, max_nr_free;
2347 int batch = READ_ONCE(pcp->batch);
2348
2349 /* Free everything if batch freeing high-order pages. */
2350 if (unlikely(free_high))
2351 return pcp->count;
2352
2353 /* Check for PCP disabled or boot pageset */
2354 if (unlikely(high < batch))
2355 return 1;
2356
2357 /* Leave at least pcp->batch pages on the list */
2358 min_nr_free = batch;
2359 max_nr_free = high - batch;
2360
2361 /*
2362 * Double the number of pages freed each time there is subsequent
2363 * freeing of pages without any allocation.
2364 */
2365 batch <<= pcp->free_factor;
2366 if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2367 pcp->free_factor++;
2368 batch = clamp(batch, min_nr_free, max_nr_free);
2369
2370 return batch;
2371 }
2372
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2373 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2374 bool free_high)
2375 {
2376 int high = READ_ONCE(pcp->high);
2377
2378 if (unlikely(!high || free_high))
2379 return 0;
2380
2381 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2382 return high;
2383
2384 /*
2385 * If reclaim is active, limit the number of pages that can be
2386 * stored on pcp lists
2387 */
2388 return min(READ_ONCE(pcp->batch) << 2, high);
2389 }
2390
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2391 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2392 struct page *page, int migratetype,
2393 unsigned int order)
2394 {
2395 int high;
2396 int pindex;
2397 bool free_high;
2398
2399 __count_vm_events(PGFREE, 1 << order);
2400 pindex = order_to_pindex(migratetype, order);
2401 list_add(&page->pcp_list, &pcp->lists[pindex]);
2402 pcp->count += 1 << order;
2403
2404 /*
2405 * As high-order pages other than THP's stored on PCP can contribute
2406 * to fragmentation, limit the number stored when PCP is heavily
2407 * freeing without allocation. The remainder after bulk freeing
2408 * stops will be drained from vmstat refresh context.
2409 */
2410 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2411
2412 high = nr_pcp_high(pcp, zone, free_high);
2413 if (pcp->count >= high) {
2414 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2415 }
2416 }
2417
2418 /*
2419 * Free a pcp page
2420 */
free_unref_page(struct page * page,unsigned int order)2421 void free_unref_page(struct page *page, unsigned int order)
2422 {
2423 unsigned long __maybe_unused UP_flags;
2424 struct per_cpu_pages *pcp;
2425 struct zone *zone;
2426 unsigned long pfn = page_to_pfn(page);
2427 int migratetype, pcpmigratetype;
2428
2429 if (!free_unref_page_prepare(page, pfn, order))
2430 return;
2431
2432 /*
2433 * We only track unmovable, reclaimable and movable on pcp lists.
2434 * Place ISOLATE pages on the isolated list because they are being
2435 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2436 * get those areas back if necessary. Otherwise, we may have to free
2437 * excessively into the page allocator
2438 */
2439 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2440 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2441 if (unlikely(is_migrate_isolate(migratetype))) {
2442 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2443 return;
2444 }
2445 pcpmigratetype = MIGRATE_MOVABLE;
2446 }
2447
2448 zone = page_zone(page);
2449 pcp_trylock_prepare(UP_flags);
2450 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2451 if (pcp) {
2452 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2453 pcp_spin_unlock(pcp);
2454 } else {
2455 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2456 }
2457 pcp_trylock_finish(UP_flags);
2458 }
2459
2460 /*
2461 * Free a list of 0-order pages
2462 */
free_unref_page_list(struct list_head * list)2463 void free_unref_page_list(struct list_head *list)
2464 {
2465 unsigned long __maybe_unused UP_flags;
2466 struct page *page, *next;
2467 struct per_cpu_pages *pcp = NULL;
2468 struct zone *locked_zone = NULL;
2469 int batch_count = 0;
2470 int migratetype;
2471
2472 /* Prepare pages for freeing */
2473 list_for_each_entry_safe(page, next, list, lru) {
2474 unsigned long pfn = page_to_pfn(page);
2475 if (!free_unref_page_prepare(page, pfn, 0)) {
2476 list_del(&page->lru);
2477 continue;
2478 }
2479
2480 /*
2481 * Free isolated pages directly to the allocator, see
2482 * comment in free_unref_page.
2483 */
2484 migratetype = get_pcppage_migratetype(page);
2485 if (unlikely(is_migrate_isolate(migratetype))) {
2486 list_del(&page->lru);
2487 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2488 continue;
2489 }
2490 }
2491
2492 list_for_each_entry_safe(page, next, list, lru) {
2493 struct zone *zone = page_zone(page);
2494
2495 list_del(&page->lru);
2496 migratetype = get_pcppage_migratetype(page);
2497
2498 /*
2499 * Either different zone requiring a different pcp lock or
2500 * excessive lock hold times when freeing a large list of
2501 * pages.
2502 */
2503 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2504 if (pcp) {
2505 pcp_spin_unlock(pcp);
2506 pcp_trylock_finish(UP_flags);
2507 }
2508
2509 batch_count = 0;
2510
2511 /*
2512 * trylock is necessary as pages may be getting freed
2513 * from IRQ or SoftIRQ context after an IO completion.
2514 */
2515 pcp_trylock_prepare(UP_flags);
2516 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2517 if (unlikely(!pcp)) {
2518 pcp_trylock_finish(UP_flags);
2519 free_one_page(zone, page, page_to_pfn(page),
2520 0, migratetype, FPI_NONE);
2521 locked_zone = NULL;
2522 continue;
2523 }
2524 locked_zone = zone;
2525 }
2526
2527 /*
2528 * Non-isolated types over MIGRATE_PCPTYPES get added
2529 * to the MIGRATE_MOVABLE pcp list.
2530 */
2531 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2532 migratetype = MIGRATE_MOVABLE;
2533
2534 trace_mm_page_free_batched(page);
2535 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2536 batch_count++;
2537 }
2538
2539 if (pcp) {
2540 pcp_spin_unlock(pcp);
2541 pcp_trylock_finish(UP_flags);
2542 }
2543 }
2544
2545 /*
2546 * split_page takes a non-compound higher-order page, and splits it into
2547 * n (1<<order) sub-pages: page[0..n]
2548 * Each sub-page must be freed individually.
2549 *
2550 * Note: this is probably too low level an operation for use in drivers.
2551 * Please consult with lkml before using this in your driver.
2552 */
split_page(struct page * page,unsigned int order)2553 void split_page(struct page *page, unsigned int order)
2554 {
2555 int i;
2556
2557 VM_BUG_ON_PAGE(PageCompound(page), page);
2558 VM_BUG_ON_PAGE(!page_count(page), page);
2559
2560 for (i = 1; i < (1 << order); i++)
2561 set_page_refcounted(page + i);
2562 split_page_owner(page, 1 << order);
2563 split_page_memcg(page, 1 << order);
2564 }
2565 EXPORT_SYMBOL_GPL(split_page);
2566
__isolate_free_page(struct page * page,unsigned int order)2567 int __isolate_free_page(struct page *page, unsigned int order)
2568 {
2569 struct zone *zone = page_zone(page);
2570 int mt = get_pageblock_migratetype(page);
2571
2572 if (!is_migrate_isolate(mt)) {
2573 unsigned long watermark;
2574 /*
2575 * Obey watermarks as if the page was being allocated. We can
2576 * emulate a high-order watermark check with a raised order-0
2577 * watermark, because we already know our high-order page
2578 * exists.
2579 */
2580 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2581 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2582 return 0;
2583
2584 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2585 }
2586
2587 del_page_from_free_list(page, zone, order);
2588
2589 /*
2590 * Set the pageblock if the isolated page is at least half of a
2591 * pageblock
2592 */
2593 if (order >= pageblock_order - 1) {
2594 struct page *endpage = page + (1 << order) - 1;
2595 for (; page < endpage; page += pageblock_nr_pages) {
2596 int mt = get_pageblock_migratetype(page);
2597 /*
2598 * Only change normal pageblocks (i.e., they can merge
2599 * with others)
2600 */
2601 if (migratetype_is_mergeable(mt))
2602 set_pageblock_migratetype(page,
2603 MIGRATE_MOVABLE);
2604 }
2605 }
2606
2607 return 1UL << order;
2608 }
2609
2610 /**
2611 * __putback_isolated_page - Return a now-isolated page back where we got it
2612 * @page: Page that was isolated
2613 * @order: Order of the isolated page
2614 * @mt: The page's pageblock's migratetype
2615 *
2616 * This function is meant to return a page pulled from the free lists via
2617 * __isolate_free_page back to the free lists they were pulled from.
2618 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2619 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2620 {
2621 struct zone *zone = page_zone(page);
2622
2623 /* zone lock should be held when this function is called */
2624 lockdep_assert_held(&zone->lock);
2625
2626 /* Return isolated page to tail of freelist. */
2627 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2628 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2629 }
2630
2631 /*
2632 * Update NUMA hit/miss statistics
2633 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2634 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2635 long nr_account)
2636 {
2637 #ifdef CONFIG_NUMA
2638 enum numa_stat_item local_stat = NUMA_LOCAL;
2639
2640 /* skip numa counters update if numa stats is disabled */
2641 if (!static_branch_likely(&vm_numa_stat_key))
2642 return;
2643
2644 if (zone_to_nid(z) != numa_node_id())
2645 local_stat = NUMA_OTHER;
2646
2647 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2648 __count_numa_events(z, NUMA_HIT, nr_account);
2649 else {
2650 __count_numa_events(z, NUMA_MISS, nr_account);
2651 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2652 }
2653 __count_numa_events(z, local_stat, nr_account);
2654 #endif
2655 }
2656
2657 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2658 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2659 unsigned int order, unsigned int alloc_flags,
2660 int migratetype)
2661 {
2662 struct page *page;
2663 unsigned long flags;
2664
2665 do {
2666 page = NULL;
2667 spin_lock_irqsave(&zone->lock, flags);
2668 if (alloc_flags & ALLOC_HIGHATOMIC)
2669 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2670 if (!page) {
2671 page = __rmqueue(zone, order, migratetype, alloc_flags);
2672
2673 /*
2674 * If the allocation fails, allow OOM handling and
2675 * order-0 (atomic) allocs access to HIGHATOMIC
2676 * reserves as failing now is worse than failing a
2677 * high-order atomic allocation in the future.
2678 */
2679 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2680 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2681
2682 if (!page) {
2683 spin_unlock_irqrestore(&zone->lock, flags);
2684 return NULL;
2685 }
2686 }
2687 __mod_zone_freepage_state(zone, -(1 << order),
2688 get_pcppage_migratetype(page));
2689 spin_unlock_irqrestore(&zone->lock, flags);
2690 } while (check_new_pages(page, order));
2691
2692 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2693 zone_statistics(preferred_zone, zone, 1);
2694
2695 return page;
2696 }
2697
2698 /* Remove page from the per-cpu list, caller must protect the list */
2699 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2700 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2701 int migratetype,
2702 unsigned int alloc_flags,
2703 struct per_cpu_pages *pcp,
2704 struct list_head *list)
2705 {
2706 struct page *page;
2707
2708 do {
2709 if (list_empty(list)) {
2710 int batch = READ_ONCE(pcp->batch);
2711 int alloced;
2712
2713 /*
2714 * Scale batch relative to order if batch implies
2715 * free pages can be stored on the PCP. Batch can
2716 * be 1 for small zones or for boot pagesets which
2717 * should never store free pages as the pages may
2718 * belong to arbitrary zones.
2719 */
2720 if (batch > 1)
2721 batch = max(batch >> order, 2);
2722 alloced = rmqueue_bulk(zone, order,
2723 batch, list,
2724 migratetype, alloc_flags);
2725
2726 pcp->count += alloced << order;
2727 if (unlikely(list_empty(list)))
2728 return NULL;
2729 }
2730
2731 page = list_first_entry(list, struct page, pcp_list);
2732 list_del(&page->pcp_list);
2733 pcp->count -= 1 << order;
2734 } while (check_new_pages(page, order));
2735
2736 return page;
2737 }
2738
2739 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2740 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2741 struct zone *zone, unsigned int order,
2742 int migratetype, unsigned int alloc_flags)
2743 {
2744 struct per_cpu_pages *pcp;
2745 struct list_head *list;
2746 struct page *page;
2747 unsigned long __maybe_unused UP_flags;
2748
2749 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2750 pcp_trylock_prepare(UP_flags);
2751 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2752 if (!pcp) {
2753 pcp_trylock_finish(UP_flags);
2754 return NULL;
2755 }
2756
2757 /*
2758 * On allocation, reduce the number of pages that are batch freed.
2759 * See nr_pcp_free() where free_factor is increased for subsequent
2760 * frees.
2761 */
2762 pcp->free_factor >>= 1;
2763 list = &pcp->lists[order_to_pindex(migratetype, order)];
2764 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2765 pcp_spin_unlock(pcp);
2766 pcp_trylock_finish(UP_flags);
2767 if (page) {
2768 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2769 zone_statistics(preferred_zone, zone, 1);
2770 }
2771 return page;
2772 }
2773
2774 /*
2775 * Allocate a page from the given zone.
2776 * Use pcplists for THP or "cheap" high-order allocations.
2777 */
2778
2779 /*
2780 * Do not instrument rmqueue() with KMSAN. This function may call
2781 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2782 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2783 * may call rmqueue() again, which will result in a deadlock.
2784 */
2785 __no_sanitize_memory
2786 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2787 struct page *rmqueue(struct zone *preferred_zone,
2788 struct zone *zone, unsigned int order,
2789 gfp_t gfp_flags, unsigned int alloc_flags,
2790 int migratetype)
2791 {
2792 struct page *page;
2793
2794 /*
2795 * We most definitely don't want callers attempting to
2796 * allocate greater than order-1 page units with __GFP_NOFAIL.
2797 */
2798 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2799
2800 if (likely(pcp_allowed_order(order))) {
2801 page = rmqueue_pcplist(preferred_zone, zone, order,
2802 migratetype, alloc_flags);
2803 if (likely(page))
2804 goto out;
2805 }
2806
2807 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2808 migratetype);
2809
2810 out:
2811 /* Separate test+clear to avoid unnecessary atomics */
2812 if ((alloc_flags & ALLOC_KSWAPD) &&
2813 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2814 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2815 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2816 }
2817
2818 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2819 return page;
2820 }
2821
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2822 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2823 {
2824 return __should_fail_alloc_page(gfp_mask, order);
2825 }
2826 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2827
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2828 static inline long __zone_watermark_unusable_free(struct zone *z,
2829 unsigned int order, unsigned int alloc_flags)
2830 {
2831 long unusable_free = (1 << order) - 1;
2832
2833 /*
2834 * If the caller does not have rights to reserves below the min
2835 * watermark then subtract the high-atomic reserves. This will
2836 * over-estimate the size of the atomic reserve but it avoids a search.
2837 */
2838 if (likely(!(alloc_flags & ALLOC_RESERVES)))
2839 unusable_free += z->nr_reserved_highatomic;
2840
2841 #ifdef CONFIG_CMA
2842 /* If allocation can't use CMA areas don't use free CMA pages */
2843 if (!(alloc_flags & ALLOC_CMA))
2844 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2845 #endif
2846
2847 return unusable_free;
2848 }
2849
2850 /*
2851 * Return true if free base pages are above 'mark'. For high-order checks it
2852 * will return true of the order-0 watermark is reached and there is at least
2853 * one free page of a suitable size. Checking now avoids taking the zone lock
2854 * to check in the allocation paths if no pages are free.
2855 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2856 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2857 int highest_zoneidx, unsigned int alloc_flags,
2858 long free_pages)
2859 {
2860 long min = mark;
2861 int o;
2862
2863 /* free_pages may go negative - that's OK */
2864 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2865
2866 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2867 /*
2868 * __GFP_HIGH allows access to 50% of the min reserve as well
2869 * as OOM.
2870 */
2871 if (alloc_flags & ALLOC_MIN_RESERVE) {
2872 min -= min / 2;
2873
2874 /*
2875 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2876 * access more reserves than just __GFP_HIGH. Other
2877 * non-blocking allocations requests such as GFP_NOWAIT
2878 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2879 * access to the min reserve.
2880 */
2881 if (alloc_flags & ALLOC_NON_BLOCK)
2882 min -= min / 4;
2883 }
2884
2885 /*
2886 * OOM victims can try even harder than the normal reserve
2887 * users on the grounds that it's definitely going to be in
2888 * the exit path shortly and free memory. Any allocation it
2889 * makes during the free path will be small and short-lived.
2890 */
2891 if (alloc_flags & ALLOC_OOM)
2892 min -= min / 2;
2893 }
2894
2895 /*
2896 * Check watermarks for an order-0 allocation request. If these
2897 * are not met, then a high-order request also cannot go ahead
2898 * even if a suitable page happened to be free.
2899 */
2900 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2901 return false;
2902
2903 /* If this is an order-0 request then the watermark is fine */
2904 if (!order)
2905 return true;
2906
2907 /* For a high-order request, check at least one suitable page is free */
2908 for (o = order; o < NR_PAGE_ORDERS; o++) {
2909 struct free_area *area = &z->free_area[o];
2910 int mt;
2911
2912 if (!area->nr_free)
2913 continue;
2914
2915 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2916 if (!free_area_empty(area, mt))
2917 return true;
2918 }
2919
2920 #ifdef CONFIG_CMA
2921 if ((alloc_flags & ALLOC_CMA) &&
2922 !free_area_empty(area, MIGRATE_CMA)) {
2923 return true;
2924 }
2925 #endif
2926 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2927 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2928 return true;
2929 }
2930 }
2931 return false;
2932 }
2933
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2934 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2935 int highest_zoneidx, unsigned int alloc_flags)
2936 {
2937 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2938 zone_page_state(z, NR_FREE_PAGES));
2939 }
2940
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2941 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2942 unsigned long mark, int highest_zoneidx,
2943 unsigned int alloc_flags, gfp_t gfp_mask)
2944 {
2945 long free_pages;
2946
2947 free_pages = zone_page_state(z, NR_FREE_PAGES);
2948
2949 /*
2950 * Fast check for order-0 only. If this fails then the reserves
2951 * need to be calculated.
2952 */
2953 if (!order) {
2954 long usable_free;
2955 long reserved;
2956
2957 usable_free = free_pages;
2958 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2959
2960 /* reserved may over estimate high-atomic reserves. */
2961 usable_free -= min(usable_free, reserved);
2962 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2963 return true;
2964 }
2965
2966 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2967 free_pages))
2968 return true;
2969
2970 /*
2971 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2972 * when checking the min watermark. The min watermark is the
2973 * point where boosting is ignored so that kswapd is woken up
2974 * when below the low watermark.
2975 */
2976 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2977 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2978 mark = z->_watermark[WMARK_MIN];
2979 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2980 alloc_flags, free_pages);
2981 }
2982
2983 return false;
2984 }
2985
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)2986 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2987 unsigned long mark, int highest_zoneidx)
2988 {
2989 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2990
2991 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2992 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2993
2994 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2995 free_pages);
2996 }
2997
2998 #ifdef CONFIG_NUMA
2999 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3000
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3001 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3002 {
3003 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3004 node_reclaim_distance;
3005 }
3006 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3008 {
3009 return true;
3010 }
3011 #endif /* CONFIG_NUMA */
3012
3013 /*
3014 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3015 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3016 * premature use of a lower zone may cause lowmem pressure problems that
3017 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3018 * probably too small. It only makes sense to spread allocations to avoid
3019 * fragmentation between the Normal and DMA32 zones.
3020 */
3021 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3022 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3023 {
3024 unsigned int alloc_flags;
3025
3026 /*
3027 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3028 * to save a branch.
3029 */
3030 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3031
3032 #ifdef CONFIG_ZONE_DMA32
3033 if (!zone)
3034 return alloc_flags;
3035
3036 if (zone_idx(zone) != ZONE_NORMAL)
3037 return alloc_flags;
3038
3039 /*
3040 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3041 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3042 * on UMA that if Normal is populated then so is DMA32.
3043 */
3044 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3045 if (nr_online_nodes > 1 && !populated_zone(--zone))
3046 return alloc_flags;
3047
3048 alloc_flags |= ALLOC_NOFRAGMENT;
3049 #endif /* CONFIG_ZONE_DMA32 */
3050 return alloc_flags;
3051 }
3052
3053 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3054 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3055 unsigned int alloc_flags)
3056 {
3057 #ifdef CONFIG_CMA
3058 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3059 alloc_flags |= ALLOC_CMA;
3060 #endif
3061 return alloc_flags;
3062 }
3063
3064 /*
3065 * get_page_from_freelist goes through the zonelist trying to allocate
3066 * a page.
3067 */
3068 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3069 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3070 const struct alloc_context *ac)
3071 {
3072 struct zoneref *z;
3073 struct zone *zone;
3074 struct pglist_data *last_pgdat = NULL;
3075 bool last_pgdat_dirty_ok = false;
3076 bool no_fallback;
3077
3078 retry:
3079 /*
3080 * Scan zonelist, looking for a zone with enough free.
3081 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3082 */
3083 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3084 z = ac->preferred_zoneref;
3085 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3086 ac->nodemask) {
3087 struct page *page;
3088 unsigned long mark;
3089
3090 if (cpusets_enabled() &&
3091 (alloc_flags & ALLOC_CPUSET) &&
3092 !__cpuset_zone_allowed(zone, gfp_mask))
3093 continue;
3094 /*
3095 * When allocating a page cache page for writing, we
3096 * want to get it from a node that is within its dirty
3097 * limit, such that no single node holds more than its
3098 * proportional share of globally allowed dirty pages.
3099 * The dirty limits take into account the node's
3100 * lowmem reserves and high watermark so that kswapd
3101 * should be able to balance it without having to
3102 * write pages from its LRU list.
3103 *
3104 * XXX: For now, allow allocations to potentially
3105 * exceed the per-node dirty limit in the slowpath
3106 * (spread_dirty_pages unset) before going into reclaim,
3107 * which is important when on a NUMA setup the allowed
3108 * nodes are together not big enough to reach the
3109 * global limit. The proper fix for these situations
3110 * will require awareness of nodes in the
3111 * dirty-throttling and the flusher threads.
3112 */
3113 if (ac->spread_dirty_pages) {
3114 if (last_pgdat != zone->zone_pgdat) {
3115 last_pgdat = zone->zone_pgdat;
3116 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3117 }
3118
3119 if (!last_pgdat_dirty_ok)
3120 continue;
3121 }
3122
3123 if (no_fallback && nr_online_nodes > 1 &&
3124 zone != ac->preferred_zoneref->zone) {
3125 int local_nid;
3126
3127 /*
3128 * If moving to a remote node, retry but allow
3129 * fragmenting fallbacks. Locality is more important
3130 * than fragmentation avoidance.
3131 */
3132 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3133 if (zone_to_nid(zone) != local_nid) {
3134 alloc_flags &= ~ALLOC_NOFRAGMENT;
3135 goto retry;
3136 }
3137 }
3138
3139 cond_accept_memory(zone, order);
3140
3141 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3142 if (!zone_watermark_fast(zone, order, mark,
3143 ac->highest_zoneidx, alloc_flags,
3144 gfp_mask)) {
3145 int ret;
3146
3147 if (cond_accept_memory(zone, order))
3148 goto try_this_zone;
3149
3150 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3151 /*
3152 * Watermark failed for this zone, but see if we can
3153 * grow this zone if it contains deferred pages.
3154 */
3155 if (deferred_pages_enabled()) {
3156 if (_deferred_grow_zone(zone, order))
3157 goto try_this_zone;
3158 }
3159 #endif
3160 /* Checked here to keep the fast path fast */
3161 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3162 if (alloc_flags & ALLOC_NO_WATERMARKS)
3163 goto try_this_zone;
3164
3165 if (!node_reclaim_enabled() ||
3166 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3167 continue;
3168
3169 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3170 switch (ret) {
3171 case NODE_RECLAIM_NOSCAN:
3172 /* did not scan */
3173 continue;
3174 case NODE_RECLAIM_FULL:
3175 /* scanned but unreclaimable */
3176 continue;
3177 default:
3178 /* did we reclaim enough */
3179 if (zone_watermark_ok(zone, order, mark,
3180 ac->highest_zoneidx, alloc_flags))
3181 goto try_this_zone;
3182
3183 continue;
3184 }
3185 }
3186
3187 try_this_zone:
3188 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3189 gfp_mask, alloc_flags, ac->migratetype);
3190 if (page) {
3191 prep_new_page(page, order, gfp_mask, alloc_flags);
3192
3193 /*
3194 * If this is a high-order atomic allocation then check
3195 * if the pageblock should be reserved for the future
3196 */
3197 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3198 reserve_highatomic_pageblock(page, zone);
3199
3200 return page;
3201 } else {
3202 if (cond_accept_memory(zone, order))
3203 goto try_this_zone;
3204
3205 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3206 /* Try again if zone has deferred pages */
3207 if (deferred_pages_enabled()) {
3208 if (_deferred_grow_zone(zone, order))
3209 goto try_this_zone;
3210 }
3211 #endif
3212 }
3213 }
3214
3215 /*
3216 * It's possible on a UMA machine to get through all zones that are
3217 * fragmented. If avoiding fragmentation, reset and try again.
3218 */
3219 if (no_fallback) {
3220 alloc_flags &= ~ALLOC_NOFRAGMENT;
3221 goto retry;
3222 }
3223
3224 return NULL;
3225 }
3226
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3227 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3228 {
3229 unsigned int filter = SHOW_MEM_FILTER_NODES;
3230
3231 /*
3232 * This documents exceptions given to allocations in certain
3233 * contexts that are allowed to allocate outside current's set
3234 * of allowed nodes.
3235 */
3236 if (!(gfp_mask & __GFP_NOMEMALLOC))
3237 if (tsk_is_oom_victim(current) ||
3238 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3239 filter &= ~SHOW_MEM_FILTER_NODES;
3240 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3241 filter &= ~SHOW_MEM_FILTER_NODES;
3242
3243 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3244 }
3245
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3246 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3247 {
3248 struct va_format vaf;
3249 va_list args;
3250 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3251
3252 if ((gfp_mask & __GFP_NOWARN) ||
3253 !__ratelimit(&nopage_rs) ||
3254 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3255 return;
3256
3257 va_start(args, fmt);
3258 vaf.fmt = fmt;
3259 vaf.va = &args;
3260 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3261 current->comm, &vaf, gfp_mask, &gfp_mask,
3262 nodemask_pr_args(nodemask));
3263 va_end(args);
3264
3265 cpuset_print_current_mems_allowed();
3266 pr_cont("\n");
3267 dump_stack();
3268 warn_alloc_show_mem(gfp_mask, nodemask);
3269 }
3270
3271 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3272 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3273 unsigned int alloc_flags,
3274 const struct alloc_context *ac)
3275 {
3276 struct page *page;
3277
3278 page = get_page_from_freelist(gfp_mask, order,
3279 alloc_flags|ALLOC_CPUSET, ac);
3280 /*
3281 * fallback to ignore cpuset restriction if our nodes
3282 * are depleted
3283 */
3284 if (!page)
3285 page = get_page_from_freelist(gfp_mask, order,
3286 alloc_flags, ac);
3287
3288 return page;
3289 }
3290
3291 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3292 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3293 const struct alloc_context *ac, unsigned long *did_some_progress)
3294 {
3295 struct oom_control oc = {
3296 .zonelist = ac->zonelist,
3297 .nodemask = ac->nodemask,
3298 .memcg = NULL,
3299 .gfp_mask = gfp_mask,
3300 .order = order,
3301 };
3302 struct page *page;
3303
3304 *did_some_progress = 0;
3305
3306 /*
3307 * Acquire the oom lock. If that fails, somebody else is
3308 * making progress for us.
3309 */
3310 if (!mutex_trylock(&oom_lock)) {
3311 *did_some_progress = 1;
3312 schedule_timeout_uninterruptible(1);
3313 return NULL;
3314 }
3315
3316 /*
3317 * Go through the zonelist yet one more time, keep very high watermark
3318 * here, this is only to catch a parallel oom killing, we must fail if
3319 * we're still under heavy pressure. But make sure that this reclaim
3320 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3321 * allocation which will never fail due to oom_lock already held.
3322 */
3323 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3324 ~__GFP_DIRECT_RECLAIM, order,
3325 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3326 if (page)
3327 goto out;
3328
3329 /* Coredumps can quickly deplete all memory reserves */
3330 if (current->flags & PF_DUMPCORE)
3331 goto out;
3332 /* The OOM killer will not help higher order allocs */
3333 if (order > PAGE_ALLOC_COSTLY_ORDER)
3334 goto out;
3335 /*
3336 * We have already exhausted all our reclaim opportunities without any
3337 * success so it is time to admit defeat. We will skip the OOM killer
3338 * because it is very likely that the caller has a more reasonable
3339 * fallback than shooting a random task.
3340 *
3341 * The OOM killer may not free memory on a specific node.
3342 */
3343 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3344 goto out;
3345 /* The OOM killer does not needlessly kill tasks for lowmem */
3346 if (ac->highest_zoneidx < ZONE_NORMAL)
3347 goto out;
3348 if (pm_suspended_storage())
3349 goto out;
3350 /*
3351 * XXX: GFP_NOFS allocations should rather fail than rely on
3352 * other request to make a forward progress.
3353 * We are in an unfortunate situation where out_of_memory cannot
3354 * do much for this context but let's try it to at least get
3355 * access to memory reserved if the current task is killed (see
3356 * out_of_memory). Once filesystems are ready to handle allocation
3357 * failures more gracefully we should just bail out here.
3358 */
3359
3360 /* Exhausted what can be done so it's blame time */
3361 if (out_of_memory(&oc) ||
3362 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3363 *did_some_progress = 1;
3364
3365 /*
3366 * Help non-failing allocations by giving them access to memory
3367 * reserves
3368 */
3369 if (gfp_mask & __GFP_NOFAIL)
3370 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3371 ALLOC_NO_WATERMARKS, ac);
3372 }
3373 out:
3374 mutex_unlock(&oom_lock);
3375 return page;
3376 }
3377
3378 /*
3379 * Maximum number of compaction retries with a progress before OOM
3380 * killer is consider as the only way to move forward.
3381 */
3382 #define MAX_COMPACT_RETRIES 16
3383
3384 #ifdef CONFIG_COMPACTION
3385 /* Try memory compaction for high-order allocations before reclaim */
3386 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3387 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3388 unsigned int alloc_flags, const struct alloc_context *ac,
3389 enum compact_priority prio, enum compact_result *compact_result)
3390 {
3391 struct page *page = NULL;
3392 unsigned long pflags;
3393 unsigned int noreclaim_flag;
3394
3395 if (!order)
3396 return NULL;
3397
3398 psi_memstall_enter(&pflags);
3399 delayacct_compact_start();
3400 noreclaim_flag = memalloc_noreclaim_save();
3401
3402 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3403 prio, &page);
3404
3405 memalloc_noreclaim_restore(noreclaim_flag);
3406 psi_memstall_leave(&pflags);
3407 delayacct_compact_end();
3408
3409 if (*compact_result == COMPACT_SKIPPED)
3410 return NULL;
3411 /*
3412 * At least in one zone compaction wasn't deferred or skipped, so let's
3413 * count a compaction stall
3414 */
3415 count_vm_event(COMPACTSTALL);
3416
3417 /* Prep a captured page if available */
3418 if (page)
3419 prep_new_page(page, order, gfp_mask, alloc_flags);
3420
3421 /* Try get a page from the freelist if available */
3422 if (!page)
3423 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3424
3425 if (page) {
3426 struct zone *zone = page_zone(page);
3427
3428 zone->compact_blockskip_flush = false;
3429 compaction_defer_reset(zone, order, true);
3430 count_vm_event(COMPACTSUCCESS);
3431 return page;
3432 }
3433
3434 /*
3435 * It's bad if compaction run occurs and fails. The most likely reason
3436 * is that pages exist, but not enough to satisfy watermarks.
3437 */
3438 count_vm_event(COMPACTFAIL);
3439
3440 cond_resched();
3441
3442 return NULL;
3443 }
3444
3445 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3446 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3447 enum compact_result compact_result,
3448 enum compact_priority *compact_priority,
3449 int *compaction_retries)
3450 {
3451 int max_retries = MAX_COMPACT_RETRIES;
3452 int min_priority;
3453 bool ret = false;
3454 int retries = *compaction_retries;
3455 enum compact_priority priority = *compact_priority;
3456
3457 if (!order)
3458 return false;
3459
3460 if (fatal_signal_pending(current))
3461 return false;
3462
3463 /*
3464 * Compaction was skipped due to a lack of free order-0
3465 * migration targets. Continue if reclaim can help.
3466 */
3467 if (compact_result == COMPACT_SKIPPED) {
3468 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3469 goto out;
3470 }
3471
3472 /*
3473 * Compaction managed to coalesce some page blocks, but the
3474 * allocation failed presumably due to a race. Retry some.
3475 */
3476 if (compact_result == COMPACT_SUCCESS) {
3477 /*
3478 * !costly requests are much more important than
3479 * __GFP_RETRY_MAYFAIL costly ones because they are de
3480 * facto nofail and invoke OOM killer to move on while
3481 * costly can fail and users are ready to cope with
3482 * that. 1/4 retries is rather arbitrary but we would
3483 * need much more detailed feedback from compaction to
3484 * make a better decision.
3485 */
3486 if (order > PAGE_ALLOC_COSTLY_ORDER)
3487 max_retries /= 4;
3488
3489 if (++(*compaction_retries) <= max_retries) {
3490 ret = true;
3491 goto out;
3492 }
3493 }
3494
3495 /*
3496 * Compaction failed. Retry with increasing priority.
3497 */
3498 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3499 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3500
3501 if (*compact_priority > min_priority) {
3502 (*compact_priority)--;
3503 *compaction_retries = 0;
3504 ret = true;
3505 }
3506 out:
3507 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3508 return ret;
3509 }
3510 #else
3511 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3512 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3513 unsigned int alloc_flags, const struct alloc_context *ac,
3514 enum compact_priority prio, enum compact_result *compact_result)
3515 {
3516 *compact_result = COMPACT_SKIPPED;
3517 return NULL;
3518 }
3519
3520 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3521 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3522 enum compact_result compact_result,
3523 enum compact_priority *compact_priority,
3524 int *compaction_retries)
3525 {
3526 struct zone *zone;
3527 struct zoneref *z;
3528
3529 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3530 return false;
3531
3532 /*
3533 * There are setups with compaction disabled which would prefer to loop
3534 * inside the allocator rather than hit the oom killer prematurely.
3535 * Let's give them a good hope and keep retrying while the order-0
3536 * watermarks are OK.
3537 */
3538 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3539 ac->highest_zoneidx, ac->nodemask) {
3540 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3541 ac->highest_zoneidx, alloc_flags))
3542 return true;
3543 }
3544 return false;
3545 }
3546 #endif /* CONFIG_COMPACTION */
3547
3548 #ifdef CONFIG_LOCKDEP
3549 static struct lockdep_map __fs_reclaim_map =
3550 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3551
__need_reclaim(gfp_t gfp_mask)3552 static bool __need_reclaim(gfp_t gfp_mask)
3553 {
3554 /* no reclaim without waiting on it */
3555 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3556 return false;
3557
3558 /* this guy won't enter reclaim */
3559 if (current->flags & PF_MEMALLOC)
3560 return false;
3561
3562 if (gfp_mask & __GFP_NOLOCKDEP)
3563 return false;
3564
3565 return true;
3566 }
3567
__fs_reclaim_acquire(unsigned long ip)3568 void __fs_reclaim_acquire(unsigned long ip)
3569 {
3570 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3571 }
3572
__fs_reclaim_release(unsigned long ip)3573 void __fs_reclaim_release(unsigned long ip)
3574 {
3575 lock_release(&__fs_reclaim_map, ip);
3576 }
3577
fs_reclaim_acquire(gfp_t gfp_mask)3578 void fs_reclaim_acquire(gfp_t gfp_mask)
3579 {
3580 gfp_mask = current_gfp_context(gfp_mask);
3581
3582 if (__need_reclaim(gfp_mask)) {
3583 if (gfp_mask & __GFP_FS)
3584 __fs_reclaim_acquire(_RET_IP_);
3585
3586 #ifdef CONFIG_MMU_NOTIFIER
3587 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3588 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3589 #endif
3590
3591 }
3592 }
3593 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3594
fs_reclaim_release(gfp_t gfp_mask)3595 void fs_reclaim_release(gfp_t gfp_mask)
3596 {
3597 gfp_mask = current_gfp_context(gfp_mask);
3598
3599 if (__need_reclaim(gfp_mask)) {
3600 if (gfp_mask & __GFP_FS)
3601 __fs_reclaim_release(_RET_IP_);
3602 }
3603 }
3604 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3605 #endif
3606
3607 /*
3608 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3609 * have been rebuilt so allocation retries. Reader side does not lock and
3610 * retries the allocation if zonelist changes. Writer side is protected by the
3611 * embedded spin_lock.
3612 */
3613 static DEFINE_SEQLOCK(zonelist_update_seq);
3614
zonelist_iter_begin(void)3615 static unsigned int zonelist_iter_begin(void)
3616 {
3617 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3618 return read_seqbegin(&zonelist_update_seq);
3619
3620 return 0;
3621 }
3622
check_retry_zonelist(unsigned int seq)3623 static unsigned int check_retry_zonelist(unsigned int seq)
3624 {
3625 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3626 return read_seqretry(&zonelist_update_seq, seq);
3627
3628 return seq;
3629 }
3630
3631 /* Perform direct synchronous page reclaim */
3632 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3633 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3634 const struct alloc_context *ac)
3635 {
3636 unsigned int noreclaim_flag;
3637 unsigned long progress;
3638
3639 cond_resched();
3640
3641 /* We now go into synchronous reclaim */
3642 cpuset_memory_pressure_bump();
3643 fs_reclaim_acquire(gfp_mask);
3644 noreclaim_flag = memalloc_noreclaim_save();
3645
3646 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3647 ac->nodemask);
3648
3649 memalloc_noreclaim_restore(noreclaim_flag);
3650 fs_reclaim_release(gfp_mask);
3651
3652 cond_resched();
3653
3654 return progress;
3655 }
3656
3657 /* The really slow allocator path where we enter direct reclaim */
3658 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3659 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3660 unsigned int alloc_flags, const struct alloc_context *ac,
3661 unsigned long *did_some_progress)
3662 {
3663 struct page *page = NULL;
3664 unsigned long pflags;
3665 bool drained = false;
3666
3667 psi_memstall_enter(&pflags);
3668 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3669 if (unlikely(!(*did_some_progress)))
3670 goto out;
3671
3672 retry:
3673 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3674
3675 /*
3676 * If an allocation failed after direct reclaim, it could be because
3677 * pages are pinned on the per-cpu lists or in high alloc reserves.
3678 * Shrink them and try again
3679 */
3680 if (!page && !drained) {
3681 unreserve_highatomic_pageblock(ac, false);
3682 drain_all_pages(NULL);
3683 drained = true;
3684 goto retry;
3685 }
3686 out:
3687 psi_memstall_leave(&pflags);
3688
3689 return page;
3690 }
3691
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3692 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3693 const struct alloc_context *ac)
3694 {
3695 struct zoneref *z;
3696 struct zone *zone;
3697 pg_data_t *last_pgdat = NULL;
3698 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3699
3700 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3701 ac->nodemask) {
3702 if (!managed_zone(zone))
3703 continue;
3704 if (last_pgdat != zone->zone_pgdat) {
3705 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3706 last_pgdat = zone->zone_pgdat;
3707 }
3708 }
3709 }
3710
3711 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3712 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3713 {
3714 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3715
3716 /*
3717 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3718 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3719 * to save two branches.
3720 */
3721 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3722 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3723
3724 /*
3725 * The caller may dip into page reserves a bit more if the caller
3726 * cannot run direct reclaim, or if the caller has realtime scheduling
3727 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3728 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3729 */
3730 alloc_flags |= (__force int)
3731 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3732
3733 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3734 /*
3735 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3736 * if it can't schedule.
3737 */
3738 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3739 alloc_flags |= ALLOC_NON_BLOCK;
3740
3741 if (order > 0)
3742 alloc_flags |= ALLOC_HIGHATOMIC;
3743 }
3744
3745 /*
3746 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3747 * GFP_ATOMIC) rather than fail, see the comment for
3748 * cpuset_node_allowed().
3749 */
3750 if (alloc_flags & ALLOC_MIN_RESERVE)
3751 alloc_flags &= ~ALLOC_CPUSET;
3752 } else if (unlikely(rt_task(current)) && in_task())
3753 alloc_flags |= ALLOC_MIN_RESERVE;
3754
3755 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3756
3757 return alloc_flags;
3758 }
3759
oom_reserves_allowed(struct task_struct * tsk)3760 static bool oom_reserves_allowed(struct task_struct *tsk)
3761 {
3762 if (!tsk_is_oom_victim(tsk))
3763 return false;
3764
3765 /*
3766 * !MMU doesn't have oom reaper so give access to memory reserves
3767 * only to the thread with TIF_MEMDIE set
3768 */
3769 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3770 return false;
3771
3772 return true;
3773 }
3774
3775 /*
3776 * Distinguish requests which really need access to full memory
3777 * reserves from oom victims which can live with a portion of it
3778 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3779 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3780 {
3781 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3782 return 0;
3783 if (gfp_mask & __GFP_MEMALLOC)
3784 return ALLOC_NO_WATERMARKS;
3785 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3786 return ALLOC_NO_WATERMARKS;
3787 if (!in_interrupt()) {
3788 if (current->flags & PF_MEMALLOC)
3789 return ALLOC_NO_WATERMARKS;
3790 else if (oom_reserves_allowed(current))
3791 return ALLOC_OOM;
3792 }
3793
3794 return 0;
3795 }
3796
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3797 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3798 {
3799 return !!__gfp_pfmemalloc_flags(gfp_mask);
3800 }
3801
3802 /*
3803 * Checks whether it makes sense to retry the reclaim to make a forward progress
3804 * for the given allocation request.
3805 *
3806 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3807 * without success, or when we couldn't even meet the watermark if we
3808 * reclaimed all remaining pages on the LRU lists.
3809 *
3810 * Returns true if a retry is viable or false to enter the oom path.
3811 */
3812 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3813 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3814 struct alloc_context *ac, int alloc_flags,
3815 bool did_some_progress, int *no_progress_loops)
3816 {
3817 struct zone *zone;
3818 struct zoneref *z;
3819 bool ret = false;
3820
3821 /*
3822 * Costly allocations might have made a progress but this doesn't mean
3823 * their order will become available due to high fragmentation so
3824 * always increment the no progress counter for them
3825 */
3826 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3827 *no_progress_loops = 0;
3828 else
3829 (*no_progress_loops)++;
3830
3831 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3832 goto out;
3833
3834
3835 /*
3836 * Keep reclaiming pages while there is a chance this will lead
3837 * somewhere. If none of the target zones can satisfy our allocation
3838 * request even if all reclaimable pages are considered then we are
3839 * screwed and have to go OOM.
3840 */
3841 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3842 ac->highest_zoneidx, ac->nodemask) {
3843 unsigned long available;
3844 unsigned long reclaimable;
3845 unsigned long min_wmark = min_wmark_pages(zone);
3846 bool wmark;
3847
3848 available = reclaimable = zone_reclaimable_pages(zone);
3849 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3850
3851 /*
3852 * Would the allocation succeed if we reclaimed all
3853 * reclaimable pages?
3854 */
3855 wmark = __zone_watermark_ok(zone, order, min_wmark,
3856 ac->highest_zoneidx, alloc_flags, available);
3857 trace_reclaim_retry_zone(z, order, reclaimable,
3858 available, min_wmark, *no_progress_loops, wmark);
3859 if (wmark) {
3860 ret = true;
3861 break;
3862 }
3863 }
3864
3865 /*
3866 * Memory allocation/reclaim might be called from a WQ context and the
3867 * current implementation of the WQ concurrency control doesn't
3868 * recognize that a particular WQ is congested if the worker thread is
3869 * looping without ever sleeping. Therefore we have to do a short sleep
3870 * here rather than calling cond_resched().
3871 */
3872 if (current->flags & PF_WQ_WORKER)
3873 schedule_timeout_uninterruptible(1);
3874 else
3875 cond_resched();
3876 out:
3877 /* Before OOM, exhaust highatomic_reserve */
3878 if (!ret)
3879 return unreserve_highatomic_pageblock(ac, true);
3880
3881 return ret;
3882 }
3883
3884 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3885 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3886 {
3887 /*
3888 * It's possible that cpuset's mems_allowed and the nodemask from
3889 * mempolicy don't intersect. This should be normally dealt with by
3890 * policy_nodemask(), but it's possible to race with cpuset update in
3891 * such a way the check therein was true, and then it became false
3892 * before we got our cpuset_mems_cookie here.
3893 * This assumes that for all allocations, ac->nodemask can come only
3894 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3895 * when it does not intersect with the cpuset restrictions) or the
3896 * caller can deal with a violated nodemask.
3897 */
3898 if (cpusets_enabled() && ac->nodemask &&
3899 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3900 ac->nodemask = NULL;
3901 return true;
3902 }
3903
3904 /*
3905 * When updating a task's mems_allowed or mempolicy nodemask, it is
3906 * possible to race with parallel threads in such a way that our
3907 * allocation can fail while the mask is being updated. If we are about
3908 * to fail, check if the cpuset changed during allocation and if so,
3909 * retry.
3910 */
3911 if (read_mems_allowed_retry(cpuset_mems_cookie))
3912 return true;
3913
3914 return false;
3915 }
3916
3917 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3918 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3919 struct alloc_context *ac)
3920 {
3921 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3922 bool can_compact = gfp_compaction_allowed(gfp_mask);
3923 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3924 struct page *page = NULL;
3925 unsigned int alloc_flags;
3926 unsigned long did_some_progress;
3927 enum compact_priority compact_priority;
3928 enum compact_result compact_result;
3929 int compaction_retries;
3930 int no_progress_loops;
3931 unsigned int cpuset_mems_cookie;
3932 unsigned int zonelist_iter_cookie;
3933 int reserve_flags;
3934
3935 restart:
3936 compaction_retries = 0;
3937 no_progress_loops = 0;
3938 compact_result = COMPACT_SKIPPED;
3939 compact_priority = DEF_COMPACT_PRIORITY;
3940 cpuset_mems_cookie = read_mems_allowed_begin();
3941 zonelist_iter_cookie = zonelist_iter_begin();
3942
3943 /*
3944 * The fast path uses conservative alloc_flags to succeed only until
3945 * kswapd needs to be woken up, and to avoid the cost of setting up
3946 * alloc_flags precisely. So we do that now.
3947 */
3948 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3949
3950 /*
3951 * We need to recalculate the starting point for the zonelist iterator
3952 * because we might have used different nodemask in the fast path, or
3953 * there was a cpuset modification and we are retrying - otherwise we
3954 * could end up iterating over non-eligible zones endlessly.
3955 */
3956 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3957 ac->highest_zoneidx, ac->nodemask);
3958 if (!ac->preferred_zoneref->zone)
3959 goto nopage;
3960
3961 /*
3962 * Check for insane configurations where the cpuset doesn't contain
3963 * any suitable zone to satisfy the request - e.g. non-movable
3964 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3965 */
3966 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3967 struct zoneref *z = first_zones_zonelist(ac->zonelist,
3968 ac->highest_zoneidx,
3969 &cpuset_current_mems_allowed);
3970 if (!z->zone)
3971 goto nopage;
3972 }
3973
3974 if (alloc_flags & ALLOC_KSWAPD)
3975 wake_all_kswapds(order, gfp_mask, ac);
3976
3977 /*
3978 * The adjusted alloc_flags might result in immediate success, so try
3979 * that first
3980 */
3981 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3982 if (page)
3983 goto got_pg;
3984
3985 /*
3986 * For costly allocations, try direct compaction first, as it's likely
3987 * that we have enough base pages and don't need to reclaim. For non-
3988 * movable high-order allocations, do that as well, as compaction will
3989 * try prevent permanent fragmentation by migrating from blocks of the
3990 * same migratetype.
3991 * Don't try this for allocations that are allowed to ignore
3992 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3993 */
3994 if (can_direct_reclaim && can_compact &&
3995 (costly_order ||
3996 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3997 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3998 page = __alloc_pages_direct_compact(gfp_mask, order,
3999 alloc_flags, ac,
4000 INIT_COMPACT_PRIORITY,
4001 &compact_result);
4002 if (page)
4003 goto got_pg;
4004
4005 /*
4006 * Checks for costly allocations with __GFP_NORETRY, which
4007 * includes some THP page fault allocations
4008 */
4009 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4010 /*
4011 * If allocating entire pageblock(s) and compaction
4012 * failed because all zones are below low watermarks
4013 * or is prohibited because it recently failed at this
4014 * order, fail immediately unless the allocator has
4015 * requested compaction and reclaim retry.
4016 *
4017 * Reclaim is
4018 * - potentially very expensive because zones are far
4019 * below their low watermarks or this is part of very
4020 * bursty high order allocations,
4021 * - not guaranteed to help because isolate_freepages()
4022 * may not iterate over freed pages as part of its
4023 * linear scan, and
4024 * - unlikely to make entire pageblocks free on its
4025 * own.
4026 */
4027 if (compact_result == COMPACT_SKIPPED ||
4028 compact_result == COMPACT_DEFERRED)
4029 goto nopage;
4030
4031 /*
4032 * Looks like reclaim/compaction is worth trying, but
4033 * sync compaction could be very expensive, so keep
4034 * using async compaction.
4035 */
4036 compact_priority = INIT_COMPACT_PRIORITY;
4037 }
4038 }
4039
4040 retry:
4041 /*
4042 * Deal with possible cpuset update races or zonelist updates to avoid
4043 * infinite retries.
4044 */
4045 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4046 check_retry_zonelist(zonelist_iter_cookie))
4047 goto restart;
4048
4049 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4050 if (alloc_flags & ALLOC_KSWAPD)
4051 wake_all_kswapds(order, gfp_mask, ac);
4052
4053 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4054 if (reserve_flags)
4055 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4056 (alloc_flags & ALLOC_KSWAPD);
4057
4058 /*
4059 * Reset the nodemask and zonelist iterators if memory policies can be
4060 * ignored. These allocations are high priority and system rather than
4061 * user oriented.
4062 */
4063 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4064 ac->nodemask = NULL;
4065 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4066 ac->highest_zoneidx, ac->nodemask);
4067 }
4068
4069 /* Attempt with potentially adjusted zonelist and alloc_flags */
4070 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4071 if (page)
4072 goto got_pg;
4073
4074 /* Caller is not willing to reclaim, we can't balance anything */
4075 if (!can_direct_reclaim)
4076 goto nopage;
4077
4078 /* Avoid recursion of direct reclaim */
4079 if (current->flags & PF_MEMALLOC)
4080 goto nopage;
4081
4082 /* Try direct reclaim and then allocating */
4083 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4084 &did_some_progress);
4085 if (page)
4086 goto got_pg;
4087
4088 /* Try direct compaction and then allocating */
4089 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4090 compact_priority, &compact_result);
4091 if (page)
4092 goto got_pg;
4093
4094 /* Do not loop if specifically requested */
4095 if (gfp_mask & __GFP_NORETRY)
4096 goto nopage;
4097
4098 /*
4099 * Do not retry costly high order allocations unless they are
4100 * __GFP_RETRY_MAYFAIL and we can compact
4101 */
4102 if (costly_order && (!can_compact ||
4103 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4104 goto nopage;
4105
4106 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4107 did_some_progress > 0, &no_progress_loops))
4108 goto retry;
4109
4110 /*
4111 * It doesn't make any sense to retry for the compaction if the order-0
4112 * reclaim is not able to make any progress because the current
4113 * implementation of the compaction depends on the sufficient amount
4114 * of free memory (see __compaction_suitable)
4115 */
4116 if (did_some_progress > 0 && can_compact &&
4117 should_compact_retry(ac, order, alloc_flags,
4118 compact_result, &compact_priority,
4119 &compaction_retries))
4120 goto retry;
4121
4122
4123 /*
4124 * Deal with possible cpuset update races or zonelist updates to avoid
4125 * a unnecessary OOM kill.
4126 */
4127 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4128 check_retry_zonelist(zonelist_iter_cookie))
4129 goto restart;
4130
4131 /* Reclaim has failed us, start killing things */
4132 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4133 if (page)
4134 goto got_pg;
4135
4136 /* Avoid allocations with no watermarks from looping endlessly */
4137 if (tsk_is_oom_victim(current) &&
4138 (alloc_flags & ALLOC_OOM ||
4139 (gfp_mask & __GFP_NOMEMALLOC)))
4140 goto nopage;
4141
4142 /* Retry as long as the OOM killer is making progress */
4143 if (did_some_progress) {
4144 no_progress_loops = 0;
4145 goto retry;
4146 }
4147
4148 nopage:
4149 /*
4150 * Deal with possible cpuset update races or zonelist updates to avoid
4151 * a unnecessary OOM kill.
4152 */
4153 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4154 check_retry_zonelist(zonelist_iter_cookie))
4155 goto restart;
4156
4157 /*
4158 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4159 * we always retry
4160 */
4161 if (gfp_mask & __GFP_NOFAIL) {
4162 /*
4163 * All existing users of the __GFP_NOFAIL are blockable, so warn
4164 * of any new users that actually require GFP_NOWAIT
4165 */
4166 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4167 goto fail;
4168
4169 /*
4170 * PF_MEMALLOC request from this context is rather bizarre
4171 * because we cannot reclaim anything and only can loop waiting
4172 * for somebody to do a work for us
4173 */
4174 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4175
4176 /*
4177 * non failing costly orders are a hard requirement which we
4178 * are not prepared for much so let's warn about these users
4179 * so that we can identify them and convert them to something
4180 * else.
4181 */
4182 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4183
4184 /*
4185 * Help non-failing allocations by giving some access to memory
4186 * reserves normally used for high priority non-blocking
4187 * allocations but do not use ALLOC_NO_WATERMARKS because this
4188 * could deplete whole memory reserves which would just make
4189 * the situation worse.
4190 */
4191 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4192 if (page)
4193 goto got_pg;
4194
4195 cond_resched();
4196 goto retry;
4197 }
4198 fail:
4199 warn_alloc(gfp_mask, ac->nodemask,
4200 "page allocation failure: order:%u", order);
4201 got_pg:
4202 return page;
4203 }
4204
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4205 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4206 int preferred_nid, nodemask_t *nodemask,
4207 struct alloc_context *ac, gfp_t *alloc_gfp,
4208 unsigned int *alloc_flags)
4209 {
4210 ac->highest_zoneidx = gfp_zone(gfp_mask);
4211 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4212 ac->nodemask = nodemask;
4213 ac->migratetype = gfp_migratetype(gfp_mask);
4214
4215 if (cpusets_enabled()) {
4216 *alloc_gfp |= __GFP_HARDWALL;
4217 /*
4218 * When we are in the interrupt context, it is irrelevant
4219 * to the current task context. It means that any node ok.
4220 */
4221 if (in_task() && !ac->nodemask)
4222 ac->nodemask = &cpuset_current_mems_allowed;
4223 else
4224 *alloc_flags |= ALLOC_CPUSET;
4225 }
4226
4227 might_alloc(gfp_mask);
4228
4229 if (should_fail_alloc_page(gfp_mask, order))
4230 return false;
4231
4232 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4233
4234 /* Dirty zone balancing only done in the fast path */
4235 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4236
4237 /*
4238 * The preferred zone is used for statistics but crucially it is
4239 * also used as the starting point for the zonelist iterator. It
4240 * may get reset for allocations that ignore memory policies.
4241 */
4242 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4243 ac->highest_zoneidx, ac->nodemask);
4244
4245 return true;
4246 }
4247
4248 /*
4249 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4250 * @gfp: GFP flags for the allocation
4251 * @preferred_nid: The preferred NUMA node ID to allocate from
4252 * @nodemask: Set of nodes to allocate from, may be NULL
4253 * @nr_pages: The number of pages desired on the list or array
4254 * @page_list: Optional list to store the allocated pages
4255 * @page_array: Optional array to store the pages
4256 *
4257 * This is a batched version of the page allocator that attempts to
4258 * allocate nr_pages quickly. Pages are added to page_list if page_list
4259 * is not NULL, otherwise it is assumed that the page_array is valid.
4260 *
4261 * For lists, nr_pages is the number of pages that should be allocated.
4262 *
4263 * For arrays, only NULL elements are populated with pages and nr_pages
4264 * is the maximum number of pages that will be stored in the array.
4265 *
4266 * Returns the number of pages on the list or array.
4267 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4268 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4269 nodemask_t *nodemask, int nr_pages,
4270 struct list_head *page_list,
4271 struct page **page_array)
4272 {
4273 struct page *page;
4274 unsigned long __maybe_unused UP_flags;
4275 struct zone *zone;
4276 struct zoneref *z;
4277 struct per_cpu_pages *pcp;
4278 struct list_head *pcp_list;
4279 struct alloc_context ac;
4280 gfp_t alloc_gfp;
4281 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4282 int nr_populated = 0, nr_account = 0;
4283
4284 /*
4285 * Skip populated array elements to determine if any pages need
4286 * to be allocated before disabling IRQs.
4287 */
4288 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4289 nr_populated++;
4290
4291 /* No pages requested? */
4292 if (unlikely(nr_pages <= 0))
4293 goto out;
4294
4295 /* Already populated array? */
4296 if (unlikely(page_array && nr_pages - nr_populated == 0))
4297 goto out;
4298
4299 /* Bulk allocator does not support memcg accounting. */
4300 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4301 goto failed;
4302
4303 /* Use the single page allocator for one page. */
4304 if (nr_pages - nr_populated == 1)
4305 goto failed;
4306
4307 #ifdef CONFIG_PAGE_OWNER
4308 /*
4309 * PAGE_OWNER may recurse into the allocator to allocate space to
4310 * save the stack with pagesets.lock held. Releasing/reacquiring
4311 * removes much of the performance benefit of bulk allocation so
4312 * force the caller to allocate one page at a time as it'll have
4313 * similar performance to added complexity to the bulk allocator.
4314 */
4315 if (static_branch_unlikely(&page_owner_inited))
4316 goto failed;
4317 #endif
4318
4319 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4320 gfp &= gfp_allowed_mask;
4321 alloc_gfp = gfp;
4322 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4323 goto out;
4324 gfp = alloc_gfp;
4325
4326 /* Find an allowed local zone that meets the low watermark. */
4327 z = ac.preferred_zoneref;
4328 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4329 unsigned long mark;
4330
4331 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4332 !__cpuset_zone_allowed(zone, gfp)) {
4333 continue;
4334 }
4335
4336 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4337 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4338 goto failed;
4339 }
4340
4341 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4342 if (zone_watermark_fast(zone, 0, mark,
4343 zonelist_zone_idx(ac.preferred_zoneref),
4344 alloc_flags, gfp)) {
4345 break;
4346 }
4347 }
4348
4349 /*
4350 * If there are no allowed local zones that meets the watermarks then
4351 * try to allocate a single page and reclaim if necessary.
4352 */
4353 if (unlikely(!zone))
4354 goto failed;
4355
4356 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4357 pcp_trylock_prepare(UP_flags);
4358 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4359 if (!pcp)
4360 goto failed_irq;
4361
4362 /* Attempt the batch allocation */
4363 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4364 while (nr_populated < nr_pages) {
4365
4366 /* Skip existing pages */
4367 if (page_array && page_array[nr_populated]) {
4368 nr_populated++;
4369 continue;
4370 }
4371
4372 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4373 pcp, pcp_list);
4374 if (unlikely(!page)) {
4375 /* Try and allocate at least one page */
4376 if (!nr_account) {
4377 pcp_spin_unlock(pcp);
4378 goto failed_irq;
4379 }
4380 break;
4381 }
4382 nr_account++;
4383
4384 prep_new_page(page, 0, gfp, 0);
4385 if (page_list)
4386 list_add(&page->lru, page_list);
4387 else
4388 page_array[nr_populated] = page;
4389 nr_populated++;
4390 }
4391
4392 pcp_spin_unlock(pcp);
4393 pcp_trylock_finish(UP_flags);
4394
4395 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4396 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4397
4398 out:
4399 return nr_populated;
4400
4401 failed_irq:
4402 pcp_trylock_finish(UP_flags);
4403
4404 failed:
4405 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4406 if (page) {
4407 if (page_list)
4408 list_add(&page->lru, page_list);
4409 else
4410 page_array[nr_populated] = page;
4411 nr_populated++;
4412 }
4413
4414 goto out;
4415 }
4416 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4417
4418 /*
4419 * This is the 'heart' of the zoned buddy allocator.
4420 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4421 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4422 nodemask_t *nodemask)
4423 {
4424 struct page *page;
4425 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4426 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4427 struct alloc_context ac = { };
4428
4429 /*
4430 * There are several places where we assume that the order value is sane
4431 * so bail out early if the request is out of bound.
4432 */
4433 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4434 return NULL;
4435
4436 gfp &= gfp_allowed_mask;
4437 /*
4438 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4439 * resp. GFP_NOIO which has to be inherited for all allocation requests
4440 * from a particular context which has been marked by
4441 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4442 * movable zones are not used during allocation.
4443 */
4444 gfp = current_gfp_context(gfp);
4445 alloc_gfp = gfp;
4446 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4447 &alloc_gfp, &alloc_flags))
4448 return NULL;
4449
4450 /*
4451 * Forbid the first pass from falling back to types that fragment
4452 * memory until all local zones are considered.
4453 */
4454 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4455
4456 /* First allocation attempt */
4457 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4458 if (likely(page))
4459 goto out;
4460
4461 alloc_gfp = gfp;
4462 ac.spread_dirty_pages = false;
4463
4464 /*
4465 * Restore the original nodemask if it was potentially replaced with
4466 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4467 */
4468 ac.nodemask = nodemask;
4469
4470 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4471
4472 out:
4473 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4474 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4475 __free_pages(page, order);
4476 page = NULL;
4477 }
4478
4479 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4480 kmsan_alloc_page(page, order, alloc_gfp);
4481
4482 return page;
4483 }
4484 EXPORT_SYMBOL(__alloc_pages);
4485
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4486 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4487 nodemask_t *nodemask)
4488 {
4489 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4490 preferred_nid, nodemask);
4491 return page_rmappable_folio(page);
4492 }
4493 EXPORT_SYMBOL(__folio_alloc);
4494
4495 /*
4496 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4497 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4498 * you need to access high mem.
4499 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4500 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4501 {
4502 struct page *page;
4503
4504 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4505 if (!page)
4506 return 0;
4507 return (unsigned long) page_address(page);
4508 }
4509 EXPORT_SYMBOL(__get_free_pages);
4510
get_zeroed_page(gfp_t gfp_mask)4511 unsigned long get_zeroed_page(gfp_t gfp_mask)
4512 {
4513 return __get_free_page(gfp_mask | __GFP_ZERO);
4514 }
4515 EXPORT_SYMBOL(get_zeroed_page);
4516
4517 /**
4518 * __free_pages - Free pages allocated with alloc_pages().
4519 * @page: The page pointer returned from alloc_pages().
4520 * @order: The order of the allocation.
4521 *
4522 * This function can free multi-page allocations that are not compound
4523 * pages. It does not check that the @order passed in matches that of
4524 * the allocation, so it is easy to leak memory. Freeing more memory
4525 * than was allocated will probably emit a warning.
4526 *
4527 * If the last reference to this page is speculative, it will be released
4528 * by put_page() which only frees the first page of a non-compound
4529 * allocation. To prevent the remaining pages from being leaked, we free
4530 * the subsequent pages here. If you want to use the page's reference
4531 * count to decide when to free the allocation, you should allocate a
4532 * compound page, and use put_page() instead of __free_pages().
4533 *
4534 * Context: May be called in interrupt context or while holding a normal
4535 * spinlock, but not in NMI context or while holding a raw spinlock.
4536 */
__free_pages(struct page * page,unsigned int order)4537 void __free_pages(struct page *page, unsigned int order)
4538 {
4539 /* get PageHead before we drop reference */
4540 int head = PageHead(page);
4541
4542 if (put_page_testzero(page))
4543 free_the_page(page, order);
4544 else if (!head)
4545 while (order-- > 0)
4546 free_the_page(page + (1 << order), order);
4547 }
4548 EXPORT_SYMBOL(__free_pages);
4549
free_pages(unsigned long addr,unsigned int order)4550 void free_pages(unsigned long addr, unsigned int order)
4551 {
4552 if (addr != 0) {
4553 VM_BUG_ON(!virt_addr_valid((void *)addr));
4554 __free_pages(virt_to_page((void *)addr), order);
4555 }
4556 }
4557
4558 EXPORT_SYMBOL(free_pages);
4559
4560 /*
4561 * Page Fragment:
4562 * An arbitrary-length arbitrary-offset area of memory which resides
4563 * within a 0 or higher order page. Multiple fragments within that page
4564 * are individually refcounted, in the page's reference counter.
4565 *
4566 * The page_frag functions below provide a simple allocation framework for
4567 * page fragments. This is used by the network stack and network device
4568 * drivers to provide a backing region of memory for use as either an
4569 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4570 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4571 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4572 gfp_t gfp_mask)
4573 {
4574 struct page *page = NULL;
4575 gfp_t gfp = gfp_mask;
4576
4577 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4578 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4579 __GFP_NOMEMALLOC;
4580 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4581 PAGE_FRAG_CACHE_MAX_ORDER);
4582 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4583 #endif
4584 if (unlikely(!page))
4585 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4586
4587 nc->va = page ? page_address(page) : NULL;
4588
4589 return page;
4590 }
4591
__page_frag_cache_drain(struct page * page,unsigned int count)4592 void __page_frag_cache_drain(struct page *page, unsigned int count)
4593 {
4594 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4595
4596 if (page_ref_sub_and_test(page, count))
4597 free_the_page(page, compound_order(page));
4598 }
4599 EXPORT_SYMBOL(__page_frag_cache_drain);
4600
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4601 void *page_frag_alloc_align(struct page_frag_cache *nc,
4602 unsigned int fragsz, gfp_t gfp_mask,
4603 unsigned int align_mask)
4604 {
4605 unsigned int size = PAGE_SIZE;
4606 struct page *page;
4607 int offset;
4608
4609 if (unlikely(!nc->va)) {
4610 refill:
4611 page = __page_frag_cache_refill(nc, gfp_mask);
4612 if (!page)
4613 return NULL;
4614
4615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4616 /* if size can vary use size else just use PAGE_SIZE */
4617 size = nc->size;
4618 #endif
4619 /* Even if we own the page, we do not use atomic_set().
4620 * This would break get_page_unless_zero() users.
4621 */
4622 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4623
4624 /* reset page count bias and offset to start of new frag */
4625 nc->pfmemalloc = page_is_pfmemalloc(page);
4626 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4627 nc->offset = size;
4628 }
4629
4630 offset = nc->offset - fragsz;
4631 if (unlikely(offset < 0)) {
4632 page = virt_to_page(nc->va);
4633
4634 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4635 goto refill;
4636
4637 if (unlikely(nc->pfmemalloc)) {
4638 free_the_page(page, compound_order(page));
4639 goto refill;
4640 }
4641
4642 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4643 /* if size can vary use size else just use PAGE_SIZE */
4644 size = nc->size;
4645 #endif
4646 /* OK, page count is 0, we can safely set it */
4647 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4648
4649 /* reset page count bias and offset to start of new frag */
4650 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4651 offset = size - fragsz;
4652 if (unlikely(offset < 0)) {
4653 /*
4654 * The caller is trying to allocate a fragment
4655 * with fragsz > PAGE_SIZE but the cache isn't big
4656 * enough to satisfy the request, this may
4657 * happen in low memory conditions.
4658 * We don't release the cache page because
4659 * it could make memory pressure worse
4660 * so we simply return NULL here.
4661 */
4662 return NULL;
4663 }
4664 }
4665
4666 nc->pagecnt_bias--;
4667 offset &= align_mask;
4668 nc->offset = offset;
4669
4670 return nc->va + offset;
4671 }
4672 EXPORT_SYMBOL(page_frag_alloc_align);
4673
4674 /*
4675 * Frees a page fragment allocated out of either a compound or order 0 page.
4676 */
page_frag_free(void * addr)4677 void page_frag_free(void *addr)
4678 {
4679 struct page *page = virt_to_head_page(addr);
4680
4681 if (unlikely(put_page_testzero(page)))
4682 free_the_page(page, compound_order(page));
4683 }
4684 EXPORT_SYMBOL(page_frag_free);
4685
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4686 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4687 size_t size)
4688 {
4689 if (addr) {
4690 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4691 struct page *page = virt_to_page((void *)addr);
4692 struct page *last = page + nr;
4693
4694 split_page_owner(page, 1 << order);
4695 split_page_memcg(page, 1 << order);
4696 while (page < --last)
4697 set_page_refcounted(last);
4698
4699 last = page + (1UL << order);
4700 for (page += nr; page < last; page++)
4701 __free_pages_ok(page, 0, FPI_TO_TAIL);
4702 }
4703 return (void *)addr;
4704 }
4705
4706 /**
4707 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4708 * @size: the number of bytes to allocate
4709 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4710 *
4711 * This function is similar to alloc_pages(), except that it allocates the
4712 * minimum number of pages to satisfy the request. alloc_pages() can only
4713 * allocate memory in power-of-two pages.
4714 *
4715 * This function is also limited by MAX_ORDER.
4716 *
4717 * Memory allocated by this function must be released by free_pages_exact().
4718 *
4719 * Return: pointer to the allocated area or %NULL in case of error.
4720 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4721 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4722 {
4723 unsigned int order = get_order(size);
4724 unsigned long addr;
4725
4726 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4727 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4728
4729 addr = __get_free_pages(gfp_mask, order);
4730 return make_alloc_exact(addr, order, size);
4731 }
4732 EXPORT_SYMBOL(alloc_pages_exact);
4733
4734 /**
4735 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4736 * pages on a node.
4737 * @nid: the preferred node ID where memory should be allocated
4738 * @size: the number of bytes to allocate
4739 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4740 *
4741 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4742 * back.
4743 *
4744 * Return: pointer to the allocated area or %NULL in case of error.
4745 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4746 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4747 {
4748 unsigned int order = get_order(size);
4749 struct page *p;
4750
4751 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4752 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4753
4754 p = alloc_pages_node(nid, gfp_mask, order);
4755 if (!p)
4756 return NULL;
4757 return make_alloc_exact((unsigned long)page_address(p), order, size);
4758 }
4759
4760 /**
4761 * free_pages_exact - release memory allocated via alloc_pages_exact()
4762 * @virt: the value returned by alloc_pages_exact.
4763 * @size: size of allocation, same value as passed to alloc_pages_exact().
4764 *
4765 * Release the memory allocated by a previous call to alloc_pages_exact.
4766 */
free_pages_exact(void * virt,size_t size)4767 void free_pages_exact(void *virt, size_t size)
4768 {
4769 unsigned long addr = (unsigned long)virt;
4770 unsigned long end = addr + PAGE_ALIGN(size);
4771
4772 while (addr < end) {
4773 free_page(addr);
4774 addr += PAGE_SIZE;
4775 }
4776 }
4777 EXPORT_SYMBOL(free_pages_exact);
4778
4779 /**
4780 * nr_free_zone_pages - count number of pages beyond high watermark
4781 * @offset: The zone index of the highest zone
4782 *
4783 * nr_free_zone_pages() counts the number of pages which are beyond the
4784 * high watermark within all zones at or below a given zone index. For each
4785 * zone, the number of pages is calculated as:
4786 *
4787 * nr_free_zone_pages = managed_pages - high_pages
4788 *
4789 * Return: number of pages beyond high watermark.
4790 */
nr_free_zone_pages(int offset)4791 static unsigned long nr_free_zone_pages(int offset)
4792 {
4793 struct zoneref *z;
4794 struct zone *zone;
4795
4796 /* Just pick one node, since fallback list is circular */
4797 unsigned long sum = 0;
4798
4799 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4800
4801 for_each_zone_zonelist(zone, z, zonelist, offset) {
4802 unsigned long size = zone_managed_pages(zone);
4803 unsigned long high = high_wmark_pages(zone);
4804 if (size > high)
4805 sum += size - high;
4806 }
4807
4808 return sum;
4809 }
4810
4811 /**
4812 * nr_free_buffer_pages - count number of pages beyond high watermark
4813 *
4814 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4815 * watermark within ZONE_DMA and ZONE_NORMAL.
4816 *
4817 * Return: number of pages beyond high watermark within ZONE_DMA and
4818 * ZONE_NORMAL.
4819 */
nr_free_buffer_pages(void)4820 unsigned long nr_free_buffer_pages(void)
4821 {
4822 return nr_free_zone_pages(gfp_zone(GFP_USER));
4823 }
4824 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4825
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4826 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4827 {
4828 zoneref->zone = zone;
4829 zoneref->zone_idx = zone_idx(zone);
4830 }
4831
4832 /*
4833 * Builds allocation fallback zone lists.
4834 *
4835 * Add all populated zones of a node to the zonelist.
4836 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4837 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4838 {
4839 struct zone *zone;
4840 enum zone_type zone_type = MAX_NR_ZONES;
4841 int nr_zones = 0;
4842
4843 do {
4844 zone_type--;
4845 zone = pgdat->node_zones + zone_type;
4846 if (populated_zone(zone)) {
4847 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4848 check_highest_zone(zone_type);
4849 }
4850 } while (zone_type);
4851
4852 return nr_zones;
4853 }
4854
4855 #ifdef CONFIG_NUMA
4856
__parse_numa_zonelist_order(char * s)4857 static int __parse_numa_zonelist_order(char *s)
4858 {
4859 /*
4860 * We used to support different zonelists modes but they turned
4861 * out to be just not useful. Let's keep the warning in place
4862 * if somebody still use the cmd line parameter so that we do
4863 * not fail it silently
4864 */
4865 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4866 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4867 return -EINVAL;
4868 }
4869 return 0;
4870 }
4871
4872 static char numa_zonelist_order[] = "Node";
4873 #define NUMA_ZONELIST_ORDER_LEN 16
4874 /*
4875 * sysctl handler for numa_zonelist_order
4876 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4877 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4878 void *buffer, size_t *length, loff_t *ppos)
4879 {
4880 if (write)
4881 return __parse_numa_zonelist_order(buffer);
4882 return proc_dostring(table, write, buffer, length, ppos);
4883 }
4884
4885 static int node_load[MAX_NUMNODES];
4886
4887 /**
4888 * find_next_best_node - find the next node that should appear in a given node's fallback list
4889 * @node: node whose fallback list we're appending
4890 * @used_node_mask: nodemask_t of already used nodes
4891 *
4892 * We use a number of factors to determine which is the next node that should
4893 * appear on a given node's fallback list. The node should not have appeared
4894 * already in @node's fallback list, and it should be the next closest node
4895 * according to the distance array (which contains arbitrary distance values
4896 * from each node to each node in the system), and should also prefer nodes
4897 * with no CPUs, since presumably they'll have very little allocation pressure
4898 * on them otherwise.
4899 *
4900 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4901 */
find_next_best_node(int node,nodemask_t * used_node_mask)4902 int find_next_best_node(int node, nodemask_t *used_node_mask)
4903 {
4904 int n, val;
4905 int min_val = INT_MAX;
4906 int best_node = NUMA_NO_NODE;
4907
4908 /* Use the local node if we haven't already */
4909 if (!node_isset(node, *used_node_mask)) {
4910 node_set(node, *used_node_mask);
4911 return node;
4912 }
4913
4914 for_each_node_state(n, N_MEMORY) {
4915
4916 /* Don't want a node to appear more than once */
4917 if (node_isset(n, *used_node_mask))
4918 continue;
4919
4920 /* Use the distance array to find the distance */
4921 val = node_distance(node, n);
4922
4923 /* Penalize nodes under us ("prefer the next node") */
4924 val += (n < node);
4925
4926 /* Give preference to headless and unused nodes */
4927 if (!cpumask_empty(cpumask_of_node(n)))
4928 val += PENALTY_FOR_NODE_WITH_CPUS;
4929
4930 /* Slight preference for less loaded node */
4931 val *= MAX_NUMNODES;
4932 val += node_load[n];
4933
4934 if (val < min_val) {
4935 min_val = val;
4936 best_node = n;
4937 }
4938 }
4939
4940 if (best_node >= 0)
4941 node_set(best_node, *used_node_mask);
4942
4943 return best_node;
4944 }
4945
4946
4947 /*
4948 * Build zonelists ordered by node and zones within node.
4949 * This results in maximum locality--normal zone overflows into local
4950 * DMA zone, if any--but risks exhausting DMA zone.
4951 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)4952 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4953 unsigned nr_nodes)
4954 {
4955 struct zoneref *zonerefs;
4956 int i;
4957
4958 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4959
4960 for (i = 0; i < nr_nodes; i++) {
4961 int nr_zones;
4962
4963 pg_data_t *node = NODE_DATA(node_order[i]);
4964
4965 nr_zones = build_zonerefs_node(node, zonerefs);
4966 zonerefs += nr_zones;
4967 }
4968 zonerefs->zone = NULL;
4969 zonerefs->zone_idx = 0;
4970 }
4971
4972 /*
4973 * Build gfp_thisnode zonelists
4974 */
build_thisnode_zonelists(pg_data_t * pgdat)4975 static void build_thisnode_zonelists(pg_data_t *pgdat)
4976 {
4977 struct zoneref *zonerefs;
4978 int nr_zones;
4979
4980 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4981 nr_zones = build_zonerefs_node(pgdat, zonerefs);
4982 zonerefs += nr_zones;
4983 zonerefs->zone = NULL;
4984 zonerefs->zone_idx = 0;
4985 }
4986
4987 /*
4988 * Build zonelists ordered by zone and nodes within zones.
4989 * This results in conserving DMA zone[s] until all Normal memory is
4990 * exhausted, but results in overflowing to remote node while memory
4991 * may still exist in local DMA zone.
4992 */
4993
build_zonelists(pg_data_t * pgdat)4994 static void build_zonelists(pg_data_t *pgdat)
4995 {
4996 static int node_order[MAX_NUMNODES];
4997 int node, nr_nodes = 0;
4998 nodemask_t used_mask = NODE_MASK_NONE;
4999 int local_node, prev_node;
5000
5001 /* NUMA-aware ordering of nodes */
5002 local_node = pgdat->node_id;
5003 prev_node = local_node;
5004
5005 memset(node_order, 0, sizeof(node_order));
5006 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5007 /*
5008 * We don't want to pressure a particular node.
5009 * So adding penalty to the first node in same
5010 * distance group to make it round-robin.
5011 */
5012 if (node_distance(local_node, node) !=
5013 node_distance(local_node, prev_node))
5014 node_load[node] += 1;
5015
5016 node_order[nr_nodes++] = node;
5017 prev_node = node;
5018 }
5019
5020 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5021 build_thisnode_zonelists(pgdat);
5022 pr_info("Fallback order for Node %d: ", local_node);
5023 for (node = 0; node < nr_nodes; node++)
5024 pr_cont("%d ", node_order[node]);
5025 pr_cont("\n");
5026 }
5027
5028 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5029 /*
5030 * Return node id of node used for "local" allocations.
5031 * I.e., first node id of first zone in arg node's generic zonelist.
5032 * Used for initializing percpu 'numa_mem', which is used primarily
5033 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5034 */
local_memory_node(int node)5035 int local_memory_node(int node)
5036 {
5037 struct zoneref *z;
5038
5039 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5040 gfp_zone(GFP_KERNEL),
5041 NULL);
5042 return zone_to_nid(z->zone);
5043 }
5044 #endif
5045
5046 static void setup_min_unmapped_ratio(void);
5047 static void setup_min_slab_ratio(void);
5048 #else /* CONFIG_NUMA */
5049
build_zonelists(pg_data_t * pgdat)5050 static void build_zonelists(pg_data_t *pgdat)
5051 {
5052 int node, local_node;
5053 struct zoneref *zonerefs;
5054 int nr_zones;
5055
5056 local_node = pgdat->node_id;
5057
5058 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5059 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5060 zonerefs += nr_zones;
5061
5062 /*
5063 * Now we build the zonelist so that it contains the zones
5064 * of all the other nodes.
5065 * We don't want to pressure a particular node, so when
5066 * building the zones for node N, we make sure that the
5067 * zones coming right after the local ones are those from
5068 * node N+1 (modulo N)
5069 */
5070 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5071 if (!node_online(node))
5072 continue;
5073 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5074 zonerefs += nr_zones;
5075 }
5076 for (node = 0; node < local_node; node++) {
5077 if (!node_online(node))
5078 continue;
5079 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5080 zonerefs += nr_zones;
5081 }
5082
5083 zonerefs->zone = NULL;
5084 zonerefs->zone_idx = 0;
5085 }
5086
5087 #endif /* CONFIG_NUMA */
5088
5089 /*
5090 * Boot pageset table. One per cpu which is going to be used for all
5091 * zones and all nodes. The parameters will be set in such a way
5092 * that an item put on a list will immediately be handed over to
5093 * the buddy list. This is safe since pageset manipulation is done
5094 * with interrupts disabled.
5095 *
5096 * The boot_pagesets must be kept even after bootup is complete for
5097 * unused processors and/or zones. They do play a role for bootstrapping
5098 * hotplugged processors.
5099 *
5100 * zoneinfo_show() and maybe other functions do
5101 * not check if the processor is online before following the pageset pointer.
5102 * Other parts of the kernel may not check if the zone is available.
5103 */
5104 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5105 /* These effectively disable the pcplists in the boot pageset completely */
5106 #define BOOT_PAGESET_HIGH 0
5107 #define BOOT_PAGESET_BATCH 1
5108 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5109 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5110
__build_all_zonelists(void * data)5111 static void __build_all_zonelists(void *data)
5112 {
5113 int nid;
5114 int __maybe_unused cpu;
5115 pg_data_t *self = data;
5116 unsigned long flags;
5117
5118 /*
5119 * The zonelist_update_seq must be acquired with irqsave because the
5120 * reader can be invoked from IRQ with GFP_ATOMIC.
5121 */
5122 write_seqlock_irqsave(&zonelist_update_seq, flags);
5123 /*
5124 * Also disable synchronous printk() to prevent any printk() from
5125 * trying to hold port->lock, for
5126 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5127 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5128 */
5129 printk_deferred_enter();
5130
5131 #ifdef CONFIG_NUMA
5132 memset(node_load, 0, sizeof(node_load));
5133 #endif
5134
5135 /*
5136 * This node is hotadded and no memory is yet present. So just
5137 * building zonelists is fine - no need to touch other nodes.
5138 */
5139 if (self && !node_online(self->node_id)) {
5140 build_zonelists(self);
5141 } else {
5142 /*
5143 * All possible nodes have pgdat preallocated
5144 * in free_area_init
5145 */
5146 for_each_node(nid) {
5147 pg_data_t *pgdat = NODE_DATA(nid);
5148
5149 build_zonelists(pgdat);
5150 }
5151
5152 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5153 /*
5154 * We now know the "local memory node" for each node--
5155 * i.e., the node of the first zone in the generic zonelist.
5156 * Set up numa_mem percpu variable for on-line cpus. During
5157 * boot, only the boot cpu should be on-line; we'll init the
5158 * secondary cpus' numa_mem as they come on-line. During
5159 * node/memory hotplug, we'll fixup all on-line cpus.
5160 */
5161 for_each_online_cpu(cpu)
5162 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5163 #endif
5164 }
5165
5166 printk_deferred_exit();
5167 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5168 }
5169
5170 static noinline void __init
build_all_zonelists_init(void)5171 build_all_zonelists_init(void)
5172 {
5173 int cpu;
5174
5175 __build_all_zonelists(NULL);
5176
5177 /*
5178 * Initialize the boot_pagesets that are going to be used
5179 * for bootstrapping processors. The real pagesets for
5180 * each zone will be allocated later when the per cpu
5181 * allocator is available.
5182 *
5183 * boot_pagesets are used also for bootstrapping offline
5184 * cpus if the system is already booted because the pagesets
5185 * are needed to initialize allocators on a specific cpu too.
5186 * F.e. the percpu allocator needs the page allocator which
5187 * needs the percpu allocator in order to allocate its pagesets
5188 * (a chicken-egg dilemma).
5189 */
5190 for_each_possible_cpu(cpu)
5191 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5192
5193 mminit_verify_zonelist();
5194 cpuset_init_current_mems_allowed();
5195 }
5196
5197 /*
5198 * unless system_state == SYSTEM_BOOTING.
5199 *
5200 * __ref due to call of __init annotated helper build_all_zonelists_init
5201 * [protected by SYSTEM_BOOTING].
5202 */
build_all_zonelists(pg_data_t * pgdat)5203 void __ref build_all_zonelists(pg_data_t *pgdat)
5204 {
5205 unsigned long vm_total_pages;
5206
5207 if (system_state == SYSTEM_BOOTING) {
5208 build_all_zonelists_init();
5209 } else {
5210 __build_all_zonelists(pgdat);
5211 /* cpuset refresh routine should be here */
5212 }
5213 /* Get the number of free pages beyond high watermark in all zones. */
5214 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5215 /*
5216 * Disable grouping by mobility if the number of pages in the
5217 * system is too low to allow the mechanism to work. It would be
5218 * more accurate, but expensive to check per-zone. This check is
5219 * made on memory-hotadd so a system can start with mobility
5220 * disabled and enable it later
5221 */
5222 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5223 page_group_by_mobility_disabled = 1;
5224 else
5225 page_group_by_mobility_disabled = 0;
5226
5227 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5228 nr_online_nodes,
5229 page_group_by_mobility_disabled ? "off" : "on",
5230 vm_total_pages);
5231 #ifdef CONFIG_NUMA
5232 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5233 #endif
5234 }
5235
zone_batchsize(struct zone * zone)5236 static int zone_batchsize(struct zone *zone)
5237 {
5238 #ifdef CONFIG_MMU
5239 int batch;
5240
5241 /*
5242 * The number of pages to batch allocate is either ~0.1%
5243 * of the zone or 1MB, whichever is smaller. The batch
5244 * size is striking a balance between allocation latency
5245 * and zone lock contention.
5246 */
5247 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5248 batch /= 4; /* We effectively *= 4 below */
5249 if (batch < 1)
5250 batch = 1;
5251
5252 /*
5253 * Clamp the batch to a 2^n - 1 value. Having a power
5254 * of 2 value was found to be more likely to have
5255 * suboptimal cache aliasing properties in some cases.
5256 *
5257 * For example if 2 tasks are alternately allocating
5258 * batches of pages, one task can end up with a lot
5259 * of pages of one half of the possible page colors
5260 * and the other with pages of the other colors.
5261 */
5262 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5263
5264 return batch;
5265
5266 #else
5267 /* The deferral and batching of frees should be suppressed under NOMMU
5268 * conditions.
5269 *
5270 * The problem is that NOMMU needs to be able to allocate large chunks
5271 * of contiguous memory as there's no hardware page translation to
5272 * assemble apparent contiguous memory from discontiguous pages.
5273 *
5274 * Queueing large contiguous runs of pages for batching, however,
5275 * causes the pages to actually be freed in smaller chunks. As there
5276 * can be a significant delay between the individual batches being
5277 * recycled, this leads to the once large chunks of space being
5278 * fragmented and becoming unavailable for high-order allocations.
5279 */
5280 return 0;
5281 #endif
5282 }
5283
5284 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5285 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5286 {
5287 #ifdef CONFIG_MMU
5288 int high;
5289 int nr_split_cpus;
5290 unsigned long total_pages;
5291
5292 if (!percpu_pagelist_high_fraction) {
5293 /*
5294 * By default, the high value of the pcp is based on the zone
5295 * low watermark so that if they are full then background
5296 * reclaim will not be started prematurely.
5297 */
5298 total_pages = low_wmark_pages(zone);
5299 } else {
5300 /*
5301 * If percpu_pagelist_high_fraction is configured, the high
5302 * value is based on a fraction of the managed pages in the
5303 * zone.
5304 */
5305 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5306 }
5307
5308 /*
5309 * Split the high value across all online CPUs local to the zone. Note
5310 * that early in boot that CPUs may not be online yet and that during
5311 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5312 * onlined. For memory nodes that have no CPUs, split pcp->high across
5313 * all online CPUs to mitigate the risk that reclaim is triggered
5314 * prematurely due to pages stored on pcp lists.
5315 */
5316 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5317 if (!nr_split_cpus)
5318 nr_split_cpus = num_online_cpus();
5319 high = total_pages / nr_split_cpus;
5320
5321 /*
5322 * Ensure high is at least batch*4. The multiple is based on the
5323 * historical relationship between high and batch.
5324 */
5325 high = max(high, batch << 2);
5326
5327 return high;
5328 #else
5329 return 0;
5330 #endif
5331 }
5332
5333 /*
5334 * pcp->high and pcp->batch values are related and generally batch is lower
5335 * than high. They are also related to pcp->count such that count is lower
5336 * than high, and as soon as it reaches high, the pcplist is flushed.
5337 *
5338 * However, guaranteeing these relations at all times would require e.g. write
5339 * barriers here but also careful usage of read barriers at the read side, and
5340 * thus be prone to error and bad for performance. Thus the update only prevents
5341 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5342 * can cope with those fields changing asynchronously, and fully trust only the
5343 * pcp->count field on the local CPU with interrupts disabled.
5344 *
5345 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5346 * outside of boot time (or some other assurance that no concurrent updaters
5347 * exist).
5348 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5349 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5350 unsigned long batch)
5351 {
5352 WRITE_ONCE(pcp->batch, batch);
5353 WRITE_ONCE(pcp->high, high);
5354 }
5355
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5356 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5357 {
5358 int pindex;
5359
5360 memset(pcp, 0, sizeof(*pcp));
5361 memset(pzstats, 0, sizeof(*pzstats));
5362
5363 spin_lock_init(&pcp->lock);
5364 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5365 INIT_LIST_HEAD(&pcp->lists[pindex]);
5366
5367 /*
5368 * Set batch and high values safe for a boot pageset. A true percpu
5369 * pageset's initialization will update them subsequently. Here we don't
5370 * need to be as careful as pageset_update() as nobody can access the
5371 * pageset yet.
5372 */
5373 pcp->high = BOOT_PAGESET_HIGH;
5374 pcp->batch = BOOT_PAGESET_BATCH;
5375 pcp->free_factor = 0;
5376 }
5377
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5378 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5379 unsigned long batch)
5380 {
5381 struct per_cpu_pages *pcp;
5382 int cpu;
5383
5384 for_each_possible_cpu(cpu) {
5385 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5386 pageset_update(pcp, high, batch);
5387 }
5388 }
5389
5390 /*
5391 * Calculate and set new high and batch values for all per-cpu pagesets of a
5392 * zone based on the zone's size.
5393 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5394 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5395 {
5396 int new_high, new_batch;
5397
5398 new_batch = max(1, zone_batchsize(zone));
5399 new_high = zone_highsize(zone, new_batch, cpu_online);
5400
5401 if (zone->pageset_high == new_high &&
5402 zone->pageset_batch == new_batch)
5403 return;
5404
5405 zone->pageset_high = new_high;
5406 zone->pageset_batch = new_batch;
5407
5408 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5409 }
5410
setup_zone_pageset(struct zone * zone)5411 void __meminit setup_zone_pageset(struct zone *zone)
5412 {
5413 int cpu;
5414
5415 /* Size may be 0 on !SMP && !NUMA */
5416 if (sizeof(struct per_cpu_zonestat) > 0)
5417 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5418
5419 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5420 for_each_possible_cpu(cpu) {
5421 struct per_cpu_pages *pcp;
5422 struct per_cpu_zonestat *pzstats;
5423
5424 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5425 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5426 per_cpu_pages_init(pcp, pzstats);
5427 }
5428
5429 zone_set_pageset_high_and_batch(zone, 0);
5430 }
5431
5432 /*
5433 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5434 * page high values need to be recalculated.
5435 */
zone_pcp_update(struct zone * zone,int cpu_online)5436 static void zone_pcp_update(struct zone *zone, int cpu_online)
5437 {
5438 mutex_lock(&pcp_batch_high_lock);
5439 zone_set_pageset_high_and_batch(zone, cpu_online);
5440 mutex_unlock(&pcp_batch_high_lock);
5441 }
5442
5443 /*
5444 * Allocate per cpu pagesets and initialize them.
5445 * Before this call only boot pagesets were available.
5446 */
setup_per_cpu_pageset(void)5447 void __init setup_per_cpu_pageset(void)
5448 {
5449 struct pglist_data *pgdat;
5450 struct zone *zone;
5451 int __maybe_unused cpu;
5452
5453 for_each_populated_zone(zone)
5454 setup_zone_pageset(zone);
5455
5456 #ifdef CONFIG_NUMA
5457 /*
5458 * Unpopulated zones continue using the boot pagesets.
5459 * The numa stats for these pagesets need to be reset.
5460 * Otherwise, they will end up skewing the stats of
5461 * the nodes these zones are associated with.
5462 */
5463 for_each_possible_cpu(cpu) {
5464 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5465 memset(pzstats->vm_numa_event, 0,
5466 sizeof(pzstats->vm_numa_event));
5467 }
5468 #endif
5469
5470 for_each_online_pgdat(pgdat)
5471 pgdat->per_cpu_nodestats =
5472 alloc_percpu(struct per_cpu_nodestat);
5473 }
5474
zone_pcp_init(struct zone * zone)5475 __meminit void zone_pcp_init(struct zone *zone)
5476 {
5477 /*
5478 * per cpu subsystem is not up at this point. The following code
5479 * relies on the ability of the linker to provide the
5480 * offset of a (static) per cpu variable into the per cpu area.
5481 */
5482 zone->per_cpu_pageset = &boot_pageset;
5483 zone->per_cpu_zonestats = &boot_zonestats;
5484 zone->pageset_high = BOOT_PAGESET_HIGH;
5485 zone->pageset_batch = BOOT_PAGESET_BATCH;
5486
5487 if (populated_zone(zone))
5488 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5489 zone->present_pages, zone_batchsize(zone));
5490 }
5491
adjust_managed_page_count(struct page * page,long count)5492 void adjust_managed_page_count(struct page *page, long count)
5493 {
5494 atomic_long_add(count, &page_zone(page)->managed_pages);
5495 totalram_pages_add(count);
5496 #ifdef CONFIG_HIGHMEM
5497 if (PageHighMem(page))
5498 totalhigh_pages_add(count);
5499 #endif
5500 }
5501 EXPORT_SYMBOL(adjust_managed_page_count);
5502
free_reserved_area(void * start,void * end,int poison,const char * s)5503 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5504 {
5505 void *pos;
5506 unsigned long pages = 0;
5507
5508 start = (void *)PAGE_ALIGN((unsigned long)start);
5509 end = (void *)((unsigned long)end & PAGE_MASK);
5510 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5511 struct page *page = virt_to_page(pos);
5512 void *direct_map_addr;
5513
5514 /*
5515 * 'direct_map_addr' might be different from 'pos'
5516 * because some architectures' virt_to_page()
5517 * work with aliases. Getting the direct map
5518 * address ensures that we get a _writeable_
5519 * alias for the memset().
5520 */
5521 direct_map_addr = page_address(page);
5522 /*
5523 * Perform a kasan-unchecked memset() since this memory
5524 * has not been initialized.
5525 */
5526 direct_map_addr = kasan_reset_tag(direct_map_addr);
5527 if ((unsigned int)poison <= 0xFF)
5528 memset(direct_map_addr, poison, PAGE_SIZE);
5529
5530 free_reserved_page(page);
5531 }
5532
5533 if (pages && s)
5534 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5535
5536 return pages;
5537 }
5538
page_alloc_cpu_dead(unsigned int cpu)5539 static int page_alloc_cpu_dead(unsigned int cpu)
5540 {
5541 struct zone *zone;
5542
5543 lru_add_drain_cpu(cpu);
5544 mlock_drain_remote(cpu);
5545 drain_pages(cpu);
5546
5547 /*
5548 * Spill the event counters of the dead processor
5549 * into the current processors event counters.
5550 * This artificially elevates the count of the current
5551 * processor.
5552 */
5553 vm_events_fold_cpu(cpu);
5554
5555 /*
5556 * Zero the differential counters of the dead processor
5557 * so that the vm statistics are consistent.
5558 *
5559 * This is only okay since the processor is dead and cannot
5560 * race with what we are doing.
5561 */
5562 cpu_vm_stats_fold(cpu);
5563
5564 for_each_populated_zone(zone)
5565 zone_pcp_update(zone, 0);
5566
5567 return 0;
5568 }
5569
page_alloc_cpu_online(unsigned int cpu)5570 static int page_alloc_cpu_online(unsigned int cpu)
5571 {
5572 struct zone *zone;
5573
5574 for_each_populated_zone(zone)
5575 zone_pcp_update(zone, 1);
5576 return 0;
5577 }
5578
page_alloc_init_cpuhp(void)5579 void __init page_alloc_init_cpuhp(void)
5580 {
5581 int ret;
5582
5583 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5584 "mm/page_alloc:pcp",
5585 page_alloc_cpu_online,
5586 page_alloc_cpu_dead);
5587 WARN_ON(ret < 0);
5588 }
5589
5590 /*
5591 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5592 * or min_free_kbytes changes.
5593 */
calculate_totalreserve_pages(void)5594 static void calculate_totalreserve_pages(void)
5595 {
5596 struct pglist_data *pgdat;
5597 unsigned long reserve_pages = 0;
5598 enum zone_type i, j;
5599
5600 for_each_online_pgdat(pgdat) {
5601
5602 pgdat->totalreserve_pages = 0;
5603
5604 for (i = 0; i < MAX_NR_ZONES; i++) {
5605 struct zone *zone = pgdat->node_zones + i;
5606 long max = 0;
5607 unsigned long managed_pages = zone_managed_pages(zone);
5608
5609 /* Find valid and maximum lowmem_reserve in the zone */
5610 for (j = i; j < MAX_NR_ZONES; j++) {
5611 if (zone->lowmem_reserve[j] > max)
5612 max = zone->lowmem_reserve[j];
5613 }
5614
5615 /* we treat the high watermark as reserved pages. */
5616 max += high_wmark_pages(zone);
5617
5618 if (max > managed_pages)
5619 max = managed_pages;
5620
5621 pgdat->totalreserve_pages += max;
5622
5623 reserve_pages += max;
5624 }
5625 }
5626 totalreserve_pages = reserve_pages;
5627 }
5628
5629 /*
5630 * setup_per_zone_lowmem_reserve - called whenever
5631 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5632 * has a correct pages reserved value, so an adequate number of
5633 * pages are left in the zone after a successful __alloc_pages().
5634 */
setup_per_zone_lowmem_reserve(void)5635 static void setup_per_zone_lowmem_reserve(void)
5636 {
5637 struct pglist_data *pgdat;
5638 enum zone_type i, j;
5639
5640 for_each_online_pgdat(pgdat) {
5641 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5642 struct zone *zone = &pgdat->node_zones[i];
5643 int ratio = sysctl_lowmem_reserve_ratio[i];
5644 bool clear = !ratio || !zone_managed_pages(zone);
5645 unsigned long managed_pages = 0;
5646
5647 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5648 struct zone *upper_zone = &pgdat->node_zones[j];
5649
5650 managed_pages += zone_managed_pages(upper_zone);
5651
5652 if (clear)
5653 zone->lowmem_reserve[j] = 0;
5654 else
5655 zone->lowmem_reserve[j] = managed_pages / ratio;
5656 }
5657 }
5658 }
5659
5660 /* update totalreserve_pages */
5661 calculate_totalreserve_pages();
5662 }
5663
__setup_per_zone_wmarks(void)5664 static void __setup_per_zone_wmarks(void)
5665 {
5666 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5667 unsigned long lowmem_pages = 0;
5668 struct zone *zone;
5669 unsigned long flags;
5670
5671 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5672 for_each_zone(zone) {
5673 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5674 lowmem_pages += zone_managed_pages(zone);
5675 }
5676
5677 for_each_zone(zone) {
5678 u64 tmp;
5679
5680 spin_lock_irqsave(&zone->lock, flags);
5681 tmp = (u64)pages_min * zone_managed_pages(zone);
5682 do_div(tmp, lowmem_pages);
5683 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5684 /*
5685 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5686 * need highmem and movable zones pages, so cap pages_min
5687 * to a small value here.
5688 *
5689 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5690 * deltas control async page reclaim, and so should
5691 * not be capped for highmem and movable zones.
5692 */
5693 unsigned long min_pages;
5694
5695 min_pages = zone_managed_pages(zone) / 1024;
5696 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5697 zone->_watermark[WMARK_MIN] = min_pages;
5698 } else {
5699 /*
5700 * If it's a lowmem zone, reserve a number of pages
5701 * proportionate to the zone's size.
5702 */
5703 zone->_watermark[WMARK_MIN] = tmp;
5704 }
5705
5706 /*
5707 * Set the kswapd watermarks distance according to the
5708 * scale factor in proportion to available memory, but
5709 * ensure a minimum size on small systems.
5710 */
5711 tmp = max_t(u64, tmp >> 2,
5712 mult_frac(zone_managed_pages(zone),
5713 watermark_scale_factor, 10000));
5714
5715 zone->watermark_boost = 0;
5716 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5717 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5718 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5719
5720 spin_unlock_irqrestore(&zone->lock, flags);
5721 }
5722
5723 /* update totalreserve_pages */
5724 calculate_totalreserve_pages();
5725 }
5726
5727 /**
5728 * setup_per_zone_wmarks - called when min_free_kbytes changes
5729 * or when memory is hot-{added|removed}
5730 *
5731 * Ensures that the watermark[min,low,high] values for each zone are set
5732 * correctly with respect to min_free_kbytes.
5733 */
setup_per_zone_wmarks(void)5734 void setup_per_zone_wmarks(void)
5735 {
5736 struct zone *zone;
5737 static DEFINE_SPINLOCK(lock);
5738
5739 spin_lock(&lock);
5740 __setup_per_zone_wmarks();
5741 spin_unlock(&lock);
5742
5743 /*
5744 * The watermark size have changed so update the pcpu batch
5745 * and high limits or the limits may be inappropriate.
5746 */
5747 for_each_zone(zone)
5748 zone_pcp_update(zone, 0);
5749 }
5750
5751 /*
5752 * Initialise min_free_kbytes.
5753 *
5754 * For small machines we want it small (128k min). For large machines
5755 * we want it large (256MB max). But it is not linear, because network
5756 * bandwidth does not increase linearly with machine size. We use
5757 *
5758 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5759 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5760 *
5761 * which yields
5762 *
5763 * 16MB: 512k
5764 * 32MB: 724k
5765 * 64MB: 1024k
5766 * 128MB: 1448k
5767 * 256MB: 2048k
5768 * 512MB: 2896k
5769 * 1024MB: 4096k
5770 * 2048MB: 5792k
5771 * 4096MB: 8192k
5772 * 8192MB: 11584k
5773 * 16384MB: 16384k
5774 */
calculate_min_free_kbytes(void)5775 void calculate_min_free_kbytes(void)
5776 {
5777 unsigned long lowmem_kbytes;
5778 int new_min_free_kbytes;
5779
5780 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5781 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5782
5783 if (new_min_free_kbytes > user_min_free_kbytes)
5784 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5785 else
5786 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5787 new_min_free_kbytes, user_min_free_kbytes);
5788
5789 }
5790
init_per_zone_wmark_min(void)5791 int __meminit init_per_zone_wmark_min(void)
5792 {
5793 calculate_min_free_kbytes();
5794 setup_per_zone_wmarks();
5795 refresh_zone_stat_thresholds();
5796 setup_per_zone_lowmem_reserve();
5797
5798 #ifdef CONFIG_NUMA
5799 setup_min_unmapped_ratio();
5800 setup_min_slab_ratio();
5801 #endif
5802
5803 khugepaged_min_free_kbytes_update();
5804
5805 return 0;
5806 }
postcore_initcall(init_per_zone_wmark_min)5807 postcore_initcall(init_per_zone_wmark_min)
5808
5809 /*
5810 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5811 * that we can call two helper functions whenever min_free_kbytes
5812 * changes.
5813 */
5814 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5815 void *buffer, size_t *length, loff_t *ppos)
5816 {
5817 int rc;
5818
5819 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5820 if (rc)
5821 return rc;
5822
5823 if (write) {
5824 user_min_free_kbytes = min_free_kbytes;
5825 setup_per_zone_wmarks();
5826 }
5827 return 0;
5828 }
5829
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5830 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5831 void *buffer, size_t *length, loff_t *ppos)
5832 {
5833 int rc;
5834
5835 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5836 if (rc)
5837 return rc;
5838
5839 if (write)
5840 setup_per_zone_wmarks();
5841
5842 return 0;
5843 }
5844
5845 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5846 static void setup_min_unmapped_ratio(void)
5847 {
5848 pg_data_t *pgdat;
5849 struct zone *zone;
5850
5851 for_each_online_pgdat(pgdat)
5852 pgdat->min_unmapped_pages = 0;
5853
5854 for_each_zone(zone)
5855 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5856 sysctl_min_unmapped_ratio) / 100;
5857 }
5858
5859
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5860 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5861 void *buffer, size_t *length, loff_t *ppos)
5862 {
5863 int rc;
5864
5865 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5866 if (rc)
5867 return rc;
5868
5869 setup_min_unmapped_ratio();
5870
5871 return 0;
5872 }
5873
setup_min_slab_ratio(void)5874 static void setup_min_slab_ratio(void)
5875 {
5876 pg_data_t *pgdat;
5877 struct zone *zone;
5878
5879 for_each_online_pgdat(pgdat)
5880 pgdat->min_slab_pages = 0;
5881
5882 for_each_zone(zone)
5883 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5884 sysctl_min_slab_ratio) / 100;
5885 }
5886
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5887 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5888 void *buffer, size_t *length, loff_t *ppos)
5889 {
5890 int rc;
5891
5892 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5893 if (rc)
5894 return rc;
5895
5896 setup_min_slab_ratio();
5897
5898 return 0;
5899 }
5900 #endif
5901
5902 /*
5903 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5904 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5905 * whenever sysctl_lowmem_reserve_ratio changes.
5906 *
5907 * The reserve ratio obviously has absolutely no relation with the
5908 * minimum watermarks. The lowmem reserve ratio can only make sense
5909 * if in function of the boot time zone sizes.
5910 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5911 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5912 int write, void *buffer, size_t *length, loff_t *ppos)
5913 {
5914 int i;
5915
5916 proc_dointvec_minmax(table, write, buffer, length, ppos);
5917
5918 for (i = 0; i < MAX_NR_ZONES; i++) {
5919 if (sysctl_lowmem_reserve_ratio[i] < 1)
5920 sysctl_lowmem_reserve_ratio[i] = 0;
5921 }
5922
5923 setup_per_zone_lowmem_reserve();
5924 return 0;
5925 }
5926
5927 /*
5928 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5929 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5930 * pagelist can have before it gets flushed back to buddy allocator.
5931 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5932 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5933 int write, void *buffer, size_t *length, loff_t *ppos)
5934 {
5935 struct zone *zone;
5936 int old_percpu_pagelist_high_fraction;
5937 int ret;
5938
5939 mutex_lock(&pcp_batch_high_lock);
5940 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5941
5942 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5943 if (!write || ret < 0)
5944 goto out;
5945
5946 /* Sanity checking to avoid pcp imbalance */
5947 if (percpu_pagelist_high_fraction &&
5948 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5949 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5950 ret = -EINVAL;
5951 goto out;
5952 }
5953
5954 /* No change? */
5955 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5956 goto out;
5957
5958 for_each_populated_zone(zone)
5959 zone_set_pageset_high_and_batch(zone, 0);
5960 out:
5961 mutex_unlock(&pcp_batch_high_lock);
5962 return ret;
5963 }
5964
5965 static struct ctl_table page_alloc_sysctl_table[] = {
5966 {
5967 .procname = "min_free_kbytes",
5968 .data = &min_free_kbytes,
5969 .maxlen = sizeof(min_free_kbytes),
5970 .mode = 0644,
5971 .proc_handler = min_free_kbytes_sysctl_handler,
5972 .extra1 = SYSCTL_ZERO,
5973 },
5974 {
5975 .procname = "watermark_boost_factor",
5976 .data = &watermark_boost_factor,
5977 .maxlen = sizeof(watermark_boost_factor),
5978 .mode = 0644,
5979 .proc_handler = proc_dointvec_minmax,
5980 .extra1 = SYSCTL_ZERO,
5981 },
5982 {
5983 .procname = "watermark_scale_factor",
5984 .data = &watermark_scale_factor,
5985 .maxlen = sizeof(watermark_scale_factor),
5986 .mode = 0644,
5987 .proc_handler = watermark_scale_factor_sysctl_handler,
5988 .extra1 = SYSCTL_ONE,
5989 .extra2 = SYSCTL_THREE_THOUSAND,
5990 },
5991 {
5992 .procname = "percpu_pagelist_high_fraction",
5993 .data = &percpu_pagelist_high_fraction,
5994 .maxlen = sizeof(percpu_pagelist_high_fraction),
5995 .mode = 0644,
5996 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
5997 .extra1 = SYSCTL_ZERO,
5998 },
5999 {
6000 .procname = "lowmem_reserve_ratio",
6001 .data = &sysctl_lowmem_reserve_ratio,
6002 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6003 .mode = 0644,
6004 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6005 },
6006 #ifdef CONFIG_NUMA
6007 {
6008 .procname = "numa_zonelist_order",
6009 .data = &numa_zonelist_order,
6010 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6011 .mode = 0644,
6012 .proc_handler = numa_zonelist_order_handler,
6013 },
6014 {
6015 .procname = "min_unmapped_ratio",
6016 .data = &sysctl_min_unmapped_ratio,
6017 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6018 .mode = 0644,
6019 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6020 .extra1 = SYSCTL_ZERO,
6021 .extra2 = SYSCTL_ONE_HUNDRED,
6022 },
6023 {
6024 .procname = "min_slab_ratio",
6025 .data = &sysctl_min_slab_ratio,
6026 .maxlen = sizeof(sysctl_min_slab_ratio),
6027 .mode = 0644,
6028 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6029 .extra1 = SYSCTL_ZERO,
6030 .extra2 = SYSCTL_ONE_HUNDRED,
6031 },
6032 #endif
6033 {}
6034 };
6035
page_alloc_sysctl_init(void)6036 void __init page_alloc_sysctl_init(void)
6037 {
6038 register_sysctl_init("vm", page_alloc_sysctl_table);
6039 }
6040
6041 #ifdef CONFIG_CONTIG_ALLOC
6042 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6043 static void alloc_contig_dump_pages(struct list_head *page_list)
6044 {
6045 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6046
6047 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6048 struct page *page;
6049
6050 dump_stack();
6051 list_for_each_entry(page, page_list, lru)
6052 dump_page(page, "migration failure");
6053 }
6054 }
6055
6056 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6057 int __alloc_contig_migrate_range(struct compact_control *cc,
6058 unsigned long start, unsigned long end)
6059 {
6060 /* This function is based on compact_zone() from compaction.c. */
6061 unsigned int nr_reclaimed;
6062 unsigned long pfn = start;
6063 unsigned int tries = 0;
6064 int ret = 0;
6065 struct migration_target_control mtc = {
6066 .nid = zone_to_nid(cc->zone),
6067 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6068 };
6069
6070 lru_cache_disable();
6071
6072 while (pfn < end || !list_empty(&cc->migratepages)) {
6073 if (fatal_signal_pending(current)) {
6074 ret = -EINTR;
6075 break;
6076 }
6077
6078 if (list_empty(&cc->migratepages)) {
6079 cc->nr_migratepages = 0;
6080 ret = isolate_migratepages_range(cc, pfn, end);
6081 if (ret && ret != -EAGAIN)
6082 break;
6083 pfn = cc->migrate_pfn;
6084 tries = 0;
6085 } else if (++tries == 5) {
6086 ret = -EBUSY;
6087 break;
6088 }
6089
6090 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6091 &cc->migratepages);
6092 cc->nr_migratepages -= nr_reclaimed;
6093
6094 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6095 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6096
6097 /*
6098 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6099 * to retry again over this error, so do the same here.
6100 */
6101 if (ret == -ENOMEM)
6102 break;
6103 }
6104
6105 lru_cache_enable();
6106 if (ret < 0) {
6107 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6108 alloc_contig_dump_pages(&cc->migratepages);
6109 putback_movable_pages(&cc->migratepages);
6110 return ret;
6111 }
6112 return 0;
6113 }
6114
6115 /**
6116 * alloc_contig_range() -- tries to allocate given range of pages
6117 * @start: start PFN to allocate
6118 * @end: one-past-the-last PFN to allocate
6119 * @migratetype: migratetype of the underlying pageblocks (either
6120 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6121 * in range must have the same migratetype and it must
6122 * be either of the two.
6123 * @gfp_mask: GFP mask to use during compaction
6124 *
6125 * The PFN range does not have to be pageblock aligned. The PFN range must
6126 * belong to a single zone.
6127 *
6128 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6129 * pageblocks in the range. Once isolated, the pageblocks should not
6130 * be modified by others.
6131 *
6132 * Return: zero on success or negative error code. On success all
6133 * pages which PFN is in [start, end) are allocated for the caller and
6134 * need to be freed with free_contig_range().
6135 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6136 int alloc_contig_range(unsigned long start, unsigned long end,
6137 unsigned migratetype, gfp_t gfp_mask)
6138 {
6139 unsigned long outer_start, outer_end;
6140 int order;
6141 int ret = 0;
6142
6143 struct compact_control cc = {
6144 .nr_migratepages = 0,
6145 .order = -1,
6146 .zone = page_zone(pfn_to_page(start)),
6147 .mode = MIGRATE_SYNC,
6148 .ignore_skip_hint = true,
6149 .no_set_skip_hint = true,
6150 .gfp_mask = current_gfp_context(gfp_mask),
6151 .alloc_contig = true,
6152 };
6153 INIT_LIST_HEAD(&cc.migratepages);
6154
6155 /*
6156 * What we do here is we mark all pageblocks in range as
6157 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6158 * have different sizes, and due to the way page allocator
6159 * work, start_isolate_page_range() has special handlings for this.
6160 *
6161 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6162 * migrate the pages from an unaligned range (ie. pages that
6163 * we are interested in). This will put all the pages in
6164 * range back to page allocator as MIGRATE_ISOLATE.
6165 *
6166 * When this is done, we take the pages in range from page
6167 * allocator removing them from the buddy system. This way
6168 * page allocator will never consider using them.
6169 *
6170 * This lets us mark the pageblocks back as
6171 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6172 * aligned range but not in the unaligned, original range are
6173 * put back to page allocator so that buddy can use them.
6174 */
6175
6176 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6177 if (ret)
6178 goto done;
6179
6180 drain_all_pages(cc.zone);
6181
6182 /*
6183 * In case of -EBUSY, we'd like to know which page causes problem.
6184 * So, just fall through. test_pages_isolated() has a tracepoint
6185 * which will report the busy page.
6186 *
6187 * It is possible that busy pages could become available before
6188 * the call to test_pages_isolated, and the range will actually be
6189 * allocated. So, if we fall through be sure to clear ret so that
6190 * -EBUSY is not accidentally used or returned to caller.
6191 */
6192 ret = __alloc_contig_migrate_range(&cc, start, end);
6193 if (ret && ret != -EBUSY)
6194 goto done;
6195 ret = 0;
6196
6197 /*
6198 * Pages from [start, end) are within a pageblock_nr_pages
6199 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6200 * more, all pages in [start, end) are free in page allocator.
6201 * What we are going to do is to allocate all pages from
6202 * [start, end) (that is remove them from page allocator).
6203 *
6204 * The only problem is that pages at the beginning and at the
6205 * end of interesting range may be not aligned with pages that
6206 * page allocator holds, ie. they can be part of higher order
6207 * pages. Because of this, we reserve the bigger range and
6208 * once this is done free the pages we are not interested in.
6209 *
6210 * We don't have to hold zone->lock here because the pages are
6211 * isolated thus they won't get removed from buddy.
6212 */
6213
6214 order = 0;
6215 outer_start = start;
6216 while (!PageBuddy(pfn_to_page(outer_start))) {
6217 if (++order > MAX_ORDER) {
6218 outer_start = start;
6219 break;
6220 }
6221 outer_start &= ~0UL << order;
6222 }
6223
6224 if (outer_start != start) {
6225 order = buddy_order(pfn_to_page(outer_start));
6226
6227 /*
6228 * outer_start page could be small order buddy page and
6229 * it doesn't include start page. Adjust outer_start
6230 * in this case to report failed page properly
6231 * on tracepoint in test_pages_isolated()
6232 */
6233 if (outer_start + (1UL << order) <= start)
6234 outer_start = start;
6235 }
6236
6237 /* Make sure the range is really isolated. */
6238 if (test_pages_isolated(outer_start, end, 0)) {
6239 ret = -EBUSY;
6240 goto done;
6241 }
6242
6243 /* Grab isolated pages from freelists. */
6244 outer_end = isolate_freepages_range(&cc, outer_start, end);
6245 if (!outer_end) {
6246 ret = -EBUSY;
6247 goto done;
6248 }
6249
6250 /* Free head and tail (if any) */
6251 if (start != outer_start)
6252 free_contig_range(outer_start, start - outer_start);
6253 if (end != outer_end)
6254 free_contig_range(end, outer_end - end);
6255
6256 done:
6257 undo_isolate_page_range(start, end, migratetype);
6258 return ret;
6259 }
6260 EXPORT_SYMBOL(alloc_contig_range);
6261
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6262 static int __alloc_contig_pages(unsigned long start_pfn,
6263 unsigned long nr_pages, gfp_t gfp_mask)
6264 {
6265 unsigned long end_pfn = start_pfn + nr_pages;
6266
6267 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6268 gfp_mask);
6269 }
6270
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6271 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6272 unsigned long nr_pages)
6273 {
6274 unsigned long i, end_pfn = start_pfn + nr_pages;
6275 struct page *page;
6276
6277 for (i = start_pfn; i < end_pfn; i++) {
6278 page = pfn_to_online_page(i);
6279 if (!page)
6280 return false;
6281
6282 if (page_zone(page) != z)
6283 return false;
6284
6285 if (PageReserved(page))
6286 return false;
6287
6288 if (PageHuge(page))
6289 return false;
6290 }
6291 return true;
6292 }
6293
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6294 static bool zone_spans_last_pfn(const struct zone *zone,
6295 unsigned long start_pfn, unsigned long nr_pages)
6296 {
6297 unsigned long last_pfn = start_pfn + nr_pages - 1;
6298
6299 return zone_spans_pfn(zone, last_pfn);
6300 }
6301
6302 /**
6303 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6304 * @nr_pages: Number of contiguous pages to allocate
6305 * @gfp_mask: GFP mask to limit search and used during compaction
6306 * @nid: Target node
6307 * @nodemask: Mask for other possible nodes
6308 *
6309 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6310 * on an applicable zonelist to find a contiguous pfn range which can then be
6311 * tried for allocation with alloc_contig_range(). This routine is intended
6312 * for allocation requests which can not be fulfilled with the buddy allocator.
6313 *
6314 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6315 * power of two, then allocated range is also guaranteed to be aligned to same
6316 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6317 *
6318 * Allocated pages can be freed with free_contig_range() or by manually calling
6319 * __free_page() on each allocated page.
6320 *
6321 * Return: pointer to contiguous pages on success, or NULL if not successful.
6322 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6323 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6324 int nid, nodemask_t *nodemask)
6325 {
6326 unsigned long ret, pfn, flags;
6327 struct zonelist *zonelist;
6328 struct zone *zone;
6329 struct zoneref *z;
6330
6331 zonelist = node_zonelist(nid, gfp_mask);
6332 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6333 gfp_zone(gfp_mask), nodemask) {
6334 spin_lock_irqsave(&zone->lock, flags);
6335
6336 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6337 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6338 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6339 /*
6340 * We release the zone lock here because
6341 * alloc_contig_range() will also lock the zone
6342 * at some point. If there's an allocation
6343 * spinning on this lock, it may win the race
6344 * and cause alloc_contig_range() to fail...
6345 */
6346 spin_unlock_irqrestore(&zone->lock, flags);
6347 ret = __alloc_contig_pages(pfn, nr_pages,
6348 gfp_mask);
6349 if (!ret)
6350 return pfn_to_page(pfn);
6351 spin_lock_irqsave(&zone->lock, flags);
6352 }
6353 pfn += nr_pages;
6354 }
6355 spin_unlock_irqrestore(&zone->lock, flags);
6356 }
6357 return NULL;
6358 }
6359 #endif /* CONFIG_CONTIG_ALLOC */
6360
free_contig_range(unsigned long pfn,unsigned long nr_pages)6361 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6362 {
6363 unsigned long count = 0;
6364
6365 for (; nr_pages--; pfn++) {
6366 struct page *page = pfn_to_page(pfn);
6367
6368 count += page_count(page) != 1;
6369 __free_page(page);
6370 }
6371 WARN(count != 0, "%lu pages are still in use!\n", count);
6372 }
6373 EXPORT_SYMBOL(free_contig_range);
6374
6375 /*
6376 * Effectively disable pcplists for the zone by setting the high limit to 0
6377 * and draining all cpus. A concurrent page freeing on another CPU that's about
6378 * to put the page on pcplist will either finish before the drain and the page
6379 * will be drained, or observe the new high limit and skip the pcplist.
6380 *
6381 * Must be paired with a call to zone_pcp_enable().
6382 */
zone_pcp_disable(struct zone * zone)6383 void zone_pcp_disable(struct zone *zone)
6384 {
6385 mutex_lock(&pcp_batch_high_lock);
6386 __zone_set_pageset_high_and_batch(zone, 0, 1);
6387 __drain_all_pages(zone, true);
6388 }
6389
zone_pcp_enable(struct zone * zone)6390 void zone_pcp_enable(struct zone *zone)
6391 {
6392 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6393 mutex_unlock(&pcp_batch_high_lock);
6394 }
6395
zone_pcp_reset(struct zone * zone)6396 void zone_pcp_reset(struct zone *zone)
6397 {
6398 int cpu;
6399 struct per_cpu_zonestat *pzstats;
6400
6401 if (zone->per_cpu_pageset != &boot_pageset) {
6402 for_each_online_cpu(cpu) {
6403 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6404 drain_zonestat(zone, pzstats);
6405 }
6406 free_percpu(zone->per_cpu_pageset);
6407 zone->per_cpu_pageset = &boot_pageset;
6408 if (zone->per_cpu_zonestats != &boot_zonestats) {
6409 free_percpu(zone->per_cpu_zonestats);
6410 zone->per_cpu_zonestats = &boot_zonestats;
6411 }
6412 }
6413 }
6414
6415 #ifdef CONFIG_MEMORY_HOTREMOVE
6416 /*
6417 * All pages in the range must be in a single zone, must not contain holes,
6418 * must span full sections, and must be isolated before calling this function.
6419 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6420 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6421 {
6422 unsigned long pfn = start_pfn;
6423 struct page *page;
6424 struct zone *zone;
6425 unsigned int order;
6426 unsigned long flags;
6427
6428 offline_mem_sections(pfn, end_pfn);
6429 zone = page_zone(pfn_to_page(pfn));
6430 spin_lock_irqsave(&zone->lock, flags);
6431 while (pfn < end_pfn) {
6432 page = pfn_to_page(pfn);
6433 /*
6434 * The HWPoisoned page may be not in buddy system, and
6435 * page_count() is not 0.
6436 */
6437 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6438 pfn++;
6439 continue;
6440 }
6441 /*
6442 * At this point all remaining PageOffline() pages have a
6443 * reference count of 0 and can simply be skipped.
6444 */
6445 if (PageOffline(page)) {
6446 BUG_ON(page_count(page));
6447 BUG_ON(PageBuddy(page));
6448 pfn++;
6449 continue;
6450 }
6451
6452 BUG_ON(page_count(page));
6453 BUG_ON(!PageBuddy(page));
6454 order = buddy_order(page);
6455 del_page_from_free_list(page, zone, order);
6456 pfn += (1 << order);
6457 }
6458 spin_unlock_irqrestore(&zone->lock, flags);
6459 }
6460 #endif
6461
6462 /*
6463 * This function returns a stable result only if called under zone lock.
6464 */
is_free_buddy_page(struct page * page)6465 bool is_free_buddy_page(struct page *page)
6466 {
6467 unsigned long pfn = page_to_pfn(page);
6468 unsigned int order;
6469
6470 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6471 struct page *page_head = page - (pfn & ((1 << order) - 1));
6472
6473 if (PageBuddy(page_head) &&
6474 buddy_order_unsafe(page_head) >= order)
6475 break;
6476 }
6477
6478 return order <= MAX_ORDER;
6479 }
6480 EXPORT_SYMBOL(is_free_buddy_page);
6481
6482 #ifdef CONFIG_MEMORY_FAILURE
6483 /*
6484 * Break down a higher-order page in sub-pages, and keep our target out of
6485 * buddy allocator.
6486 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6487 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6488 struct page *target, int low, int high,
6489 int migratetype)
6490 {
6491 unsigned long size = 1 << high;
6492 struct page *current_buddy, *next_page;
6493
6494 while (high > low) {
6495 high--;
6496 size >>= 1;
6497
6498 if (target >= &page[size]) {
6499 next_page = page + size;
6500 current_buddy = page;
6501 } else {
6502 next_page = page;
6503 current_buddy = page + size;
6504 }
6505 page = next_page;
6506
6507 if (set_page_guard(zone, current_buddy, high, migratetype))
6508 continue;
6509
6510 if (current_buddy != target) {
6511 add_to_free_list(current_buddy, zone, high, migratetype);
6512 set_buddy_order(current_buddy, high);
6513 }
6514 }
6515 }
6516
6517 /*
6518 * Take a page that will be marked as poisoned off the buddy allocator.
6519 */
take_page_off_buddy(struct page * page)6520 bool take_page_off_buddy(struct page *page)
6521 {
6522 struct zone *zone = page_zone(page);
6523 unsigned long pfn = page_to_pfn(page);
6524 unsigned long flags;
6525 unsigned int order;
6526 bool ret = false;
6527
6528 spin_lock_irqsave(&zone->lock, flags);
6529 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6530 struct page *page_head = page - (pfn & ((1 << order) - 1));
6531 int page_order = buddy_order(page_head);
6532
6533 if (PageBuddy(page_head) && page_order >= order) {
6534 unsigned long pfn_head = page_to_pfn(page_head);
6535 int migratetype = get_pfnblock_migratetype(page_head,
6536 pfn_head);
6537
6538 del_page_from_free_list(page_head, zone, page_order);
6539 break_down_buddy_pages(zone, page_head, page, 0,
6540 page_order, migratetype);
6541 SetPageHWPoisonTakenOff(page);
6542 if (!is_migrate_isolate(migratetype))
6543 __mod_zone_freepage_state(zone, -1, migratetype);
6544 ret = true;
6545 break;
6546 }
6547 if (page_count(page_head) > 0)
6548 break;
6549 }
6550 spin_unlock_irqrestore(&zone->lock, flags);
6551 return ret;
6552 }
6553
6554 /*
6555 * Cancel takeoff done by take_page_off_buddy().
6556 */
put_page_back_buddy(struct page * page)6557 bool put_page_back_buddy(struct page *page)
6558 {
6559 struct zone *zone = page_zone(page);
6560 unsigned long pfn = page_to_pfn(page);
6561 unsigned long flags;
6562 int migratetype = get_pfnblock_migratetype(page, pfn);
6563 bool ret = false;
6564
6565 spin_lock_irqsave(&zone->lock, flags);
6566 if (put_page_testzero(page)) {
6567 ClearPageHWPoisonTakenOff(page);
6568 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6569 if (TestClearPageHWPoison(page)) {
6570 ret = true;
6571 }
6572 }
6573 spin_unlock_irqrestore(&zone->lock, flags);
6574
6575 return ret;
6576 }
6577 #endif
6578
6579 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6580 bool has_managed_dma(void)
6581 {
6582 struct pglist_data *pgdat;
6583
6584 for_each_online_pgdat(pgdat) {
6585 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6586
6587 if (managed_zone(zone))
6588 return true;
6589 }
6590 return false;
6591 }
6592 #endif /* CONFIG_ZONE_DMA */
6593
6594 #ifdef CONFIG_UNACCEPTED_MEMORY
6595
6596 static bool lazy_accept = true;
6597
accept_memory_parse(char * p)6598 static int __init accept_memory_parse(char *p)
6599 {
6600 if (!strcmp(p, "lazy")) {
6601 lazy_accept = true;
6602 return 0;
6603 } else if (!strcmp(p, "eager")) {
6604 lazy_accept = false;
6605 return 0;
6606 } else {
6607 return -EINVAL;
6608 }
6609 }
6610 early_param("accept_memory", accept_memory_parse);
6611
page_contains_unaccepted(struct page * page,unsigned int order)6612 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6613 {
6614 phys_addr_t start = page_to_phys(page);
6615 phys_addr_t end = start + (PAGE_SIZE << order);
6616
6617 return range_contains_unaccepted_memory(start, end);
6618 }
6619
accept_page(struct page * page,unsigned int order)6620 static void accept_page(struct page *page, unsigned int order)
6621 {
6622 phys_addr_t start = page_to_phys(page);
6623
6624 accept_memory(start, start + (PAGE_SIZE << order));
6625 }
6626
try_to_accept_memory_one(struct zone * zone)6627 static bool try_to_accept_memory_one(struct zone *zone)
6628 {
6629 unsigned long flags;
6630 struct page *page;
6631
6632 spin_lock_irqsave(&zone->lock, flags);
6633 page = list_first_entry_or_null(&zone->unaccepted_pages,
6634 struct page, lru);
6635 if (!page) {
6636 spin_unlock_irqrestore(&zone->lock, flags);
6637 return false;
6638 }
6639
6640 list_del(&page->lru);
6641
6642 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6643 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6644 spin_unlock_irqrestore(&zone->lock, flags);
6645
6646 accept_page(page, MAX_ORDER);
6647
6648 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6649
6650 return true;
6651 }
6652
cond_accept_memory(struct zone * zone,unsigned int order)6653 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6654 {
6655 long to_accept, wmark;
6656 bool ret = false;
6657
6658 if (list_empty(&zone->unaccepted_pages))
6659 return false;
6660
6661 wmark = high_wmark_pages(zone);
6662
6663 /*
6664 * Watermarks have not been initialized yet.
6665 *
6666 * Accepting one MAX_ORDER page to ensure progress.
6667 */
6668 if (!wmark)
6669 return try_to_accept_memory_one(zone);
6670
6671 /* How much to accept to get to high watermark? */
6672 to_accept = wmark -
6673 (zone_page_state(zone, NR_FREE_PAGES) -
6674 __zone_watermark_unusable_free(zone, order, 0) -
6675 zone_page_state(zone, NR_UNACCEPTED));
6676
6677 while (to_accept > 0) {
6678 if (!try_to_accept_memory_one(zone))
6679 break;
6680 ret = true;
6681 to_accept -= MAX_ORDER_NR_PAGES;
6682 }
6683
6684 return ret;
6685 }
6686
__free_unaccepted(struct page * page)6687 static bool __free_unaccepted(struct page *page)
6688 {
6689 struct zone *zone = page_zone(page);
6690 unsigned long flags;
6691
6692 if (!lazy_accept)
6693 return false;
6694
6695 spin_lock_irqsave(&zone->lock, flags);
6696 list_add_tail(&page->lru, &zone->unaccepted_pages);
6697 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6698 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6699 spin_unlock_irqrestore(&zone->lock, flags);
6700
6701 return true;
6702 }
6703
6704 #else
6705
page_contains_unaccepted(struct page * page,unsigned int order)6706 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6707 {
6708 return false;
6709 }
6710
accept_page(struct page * page,unsigned int order)6711 static void accept_page(struct page *page, unsigned int order)
6712 {
6713 }
6714
cond_accept_memory(struct zone * zone,unsigned int order)6715 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6716 {
6717 return false;
6718 }
6719
__free_unaccepted(struct page * page)6720 static bool __free_unaccepted(struct page *page)
6721 {
6722 BUILD_BUG();
6723 return false;
6724 }
6725
6726 #endif /* CONFIG_UNACCEPTED_MEMORY */
6727