1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2017, Fuzhou Rockchip Electronics Co., Ltd
4 * Author: Eric Gao <eric.gao@rock-chips.com>
5 */
6
7 #include <common.h>
8 #include <clk.h>
9 #include <display.h>
10 #include <dm.h>
11 #include <fdtdec.h>
12 #include <panel.h>
13 #include <regmap.h>
14 #include "rk_mipi.h"
15 #include <syscon.h>
16 #include <asm/gpio.h>
17 #include <asm/hardware.h>
18 #include <asm/io.h>
19 #include <dm/uclass-internal.h>
20 #include <linux/kernel.h>
21 #include <asm/arch/clock.h>
22 #include <asm/arch/cru_rk3399.h>
23 #include <asm/arch/grf_rk3399.h>
24 #include <asm/arch/rockchip_mipi_dsi.h>
25
26 DECLARE_GLOBAL_DATA_PTR;
27
rk_mipi_read_timing(struct udevice * dev,struct display_timing * timing)28 int rk_mipi_read_timing(struct udevice *dev,
29 struct display_timing *timing)
30 {
31 int ret;
32
33 ret = fdtdec_decode_display_timing(gd->fdt_blob, dev_of_offset(dev),
34 0, timing);
35 if (ret) {
36 debug("%s: Failed to decode display timing (ret=%d)\n",
37 __func__, ret);
38 return -EINVAL;
39 }
40
41 return 0;
42 }
43
44 /*
45 * Register write function used only for mipi dsi controller.
46 * Parameter:
47 * @regs: mipi controller address
48 * @reg: combination of regaddr(16bit)|bitswidth(8bit)|offset(8bit) you can
49 * use define in rk_mipi.h directly for this parameter
50 * @val: value that will be write to specified bits of register
51 */
rk_mipi_dsi_write(uintptr_t regs,u32 reg,u32 val)52 static void rk_mipi_dsi_write(uintptr_t regs, u32 reg, u32 val)
53 {
54 u32 dat;
55 u32 mask;
56 u32 offset = (reg >> OFFSET_SHIFT) & 0xff;
57 u32 bits = (reg >> BITS_SHIFT) & 0xff;
58 uintptr_t addr = (reg >> ADDR_SHIFT) + regs;
59
60 /* Mask for specifiled bits,the corresponding bits will be clear */
61 mask = ~((0xffffffff << offset) & (0xffffffff >> (32 - offset - bits)));
62
63 /* Make sure val in the available range */
64 val &= ~(0xffffffff << bits);
65
66 /* Get register's original val */
67 dat = readl(addr);
68
69 /* Clear specified bits */
70 dat &= mask;
71
72 /* Fill specified bits */
73 dat |= val << offset;
74
75 writel(dat, addr);
76 }
77
rk_mipi_dsi_enable(struct udevice * dev,const struct display_timing * timing)78 int rk_mipi_dsi_enable(struct udevice *dev,
79 const struct display_timing *timing)
80 {
81 int node, timing_node;
82 int val;
83 struct rk_mipi_priv *priv = dev_get_priv(dev);
84 uintptr_t regs = priv->regs;
85 u32 txbyte_clk = priv->txbyte_clk;
86 u32 txesc_clk = priv->txesc_clk;
87
88 txesc_clk = txbyte_clk/(txbyte_clk/txesc_clk + 1);
89
90 /* Set Display timing parameter */
91 rk_mipi_dsi_write(regs, VID_HSA_TIME, timing->hsync_len.typ);
92 rk_mipi_dsi_write(regs, VID_HBP_TIME, timing->hback_porch.typ);
93 rk_mipi_dsi_write(regs, VID_HLINE_TIME, (timing->hsync_len.typ
94 + timing->hback_porch.typ + timing->hactive.typ
95 + timing->hfront_porch.typ));
96 rk_mipi_dsi_write(regs, VID_VSA_LINES, timing->vsync_len.typ);
97 rk_mipi_dsi_write(regs, VID_VBP_LINES, timing->vback_porch.typ);
98 rk_mipi_dsi_write(regs, VID_VFP_LINES, timing->vfront_porch.typ);
99 rk_mipi_dsi_write(regs, VID_ACTIVE_LINES, timing->vactive.typ);
100
101 /* Set Signal Polarity */
102 val = (timing->flags & DISPLAY_FLAGS_HSYNC_LOW) ? 1 : 0;
103 rk_mipi_dsi_write(regs, HSYNC_ACTIVE_LOW, val);
104
105 val = (timing->flags & DISPLAY_FLAGS_VSYNC_LOW) ? 1 : 0;
106 rk_mipi_dsi_write(regs, VSYNC_ACTIVE_LOW, val);
107
108 val = (timing->flags & DISPLAY_FLAGS_DE_LOW) ? 1 : 0;
109 rk_mipi_dsi_write(regs, DATAEN_ACTIVE_LOW, val);
110
111 val = (timing->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) ? 1 : 0;
112 rk_mipi_dsi_write(regs, COLORM_ACTIVE_LOW, val);
113
114 /* Set video mode */
115 rk_mipi_dsi_write(regs, CMD_VIDEO_MODE, VIDEO_MODE);
116
117 /* Set video mode transmission type as burst mode */
118 rk_mipi_dsi_write(regs, VID_MODE_TYPE, BURST_MODE);
119
120 /* Set pix num in a video package */
121 rk_mipi_dsi_write(regs, VID_PKT_SIZE, 0x4b0);
122
123 /* Set dpi color coding depth 24 bit */
124 timing_node = fdt_subnode_offset(gd->fdt_blob, dev_of_offset(dev),
125 "display-timings");
126 node = fdt_first_subnode(gd->fdt_blob, timing_node);
127 val = fdtdec_get_int(gd->fdt_blob, node, "bits-per-pixel", -1);
128 switch (val) {
129 case 16:
130 rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_16BIT_CFG_1);
131 break;
132 case 24:
133 rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT);
134 break;
135 case 30:
136 rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_30BIT);
137 break;
138 default:
139 rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT);
140 }
141 /* Enable low power mode */
142 rk_mipi_dsi_write(regs, LP_CMD_EN, 1);
143 rk_mipi_dsi_write(regs, LP_HFP_EN, 1);
144 rk_mipi_dsi_write(regs, LP_VACT_EN, 1);
145 rk_mipi_dsi_write(regs, LP_VFP_EN, 1);
146 rk_mipi_dsi_write(regs, LP_VBP_EN, 1);
147 rk_mipi_dsi_write(regs, LP_VSA_EN, 1);
148
149 /* Division for timeout counter clk */
150 rk_mipi_dsi_write(regs, TO_CLK_DIVISION, 0x0a);
151
152 /* Tx esc clk division from txbyte clk */
153 rk_mipi_dsi_write(regs, TX_ESC_CLK_DIVISION, txbyte_clk/txesc_clk);
154
155 /* Timeout count for hs<->lp transation between Line period */
156 rk_mipi_dsi_write(regs, HSTX_TO_CNT, 0x3e8);
157
158 /* Phy State transfer timing */
159 rk_mipi_dsi_write(regs, PHY_STOP_WAIT_TIME, 32);
160 rk_mipi_dsi_write(regs, PHY_TXREQUESTCLKHS, 1);
161 rk_mipi_dsi_write(regs, PHY_HS2LP_TIME, 0x14);
162 rk_mipi_dsi_write(regs, PHY_LP2HS_TIME, 0x10);
163 rk_mipi_dsi_write(regs, MAX_RD_TIME, 0x2710);
164
165 /* Power on */
166 rk_mipi_dsi_write(regs, SHUTDOWNZ, 1);
167
168 return 0;
169 }
170
171 /* rk mipi dphy write function. It is used to write test data to dphy */
rk_mipi_phy_write(uintptr_t regs,unsigned char test_code,unsigned char * test_data,unsigned char size)172 static void rk_mipi_phy_write(uintptr_t regs, unsigned char test_code,
173 unsigned char *test_data, unsigned char size)
174 {
175 int i = 0;
176
177 /* Write Test code */
178 rk_mipi_dsi_write(regs, PHY_TESTCLK, 1);
179 rk_mipi_dsi_write(regs, PHY_TESTDIN, test_code);
180 rk_mipi_dsi_write(regs, PHY_TESTEN, 1);
181 rk_mipi_dsi_write(regs, PHY_TESTCLK, 0);
182 rk_mipi_dsi_write(regs, PHY_TESTEN, 0);
183
184 /* Write Test data */
185 for (i = 0; i < size; i++) {
186 rk_mipi_dsi_write(regs, PHY_TESTCLK, 0);
187 rk_mipi_dsi_write(regs, PHY_TESTDIN, test_data[i]);
188 rk_mipi_dsi_write(regs, PHY_TESTCLK, 1);
189 }
190 }
191
192 /*
193 * Mipi dphy config function. Calculate the suitable prediv, feedback div,
194 * fsfreqrang value ,cap ,lpf and so on according to the given pix clk rate,
195 * and then enable phy.
196 */
rk_mipi_phy_enable(struct udevice * dev)197 int rk_mipi_phy_enable(struct udevice *dev)
198 {
199 int i;
200 struct rk_mipi_priv *priv = dev_get_priv(dev);
201 uintptr_t regs = priv->regs;
202 u64 fbdiv;
203 u64 prediv = 1;
204 u32 max_fbdiv = 512;
205 u32 max_prediv, min_prediv;
206 u64 ddr_clk = priv->phy_clk;
207 u32 refclk = priv->ref_clk;
208 u32 remain = refclk;
209 unsigned char test_data[2] = {0};
210
211 int freq_rang[][2] = {
212 {90, 0x01}, {100, 0x10}, {110, 0x20}, {130, 0x01},
213 {140, 0x11}, {150, 0x21}, {170, 0x02}, {180, 0x12},
214 {200, 0x22}, {220, 0x03}, {240, 0x13}, {250, 0x23},
215 {270, 0x04}, {300, 0x14}, {330, 0x05}, {360, 0x15},
216 {400, 0x25}, {450, 0x06}, {500, 0x16}, {550, 0x07},
217 {600, 0x17}, {650, 0x08}, {700, 0x18}, {750, 0x09},
218 {800, 0x19}, {850, 0x29}, {900, 0x39}, {950, 0x0a},
219 {1000, 0x1a}, {1050, 0x2a}, {1100, 0x3a}, {1150, 0x0b},
220 {1200, 0x1b}, {1250, 0x2b}, {1300, 0x3b}, {1350, 0x0c},
221 {1400, 0x1c}, {1450, 0x2c}, {1500, 0x3c}
222 };
223
224 /* Shutdown mode */
225 rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 0);
226 rk_mipi_dsi_write(regs, PHY_RSTZ, 0);
227 rk_mipi_dsi_write(regs, PHY_TESTCLR, 1);
228
229 /* Pll locking */
230 rk_mipi_dsi_write(regs, PHY_TESTCLR, 0);
231
232 /* config cp and lfp */
233 test_data[0] = 0x80 | (ddr_clk / (200 * MHz)) << 3 | 0x3;
234 rk_mipi_phy_write(regs, CODE_PLL_VCORANGE_VCOCAP, test_data, 1);
235
236 test_data[0] = 0x8;
237 rk_mipi_phy_write(regs, CODE_PLL_CPCTRL, test_data, 1);
238
239 test_data[0] = 0x80 | 0x40;
240 rk_mipi_phy_write(regs, CODE_PLL_LPF_CP, test_data, 1);
241
242 /* select the suitable value for fsfreqrang reg */
243 for (i = 0; i < ARRAY_SIZE(freq_rang); i++) {
244 if (ddr_clk / (MHz) <= freq_rang[i][0])
245 break;
246 }
247 if (i == ARRAY_SIZE(freq_rang)) {
248 debug("%s: Dphy freq out of range!\n", __func__);
249 return -EINVAL;
250 }
251 test_data[0] = freq_rang[i][1] << 1;
252 rk_mipi_phy_write(regs, CODE_HS_RX_LANE0, test_data, 1);
253
254 /*
255 * Calculate the best ddrclk and it's corresponding div value. If the
256 * given pixelclock is great than 250M, ddrclk will be fix 1500M.
257 * Otherwise,
258 * it's equal to ddr_clk= pixclk * 6. 40MHz >= refclk / prediv >= 5MHz
259 * according to spec.
260 */
261 max_prediv = (refclk / (5 * MHz));
262 min_prediv = ((refclk / (40 * MHz)) ? (refclk / (40 * MHz) + 1) : 1);
263
264 debug("%s: DEBUG: max_prediv=%u, min_prediv=%u\n", __func__, max_prediv,
265 min_prediv);
266
267 if (max_prediv < min_prediv) {
268 debug("%s: Invalid refclk value\n", __func__);
269 return -EINVAL;
270 }
271
272 /* Calculate the best refclk and feedback division value for dphy pll */
273 for (i = min_prediv; i < max_prediv; i++) {
274 if ((ddr_clk * i % refclk < remain) &&
275 (ddr_clk * i / refclk) < max_fbdiv) {
276 prediv = i;
277 remain = ddr_clk * i % refclk;
278 }
279 }
280 fbdiv = ddr_clk * prediv / refclk;
281 ddr_clk = refclk * fbdiv / prediv;
282 priv->phy_clk = ddr_clk;
283
284 debug("%s: DEBUG: refclk=%u, refclk=%llu, fbdiv=%llu, phyclk=%llu\n",
285 __func__, refclk, prediv, fbdiv, ddr_clk);
286
287 /* config prediv and feedback reg */
288 test_data[0] = prediv - 1;
289 rk_mipi_phy_write(regs, CODE_PLL_INPUT_DIV_RAT, test_data, 1);
290 test_data[0] = (fbdiv - 1) & 0x1f;
291 rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1);
292 test_data[0] = (fbdiv - 1) >> 5 | 0x80;
293 rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1);
294 test_data[0] = 0x30;
295 rk_mipi_phy_write(regs, CODE_PLL_INPUT_LOOP_DIV_RAT, test_data, 1);
296
297 /* rest config */
298 test_data[0] = 0x4d;
299 rk_mipi_phy_write(regs, CODE_BANDGAP_BIAS_CTRL, test_data, 1);
300
301 test_data[0] = 0x3d;
302 rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1);
303
304 test_data[0] = 0xdf;
305 rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1);
306
307 test_data[0] = 0x7;
308 rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1);
309
310 test_data[0] = 0x80 | 0x7;
311 rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1);
312
313 test_data[0] = 0x80 | 15;
314 rk_mipi_phy_write(regs, CODE_HSTXDATALANEREQUSETSTATETIME,
315 test_data, 1);
316 test_data[0] = 0x80 | 85;
317 rk_mipi_phy_write(regs, CODE_HSTXDATALANEPREPARESTATETIME,
318 test_data, 1);
319 test_data[0] = 0x40 | 10;
320 rk_mipi_phy_write(regs, CODE_HSTXDATALANEHSZEROSTATETIME,
321 test_data, 1);
322
323 /* enter into stop mode */
324 rk_mipi_dsi_write(regs, N_LANES, 0x03);
325 rk_mipi_dsi_write(regs, PHY_ENABLECLK, 1);
326 rk_mipi_dsi_write(regs, PHY_FORCEPLL, 1);
327 rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 1);
328 rk_mipi_dsi_write(regs, PHY_RSTZ, 1);
329
330 return 0;
331 }
332
333