1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39 /*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59 bool blkcg_debug_stats = false;
60
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63 #define BLKG_DESTROY_BATCH_SIZE 64
64
65 /*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
init_blkcg_llists(struct blkcg * blkcg)83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 int cpu;
86
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 if (!blkcg->lhead)
89 return -ENOMEM;
90
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 return 0;
94 }
95
96 /**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
blkcg_css(void)103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 struct cgroup_subsys_state *css;
106
107 css = kthread_blkcg();
108 if (css)
109 return css;
110 return task_css(current, io_cgrp_id);
111 }
112
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)113 static bool blkcg_policy_enabled(struct request_queue *q,
114 const struct blkcg_policy *pol)
115 {
116 return pol && test_bit(pol->plid, q->blkcg_pols);
117 }
118
blkg_free_workfn(struct work_struct * work)119 static void blkg_free_workfn(struct work_struct *work)
120 {
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 free_work);
123 struct request_queue *q = blkg->q;
124 int i;
125
126 /*
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
132 */
133 mutex_lock(&q->blkcg_mutex);
134 for (i = 0; i < BLKCG_MAX_POLS; i++)
135 if (blkg->pd[i])
136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 if (blkg->parent)
138 blkg_put(blkg->parent);
139 spin_lock_irq(&q->queue_lock);
140 list_del_init(&blkg->q_node);
141 spin_unlock_irq(&q->queue_lock);
142 mutex_unlock(&q->blkcg_mutex);
143
144 blk_put_queue(q);
145 free_percpu(blkg->iostat_cpu);
146 percpu_ref_exit(&blkg->refcnt);
147 kfree(blkg);
148 }
149
150 /**
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
153 *
154 * Free @blkg which may be partially allocated.
155 */
blkg_free(struct blkcg_gq * blkg)156 static void blkg_free(struct blkcg_gq *blkg)
157 {
158 if (!blkg)
159 return;
160
161 /*
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
164 */
165 INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 schedule_work(&blkg->free_work);
167 }
168
__blkg_release(struct rcu_head * rcu)169 static void __blkg_release(struct rcu_head *rcu)
170 {
171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 struct blkcg *blkcg = blkg->blkcg;
173 int cpu;
174
175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg->async_bios));
177 #endif
178 /*
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
181 *
182 * blkg_stat_lock is for serializing blkg stat update
183 */
184 for_each_possible_cpu(cpu)
185 __blkcg_rstat_flush(blkcg, cpu);
186
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(&blkg->blkcg->css);
189 blkg_free(blkg);
190 }
191
192 /*
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
196 *
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
199 */
blkg_release(struct percpu_ref * ref)200 static void blkg_release(struct percpu_ref *ref)
201 {
202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204 call_rcu(&blkg->rcu_head, __blkg_release);
205 }
206
207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208 static struct workqueue_struct *blkcg_punt_bio_wq;
209
blkg_async_bio_workfn(struct work_struct * work)210 static void blkg_async_bio_workfn(struct work_struct *work)
211 {
212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 async_bio_work);
214 struct bio_list bios = BIO_EMPTY_LIST;
215 struct bio *bio;
216 struct blk_plug plug;
217 bool need_plug = false;
218
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(&blkg->async_bio_lock);
221 bio_list_merge(&bios, &blkg->async_bios);
222 bio_list_init(&blkg->async_bios);
223 spin_unlock(&blkg->async_bio_lock);
224
225 /* start plug only when bio_list contains at least 2 bios */
226 if (bios.head && bios.head->bi_next) {
227 need_plug = true;
228 blk_start_plug(&plug);
229 }
230 while ((bio = bio_list_pop(&bios)))
231 submit_bio(bio);
232 if (need_plug)
233 blk_finish_plug(&plug);
234 }
235
236 /*
237 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
238 * lead to priority inversions as the kthread can be trapped waiting for that
239 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
240 * a dedicated per-blkcg work item to avoid such priority inversions.
241 */
blkcg_punt_bio_submit(struct bio * bio)242 void blkcg_punt_bio_submit(struct bio *bio)
243 {
244 struct blkcg_gq *blkg = bio->bi_blkg;
245
246 if (blkg->parent) {
247 spin_lock(&blkg->async_bio_lock);
248 bio_list_add(&blkg->async_bios, bio);
249 spin_unlock(&blkg->async_bio_lock);
250 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
251 } else {
252 /* never bounce for the root cgroup */
253 submit_bio(bio);
254 }
255 }
256 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257
blkcg_punt_bio_init(void)258 static int __init blkcg_punt_bio_init(void)
259 {
260 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
261 WQ_MEM_RECLAIM | WQ_FREEZABLE |
262 WQ_UNBOUND | WQ_SYSFS, 0);
263 if (!blkcg_punt_bio_wq)
264 return -ENOMEM;
265 return 0;
266 }
267 subsys_initcall(blkcg_punt_bio_init);
268 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
269
270 /**
271 * bio_blkcg_css - return the blkcg CSS associated with a bio
272 * @bio: target bio
273 *
274 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
275 * associated. Callers are expected to either handle %NULL or know association
276 * has been done prior to calling this.
277 */
bio_blkcg_css(struct bio * bio)278 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279 {
280 if (!bio || !bio->bi_blkg)
281 return NULL;
282 return &bio->bi_blkg->blkcg->css;
283 }
284 EXPORT_SYMBOL_GPL(bio_blkcg_css);
285
286 /**
287 * blkcg_parent - get the parent of a blkcg
288 * @blkcg: blkcg of interest
289 *
290 * Return the parent blkcg of @blkcg. Can be called anytime.
291 */
blkcg_parent(struct blkcg * blkcg)292 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293 {
294 return css_to_blkcg(blkcg->css.parent);
295 }
296
297 /**
298 * blkg_alloc - allocate a blkg
299 * @blkcg: block cgroup the new blkg is associated with
300 * @disk: gendisk the new blkg is associated with
301 * @gfp_mask: allocation mask to use
302 *
303 * Allocate a new blkg assocating @blkcg and @q.
304 */
blkg_alloc(struct blkcg * blkcg,struct gendisk * disk,gfp_t gfp_mask)305 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
306 gfp_t gfp_mask)
307 {
308 struct blkcg_gq *blkg;
309 int i, cpu;
310
311 /* alloc and init base part */
312 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
313 if (!blkg)
314 return NULL;
315 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
316 goto out_free_blkg;
317 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
318 if (!blkg->iostat_cpu)
319 goto out_exit_refcnt;
320 if (!blk_get_queue(disk->queue))
321 goto out_free_iostat;
322
323 blkg->q = disk->queue;
324 INIT_LIST_HEAD(&blkg->q_node);
325 blkg->blkcg = blkcg;
326 blkg->iostat.blkg = blkg;
327 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
328 spin_lock_init(&blkg->async_bio_lock);
329 bio_list_init(&blkg->async_bios);
330 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
331 #endif
332
333 u64_stats_init(&blkg->iostat.sync);
334 for_each_possible_cpu(cpu) {
335 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
336 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
337 }
338
339 for (i = 0; i < BLKCG_MAX_POLS; i++) {
340 struct blkcg_policy *pol = blkcg_policy[i];
341 struct blkg_policy_data *pd;
342
343 if (!blkcg_policy_enabled(disk->queue, pol))
344 continue;
345
346 /* alloc per-policy data and attach it to blkg */
347 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
348 if (!pd)
349 goto out_free_pds;
350 blkg->pd[i] = pd;
351 pd->blkg = blkg;
352 pd->plid = i;
353 pd->online = false;
354 }
355
356 return blkg;
357
358 out_free_pds:
359 while (--i >= 0)
360 if (blkg->pd[i])
361 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
362 blk_put_queue(disk->queue);
363 out_free_iostat:
364 free_percpu(blkg->iostat_cpu);
365 out_exit_refcnt:
366 percpu_ref_exit(&blkg->refcnt);
367 out_free_blkg:
368 kfree(blkg);
369 return NULL;
370 }
371
372 /*
373 * If @new_blkg is %NULL, this function tries to allocate a new one as
374 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
375 */
blkg_create(struct blkcg * blkcg,struct gendisk * disk,struct blkcg_gq * new_blkg)376 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
377 struct blkcg_gq *new_blkg)
378 {
379 struct blkcg_gq *blkg;
380 int i, ret;
381
382 lockdep_assert_held(&disk->queue->queue_lock);
383
384 /* request_queue is dying, do not create/recreate a blkg */
385 if (blk_queue_dying(disk->queue)) {
386 ret = -ENODEV;
387 goto err_free_blkg;
388 }
389
390 /* blkg holds a reference to blkcg */
391 if (!css_tryget_online(&blkcg->css)) {
392 ret = -ENODEV;
393 goto err_free_blkg;
394 }
395
396 /* allocate */
397 if (!new_blkg) {
398 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
399 if (unlikely(!new_blkg)) {
400 ret = -ENOMEM;
401 goto err_put_css;
402 }
403 }
404 blkg = new_blkg;
405
406 /* link parent */
407 if (blkcg_parent(blkcg)) {
408 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
409 if (WARN_ON_ONCE(!blkg->parent)) {
410 ret = -ENODEV;
411 goto err_put_css;
412 }
413 blkg_get(blkg->parent);
414 }
415
416 /* invoke per-policy init */
417 for (i = 0; i < BLKCG_MAX_POLS; i++) {
418 struct blkcg_policy *pol = blkcg_policy[i];
419
420 if (blkg->pd[i] && pol->pd_init_fn)
421 pol->pd_init_fn(blkg->pd[i]);
422 }
423
424 /* insert */
425 spin_lock(&blkcg->lock);
426 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
427 if (likely(!ret)) {
428 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
429 list_add(&blkg->q_node, &disk->queue->blkg_list);
430
431 for (i = 0; i < BLKCG_MAX_POLS; i++) {
432 struct blkcg_policy *pol = blkcg_policy[i];
433
434 if (blkg->pd[i]) {
435 if (pol->pd_online_fn)
436 pol->pd_online_fn(blkg->pd[i]);
437 blkg->pd[i]->online = true;
438 }
439 }
440 }
441 blkg->online = true;
442 spin_unlock(&blkcg->lock);
443
444 if (!ret)
445 return blkg;
446
447 /* @blkg failed fully initialized, use the usual release path */
448 blkg_put(blkg);
449 return ERR_PTR(ret);
450
451 err_put_css:
452 css_put(&blkcg->css);
453 err_free_blkg:
454 if (new_blkg)
455 blkg_free(new_blkg);
456 return ERR_PTR(ret);
457 }
458
459 /**
460 * blkg_lookup_create - lookup blkg, try to create one if not there
461 * @blkcg: blkcg of interest
462 * @disk: gendisk of interest
463 *
464 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
465 * create one. blkg creation is performed recursively from blkcg_root such
466 * that all non-root blkg's have access to the parent blkg. This function
467 * should be called under RCU read lock and takes @disk->queue->queue_lock.
468 *
469 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
470 * down from root.
471 */
blkg_lookup_create(struct blkcg * blkcg,struct gendisk * disk)472 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
473 struct gendisk *disk)
474 {
475 struct request_queue *q = disk->queue;
476 struct blkcg_gq *blkg;
477 unsigned long flags;
478
479 WARN_ON_ONCE(!rcu_read_lock_held());
480
481 blkg = blkg_lookup(blkcg, q);
482 if (blkg)
483 return blkg;
484
485 spin_lock_irqsave(&q->queue_lock, flags);
486 blkg = blkg_lookup(blkcg, q);
487 if (blkg) {
488 if (blkcg != &blkcg_root &&
489 blkg != rcu_dereference(blkcg->blkg_hint))
490 rcu_assign_pointer(blkcg->blkg_hint, blkg);
491 goto found;
492 }
493
494 /*
495 * Create blkgs walking down from blkcg_root to @blkcg, so that all
496 * non-root blkgs have access to their parents. Returns the closest
497 * blkg to the intended blkg should blkg_create() fail.
498 */
499 while (true) {
500 struct blkcg *pos = blkcg;
501 struct blkcg *parent = blkcg_parent(blkcg);
502 struct blkcg_gq *ret_blkg = q->root_blkg;
503
504 while (parent) {
505 blkg = blkg_lookup(parent, q);
506 if (blkg) {
507 /* remember closest blkg */
508 ret_blkg = blkg;
509 break;
510 }
511 pos = parent;
512 parent = blkcg_parent(parent);
513 }
514
515 blkg = blkg_create(pos, disk, NULL);
516 if (IS_ERR(blkg)) {
517 blkg = ret_blkg;
518 break;
519 }
520 if (pos == blkcg)
521 break;
522 }
523
524 found:
525 spin_unlock_irqrestore(&q->queue_lock, flags);
526 return blkg;
527 }
528
blkg_destroy(struct blkcg_gq * blkg)529 static void blkg_destroy(struct blkcg_gq *blkg)
530 {
531 struct blkcg *blkcg = blkg->blkcg;
532 int i;
533
534 lockdep_assert_held(&blkg->q->queue_lock);
535 lockdep_assert_held(&blkcg->lock);
536
537 /*
538 * blkg stays on the queue list until blkg_free_workfn(), see details in
539 * blkg_free_workfn(), hence this function can be called from
540 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
541 * blkg_free_workfn().
542 */
543 if (hlist_unhashed(&blkg->blkcg_node))
544 return;
545
546 for (i = 0; i < BLKCG_MAX_POLS; i++) {
547 struct blkcg_policy *pol = blkcg_policy[i];
548
549 if (blkg->pd[i] && blkg->pd[i]->online) {
550 blkg->pd[i]->online = false;
551 if (pol->pd_offline_fn)
552 pol->pd_offline_fn(blkg->pd[i]);
553 }
554 }
555
556 blkg->online = false;
557
558 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
559 hlist_del_init_rcu(&blkg->blkcg_node);
560
561 /*
562 * Both setting lookup hint to and clearing it from @blkg are done
563 * under queue_lock. If it's not pointing to @blkg now, it never
564 * will. Hint assignment itself can race safely.
565 */
566 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
567 rcu_assign_pointer(blkcg->blkg_hint, NULL);
568
569 /*
570 * Put the reference taken at the time of creation so that when all
571 * queues are gone, group can be destroyed.
572 */
573 percpu_ref_kill(&blkg->refcnt);
574 }
575
blkg_destroy_all(struct gendisk * disk)576 static void blkg_destroy_all(struct gendisk *disk)
577 {
578 struct request_queue *q = disk->queue;
579 struct blkcg_gq *blkg, *n;
580 int count = BLKG_DESTROY_BATCH_SIZE;
581 int i;
582
583 restart:
584 spin_lock_irq(&q->queue_lock);
585 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
586 struct blkcg *blkcg = blkg->blkcg;
587
588 if (hlist_unhashed(&blkg->blkcg_node))
589 continue;
590
591 spin_lock(&blkcg->lock);
592 blkg_destroy(blkg);
593 spin_unlock(&blkcg->lock);
594
595 /*
596 * in order to avoid holding the spin lock for too long, release
597 * it when a batch of blkgs are destroyed.
598 */
599 if (!(--count)) {
600 count = BLKG_DESTROY_BATCH_SIZE;
601 spin_unlock_irq(&q->queue_lock);
602 cond_resched();
603 goto restart;
604 }
605 }
606
607 /*
608 * Mark policy deactivated since policy offline has been done, and
609 * the free is scheduled, so future blkcg_deactivate_policy() can
610 * be bypassed
611 */
612 for (i = 0; i < BLKCG_MAX_POLS; i++) {
613 struct blkcg_policy *pol = blkcg_policy[i];
614
615 if (pol)
616 __clear_bit(pol->plid, q->blkcg_pols);
617 }
618
619 q->root_blkg = NULL;
620 spin_unlock_irq(&q->queue_lock);
621 }
622
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)623 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
624 {
625 int i;
626
627 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
628 dst->bytes[i] = src->bytes[i];
629 dst->ios[i] = src->ios[i];
630 }
631 }
632
__blkg_clear_stat(struct blkg_iostat_set * bis)633 static void __blkg_clear_stat(struct blkg_iostat_set *bis)
634 {
635 struct blkg_iostat cur = {0};
636 unsigned long flags;
637
638 flags = u64_stats_update_begin_irqsave(&bis->sync);
639 blkg_iostat_set(&bis->cur, &cur);
640 blkg_iostat_set(&bis->last, &cur);
641 u64_stats_update_end_irqrestore(&bis->sync, flags);
642 }
643
blkg_clear_stat(struct blkcg_gq * blkg)644 static void blkg_clear_stat(struct blkcg_gq *blkg)
645 {
646 int cpu;
647
648 for_each_possible_cpu(cpu) {
649 struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
650
651 __blkg_clear_stat(s);
652 }
653 __blkg_clear_stat(&blkg->iostat);
654 }
655
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)656 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
657 struct cftype *cftype, u64 val)
658 {
659 struct blkcg *blkcg = css_to_blkcg(css);
660 struct blkcg_gq *blkg;
661 int i;
662
663 mutex_lock(&blkcg_pol_mutex);
664 spin_lock_irq(&blkcg->lock);
665
666 /*
667 * Note that stat reset is racy - it doesn't synchronize against
668 * stat updates. This is a debug feature which shouldn't exist
669 * anyway. If you get hit by a race, retry.
670 */
671 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
672 blkg_clear_stat(blkg);
673 for (i = 0; i < BLKCG_MAX_POLS; i++) {
674 struct blkcg_policy *pol = blkcg_policy[i];
675
676 if (blkg->pd[i] && pol->pd_reset_stats_fn)
677 pol->pd_reset_stats_fn(blkg->pd[i]);
678 }
679 }
680
681 spin_unlock_irq(&blkcg->lock);
682 mutex_unlock(&blkcg_pol_mutex);
683 return 0;
684 }
685
blkg_dev_name(struct blkcg_gq * blkg)686 const char *blkg_dev_name(struct blkcg_gq *blkg)
687 {
688 if (!blkg->q->disk)
689 return NULL;
690 return bdi_dev_name(blkg->q->disk->bdi);
691 }
692
693 /**
694 * blkcg_print_blkgs - helper for printing per-blkg data
695 * @sf: seq_file to print to
696 * @blkcg: blkcg of interest
697 * @prfill: fill function to print out a blkg
698 * @pol: policy in question
699 * @data: data to be passed to @prfill
700 * @show_total: to print out sum of prfill return values or not
701 *
702 * This function invokes @prfill on each blkg of @blkcg if pd for the
703 * policy specified by @pol exists. @prfill is invoked with @sf, the
704 * policy data and @data and the matching queue lock held. If @show_total
705 * is %true, the sum of the return values from @prfill is printed with
706 * "Total" label at the end.
707 *
708 * This is to be used to construct print functions for
709 * cftype->read_seq_string method.
710 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)711 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
712 u64 (*prfill)(struct seq_file *,
713 struct blkg_policy_data *, int),
714 const struct blkcg_policy *pol, int data,
715 bool show_total)
716 {
717 struct blkcg_gq *blkg;
718 u64 total = 0;
719
720 rcu_read_lock();
721 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
722 spin_lock_irq(&blkg->q->queue_lock);
723 if (blkcg_policy_enabled(blkg->q, pol))
724 total += prfill(sf, blkg->pd[pol->plid], data);
725 spin_unlock_irq(&blkg->q->queue_lock);
726 }
727 rcu_read_unlock();
728
729 if (show_total)
730 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
731 }
732 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
733
734 /**
735 * __blkg_prfill_u64 - prfill helper for a single u64 value
736 * @sf: seq_file to print to
737 * @pd: policy private data of interest
738 * @v: value to print
739 *
740 * Print @v to @sf for the device associated with @pd.
741 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)742 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
743 {
744 const char *dname = blkg_dev_name(pd->blkg);
745
746 if (!dname)
747 return 0;
748
749 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
750 return v;
751 }
752 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
753
754 /**
755 * blkg_conf_init - initialize a blkg_conf_ctx
756 * @ctx: blkg_conf_ctx to initialize
757 * @input: input string
758 *
759 * Initialize @ctx which can be used to parse blkg config input string @input.
760 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
761 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
762 */
blkg_conf_init(struct blkg_conf_ctx * ctx,char * input)763 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
764 {
765 *ctx = (struct blkg_conf_ctx){ .input = input };
766 }
767 EXPORT_SYMBOL_GPL(blkg_conf_init);
768
769 /**
770 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
771 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
772 *
773 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
774 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
775 * set to point past the device node prefix.
776 *
777 * This function may be called multiple times on @ctx and the extra calls become
778 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
779 * explicitly if bdev access is needed without resolving the blkcg / policy part
780 * of @ctx->input. Returns -errno on error.
781 */
blkg_conf_open_bdev(struct blkg_conf_ctx * ctx)782 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
783 {
784 char *input = ctx->input;
785 unsigned int major, minor;
786 struct block_device *bdev;
787 int key_len;
788
789 if (ctx->bdev)
790 return 0;
791
792 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
793 return -EINVAL;
794
795 input += key_len;
796 if (!isspace(*input))
797 return -EINVAL;
798 input = skip_spaces(input);
799
800 bdev = blkdev_get_no_open(MKDEV(major, minor));
801 if (!bdev)
802 return -ENODEV;
803 if (bdev_is_partition(bdev)) {
804 blkdev_put_no_open(bdev);
805 return -ENODEV;
806 }
807
808 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
809 if (!disk_live(bdev->bd_disk)) {
810 blkdev_put_no_open(bdev);
811 mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
812 return -ENODEV;
813 }
814
815 ctx->body = input;
816 ctx->bdev = bdev;
817 return 0;
818 }
819
820 /**
821 * blkg_conf_prep - parse and prepare for per-blkg config update
822 * @blkcg: target block cgroup
823 * @pol: target policy
824 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
825 *
826 * Parse per-blkg config update from @ctx->input and initialize @ctx
827 * accordingly. On success, @ctx->body points to the part of @ctx->input
828 * following MAJ:MIN, @ctx->bdev points to the target block device and
829 * @ctx->blkg to the blkg being configured.
830 *
831 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
832 * function returns with queue lock held and must be followed by
833 * blkg_conf_exit().
834 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,struct blkg_conf_ctx * ctx)835 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
836 struct blkg_conf_ctx *ctx)
837 __acquires(&bdev->bd_queue->queue_lock)
838 {
839 struct gendisk *disk;
840 struct request_queue *q;
841 struct blkcg_gq *blkg;
842 int ret;
843
844 ret = blkg_conf_open_bdev(ctx);
845 if (ret)
846 return ret;
847
848 disk = ctx->bdev->bd_disk;
849 q = disk->queue;
850
851 /*
852 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
853 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
854 */
855 ret = blk_queue_enter(q, 0);
856 if (ret)
857 goto fail;
858
859 spin_lock_irq(&q->queue_lock);
860
861 if (!blkcg_policy_enabled(q, pol)) {
862 ret = -EOPNOTSUPP;
863 goto fail_unlock;
864 }
865
866 blkg = blkg_lookup(blkcg, q);
867 if (blkg)
868 goto success;
869
870 /*
871 * Create blkgs walking down from blkcg_root to @blkcg, so that all
872 * non-root blkgs have access to their parents.
873 */
874 while (true) {
875 struct blkcg *pos = blkcg;
876 struct blkcg *parent;
877 struct blkcg_gq *new_blkg;
878
879 parent = blkcg_parent(blkcg);
880 while (parent && !blkg_lookup(parent, q)) {
881 pos = parent;
882 parent = blkcg_parent(parent);
883 }
884
885 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
886 spin_unlock_irq(&q->queue_lock);
887
888 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
889 if (unlikely(!new_blkg)) {
890 ret = -ENOMEM;
891 goto fail_exit_queue;
892 }
893
894 if (radix_tree_preload(GFP_KERNEL)) {
895 blkg_free(new_blkg);
896 ret = -ENOMEM;
897 goto fail_exit_queue;
898 }
899
900 spin_lock_irq(&q->queue_lock);
901
902 if (!blkcg_policy_enabled(q, pol)) {
903 blkg_free(new_blkg);
904 ret = -EOPNOTSUPP;
905 goto fail_preloaded;
906 }
907
908 blkg = blkg_lookup(pos, q);
909 if (blkg) {
910 blkg_free(new_blkg);
911 } else {
912 blkg = blkg_create(pos, disk, new_blkg);
913 if (IS_ERR(blkg)) {
914 ret = PTR_ERR(blkg);
915 goto fail_preloaded;
916 }
917 }
918
919 radix_tree_preload_end();
920
921 if (pos == blkcg)
922 goto success;
923 }
924 success:
925 blk_queue_exit(q);
926 ctx->blkg = blkg;
927 return 0;
928
929 fail_preloaded:
930 radix_tree_preload_end();
931 fail_unlock:
932 spin_unlock_irq(&q->queue_lock);
933 fail_exit_queue:
934 blk_queue_exit(q);
935 fail:
936 /*
937 * If queue was bypassing, we should retry. Do so after a
938 * short msleep(). It isn't strictly necessary but queue
939 * can be bypassing for some time and it's always nice to
940 * avoid busy looping.
941 */
942 if (ret == -EBUSY) {
943 msleep(10);
944 ret = restart_syscall();
945 }
946 return ret;
947 }
948 EXPORT_SYMBOL_GPL(blkg_conf_prep);
949
950 /**
951 * blkg_conf_exit - clean up per-blkg config update
952 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
953 *
954 * Clean up after per-blkg config update. This function must be called on all
955 * blkg_conf_ctx's initialized with blkg_conf_init().
956 */
blkg_conf_exit(struct blkg_conf_ctx * ctx)957 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
958 __releases(&ctx->bdev->bd_queue->queue_lock)
959 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
960 {
961 if (ctx->blkg) {
962 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
963 ctx->blkg = NULL;
964 }
965
966 if (ctx->bdev) {
967 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
968 blkdev_put_no_open(ctx->bdev);
969 ctx->body = NULL;
970 ctx->bdev = NULL;
971 }
972 }
973 EXPORT_SYMBOL_GPL(blkg_conf_exit);
974
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)975 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
976 {
977 int i;
978
979 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
980 dst->bytes[i] += src->bytes[i];
981 dst->ios[i] += src->ios[i];
982 }
983 }
984
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)985 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
986 {
987 int i;
988
989 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
990 dst->bytes[i] -= src->bytes[i];
991 dst->ios[i] -= src->ios[i];
992 }
993 }
994
blkcg_iostat_update(struct blkcg_gq * blkg,struct blkg_iostat * cur,struct blkg_iostat * last)995 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
996 struct blkg_iostat *last)
997 {
998 struct blkg_iostat delta;
999 unsigned long flags;
1000
1001 /* propagate percpu delta to global */
1002 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1003 blkg_iostat_set(&delta, cur);
1004 blkg_iostat_sub(&delta, last);
1005 blkg_iostat_add(&blkg->iostat.cur, &delta);
1006 blkg_iostat_add(last, &delta);
1007 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1008 }
1009
__blkcg_rstat_flush(struct blkcg * blkcg,int cpu)1010 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1011 {
1012 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1013 struct llist_node *lnode;
1014 struct blkg_iostat_set *bisc, *next_bisc;
1015 unsigned long flags;
1016
1017 rcu_read_lock();
1018
1019 lnode = llist_del_all(lhead);
1020 if (!lnode)
1021 goto out;
1022
1023 /*
1024 * For covering concurrent parent blkg update from blkg_release().
1025 *
1026 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1027 * this lock won't cause contention most of time.
1028 */
1029 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1030
1031 /*
1032 * Iterate only the iostat_cpu's queued in the lockless list.
1033 */
1034 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1035 struct blkcg_gq *blkg = bisc->blkg;
1036 struct blkcg_gq *parent = blkg->parent;
1037 struct blkg_iostat cur;
1038 unsigned int seq;
1039
1040 /*
1041 * Order assignment of `next_bisc` from `bisc->lnode.next` in
1042 * llist_for_each_entry_safe and clearing `bisc->lqueued` for
1043 * avoiding to assign `next_bisc` with new next pointer added
1044 * in blk_cgroup_bio_start() in case of re-ordering.
1045 *
1046 * The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1047 */
1048 smp_mb();
1049
1050 WRITE_ONCE(bisc->lqueued, false);
1051 if (bisc == &blkg->iostat)
1052 goto propagate_up; /* propagate up to parent only */
1053
1054 /* fetch the current per-cpu values */
1055 do {
1056 seq = u64_stats_fetch_begin(&bisc->sync);
1057 blkg_iostat_set(&cur, &bisc->cur);
1058 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1059
1060 blkcg_iostat_update(blkg, &cur, &bisc->last);
1061
1062 propagate_up:
1063 /* propagate global delta to parent (unless that's root) */
1064 if (parent && parent->parent) {
1065 blkcg_iostat_update(parent, &blkg->iostat.cur,
1066 &blkg->iostat.last);
1067 /*
1068 * Queue parent->iostat to its blkcg's lockless
1069 * list to propagate up to the grandparent if the
1070 * iostat hasn't been queued yet.
1071 */
1072 if (!parent->iostat.lqueued) {
1073 struct llist_head *plhead;
1074
1075 plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1076 llist_add(&parent->iostat.lnode, plhead);
1077 parent->iostat.lqueued = true;
1078 }
1079 }
1080 }
1081 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1082 out:
1083 rcu_read_unlock();
1084 }
1085
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)1086 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1087 {
1088 /* Root-level stats are sourced from system-wide IO stats */
1089 if (cgroup_parent(css->cgroup))
1090 __blkcg_rstat_flush(css_to_blkcg(css), cpu);
1091 }
1092
1093 /*
1094 * We source root cgroup stats from the system-wide stats to avoid
1095 * tracking the same information twice and incurring overhead when no
1096 * cgroups are defined. For that reason, cgroup_rstat_flush in
1097 * blkcg_print_stat does not actually fill out the iostat in the root
1098 * cgroup's blkcg_gq.
1099 *
1100 * However, we would like to re-use the printing code between the root and
1101 * non-root cgroups to the extent possible. For that reason, we simulate
1102 * flushing the root cgroup's stats by explicitly filling in the iostat
1103 * with disk level statistics.
1104 */
blkcg_fill_root_iostats(void)1105 static void blkcg_fill_root_iostats(void)
1106 {
1107 struct class_dev_iter iter;
1108 struct device *dev;
1109
1110 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1111 while ((dev = class_dev_iter_next(&iter))) {
1112 struct block_device *bdev = dev_to_bdev(dev);
1113 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1114 struct blkg_iostat tmp;
1115 int cpu;
1116 unsigned long flags;
1117
1118 memset(&tmp, 0, sizeof(tmp));
1119 for_each_possible_cpu(cpu) {
1120 struct disk_stats *cpu_dkstats;
1121
1122 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1123 tmp.ios[BLKG_IOSTAT_READ] +=
1124 cpu_dkstats->ios[STAT_READ];
1125 tmp.ios[BLKG_IOSTAT_WRITE] +=
1126 cpu_dkstats->ios[STAT_WRITE];
1127 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1128 cpu_dkstats->ios[STAT_DISCARD];
1129 // convert sectors to bytes
1130 tmp.bytes[BLKG_IOSTAT_READ] +=
1131 cpu_dkstats->sectors[STAT_READ] << 9;
1132 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1133 cpu_dkstats->sectors[STAT_WRITE] << 9;
1134 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1135 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1136 }
1137
1138 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1139 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1140 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1141 }
1142 class_dev_iter_exit(&iter);
1143 }
1144
blkcg_print_one_stat(struct blkcg_gq * blkg,struct seq_file * s)1145 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1146 {
1147 struct blkg_iostat_set *bis = &blkg->iostat;
1148 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1149 const char *dname;
1150 unsigned seq;
1151 int i;
1152
1153 if (!blkg->online)
1154 return;
1155
1156 dname = blkg_dev_name(blkg);
1157 if (!dname)
1158 return;
1159
1160 seq_printf(s, "%s ", dname);
1161
1162 do {
1163 seq = u64_stats_fetch_begin(&bis->sync);
1164
1165 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1166 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1167 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1168 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1169 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1170 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1171 } while (u64_stats_fetch_retry(&bis->sync, seq));
1172
1173 if (rbytes || wbytes || rios || wios) {
1174 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1175 rbytes, wbytes, rios, wios,
1176 dbytes, dios);
1177 }
1178
1179 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1180 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1181 atomic_read(&blkg->use_delay),
1182 atomic64_read(&blkg->delay_nsec));
1183 }
1184
1185 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1186 struct blkcg_policy *pol = blkcg_policy[i];
1187
1188 if (!blkg->pd[i] || !pol->pd_stat_fn)
1189 continue;
1190
1191 pol->pd_stat_fn(blkg->pd[i], s);
1192 }
1193
1194 seq_puts(s, "\n");
1195 }
1196
blkcg_print_stat(struct seq_file * sf,void * v)1197 static int blkcg_print_stat(struct seq_file *sf, void *v)
1198 {
1199 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1200 struct blkcg_gq *blkg;
1201
1202 if (!seq_css(sf)->parent)
1203 blkcg_fill_root_iostats();
1204 else
1205 cgroup_rstat_flush(blkcg->css.cgroup);
1206
1207 rcu_read_lock();
1208 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1209 spin_lock_irq(&blkg->q->queue_lock);
1210 blkcg_print_one_stat(blkg, sf);
1211 spin_unlock_irq(&blkg->q->queue_lock);
1212 }
1213 rcu_read_unlock();
1214 return 0;
1215 }
1216
1217 static struct cftype blkcg_files[] = {
1218 {
1219 .name = "stat",
1220 .seq_show = blkcg_print_stat,
1221 },
1222 { } /* terminate */
1223 };
1224
1225 static struct cftype blkcg_legacy_files[] = {
1226 {
1227 .name = "reset_stats",
1228 .write_u64 = blkcg_reset_stats,
1229 },
1230 { } /* terminate */
1231 };
1232
1233 #ifdef CONFIG_CGROUP_WRITEBACK
blkcg_get_cgwb_list(struct cgroup_subsys_state * css)1234 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1235 {
1236 return &css_to_blkcg(css)->cgwb_list;
1237 }
1238 #endif
1239
1240 /*
1241 * blkcg destruction is a three-stage process.
1242 *
1243 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1244 * which offlines writeback. Here we tie the next stage of blkg destruction
1245 * to the completion of writeback associated with the blkcg. This lets us
1246 * avoid punting potentially large amounts of outstanding writeback to root
1247 * while maintaining any ongoing policies. The next stage is triggered when
1248 * the nr_cgwbs count goes to zero.
1249 *
1250 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1251 * and handles the destruction of blkgs. Here the css reference held by
1252 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1253 * This work may occur in cgwb_release_workfn() on the cgwb_release
1254 * workqueue. Any submitted ios that fail to get the blkg ref will be
1255 * punted to the root_blkg.
1256 *
1257 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1258 * This finally frees the blkcg.
1259 */
1260
1261 /**
1262 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1263 * @blkcg: blkcg of interest
1264 *
1265 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1266 * is nested inside q lock, this function performs reverse double lock dancing.
1267 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1268 * blkcg_css_free to eventually be called.
1269 *
1270 * This is the blkcg counterpart of ioc_release_fn().
1271 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1272 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1273 {
1274 might_sleep();
1275
1276 spin_lock_irq(&blkcg->lock);
1277
1278 while (!hlist_empty(&blkcg->blkg_list)) {
1279 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1280 struct blkcg_gq, blkcg_node);
1281 struct request_queue *q = blkg->q;
1282
1283 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1284 /*
1285 * Given that the system can accumulate a huge number
1286 * of blkgs in pathological cases, check to see if we
1287 * need to rescheduling to avoid softlockup.
1288 */
1289 spin_unlock_irq(&blkcg->lock);
1290 cond_resched();
1291 spin_lock_irq(&blkcg->lock);
1292 continue;
1293 }
1294
1295 blkg_destroy(blkg);
1296 spin_unlock(&q->queue_lock);
1297 }
1298
1299 spin_unlock_irq(&blkcg->lock);
1300 }
1301
1302 /**
1303 * blkcg_pin_online - pin online state
1304 * @blkcg_css: blkcg of interest
1305 *
1306 * While pinned, a blkcg is kept online. This is primarily used to
1307 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1308 * while an associated cgwb is still active.
1309 */
blkcg_pin_online(struct cgroup_subsys_state * blkcg_css)1310 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1311 {
1312 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1313 }
1314
1315 /**
1316 * blkcg_unpin_online - unpin online state
1317 * @blkcg_css: blkcg of interest
1318 *
1319 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1320 * that blkg doesn't go offline while an associated cgwb is still active.
1321 * When this count goes to zero, all active cgwbs have finished so the
1322 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1323 */
blkcg_unpin_online(struct cgroup_subsys_state * blkcg_css)1324 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1325 {
1326 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1327
1328 do {
1329 struct blkcg *parent;
1330
1331 if (!refcount_dec_and_test(&blkcg->online_pin))
1332 break;
1333
1334 parent = blkcg_parent(blkcg);
1335 blkcg_destroy_blkgs(blkcg);
1336 blkcg = parent;
1337 } while (blkcg);
1338 }
1339
1340 /**
1341 * blkcg_css_offline - cgroup css_offline callback
1342 * @css: css of interest
1343 *
1344 * This function is called when @css is about to go away. Here the cgwbs are
1345 * offlined first and only once writeback associated with the blkcg has
1346 * finished do we start step 2 (see above).
1347 */
blkcg_css_offline(struct cgroup_subsys_state * css)1348 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1349 {
1350 /* this prevents anyone from attaching or migrating to this blkcg */
1351 wb_blkcg_offline(css);
1352
1353 /* put the base online pin allowing step 2 to be triggered */
1354 blkcg_unpin_online(css);
1355 }
1356
blkcg_css_free(struct cgroup_subsys_state * css)1357 static void blkcg_css_free(struct cgroup_subsys_state *css)
1358 {
1359 struct blkcg *blkcg = css_to_blkcg(css);
1360 int i;
1361
1362 mutex_lock(&blkcg_pol_mutex);
1363
1364 list_del(&blkcg->all_blkcgs_node);
1365
1366 for (i = 0; i < BLKCG_MAX_POLS; i++)
1367 if (blkcg->cpd[i])
1368 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1369
1370 mutex_unlock(&blkcg_pol_mutex);
1371
1372 free_percpu(blkcg->lhead);
1373 kfree(blkcg);
1374 }
1375
1376 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1377 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1378 {
1379 struct blkcg *blkcg;
1380 int i;
1381
1382 mutex_lock(&blkcg_pol_mutex);
1383
1384 if (!parent_css) {
1385 blkcg = &blkcg_root;
1386 } else {
1387 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1388 if (!blkcg)
1389 goto unlock;
1390 }
1391
1392 if (init_blkcg_llists(blkcg))
1393 goto free_blkcg;
1394
1395 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1396 struct blkcg_policy *pol = blkcg_policy[i];
1397 struct blkcg_policy_data *cpd;
1398
1399 /*
1400 * If the policy hasn't been attached yet, wait for it
1401 * to be attached before doing anything else. Otherwise,
1402 * check if the policy requires any specific per-cgroup
1403 * data: if it does, allocate and initialize it.
1404 */
1405 if (!pol || !pol->cpd_alloc_fn)
1406 continue;
1407
1408 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1409 if (!cpd)
1410 goto free_pd_blkcg;
1411
1412 blkcg->cpd[i] = cpd;
1413 cpd->blkcg = blkcg;
1414 cpd->plid = i;
1415 }
1416
1417 spin_lock_init(&blkcg->lock);
1418 refcount_set(&blkcg->online_pin, 1);
1419 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1420 INIT_HLIST_HEAD(&blkcg->blkg_list);
1421 #ifdef CONFIG_CGROUP_WRITEBACK
1422 INIT_LIST_HEAD(&blkcg->cgwb_list);
1423 #endif
1424 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1425
1426 mutex_unlock(&blkcg_pol_mutex);
1427 return &blkcg->css;
1428
1429 free_pd_blkcg:
1430 for (i--; i >= 0; i--)
1431 if (blkcg->cpd[i])
1432 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1433 free_percpu(blkcg->lhead);
1434 free_blkcg:
1435 if (blkcg != &blkcg_root)
1436 kfree(blkcg);
1437 unlock:
1438 mutex_unlock(&blkcg_pol_mutex);
1439 return ERR_PTR(-ENOMEM);
1440 }
1441
blkcg_css_online(struct cgroup_subsys_state * css)1442 static int blkcg_css_online(struct cgroup_subsys_state *css)
1443 {
1444 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1445
1446 /*
1447 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1448 * don't go offline while cgwbs are still active on them. Pin the
1449 * parent so that offline always happens towards the root.
1450 */
1451 if (parent)
1452 blkcg_pin_online(&parent->css);
1453 return 0;
1454 }
1455
blkg_init_queue(struct request_queue * q)1456 void blkg_init_queue(struct request_queue *q)
1457 {
1458 INIT_LIST_HEAD(&q->blkg_list);
1459 mutex_init(&q->blkcg_mutex);
1460 }
1461
blkcg_init_disk(struct gendisk * disk)1462 int blkcg_init_disk(struct gendisk *disk)
1463 {
1464 struct request_queue *q = disk->queue;
1465 struct blkcg_gq *new_blkg, *blkg;
1466 bool preloaded;
1467 int ret;
1468
1469 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1470 if (!new_blkg)
1471 return -ENOMEM;
1472
1473 preloaded = !radix_tree_preload(GFP_KERNEL);
1474
1475 /* Make sure the root blkg exists. */
1476 /* spin_lock_irq can serve as RCU read-side critical section. */
1477 spin_lock_irq(&q->queue_lock);
1478 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1479 if (IS_ERR(blkg))
1480 goto err_unlock;
1481 q->root_blkg = blkg;
1482 spin_unlock_irq(&q->queue_lock);
1483
1484 if (preloaded)
1485 radix_tree_preload_end();
1486
1487 ret = blk_ioprio_init(disk);
1488 if (ret)
1489 goto err_destroy_all;
1490
1491 ret = blk_throtl_init(disk);
1492 if (ret)
1493 goto err_ioprio_exit;
1494
1495 return 0;
1496
1497 err_ioprio_exit:
1498 blk_ioprio_exit(disk);
1499 err_destroy_all:
1500 blkg_destroy_all(disk);
1501 return ret;
1502 err_unlock:
1503 spin_unlock_irq(&q->queue_lock);
1504 if (preloaded)
1505 radix_tree_preload_end();
1506 return PTR_ERR(blkg);
1507 }
1508
blkcg_exit_disk(struct gendisk * disk)1509 void blkcg_exit_disk(struct gendisk *disk)
1510 {
1511 blkg_destroy_all(disk);
1512 blk_throtl_exit(disk);
1513 }
1514
blkcg_exit(struct task_struct * tsk)1515 static void blkcg_exit(struct task_struct *tsk)
1516 {
1517 if (tsk->throttle_disk)
1518 put_disk(tsk->throttle_disk);
1519 tsk->throttle_disk = NULL;
1520 }
1521
1522 struct cgroup_subsys io_cgrp_subsys = {
1523 .css_alloc = blkcg_css_alloc,
1524 .css_online = blkcg_css_online,
1525 .css_offline = blkcg_css_offline,
1526 .css_free = blkcg_css_free,
1527 .css_rstat_flush = blkcg_rstat_flush,
1528 .dfl_cftypes = blkcg_files,
1529 .legacy_cftypes = blkcg_legacy_files,
1530 .legacy_name = "blkio",
1531 .exit = blkcg_exit,
1532 #ifdef CONFIG_MEMCG
1533 /*
1534 * This ensures that, if available, memcg is automatically enabled
1535 * together on the default hierarchy so that the owner cgroup can
1536 * be retrieved from writeback pages.
1537 */
1538 .depends_on = 1 << memory_cgrp_id,
1539 #endif
1540 };
1541 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1542
1543 /**
1544 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1545 * @disk: gendisk of interest
1546 * @pol: blkcg policy to activate
1547 *
1548 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1549 * bypass mode to populate its blkgs with policy_data for @pol.
1550 *
1551 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1552 * from IO path. Update of each blkg is protected by both queue and blkcg
1553 * locks so that holding either lock and testing blkcg_policy_enabled() is
1554 * always enough for dereferencing policy data.
1555 *
1556 * The caller is responsible for synchronizing [de]activations and policy
1557 * [un]registerations. Returns 0 on success, -errno on failure.
1558 */
blkcg_activate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1559 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1560 {
1561 struct request_queue *q = disk->queue;
1562 struct blkg_policy_data *pd_prealloc = NULL;
1563 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1564 int ret;
1565
1566 if (blkcg_policy_enabled(q, pol))
1567 return 0;
1568
1569 if (queue_is_mq(q))
1570 blk_mq_freeze_queue(q);
1571 retry:
1572 spin_lock_irq(&q->queue_lock);
1573
1574 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1575 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1576 struct blkg_policy_data *pd;
1577
1578 if (blkg->pd[pol->plid])
1579 continue;
1580
1581 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1582 if (blkg == pinned_blkg) {
1583 pd = pd_prealloc;
1584 pd_prealloc = NULL;
1585 } else {
1586 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1587 GFP_NOWAIT | __GFP_NOWARN);
1588 }
1589
1590 if (!pd) {
1591 /*
1592 * GFP_NOWAIT failed. Free the existing one and
1593 * prealloc for @blkg w/ GFP_KERNEL.
1594 */
1595 if (pinned_blkg)
1596 blkg_put(pinned_blkg);
1597 blkg_get(blkg);
1598 pinned_blkg = blkg;
1599
1600 spin_unlock_irq(&q->queue_lock);
1601
1602 if (pd_prealloc)
1603 pol->pd_free_fn(pd_prealloc);
1604 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1605 GFP_KERNEL);
1606 if (pd_prealloc)
1607 goto retry;
1608 else
1609 goto enomem;
1610 }
1611
1612 spin_lock(&blkg->blkcg->lock);
1613
1614 pd->blkg = blkg;
1615 pd->plid = pol->plid;
1616 blkg->pd[pol->plid] = pd;
1617
1618 if (pol->pd_init_fn)
1619 pol->pd_init_fn(pd);
1620
1621 if (pol->pd_online_fn)
1622 pol->pd_online_fn(pd);
1623 pd->online = true;
1624
1625 spin_unlock(&blkg->blkcg->lock);
1626 }
1627
1628 __set_bit(pol->plid, q->blkcg_pols);
1629 ret = 0;
1630
1631 spin_unlock_irq(&q->queue_lock);
1632 out:
1633 if (queue_is_mq(q))
1634 blk_mq_unfreeze_queue(q);
1635 if (pinned_blkg)
1636 blkg_put(pinned_blkg);
1637 if (pd_prealloc)
1638 pol->pd_free_fn(pd_prealloc);
1639 return ret;
1640
1641 enomem:
1642 /* alloc failed, take down everything */
1643 spin_lock_irq(&q->queue_lock);
1644 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1645 struct blkcg *blkcg = blkg->blkcg;
1646 struct blkg_policy_data *pd;
1647
1648 spin_lock(&blkcg->lock);
1649 pd = blkg->pd[pol->plid];
1650 if (pd) {
1651 if (pd->online && pol->pd_offline_fn)
1652 pol->pd_offline_fn(pd);
1653 pd->online = false;
1654 pol->pd_free_fn(pd);
1655 blkg->pd[pol->plid] = NULL;
1656 }
1657 spin_unlock(&blkcg->lock);
1658 }
1659 spin_unlock_irq(&q->queue_lock);
1660 ret = -ENOMEM;
1661 goto out;
1662 }
1663 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1664
1665 /**
1666 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1667 * @disk: gendisk of interest
1668 * @pol: blkcg policy to deactivate
1669 *
1670 * Deactivate @pol on @disk. Follows the same synchronization rules as
1671 * blkcg_activate_policy().
1672 */
blkcg_deactivate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1673 void blkcg_deactivate_policy(struct gendisk *disk,
1674 const struct blkcg_policy *pol)
1675 {
1676 struct request_queue *q = disk->queue;
1677 struct blkcg_gq *blkg;
1678
1679 if (!blkcg_policy_enabled(q, pol))
1680 return;
1681
1682 if (queue_is_mq(q))
1683 blk_mq_freeze_queue(q);
1684
1685 mutex_lock(&q->blkcg_mutex);
1686 spin_lock_irq(&q->queue_lock);
1687
1688 __clear_bit(pol->plid, q->blkcg_pols);
1689
1690 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1691 struct blkcg *blkcg = blkg->blkcg;
1692
1693 spin_lock(&blkcg->lock);
1694 if (blkg->pd[pol->plid]) {
1695 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1696 pol->pd_offline_fn(blkg->pd[pol->plid]);
1697 pol->pd_free_fn(blkg->pd[pol->plid]);
1698 blkg->pd[pol->plid] = NULL;
1699 }
1700 spin_unlock(&blkcg->lock);
1701 }
1702
1703 spin_unlock_irq(&q->queue_lock);
1704 mutex_unlock(&q->blkcg_mutex);
1705
1706 if (queue_is_mq(q))
1707 blk_mq_unfreeze_queue(q);
1708 }
1709 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1710
blkcg_free_all_cpd(struct blkcg_policy * pol)1711 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1712 {
1713 struct blkcg *blkcg;
1714
1715 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1716 if (blkcg->cpd[pol->plid]) {
1717 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1718 blkcg->cpd[pol->plid] = NULL;
1719 }
1720 }
1721 }
1722
1723 /**
1724 * blkcg_policy_register - register a blkcg policy
1725 * @pol: blkcg policy to register
1726 *
1727 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1728 * successful registration. Returns 0 on success and -errno on failure.
1729 */
blkcg_policy_register(struct blkcg_policy * pol)1730 int blkcg_policy_register(struct blkcg_policy *pol)
1731 {
1732 struct blkcg *blkcg;
1733 int i, ret;
1734
1735 mutex_lock(&blkcg_pol_register_mutex);
1736 mutex_lock(&blkcg_pol_mutex);
1737
1738 /* find an empty slot */
1739 ret = -ENOSPC;
1740 for (i = 0; i < BLKCG_MAX_POLS; i++)
1741 if (!blkcg_policy[i])
1742 break;
1743 if (i >= BLKCG_MAX_POLS) {
1744 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1745 goto err_unlock;
1746 }
1747
1748 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1749 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1750 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1751 goto err_unlock;
1752
1753 /* register @pol */
1754 pol->plid = i;
1755 blkcg_policy[pol->plid] = pol;
1756
1757 /* allocate and install cpd's */
1758 if (pol->cpd_alloc_fn) {
1759 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1760 struct blkcg_policy_data *cpd;
1761
1762 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1763 if (!cpd)
1764 goto err_free_cpds;
1765
1766 blkcg->cpd[pol->plid] = cpd;
1767 cpd->blkcg = blkcg;
1768 cpd->plid = pol->plid;
1769 }
1770 }
1771
1772 mutex_unlock(&blkcg_pol_mutex);
1773
1774 /* everything is in place, add intf files for the new policy */
1775 if (pol->dfl_cftypes)
1776 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1777 pol->dfl_cftypes));
1778 if (pol->legacy_cftypes)
1779 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1780 pol->legacy_cftypes));
1781 mutex_unlock(&blkcg_pol_register_mutex);
1782 return 0;
1783
1784 err_free_cpds:
1785 if (pol->cpd_free_fn)
1786 blkcg_free_all_cpd(pol);
1787
1788 blkcg_policy[pol->plid] = NULL;
1789 err_unlock:
1790 mutex_unlock(&blkcg_pol_mutex);
1791 mutex_unlock(&blkcg_pol_register_mutex);
1792 return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1795
1796 /**
1797 * blkcg_policy_unregister - unregister a blkcg policy
1798 * @pol: blkcg policy to unregister
1799 *
1800 * Undo blkcg_policy_register(@pol). Might sleep.
1801 */
blkcg_policy_unregister(struct blkcg_policy * pol)1802 void blkcg_policy_unregister(struct blkcg_policy *pol)
1803 {
1804 mutex_lock(&blkcg_pol_register_mutex);
1805
1806 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1807 goto out_unlock;
1808
1809 /* kill the intf files first */
1810 if (pol->dfl_cftypes)
1811 cgroup_rm_cftypes(pol->dfl_cftypes);
1812 if (pol->legacy_cftypes)
1813 cgroup_rm_cftypes(pol->legacy_cftypes);
1814
1815 /* remove cpds and unregister */
1816 mutex_lock(&blkcg_pol_mutex);
1817
1818 if (pol->cpd_free_fn)
1819 blkcg_free_all_cpd(pol);
1820
1821 blkcg_policy[pol->plid] = NULL;
1822
1823 mutex_unlock(&blkcg_pol_mutex);
1824 out_unlock:
1825 mutex_unlock(&blkcg_pol_register_mutex);
1826 }
1827 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1828
1829 /*
1830 * Scale the accumulated delay based on how long it has been since we updated
1831 * the delay. We only call this when we are adding delay, in case it's been a
1832 * while since we added delay, and when we are checking to see if we need to
1833 * delay a task, to account for any delays that may have occurred.
1834 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1835 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1836 {
1837 u64 old = atomic64_read(&blkg->delay_start);
1838
1839 /* negative use_delay means no scaling, see blkcg_set_delay() */
1840 if (atomic_read(&blkg->use_delay) < 0)
1841 return;
1842
1843 /*
1844 * We only want to scale down every second. The idea here is that we
1845 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1846 * time window. We only want to throttle tasks for recent delay that
1847 * has occurred, in 1 second time windows since that's the maximum
1848 * things can be throttled. We save the current delay window in
1849 * blkg->last_delay so we know what amount is still left to be charged
1850 * to the blkg from this point onward. blkg->last_use keeps track of
1851 * the use_delay counter. The idea is if we're unthrottling the blkg we
1852 * are ok with whatever is happening now, and we can take away more of
1853 * the accumulated delay as we've already throttled enough that
1854 * everybody is happy with their IO latencies.
1855 */
1856 if (time_before64(old + NSEC_PER_SEC, now) &&
1857 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1858 u64 cur = atomic64_read(&blkg->delay_nsec);
1859 u64 sub = min_t(u64, blkg->last_delay, now - old);
1860 int cur_use = atomic_read(&blkg->use_delay);
1861
1862 /*
1863 * We've been unthrottled, subtract a larger chunk of our
1864 * accumulated delay.
1865 */
1866 if (cur_use < blkg->last_use)
1867 sub = max_t(u64, sub, blkg->last_delay >> 1);
1868
1869 /*
1870 * This shouldn't happen, but handle it anyway. Our delay_nsec
1871 * should only ever be growing except here where we subtract out
1872 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1873 * rather not end up with negative numbers.
1874 */
1875 if (unlikely(cur < sub)) {
1876 atomic64_set(&blkg->delay_nsec, 0);
1877 blkg->last_delay = 0;
1878 } else {
1879 atomic64_sub(sub, &blkg->delay_nsec);
1880 blkg->last_delay = cur - sub;
1881 }
1882 blkg->last_use = cur_use;
1883 }
1884 }
1885
1886 /*
1887 * This is called when we want to actually walk up the hierarchy and check to
1888 * see if we need to throttle, and then actually throttle if there is some
1889 * accumulated delay. This should only be called upon return to user space so
1890 * we're not holding some lock that would induce a priority inversion.
1891 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1892 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1893 {
1894 unsigned long pflags;
1895 bool clamp;
1896 u64 now = ktime_to_ns(ktime_get());
1897 u64 exp;
1898 u64 delay_nsec = 0;
1899 int tok;
1900
1901 while (blkg->parent) {
1902 int use_delay = atomic_read(&blkg->use_delay);
1903
1904 if (use_delay) {
1905 u64 this_delay;
1906
1907 blkcg_scale_delay(blkg, now);
1908 this_delay = atomic64_read(&blkg->delay_nsec);
1909 if (this_delay > delay_nsec) {
1910 delay_nsec = this_delay;
1911 clamp = use_delay > 0;
1912 }
1913 }
1914 blkg = blkg->parent;
1915 }
1916
1917 if (!delay_nsec)
1918 return;
1919
1920 /*
1921 * Let's not sleep for all eternity if we've amassed a huge delay.
1922 * Swapping or metadata IO can accumulate 10's of seconds worth of
1923 * delay, and we want userspace to be able to do _something_ so cap the
1924 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1925 * tasks will be delayed for 0.25 second for every syscall. If
1926 * blkcg_set_delay() was used as indicated by negative use_delay, the
1927 * caller is responsible for regulating the range.
1928 */
1929 if (clamp)
1930 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1931
1932 if (use_memdelay)
1933 psi_memstall_enter(&pflags);
1934
1935 exp = ktime_add_ns(now, delay_nsec);
1936 tok = io_schedule_prepare();
1937 do {
1938 __set_current_state(TASK_KILLABLE);
1939 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1940 break;
1941 } while (!fatal_signal_pending(current));
1942 io_schedule_finish(tok);
1943
1944 if (use_memdelay)
1945 psi_memstall_leave(&pflags);
1946 }
1947
1948 /**
1949 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1950 *
1951 * This is only called if we've been marked with set_notify_resume(). Obviously
1952 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1953 * check to see if current->throttle_disk is set and if not this doesn't do
1954 * anything. This should only ever be called by the resume code, it's not meant
1955 * to be called by people willy-nilly as it will actually do the work to
1956 * throttle the task if it is setup for throttling.
1957 */
blkcg_maybe_throttle_current(void)1958 void blkcg_maybe_throttle_current(void)
1959 {
1960 struct gendisk *disk = current->throttle_disk;
1961 struct blkcg *blkcg;
1962 struct blkcg_gq *blkg;
1963 bool use_memdelay = current->use_memdelay;
1964
1965 if (!disk)
1966 return;
1967
1968 current->throttle_disk = NULL;
1969 current->use_memdelay = false;
1970
1971 rcu_read_lock();
1972 blkcg = css_to_blkcg(blkcg_css());
1973 if (!blkcg)
1974 goto out;
1975 blkg = blkg_lookup(blkcg, disk->queue);
1976 if (!blkg)
1977 goto out;
1978 if (!blkg_tryget(blkg))
1979 goto out;
1980 rcu_read_unlock();
1981
1982 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1983 blkg_put(blkg);
1984 put_disk(disk);
1985 return;
1986 out:
1987 rcu_read_unlock();
1988 }
1989
1990 /**
1991 * blkcg_schedule_throttle - this task needs to check for throttling
1992 * @disk: disk to throttle
1993 * @use_memdelay: do we charge this to memory delay for PSI
1994 *
1995 * This is called by the IO controller when we know there's delay accumulated
1996 * for the blkg for this task. We do not pass the blkg because there are places
1997 * we call this that may not have that information, the swapping code for
1998 * instance will only have a block_device at that point. This set's the
1999 * notify_resume for the task to check and see if it requires throttling before
2000 * returning to user space.
2001 *
2002 * We will only schedule once per syscall. You can call this over and over
2003 * again and it will only do the check once upon return to user space, and only
2004 * throttle once. If the task needs to be throttled again it'll need to be
2005 * re-set at the next time we see the task.
2006 */
blkcg_schedule_throttle(struct gendisk * disk,bool use_memdelay)2007 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
2008 {
2009 if (unlikely(current->flags & PF_KTHREAD))
2010 return;
2011
2012 if (current->throttle_disk != disk) {
2013 if (test_bit(GD_DEAD, &disk->state))
2014 return;
2015 get_device(disk_to_dev(disk));
2016
2017 if (current->throttle_disk)
2018 put_disk(current->throttle_disk);
2019 current->throttle_disk = disk;
2020 }
2021
2022 if (use_memdelay)
2023 current->use_memdelay = use_memdelay;
2024 set_notify_resume(current);
2025 }
2026
2027 /**
2028 * blkcg_add_delay - add delay to this blkg
2029 * @blkg: blkg of interest
2030 * @now: the current time in nanoseconds
2031 * @delta: how many nanoseconds of delay to add
2032 *
2033 * Charge @delta to the blkg's current delay accumulation. This is used to
2034 * throttle tasks if an IO controller thinks we need more throttling.
2035 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)2036 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2037 {
2038 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2039 return;
2040 blkcg_scale_delay(blkg, now);
2041 atomic64_add(delta, &blkg->delay_nsec);
2042 }
2043
2044 /**
2045 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2046 * @bio: target bio
2047 * @css: target css
2048 *
2049 * As the failure mode here is to walk up the blkg tree, this ensure that the
2050 * blkg->parent pointers are always valid. This returns the blkg that it ended
2051 * up taking a reference on or %NULL if no reference was taken.
2052 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)2053 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2054 struct cgroup_subsys_state *css)
2055 {
2056 struct blkcg_gq *blkg, *ret_blkg = NULL;
2057
2058 rcu_read_lock();
2059 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2060 while (blkg) {
2061 if (blkg_tryget(blkg)) {
2062 ret_blkg = blkg;
2063 break;
2064 }
2065 blkg = blkg->parent;
2066 }
2067 rcu_read_unlock();
2068
2069 return ret_blkg;
2070 }
2071
2072 /**
2073 * bio_associate_blkg_from_css - associate a bio with a specified css
2074 * @bio: target bio
2075 * @css: target css
2076 *
2077 * Associate @bio with the blkg found by combining the css's blkg and the
2078 * request_queue of the @bio. An association failure is handled by walking up
2079 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2080 * and q->root_blkg. This situation only happens when a cgroup is dying and
2081 * then the remaining bios will spill to the closest alive blkg.
2082 *
2083 * A reference will be taken on the blkg and will be released when @bio is
2084 * freed.
2085 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2086 void bio_associate_blkg_from_css(struct bio *bio,
2087 struct cgroup_subsys_state *css)
2088 {
2089 if (bio->bi_blkg)
2090 blkg_put(bio->bi_blkg);
2091
2092 if (css && css->parent) {
2093 bio->bi_blkg = blkg_tryget_closest(bio, css);
2094 } else {
2095 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2096 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2097 }
2098 }
2099 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2100
2101 /**
2102 * bio_associate_blkg - associate a bio with a blkg
2103 * @bio: target bio
2104 *
2105 * Associate @bio with the blkg found from the bio's css and request_queue.
2106 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2107 * already associated, the css is reused and association redone as the
2108 * request_queue may have changed.
2109 */
bio_associate_blkg(struct bio * bio)2110 void bio_associate_blkg(struct bio *bio)
2111 {
2112 struct cgroup_subsys_state *css;
2113
2114 rcu_read_lock();
2115
2116 if (bio->bi_blkg)
2117 css = bio_blkcg_css(bio);
2118 else
2119 css = blkcg_css();
2120
2121 bio_associate_blkg_from_css(bio, css);
2122
2123 rcu_read_unlock();
2124 }
2125 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2126
2127 /**
2128 * bio_clone_blkg_association - clone blkg association from src to dst bio
2129 * @dst: destination bio
2130 * @src: source bio
2131 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2132 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2133 {
2134 if (src->bi_blkg)
2135 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2136 }
2137 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2138
blk_cgroup_io_type(struct bio * bio)2139 static int blk_cgroup_io_type(struct bio *bio)
2140 {
2141 if (op_is_discard(bio->bi_opf))
2142 return BLKG_IOSTAT_DISCARD;
2143 if (op_is_write(bio->bi_opf))
2144 return BLKG_IOSTAT_WRITE;
2145 return BLKG_IOSTAT_READ;
2146 }
2147
blk_cgroup_bio_start(struct bio * bio)2148 void blk_cgroup_bio_start(struct bio *bio)
2149 {
2150 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2151 int rwd = blk_cgroup_io_type(bio), cpu;
2152 struct blkg_iostat_set *bis;
2153 unsigned long flags;
2154
2155 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2156 return;
2157
2158 /* Root-level stats are sourced from system-wide IO stats */
2159 if (!cgroup_parent(blkcg->css.cgroup))
2160 return;
2161
2162 cpu = get_cpu();
2163 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2164 flags = u64_stats_update_begin_irqsave(&bis->sync);
2165
2166 /*
2167 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2168 * bio and we would have already accounted for the size of the bio.
2169 */
2170 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2171 bio_set_flag(bio, BIO_CGROUP_ACCT);
2172 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2173 }
2174 bis->cur.ios[rwd]++;
2175
2176 /*
2177 * If the iostat_cpu isn't in a lockless list, put it into the
2178 * list to indicate that a stat update is pending.
2179 */
2180 if (!READ_ONCE(bis->lqueued)) {
2181 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2182
2183 llist_add(&bis->lnode, lhead);
2184 WRITE_ONCE(bis->lqueued, true);
2185 }
2186
2187 u64_stats_update_end_irqrestore(&bis->sync, flags);
2188 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2189 put_cpu();
2190 }
2191
blk_cgroup_congested(void)2192 bool blk_cgroup_congested(void)
2193 {
2194 struct cgroup_subsys_state *css;
2195 bool ret = false;
2196
2197 rcu_read_lock();
2198 for (css = blkcg_css(); css; css = css->parent) {
2199 if (atomic_read(&css->cgroup->congestion_count)) {
2200 ret = true;
2201 break;
2202 }
2203 }
2204 rcu_read_unlock();
2205 return ret;
2206 }
2207
2208 module_param(blkcg_debug_stats, bool, 0644);
2209 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2210