1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2023 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
get_cfg80211_regdom(void)138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
get_wiphy_regdom(struct wiphy * wiphy)148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169 }
170
reg_get_dfs_region(struct wiphy * wiphy)171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201 out:
202 rcu_read_unlock();
203
204 return dfs_region;
205 }
206
rcu_free_regdom(const struct ieee80211_regdomain * r)207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
get_last_request(void)214 static struct regulatory_request *get_last_request(void)
215 {
216 return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
reg_free_request(struct regulatory_request * request)292 static void reg_free_request(struct regulatory_request *request)
293 {
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299 }
300
reg_free_last_request(void)301 static void reg_free_last_request(void)
302 {
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307 }
308
reg_update_last_request(struct regulatory_request * request)309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319 }
320
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)321 static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323 {
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348 }
349
350 /*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
update_world_regdomain(const struct ieee80211_regdomain * rd)354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365 }
366
is_world_regdom(const char * alpha2)367 bool is_world_regdom(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
is_alpha2_set(const char * alpha2)374 static bool is_alpha2_set(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379 }
380
is_unknown_alpha2(const char * alpha2)381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
is_intersected_alpha2(const char * alpha2)392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
is_an_alpha2(const char * alpha2)404 static bool is_an_alpha2(const char *alpha2)
405 {
406 if (!alpha2)
407 return false;
408 return isascii(alpha2[0]) && isalpha(alpha2[0]) &&
409 isascii(alpha2[1]) && isalpha(alpha2[1]);
410 }
411
alpha2_equal(const char * alpha2_x,const char * alpha2_y)412 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
413 {
414 if (!alpha2_x || !alpha2_y)
415 return false;
416 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
417 }
418
regdom_changes(const char * alpha2)419 static bool regdom_changes(const char *alpha2)
420 {
421 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
422
423 if (!r)
424 return true;
425 return !alpha2_equal(r->alpha2, alpha2);
426 }
427
428 /*
429 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
430 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
431 * has ever been issued.
432 */
is_user_regdom_saved(void)433 static bool is_user_regdom_saved(void)
434 {
435 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
436 return false;
437
438 /* This would indicate a mistake on the design */
439 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
440 "Unexpected user alpha2: %c%c\n",
441 user_alpha2[0], user_alpha2[1]))
442 return false;
443
444 return true;
445 }
446
447 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)448 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
449 {
450 struct ieee80211_regdomain *regd;
451 unsigned int i;
452
453 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
454 GFP_KERNEL);
455 if (!regd)
456 return ERR_PTR(-ENOMEM);
457
458 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
459
460 for (i = 0; i < src_regd->n_reg_rules; i++)
461 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
462 sizeof(struct ieee80211_reg_rule));
463
464 return regd;
465 }
466
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)467 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
468 {
469 ASSERT_RTNL();
470
471 if (!IS_ERR(cfg80211_user_regdom))
472 kfree(cfg80211_user_regdom);
473 cfg80211_user_regdom = reg_copy_regd(rd);
474 }
475
476 struct reg_regdb_apply_request {
477 struct list_head list;
478 const struct ieee80211_regdomain *regdom;
479 };
480
481 static LIST_HEAD(reg_regdb_apply_list);
482 static DEFINE_MUTEX(reg_regdb_apply_mutex);
483
reg_regdb_apply(struct work_struct * work)484 static void reg_regdb_apply(struct work_struct *work)
485 {
486 struct reg_regdb_apply_request *request;
487
488 rtnl_lock();
489
490 mutex_lock(®_regdb_apply_mutex);
491 while (!list_empty(®_regdb_apply_list)) {
492 request = list_first_entry(®_regdb_apply_list,
493 struct reg_regdb_apply_request,
494 list);
495 list_del(&request->list);
496
497 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
498 kfree(request);
499 }
500 mutex_unlock(®_regdb_apply_mutex);
501
502 rtnl_unlock();
503 }
504
505 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
506
reg_schedule_apply(const struct ieee80211_regdomain * regdom)507 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
508 {
509 struct reg_regdb_apply_request *request;
510
511 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
512 if (!request) {
513 kfree(regdom);
514 return -ENOMEM;
515 }
516
517 request->regdom = regdom;
518
519 mutex_lock(®_regdb_apply_mutex);
520 list_add_tail(&request->list, ®_regdb_apply_list);
521 mutex_unlock(®_regdb_apply_mutex);
522
523 schedule_work(®_regdb_work);
524 return 0;
525 }
526
527 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
528 /* Max number of consecutive attempts to communicate with CRDA */
529 #define REG_MAX_CRDA_TIMEOUTS 10
530
531 static u32 reg_crda_timeouts;
532
533 static void crda_timeout_work(struct work_struct *work);
534 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
535
crda_timeout_work(struct work_struct * work)536 static void crda_timeout_work(struct work_struct *work)
537 {
538 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
539 rtnl_lock();
540 reg_crda_timeouts++;
541 restore_regulatory_settings(true, false);
542 rtnl_unlock();
543 }
544
cancel_crda_timeout(void)545 static void cancel_crda_timeout(void)
546 {
547 cancel_delayed_work(&crda_timeout);
548 }
549
cancel_crda_timeout_sync(void)550 static void cancel_crda_timeout_sync(void)
551 {
552 cancel_delayed_work_sync(&crda_timeout);
553 }
554
reset_crda_timeouts(void)555 static void reset_crda_timeouts(void)
556 {
557 reg_crda_timeouts = 0;
558 }
559
560 /*
561 * This lets us keep regulatory code which is updated on a regulatory
562 * basis in userspace.
563 */
call_crda(const char * alpha2)564 static int call_crda(const char *alpha2)
565 {
566 char country[12];
567 char *env[] = { country, NULL };
568 int ret;
569
570 snprintf(country, sizeof(country), "COUNTRY=%c%c",
571 alpha2[0], alpha2[1]);
572
573 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
574 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
575 return -EINVAL;
576 }
577
578 if (!is_world_regdom((char *) alpha2))
579 pr_debug("Calling CRDA for country: %c%c\n",
580 alpha2[0], alpha2[1]);
581 else
582 pr_debug("Calling CRDA to update world regulatory domain\n");
583
584 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
585 if (ret)
586 return ret;
587
588 queue_delayed_work(system_power_efficient_wq,
589 &crda_timeout, msecs_to_jiffies(3142));
590 return 0;
591 }
592 #else
cancel_crda_timeout(void)593 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)594 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)595 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)596 static inline int call_crda(const char *alpha2)
597 {
598 return -ENODATA;
599 }
600 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
601
602 /* code to directly load a firmware database through request_firmware */
603 static const struct fwdb_header *regdb;
604
605 struct fwdb_country {
606 u8 alpha2[2];
607 __be16 coll_ptr;
608 /* this struct cannot be extended */
609 } __packed __aligned(4);
610
611 struct fwdb_collection {
612 u8 len;
613 u8 n_rules;
614 u8 dfs_region;
615 /* no optional data yet */
616 /* aligned to 2, then followed by __be16 array of rule pointers */
617 } __packed __aligned(4);
618
619 enum fwdb_flags {
620 FWDB_FLAG_NO_OFDM = BIT(0),
621 FWDB_FLAG_NO_OUTDOOR = BIT(1),
622 FWDB_FLAG_DFS = BIT(2),
623 FWDB_FLAG_NO_IR = BIT(3),
624 FWDB_FLAG_AUTO_BW = BIT(4),
625 };
626
627 struct fwdb_wmm_ac {
628 u8 ecw;
629 u8 aifsn;
630 __be16 cot;
631 } __packed;
632
633 struct fwdb_wmm_rule {
634 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
635 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
636 } __packed;
637
638 struct fwdb_rule {
639 u8 len;
640 u8 flags;
641 __be16 max_eirp;
642 __be32 start, end, max_bw;
643 /* start of optional data */
644 __be16 cac_timeout;
645 __be16 wmm_ptr;
646 } __packed __aligned(4);
647
648 #define FWDB_MAGIC 0x52474442
649 #define FWDB_VERSION 20
650
651 struct fwdb_header {
652 __be32 magic;
653 __be32 version;
654 struct fwdb_country country[];
655 } __packed __aligned(4);
656
ecw2cw(int ecw)657 static int ecw2cw(int ecw)
658 {
659 return (1 << ecw) - 1;
660 }
661
valid_wmm(struct fwdb_wmm_rule * rule)662 static bool valid_wmm(struct fwdb_wmm_rule *rule)
663 {
664 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
665 int i;
666
667 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
668 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
669 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
670 u8 aifsn = ac[i].aifsn;
671
672 if (cw_min >= cw_max)
673 return false;
674
675 if (aifsn < 1)
676 return false;
677 }
678
679 return true;
680 }
681
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)682 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
683 {
684 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
685
686 if ((u8 *)rule + sizeof(rule->len) > data + size)
687 return false;
688
689 /* mandatory fields */
690 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
691 return false;
692 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
693 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
694 struct fwdb_wmm_rule *wmm;
695
696 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
697 return false;
698
699 wmm = (void *)(data + wmm_ptr);
700
701 if (!valid_wmm(wmm))
702 return false;
703 }
704 return true;
705 }
706
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)707 static bool valid_country(const u8 *data, unsigned int size,
708 const struct fwdb_country *country)
709 {
710 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
711 struct fwdb_collection *coll = (void *)(data + ptr);
712 __be16 *rules_ptr;
713 unsigned int i;
714
715 /* make sure we can read len/n_rules */
716 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
717 return false;
718
719 /* make sure base struct and all rules fit */
720 if ((u8 *)coll + ALIGN(coll->len, 2) +
721 (coll->n_rules * 2) > data + size)
722 return false;
723
724 /* mandatory fields must exist */
725 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
726 return false;
727
728 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
729
730 for (i = 0; i < coll->n_rules; i++) {
731 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
732
733 if (!valid_rule(data, size, rule_ptr))
734 return false;
735 }
736
737 return true;
738 }
739
740 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
741 #include <keys/asymmetric-type.h>
742
743 static struct key *builtin_regdb_keys;
744
load_builtin_regdb_keys(void)745 static int __init load_builtin_regdb_keys(void)
746 {
747 builtin_regdb_keys =
748 keyring_alloc(".builtin_regdb_keys",
749 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
750 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
752 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
753 if (IS_ERR(builtin_regdb_keys))
754 return PTR_ERR(builtin_regdb_keys);
755
756 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
757
758 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
759 x509_load_certificate_list(shipped_regdb_certs,
760 shipped_regdb_certs_len,
761 builtin_regdb_keys);
762 #endif
763 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
764 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
765 x509_load_certificate_list(extra_regdb_certs,
766 extra_regdb_certs_len,
767 builtin_regdb_keys);
768 #endif
769
770 return 0;
771 }
772
773 MODULE_FIRMWARE("regulatory.db.p7s");
774
regdb_has_valid_signature(const u8 * data,unsigned int size)775 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
776 {
777 const struct firmware *sig;
778 bool result;
779
780 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
781 return false;
782
783 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
784 builtin_regdb_keys,
785 VERIFYING_UNSPECIFIED_SIGNATURE,
786 NULL, NULL) == 0;
787
788 release_firmware(sig);
789
790 return result;
791 }
792
free_regdb_keyring(void)793 static void free_regdb_keyring(void)
794 {
795 key_put(builtin_regdb_keys);
796 }
797 #else
load_builtin_regdb_keys(void)798 static int load_builtin_regdb_keys(void)
799 {
800 return 0;
801 }
802
regdb_has_valid_signature(const u8 * data,unsigned int size)803 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
804 {
805 return true;
806 }
807
free_regdb_keyring(void)808 static void free_regdb_keyring(void)
809 {
810 }
811 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
812
valid_regdb(const u8 * data,unsigned int size)813 static bool valid_regdb(const u8 *data, unsigned int size)
814 {
815 const struct fwdb_header *hdr = (void *)data;
816 const struct fwdb_country *country;
817
818 if (size < sizeof(*hdr))
819 return false;
820
821 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
822 return false;
823
824 if (hdr->version != cpu_to_be32(FWDB_VERSION))
825 return false;
826
827 if (!regdb_has_valid_signature(data, size))
828 return false;
829
830 country = &hdr->country[0];
831 while ((u8 *)(country + 1) <= data + size) {
832 if (!country->coll_ptr)
833 break;
834 if (!valid_country(data, size, country))
835 return false;
836 country++;
837 }
838
839 return true;
840 }
841
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)842 static void set_wmm_rule(const struct fwdb_header *db,
843 const struct fwdb_country *country,
844 const struct fwdb_rule *rule,
845 struct ieee80211_reg_rule *rrule)
846 {
847 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
848 struct fwdb_wmm_rule *wmm;
849 unsigned int i, wmm_ptr;
850
851 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
852 wmm = (void *)((u8 *)db + wmm_ptr);
853
854 if (!valid_wmm(wmm)) {
855 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
856 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
857 country->alpha2[0], country->alpha2[1]);
858 return;
859 }
860
861 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
862 wmm_rule->client[i].cw_min =
863 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
864 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
865 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
866 wmm_rule->client[i].cot =
867 1000 * be16_to_cpu(wmm->client[i].cot);
868 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
869 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
870 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
871 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
872 }
873
874 rrule->has_wmm = true;
875 }
876
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)877 static int __regdb_query_wmm(const struct fwdb_header *db,
878 const struct fwdb_country *country, int freq,
879 struct ieee80211_reg_rule *rrule)
880 {
881 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
882 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
883 int i;
884
885 for (i = 0; i < coll->n_rules; i++) {
886 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
887 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
888 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
889
890 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
891 continue;
892
893 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
894 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
895 set_wmm_rule(db, country, rule, rrule);
896 return 0;
897 }
898 }
899
900 return -ENODATA;
901 }
902
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)903 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
904 {
905 const struct fwdb_header *hdr = regdb;
906 const struct fwdb_country *country;
907
908 if (!regdb)
909 return -ENODATA;
910
911 if (IS_ERR(regdb))
912 return PTR_ERR(regdb);
913
914 country = &hdr->country[0];
915 while (country->coll_ptr) {
916 if (alpha2_equal(alpha2, country->alpha2))
917 return __regdb_query_wmm(regdb, country, freq, rule);
918
919 country++;
920 }
921
922 return -ENODATA;
923 }
924 EXPORT_SYMBOL(reg_query_regdb_wmm);
925
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)926 static int regdb_query_country(const struct fwdb_header *db,
927 const struct fwdb_country *country)
928 {
929 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
930 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
931 struct ieee80211_regdomain *regdom;
932 unsigned int i;
933
934 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
935 GFP_KERNEL);
936 if (!regdom)
937 return -ENOMEM;
938
939 regdom->n_reg_rules = coll->n_rules;
940 regdom->alpha2[0] = country->alpha2[0];
941 regdom->alpha2[1] = country->alpha2[1];
942 regdom->dfs_region = coll->dfs_region;
943
944 for (i = 0; i < regdom->n_reg_rules; i++) {
945 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
946 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
947 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
948 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
949
950 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
951 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
952 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
953
954 rrule->power_rule.max_antenna_gain = 0;
955 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
956
957 rrule->flags = 0;
958 if (rule->flags & FWDB_FLAG_NO_OFDM)
959 rrule->flags |= NL80211_RRF_NO_OFDM;
960 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
961 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
962 if (rule->flags & FWDB_FLAG_DFS)
963 rrule->flags |= NL80211_RRF_DFS;
964 if (rule->flags & FWDB_FLAG_NO_IR)
965 rrule->flags |= NL80211_RRF_NO_IR;
966 if (rule->flags & FWDB_FLAG_AUTO_BW)
967 rrule->flags |= NL80211_RRF_AUTO_BW;
968
969 rrule->dfs_cac_ms = 0;
970
971 /* handle optional data */
972 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
973 rrule->dfs_cac_ms =
974 1000 * be16_to_cpu(rule->cac_timeout);
975 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
976 set_wmm_rule(db, country, rule, rrule);
977 }
978
979 return reg_schedule_apply(regdom);
980 }
981
query_regdb(const char * alpha2)982 static int query_regdb(const char *alpha2)
983 {
984 const struct fwdb_header *hdr = regdb;
985 const struct fwdb_country *country;
986
987 ASSERT_RTNL();
988
989 if (IS_ERR(regdb))
990 return PTR_ERR(regdb);
991
992 country = &hdr->country[0];
993 while (country->coll_ptr) {
994 if (alpha2_equal(alpha2, country->alpha2))
995 return regdb_query_country(regdb, country);
996 country++;
997 }
998
999 return -ENODATA;
1000 }
1001
regdb_fw_cb(const struct firmware * fw,void * context)1002 static void regdb_fw_cb(const struct firmware *fw, void *context)
1003 {
1004 int set_error = 0;
1005 bool restore = true;
1006 void *db;
1007
1008 if (!fw) {
1009 pr_info("failed to load regulatory.db\n");
1010 set_error = -ENODATA;
1011 } else if (!valid_regdb(fw->data, fw->size)) {
1012 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1013 set_error = -EINVAL;
1014 }
1015
1016 rtnl_lock();
1017 if (regdb && !IS_ERR(regdb)) {
1018 /* negative case - a bug
1019 * positive case - can happen due to race in case of multiple cb's in
1020 * queue, due to usage of asynchronous callback
1021 *
1022 * Either case, just restore and free new db.
1023 */
1024 } else if (set_error) {
1025 regdb = ERR_PTR(set_error);
1026 } else if (fw) {
1027 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1028 if (db) {
1029 regdb = db;
1030 restore = context && query_regdb(context);
1031 } else {
1032 restore = true;
1033 }
1034 }
1035
1036 if (restore)
1037 restore_regulatory_settings(true, false);
1038
1039 rtnl_unlock();
1040
1041 kfree(context);
1042
1043 release_firmware(fw);
1044 }
1045
1046 MODULE_FIRMWARE("regulatory.db");
1047
query_regdb_file(const char * alpha2)1048 static int query_regdb_file(const char *alpha2)
1049 {
1050 int err;
1051
1052 ASSERT_RTNL();
1053
1054 if (regdb)
1055 return query_regdb(alpha2);
1056
1057 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1058 if (!alpha2)
1059 return -ENOMEM;
1060
1061 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1062 ®_pdev->dev, GFP_KERNEL,
1063 (void *)alpha2, regdb_fw_cb);
1064 if (err)
1065 kfree(alpha2);
1066
1067 return err;
1068 }
1069
reg_reload_regdb(void)1070 int reg_reload_regdb(void)
1071 {
1072 const struct firmware *fw;
1073 void *db;
1074 int err;
1075 const struct ieee80211_regdomain *current_regdomain;
1076 struct regulatory_request *request;
1077
1078 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1079 if (err)
1080 return err;
1081
1082 if (!valid_regdb(fw->data, fw->size)) {
1083 err = -ENODATA;
1084 goto out;
1085 }
1086
1087 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1088 if (!db) {
1089 err = -ENOMEM;
1090 goto out;
1091 }
1092
1093 rtnl_lock();
1094 if (!IS_ERR_OR_NULL(regdb))
1095 kfree(regdb);
1096 regdb = db;
1097
1098 /* reset regulatory domain */
1099 current_regdomain = get_cfg80211_regdom();
1100
1101 request = kzalloc(sizeof(*request), GFP_KERNEL);
1102 if (!request) {
1103 err = -ENOMEM;
1104 goto out_unlock;
1105 }
1106
1107 request->wiphy_idx = WIPHY_IDX_INVALID;
1108 request->alpha2[0] = current_regdomain->alpha2[0];
1109 request->alpha2[1] = current_regdomain->alpha2[1];
1110 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1111 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1112
1113 reg_process_hint(request);
1114
1115 out_unlock:
1116 rtnl_unlock();
1117 out:
1118 release_firmware(fw);
1119 return err;
1120 }
1121
reg_query_database(struct regulatory_request * request)1122 static bool reg_query_database(struct regulatory_request *request)
1123 {
1124 if (query_regdb_file(request->alpha2) == 0)
1125 return true;
1126
1127 if (call_crda(request->alpha2) == 0)
1128 return true;
1129
1130 return false;
1131 }
1132
reg_is_valid_request(const char * alpha2)1133 bool reg_is_valid_request(const char *alpha2)
1134 {
1135 struct regulatory_request *lr = get_last_request();
1136
1137 if (!lr || lr->processed)
1138 return false;
1139
1140 return alpha2_equal(lr->alpha2, alpha2);
1141 }
1142
reg_get_regdomain(struct wiphy * wiphy)1143 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1144 {
1145 struct regulatory_request *lr = get_last_request();
1146
1147 /*
1148 * Follow the driver's regulatory domain, if present, unless a country
1149 * IE has been processed or a user wants to help complaince further
1150 */
1151 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1152 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1153 wiphy->regd)
1154 return get_wiphy_regdom(wiphy);
1155
1156 return get_cfg80211_regdom();
1157 }
1158
1159 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1160 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1161 const struct ieee80211_reg_rule *rule)
1162 {
1163 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1164 const struct ieee80211_freq_range *freq_range_tmp;
1165 const struct ieee80211_reg_rule *tmp;
1166 u32 start_freq, end_freq, idx, no;
1167
1168 for (idx = 0; idx < rd->n_reg_rules; idx++)
1169 if (rule == &rd->reg_rules[idx])
1170 break;
1171
1172 if (idx == rd->n_reg_rules)
1173 return 0;
1174
1175 /* get start_freq */
1176 no = idx;
1177
1178 while (no) {
1179 tmp = &rd->reg_rules[--no];
1180 freq_range_tmp = &tmp->freq_range;
1181
1182 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1183 break;
1184
1185 freq_range = freq_range_tmp;
1186 }
1187
1188 start_freq = freq_range->start_freq_khz;
1189
1190 /* get end_freq */
1191 freq_range = &rule->freq_range;
1192 no = idx;
1193
1194 while (no < rd->n_reg_rules - 1) {
1195 tmp = &rd->reg_rules[++no];
1196 freq_range_tmp = &tmp->freq_range;
1197
1198 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1199 break;
1200
1201 freq_range = freq_range_tmp;
1202 }
1203
1204 end_freq = freq_range->end_freq_khz;
1205
1206 return end_freq - start_freq;
1207 }
1208
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1209 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1210 const struct ieee80211_reg_rule *rule)
1211 {
1212 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1213
1214 if (rule->flags & NL80211_RRF_NO_320MHZ)
1215 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1216 if (rule->flags & NL80211_RRF_NO_160MHZ)
1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1218 if (rule->flags & NL80211_RRF_NO_80MHZ)
1219 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1220
1221 /*
1222 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1223 * are not allowed.
1224 */
1225 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1226 rule->flags & NL80211_RRF_NO_HT40PLUS)
1227 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1228
1229 return bw;
1230 }
1231
1232 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1233 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1234 {
1235 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1236 u32 freq_diff;
1237
1238 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1239 return false;
1240
1241 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1242 return false;
1243
1244 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1245
1246 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1247 freq_range->max_bandwidth_khz > freq_diff)
1248 return false;
1249
1250 return true;
1251 }
1252
is_valid_rd(const struct ieee80211_regdomain * rd)1253 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1254 {
1255 const struct ieee80211_reg_rule *reg_rule = NULL;
1256 unsigned int i;
1257
1258 if (!rd->n_reg_rules)
1259 return false;
1260
1261 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1262 return false;
1263
1264 for (i = 0; i < rd->n_reg_rules; i++) {
1265 reg_rule = &rd->reg_rules[i];
1266 if (!is_valid_reg_rule(reg_rule))
1267 return false;
1268 }
1269
1270 return true;
1271 }
1272
1273 /**
1274 * freq_in_rule_band - tells us if a frequency is in a frequency band
1275 * @freq_range: frequency rule we want to query
1276 * @freq_khz: frequency we are inquiring about
1277 *
1278 * This lets us know if a specific frequency rule is or is not relevant to
1279 * a specific frequency's band. Bands are device specific and artificial
1280 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1281 * however it is safe for now to assume that a frequency rule should not be
1282 * part of a frequency's band if the start freq or end freq are off by more
1283 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1284 * 60 GHz band.
1285 * This resolution can be lowered and should be considered as we add
1286 * regulatory rule support for other "bands".
1287 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1288 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1289 u32 freq_khz)
1290 {
1291 #define ONE_GHZ_IN_KHZ 1000000
1292 /*
1293 * From 802.11ad: directional multi-gigabit (DMG):
1294 * Pertaining to operation in a frequency band containing a channel
1295 * with the Channel starting frequency above 45 GHz.
1296 */
1297 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1298 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1299 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1300 return true;
1301 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1302 return true;
1303 return false;
1304 #undef ONE_GHZ_IN_KHZ
1305 }
1306
1307 /*
1308 * Later on we can perhaps use the more restrictive DFS
1309 * region but we don't have information for that yet so
1310 * for now simply disallow conflicts.
1311 */
1312 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314 const enum nl80211_dfs_regions dfs_region2)
1315 {
1316 if (dfs_region1 != dfs_region2)
1317 return NL80211_DFS_UNSET;
1318 return dfs_region1;
1319 }
1320
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322 const struct ieee80211_wmm_ac *wmm_ac2,
1323 struct ieee80211_wmm_ac *intersect)
1324 {
1325 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329 }
1330
1331 /*
1332 * Helper for regdom_intersect(), this does the real
1333 * mathematical intersection fun
1334 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1335 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336 const struct ieee80211_regdomain *rd2,
1337 const struct ieee80211_reg_rule *rule1,
1338 const struct ieee80211_reg_rule *rule2,
1339 struct ieee80211_reg_rule *intersected_rule)
1340 {
1341 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342 struct ieee80211_freq_range *freq_range;
1343 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344 struct ieee80211_power_rule *power_rule;
1345 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346 struct ieee80211_wmm_rule *wmm_rule;
1347 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348
1349 freq_range1 = &rule1->freq_range;
1350 freq_range2 = &rule2->freq_range;
1351 freq_range = &intersected_rule->freq_range;
1352
1353 power_rule1 = &rule1->power_rule;
1354 power_rule2 = &rule2->power_rule;
1355 power_rule = &intersected_rule->power_rule;
1356
1357 wmm_rule1 = &rule1->wmm_rule;
1358 wmm_rule2 = &rule2->wmm_rule;
1359 wmm_rule = &intersected_rule->wmm_rule;
1360
1361 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362 freq_range2->start_freq_khz);
1363 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364 freq_range2->end_freq_khz);
1365
1366 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368
1369 if (rule1->flags & NL80211_RRF_AUTO_BW)
1370 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1371 if (rule2->flags & NL80211_RRF_AUTO_BW)
1372 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373
1374 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375
1376 intersected_rule->flags = rule1->flags | rule2->flags;
1377
1378 /*
1379 * In case NL80211_RRF_AUTO_BW requested for both rules
1380 * set AUTO_BW in intersected rule also. Next we will
1381 * calculate BW correctly in handle_channel function.
1382 * In other case remove AUTO_BW flag while we calculate
1383 * maximum bandwidth correctly and auto calculation is
1384 * not required.
1385 */
1386 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387 (rule2->flags & NL80211_RRF_AUTO_BW))
1388 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389 else
1390 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391
1392 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393 if (freq_range->max_bandwidth_khz > freq_diff)
1394 freq_range->max_bandwidth_khz = freq_diff;
1395
1396 power_rule->max_eirp = min(power_rule1->max_eirp,
1397 power_rule2->max_eirp);
1398 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399 power_rule2->max_antenna_gain);
1400
1401 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402 rule2->dfs_cac_ms);
1403
1404 if (rule1->has_wmm && rule2->has_wmm) {
1405 u8 ac;
1406
1407 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1409 &wmm_rule2->client[ac],
1410 &wmm_rule->client[ac]);
1411 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1412 &wmm_rule2->ap[ac],
1413 &wmm_rule->ap[ac]);
1414 }
1415
1416 intersected_rule->has_wmm = true;
1417 } else if (rule1->has_wmm) {
1418 *wmm_rule = *wmm_rule1;
1419 intersected_rule->has_wmm = true;
1420 } else if (rule2->has_wmm) {
1421 *wmm_rule = *wmm_rule2;
1422 intersected_rule->has_wmm = true;
1423 } else {
1424 intersected_rule->has_wmm = false;
1425 }
1426
1427 if (!is_valid_reg_rule(intersected_rule))
1428 return -EINVAL;
1429
1430 return 0;
1431 }
1432
1433 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1434 static bool rule_contains(struct ieee80211_reg_rule *r1,
1435 struct ieee80211_reg_rule *r2)
1436 {
1437 /* for simplicity, currently consider only same flags */
1438 if (r1->flags != r2->flags)
1439 return false;
1440
1441 /* verify r1 is more restrictive */
1442 if ((r1->power_rule.max_antenna_gain >
1443 r2->power_rule.max_antenna_gain) ||
1444 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445 return false;
1446
1447 /* make sure r2's range is contained within r1 */
1448 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450 return false;
1451
1452 /* and finally verify that r1.max_bw >= r2.max_bw */
1453 if (r1->freq_range.max_bandwidth_khz <
1454 r2->freq_range.max_bandwidth_khz)
1455 return false;
1456
1457 return true;
1458 }
1459
1460 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1461 static void add_rule(struct ieee80211_reg_rule *rule,
1462 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463 {
1464 struct ieee80211_reg_rule *tmp_rule;
1465 int i;
1466
1467 for (i = 0; i < *n_rules; i++) {
1468 tmp_rule = ®_rules[i];
1469 /* rule is already contained - do nothing */
1470 if (rule_contains(tmp_rule, rule))
1471 return;
1472
1473 /* extend rule if possible */
1474 if (rule_contains(rule, tmp_rule)) {
1475 memcpy(tmp_rule, rule, sizeof(*rule));
1476 return;
1477 }
1478 }
1479
1480 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1481 (*n_rules)++;
1482 }
1483
1484 /**
1485 * regdom_intersect - do the intersection between two regulatory domains
1486 * @rd1: first regulatory domain
1487 * @rd2: second regulatory domain
1488 *
1489 * Use this function to get the intersection between two regulatory domains.
1490 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491 * as no one single alpha2 can represent this regulatory domain.
1492 *
1493 * Returns a pointer to the regulatory domain structure which will hold the
1494 * resulting intersection of rules between rd1 and rd2. We will
1495 * kzalloc() this structure for you.
1496 */
1497 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1498 regdom_intersect(const struct ieee80211_regdomain *rd1,
1499 const struct ieee80211_regdomain *rd2)
1500 {
1501 int r;
1502 unsigned int x, y;
1503 unsigned int num_rules = 0;
1504 const struct ieee80211_reg_rule *rule1, *rule2;
1505 struct ieee80211_reg_rule intersected_rule;
1506 struct ieee80211_regdomain *rd;
1507
1508 if (!rd1 || !rd2)
1509 return NULL;
1510
1511 /*
1512 * First we get a count of the rules we'll need, then we actually
1513 * build them. This is to so we can malloc() and free() a
1514 * regdomain once. The reason we use reg_rules_intersect() here
1515 * is it will return -EINVAL if the rule computed makes no sense.
1516 * All rules that do check out OK are valid.
1517 */
1518
1519 for (x = 0; x < rd1->n_reg_rules; x++) {
1520 rule1 = &rd1->reg_rules[x];
1521 for (y = 0; y < rd2->n_reg_rules; y++) {
1522 rule2 = &rd2->reg_rules[y];
1523 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1524 &intersected_rule))
1525 num_rules++;
1526 }
1527 }
1528
1529 if (!num_rules)
1530 return NULL;
1531
1532 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1533 if (!rd)
1534 return NULL;
1535
1536 for (x = 0; x < rd1->n_reg_rules; x++) {
1537 rule1 = &rd1->reg_rules[x];
1538 for (y = 0; y < rd2->n_reg_rules; y++) {
1539 rule2 = &rd2->reg_rules[y];
1540 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1541 &intersected_rule);
1542 /*
1543 * No need to memset here the intersected rule here as
1544 * we're not using the stack anymore
1545 */
1546 if (r)
1547 continue;
1548
1549 add_rule(&intersected_rule, rd->reg_rules,
1550 &rd->n_reg_rules);
1551 }
1552 }
1553
1554 rd->alpha2[0] = '9';
1555 rd->alpha2[1] = '8';
1556 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1557 rd2->dfs_region);
1558
1559 return rd;
1560 }
1561
1562 /*
1563 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1564 * want to just have the channel structure use these
1565 */
map_regdom_flags(u32 rd_flags)1566 static u32 map_regdom_flags(u32 rd_flags)
1567 {
1568 u32 channel_flags = 0;
1569 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1570 channel_flags |= IEEE80211_CHAN_NO_IR;
1571 if (rd_flags & NL80211_RRF_DFS)
1572 channel_flags |= IEEE80211_CHAN_RADAR;
1573 if (rd_flags & NL80211_RRF_NO_OFDM)
1574 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1575 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1576 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1577 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1578 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1579 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1580 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1581 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1582 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1583 if (rd_flags & NL80211_RRF_NO_80MHZ)
1584 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1585 if (rd_flags & NL80211_RRF_NO_160MHZ)
1586 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1587 if (rd_flags & NL80211_RRF_NO_HE)
1588 channel_flags |= IEEE80211_CHAN_NO_HE;
1589 if (rd_flags & NL80211_RRF_NO_320MHZ)
1590 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1591 if (rd_flags & NL80211_RRF_NO_EHT)
1592 channel_flags |= IEEE80211_CHAN_NO_EHT;
1593 return channel_flags;
1594 }
1595
1596 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1597 freq_reg_info_regd(u32 center_freq,
1598 const struct ieee80211_regdomain *regd, u32 bw)
1599 {
1600 int i;
1601 bool band_rule_found = false;
1602 bool bw_fits = false;
1603
1604 if (!regd)
1605 return ERR_PTR(-EINVAL);
1606
1607 for (i = 0; i < regd->n_reg_rules; i++) {
1608 const struct ieee80211_reg_rule *rr;
1609 const struct ieee80211_freq_range *fr = NULL;
1610
1611 rr = ®d->reg_rules[i];
1612 fr = &rr->freq_range;
1613
1614 /*
1615 * We only need to know if one frequency rule was
1616 * in center_freq's band, that's enough, so let's
1617 * not overwrite it once found
1618 */
1619 if (!band_rule_found)
1620 band_rule_found = freq_in_rule_band(fr, center_freq);
1621
1622 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1623
1624 if (band_rule_found && bw_fits)
1625 return rr;
1626 }
1627
1628 if (!band_rule_found)
1629 return ERR_PTR(-ERANGE);
1630
1631 return ERR_PTR(-EINVAL);
1632 }
1633
1634 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1635 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1636 {
1637 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1638 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1639 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1640 int i = ARRAY_SIZE(bws) - 1;
1641 u32 bw;
1642
1643 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1644 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1645 if (!IS_ERR(reg_rule))
1646 return reg_rule;
1647 }
1648
1649 return reg_rule;
1650 }
1651
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1652 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1653 u32 center_freq)
1654 {
1655 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1656
1657 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1658 }
1659 EXPORT_SYMBOL(freq_reg_info);
1660
reg_initiator_name(enum nl80211_reg_initiator initiator)1661 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1662 {
1663 switch (initiator) {
1664 case NL80211_REGDOM_SET_BY_CORE:
1665 return "core";
1666 case NL80211_REGDOM_SET_BY_USER:
1667 return "user";
1668 case NL80211_REGDOM_SET_BY_DRIVER:
1669 return "driver";
1670 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1671 return "country element";
1672 default:
1673 WARN_ON(1);
1674 return "bug";
1675 }
1676 }
1677 EXPORT_SYMBOL(reg_initiator_name);
1678
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1679 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1680 const struct ieee80211_reg_rule *reg_rule,
1681 const struct ieee80211_channel *chan)
1682 {
1683 const struct ieee80211_freq_range *freq_range = NULL;
1684 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1685 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1686
1687 freq_range = ®_rule->freq_range;
1688
1689 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1690 center_freq_khz = ieee80211_channel_to_khz(chan);
1691 /* Check if auto calculation requested */
1692 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1693 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1694
1695 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1696 if (!cfg80211_does_bw_fit_range(freq_range,
1697 center_freq_khz,
1698 MHZ_TO_KHZ(10)))
1699 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1700 if (!cfg80211_does_bw_fit_range(freq_range,
1701 center_freq_khz,
1702 MHZ_TO_KHZ(20)))
1703 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1704
1705 if (is_s1g) {
1706 /* S1G is strict about non overlapping channels. We can
1707 * calculate which bandwidth is allowed per channel by finding
1708 * the largest bandwidth which cleanly divides the freq_range.
1709 */
1710 int edge_offset;
1711 int ch_bw = max_bandwidth_khz;
1712
1713 while (ch_bw) {
1714 edge_offset = (center_freq_khz - ch_bw / 2) -
1715 freq_range->start_freq_khz;
1716 if (edge_offset % ch_bw == 0) {
1717 switch (KHZ_TO_MHZ(ch_bw)) {
1718 case 1:
1719 bw_flags |= IEEE80211_CHAN_1MHZ;
1720 break;
1721 case 2:
1722 bw_flags |= IEEE80211_CHAN_2MHZ;
1723 break;
1724 case 4:
1725 bw_flags |= IEEE80211_CHAN_4MHZ;
1726 break;
1727 case 8:
1728 bw_flags |= IEEE80211_CHAN_8MHZ;
1729 break;
1730 case 16:
1731 bw_flags |= IEEE80211_CHAN_16MHZ;
1732 break;
1733 default:
1734 /* If we got here, no bandwidths fit on
1735 * this frequency, ie. band edge.
1736 */
1737 bw_flags |= IEEE80211_CHAN_DISABLED;
1738 break;
1739 }
1740 break;
1741 }
1742 ch_bw /= 2;
1743 }
1744 } else {
1745 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1746 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1747 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1748 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1749 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1750 bw_flags |= IEEE80211_CHAN_NO_HT40;
1751 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1752 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1753 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1754 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1755 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1756 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1757 }
1758 return bw_flags;
1759 }
1760
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1761 static void handle_channel_single_rule(struct wiphy *wiphy,
1762 enum nl80211_reg_initiator initiator,
1763 struct ieee80211_channel *chan,
1764 u32 flags,
1765 struct regulatory_request *lr,
1766 struct wiphy *request_wiphy,
1767 const struct ieee80211_reg_rule *reg_rule)
1768 {
1769 u32 bw_flags = 0;
1770 const struct ieee80211_power_rule *power_rule = NULL;
1771 const struct ieee80211_regdomain *regd;
1772
1773 regd = reg_get_regdomain(wiphy);
1774
1775 power_rule = ®_rule->power_rule;
1776 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1777
1778 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1779 request_wiphy && request_wiphy == wiphy &&
1780 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1781 /*
1782 * This guarantees the driver's requested regulatory domain
1783 * will always be used as a base for further regulatory
1784 * settings
1785 */
1786 chan->flags = chan->orig_flags =
1787 map_regdom_flags(reg_rule->flags) | bw_flags;
1788 chan->max_antenna_gain = chan->orig_mag =
1789 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1790 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1791 (int) MBM_TO_DBM(power_rule->max_eirp);
1792
1793 if (chan->flags & IEEE80211_CHAN_RADAR) {
1794 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1795 if (reg_rule->dfs_cac_ms)
1796 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1797 }
1798
1799 return;
1800 }
1801
1802 chan->dfs_state = NL80211_DFS_USABLE;
1803 chan->dfs_state_entered = jiffies;
1804
1805 chan->beacon_found = false;
1806 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1807 chan->max_antenna_gain =
1808 min_t(int, chan->orig_mag,
1809 MBI_TO_DBI(power_rule->max_antenna_gain));
1810 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1811
1812 if (chan->flags & IEEE80211_CHAN_RADAR) {
1813 if (reg_rule->dfs_cac_ms)
1814 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1815 else
1816 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1817 }
1818
1819 if (chan->orig_mpwr) {
1820 /*
1821 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1822 * will always follow the passed country IE power settings.
1823 */
1824 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1825 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1826 chan->max_power = chan->max_reg_power;
1827 else
1828 chan->max_power = min(chan->orig_mpwr,
1829 chan->max_reg_power);
1830 } else
1831 chan->max_power = chan->max_reg_power;
1832 }
1833
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1834 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1835 enum nl80211_reg_initiator initiator,
1836 struct ieee80211_channel *chan,
1837 u32 flags,
1838 struct regulatory_request *lr,
1839 struct wiphy *request_wiphy,
1840 const struct ieee80211_reg_rule *rrule1,
1841 const struct ieee80211_reg_rule *rrule2,
1842 struct ieee80211_freq_range *comb_range)
1843 {
1844 u32 bw_flags1 = 0;
1845 u32 bw_flags2 = 0;
1846 const struct ieee80211_power_rule *power_rule1 = NULL;
1847 const struct ieee80211_power_rule *power_rule2 = NULL;
1848 const struct ieee80211_regdomain *regd;
1849
1850 regd = reg_get_regdomain(wiphy);
1851
1852 power_rule1 = &rrule1->power_rule;
1853 power_rule2 = &rrule2->power_rule;
1854 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1855 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1856
1857 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1858 request_wiphy && request_wiphy == wiphy &&
1859 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1860 /* This guarantees the driver's requested regulatory domain
1861 * will always be used as a base for further regulatory
1862 * settings
1863 */
1864 chan->flags =
1865 map_regdom_flags(rrule1->flags) |
1866 map_regdom_flags(rrule2->flags) |
1867 bw_flags1 |
1868 bw_flags2;
1869 chan->orig_flags = chan->flags;
1870 chan->max_antenna_gain =
1871 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1872 MBI_TO_DBI(power_rule2->max_antenna_gain));
1873 chan->orig_mag = chan->max_antenna_gain;
1874 chan->max_reg_power =
1875 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1876 MBM_TO_DBM(power_rule2->max_eirp));
1877 chan->max_power = chan->max_reg_power;
1878 chan->orig_mpwr = chan->max_reg_power;
1879
1880 if (chan->flags & IEEE80211_CHAN_RADAR) {
1881 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1882 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1883 chan->dfs_cac_ms = max_t(unsigned int,
1884 rrule1->dfs_cac_ms,
1885 rrule2->dfs_cac_ms);
1886 }
1887
1888 return;
1889 }
1890
1891 chan->dfs_state = NL80211_DFS_USABLE;
1892 chan->dfs_state_entered = jiffies;
1893
1894 chan->beacon_found = false;
1895 chan->flags = flags | bw_flags1 | bw_flags2 |
1896 map_regdom_flags(rrule1->flags) |
1897 map_regdom_flags(rrule2->flags);
1898
1899 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1900 * (otherwise no adj. rule case), recheck therefore
1901 */
1902 if (cfg80211_does_bw_fit_range(comb_range,
1903 ieee80211_channel_to_khz(chan),
1904 MHZ_TO_KHZ(10)))
1905 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1906 if (cfg80211_does_bw_fit_range(comb_range,
1907 ieee80211_channel_to_khz(chan),
1908 MHZ_TO_KHZ(20)))
1909 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1910
1911 chan->max_antenna_gain =
1912 min_t(int, chan->orig_mag,
1913 min_t(int,
1914 MBI_TO_DBI(power_rule1->max_antenna_gain),
1915 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1916 chan->max_reg_power = min_t(int,
1917 MBM_TO_DBM(power_rule1->max_eirp),
1918 MBM_TO_DBM(power_rule2->max_eirp));
1919
1920 if (chan->flags & IEEE80211_CHAN_RADAR) {
1921 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1922 chan->dfs_cac_ms = max_t(unsigned int,
1923 rrule1->dfs_cac_ms,
1924 rrule2->dfs_cac_ms);
1925 else
1926 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1927 }
1928
1929 if (chan->orig_mpwr) {
1930 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1931 * will always follow the passed country IE power settings.
1932 */
1933 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1934 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1935 chan->max_power = chan->max_reg_power;
1936 else
1937 chan->max_power = min(chan->orig_mpwr,
1938 chan->max_reg_power);
1939 } else {
1940 chan->max_power = chan->max_reg_power;
1941 }
1942 }
1943
1944 /* Note that right now we assume the desired channel bandwidth
1945 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1946 * per channel, the primary and the extension channel).
1947 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1948 static void handle_channel(struct wiphy *wiphy,
1949 enum nl80211_reg_initiator initiator,
1950 struct ieee80211_channel *chan)
1951 {
1952 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1953 struct regulatory_request *lr = get_last_request();
1954 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1955 const struct ieee80211_reg_rule *rrule = NULL;
1956 const struct ieee80211_reg_rule *rrule1 = NULL;
1957 const struct ieee80211_reg_rule *rrule2 = NULL;
1958
1959 u32 flags = chan->orig_flags;
1960
1961 rrule = freq_reg_info(wiphy, orig_chan_freq);
1962 if (IS_ERR(rrule)) {
1963 /* check for adjacent match, therefore get rules for
1964 * chan - 20 MHz and chan + 20 MHz and test
1965 * if reg rules are adjacent
1966 */
1967 rrule1 = freq_reg_info(wiphy,
1968 orig_chan_freq - MHZ_TO_KHZ(20));
1969 rrule2 = freq_reg_info(wiphy,
1970 orig_chan_freq + MHZ_TO_KHZ(20));
1971 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1972 struct ieee80211_freq_range comb_range;
1973
1974 if (rrule1->freq_range.end_freq_khz !=
1975 rrule2->freq_range.start_freq_khz)
1976 goto disable_chan;
1977
1978 comb_range.start_freq_khz =
1979 rrule1->freq_range.start_freq_khz;
1980 comb_range.end_freq_khz =
1981 rrule2->freq_range.end_freq_khz;
1982 comb_range.max_bandwidth_khz =
1983 min_t(u32,
1984 rrule1->freq_range.max_bandwidth_khz,
1985 rrule2->freq_range.max_bandwidth_khz);
1986
1987 if (!cfg80211_does_bw_fit_range(&comb_range,
1988 orig_chan_freq,
1989 MHZ_TO_KHZ(20)))
1990 goto disable_chan;
1991
1992 handle_channel_adjacent_rules(wiphy, initiator, chan,
1993 flags, lr, request_wiphy,
1994 rrule1, rrule2,
1995 &comb_range);
1996 return;
1997 }
1998
1999 disable_chan:
2000 /* We will disable all channels that do not match our
2001 * received regulatory rule unless the hint is coming
2002 * from a Country IE and the Country IE had no information
2003 * about a band. The IEEE 802.11 spec allows for an AP
2004 * to send only a subset of the regulatory rules allowed,
2005 * so an AP in the US that only supports 2.4 GHz may only send
2006 * a country IE with information for the 2.4 GHz band
2007 * while 5 GHz is still supported.
2008 */
2009 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2010 PTR_ERR(rrule) == -ERANGE)
2011 return;
2012
2013 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2014 request_wiphy && request_wiphy == wiphy &&
2015 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2016 pr_debug("Disabling freq %d.%03d MHz for good\n",
2017 chan->center_freq, chan->freq_offset);
2018 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2019 chan->flags = chan->orig_flags;
2020 } else {
2021 pr_debug("Disabling freq %d.%03d MHz\n",
2022 chan->center_freq, chan->freq_offset);
2023 chan->flags |= IEEE80211_CHAN_DISABLED;
2024 }
2025 return;
2026 }
2027
2028 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2029 request_wiphy, rrule);
2030 }
2031
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2032 static void handle_band(struct wiphy *wiphy,
2033 enum nl80211_reg_initiator initiator,
2034 struct ieee80211_supported_band *sband)
2035 {
2036 unsigned int i;
2037
2038 if (!sband)
2039 return;
2040
2041 for (i = 0; i < sband->n_channels; i++)
2042 handle_channel(wiphy, initiator, &sband->channels[i]);
2043 }
2044
reg_request_cell_base(struct regulatory_request * request)2045 static bool reg_request_cell_base(struct regulatory_request *request)
2046 {
2047 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2048 return false;
2049 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2050 }
2051
reg_last_request_cell_base(void)2052 bool reg_last_request_cell_base(void)
2053 {
2054 return reg_request_cell_base(get_last_request());
2055 }
2056
2057 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2058 /* Core specific check */
2059 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2060 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2061 {
2062 struct regulatory_request *lr = get_last_request();
2063
2064 if (!reg_num_devs_support_basehint)
2065 return REG_REQ_IGNORE;
2066
2067 if (reg_request_cell_base(lr) &&
2068 !regdom_changes(pending_request->alpha2))
2069 return REG_REQ_ALREADY_SET;
2070
2071 return REG_REQ_OK;
2072 }
2073
2074 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2075 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2076 {
2077 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2078 }
2079 #else
2080 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2081 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2082 {
2083 return REG_REQ_IGNORE;
2084 }
2085
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2086 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2087 {
2088 return true;
2089 }
2090 #endif
2091
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2092 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2093 {
2094 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2095 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2096 return true;
2097 return false;
2098 }
2099
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2100 static bool ignore_reg_update(struct wiphy *wiphy,
2101 enum nl80211_reg_initiator initiator)
2102 {
2103 struct regulatory_request *lr = get_last_request();
2104
2105 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2106 return true;
2107
2108 if (!lr) {
2109 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2110 reg_initiator_name(initiator));
2111 return true;
2112 }
2113
2114 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2115 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2116 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2117 reg_initiator_name(initiator));
2118 return true;
2119 }
2120
2121 /*
2122 * wiphy->regd will be set once the device has its own
2123 * desired regulatory domain set
2124 */
2125 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2126 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2127 !is_world_regdom(lr->alpha2)) {
2128 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2129 reg_initiator_name(initiator));
2130 return true;
2131 }
2132
2133 if (reg_request_cell_base(lr))
2134 return reg_dev_ignore_cell_hint(wiphy);
2135
2136 return false;
2137 }
2138
reg_is_world_roaming(struct wiphy * wiphy)2139 static bool reg_is_world_roaming(struct wiphy *wiphy)
2140 {
2141 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2142 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2143 struct regulatory_request *lr = get_last_request();
2144
2145 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2146 return true;
2147
2148 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2149 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2150 return true;
2151
2152 return false;
2153 }
2154
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2155 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2156 struct reg_beacon *reg_beacon)
2157 {
2158 struct ieee80211_supported_band *sband;
2159 struct ieee80211_channel *chan;
2160 bool channel_changed = false;
2161 struct ieee80211_channel chan_before;
2162
2163 sband = wiphy->bands[reg_beacon->chan.band];
2164 chan = &sband->channels[chan_idx];
2165
2166 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2167 return;
2168
2169 if (chan->beacon_found)
2170 return;
2171
2172 chan->beacon_found = true;
2173
2174 if (!reg_is_world_roaming(wiphy))
2175 return;
2176
2177 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2178 return;
2179
2180 chan_before = *chan;
2181
2182 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2183 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2184 channel_changed = true;
2185 }
2186
2187 if (channel_changed)
2188 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2189 }
2190
2191 /*
2192 * Called when a scan on a wiphy finds a beacon on
2193 * new channel
2194 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2195 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2196 struct reg_beacon *reg_beacon)
2197 {
2198 unsigned int i;
2199 struct ieee80211_supported_band *sband;
2200
2201 if (!wiphy->bands[reg_beacon->chan.band])
2202 return;
2203
2204 sband = wiphy->bands[reg_beacon->chan.band];
2205
2206 for (i = 0; i < sband->n_channels; i++)
2207 handle_reg_beacon(wiphy, i, reg_beacon);
2208 }
2209
2210 /*
2211 * Called upon reg changes or a new wiphy is added
2212 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2213 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2214 {
2215 unsigned int i;
2216 struct ieee80211_supported_band *sband;
2217 struct reg_beacon *reg_beacon;
2218
2219 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2220 if (!wiphy->bands[reg_beacon->chan.band])
2221 continue;
2222 sband = wiphy->bands[reg_beacon->chan.band];
2223 for (i = 0; i < sband->n_channels; i++)
2224 handle_reg_beacon(wiphy, i, reg_beacon);
2225 }
2226 }
2227
2228 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2229 static void reg_process_beacons(struct wiphy *wiphy)
2230 {
2231 /*
2232 * Means we are just firing up cfg80211, so no beacons would
2233 * have been processed yet.
2234 */
2235 if (!last_request)
2236 return;
2237 wiphy_update_beacon_reg(wiphy);
2238 }
2239
is_ht40_allowed(struct ieee80211_channel * chan)2240 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2241 {
2242 if (!chan)
2243 return false;
2244 if (chan->flags & IEEE80211_CHAN_DISABLED)
2245 return false;
2246 /* This would happen when regulatory rules disallow HT40 completely */
2247 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2248 return false;
2249 return true;
2250 }
2251
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2252 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2253 struct ieee80211_channel *channel)
2254 {
2255 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2256 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2257 const struct ieee80211_regdomain *regd;
2258 unsigned int i;
2259 u32 flags;
2260
2261 if (!is_ht40_allowed(channel)) {
2262 channel->flags |= IEEE80211_CHAN_NO_HT40;
2263 return;
2264 }
2265
2266 /*
2267 * We need to ensure the extension channels exist to
2268 * be able to use HT40- or HT40+, this finds them (or not)
2269 */
2270 for (i = 0; i < sband->n_channels; i++) {
2271 struct ieee80211_channel *c = &sband->channels[i];
2272
2273 if (c->center_freq == (channel->center_freq - 20))
2274 channel_before = c;
2275 if (c->center_freq == (channel->center_freq + 20))
2276 channel_after = c;
2277 }
2278
2279 flags = 0;
2280 regd = get_wiphy_regdom(wiphy);
2281 if (regd) {
2282 const struct ieee80211_reg_rule *reg_rule =
2283 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2284 regd, MHZ_TO_KHZ(20));
2285
2286 if (!IS_ERR(reg_rule))
2287 flags = reg_rule->flags;
2288 }
2289
2290 /*
2291 * Please note that this assumes target bandwidth is 20 MHz,
2292 * if that ever changes we also need to change the below logic
2293 * to include that as well.
2294 */
2295 if (!is_ht40_allowed(channel_before) ||
2296 flags & NL80211_RRF_NO_HT40MINUS)
2297 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2298 else
2299 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2300
2301 if (!is_ht40_allowed(channel_after) ||
2302 flags & NL80211_RRF_NO_HT40PLUS)
2303 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2304 else
2305 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2306 }
2307
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2308 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2309 struct ieee80211_supported_band *sband)
2310 {
2311 unsigned int i;
2312
2313 if (!sband)
2314 return;
2315
2316 for (i = 0; i < sband->n_channels; i++)
2317 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2318 }
2319
reg_process_ht_flags(struct wiphy * wiphy)2320 static void reg_process_ht_flags(struct wiphy *wiphy)
2321 {
2322 enum nl80211_band band;
2323
2324 if (!wiphy)
2325 return;
2326
2327 for (band = 0; band < NUM_NL80211_BANDS; band++)
2328 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2329 }
2330
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2331 static void reg_call_notifier(struct wiphy *wiphy,
2332 struct regulatory_request *request)
2333 {
2334 if (wiphy->reg_notifier)
2335 wiphy->reg_notifier(wiphy, request);
2336 }
2337
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2338 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2339 {
2340 struct cfg80211_chan_def chandef = {};
2341 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2342 enum nl80211_iftype iftype;
2343 bool ret;
2344 int link;
2345
2346 wdev_lock(wdev);
2347 iftype = wdev->iftype;
2348
2349 /* make sure the interface is active */
2350 if (!wdev->netdev || !netif_running(wdev->netdev))
2351 goto wdev_inactive_unlock;
2352
2353 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2354 struct ieee80211_channel *chan;
2355
2356 if (!wdev->valid_links && link > 0)
2357 break;
2358 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2359 continue;
2360 switch (iftype) {
2361 case NL80211_IFTYPE_AP:
2362 case NL80211_IFTYPE_P2P_GO:
2363 if (!wdev->links[link].ap.beacon_interval)
2364 continue;
2365 chandef = wdev->links[link].ap.chandef;
2366 break;
2367 case NL80211_IFTYPE_MESH_POINT:
2368 if (!wdev->u.mesh.beacon_interval)
2369 continue;
2370 chandef = wdev->u.mesh.chandef;
2371 break;
2372 case NL80211_IFTYPE_ADHOC:
2373 if (!wdev->u.ibss.ssid_len)
2374 continue;
2375 chandef = wdev->u.ibss.chandef;
2376 break;
2377 case NL80211_IFTYPE_STATION:
2378 case NL80211_IFTYPE_P2P_CLIENT:
2379 /* Maybe we could consider disabling that link only? */
2380 if (!wdev->links[link].client.current_bss)
2381 continue;
2382
2383 chan = wdev->links[link].client.current_bss->pub.channel;
2384 if (!chan)
2385 continue;
2386
2387 if (!rdev->ops->get_channel ||
2388 rdev_get_channel(rdev, wdev, link, &chandef))
2389 cfg80211_chandef_create(&chandef, chan,
2390 NL80211_CHAN_NO_HT);
2391 break;
2392 case NL80211_IFTYPE_MONITOR:
2393 case NL80211_IFTYPE_AP_VLAN:
2394 case NL80211_IFTYPE_P2P_DEVICE:
2395 /* no enforcement required */
2396 break;
2397 case NL80211_IFTYPE_OCB:
2398 if (!wdev->u.ocb.chandef.chan)
2399 continue;
2400 chandef = wdev->u.ocb.chandef;
2401 break;
2402 case NL80211_IFTYPE_NAN:
2403 /* we have no info, but NAN is also pretty universal */
2404 continue;
2405 default:
2406 /* others not implemented for now */
2407 WARN_ON_ONCE(1);
2408 break;
2409 }
2410
2411 wdev_unlock(wdev);
2412
2413 switch (iftype) {
2414 case NL80211_IFTYPE_AP:
2415 case NL80211_IFTYPE_P2P_GO:
2416 case NL80211_IFTYPE_ADHOC:
2417 case NL80211_IFTYPE_MESH_POINT:
2418 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2419 iftype);
2420 if (!ret)
2421 return ret;
2422 break;
2423 case NL80211_IFTYPE_STATION:
2424 case NL80211_IFTYPE_P2P_CLIENT:
2425 ret = cfg80211_chandef_usable(wiphy, &chandef,
2426 IEEE80211_CHAN_DISABLED);
2427 if (!ret)
2428 return ret;
2429 break;
2430 default:
2431 break;
2432 }
2433
2434 wdev_lock(wdev);
2435 }
2436
2437 wdev_unlock(wdev);
2438
2439 return true;
2440
2441 wdev_inactive_unlock:
2442 wdev_unlock(wdev);
2443 return true;
2444 }
2445
reg_leave_invalid_chans(struct wiphy * wiphy)2446 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2447 {
2448 struct wireless_dev *wdev;
2449 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2450
2451 wiphy_lock(wiphy);
2452 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2453 if (!reg_wdev_chan_valid(wiphy, wdev))
2454 cfg80211_leave(rdev, wdev);
2455 wiphy_unlock(wiphy);
2456 }
2457
reg_check_chans_work(struct work_struct * work)2458 static void reg_check_chans_work(struct work_struct *work)
2459 {
2460 struct cfg80211_registered_device *rdev;
2461
2462 pr_debug("Verifying active interfaces after reg change\n");
2463 rtnl_lock();
2464
2465 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2466 reg_leave_invalid_chans(&rdev->wiphy);
2467
2468 rtnl_unlock();
2469 }
2470
reg_check_channels(void)2471 static void reg_check_channels(void)
2472 {
2473 /*
2474 * Give usermode a chance to do something nicer (move to another
2475 * channel, orderly disconnection), before forcing a disconnection.
2476 */
2477 mod_delayed_work(system_power_efficient_wq,
2478 ®_check_chans,
2479 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2480 }
2481
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2482 static void wiphy_update_regulatory(struct wiphy *wiphy,
2483 enum nl80211_reg_initiator initiator)
2484 {
2485 enum nl80211_band band;
2486 struct regulatory_request *lr = get_last_request();
2487
2488 if (ignore_reg_update(wiphy, initiator)) {
2489 /*
2490 * Regulatory updates set by CORE are ignored for custom
2491 * regulatory cards. Let us notify the changes to the driver,
2492 * as some drivers used this to restore its orig_* reg domain.
2493 */
2494 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2495 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2496 !(wiphy->regulatory_flags &
2497 REGULATORY_WIPHY_SELF_MANAGED))
2498 reg_call_notifier(wiphy, lr);
2499 return;
2500 }
2501
2502 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2503
2504 for (band = 0; band < NUM_NL80211_BANDS; band++)
2505 handle_band(wiphy, initiator, wiphy->bands[band]);
2506
2507 reg_process_beacons(wiphy);
2508 reg_process_ht_flags(wiphy);
2509 reg_call_notifier(wiphy, lr);
2510 }
2511
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2512 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2513 {
2514 struct cfg80211_registered_device *rdev;
2515 struct wiphy *wiphy;
2516
2517 ASSERT_RTNL();
2518
2519 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2520 wiphy = &rdev->wiphy;
2521 wiphy_update_regulatory(wiphy, initiator);
2522 }
2523
2524 reg_check_channels();
2525 }
2526
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2527 static void handle_channel_custom(struct wiphy *wiphy,
2528 struct ieee80211_channel *chan,
2529 const struct ieee80211_regdomain *regd,
2530 u32 min_bw)
2531 {
2532 u32 bw_flags = 0;
2533 const struct ieee80211_reg_rule *reg_rule = NULL;
2534 const struct ieee80211_power_rule *power_rule = NULL;
2535 u32 bw, center_freq_khz;
2536
2537 center_freq_khz = ieee80211_channel_to_khz(chan);
2538 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2539 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2540 if (!IS_ERR(reg_rule))
2541 break;
2542 }
2543
2544 if (IS_ERR_OR_NULL(reg_rule)) {
2545 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2546 chan->center_freq, chan->freq_offset);
2547 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2548 chan->flags |= IEEE80211_CHAN_DISABLED;
2549 } else {
2550 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2551 chan->flags = chan->orig_flags;
2552 }
2553 return;
2554 }
2555
2556 power_rule = ®_rule->power_rule;
2557 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2558
2559 chan->dfs_state_entered = jiffies;
2560 chan->dfs_state = NL80211_DFS_USABLE;
2561
2562 chan->beacon_found = false;
2563
2564 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2565 chan->flags = chan->orig_flags | bw_flags |
2566 map_regdom_flags(reg_rule->flags);
2567 else
2568 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2569
2570 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2571 chan->max_reg_power = chan->max_power =
2572 (int) MBM_TO_DBM(power_rule->max_eirp);
2573
2574 if (chan->flags & IEEE80211_CHAN_RADAR) {
2575 if (reg_rule->dfs_cac_ms)
2576 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2577 else
2578 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2579 }
2580
2581 chan->max_power = chan->max_reg_power;
2582 }
2583
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2584 static void handle_band_custom(struct wiphy *wiphy,
2585 struct ieee80211_supported_band *sband,
2586 const struct ieee80211_regdomain *regd)
2587 {
2588 unsigned int i;
2589
2590 if (!sband)
2591 return;
2592
2593 /*
2594 * We currently assume that you always want at least 20 MHz,
2595 * otherwise channel 12 might get enabled if this rule is
2596 * compatible to US, which permits 2402 - 2472 MHz.
2597 */
2598 for (i = 0; i < sband->n_channels; i++)
2599 handle_channel_custom(wiphy, &sband->channels[i], regd,
2600 MHZ_TO_KHZ(20));
2601 }
2602
2603 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2604 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2605 const struct ieee80211_regdomain *regd)
2606 {
2607 const struct ieee80211_regdomain *new_regd, *tmp;
2608 enum nl80211_band band;
2609 unsigned int bands_set = 0;
2610
2611 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2612 "wiphy should have REGULATORY_CUSTOM_REG\n");
2613 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2614
2615 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2616 if (!wiphy->bands[band])
2617 continue;
2618 handle_band_custom(wiphy, wiphy->bands[band], regd);
2619 bands_set++;
2620 }
2621
2622 /*
2623 * no point in calling this if it won't have any effect
2624 * on your device's supported bands.
2625 */
2626 WARN_ON(!bands_set);
2627 new_regd = reg_copy_regd(regd);
2628 if (IS_ERR(new_regd))
2629 return;
2630
2631 rtnl_lock();
2632 wiphy_lock(wiphy);
2633
2634 tmp = get_wiphy_regdom(wiphy);
2635 rcu_assign_pointer(wiphy->regd, new_regd);
2636 rcu_free_regdom(tmp);
2637
2638 wiphy_unlock(wiphy);
2639 rtnl_unlock();
2640 }
2641 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2642
reg_set_request_processed(void)2643 static void reg_set_request_processed(void)
2644 {
2645 bool need_more_processing = false;
2646 struct regulatory_request *lr = get_last_request();
2647
2648 lr->processed = true;
2649
2650 spin_lock(®_requests_lock);
2651 if (!list_empty(®_requests_list))
2652 need_more_processing = true;
2653 spin_unlock(®_requests_lock);
2654
2655 cancel_crda_timeout();
2656
2657 if (need_more_processing)
2658 schedule_work(®_work);
2659 }
2660
2661 /**
2662 * reg_process_hint_core - process core regulatory requests
2663 * @core_request: a pending core regulatory request
2664 *
2665 * The wireless subsystem can use this function to process
2666 * a regulatory request issued by the regulatory core.
2667 */
2668 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2669 reg_process_hint_core(struct regulatory_request *core_request)
2670 {
2671 if (reg_query_database(core_request)) {
2672 core_request->intersect = false;
2673 core_request->processed = false;
2674 reg_update_last_request(core_request);
2675 return REG_REQ_OK;
2676 }
2677
2678 return REG_REQ_IGNORE;
2679 }
2680
2681 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2682 __reg_process_hint_user(struct regulatory_request *user_request)
2683 {
2684 struct regulatory_request *lr = get_last_request();
2685
2686 if (reg_request_cell_base(user_request))
2687 return reg_ignore_cell_hint(user_request);
2688
2689 if (reg_request_cell_base(lr))
2690 return REG_REQ_IGNORE;
2691
2692 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2693 return REG_REQ_INTERSECT;
2694 /*
2695 * If the user knows better the user should set the regdom
2696 * to their country before the IE is picked up
2697 */
2698 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2699 lr->intersect)
2700 return REG_REQ_IGNORE;
2701 /*
2702 * Process user requests only after previous user/driver/core
2703 * requests have been processed
2704 */
2705 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2706 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2707 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2708 regdom_changes(lr->alpha2))
2709 return REG_REQ_IGNORE;
2710
2711 if (!regdom_changes(user_request->alpha2))
2712 return REG_REQ_ALREADY_SET;
2713
2714 return REG_REQ_OK;
2715 }
2716
2717 /**
2718 * reg_process_hint_user - process user regulatory requests
2719 * @user_request: a pending user regulatory request
2720 *
2721 * The wireless subsystem can use this function to process
2722 * a regulatory request initiated by userspace.
2723 */
2724 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2725 reg_process_hint_user(struct regulatory_request *user_request)
2726 {
2727 enum reg_request_treatment treatment;
2728
2729 treatment = __reg_process_hint_user(user_request);
2730 if (treatment == REG_REQ_IGNORE ||
2731 treatment == REG_REQ_ALREADY_SET)
2732 return REG_REQ_IGNORE;
2733
2734 user_request->intersect = treatment == REG_REQ_INTERSECT;
2735 user_request->processed = false;
2736
2737 if (reg_query_database(user_request)) {
2738 reg_update_last_request(user_request);
2739 user_alpha2[0] = user_request->alpha2[0];
2740 user_alpha2[1] = user_request->alpha2[1];
2741 return REG_REQ_OK;
2742 }
2743
2744 return REG_REQ_IGNORE;
2745 }
2746
2747 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2748 __reg_process_hint_driver(struct regulatory_request *driver_request)
2749 {
2750 struct regulatory_request *lr = get_last_request();
2751
2752 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2753 if (regdom_changes(driver_request->alpha2))
2754 return REG_REQ_OK;
2755 return REG_REQ_ALREADY_SET;
2756 }
2757
2758 /*
2759 * This would happen if you unplug and plug your card
2760 * back in or if you add a new device for which the previously
2761 * loaded card also agrees on the regulatory domain.
2762 */
2763 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2764 !regdom_changes(driver_request->alpha2))
2765 return REG_REQ_ALREADY_SET;
2766
2767 return REG_REQ_INTERSECT;
2768 }
2769
2770 /**
2771 * reg_process_hint_driver - process driver regulatory requests
2772 * @wiphy: the wireless device for the regulatory request
2773 * @driver_request: a pending driver regulatory request
2774 *
2775 * The wireless subsystem can use this function to process
2776 * a regulatory request issued by an 802.11 driver.
2777 *
2778 * Returns one of the different reg request treatment values.
2779 */
2780 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2781 reg_process_hint_driver(struct wiphy *wiphy,
2782 struct regulatory_request *driver_request)
2783 {
2784 const struct ieee80211_regdomain *regd, *tmp;
2785 enum reg_request_treatment treatment;
2786
2787 treatment = __reg_process_hint_driver(driver_request);
2788
2789 switch (treatment) {
2790 case REG_REQ_OK:
2791 break;
2792 case REG_REQ_IGNORE:
2793 return REG_REQ_IGNORE;
2794 case REG_REQ_INTERSECT:
2795 case REG_REQ_ALREADY_SET:
2796 regd = reg_copy_regd(get_cfg80211_regdom());
2797 if (IS_ERR(regd))
2798 return REG_REQ_IGNORE;
2799
2800 tmp = get_wiphy_regdom(wiphy);
2801 ASSERT_RTNL();
2802 wiphy_lock(wiphy);
2803 rcu_assign_pointer(wiphy->regd, regd);
2804 wiphy_unlock(wiphy);
2805 rcu_free_regdom(tmp);
2806 }
2807
2808
2809 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2810 driver_request->processed = false;
2811
2812 /*
2813 * Since CRDA will not be called in this case as we already
2814 * have applied the requested regulatory domain before we just
2815 * inform userspace we have processed the request
2816 */
2817 if (treatment == REG_REQ_ALREADY_SET) {
2818 nl80211_send_reg_change_event(driver_request);
2819 reg_update_last_request(driver_request);
2820 reg_set_request_processed();
2821 return REG_REQ_ALREADY_SET;
2822 }
2823
2824 if (reg_query_database(driver_request)) {
2825 reg_update_last_request(driver_request);
2826 return REG_REQ_OK;
2827 }
2828
2829 return REG_REQ_IGNORE;
2830 }
2831
2832 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2833 __reg_process_hint_country_ie(struct wiphy *wiphy,
2834 struct regulatory_request *country_ie_request)
2835 {
2836 struct wiphy *last_wiphy = NULL;
2837 struct regulatory_request *lr = get_last_request();
2838
2839 if (reg_request_cell_base(lr)) {
2840 /* Trust a Cell base station over the AP's country IE */
2841 if (regdom_changes(country_ie_request->alpha2))
2842 return REG_REQ_IGNORE;
2843 return REG_REQ_ALREADY_SET;
2844 } else {
2845 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2846 return REG_REQ_IGNORE;
2847 }
2848
2849 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2850 return -EINVAL;
2851
2852 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2853 return REG_REQ_OK;
2854
2855 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2856
2857 if (last_wiphy != wiphy) {
2858 /*
2859 * Two cards with two APs claiming different
2860 * Country IE alpha2s. We could
2861 * intersect them, but that seems unlikely
2862 * to be correct. Reject second one for now.
2863 */
2864 if (regdom_changes(country_ie_request->alpha2))
2865 return REG_REQ_IGNORE;
2866 return REG_REQ_ALREADY_SET;
2867 }
2868
2869 if (regdom_changes(country_ie_request->alpha2))
2870 return REG_REQ_OK;
2871 return REG_REQ_ALREADY_SET;
2872 }
2873
2874 /**
2875 * reg_process_hint_country_ie - process regulatory requests from country IEs
2876 * @wiphy: the wireless device for the regulatory request
2877 * @country_ie_request: a regulatory request from a country IE
2878 *
2879 * The wireless subsystem can use this function to process
2880 * a regulatory request issued by a country Information Element.
2881 *
2882 * Returns one of the different reg request treatment values.
2883 */
2884 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2885 reg_process_hint_country_ie(struct wiphy *wiphy,
2886 struct regulatory_request *country_ie_request)
2887 {
2888 enum reg_request_treatment treatment;
2889
2890 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2891
2892 switch (treatment) {
2893 case REG_REQ_OK:
2894 break;
2895 case REG_REQ_IGNORE:
2896 return REG_REQ_IGNORE;
2897 case REG_REQ_ALREADY_SET:
2898 reg_free_request(country_ie_request);
2899 return REG_REQ_ALREADY_SET;
2900 case REG_REQ_INTERSECT:
2901 /*
2902 * This doesn't happen yet, not sure we
2903 * ever want to support it for this case.
2904 */
2905 WARN_ONCE(1, "Unexpected intersection for country elements");
2906 return REG_REQ_IGNORE;
2907 }
2908
2909 country_ie_request->intersect = false;
2910 country_ie_request->processed = false;
2911
2912 if (reg_query_database(country_ie_request)) {
2913 reg_update_last_request(country_ie_request);
2914 return REG_REQ_OK;
2915 }
2916
2917 return REG_REQ_IGNORE;
2918 }
2919
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2920 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2921 {
2922 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2923 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2924 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2925 bool dfs_domain_same;
2926
2927 rcu_read_lock();
2928
2929 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2930 wiphy1_regd = rcu_dereference(wiphy1->regd);
2931 if (!wiphy1_regd)
2932 wiphy1_regd = cfg80211_regd;
2933
2934 wiphy2_regd = rcu_dereference(wiphy2->regd);
2935 if (!wiphy2_regd)
2936 wiphy2_regd = cfg80211_regd;
2937
2938 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2939
2940 rcu_read_unlock();
2941
2942 return dfs_domain_same;
2943 }
2944
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2945 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2946 struct ieee80211_channel *src_chan)
2947 {
2948 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2949 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2950 return;
2951
2952 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2953 src_chan->flags & IEEE80211_CHAN_DISABLED)
2954 return;
2955
2956 if (src_chan->center_freq == dst_chan->center_freq &&
2957 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2958 dst_chan->dfs_state = src_chan->dfs_state;
2959 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2960 }
2961 }
2962
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2963 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2964 struct wiphy *src_wiphy)
2965 {
2966 struct ieee80211_supported_band *src_sband, *dst_sband;
2967 struct ieee80211_channel *src_chan, *dst_chan;
2968 int i, j, band;
2969
2970 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2971 return;
2972
2973 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2974 dst_sband = dst_wiphy->bands[band];
2975 src_sband = src_wiphy->bands[band];
2976 if (!dst_sband || !src_sband)
2977 continue;
2978
2979 for (i = 0; i < dst_sband->n_channels; i++) {
2980 dst_chan = &dst_sband->channels[i];
2981 for (j = 0; j < src_sband->n_channels; j++) {
2982 src_chan = &src_sband->channels[j];
2983 reg_copy_dfs_chan_state(dst_chan, src_chan);
2984 }
2985 }
2986 }
2987 }
2988
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)2989 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2990 {
2991 struct cfg80211_registered_device *rdev;
2992
2993 ASSERT_RTNL();
2994
2995 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2996 if (wiphy == &rdev->wiphy)
2997 continue;
2998 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2999 }
3000 }
3001
3002 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3003 static void reg_process_hint(struct regulatory_request *reg_request)
3004 {
3005 struct wiphy *wiphy = NULL;
3006 enum reg_request_treatment treatment;
3007 enum nl80211_reg_initiator initiator = reg_request->initiator;
3008
3009 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3010 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3011
3012 switch (initiator) {
3013 case NL80211_REGDOM_SET_BY_CORE:
3014 treatment = reg_process_hint_core(reg_request);
3015 break;
3016 case NL80211_REGDOM_SET_BY_USER:
3017 treatment = reg_process_hint_user(reg_request);
3018 break;
3019 case NL80211_REGDOM_SET_BY_DRIVER:
3020 if (!wiphy)
3021 goto out_free;
3022 treatment = reg_process_hint_driver(wiphy, reg_request);
3023 break;
3024 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3025 if (!wiphy)
3026 goto out_free;
3027 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3028 break;
3029 default:
3030 WARN(1, "invalid initiator %d\n", initiator);
3031 goto out_free;
3032 }
3033
3034 if (treatment == REG_REQ_IGNORE)
3035 goto out_free;
3036
3037 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3038 "unexpected treatment value %d\n", treatment);
3039
3040 /* This is required so that the orig_* parameters are saved.
3041 * NOTE: treatment must be set for any case that reaches here!
3042 */
3043 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3044 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3045 wiphy_update_regulatory(wiphy, initiator);
3046 wiphy_all_share_dfs_chan_state(wiphy);
3047 reg_check_channels();
3048 }
3049
3050 return;
3051
3052 out_free:
3053 reg_free_request(reg_request);
3054 }
3055
notify_self_managed_wiphys(struct regulatory_request * request)3056 static void notify_self_managed_wiphys(struct regulatory_request *request)
3057 {
3058 struct cfg80211_registered_device *rdev;
3059 struct wiphy *wiphy;
3060
3061 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3062 wiphy = &rdev->wiphy;
3063 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3064 request->initiator == NL80211_REGDOM_SET_BY_USER)
3065 reg_call_notifier(wiphy, request);
3066 }
3067 }
3068
3069 /*
3070 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3071 * Regulatory hints come on a first come first serve basis and we
3072 * must process each one atomically.
3073 */
reg_process_pending_hints(void)3074 static void reg_process_pending_hints(void)
3075 {
3076 struct regulatory_request *reg_request, *lr;
3077
3078 lr = get_last_request();
3079
3080 /* When last_request->processed becomes true this will be rescheduled */
3081 if (lr && !lr->processed) {
3082 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3083 return;
3084 }
3085
3086 spin_lock(®_requests_lock);
3087
3088 if (list_empty(®_requests_list)) {
3089 spin_unlock(®_requests_lock);
3090 return;
3091 }
3092
3093 reg_request = list_first_entry(®_requests_list,
3094 struct regulatory_request,
3095 list);
3096 list_del_init(®_request->list);
3097
3098 spin_unlock(®_requests_lock);
3099
3100 notify_self_managed_wiphys(reg_request);
3101
3102 reg_process_hint(reg_request);
3103
3104 lr = get_last_request();
3105
3106 spin_lock(®_requests_lock);
3107 if (!list_empty(®_requests_list) && lr && lr->processed)
3108 schedule_work(®_work);
3109 spin_unlock(®_requests_lock);
3110 }
3111
3112 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3113 static void reg_process_pending_beacon_hints(void)
3114 {
3115 struct cfg80211_registered_device *rdev;
3116 struct reg_beacon *pending_beacon, *tmp;
3117
3118 /* This goes through the _pending_ beacon list */
3119 spin_lock_bh(®_pending_beacons_lock);
3120
3121 list_for_each_entry_safe(pending_beacon, tmp,
3122 ®_pending_beacons, list) {
3123 list_del_init(&pending_beacon->list);
3124
3125 /* Applies the beacon hint to current wiphys */
3126 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3127 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3128
3129 /* Remembers the beacon hint for new wiphys or reg changes */
3130 list_add_tail(&pending_beacon->list, ®_beacon_list);
3131 }
3132
3133 spin_unlock_bh(®_pending_beacons_lock);
3134 }
3135
reg_process_self_managed_hint(struct wiphy * wiphy)3136 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3137 {
3138 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3139 const struct ieee80211_regdomain *tmp;
3140 const struct ieee80211_regdomain *regd;
3141 enum nl80211_band band;
3142 struct regulatory_request request = {};
3143
3144 ASSERT_RTNL();
3145 lockdep_assert_wiphy(wiphy);
3146
3147 spin_lock(®_requests_lock);
3148 regd = rdev->requested_regd;
3149 rdev->requested_regd = NULL;
3150 spin_unlock(®_requests_lock);
3151
3152 if (!regd)
3153 return;
3154
3155 tmp = get_wiphy_regdom(wiphy);
3156 rcu_assign_pointer(wiphy->regd, regd);
3157 rcu_free_regdom(tmp);
3158
3159 for (band = 0; band < NUM_NL80211_BANDS; band++)
3160 handle_band_custom(wiphy, wiphy->bands[band], regd);
3161
3162 reg_process_ht_flags(wiphy);
3163
3164 request.wiphy_idx = get_wiphy_idx(wiphy);
3165 request.alpha2[0] = regd->alpha2[0];
3166 request.alpha2[1] = regd->alpha2[1];
3167 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3168
3169 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3170 reg_call_notifier(wiphy, &request);
3171
3172 nl80211_send_wiphy_reg_change_event(&request);
3173 }
3174
reg_process_self_managed_hints(void)3175 static void reg_process_self_managed_hints(void)
3176 {
3177 struct cfg80211_registered_device *rdev;
3178
3179 ASSERT_RTNL();
3180
3181 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3182 wiphy_lock(&rdev->wiphy);
3183 reg_process_self_managed_hint(&rdev->wiphy);
3184 wiphy_unlock(&rdev->wiphy);
3185 }
3186
3187 reg_check_channels();
3188 }
3189
reg_todo(struct work_struct * work)3190 static void reg_todo(struct work_struct *work)
3191 {
3192 rtnl_lock();
3193 reg_process_pending_hints();
3194 reg_process_pending_beacon_hints();
3195 reg_process_self_managed_hints();
3196 rtnl_unlock();
3197 }
3198
queue_regulatory_request(struct regulatory_request * request)3199 static void queue_regulatory_request(struct regulatory_request *request)
3200 {
3201 request->alpha2[0] = toupper(request->alpha2[0]);
3202 request->alpha2[1] = toupper(request->alpha2[1]);
3203
3204 spin_lock(®_requests_lock);
3205 list_add_tail(&request->list, ®_requests_list);
3206 spin_unlock(®_requests_lock);
3207
3208 schedule_work(®_work);
3209 }
3210
3211 /*
3212 * Core regulatory hint -- happens during cfg80211_init()
3213 * and when we restore regulatory settings.
3214 */
regulatory_hint_core(const char * alpha2)3215 static int regulatory_hint_core(const char *alpha2)
3216 {
3217 struct regulatory_request *request;
3218
3219 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3220 if (!request)
3221 return -ENOMEM;
3222
3223 request->alpha2[0] = alpha2[0];
3224 request->alpha2[1] = alpha2[1];
3225 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3226 request->wiphy_idx = WIPHY_IDX_INVALID;
3227
3228 queue_regulatory_request(request);
3229
3230 return 0;
3231 }
3232
3233 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3234 int regulatory_hint_user(const char *alpha2,
3235 enum nl80211_user_reg_hint_type user_reg_hint_type)
3236 {
3237 struct regulatory_request *request;
3238
3239 if (WARN_ON(!alpha2))
3240 return -EINVAL;
3241
3242 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3243 return -EINVAL;
3244
3245 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3246 if (!request)
3247 return -ENOMEM;
3248
3249 request->wiphy_idx = WIPHY_IDX_INVALID;
3250 request->alpha2[0] = alpha2[0];
3251 request->alpha2[1] = alpha2[1];
3252 request->initiator = NL80211_REGDOM_SET_BY_USER;
3253 request->user_reg_hint_type = user_reg_hint_type;
3254
3255 /* Allow calling CRDA again */
3256 reset_crda_timeouts();
3257
3258 queue_regulatory_request(request);
3259
3260 return 0;
3261 }
3262
regulatory_hint_indoor(bool is_indoor,u32 portid)3263 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3264 {
3265 spin_lock(®_indoor_lock);
3266
3267 /* It is possible that more than one user space process is trying to
3268 * configure the indoor setting. To handle such cases, clear the indoor
3269 * setting in case that some process does not think that the device
3270 * is operating in an indoor environment. In addition, if a user space
3271 * process indicates that it is controlling the indoor setting, save its
3272 * portid, i.e., make it the owner.
3273 */
3274 reg_is_indoor = is_indoor;
3275 if (reg_is_indoor) {
3276 if (!reg_is_indoor_portid)
3277 reg_is_indoor_portid = portid;
3278 } else {
3279 reg_is_indoor_portid = 0;
3280 }
3281
3282 spin_unlock(®_indoor_lock);
3283
3284 if (!is_indoor)
3285 reg_check_channels();
3286
3287 return 0;
3288 }
3289
regulatory_netlink_notify(u32 portid)3290 void regulatory_netlink_notify(u32 portid)
3291 {
3292 spin_lock(®_indoor_lock);
3293
3294 if (reg_is_indoor_portid != portid) {
3295 spin_unlock(®_indoor_lock);
3296 return;
3297 }
3298
3299 reg_is_indoor = false;
3300 reg_is_indoor_portid = 0;
3301
3302 spin_unlock(®_indoor_lock);
3303
3304 reg_check_channels();
3305 }
3306
3307 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3308 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3309 {
3310 struct regulatory_request *request;
3311
3312 if (WARN_ON(!alpha2 || !wiphy))
3313 return -EINVAL;
3314
3315 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3316
3317 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3318 if (!request)
3319 return -ENOMEM;
3320
3321 request->wiphy_idx = get_wiphy_idx(wiphy);
3322
3323 request->alpha2[0] = alpha2[0];
3324 request->alpha2[1] = alpha2[1];
3325 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3326
3327 /* Allow calling CRDA again */
3328 reset_crda_timeouts();
3329
3330 queue_regulatory_request(request);
3331
3332 return 0;
3333 }
3334 EXPORT_SYMBOL(regulatory_hint);
3335
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3336 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3337 const u8 *country_ie, u8 country_ie_len)
3338 {
3339 char alpha2[2];
3340 enum environment_cap env = ENVIRON_ANY;
3341 struct regulatory_request *request = NULL, *lr;
3342
3343 /* IE len must be evenly divisible by 2 */
3344 if (country_ie_len & 0x01)
3345 return;
3346
3347 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3348 return;
3349
3350 request = kzalloc(sizeof(*request), GFP_KERNEL);
3351 if (!request)
3352 return;
3353
3354 alpha2[0] = country_ie[0];
3355 alpha2[1] = country_ie[1];
3356
3357 if (country_ie[2] == 'I')
3358 env = ENVIRON_INDOOR;
3359 else if (country_ie[2] == 'O')
3360 env = ENVIRON_OUTDOOR;
3361
3362 rcu_read_lock();
3363 lr = get_last_request();
3364
3365 if (unlikely(!lr))
3366 goto out;
3367
3368 /*
3369 * We will run this only upon a successful connection on cfg80211.
3370 * We leave conflict resolution to the workqueue, where can hold
3371 * the RTNL.
3372 */
3373 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3374 lr->wiphy_idx != WIPHY_IDX_INVALID)
3375 goto out;
3376
3377 request->wiphy_idx = get_wiphy_idx(wiphy);
3378 request->alpha2[0] = alpha2[0];
3379 request->alpha2[1] = alpha2[1];
3380 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3381 request->country_ie_env = env;
3382
3383 /* Allow calling CRDA again */
3384 reset_crda_timeouts();
3385
3386 queue_regulatory_request(request);
3387 request = NULL;
3388 out:
3389 kfree(request);
3390 rcu_read_unlock();
3391 }
3392
restore_alpha2(char * alpha2,bool reset_user)3393 static void restore_alpha2(char *alpha2, bool reset_user)
3394 {
3395 /* indicates there is no alpha2 to consider for restoration */
3396 alpha2[0] = '9';
3397 alpha2[1] = '7';
3398
3399 /* The user setting has precedence over the module parameter */
3400 if (is_user_regdom_saved()) {
3401 /* Unless we're asked to ignore it and reset it */
3402 if (reset_user) {
3403 pr_debug("Restoring regulatory settings including user preference\n");
3404 user_alpha2[0] = '9';
3405 user_alpha2[1] = '7';
3406
3407 /*
3408 * If we're ignoring user settings, we still need to
3409 * check the module parameter to ensure we put things
3410 * back as they were for a full restore.
3411 */
3412 if (!is_world_regdom(ieee80211_regdom)) {
3413 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3414 ieee80211_regdom[0], ieee80211_regdom[1]);
3415 alpha2[0] = ieee80211_regdom[0];
3416 alpha2[1] = ieee80211_regdom[1];
3417 }
3418 } else {
3419 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3420 user_alpha2[0], user_alpha2[1]);
3421 alpha2[0] = user_alpha2[0];
3422 alpha2[1] = user_alpha2[1];
3423 }
3424 } else if (!is_world_regdom(ieee80211_regdom)) {
3425 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3426 ieee80211_regdom[0], ieee80211_regdom[1]);
3427 alpha2[0] = ieee80211_regdom[0];
3428 alpha2[1] = ieee80211_regdom[1];
3429 } else
3430 pr_debug("Restoring regulatory settings\n");
3431 }
3432
restore_custom_reg_settings(struct wiphy * wiphy)3433 static void restore_custom_reg_settings(struct wiphy *wiphy)
3434 {
3435 struct ieee80211_supported_band *sband;
3436 enum nl80211_band band;
3437 struct ieee80211_channel *chan;
3438 int i;
3439
3440 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3441 sband = wiphy->bands[band];
3442 if (!sband)
3443 continue;
3444 for (i = 0; i < sband->n_channels; i++) {
3445 chan = &sband->channels[i];
3446 chan->flags = chan->orig_flags;
3447 chan->max_antenna_gain = chan->orig_mag;
3448 chan->max_power = chan->orig_mpwr;
3449 chan->beacon_found = false;
3450 }
3451 }
3452 }
3453
3454 /*
3455 * Restoring regulatory settings involves ignoring any
3456 * possibly stale country IE information and user regulatory
3457 * settings if so desired, this includes any beacon hints
3458 * learned as we could have traveled outside to another country
3459 * after disconnection. To restore regulatory settings we do
3460 * exactly what we did at bootup:
3461 *
3462 * - send a core regulatory hint
3463 * - send a user regulatory hint if applicable
3464 *
3465 * Device drivers that send a regulatory hint for a specific country
3466 * keep their own regulatory domain on wiphy->regd so that does
3467 * not need to be remembered.
3468 */
restore_regulatory_settings(bool reset_user,bool cached)3469 static void restore_regulatory_settings(bool reset_user, bool cached)
3470 {
3471 char alpha2[2];
3472 char world_alpha2[2];
3473 struct reg_beacon *reg_beacon, *btmp;
3474 LIST_HEAD(tmp_reg_req_list);
3475 struct cfg80211_registered_device *rdev;
3476
3477 ASSERT_RTNL();
3478
3479 /*
3480 * Clear the indoor setting in case that it is not controlled by user
3481 * space, as otherwise there is no guarantee that the device is still
3482 * operating in an indoor environment.
3483 */
3484 spin_lock(®_indoor_lock);
3485 if (reg_is_indoor && !reg_is_indoor_portid) {
3486 reg_is_indoor = false;
3487 reg_check_channels();
3488 }
3489 spin_unlock(®_indoor_lock);
3490
3491 reset_regdomains(true, &world_regdom);
3492 restore_alpha2(alpha2, reset_user);
3493
3494 /*
3495 * If there's any pending requests we simply
3496 * stash them to a temporary pending queue and
3497 * add then after we've restored regulatory
3498 * settings.
3499 */
3500 spin_lock(®_requests_lock);
3501 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3502 spin_unlock(®_requests_lock);
3503
3504 /* Clear beacon hints */
3505 spin_lock_bh(®_pending_beacons_lock);
3506 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3507 list_del(®_beacon->list);
3508 kfree(reg_beacon);
3509 }
3510 spin_unlock_bh(®_pending_beacons_lock);
3511
3512 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3513 list_del(®_beacon->list);
3514 kfree(reg_beacon);
3515 }
3516
3517 /* First restore to the basic regulatory settings */
3518 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3519 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3520
3521 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3522 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3523 continue;
3524 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3525 restore_custom_reg_settings(&rdev->wiphy);
3526 }
3527
3528 if (cached && (!is_an_alpha2(alpha2) ||
3529 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3530 reset_regdomains(false, cfg80211_world_regdom);
3531 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3532 print_regdomain(get_cfg80211_regdom());
3533 nl80211_send_reg_change_event(&core_request_world);
3534 reg_set_request_processed();
3535
3536 if (is_an_alpha2(alpha2) &&
3537 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3538 struct regulatory_request *ureq;
3539
3540 spin_lock(®_requests_lock);
3541 ureq = list_last_entry(®_requests_list,
3542 struct regulatory_request,
3543 list);
3544 list_del(&ureq->list);
3545 spin_unlock(®_requests_lock);
3546
3547 notify_self_managed_wiphys(ureq);
3548 reg_update_last_request(ureq);
3549 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3550 REGD_SOURCE_CACHED);
3551 }
3552 } else {
3553 regulatory_hint_core(world_alpha2);
3554
3555 /*
3556 * This restores the ieee80211_regdom module parameter
3557 * preference or the last user requested regulatory
3558 * settings, user regulatory settings takes precedence.
3559 */
3560 if (is_an_alpha2(alpha2))
3561 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3562 }
3563
3564 spin_lock(®_requests_lock);
3565 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3566 spin_unlock(®_requests_lock);
3567
3568 pr_debug("Kicking the queue\n");
3569
3570 schedule_work(®_work);
3571 }
3572
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3573 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3574 {
3575 struct cfg80211_registered_device *rdev;
3576 struct wireless_dev *wdev;
3577
3578 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3579 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3580 wdev_lock(wdev);
3581 if (!(wdev->wiphy->regulatory_flags & flag)) {
3582 wdev_unlock(wdev);
3583 return false;
3584 }
3585 wdev_unlock(wdev);
3586 }
3587 }
3588
3589 return true;
3590 }
3591
regulatory_hint_disconnect(void)3592 void regulatory_hint_disconnect(void)
3593 {
3594 /* Restore of regulatory settings is not required when wiphy(s)
3595 * ignore IE from connected access point but clearance of beacon hints
3596 * is required when wiphy(s) supports beacon hints.
3597 */
3598 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3599 struct reg_beacon *reg_beacon, *btmp;
3600
3601 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3602 return;
3603
3604 spin_lock_bh(®_pending_beacons_lock);
3605 list_for_each_entry_safe(reg_beacon, btmp,
3606 ®_pending_beacons, list) {
3607 list_del(®_beacon->list);
3608 kfree(reg_beacon);
3609 }
3610 spin_unlock_bh(®_pending_beacons_lock);
3611
3612 list_for_each_entry_safe(reg_beacon, btmp,
3613 ®_beacon_list, list) {
3614 list_del(®_beacon->list);
3615 kfree(reg_beacon);
3616 }
3617
3618 return;
3619 }
3620
3621 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3622 restore_regulatory_settings(false, true);
3623 }
3624
freq_is_chan_12_13_14(u32 freq)3625 static bool freq_is_chan_12_13_14(u32 freq)
3626 {
3627 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3628 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3629 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3630 return true;
3631 return false;
3632 }
3633
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3634 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3635 {
3636 struct reg_beacon *pending_beacon;
3637
3638 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3639 if (ieee80211_channel_equal(beacon_chan,
3640 &pending_beacon->chan))
3641 return true;
3642 return false;
3643 }
3644
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3645 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3646 struct ieee80211_channel *beacon_chan,
3647 gfp_t gfp)
3648 {
3649 struct reg_beacon *reg_beacon;
3650 bool processing;
3651
3652 if (beacon_chan->beacon_found ||
3653 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3654 (beacon_chan->band == NL80211_BAND_2GHZ &&
3655 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3656 return 0;
3657
3658 spin_lock_bh(®_pending_beacons_lock);
3659 processing = pending_reg_beacon(beacon_chan);
3660 spin_unlock_bh(®_pending_beacons_lock);
3661
3662 if (processing)
3663 return 0;
3664
3665 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3666 if (!reg_beacon)
3667 return -ENOMEM;
3668
3669 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3670 beacon_chan->center_freq, beacon_chan->freq_offset,
3671 ieee80211_freq_khz_to_channel(
3672 ieee80211_channel_to_khz(beacon_chan)),
3673 wiphy_name(wiphy));
3674
3675 memcpy(®_beacon->chan, beacon_chan,
3676 sizeof(struct ieee80211_channel));
3677
3678 /*
3679 * Since we can be called from BH or and non-BH context
3680 * we must use spin_lock_bh()
3681 */
3682 spin_lock_bh(®_pending_beacons_lock);
3683 list_add_tail(®_beacon->list, ®_pending_beacons);
3684 spin_unlock_bh(®_pending_beacons_lock);
3685
3686 schedule_work(®_work);
3687
3688 return 0;
3689 }
3690
print_rd_rules(const struct ieee80211_regdomain * rd)3691 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3692 {
3693 unsigned int i;
3694 const struct ieee80211_reg_rule *reg_rule = NULL;
3695 const struct ieee80211_freq_range *freq_range = NULL;
3696 const struct ieee80211_power_rule *power_rule = NULL;
3697 char bw[32], cac_time[32];
3698
3699 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3700
3701 for (i = 0; i < rd->n_reg_rules; i++) {
3702 reg_rule = &rd->reg_rules[i];
3703 freq_range = ®_rule->freq_range;
3704 power_rule = ®_rule->power_rule;
3705
3706 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3707 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3708 freq_range->max_bandwidth_khz,
3709 reg_get_max_bandwidth(rd, reg_rule));
3710 else
3711 snprintf(bw, sizeof(bw), "%d KHz",
3712 freq_range->max_bandwidth_khz);
3713
3714 if (reg_rule->flags & NL80211_RRF_DFS)
3715 scnprintf(cac_time, sizeof(cac_time), "%u s",
3716 reg_rule->dfs_cac_ms/1000);
3717 else
3718 scnprintf(cac_time, sizeof(cac_time), "N/A");
3719
3720
3721 /*
3722 * There may not be documentation for max antenna gain
3723 * in certain regions
3724 */
3725 if (power_rule->max_antenna_gain)
3726 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3727 freq_range->start_freq_khz,
3728 freq_range->end_freq_khz,
3729 bw,
3730 power_rule->max_antenna_gain,
3731 power_rule->max_eirp,
3732 cac_time);
3733 else
3734 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3735 freq_range->start_freq_khz,
3736 freq_range->end_freq_khz,
3737 bw,
3738 power_rule->max_eirp,
3739 cac_time);
3740 }
3741 }
3742
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3743 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3744 {
3745 switch (dfs_region) {
3746 case NL80211_DFS_UNSET:
3747 case NL80211_DFS_FCC:
3748 case NL80211_DFS_ETSI:
3749 case NL80211_DFS_JP:
3750 return true;
3751 default:
3752 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3753 return false;
3754 }
3755 }
3756
print_regdomain(const struct ieee80211_regdomain * rd)3757 static void print_regdomain(const struct ieee80211_regdomain *rd)
3758 {
3759 struct regulatory_request *lr = get_last_request();
3760
3761 if (is_intersected_alpha2(rd->alpha2)) {
3762 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3763 struct cfg80211_registered_device *rdev;
3764 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3765 if (rdev) {
3766 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3767 rdev->country_ie_alpha2[0],
3768 rdev->country_ie_alpha2[1]);
3769 } else
3770 pr_debug("Current regulatory domain intersected:\n");
3771 } else
3772 pr_debug("Current regulatory domain intersected:\n");
3773 } else if (is_world_regdom(rd->alpha2)) {
3774 pr_debug("World regulatory domain updated:\n");
3775 } else {
3776 if (is_unknown_alpha2(rd->alpha2))
3777 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3778 else {
3779 if (reg_request_cell_base(lr))
3780 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3781 rd->alpha2[0], rd->alpha2[1]);
3782 else
3783 pr_debug("Regulatory domain changed to country: %c%c\n",
3784 rd->alpha2[0], rd->alpha2[1]);
3785 }
3786 }
3787
3788 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3789 print_rd_rules(rd);
3790 }
3791
print_regdomain_info(const struct ieee80211_regdomain * rd)3792 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3793 {
3794 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3795 print_rd_rules(rd);
3796 }
3797
reg_set_rd_core(const struct ieee80211_regdomain * rd)3798 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3799 {
3800 if (!is_world_regdom(rd->alpha2))
3801 return -EINVAL;
3802 update_world_regdomain(rd);
3803 return 0;
3804 }
3805
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3806 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3807 struct regulatory_request *user_request)
3808 {
3809 const struct ieee80211_regdomain *intersected_rd = NULL;
3810
3811 if (!regdom_changes(rd->alpha2))
3812 return -EALREADY;
3813
3814 if (!is_valid_rd(rd)) {
3815 pr_err("Invalid regulatory domain detected: %c%c\n",
3816 rd->alpha2[0], rd->alpha2[1]);
3817 print_regdomain_info(rd);
3818 return -EINVAL;
3819 }
3820
3821 if (!user_request->intersect) {
3822 reset_regdomains(false, rd);
3823 return 0;
3824 }
3825
3826 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3827 if (!intersected_rd)
3828 return -EINVAL;
3829
3830 kfree(rd);
3831 rd = NULL;
3832 reset_regdomains(false, intersected_rd);
3833
3834 return 0;
3835 }
3836
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3837 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3838 struct regulatory_request *driver_request)
3839 {
3840 const struct ieee80211_regdomain *regd;
3841 const struct ieee80211_regdomain *intersected_rd = NULL;
3842 const struct ieee80211_regdomain *tmp;
3843 struct wiphy *request_wiphy;
3844
3845 if (is_world_regdom(rd->alpha2))
3846 return -EINVAL;
3847
3848 if (!regdom_changes(rd->alpha2))
3849 return -EALREADY;
3850
3851 if (!is_valid_rd(rd)) {
3852 pr_err("Invalid regulatory domain detected: %c%c\n",
3853 rd->alpha2[0], rd->alpha2[1]);
3854 print_regdomain_info(rd);
3855 return -EINVAL;
3856 }
3857
3858 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3859 if (!request_wiphy)
3860 return -ENODEV;
3861
3862 if (!driver_request->intersect) {
3863 ASSERT_RTNL();
3864 wiphy_lock(request_wiphy);
3865 if (request_wiphy->regd) {
3866 wiphy_unlock(request_wiphy);
3867 return -EALREADY;
3868 }
3869
3870 regd = reg_copy_regd(rd);
3871 if (IS_ERR(regd)) {
3872 wiphy_unlock(request_wiphy);
3873 return PTR_ERR(regd);
3874 }
3875
3876 rcu_assign_pointer(request_wiphy->regd, regd);
3877 wiphy_unlock(request_wiphy);
3878 reset_regdomains(false, rd);
3879 return 0;
3880 }
3881
3882 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3883 if (!intersected_rd)
3884 return -EINVAL;
3885
3886 /*
3887 * We can trash what CRDA provided now.
3888 * However if a driver requested this specific regulatory
3889 * domain we keep it for its private use
3890 */
3891 tmp = get_wiphy_regdom(request_wiphy);
3892 rcu_assign_pointer(request_wiphy->regd, rd);
3893 rcu_free_regdom(tmp);
3894
3895 rd = NULL;
3896
3897 reset_regdomains(false, intersected_rd);
3898
3899 return 0;
3900 }
3901
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3902 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3903 struct regulatory_request *country_ie_request)
3904 {
3905 struct wiphy *request_wiphy;
3906
3907 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3908 !is_unknown_alpha2(rd->alpha2))
3909 return -EINVAL;
3910
3911 /*
3912 * Lets only bother proceeding on the same alpha2 if the current
3913 * rd is non static (it means CRDA was present and was used last)
3914 * and the pending request came in from a country IE
3915 */
3916
3917 if (!is_valid_rd(rd)) {
3918 pr_err("Invalid regulatory domain detected: %c%c\n",
3919 rd->alpha2[0], rd->alpha2[1]);
3920 print_regdomain_info(rd);
3921 return -EINVAL;
3922 }
3923
3924 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3925 if (!request_wiphy)
3926 return -ENODEV;
3927
3928 if (country_ie_request->intersect)
3929 return -EINVAL;
3930
3931 reset_regdomains(false, rd);
3932 return 0;
3933 }
3934
3935 /*
3936 * Use this call to set the current regulatory domain. Conflicts with
3937 * multiple drivers can be ironed out later. Caller must've already
3938 * kmalloc'd the rd structure.
3939 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3940 int set_regdom(const struct ieee80211_regdomain *rd,
3941 enum ieee80211_regd_source regd_src)
3942 {
3943 struct regulatory_request *lr;
3944 bool user_reset = false;
3945 int r;
3946
3947 if (IS_ERR_OR_NULL(rd))
3948 return -ENODATA;
3949
3950 if (!reg_is_valid_request(rd->alpha2)) {
3951 kfree(rd);
3952 return -EINVAL;
3953 }
3954
3955 if (regd_src == REGD_SOURCE_CRDA)
3956 reset_crda_timeouts();
3957
3958 lr = get_last_request();
3959
3960 /* Note that this doesn't update the wiphys, this is done below */
3961 switch (lr->initiator) {
3962 case NL80211_REGDOM_SET_BY_CORE:
3963 r = reg_set_rd_core(rd);
3964 break;
3965 case NL80211_REGDOM_SET_BY_USER:
3966 cfg80211_save_user_regdom(rd);
3967 r = reg_set_rd_user(rd, lr);
3968 user_reset = true;
3969 break;
3970 case NL80211_REGDOM_SET_BY_DRIVER:
3971 r = reg_set_rd_driver(rd, lr);
3972 break;
3973 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3974 r = reg_set_rd_country_ie(rd, lr);
3975 break;
3976 default:
3977 WARN(1, "invalid initiator %d\n", lr->initiator);
3978 kfree(rd);
3979 return -EINVAL;
3980 }
3981
3982 if (r) {
3983 switch (r) {
3984 case -EALREADY:
3985 reg_set_request_processed();
3986 break;
3987 default:
3988 /* Back to world regulatory in case of errors */
3989 restore_regulatory_settings(user_reset, false);
3990 }
3991
3992 kfree(rd);
3993 return r;
3994 }
3995
3996 /* This would make this whole thing pointless */
3997 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3998 return -EINVAL;
3999
4000 /* update all wiphys now with the new established regulatory domain */
4001 update_all_wiphy_regulatory(lr->initiator);
4002
4003 print_regdomain(get_cfg80211_regdom());
4004
4005 nl80211_send_reg_change_event(lr);
4006
4007 reg_set_request_processed();
4008
4009 return 0;
4010 }
4011
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4012 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4013 struct ieee80211_regdomain *rd)
4014 {
4015 const struct ieee80211_regdomain *regd;
4016 const struct ieee80211_regdomain *prev_regd;
4017 struct cfg80211_registered_device *rdev;
4018
4019 if (WARN_ON(!wiphy || !rd))
4020 return -EINVAL;
4021
4022 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4023 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4024 return -EPERM;
4025
4026 if (WARN(!is_valid_rd(rd),
4027 "Invalid regulatory domain detected: %c%c\n",
4028 rd->alpha2[0], rd->alpha2[1])) {
4029 print_regdomain_info(rd);
4030 return -EINVAL;
4031 }
4032
4033 regd = reg_copy_regd(rd);
4034 if (IS_ERR(regd))
4035 return PTR_ERR(regd);
4036
4037 rdev = wiphy_to_rdev(wiphy);
4038
4039 spin_lock(®_requests_lock);
4040 prev_regd = rdev->requested_regd;
4041 rdev->requested_regd = regd;
4042 spin_unlock(®_requests_lock);
4043
4044 kfree(prev_regd);
4045 return 0;
4046 }
4047
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4048 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4049 struct ieee80211_regdomain *rd)
4050 {
4051 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4052
4053 if (ret)
4054 return ret;
4055
4056 schedule_work(®_work);
4057 return 0;
4058 }
4059 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4060
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4061 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4062 struct ieee80211_regdomain *rd)
4063 {
4064 int ret;
4065
4066 ASSERT_RTNL();
4067
4068 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4069 if (ret)
4070 return ret;
4071
4072 /* process the request immediately */
4073 reg_process_self_managed_hint(wiphy);
4074 reg_check_channels();
4075 return 0;
4076 }
4077 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4078
wiphy_regulatory_register(struct wiphy * wiphy)4079 void wiphy_regulatory_register(struct wiphy *wiphy)
4080 {
4081 struct regulatory_request *lr = get_last_request();
4082
4083 /* self-managed devices ignore beacon hints and country IE */
4084 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4085 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4086 REGULATORY_COUNTRY_IE_IGNORE;
4087
4088 /*
4089 * The last request may have been received before this
4090 * registration call. Call the driver notifier if
4091 * initiator is USER.
4092 */
4093 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4094 reg_call_notifier(wiphy, lr);
4095 }
4096
4097 if (!reg_dev_ignore_cell_hint(wiphy))
4098 reg_num_devs_support_basehint++;
4099
4100 wiphy_update_regulatory(wiphy, lr->initiator);
4101 wiphy_all_share_dfs_chan_state(wiphy);
4102 reg_process_self_managed_hints();
4103 }
4104
wiphy_regulatory_deregister(struct wiphy * wiphy)4105 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4106 {
4107 struct wiphy *request_wiphy = NULL;
4108 struct regulatory_request *lr;
4109
4110 lr = get_last_request();
4111
4112 if (!reg_dev_ignore_cell_hint(wiphy))
4113 reg_num_devs_support_basehint--;
4114
4115 rcu_free_regdom(get_wiphy_regdom(wiphy));
4116 RCU_INIT_POINTER(wiphy->regd, NULL);
4117
4118 if (lr)
4119 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4120
4121 if (!request_wiphy || request_wiphy != wiphy)
4122 return;
4123
4124 lr->wiphy_idx = WIPHY_IDX_INVALID;
4125 lr->country_ie_env = ENVIRON_ANY;
4126 }
4127
4128 /*
4129 * See FCC notices for UNII band definitions
4130 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4131 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4132 */
cfg80211_get_unii(int freq)4133 int cfg80211_get_unii(int freq)
4134 {
4135 /* UNII-1 */
4136 if (freq >= 5150 && freq <= 5250)
4137 return 0;
4138
4139 /* UNII-2A */
4140 if (freq > 5250 && freq <= 5350)
4141 return 1;
4142
4143 /* UNII-2B */
4144 if (freq > 5350 && freq <= 5470)
4145 return 2;
4146
4147 /* UNII-2C */
4148 if (freq > 5470 && freq <= 5725)
4149 return 3;
4150
4151 /* UNII-3 */
4152 if (freq > 5725 && freq <= 5825)
4153 return 4;
4154
4155 /* UNII-5 */
4156 if (freq > 5925 && freq <= 6425)
4157 return 5;
4158
4159 /* UNII-6 */
4160 if (freq > 6425 && freq <= 6525)
4161 return 6;
4162
4163 /* UNII-7 */
4164 if (freq > 6525 && freq <= 6875)
4165 return 7;
4166
4167 /* UNII-8 */
4168 if (freq > 6875 && freq <= 7125)
4169 return 8;
4170
4171 return -EINVAL;
4172 }
4173
regulatory_indoor_allowed(void)4174 bool regulatory_indoor_allowed(void)
4175 {
4176 return reg_is_indoor;
4177 }
4178
regulatory_pre_cac_allowed(struct wiphy * wiphy)4179 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4180 {
4181 const struct ieee80211_regdomain *regd = NULL;
4182 const struct ieee80211_regdomain *wiphy_regd = NULL;
4183 bool pre_cac_allowed = false;
4184
4185 rcu_read_lock();
4186
4187 regd = rcu_dereference(cfg80211_regdomain);
4188 wiphy_regd = rcu_dereference(wiphy->regd);
4189 if (!wiphy_regd) {
4190 if (regd->dfs_region == NL80211_DFS_ETSI)
4191 pre_cac_allowed = true;
4192
4193 rcu_read_unlock();
4194
4195 return pre_cac_allowed;
4196 }
4197
4198 if (regd->dfs_region == wiphy_regd->dfs_region &&
4199 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4200 pre_cac_allowed = true;
4201
4202 rcu_read_unlock();
4203
4204 return pre_cac_allowed;
4205 }
4206 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4207
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4208 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4209 {
4210 struct wireless_dev *wdev;
4211 /* If we finished CAC or received radar, we should end any
4212 * CAC running on the same channels.
4213 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4214 * either all channels are available - those the CAC_FINISHED
4215 * event has effected another wdev state, or there is a channel
4216 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4217 * event has effected another wdev state.
4218 * In both cases we should end the CAC on the wdev.
4219 */
4220 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4221 struct cfg80211_chan_def *chandef;
4222
4223 if (!wdev->cac_started)
4224 continue;
4225
4226 /* FIXME: radar detection is tied to link 0 for now */
4227 chandef = wdev_chandef(wdev, 0);
4228 if (!chandef)
4229 continue;
4230
4231 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4232 rdev_end_cac(rdev, wdev->netdev);
4233 }
4234 }
4235
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4236 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4237 struct cfg80211_chan_def *chandef,
4238 enum nl80211_dfs_state dfs_state,
4239 enum nl80211_radar_event event)
4240 {
4241 struct cfg80211_registered_device *rdev;
4242
4243 ASSERT_RTNL();
4244
4245 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4246 return;
4247
4248 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4249 if (wiphy == &rdev->wiphy)
4250 continue;
4251
4252 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4253 continue;
4254
4255 if (!ieee80211_get_channel(&rdev->wiphy,
4256 chandef->chan->center_freq))
4257 continue;
4258
4259 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4260
4261 if (event == NL80211_RADAR_DETECTED ||
4262 event == NL80211_RADAR_CAC_FINISHED) {
4263 cfg80211_sched_dfs_chan_update(rdev);
4264 cfg80211_check_and_end_cac(rdev);
4265 }
4266
4267 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4268 }
4269 }
4270
regulatory_init_db(void)4271 static int __init regulatory_init_db(void)
4272 {
4273 int err;
4274
4275 /*
4276 * It's possible that - due to other bugs/issues - cfg80211
4277 * never called regulatory_init() below, or that it failed;
4278 * in that case, don't try to do any further work here as
4279 * it's doomed to lead to crashes.
4280 */
4281 if (IS_ERR_OR_NULL(reg_pdev))
4282 return -EINVAL;
4283
4284 err = load_builtin_regdb_keys();
4285 if (err) {
4286 platform_device_unregister(reg_pdev);
4287 return err;
4288 }
4289
4290 /* We always try to get an update for the static regdomain */
4291 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4292 if (err) {
4293 if (err == -ENOMEM) {
4294 platform_device_unregister(reg_pdev);
4295 return err;
4296 }
4297 /*
4298 * N.B. kobject_uevent_env() can fail mainly for when we're out
4299 * memory which is handled and propagated appropriately above
4300 * but it can also fail during a netlink_broadcast() or during
4301 * early boot for call_usermodehelper(). For now treat these
4302 * errors as non-fatal.
4303 */
4304 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4305 }
4306
4307 /*
4308 * Finally, if the user set the module parameter treat it
4309 * as a user hint.
4310 */
4311 if (!is_world_regdom(ieee80211_regdom))
4312 regulatory_hint_user(ieee80211_regdom,
4313 NL80211_USER_REG_HINT_USER);
4314
4315 return 0;
4316 }
4317 #ifndef MODULE
4318 late_initcall(regulatory_init_db);
4319 #endif
4320
regulatory_init(void)4321 int __init regulatory_init(void)
4322 {
4323 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4324 if (IS_ERR(reg_pdev))
4325 return PTR_ERR(reg_pdev);
4326
4327 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4328
4329 user_alpha2[0] = '9';
4330 user_alpha2[1] = '7';
4331
4332 #ifdef MODULE
4333 return regulatory_init_db();
4334 #else
4335 return 0;
4336 #endif
4337 }
4338
regulatory_exit(void)4339 void regulatory_exit(void)
4340 {
4341 struct regulatory_request *reg_request, *tmp;
4342 struct reg_beacon *reg_beacon, *btmp;
4343
4344 cancel_work_sync(®_work);
4345 cancel_crda_timeout_sync();
4346 cancel_delayed_work_sync(®_check_chans);
4347
4348 /* Lock to suppress warnings */
4349 rtnl_lock();
4350 reset_regdomains(true, NULL);
4351 rtnl_unlock();
4352
4353 dev_set_uevent_suppress(®_pdev->dev, true);
4354
4355 platform_device_unregister(reg_pdev);
4356
4357 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4358 list_del(®_beacon->list);
4359 kfree(reg_beacon);
4360 }
4361
4362 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4363 list_del(®_beacon->list);
4364 kfree(reg_beacon);
4365 }
4366
4367 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4368 list_del(®_request->list);
4369 kfree(reg_request);
4370 }
4371
4372 if (!IS_ERR_OR_NULL(regdb))
4373 kfree(regdb);
4374 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4375 kfree(cfg80211_user_regdom);
4376
4377 free_regdb_keyring();
4378 }
4379