1 /*
2 * ARM hflags
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12 #include "exec/helper-proto.h"
13 #include "cpregs.h"
14
fgt_svc(CPUARMState * env,int el)15 static inline bool fgt_svc(CPUARMState *env, int el)
16 {
17 /*
18 * Assuming fine-grained-traps are active, return true if we
19 * should be trapping on SVC instructions. Only AArch64 can
20 * trap on an SVC at EL1, but we don't need to special-case this
21 * because if this is AArch32 EL1 then arm_fgt_active() is false.
22 * We also know el is 0 or 1.
23 */
24 return el == 0 ?
25 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
26 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
27 }
28
29 /* Return true if memory alignment should be enforced. */
aprofile_require_alignment(CPUARMState * env,int el,uint64_t sctlr)30 static bool aprofile_require_alignment(CPUARMState *env, int el, uint64_t sctlr)
31 {
32 #ifdef CONFIG_USER_ONLY
33 return false;
34 #else
35 /* Check the alignment enable bit. */
36 if (sctlr & SCTLR_A) {
37 return true;
38 }
39
40 /*
41 * With PMSA, when the MPU is disabled, all memory types in the
42 * default map are Normal, so don't need aligment enforcing.
43 */
44 if (arm_feature(env, ARM_FEATURE_PMSA)) {
45 return false;
46 }
47
48 /*
49 * With VMSA, if translation is disabled, then the default memory type
50 * is Device(-nGnRnE) instead of Normal, which requires that alignment
51 * be enforced. Since this affects all ram, it is most efficient
52 * to handle this during translation.
53 */
54 if (sctlr & SCTLR_M) {
55 /* Translation enabled: memory type in PTE via MAIR_ELx. */
56 return false;
57 }
58 if (el < 2 && (arm_hcr_el2_eff(env) & (HCR_DC | HCR_VM))) {
59 /* Stage 2 translation enabled: memory type in PTE. */
60 return false;
61 }
62 return true;
63 #endif
64 }
65
access_secure_reg(CPUARMState * env)66 bool access_secure_reg(CPUARMState *env)
67 {
68 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
69 !arm_el_is_aa64(env, 3) &&
70 !(env->cp15.scr_el3 & SCR_NS));
71
72 return ret;
73 }
74
rebuild_hflags_common(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx,CPUARMTBFlags flags)75 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
76 ARMMMUIdx mmu_idx,
77 CPUARMTBFlags flags)
78 {
79 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
80 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
81
82 if (arm_singlestep_active(env)) {
83 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
84 }
85
86 return flags;
87 }
88
rebuild_hflags_common_32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx,CPUARMTBFlags flags)89 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
90 ARMMMUIdx mmu_idx,
91 CPUARMTBFlags flags)
92 {
93 bool sctlr_b = arm_sctlr_b(env);
94
95 if (sctlr_b) {
96 DP_TBFLAG_A32(flags, SCTLR__B, 1);
97 }
98 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
99 DP_TBFLAG_ANY(flags, BE_DATA, 1);
100 }
101 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
102
103 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
104 }
105
rebuild_hflags_m32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx)106 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
107 ARMMMUIdx mmu_idx)
108 {
109 CPUARMTBFlags flags = {};
110 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
111
112 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
113 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
114 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
115 }
116
117 if (arm_v7m_is_handler_mode(env)) {
118 DP_TBFLAG_M32(flags, HANDLER, 1);
119 }
120
121 /*
122 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
123 * is suppressing them because the requested execution priority
124 * is less than 0.
125 */
126 if (arm_feature(env, ARM_FEATURE_V8) &&
127 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
128 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
129 DP_TBFLAG_M32(flags, STACKCHECK, 1);
130 }
131
132 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
133 DP_TBFLAG_M32(flags, SECURE, 1);
134 }
135
136 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
137 }
138
139 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
sme_fa64(CPUARMState * env,int el)140 static bool sme_fa64(CPUARMState *env, int el)
141 {
142 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
143 return false;
144 }
145
146 if (el <= 1 && !el_is_in_host(env, el)) {
147 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
148 return false;
149 }
150 }
151 if (el <= 2 && arm_is_el2_enabled(env)) {
152 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
153 return false;
154 }
155 }
156 if (arm_feature(env, ARM_FEATURE_EL3)) {
157 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
158 return false;
159 }
160 }
161
162 return true;
163 }
164
rebuild_hflags_a32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx)165 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
166 ARMMMUIdx mmu_idx)
167 {
168 CPUARMTBFlags flags = {};
169 int el = arm_current_el(env);
170 uint64_t sctlr = arm_sctlr(env, el);
171
172 if (aprofile_require_alignment(env, el, sctlr)) {
173 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
174 }
175
176 if (arm_el_is_aa64(env, 1)) {
177 DP_TBFLAG_A32(flags, VFPEN, 1);
178 }
179
180 if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
181 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
182 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
183 }
184
185 if (arm_fgt_active(env, el)) {
186 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
187 if (fgt_svc(env, el)) {
188 DP_TBFLAG_ANY(flags, FGT_SVC, 1);
189 }
190 }
191
192 if (env->uncached_cpsr & CPSR_IL) {
193 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
194 }
195
196 /*
197 * The SME exception we are testing for is raised via
198 * AArch64.CheckFPAdvSIMDEnabled(), as called from
199 * AArch32.CheckAdvSIMDOrFPEnabled().
200 */
201 if (el == 0
202 && FIELD_EX64(env->svcr, SVCR, SM)
203 && (!arm_is_el2_enabled(env)
204 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
205 && arm_el_is_aa64(env, 1)
206 && !sme_fa64(env, el)) {
207 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
208 }
209
210 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
211 }
212
rebuild_hflags_a64(CPUARMState * env,int el,int fp_el,ARMMMUIdx mmu_idx)213 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
214 ARMMMUIdx mmu_idx)
215 {
216 CPUARMTBFlags flags = {};
217 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
218 uint64_t tcr = regime_tcr(env, mmu_idx);
219 uint64_t hcr = arm_hcr_el2_eff(env);
220 uint64_t sctlr;
221 int tbii, tbid;
222
223 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
224
225 /* Get control bits for tagged addresses. */
226 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
227 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
228
229 DP_TBFLAG_A64(flags, TBII, tbii);
230 DP_TBFLAG_A64(flags, TBID, tbid);
231
232 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
233 int sve_el = sve_exception_el(env, el);
234
235 /*
236 * If either FP or SVE are disabled, translator does not need len.
237 * If SVE EL > FP EL, FP exception has precedence, and translator
238 * does not need SVE EL. Save potential re-translations by forcing
239 * the unneeded data to zero.
240 */
241 if (fp_el != 0) {
242 if (sve_el > fp_el) {
243 sve_el = 0;
244 }
245 } else if (sve_el == 0) {
246 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
247 }
248 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
249 }
250 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
251 int sme_el = sme_exception_el(env, el);
252 bool sm = FIELD_EX64(env->svcr, SVCR, SM);
253
254 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
255 if (sme_el == 0) {
256 /* Similarly, do not compute SVL if SME is disabled. */
257 int svl = sve_vqm1_for_el_sm(env, el, true);
258 DP_TBFLAG_A64(flags, SVL, svl);
259 if (sm) {
260 /* If SVE is disabled, we will not have set VL above. */
261 DP_TBFLAG_A64(flags, VL, svl);
262 }
263 }
264 if (sm) {
265 DP_TBFLAG_A64(flags, PSTATE_SM, 1);
266 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
267 }
268 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
269 }
270
271 sctlr = regime_sctlr(env, stage1);
272
273 if (aprofile_require_alignment(env, el, sctlr)) {
274 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
275 }
276
277 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
278 DP_TBFLAG_ANY(flags, BE_DATA, 1);
279 }
280
281 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
282 /*
283 * In order to save space in flags, we record only whether
284 * pauth is "inactive", meaning all insns are implemented as
285 * a nop, or "active" when some action must be performed.
286 * The decision of which action to take is left to a helper.
287 */
288 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
289 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
290 }
291 }
292
293 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
294 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
295 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
296 DP_TBFLAG_A64(flags, BT, 1);
297 }
298 }
299
300 if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) {
301 if (sctlr & SCTLR_nAA) {
302 DP_TBFLAG_A64(flags, NAA, 1);
303 }
304 }
305
306 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
307 if (!(env->pstate & PSTATE_UAO)) {
308 switch (mmu_idx) {
309 case ARMMMUIdx_E10_1:
310 case ARMMMUIdx_E10_1_PAN:
311 /* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */
312 if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) {
313 DP_TBFLAG_A64(flags, UNPRIV, 1);
314 }
315 break;
316 case ARMMMUIdx_E20_2:
317 case ARMMMUIdx_E20_2_PAN:
318 /*
319 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
320 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
321 */
322 if (env->cp15.hcr_el2 & HCR_TGE) {
323 DP_TBFLAG_A64(flags, UNPRIV, 1);
324 }
325 break;
326 default:
327 break;
328 }
329 }
330
331 if (env->pstate & PSTATE_IL) {
332 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
333 }
334
335 if (arm_fgt_active(env, el)) {
336 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
337 if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
338 DP_TBFLAG_A64(flags, TRAP_ERET, 1);
339 }
340 if (fgt_svc(env, el)) {
341 DP_TBFLAG_ANY(flags, FGT_SVC, 1);
342 }
343 }
344
345 /*
346 * ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care
347 * of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present.
348 */
349 if (el == 1 && (hcr & HCR_NV)) {
350 DP_TBFLAG_A64(flags, TRAP_ERET, 1);
351 DP_TBFLAG_A64(flags, NV, 1);
352 if (hcr & HCR_NV1) {
353 DP_TBFLAG_A64(flags, NV1, 1);
354 }
355 if (hcr & HCR_NV2) {
356 DP_TBFLAG_A64(flags, NV2, 1);
357 if (hcr & HCR_E2H) {
358 DP_TBFLAG_A64(flags, NV2_MEM_E20, 1);
359 }
360 if (env->cp15.sctlr_el[2] & SCTLR_EE) {
361 DP_TBFLAG_A64(flags, NV2_MEM_BE, 1);
362 }
363 }
364 }
365
366 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
367 /*
368 * Set MTE_ACTIVE if any access may be Checked, and leave clear
369 * if all accesses must be Unchecked:
370 * 1) If no TBI, then there are no tags in the address to check,
371 * 2) If Tag Check Override, then all accesses are Unchecked,
372 * 3) If Tag Check Fail == 0, then Checked access have no effect,
373 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
374 */
375 if (allocation_tag_access_enabled(env, el, sctlr)) {
376 DP_TBFLAG_A64(flags, ATA, 1);
377 if (tbid
378 && !(env->pstate & PSTATE_TCO)
379 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
380 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
381 if (!EX_TBFLAG_A64(flags, UNPRIV)) {
382 /*
383 * In non-unpriv contexts (eg EL0), unpriv load/stores
384 * act like normal ones; duplicate the MTE info to
385 * avoid translate-a64.c having to check UNPRIV to see
386 * whether it is OK to index into MTE_ACTIVE[].
387 */
388 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
389 }
390 }
391 }
392 /* And again for unprivileged accesses, if required. */
393 if (EX_TBFLAG_A64(flags, UNPRIV)
394 && tbid
395 && !(env->pstate & PSTATE_TCO)
396 && (sctlr & SCTLR_TCF0)
397 && allocation_tag_access_enabled(env, 0, sctlr)) {
398 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
399 }
400 /*
401 * For unpriv tag-setting accesses we also need ATA0. Again, in
402 * contexts where unpriv and normal insns are the same we
403 * duplicate the ATA bit to save effort for translate-a64.c.
404 */
405 if (EX_TBFLAG_A64(flags, UNPRIV)) {
406 if (allocation_tag_access_enabled(env, 0, sctlr)) {
407 DP_TBFLAG_A64(flags, ATA0, 1);
408 }
409 } else {
410 DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA));
411 }
412 /* Cache TCMA as well as TBI. */
413 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
414 }
415
416 if (env->vfp.fpcr & FPCR_AH) {
417 DP_TBFLAG_A64(flags, AH, 1);
418 }
419 if (env->vfp.fpcr & FPCR_NEP) {
420 /*
421 * In streaming-SVE without FA64, NEP behaves as if zero;
422 * compare pseudocode IsMerging()
423 */
424 if (!(EX_TBFLAG_A64(flags, PSTATE_SM) && !sme_fa64(env, el))) {
425 DP_TBFLAG_A64(flags, NEP, 1);
426 }
427 }
428
429 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
430 }
431
rebuild_hflags_internal(CPUARMState * env)432 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
433 {
434 int el = arm_current_el(env);
435 int fp_el = fp_exception_el(env, el);
436 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
437
438 if (is_a64(env)) {
439 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
440 } else if (arm_feature(env, ARM_FEATURE_M)) {
441 return rebuild_hflags_m32(env, fp_el, mmu_idx);
442 } else {
443 return rebuild_hflags_a32(env, fp_el, mmu_idx);
444 }
445 }
446
arm_rebuild_hflags(CPUARMState * env)447 void arm_rebuild_hflags(CPUARMState *env)
448 {
449 env->hflags = rebuild_hflags_internal(env);
450 }
451
452 /*
453 * If we have triggered a EL state change we can't rely on the
454 * translator having passed it to us, we need to recompute.
455 */
HELPER(rebuild_hflags_m32_newel)456 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
457 {
458 int el = arm_current_el(env);
459 int fp_el = fp_exception_el(env, el);
460 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
461
462 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
463 }
464
HELPER(rebuild_hflags_m32)465 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
466 {
467 int fp_el = fp_exception_el(env, el);
468 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
469
470 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
471 }
472
473 /*
474 * If we have triggered a EL state change we can't rely on the
475 * translator having passed it to us, we need to recompute.
476 */
HELPER(rebuild_hflags_a32_newel)477 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
478 {
479 int el = arm_current_el(env);
480 int fp_el = fp_exception_el(env, el);
481 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
482 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
483 }
484
HELPER(rebuild_hflags_a32)485 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
486 {
487 int fp_el = fp_exception_el(env, el);
488 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
489
490 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
491 }
492
HELPER(rebuild_hflags_a64)493 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
494 {
495 int fp_el = fp_exception_el(env, el);
496 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
497
498 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
499 }
500
assert_hflags_rebuild_correctly(CPUARMState * env)501 void assert_hflags_rebuild_correctly(CPUARMState *env)
502 {
503 #ifdef CONFIG_DEBUG_TCG
504 CPUARMTBFlags c = env->hflags;
505 CPUARMTBFlags r = rebuild_hflags_internal(env);
506
507 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
508 fprintf(stderr, "TCG hflags mismatch "
509 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
510 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
511 c.flags, c.flags2, r.flags, r.flags2);
512 abort();
513 }
514 #endif
515 }
516