xref: /openbmc/linux/include/linux/rcupdate.h (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34 
35 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
37 #define ulong2long(a)		(*(long *)(&(a)))
38 #define USHORT_CMP_GE(a, b)	(USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
39 #define USHORT_CMP_LT(a, b)	(USHRT_MAX / 2 < (unsigned short)((a) - (b)))
40 
41 /* Exported common interfaces */
42 void call_rcu(struct rcu_head *head, rcu_callback_t func);
43 void rcu_barrier_tasks(void);
44 void rcu_barrier_tasks_rude(void);
45 void synchronize_rcu(void);
46 
47 struct rcu_gp_oldstate;
48 unsigned long get_completed_synchronize_rcu(void);
49 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
50 
51 // Maximum number of unsigned long values corresponding to
52 // not-yet-completed RCU grace periods.
53 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
54 
55 /**
56  * same_state_synchronize_rcu - Are two old-state values identical?
57  * @oldstate1: First old-state value.
58  * @oldstate2: Second old-state value.
59  *
60  * The two old-state values must have been obtained from either
61  * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
62  * get_completed_synchronize_rcu().  Returns @true if the two values are
63  * identical and @false otherwise.  This allows structures whose lifetimes
64  * are tracked by old-state values to push these values to a list header,
65  * allowing those structures to be slightly smaller.
66  */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)67 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
68 {
69 	return oldstate1 == oldstate2;
70 }
71 
72 #ifdef CONFIG_PREEMPT_RCU
73 
74 void __rcu_read_lock(void);
75 void __rcu_read_unlock(void);
76 
77 /*
78  * Defined as a macro as it is a very low level header included from
79  * areas that don't even know about current.  This gives the rcu_read_lock()
80  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
81  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
82  */
83 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
84 
85 #else /* #ifdef CONFIG_PREEMPT_RCU */
86 
87 #ifdef CONFIG_TINY_RCU
88 #define rcu_read_unlock_strict() do { } while (0)
89 #else
90 void rcu_read_unlock_strict(void);
91 #endif
92 
__rcu_read_lock(void)93 static inline void __rcu_read_lock(void)
94 {
95 	preempt_disable();
96 }
97 
__rcu_read_unlock(void)98 static inline void __rcu_read_unlock(void)
99 {
100 	preempt_enable();
101 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
102 		rcu_read_unlock_strict();
103 }
104 
rcu_preempt_depth(void)105 static inline int rcu_preempt_depth(void)
106 {
107 	return 0;
108 }
109 
110 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
111 
112 #ifdef CONFIG_RCU_LAZY
113 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
114 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)115 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
116 {
117 	call_rcu(head, func);
118 }
119 #endif
120 
121 /* Internal to kernel */
122 void rcu_init(void);
123 extern int rcu_scheduler_active;
124 void rcu_sched_clock_irq(int user);
125 void rcu_report_dead(unsigned int cpu);
126 void rcutree_migrate_callbacks(int cpu);
127 
128 #ifdef CONFIG_TASKS_RCU_GENERIC
129 void rcu_init_tasks_generic(void);
130 #else
rcu_init_tasks_generic(void)131 static inline void rcu_init_tasks_generic(void) { }
132 #endif
133 
134 #ifdef CONFIG_RCU_STALL_COMMON
135 void rcu_sysrq_start(void);
136 void rcu_sysrq_end(void);
137 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)138 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)139 static inline void rcu_sysrq_end(void) { }
140 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
141 
142 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
143 void rcu_irq_work_resched(void);
144 #else
rcu_irq_work_resched(void)145 static inline void rcu_irq_work_resched(void) { }
146 #endif
147 
148 #ifdef CONFIG_RCU_NOCB_CPU
149 void rcu_init_nohz(void);
150 int rcu_nocb_cpu_offload(int cpu);
151 int rcu_nocb_cpu_deoffload(int cpu);
152 void rcu_nocb_flush_deferred_wakeup(void);
153 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
159 
160 /*
161  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
162  * This is a macro rather than an inline function to avoid #include hell.
163  */
164 #ifdef CONFIG_TASKS_RCU_GENERIC
165 
166 # ifdef CONFIG_TASKS_RCU
167 # define rcu_tasks_classic_qs(t, preempt)				\
168 	do {								\
169 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
170 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
171 	} while (0)
172 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
173 void synchronize_rcu_tasks(void);
174 # else
175 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
176 # define call_rcu_tasks call_rcu
177 # define synchronize_rcu_tasks synchronize_rcu
178 # endif
179 
180 # ifdef CONFIG_TASKS_TRACE_RCU
181 // Bits for ->trc_reader_special.b.need_qs field.
182 #define TRC_NEED_QS		0x1  // Task needs a quiescent state.
183 #define TRC_NEED_QS_CHECKED	0x2  // Task has been checked for needing quiescent state.
184 
185 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
186 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
187 
188 # define rcu_tasks_trace_qs(t)							\
189 	do {									\
190 		int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);	\
191 										\
192 		if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) &&	\
193 		    likely(!___rttq_nesting)) {					\
194 			rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED);	\
195 		} else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&	\
196 			   !READ_ONCE((t)->trc_reader_special.b.blocked)) {	\
197 			rcu_tasks_trace_qs_blkd(t);				\
198 		}								\
199 	} while (0)
200 # else
201 # define rcu_tasks_trace_qs(t) do { } while (0)
202 # endif
203 
204 #define rcu_tasks_qs(t, preempt)					\
205 do {									\
206 	rcu_tasks_classic_qs((t), (preempt));				\
207 	rcu_tasks_trace_qs(t);						\
208 } while (0)
209 
210 # ifdef CONFIG_TASKS_RUDE_RCU
211 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
212 void synchronize_rcu_tasks_rude(void);
213 # endif
214 
215 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
216 void exit_tasks_rcu_start(void);
217 void exit_tasks_rcu_stop(void);
218 void exit_tasks_rcu_finish(void);
219 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
220 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
221 #define rcu_tasks_qs(t, preempt) do { } while (0)
222 #define rcu_note_voluntary_context_switch(t) do { } while (0)
223 #define call_rcu_tasks call_rcu
224 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)225 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)226 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)227 static inline void exit_tasks_rcu_finish(void) { }
228 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
229 
230 /**
231  * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
232  *
233  * As an accident of implementation, an RCU Tasks Trace grace period also
234  * acts as an RCU grace period.  However, this could change at any time.
235  * Code relying on this accident must call this function to verify that
236  * this accident is still happening.
237  *
238  * You have been warned!
239  */
rcu_trace_implies_rcu_gp(void)240 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
241 
242 /**
243  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
244  *
245  * This macro resembles cond_resched(), except that it is defined to
246  * report potential quiescent states to RCU-tasks even if the cond_resched()
247  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
248  */
249 #define cond_resched_tasks_rcu_qs() \
250 do { \
251 	rcu_tasks_qs(current, false); \
252 	cond_resched(); \
253 } while (0)
254 
255 /**
256  * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
257  * @old_ts: jiffies at start of processing.
258  *
259  * This helper is for long-running softirq handlers, such as NAPI threads in
260  * networking. The caller should initialize the variable passed in as @old_ts
261  * at the beginning of the softirq handler. When invoked frequently, this macro
262  * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
263  * provide both RCU and RCU-Tasks quiescent states. Note that this macro
264  * modifies its old_ts argument.
265  *
266  * Because regions of code that have disabled softirq act as RCU read-side
267  * critical sections, this macro should be invoked with softirq (and
268  * preemption) enabled.
269  *
270  * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
271  * have more chance to invoke schedule() calls and provide necessary quiescent
272  * states. As a contrast, calling cond_resched() only won't achieve the same
273  * effect because cond_resched() does not provide RCU-Tasks quiescent states.
274  */
275 #define rcu_softirq_qs_periodic(old_ts) \
276 do { \
277 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
278 	    time_after(jiffies, (old_ts) + HZ / 10)) { \
279 		preempt_disable(); \
280 		rcu_softirq_qs(); \
281 		preempt_enable(); \
282 		(old_ts) = jiffies; \
283 	} \
284 } while (0)
285 
286 /*
287  * Infrastructure to implement the synchronize_() primitives in
288  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
289  */
290 
291 #if defined(CONFIG_TREE_RCU)
292 #include <linux/rcutree.h>
293 #elif defined(CONFIG_TINY_RCU)
294 #include <linux/rcutiny.h>
295 #else
296 #error "Unknown RCU implementation specified to kernel configuration"
297 #endif
298 
299 /*
300  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
301  * are needed for dynamic initialization and destruction of rcu_head
302  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
303  * dynamic initialization and destruction of statically allocated rcu_head
304  * structures.  However, rcu_head structures allocated dynamically in the
305  * heap don't need any initialization.
306  */
307 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
308 void init_rcu_head(struct rcu_head *head);
309 void destroy_rcu_head(struct rcu_head *head);
310 void init_rcu_head_on_stack(struct rcu_head *head);
311 void destroy_rcu_head_on_stack(struct rcu_head *head);
312 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)313 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)314 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)315 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)316 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
317 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
318 
319 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
320 bool rcu_lockdep_current_cpu_online(void);
321 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)322 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
323 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
324 
325 extern struct lockdep_map rcu_lock_map;
326 extern struct lockdep_map rcu_bh_lock_map;
327 extern struct lockdep_map rcu_sched_lock_map;
328 extern struct lockdep_map rcu_callback_map;
329 
330 #ifdef CONFIG_DEBUG_LOCK_ALLOC
331 
rcu_lock_acquire(struct lockdep_map * map)332 static inline void rcu_lock_acquire(struct lockdep_map *map)
333 {
334 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
335 }
336 
rcu_try_lock_acquire(struct lockdep_map * map)337 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
338 {
339 	lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
340 }
341 
rcu_lock_release(struct lockdep_map * map)342 static inline void rcu_lock_release(struct lockdep_map *map)
343 {
344 	lock_release(map, _THIS_IP_);
345 }
346 
347 int debug_lockdep_rcu_enabled(void);
348 int rcu_read_lock_held(void);
349 int rcu_read_lock_bh_held(void);
350 int rcu_read_lock_sched_held(void);
351 int rcu_read_lock_any_held(void);
352 
353 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
354 
355 # define rcu_lock_acquire(a)		do { } while (0)
356 # define rcu_try_lock_acquire(a)	do { } while (0)
357 # define rcu_lock_release(a)		do { } while (0)
358 
rcu_read_lock_held(void)359 static inline int rcu_read_lock_held(void)
360 {
361 	return 1;
362 }
363 
rcu_read_lock_bh_held(void)364 static inline int rcu_read_lock_bh_held(void)
365 {
366 	return 1;
367 }
368 
rcu_read_lock_sched_held(void)369 static inline int rcu_read_lock_sched_held(void)
370 {
371 	return !preemptible();
372 }
373 
rcu_read_lock_any_held(void)374 static inline int rcu_read_lock_any_held(void)
375 {
376 	return !preemptible();
377 }
378 
debug_lockdep_rcu_enabled(void)379 static inline int debug_lockdep_rcu_enabled(void)
380 {
381 	return 0;
382 }
383 
384 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
385 
386 #ifdef CONFIG_PROVE_RCU
387 
388 /**
389  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
390  * @c: condition to check
391  * @s: informative message
392  *
393  * This checks debug_lockdep_rcu_enabled() before checking (c) to
394  * prevent early boot splats due to lockdep not yet being initialized,
395  * and rechecks it after checking (c) to prevent false-positive splats
396  * due to races with lockdep being disabled.  See commit 3066820034b5dd
397  * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
398  */
399 #define RCU_LOCKDEP_WARN(c, s)						\
400 	do {								\
401 		static bool __section(".data..unlikely") __warned;	\
402 		if (debug_lockdep_rcu_enabled() && (c) &&		\
403 		    debug_lockdep_rcu_enabled() && !__warned) {		\
404 			__warned = true;				\
405 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
406 		}							\
407 	} while (0)
408 
409 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)410 static inline void rcu_preempt_sleep_check(void)
411 {
412 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
413 			 "Illegal context switch in RCU read-side critical section");
414 }
415 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)416 static inline void rcu_preempt_sleep_check(void) { }
417 #endif /* #else #ifdef CONFIG_PROVE_RCU */
418 
419 #define rcu_sleep_check()						\
420 	do {								\
421 		rcu_preempt_sleep_check();				\
422 		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
423 		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
424 				 "Illegal context switch in RCU-bh read-side critical section"); \
425 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
426 				 "Illegal context switch in RCU-sched read-side critical section"); \
427 	} while (0)
428 
429 #else /* #ifdef CONFIG_PROVE_RCU */
430 
431 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
432 #define rcu_sleep_check() do { } while (0)
433 
434 #endif /* #else #ifdef CONFIG_PROVE_RCU */
435 
436 /*
437  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
438  * and rcu_assign_pointer().  Some of these could be folded into their
439  * callers, but they are left separate in order to ease introduction of
440  * multiple pointers markings to match different RCU implementations
441  * (e.g., __srcu), should this make sense in the future.
442  */
443 
444 #ifdef __CHECKER__
445 #define rcu_check_sparse(p, space) \
446 	((void)(((typeof(*p) space *)p) == p))
447 #else /* #ifdef __CHECKER__ */
448 #define rcu_check_sparse(p, space)
449 #endif /* #else #ifdef __CHECKER__ */
450 
451 #define __unrcu_pointer(p, local)					\
452 ({									\
453 	typeof(*p) *local = (typeof(*p) *__force)(p);			\
454 	rcu_check_sparse(p, __rcu);					\
455 	((typeof(*p) __force __kernel *)(local)); 			\
456 })
457 /**
458  * unrcu_pointer - mark a pointer as not being RCU protected
459  * @p: pointer needing to lose its __rcu property
460  *
461  * Converts @p from an __rcu pointer to a __kernel pointer.
462  * This allows an __rcu pointer to be used with xchg() and friends.
463  */
464 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
465 
466 #define __rcu_access_pointer(p, local, space) \
467 ({ \
468 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
469 	rcu_check_sparse(p, space); \
470 	((typeof(*p) __force __kernel *)(local)); \
471 })
472 #define __rcu_dereference_check(p, local, c, space) \
473 ({ \
474 	/* Dependency order vs. p above. */ \
475 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
476 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
477 	rcu_check_sparse(p, space); \
478 	((typeof(*p) __force __kernel *)(local)); \
479 })
480 #define __rcu_dereference_protected(p, local, c, space) \
481 ({ \
482 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
483 	rcu_check_sparse(p, space); \
484 	((typeof(*p) __force __kernel *)(p)); \
485 })
486 #define __rcu_dereference_raw(p, local) \
487 ({ \
488 	/* Dependency order vs. p above. */ \
489 	typeof(p) local = READ_ONCE(p); \
490 	((typeof(*p) __force __kernel *)(local)); \
491 })
492 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
493 
494 /**
495  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
496  * @v: The value to statically initialize with.
497  */
498 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
499 
500 /**
501  * rcu_assign_pointer() - assign to RCU-protected pointer
502  * @p: pointer to assign to
503  * @v: value to assign (publish)
504  *
505  * Assigns the specified value to the specified RCU-protected
506  * pointer, ensuring that any concurrent RCU readers will see
507  * any prior initialization.
508  *
509  * Inserts memory barriers on architectures that require them
510  * (which is most of them), and also prevents the compiler from
511  * reordering the code that initializes the structure after the pointer
512  * assignment.  More importantly, this call documents which pointers
513  * will be dereferenced by RCU read-side code.
514  *
515  * In some special cases, you may use RCU_INIT_POINTER() instead
516  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
517  * to the fact that it does not constrain either the CPU or the compiler.
518  * That said, using RCU_INIT_POINTER() when you should have used
519  * rcu_assign_pointer() is a very bad thing that results in
520  * impossible-to-diagnose memory corruption.  So please be careful.
521  * See the RCU_INIT_POINTER() comment header for details.
522  *
523  * Note that rcu_assign_pointer() evaluates each of its arguments only
524  * once, appearances notwithstanding.  One of the "extra" evaluations
525  * is in typeof() and the other visible only to sparse (__CHECKER__),
526  * neither of which actually execute the argument.  As with most cpp
527  * macros, this execute-arguments-only-once property is important, so
528  * please be careful when making changes to rcu_assign_pointer() and the
529  * other macros that it invokes.
530  */
531 #define rcu_assign_pointer(p, v)					      \
532 do {									      \
533 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
534 	rcu_check_sparse(p, __rcu);					      \
535 									      \
536 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
537 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
538 	else								      \
539 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
540 } while (0)
541 
542 /**
543  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
544  * @rcu_ptr: RCU pointer, whose old value is returned
545  * @ptr: regular pointer
546  * @c: the lockdep conditions under which the dereference will take place
547  *
548  * Perform a replacement, where @rcu_ptr is an RCU-annotated
549  * pointer and @c is the lockdep argument that is passed to the
550  * rcu_dereference_protected() call used to read that pointer.  The old
551  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
552  */
553 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
554 ({									\
555 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
556 	rcu_assign_pointer((rcu_ptr), (ptr));				\
557 	__tmp;								\
558 })
559 
560 /**
561  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
562  * @p: The pointer to read
563  *
564  * Return the value of the specified RCU-protected pointer, but omit the
565  * lockdep checks for being in an RCU read-side critical section.  This is
566  * useful when the value of this pointer is accessed, but the pointer is
567  * not dereferenced, for example, when testing an RCU-protected pointer
568  * against NULL.  Although rcu_access_pointer() may also be used in cases
569  * where update-side locks prevent the value of the pointer from changing,
570  * you should instead use rcu_dereference_protected() for this use case.
571  * Within an RCU read-side critical section, there is little reason to
572  * use rcu_access_pointer().
573  *
574  * It is usually best to test the rcu_access_pointer() return value
575  * directly in order to avoid accidental dereferences being introduced
576  * by later inattentive changes.  In other words, assigning the
577  * rcu_access_pointer() return value to a local variable results in an
578  * accident waiting to happen.
579  *
580  * It is also permissible to use rcu_access_pointer() when read-side
581  * access to the pointer was removed at least one grace period ago, as is
582  * the case in the context of the RCU callback that is freeing up the data,
583  * or after a synchronize_rcu() returns.  This can be useful when tearing
584  * down multi-linked structures after a grace period has elapsed.  However,
585  * rcu_dereference_protected() is normally preferred for this use case.
586  */
587 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
588 
589 /**
590  * rcu_dereference_check() - rcu_dereference with debug checking
591  * @p: The pointer to read, prior to dereferencing
592  * @c: The conditions under which the dereference will take place
593  *
594  * Do an rcu_dereference(), but check that the conditions under which the
595  * dereference will take place are correct.  Typically the conditions
596  * indicate the various locking conditions that should be held at that
597  * point.  The check should return true if the conditions are satisfied.
598  * An implicit check for being in an RCU read-side critical section
599  * (rcu_read_lock()) is included.
600  *
601  * For example:
602  *
603  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
604  *
605  * could be used to indicate to lockdep that foo->bar may only be dereferenced
606  * if either rcu_read_lock() is held, or that the lock required to replace
607  * the bar struct at foo->bar is held.
608  *
609  * Note that the list of conditions may also include indications of when a lock
610  * need not be held, for example during initialisation or destruction of the
611  * target struct:
612  *
613  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
614  *					      atomic_read(&foo->usage) == 0);
615  *
616  * Inserts memory barriers on architectures that require them
617  * (currently only the Alpha), prevents the compiler from refetching
618  * (and from merging fetches), and, more importantly, documents exactly
619  * which pointers are protected by RCU and checks that the pointer is
620  * annotated as __rcu.
621  */
622 #define rcu_dereference_check(p, c) \
623 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
624 				(c) || rcu_read_lock_held(), __rcu)
625 
626 /**
627  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
628  * @p: The pointer to read, prior to dereferencing
629  * @c: The conditions under which the dereference will take place
630  *
631  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
632  * please note that starting in v5.0 kernels, vanilla RCU grace periods
633  * wait for local_bh_disable() regions of code in addition to regions of
634  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
635  * that synchronize_rcu(), call_rcu, and friends all take not only
636  * rcu_read_lock() but also rcu_read_lock_bh() into account.
637  */
638 #define rcu_dereference_bh_check(p, c) \
639 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
640 				(c) || rcu_read_lock_bh_held(), __rcu)
641 
642 /**
643  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
644  * @p: The pointer to read, prior to dereferencing
645  * @c: The conditions under which the dereference will take place
646  *
647  * This is the RCU-sched counterpart to rcu_dereference_check().
648  * However, please note that starting in v5.0 kernels, vanilla RCU grace
649  * periods wait for preempt_disable() regions of code in addition to
650  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
651  * This means that synchronize_rcu(), call_rcu, and friends all take not
652  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
653  */
654 #define rcu_dereference_sched_check(p, c) \
655 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
656 				(c) || rcu_read_lock_sched_held(), \
657 				__rcu)
658 
659 /*
660  * The tracing infrastructure traces RCU (we want that), but unfortunately
661  * some of the RCU checks causes tracing to lock up the system.
662  *
663  * The no-tracing version of rcu_dereference_raw() must not call
664  * rcu_read_lock_held().
665  */
666 #define rcu_dereference_raw_check(p) \
667 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
668 
669 /**
670  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
671  * @p: The pointer to read, prior to dereferencing
672  * @c: The conditions under which the dereference will take place
673  *
674  * Return the value of the specified RCU-protected pointer, but omit
675  * the READ_ONCE().  This is useful in cases where update-side locks
676  * prevent the value of the pointer from changing.  Please note that this
677  * primitive does *not* prevent the compiler from repeating this reference
678  * or combining it with other references, so it should not be used without
679  * protection of appropriate locks.
680  *
681  * This function is only for update-side use.  Using this function
682  * when protected only by rcu_read_lock() will result in infrequent
683  * but very ugly failures.
684  */
685 #define rcu_dereference_protected(p, c) \
686 	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
687 
688 
689 /**
690  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
691  * @p: The pointer to read, prior to dereferencing
692  *
693  * This is a simple wrapper around rcu_dereference_check().
694  */
695 #define rcu_dereference(p) rcu_dereference_check(p, 0)
696 
697 /**
698  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
699  * @p: The pointer to read, prior to dereferencing
700  *
701  * Makes rcu_dereference_check() do the dirty work.
702  */
703 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
704 
705 /**
706  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
707  * @p: The pointer to read, prior to dereferencing
708  *
709  * Makes rcu_dereference_check() do the dirty work.
710  */
711 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
712 
713 /**
714  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
715  * @p: The pointer to hand off
716  *
717  * This is simply an identity function, but it documents where a pointer
718  * is handed off from RCU to some other synchronization mechanism, for
719  * example, reference counting or locking.  In C11, it would map to
720  * kill_dependency().  It could be used as follows::
721  *
722  *	rcu_read_lock();
723  *	p = rcu_dereference(gp);
724  *	long_lived = is_long_lived(p);
725  *	if (long_lived) {
726  *		if (!atomic_inc_not_zero(p->refcnt))
727  *			long_lived = false;
728  *		else
729  *			p = rcu_pointer_handoff(p);
730  *	}
731  *	rcu_read_unlock();
732  */
733 #define rcu_pointer_handoff(p) (p)
734 
735 /**
736  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
737  *
738  * When synchronize_rcu() is invoked on one CPU while other CPUs
739  * are within RCU read-side critical sections, then the
740  * synchronize_rcu() is guaranteed to block until after all the other
741  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
742  * on one CPU while other CPUs are within RCU read-side critical
743  * sections, invocation of the corresponding RCU callback is deferred
744  * until after the all the other CPUs exit their critical sections.
745  *
746  * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
747  * wait for regions of code with preemption disabled, including regions of
748  * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
749  * define synchronize_sched(), only code enclosed within rcu_read_lock()
750  * and rcu_read_unlock() are guaranteed to be waited for.
751  *
752  * Note, however, that RCU callbacks are permitted to run concurrently
753  * with new RCU read-side critical sections.  One way that this can happen
754  * is via the following sequence of events: (1) CPU 0 enters an RCU
755  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
756  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
757  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
758  * callback is invoked.  This is legal, because the RCU read-side critical
759  * section that was running concurrently with the call_rcu() (and which
760  * therefore might be referencing something that the corresponding RCU
761  * callback would free up) has completed before the corresponding
762  * RCU callback is invoked.
763  *
764  * RCU read-side critical sections may be nested.  Any deferred actions
765  * will be deferred until the outermost RCU read-side critical section
766  * completes.
767  *
768  * You can avoid reading and understanding the next paragraph by
769  * following this rule: don't put anything in an rcu_read_lock() RCU
770  * read-side critical section that would block in a !PREEMPTION kernel.
771  * But if you want the full story, read on!
772  *
773  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
774  * it is illegal to block while in an RCU read-side critical section.
775  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
776  * kernel builds, RCU read-side critical sections may be preempted,
777  * but explicit blocking is illegal.  Finally, in preemptible RCU
778  * implementations in real-time (with -rt patchset) kernel builds, RCU
779  * read-side critical sections may be preempted and they may also block, but
780  * only when acquiring spinlocks that are subject to priority inheritance.
781  */
rcu_read_lock(void)782 static __always_inline void rcu_read_lock(void)
783 {
784 	__rcu_read_lock();
785 	__acquire(RCU);
786 	rcu_lock_acquire(&rcu_lock_map);
787 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
788 			 "rcu_read_lock() used illegally while idle");
789 }
790 
791 /*
792  * So where is rcu_write_lock()?  It does not exist, as there is no
793  * way for writers to lock out RCU readers.  This is a feature, not
794  * a bug -- this property is what provides RCU's performance benefits.
795  * Of course, writers must coordinate with each other.  The normal
796  * spinlock primitives work well for this, but any other technique may be
797  * used as well.  RCU does not care how the writers keep out of each
798  * others' way, as long as they do so.
799  */
800 
801 /**
802  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
803  *
804  * In almost all situations, rcu_read_unlock() is immune from deadlock.
805  * In recent kernels that have consolidated synchronize_sched() and
806  * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
807  * also extends to the scheduler's runqueue and priority-inheritance
808  * spinlocks, courtesy of the quiescent-state deferral that is carried
809  * out when rcu_read_unlock() is invoked with interrupts disabled.
810  *
811  * See rcu_read_lock() for more information.
812  */
rcu_read_unlock(void)813 static inline void rcu_read_unlock(void)
814 {
815 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
816 			 "rcu_read_unlock() used illegally while idle");
817 	__release(RCU);
818 	__rcu_read_unlock();
819 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
820 }
821 
822 /**
823  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
824  *
825  * This is equivalent to rcu_read_lock(), but also disables softirqs.
826  * Note that anything else that disables softirqs can also serve as an RCU
827  * read-side critical section.  However, please note that this equivalence
828  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
829  * rcu_read_lock_bh() were unrelated.
830  *
831  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
832  * must occur in the same context, for example, it is illegal to invoke
833  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
834  * was invoked from some other task.
835  */
rcu_read_lock_bh(void)836 static inline void rcu_read_lock_bh(void)
837 {
838 	local_bh_disable();
839 	__acquire(RCU_BH);
840 	rcu_lock_acquire(&rcu_bh_lock_map);
841 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
842 			 "rcu_read_lock_bh() used illegally while idle");
843 }
844 
845 /**
846  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
847  *
848  * See rcu_read_lock_bh() for more information.
849  */
rcu_read_unlock_bh(void)850 static inline void rcu_read_unlock_bh(void)
851 {
852 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
853 			 "rcu_read_unlock_bh() used illegally while idle");
854 	rcu_lock_release(&rcu_bh_lock_map);
855 	__release(RCU_BH);
856 	local_bh_enable();
857 }
858 
859 /**
860  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
861  *
862  * This is equivalent to rcu_read_lock(), but also disables preemption.
863  * Read-side critical sections can also be introduced by anything else that
864  * disables preemption, including local_irq_disable() and friends.  However,
865  * please note that the equivalence to rcu_read_lock() applies only to
866  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
867  * were unrelated.
868  *
869  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
870  * must occur in the same context, for example, it is illegal to invoke
871  * rcu_read_unlock_sched() from process context if the matching
872  * rcu_read_lock_sched() was invoked from an NMI handler.
873  */
rcu_read_lock_sched(void)874 static inline void rcu_read_lock_sched(void)
875 {
876 	preempt_disable();
877 	__acquire(RCU_SCHED);
878 	rcu_lock_acquire(&rcu_sched_lock_map);
879 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
880 			 "rcu_read_lock_sched() used illegally while idle");
881 }
882 
883 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)884 static inline notrace void rcu_read_lock_sched_notrace(void)
885 {
886 	preempt_disable_notrace();
887 	__acquire(RCU_SCHED);
888 }
889 
890 /**
891  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
892  *
893  * See rcu_read_lock_sched() for more information.
894  */
rcu_read_unlock_sched(void)895 static inline void rcu_read_unlock_sched(void)
896 {
897 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
898 			 "rcu_read_unlock_sched() used illegally while idle");
899 	rcu_lock_release(&rcu_sched_lock_map);
900 	__release(RCU_SCHED);
901 	preempt_enable();
902 }
903 
904 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)905 static inline notrace void rcu_read_unlock_sched_notrace(void)
906 {
907 	__release(RCU_SCHED);
908 	preempt_enable_notrace();
909 }
910 
911 /**
912  * RCU_INIT_POINTER() - initialize an RCU protected pointer
913  * @p: The pointer to be initialized.
914  * @v: The value to initialized the pointer to.
915  *
916  * Initialize an RCU-protected pointer in special cases where readers
917  * do not need ordering constraints on the CPU or the compiler.  These
918  * special cases are:
919  *
920  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
921  * 2.	The caller has taken whatever steps are required to prevent
922  *	RCU readers from concurrently accessing this pointer *or*
923  * 3.	The referenced data structure has already been exposed to
924  *	readers either at compile time or via rcu_assign_pointer() *and*
925  *
926  *	a.	You have not made *any* reader-visible changes to
927  *		this structure since then *or*
928  *	b.	It is OK for readers accessing this structure from its
929  *		new location to see the old state of the structure.  (For
930  *		example, the changes were to statistical counters or to
931  *		other state where exact synchronization is not required.)
932  *
933  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
934  * result in impossible-to-diagnose memory corruption.  As in the structures
935  * will look OK in crash dumps, but any concurrent RCU readers might
936  * see pre-initialized values of the referenced data structure.  So
937  * please be very careful how you use RCU_INIT_POINTER()!!!
938  *
939  * If you are creating an RCU-protected linked structure that is accessed
940  * by a single external-to-structure RCU-protected pointer, then you may
941  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
942  * pointers, but you must use rcu_assign_pointer() to initialize the
943  * external-to-structure pointer *after* you have completely initialized
944  * the reader-accessible portions of the linked structure.
945  *
946  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
947  * ordering guarantees for either the CPU or the compiler.
948  */
949 #define RCU_INIT_POINTER(p, v) \
950 	do { \
951 		rcu_check_sparse(p, __rcu); \
952 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
953 	} while (0)
954 
955 /**
956  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
957  * @p: The pointer to be initialized.
958  * @v: The value to initialized the pointer to.
959  *
960  * GCC-style initialization for an RCU-protected pointer in a structure field.
961  */
962 #define RCU_POINTER_INITIALIZER(p, v) \
963 		.p = RCU_INITIALIZER(v)
964 
965 /*
966  * Does the specified offset indicate that the corresponding rcu_head
967  * structure can be handled by kvfree_rcu()?
968  */
969 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
970 
971 /**
972  * kfree_rcu() - kfree an object after a grace period.
973  * @ptr: pointer to kfree for double-argument invocations.
974  * @rhf: the name of the struct rcu_head within the type of @ptr.
975  *
976  * Many rcu callbacks functions just call kfree() on the base structure.
977  * These functions are trivial, but their size adds up, and furthermore
978  * when they are used in a kernel module, that module must invoke the
979  * high-latency rcu_barrier() function at module-unload time.
980  *
981  * The kfree_rcu() function handles this issue.  Rather than encoding a
982  * function address in the embedded rcu_head structure, kfree_rcu() instead
983  * encodes the offset of the rcu_head structure within the base structure.
984  * Because the functions are not allowed in the low-order 4096 bytes of
985  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
986  * If the offset is larger than 4095 bytes, a compile-time error will
987  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
988  * either fall back to use of call_rcu() or rearrange the structure to
989  * position the rcu_head structure into the first 4096 bytes.
990  *
991  * The object to be freed can be allocated either by kmalloc() or
992  * kmem_cache_alloc().
993  *
994  * Note that the allowable offset might decrease in the future.
995  *
996  * The BUILD_BUG_ON check must not involve any function calls, hence the
997  * checks are done in macros here.
998  */
999 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1000 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1001 
1002 /**
1003  * kfree_rcu_mightsleep() - kfree an object after a grace period.
1004  * @ptr: pointer to kfree for single-argument invocations.
1005  *
1006  * When it comes to head-less variant, only one argument
1007  * is passed and that is just a pointer which has to be
1008  * freed after a grace period. Therefore the semantic is
1009  *
1010  *     kfree_rcu_mightsleep(ptr);
1011  *
1012  * where @ptr is the pointer to be freed by kvfree().
1013  *
1014  * Please note, head-less way of freeing is permitted to
1015  * use from a context that has to follow might_sleep()
1016  * annotation. Otherwise, please switch and embed the
1017  * rcu_head structure within the type of @ptr.
1018  */
1019 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1020 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1021 
1022 #define kvfree_rcu_arg_2(ptr, rhf)					\
1023 do {									\
1024 	typeof (ptr) ___p = (ptr);					\
1025 									\
1026 	if (___p) {									\
1027 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
1028 		kvfree_call_rcu(&((___p)->rhf), (void *) (___p));			\
1029 	}										\
1030 } while (0)
1031 
1032 #define kvfree_rcu_arg_1(ptr)					\
1033 do {								\
1034 	typeof(ptr) ___p = (ptr);				\
1035 								\
1036 	if (___p)						\
1037 		kvfree_call_rcu(NULL, (void *) (___p));		\
1038 } while (0)
1039 
1040 /*
1041  * Place this after a lock-acquisition primitive to guarantee that
1042  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
1043  * if the UNLOCK and LOCK are executed by the same CPU or if the
1044  * UNLOCK and LOCK operate on the same lock variable.
1045  */
1046 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1047 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
1048 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1049 #define smp_mb__after_unlock_lock()	do { } while (0)
1050 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1051 
1052 
1053 /* Has the specified rcu_head structure been handed to call_rcu()? */
1054 
1055 /**
1056  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1057  * @rhp: The rcu_head structure to initialize.
1058  *
1059  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1060  * given rcu_head structure has already been passed to call_rcu(), then
1061  * you must also invoke this rcu_head_init() function on it just after
1062  * allocating that structure.  Calls to this function must not race with
1063  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1064  */
rcu_head_init(struct rcu_head * rhp)1065 static inline void rcu_head_init(struct rcu_head *rhp)
1066 {
1067 	rhp->func = (rcu_callback_t)~0L;
1068 }
1069 
1070 /**
1071  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1072  * @rhp: The rcu_head structure to test.
1073  * @f: The function passed to call_rcu() along with @rhp.
1074  *
1075  * Returns @true if the @rhp has been passed to call_rcu() with @func,
1076  * and @false otherwise.  Emits a warning in any other case, including
1077  * the case where @rhp has already been invoked after a grace period.
1078  * Calls to this function must not race with callback invocation.  One way
1079  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1080  * in an RCU read-side critical section that includes a read-side fetch
1081  * of the pointer to the structure containing @rhp.
1082  */
1083 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1084 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1085 {
1086 	rcu_callback_t func = READ_ONCE(rhp->func);
1087 
1088 	if (func == f)
1089 		return true;
1090 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1091 	return false;
1092 }
1093 
1094 /* kernel/ksysfs.c definitions */
1095 extern int rcu_expedited;
1096 extern int rcu_normal;
1097 
1098 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1099 
1100 #endif /* __LINUX_RCUPDATE_H */
1101