xref: /openbmc/linux/kernel/events/uprobes.c (revision 0f9b4c3ca5fdf3e177266ef994071b1a03f07318)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* folio_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29 
30 #include <linux/uprobes.h>
31 
32 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
34 
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37  * allows us to skip the uprobe_mmap if there are no uprobe events active
38  * at this time.  Probably a fine grained per inode count is better?
39  */
40 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
41 
42 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
43 
44 #define UPROBES_HASH_SZ	13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48 
49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50 
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN	0
53 
54 struct uprobe {
55 	struct rb_node		rb_node;	/* node in the rb tree */
56 	refcount_t		ref;
57 	struct rw_semaphore	register_rwsem;
58 	struct rw_semaphore	consumer_rwsem;
59 	struct list_head	pending_list;
60 	struct uprobe_consumer	*consumers;
61 	struct inode		*inode;		/* Also hold a ref to inode */
62 	loff_t			offset;
63 	loff_t			ref_ctr_offset;
64 	unsigned long		flags;
65 
66 	/*
67 	 * The generic code assumes that it has two members of unknown type
68 	 * owned by the arch-specific code:
69 	 *
70 	 * 	insn -	copy_insn() saves the original instruction here for
71 	 *		arch_uprobe_analyze_insn().
72 	 *
73 	 *	ixol -	potentially modified instruction to execute out of
74 	 *		line, copied to xol_area by xol_get_insn_slot().
75 	 */
76 	struct arch_uprobe	arch;
77 };
78 
79 struct delayed_uprobe {
80 	struct list_head list;
81 	struct uprobe *uprobe;
82 	struct mm_struct *mm;
83 };
84 
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87 
88 /*
89  * Execute out of line area: anonymous executable mapping installed
90  * by the probed task to execute the copy of the original instruction
91  * mangled by set_swbp().
92  *
93  * On a breakpoint hit, thread contests for a slot.  It frees the
94  * slot after singlestep. Currently a fixed number of slots are
95  * allocated.
96  */
97 struct xol_area {
98 	wait_queue_head_t 		wq;		/* if all slots are busy */
99 	atomic_t 			slot_count;	/* number of in-use slots */
100 	unsigned long 			*bitmap;	/* 0 = free slot */
101 
102 	struct vm_special_mapping	xol_mapping;
103 	struct page 			*pages[2];
104 	/*
105 	 * We keep the vma's vm_start rather than a pointer to the vma
106 	 * itself.  The probed process or a naughty kernel module could make
107 	 * the vma go away, and we must handle that reasonably gracefully.
108 	 */
109 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
110 };
111 
112 /*
113  * valid_vma: Verify if the specified vma is an executable vma
114  * Relax restrictions while unregistering: vm_flags might have
115  * changed after breakpoint was inserted.
116  *	- is_register: indicates if we are in register context.
117  *	- Return 1 if the specified virtual address is in an
118  *	  executable vma.
119  */
valid_vma(struct vm_area_struct * vma,bool is_register)120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123 
124 	if (is_register)
125 		flags |= VM_WRITE;
126 
127 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139 
140 /**
141  * __replace_page - replace page in vma by new page.
142  * based on replace_page in mm/ksm.c
143  *
144  * @vma:      vma that holds the pte pointing to page
145  * @addr:     address the old @page is mapped at
146  * @old_page: the page we are replacing by new_page
147  * @new_page: the modified page we replace page by
148  *
149  * If @new_page is NULL, only unmap @old_page.
150  *
151  * Returns 0 on success, negative error code otherwise.
152  */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154 				struct page *old_page, struct page *new_page)
155 {
156 	struct folio *old_folio = page_folio(old_page);
157 	struct folio *new_folio;
158 	struct mm_struct *mm = vma->vm_mm;
159 	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160 	int err;
161 	struct mmu_notifier_range range;
162 
163 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
164 				addr + PAGE_SIZE);
165 
166 	if (new_page) {
167 		new_folio = page_folio(new_page);
168 		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
169 		if (err)
170 			return err;
171 	}
172 
173 	/* For folio_free_swap() below */
174 	folio_lock(old_folio);
175 
176 	mmu_notifier_invalidate_range_start(&range);
177 	err = -EAGAIN;
178 	if (!page_vma_mapped_walk(&pvmw))
179 		goto unlock;
180 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
181 
182 	if (new_page) {
183 		folio_get(new_folio);
184 		page_add_new_anon_rmap(new_page, vma, addr);
185 		folio_add_lru_vma(new_folio, vma);
186 	} else
187 		/* no new page, just dec_mm_counter for old_page */
188 		dec_mm_counter(mm, MM_ANONPAGES);
189 
190 	if (!folio_test_anon(old_folio)) {
191 		dec_mm_counter(mm, mm_counter_file(old_page));
192 		inc_mm_counter(mm, MM_ANONPAGES);
193 	}
194 
195 	flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
196 	ptep_clear_flush(vma, addr, pvmw.pte);
197 	if (new_page)
198 		set_pte_at_notify(mm, addr, pvmw.pte,
199 				  mk_pte(new_page, vma->vm_page_prot));
200 
201 	page_remove_rmap(old_page, vma, false);
202 	if (!folio_mapped(old_folio))
203 		folio_free_swap(old_folio);
204 	page_vma_mapped_walk_done(&pvmw);
205 	folio_put(old_folio);
206 
207 	err = 0;
208  unlock:
209 	mmu_notifier_invalidate_range_end(&range);
210 	folio_unlock(old_folio);
211 	return err;
212 }
213 
214 /**
215  * is_swbp_insn - check if instruction is breakpoint instruction.
216  * @insn: instruction to be checked.
217  * Default implementation of is_swbp_insn
218  * Returns true if @insn is a breakpoint instruction.
219  */
is_swbp_insn(uprobe_opcode_t * insn)220 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
221 {
222 	return *insn == UPROBE_SWBP_INSN;
223 }
224 
225 /**
226  * is_trap_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_trap_insn
229  * Returns true if @insn is a breakpoint instruction.
230  *
231  * This function is needed for the case where an architecture has multiple
232  * trap instructions (like powerpc).
233  */
is_trap_insn(uprobe_opcode_t * insn)234 bool __weak is_trap_insn(uprobe_opcode_t *insn)
235 {
236 	return is_swbp_insn(insn);
237 }
238 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)239 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
240 {
241 	void *kaddr = kmap_atomic(page);
242 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
243 	kunmap_atomic(kaddr);
244 }
245 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)246 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247 {
248 	void *kaddr = kmap_atomic(page);
249 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250 	kunmap_atomic(kaddr);
251 }
252 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)253 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254 {
255 	uprobe_opcode_t old_opcode;
256 	bool is_swbp;
257 
258 	/*
259 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260 	 * We do not check if it is any other 'trap variant' which could
261 	 * be conditional trap instruction such as the one powerpc supports.
262 	 *
263 	 * The logic is that we do not care if the underlying instruction
264 	 * is a trap variant; uprobes always wins over any other (gdb)
265 	 * breakpoint.
266 	 */
267 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
268 	is_swbp = is_swbp_insn(&old_opcode);
269 
270 	if (is_swbp_insn(new_opcode)) {
271 		if (is_swbp)		/* register: already installed? */
272 			return 0;
273 	} else {
274 		if (!is_swbp)		/* unregister: was it changed by us? */
275 			return 0;
276 	}
277 
278 	return 1;
279 }
280 
281 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)282 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283 {
284 	struct delayed_uprobe *du;
285 
286 	list_for_each_entry(du, &delayed_uprobe_list, list)
287 		if (du->uprobe == uprobe && du->mm == mm)
288 			return du;
289 	return NULL;
290 }
291 
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)292 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293 {
294 	struct delayed_uprobe *du;
295 
296 	if (delayed_uprobe_check(uprobe, mm))
297 		return 0;
298 
299 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
300 	if (!du)
301 		return -ENOMEM;
302 
303 	du->uprobe = uprobe;
304 	du->mm = mm;
305 	list_add(&du->list, &delayed_uprobe_list);
306 	return 0;
307 }
308 
delayed_uprobe_delete(struct delayed_uprobe * du)309 static void delayed_uprobe_delete(struct delayed_uprobe *du)
310 {
311 	if (WARN_ON(!du))
312 		return;
313 	list_del(&du->list);
314 	kfree(du);
315 }
316 
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)317 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318 {
319 	struct list_head *pos, *q;
320 	struct delayed_uprobe *du;
321 
322 	if (!uprobe && !mm)
323 		return;
324 
325 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
326 		du = list_entry(pos, struct delayed_uprobe, list);
327 
328 		if (uprobe && du->uprobe != uprobe)
329 			continue;
330 		if (mm && du->mm != mm)
331 			continue;
332 
333 		delayed_uprobe_delete(du);
334 	}
335 }
336 
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)337 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338 			      struct vm_area_struct *vma)
339 {
340 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341 
342 	return uprobe->ref_ctr_offset &&
343 		vma->vm_file &&
344 		file_inode(vma->vm_file) == uprobe->inode &&
345 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346 		vma->vm_start <= vaddr &&
347 		vma->vm_end > vaddr;
348 }
349 
350 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)351 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352 {
353 	VMA_ITERATOR(vmi, mm, 0);
354 	struct vm_area_struct *tmp;
355 
356 	for_each_vma(vmi, tmp)
357 		if (valid_ref_ctr_vma(uprobe, tmp))
358 			return tmp;
359 
360 	return NULL;
361 }
362 
363 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365 {
366 	void *kaddr;
367 	struct page *page;
368 	int ret;
369 	short *ptr;
370 
371 	if (!vaddr || !d)
372 		return -EINVAL;
373 
374 	ret = get_user_pages_remote(mm, vaddr, 1,
375 				    FOLL_WRITE, &page, NULL);
376 	if (unlikely(ret <= 0)) {
377 		/*
378 		 * We are asking for 1 page. If get_user_pages_remote() fails,
379 		 * it may return 0, in that case we have to return error.
380 		 */
381 		return ret == 0 ? -EBUSY : ret;
382 	}
383 
384 	kaddr = kmap_atomic(page);
385 	ptr = kaddr + (vaddr & ~PAGE_MASK);
386 
387 	if (unlikely(*ptr + d < 0)) {
388 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
389 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
390 		ret = -EINVAL;
391 		goto out;
392 	}
393 
394 	*ptr += d;
395 	ret = 0;
396 out:
397 	kunmap_atomic(kaddr);
398 	put_page(page);
399 	return ret;
400 }
401 
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)402 static void update_ref_ctr_warn(struct uprobe *uprobe,
403 				struct mm_struct *mm, short d)
404 {
405 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
406 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
407 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
408 		(unsigned long long) uprobe->offset,
409 		(unsigned long long) uprobe->ref_ctr_offset, mm);
410 }
411 
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)412 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
413 			  short d)
414 {
415 	struct vm_area_struct *rc_vma;
416 	unsigned long rc_vaddr;
417 	int ret = 0;
418 
419 	rc_vma = find_ref_ctr_vma(uprobe, mm);
420 
421 	if (rc_vma) {
422 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
423 		ret = __update_ref_ctr(mm, rc_vaddr, d);
424 		if (ret)
425 			update_ref_ctr_warn(uprobe, mm, d);
426 
427 		if (d > 0)
428 			return ret;
429 	}
430 
431 	mutex_lock(&delayed_uprobe_lock);
432 	if (d > 0)
433 		ret = delayed_uprobe_add(uprobe, mm);
434 	else
435 		delayed_uprobe_remove(uprobe, mm);
436 	mutex_unlock(&delayed_uprobe_lock);
437 
438 	return ret;
439 }
440 
441 /*
442  * NOTE:
443  * Expect the breakpoint instruction to be the smallest size instruction for
444  * the architecture. If an arch has variable length instruction and the
445  * breakpoint instruction is not of the smallest length instruction
446  * supported by that architecture then we need to modify is_trap_at_addr and
447  * uprobe_write_opcode accordingly. This would never be a problem for archs
448  * that have fixed length instructions.
449  *
450  * uprobe_write_opcode - write the opcode at a given virtual address.
451  * @auprobe: arch specific probepoint information.
452  * @mm: the probed process address space.
453  * @vaddr: the virtual address to store the opcode.
454  * @opcode: opcode to be written at @vaddr.
455  *
456  * Called with mm->mmap_lock held for write.
457  * Return 0 (success) or a negative errno.
458  */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460 			unsigned long vaddr, uprobe_opcode_t opcode)
461 {
462 	struct uprobe *uprobe;
463 	struct page *old_page, *new_page;
464 	struct vm_area_struct *vma;
465 	int ret, is_register, ref_ctr_updated = 0;
466 	bool orig_page_huge = false;
467 	unsigned int gup_flags = FOLL_FORCE;
468 
469 	is_register = is_swbp_insn(&opcode);
470 	uprobe = container_of(auprobe, struct uprobe, arch);
471 
472 retry:
473 	if (is_register)
474 		gup_flags |= FOLL_SPLIT_PMD;
475 	/* Read the page with vaddr into memory */
476 	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
477 	if (IS_ERR_OR_NULL(old_page))
478 		return old_page ? PTR_ERR(old_page) : 0;
479 
480 	ret = verify_opcode(old_page, vaddr, &opcode);
481 	if (ret <= 0)
482 		goto put_old;
483 
484 	if (is_zero_page(old_page)) {
485 		ret = -EINVAL;
486 		goto put_old;
487 	}
488 
489 	if (WARN(!is_register && PageCompound(old_page),
490 		 "uprobe unregister should never work on compound page\n")) {
491 		ret = -EINVAL;
492 		goto put_old;
493 	}
494 
495 	/* We are going to replace instruction, update ref_ctr. */
496 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498 		if (ret)
499 			goto put_old;
500 
501 		ref_ctr_updated = 1;
502 	}
503 
504 	ret = 0;
505 	if (!is_register && !PageAnon(old_page))
506 		goto put_old;
507 
508 	ret = anon_vma_prepare(vma);
509 	if (ret)
510 		goto put_old;
511 
512 	ret = -ENOMEM;
513 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514 	if (!new_page)
515 		goto put_old;
516 
517 	__SetPageUptodate(new_page);
518 	copy_highpage(new_page, old_page);
519 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520 
521 	if (!is_register) {
522 		struct page *orig_page;
523 		pgoff_t index;
524 
525 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526 
527 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529 					  index);
530 
531 		if (orig_page) {
532 			if (PageUptodate(orig_page) &&
533 			    pages_identical(new_page, orig_page)) {
534 				/* let go new_page */
535 				put_page(new_page);
536 				new_page = NULL;
537 
538 				if (PageCompound(orig_page))
539 					orig_page_huge = true;
540 			}
541 			put_page(orig_page);
542 		}
543 	}
544 
545 	ret = __replace_page(vma, vaddr, old_page, new_page);
546 	if (new_page)
547 		put_page(new_page);
548 put_old:
549 	put_page(old_page);
550 
551 	if (unlikely(ret == -EAGAIN))
552 		goto retry;
553 
554 	/* Revert back reference counter if instruction update failed. */
555 	if (ret && is_register && ref_ctr_updated)
556 		update_ref_ctr(uprobe, mm, -1);
557 
558 	/* try collapse pmd for compound page */
559 	if (!ret && orig_page_huge)
560 		collapse_pte_mapped_thp(mm, vaddr, false);
561 
562 	return ret;
563 }
564 
565 /**
566  * set_swbp - store breakpoint at a given address.
567  * @auprobe: arch specific probepoint information.
568  * @mm: the probed process address space.
569  * @vaddr: the virtual address to insert the opcode.
570  *
571  * For mm @mm, store the breakpoint instruction at @vaddr.
572  * Return 0 (success) or a negative errno.
573  */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575 {
576 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577 }
578 
579 /**
580  * set_orig_insn - Restore the original instruction.
581  * @mm: the probed process address space.
582  * @auprobe: arch specific probepoint information.
583  * @vaddr: the virtual address to insert the opcode.
584  *
585  * For mm @mm, restore the original opcode (opcode) at @vaddr.
586  * Return 0 (success) or a negative errno.
587  */
588 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590 {
591 	return uprobe_write_opcode(auprobe, mm, vaddr,
592 			*(uprobe_opcode_t *)&auprobe->insn);
593 }
594 
get_uprobe(struct uprobe * uprobe)595 static struct uprobe *get_uprobe(struct uprobe *uprobe)
596 {
597 	refcount_inc(&uprobe->ref);
598 	return uprobe;
599 }
600 
put_uprobe(struct uprobe * uprobe)601 static void put_uprobe(struct uprobe *uprobe)
602 {
603 	if (refcount_dec_and_test(&uprobe->ref)) {
604 		/*
605 		 * If application munmap(exec_vma) before uprobe_unregister()
606 		 * gets called, we don't get a chance to remove uprobe from
607 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
608 		 */
609 		mutex_lock(&delayed_uprobe_lock);
610 		delayed_uprobe_remove(uprobe, NULL);
611 		mutex_unlock(&delayed_uprobe_lock);
612 		kfree(uprobe);
613 	}
614 }
615 
616 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)617 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
618 	       const struct uprobe *r)
619 {
620 	if (l_inode < r->inode)
621 		return -1;
622 
623 	if (l_inode > r->inode)
624 		return 1;
625 
626 	if (l_offset < r->offset)
627 		return -1;
628 
629 	if (l_offset > r->offset)
630 		return 1;
631 
632 	return 0;
633 }
634 
635 #define __node_2_uprobe(node) \
636 	rb_entry((node), struct uprobe, rb_node)
637 
638 struct __uprobe_key {
639 	struct inode *inode;
640 	loff_t offset;
641 };
642 
__uprobe_cmp_key(const void * key,const struct rb_node * b)643 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
644 {
645 	const struct __uprobe_key *a = key;
646 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
647 }
648 
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)649 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
650 {
651 	struct uprobe *u = __node_2_uprobe(a);
652 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
653 }
654 
__find_uprobe(struct inode * inode,loff_t offset)655 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
656 {
657 	struct __uprobe_key key = {
658 		.inode = inode,
659 		.offset = offset,
660 	};
661 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
662 
663 	if (node)
664 		return get_uprobe(__node_2_uprobe(node));
665 
666 	return NULL;
667 }
668 
669 /*
670  * Find a uprobe corresponding to a given inode:offset
671  * Acquires uprobes_treelock
672  */
find_uprobe(struct inode * inode,loff_t offset)673 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
674 {
675 	struct uprobe *uprobe;
676 
677 	spin_lock(&uprobes_treelock);
678 	uprobe = __find_uprobe(inode, offset);
679 	spin_unlock(&uprobes_treelock);
680 
681 	return uprobe;
682 }
683 
__insert_uprobe(struct uprobe * uprobe)684 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
685 {
686 	struct rb_node *node;
687 
688 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
689 	if (node)
690 		return get_uprobe(__node_2_uprobe(node));
691 
692 	/* get access + creation ref */
693 	refcount_set(&uprobe->ref, 2);
694 	return NULL;
695 }
696 
697 /*
698  * Acquire uprobes_treelock.
699  * Matching uprobe already exists in rbtree;
700  *	increment (access refcount) and return the matching uprobe.
701  *
702  * No matching uprobe; insert the uprobe in rb_tree;
703  *	get a double refcount (access + creation) and return NULL.
704  */
insert_uprobe(struct uprobe * uprobe)705 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
706 {
707 	struct uprobe *u;
708 
709 	spin_lock(&uprobes_treelock);
710 	u = __insert_uprobe(uprobe);
711 	spin_unlock(&uprobes_treelock);
712 
713 	return u;
714 }
715 
716 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)717 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
718 {
719 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
720 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
721 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
722 		(unsigned long long) cur_uprobe->ref_ctr_offset,
723 		(unsigned long long) uprobe->ref_ctr_offset);
724 }
725 
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)726 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
727 				   loff_t ref_ctr_offset)
728 {
729 	struct uprobe *uprobe, *cur_uprobe;
730 
731 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
732 	if (!uprobe)
733 		return NULL;
734 
735 	uprobe->inode = inode;
736 	uprobe->offset = offset;
737 	uprobe->ref_ctr_offset = ref_ctr_offset;
738 	init_rwsem(&uprobe->register_rwsem);
739 	init_rwsem(&uprobe->consumer_rwsem);
740 
741 	/* add to uprobes_tree, sorted on inode:offset */
742 	cur_uprobe = insert_uprobe(uprobe);
743 	/* a uprobe exists for this inode:offset combination */
744 	if (cur_uprobe) {
745 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
746 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
747 			put_uprobe(cur_uprobe);
748 			kfree(uprobe);
749 			return ERR_PTR(-EINVAL);
750 		}
751 		kfree(uprobe);
752 		uprobe = cur_uprobe;
753 	}
754 
755 	return uprobe;
756 }
757 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)758 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
759 {
760 	down_write(&uprobe->consumer_rwsem);
761 	uc->next = uprobe->consumers;
762 	uprobe->consumers = uc;
763 	up_write(&uprobe->consumer_rwsem);
764 }
765 
766 /*
767  * For uprobe @uprobe, delete the consumer @uc.
768  * Return true if the @uc is deleted successfully
769  * or return false.
770  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)771 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
772 {
773 	struct uprobe_consumer **con;
774 	bool ret = false;
775 
776 	down_write(&uprobe->consumer_rwsem);
777 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
778 		if (*con == uc) {
779 			*con = uc->next;
780 			ret = true;
781 			break;
782 		}
783 	}
784 	up_write(&uprobe->consumer_rwsem);
785 
786 	return ret;
787 }
788 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)789 static int __copy_insn(struct address_space *mapping, struct file *filp,
790 			void *insn, int nbytes, loff_t offset)
791 {
792 	struct page *page;
793 	/*
794 	 * Ensure that the page that has the original instruction is populated
795 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
796 	 * see uprobe_register().
797 	 */
798 	if (mapping->a_ops->read_folio)
799 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
800 	else
801 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802 	if (IS_ERR(page))
803 		return PTR_ERR(page);
804 
805 	copy_from_page(page, offset, insn, nbytes);
806 	put_page(page);
807 
808 	return 0;
809 }
810 
copy_insn(struct uprobe * uprobe,struct file * filp)811 static int copy_insn(struct uprobe *uprobe, struct file *filp)
812 {
813 	struct address_space *mapping = uprobe->inode->i_mapping;
814 	loff_t offs = uprobe->offset;
815 	void *insn = &uprobe->arch.insn;
816 	int size = sizeof(uprobe->arch.insn);
817 	int len, err = -EIO;
818 
819 	/* Copy only available bytes, -EIO if nothing was read */
820 	do {
821 		if (offs >= i_size_read(uprobe->inode))
822 			break;
823 
824 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
825 		err = __copy_insn(mapping, filp, insn, len, offs);
826 		if (err)
827 			break;
828 
829 		insn += len;
830 		offs += len;
831 		size -= len;
832 	} while (size);
833 
834 	return err;
835 }
836 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)837 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
838 				struct mm_struct *mm, unsigned long vaddr)
839 {
840 	int ret = 0;
841 
842 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843 		return ret;
844 
845 	/* TODO: move this into _register, until then we abuse this sem. */
846 	down_write(&uprobe->consumer_rwsem);
847 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
848 		goto out;
849 
850 	ret = copy_insn(uprobe, file);
851 	if (ret)
852 		goto out;
853 
854 	ret = -ENOTSUPP;
855 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
856 		goto out;
857 
858 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
859 	if (ret)
860 		goto out;
861 
862 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
863 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
864 
865  out:
866 	up_write(&uprobe->consumer_rwsem);
867 
868 	return ret;
869 }
870 
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)871 static inline bool consumer_filter(struct uprobe_consumer *uc,
872 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
873 {
874 	return !uc->filter || uc->filter(uc, ctx, mm);
875 }
876 
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)877 static bool filter_chain(struct uprobe *uprobe,
878 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
879 {
880 	struct uprobe_consumer *uc;
881 	bool ret = false;
882 
883 	down_read(&uprobe->consumer_rwsem);
884 	for (uc = uprobe->consumers; uc; uc = uc->next) {
885 		ret = consumer_filter(uc, ctx, mm);
886 		if (ret)
887 			break;
888 	}
889 	up_read(&uprobe->consumer_rwsem);
890 
891 	return ret;
892 }
893 
894 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)895 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
896 			struct vm_area_struct *vma, unsigned long vaddr)
897 {
898 	bool first_uprobe;
899 	int ret;
900 
901 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
902 	if (ret)
903 		return ret;
904 
905 	/*
906 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
907 	 * the task can hit this breakpoint right after __replace_page().
908 	 */
909 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
910 	if (first_uprobe)
911 		set_bit(MMF_HAS_UPROBES, &mm->flags);
912 
913 	ret = set_swbp(&uprobe->arch, mm, vaddr);
914 	if (!ret)
915 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
916 	else if (first_uprobe)
917 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
918 
919 	return ret;
920 }
921 
922 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)923 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
924 {
925 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
926 	return set_orig_insn(&uprobe->arch, mm, vaddr);
927 }
928 
uprobe_is_active(struct uprobe * uprobe)929 static inline bool uprobe_is_active(struct uprobe *uprobe)
930 {
931 	return !RB_EMPTY_NODE(&uprobe->rb_node);
932 }
933 /*
934  * There could be threads that have already hit the breakpoint. They
935  * will recheck the current insn and restart if find_uprobe() fails.
936  * See find_active_uprobe().
937  */
delete_uprobe(struct uprobe * uprobe)938 static void delete_uprobe(struct uprobe *uprobe)
939 {
940 	if (WARN_ON(!uprobe_is_active(uprobe)))
941 		return;
942 
943 	spin_lock(&uprobes_treelock);
944 	rb_erase(&uprobe->rb_node, &uprobes_tree);
945 	spin_unlock(&uprobes_treelock);
946 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
947 	put_uprobe(uprobe);
948 }
949 
950 struct map_info {
951 	struct map_info *next;
952 	struct mm_struct *mm;
953 	unsigned long vaddr;
954 };
955 
free_map_info(struct map_info * info)956 static inline struct map_info *free_map_info(struct map_info *info)
957 {
958 	struct map_info *next = info->next;
959 	kfree(info);
960 	return next;
961 }
962 
963 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)964 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
965 {
966 	unsigned long pgoff = offset >> PAGE_SHIFT;
967 	struct vm_area_struct *vma;
968 	struct map_info *curr = NULL;
969 	struct map_info *prev = NULL;
970 	struct map_info *info;
971 	int more = 0;
972 
973  again:
974 	i_mmap_lock_read(mapping);
975 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
976 		if (!valid_vma(vma, is_register))
977 			continue;
978 
979 		if (!prev && !more) {
980 			/*
981 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
982 			 * reclaim. This is optimistic, no harm done if it fails.
983 			 */
984 			prev = kmalloc(sizeof(struct map_info),
985 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
986 			if (prev)
987 				prev->next = NULL;
988 		}
989 		if (!prev) {
990 			more++;
991 			continue;
992 		}
993 
994 		if (!mmget_not_zero(vma->vm_mm))
995 			continue;
996 
997 		info = prev;
998 		prev = prev->next;
999 		info->next = curr;
1000 		curr = info;
1001 
1002 		info->mm = vma->vm_mm;
1003 		info->vaddr = offset_to_vaddr(vma, offset);
1004 	}
1005 	i_mmap_unlock_read(mapping);
1006 
1007 	if (!more)
1008 		goto out;
1009 
1010 	prev = curr;
1011 	while (curr) {
1012 		mmput(curr->mm);
1013 		curr = curr->next;
1014 	}
1015 
1016 	do {
1017 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1018 		if (!info) {
1019 			curr = ERR_PTR(-ENOMEM);
1020 			goto out;
1021 		}
1022 		info->next = prev;
1023 		prev = info;
1024 	} while (--more);
1025 
1026 	goto again;
1027  out:
1028 	while (prev)
1029 		prev = free_map_info(prev);
1030 	return curr;
1031 }
1032 
1033 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1034 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1035 {
1036 	bool is_register = !!new;
1037 	struct map_info *info;
1038 	int err = 0;
1039 
1040 	percpu_down_write(&dup_mmap_sem);
1041 	info = build_map_info(uprobe->inode->i_mapping,
1042 					uprobe->offset, is_register);
1043 	if (IS_ERR(info)) {
1044 		err = PTR_ERR(info);
1045 		goto out;
1046 	}
1047 
1048 	while (info) {
1049 		struct mm_struct *mm = info->mm;
1050 		struct vm_area_struct *vma;
1051 
1052 		if (err && is_register)
1053 			goto free;
1054 
1055 		mmap_write_lock(mm);
1056 		vma = find_vma(mm, info->vaddr);
1057 		if (!vma || !valid_vma(vma, is_register) ||
1058 		    file_inode(vma->vm_file) != uprobe->inode)
1059 			goto unlock;
1060 
1061 		if (vma->vm_start > info->vaddr ||
1062 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1063 			goto unlock;
1064 
1065 		if (is_register) {
1066 			/* consult only the "caller", new consumer. */
1067 			if (consumer_filter(new,
1068 					UPROBE_FILTER_REGISTER, mm))
1069 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1070 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1071 			if (!filter_chain(uprobe,
1072 					UPROBE_FILTER_UNREGISTER, mm))
1073 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1074 		}
1075 
1076  unlock:
1077 		mmap_write_unlock(mm);
1078  free:
1079 		mmput(mm);
1080 		info = free_map_info(info);
1081 	}
1082  out:
1083 	percpu_up_write(&dup_mmap_sem);
1084 	return err;
1085 }
1086 
1087 static void
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)1088 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1089 {
1090 	int err;
1091 
1092 	if (WARN_ON(!consumer_del(uprobe, uc)))
1093 		return;
1094 
1095 	err = register_for_each_vma(uprobe, NULL);
1096 	/* TODO : cant unregister? schedule a worker thread */
1097 	if (!uprobe->consumers && !err)
1098 		delete_uprobe(uprobe);
1099 }
1100 
1101 /*
1102  * uprobe_unregister - unregister an already registered probe.
1103  * @inode: the file in which the probe has to be removed.
1104  * @offset: offset from the start of the file.
1105  * @uc: identify which probe if multiple probes are colocated.
1106  */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1107 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1108 {
1109 	struct uprobe *uprobe;
1110 
1111 	uprobe = find_uprobe(inode, offset);
1112 	if (WARN_ON(!uprobe))
1113 		return;
1114 
1115 	down_write(&uprobe->register_rwsem);
1116 	__uprobe_unregister(uprobe, uc);
1117 	up_write(&uprobe->register_rwsem);
1118 	put_uprobe(uprobe);
1119 }
1120 EXPORT_SYMBOL_GPL(uprobe_unregister);
1121 
1122 /*
1123  * __uprobe_register - register a probe
1124  * @inode: the file in which the probe has to be placed.
1125  * @offset: offset from the start of the file.
1126  * @uc: information on howto handle the probe..
1127  *
1128  * Apart from the access refcount, __uprobe_register() takes a creation
1129  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1130  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1131  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1132  * @uprobe even before the register operation is complete. Creation
1133  * refcount is released when the last @uc for the @uprobe
1134  * unregisters. Caller of __uprobe_register() is required to keep @inode
1135  * (and the containing mount) referenced.
1136  *
1137  * Return errno if it cannot successully install probes
1138  * else return 0 (success)
1139  */
__uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1140 static int __uprobe_register(struct inode *inode, loff_t offset,
1141 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1142 {
1143 	struct uprobe *uprobe;
1144 	int ret;
1145 
1146 	/* Uprobe must have at least one set consumer */
1147 	if (!uc->handler && !uc->ret_handler)
1148 		return -EINVAL;
1149 
1150 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1151 	if (!inode->i_mapping->a_ops->read_folio &&
1152 	    !shmem_mapping(inode->i_mapping))
1153 		return -EIO;
1154 	/* Racy, just to catch the obvious mistakes */
1155 	if (offset > i_size_read(inode))
1156 		return -EINVAL;
1157 
1158 	/*
1159 	 * This ensures that copy_from_page(), copy_to_page() and
1160 	 * __update_ref_ctr() can't cross page boundary.
1161 	 */
1162 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1163 		return -EINVAL;
1164 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1165 		return -EINVAL;
1166 
1167  retry:
1168 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1169 	if (!uprobe)
1170 		return -ENOMEM;
1171 	if (IS_ERR(uprobe))
1172 		return PTR_ERR(uprobe);
1173 
1174 	/*
1175 	 * We can race with uprobe_unregister()->delete_uprobe().
1176 	 * Check uprobe_is_active() and retry if it is false.
1177 	 */
1178 	down_write(&uprobe->register_rwsem);
1179 	ret = -EAGAIN;
1180 	if (likely(uprobe_is_active(uprobe))) {
1181 		consumer_add(uprobe, uc);
1182 		ret = register_for_each_vma(uprobe, uc);
1183 		if (ret)
1184 			__uprobe_unregister(uprobe, uc);
1185 	}
1186 	up_write(&uprobe->register_rwsem);
1187 	put_uprobe(uprobe);
1188 
1189 	if (unlikely(ret == -EAGAIN))
1190 		goto retry;
1191 	return ret;
1192 }
1193 
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1194 int uprobe_register(struct inode *inode, loff_t offset,
1195 		    struct uprobe_consumer *uc)
1196 {
1197 	return __uprobe_register(inode, offset, 0, uc);
1198 }
1199 EXPORT_SYMBOL_GPL(uprobe_register);
1200 
uprobe_register_refctr(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1201 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1202 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1203 {
1204 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1205 }
1206 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1207 
1208 /*
1209  * uprobe_apply - unregister an already registered probe.
1210  * @inode: the file in which the probe has to be removed.
1211  * @offset: offset from the start of the file.
1212  * @uc: consumer which wants to add more or remove some breakpoints
1213  * @add: add or remove the breakpoints
1214  */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)1215 int uprobe_apply(struct inode *inode, loff_t offset,
1216 			struct uprobe_consumer *uc, bool add)
1217 {
1218 	struct uprobe *uprobe;
1219 	struct uprobe_consumer *con;
1220 	int ret = -ENOENT;
1221 
1222 	uprobe = find_uprobe(inode, offset);
1223 	if (WARN_ON(!uprobe))
1224 		return ret;
1225 
1226 	down_write(&uprobe->register_rwsem);
1227 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1228 		;
1229 	if (con)
1230 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1231 	up_write(&uprobe->register_rwsem);
1232 	put_uprobe(uprobe);
1233 
1234 	return ret;
1235 }
1236 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1237 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1238 {
1239 	VMA_ITERATOR(vmi, mm, 0);
1240 	struct vm_area_struct *vma;
1241 	int err = 0;
1242 
1243 	mmap_read_lock(mm);
1244 	for_each_vma(vmi, vma) {
1245 		unsigned long vaddr;
1246 		loff_t offset;
1247 
1248 		if (!valid_vma(vma, false) ||
1249 		    file_inode(vma->vm_file) != uprobe->inode)
1250 			continue;
1251 
1252 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1253 		if (uprobe->offset <  offset ||
1254 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1255 			continue;
1256 
1257 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1258 		err |= remove_breakpoint(uprobe, mm, vaddr);
1259 	}
1260 	mmap_read_unlock(mm);
1261 
1262 	return err;
1263 }
1264 
1265 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1266 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1267 {
1268 	struct rb_node *n = uprobes_tree.rb_node;
1269 
1270 	while (n) {
1271 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1272 
1273 		if (inode < u->inode) {
1274 			n = n->rb_left;
1275 		} else if (inode > u->inode) {
1276 			n = n->rb_right;
1277 		} else {
1278 			if (max < u->offset)
1279 				n = n->rb_left;
1280 			else if (min > u->offset)
1281 				n = n->rb_right;
1282 			else
1283 				break;
1284 		}
1285 	}
1286 
1287 	return n;
1288 }
1289 
1290 /*
1291  * For a given range in vma, build a list of probes that need to be inserted.
1292  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1293 static void build_probe_list(struct inode *inode,
1294 				struct vm_area_struct *vma,
1295 				unsigned long start, unsigned long end,
1296 				struct list_head *head)
1297 {
1298 	loff_t min, max;
1299 	struct rb_node *n, *t;
1300 	struct uprobe *u;
1301 
1302 	INIT_LIST_HEAD(head);
1303 	min = vaddr_to_offset(vma, start);
1304 	max = min + (end - start) - 1;
1305 
1306 	spin_lock(&uprobes_treelock);
1307 	n = find_node_in_range(inode, min, max);
1308 	if (n) {
1309 		for (t = n; t; t = rb_prev(t)) {
1310 			u = rb_entry(t, struct uprobe, rb_node);
1311 			if (u->inode != inode || u->offset < min)
1312 				break;
1313 			list_add(&u->pending_list, head);
1314 			get_uprobe(u);
1315 		}
1316 		for (t = n; (t = rb_next(t)); ) {
1317 			u = rb_entry(t, struct uprobe, rb_node);
1318 			if (u->inode != inode || u->offset > max)
1319 				break;
1320 			list_add(&u->pending_list, head);
1321 			get_uprobe(u);
1322 		}
1323 	}
1324 	spin_unlock(&uprobes_treelock);
1325 }
1326 
1327 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1328 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1329 {
1330 	struct list_head *pos, *q;
1331 	struct delayed_uprobe *du;
1332 	unsigned long vaddr;
1333 	int ret = 0, err = 0;
1334 
1335 	mutex_lock(&delayed_uprobe_lock);
1336 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1337 		du = list_entry(pos, struct delayed_uprobe, list);
1338 
1339 		if (du->mm != vma->vm_mm ||
1340 		    !valid_ref_ctr_vma(du->uprobe, vma))
1341 			continue;
1342 
1343 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1344 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1345 		if (ret) {
1346 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1347 			if (!err)
1348 				err = ret;
1349 		}
1350 		delayed_uprobe_delete(du);
1351 	}
1352 	mutex_unlock(&delayed_uprobe_lock);
1353 	return err;
1354 }
1355 
1356 /*
1357  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1358  *
1359  * Currently we ignore all errors and always return 0, the callers
1360  * can't handle the failure anyway.
1361  */
uprobe_mmap(struct vm_area_struct * vma)1362 int uprobe_mmap(struct vm_area_struct *vma)
1363 {
1364 	struct list_head tmp_list;
1365 	struct uprobe *uprobe, *u;
1366 	struct inode *inode;
1367 
1368 	if (no_uprobe_events())
1369 		return 0;
1370 
1371 	if (vma->vm_file &&
1372 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1373 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1374 		delayed_ref_ctr_inc(vma);
1375 
1376 	if (!valid_vma(vma, true))
1377 		return 0;
1378 
1379 	inode = file_inode(vma->vm_file);
1380 	if (!inode)
1381 		return 0;
1382 
1383 	mutex_lock(uprobes_mmap_hash(inode));
1384 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1385 	/*
1386 	 * We can race with uprobe_unregister(), this uprobe can be already
1387 	 * removed. But in this case filter_chain() must return false, all
1388 	 * consumers have gone away.
1389 	 */
1390 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1391 		if (!fatal_signal_pending(current) &&
1392 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1393 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1394 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1395 		}
1396 		put_uprobe(uprobe);
1397 	}
1398 	mutex_unlock(uprobes_mmap_hash(inode));
1399 
1400 	return 0;
1401 }
1402 
1403 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1404 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1405 {
1406 	loff_t min, max;
1407 	struct inode *inode;
1408 	struct rb_node *n;
1409 
1410 	inode = file_inode(vma->vm_file);
1411 
1412 	min = vaddr_to_offset(vma, start);
1413 	max = min + (end - start) - 1;
1414 
1415 	spin_lock(&uprobes_treelock);
1416 	n = find_node_in_range(inode, min, max);
1417 	spin_unlock(&uprobes_treelock);
1418 
1419 	return !!n;
1420 }
1421 
1422 /*
1423  * Called in context of a munmap of a vma.
1424  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1425 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1426 {
1427 	if (no_uprobe_events() || !valid_vma(vma, false))
1428 		return;
1429 
1430 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1431 		return;
1432 
1433 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1434 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1435 		return;
1436 
1437 	if (vma_has_uprobes(vma, start, end))
1438 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1439 }
1440 
1441 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1442 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1443 {
1444 	struct vm_area_struct *vma;
1445 	int ret;
1446 
1447 	if (mmap_write_lock_killable(mm))
1448 		return -EINTR;
1449 
1450 	if (mm->uprobes_state.xol_area) {
1451 		ret = -EALREADY;
1452 		goto fail;
1453 	}
1454 
1455 	if (!area->vaddr) {
1456 		/* Try to map as high as possible, this is only a hint. */
1457 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1458 						PAGE_SIZE, 0, 0);
1459 		if (IS_ERR_VALUE(area->vaddr)) {
1460 			ret = area->vaddr;
1461 			goto fail;
1462 		}
1463 	}
1464 
1465 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1466 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1467 				&area->xol_mapping);
1468 	if (IS_ERR(vma)) {
1469 		ret = PTR_ERR(vma);
1470 		goto fail;
1471 	}
1472 
1473 	ret = 0;
1474 	/* pairs with get_xol_area() */
1475 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1476  fail:
1477 	mmap_write_unlock(mm);
1478 
1479 	return ret;
1480 }
1481 
__create_xol_area(unsigned long vaddr)1482 static struct xol_area *__create_xol_area(unsigned long vaddr)
1483 {
1484 	struct mm_struct *mm = current->mm;
1485 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1486 	struct xol_area *area;
1487 
1488 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1489 	if (unlikely(!area))
1490 		goto out;
1491 
1492 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1493 			       GFP_KERNEL);
1494 	if (!area->bitmap)
1495 		goto free_area;
1496 
1497 	area->xol_mapping.name = "[uprobes]";
1498 	area->xol_mapping.pages = area->pages;
1499 	area->pages[0] = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1500 	if (!area->pages[0])
1501 		goto free_bitmap;
1502 	area->pages[1] = NULL;
1503 
1504 	area->vaddr = vaddr;
1505 	init_waitqueue_head(&area->wq);
1506 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1507 	set_bit(0, area->bitmap);
1508 	atomic_set(&area->slot_count, 1);
1509 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1510 
1511 	if (!xol_add_vma(mm, area))
1512 		return area;
1513 
1514 	__free_page(area->pages[0]);
1515  free_bitmap:
1516 	kfree(area->bitmap);
1517  free_area:
1518 	kfree(area);
1519  out:
1520 	return NULL;
1521 }
1522 
1523 /*
1524  * get_xol_area - Allocate process's xol_area if necessary.
1525  * This area will be used for storing instructions for execution out of line.
1526  *
1527  * Returns the allocated area or NULL.
1528  */
get_xol_area(void)1529 static struct xol_area *get_xol_area(void)
1530 {
1531 	struct mm_struct *mm = current->mm;
1532 	struct xol_area *area;
1533 
1534 	if (!mm->uprobes_state.xol_area)
1535 		__create_xol_area(0);
1536 
1537 	/* Pairs with xol_add_vma() smp_store_release() */
1538 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1539 	return area;
1540 }
1541 
1542 /*
1543  * uprobe_clear_state - Free the area allocated for slots.
1544  */
uprobe_clear_state(struct mm_struct * mm)1545 void uprobe_clear_state(struct mm_struct *mm)
1546 {
1547 	struct xol_area *area = mm->uprobes_state.xol_area;
1548 
1549 	mutex_lock(&delayed_uprobe_lock);
1550 	delayed_uprobe_remove(NULL, mm);
1551 	mutex_unlock(&delayed_uprobe_lock);
1552 
1553 	if (!area)
1554 		return;
1555 
1556 	put_page(area->pages[0]);
1557 	kfree(area->bitmap);
1558 	kfree(area);
1559 }
1560 
uprobe_start_dup_mmap(void)1561 void uprobe_start_dup_mmap(void)
1562 {
1563 	percpu_down_read(&dup_mmap_sem);
1564 }
1565 
uprobe_end_dup_mmap(void)1566 void uprobe_end_dup_mmap(void)
1567 {
1568 	percpu_up_read(&dup_mmap_sem);
1569 }
1570 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1571 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1572 {
1573 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1574 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1575 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1576 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1577 	}
1578 }
1579 
1580 /*
1581  *  - search for a free slot.
1582  */
xol_take_insn_slot(struct xol_area * area)1583 static unsigned long xol_take_insn_slot(struct xol_area *area)
1584 {
1585 	unsigned long slot_addr;
1586 	int slot_nr;
1587 
1588 	do {
1589 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1590 		if (slot_nr < UINSNS_PER_PAGE) {
1591 			if (!test_and_set_bit(slot_nr, area->bitmap))
1592 				break;
1593 
1594 			slot_nr = UINSNS_PER_PAGE;
1595 			continue;
1596 		}
1597 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1598 	} while (slot_nr >= UINSNS_PER_PAGE);
1599 
1600 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1601 	atomic_inc(&area->slot_count);
1602 
1603 	return slot_addr;
1604 }
1605 
1606 /*
1607  * xol_get_insn_slot - allocate a slot for xol.
1608  * Returns the allocated slot address or 0.
1609  */
xol_get_insn_slot(struct uprobe * uprobe)1610 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1611 {
1612 	struct xol_area *area;
1613 	unsigned long xol_vaddr;
1614 
1615 	area = get_xol_area();
1616 	if (!area)
1617 		return 0;
1618 
1619 	xol_vaddr = xol_take_insn_slot(area);
1620 	if (unlikely(!xol_vaddr))
1621 		return 0;
1622 
1623 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1624 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1625 
1626 	return xol_vaddr;
1627 }
1628 
1629 /*
1630  * xol_free_insn_slot - If slot was earlier allocated by
1631  * @xol_get_insn_slot(), make the slot available for
1632  * subsequent requests.
1633  */
xol_free_insn_slot(struct task_struct * tsk)1634 static void xol_free_insn_slot(struct task_struct *tsk)
1635 {
1636 	struct xol_area *area;
1637 	unsigned long vma_end;
1638 	unsigned long slot_addr;
1639 
1640 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1641 		return;
1642 
1643 	slot_addr = tsk->utask->xol_vaddr;
1644 	if (unlikely(!slot_addr))
1645 		return;
1646 
1647 	area = tsk->mm->uprobes_state.xol_area;
1648 	vma_end = area->vaddr + PAGE_SIZE;
1649 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1650 		unsigned long offset;
1651 		int slot_nr;
1652 
1653 		offset = slot_addr - area->vaddr;
1654 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1655 		if (slot_nr >= UINSNS_PER_PAGE)
1656 			return;
1657 
1658 		clear_bit(slot_nr, area->bitmap);
1659 		atomic_dec(&area->slot_count);
1660 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1661 		if (waitqueue_active(&area->wq))
1662 			wake_up(&area->wq);
1663 
1664 		tsk->utask->xol_vaddr = 0;
1665 	}
1666 }
1667 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1668 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1669 				  void *src, unsigned long len)
1670 {
1671 	/* Initialize the slot */
1672 	copy_to_page(page, vaddr, src, len);
1673 
1674 	/*
1675 	 * We probably need flush_icache_user_page() but it needs vma.
1676 	 * This should work on most of architectures by default. If
1677 	 * architecture needs to do something different it can define
1678 	 * its own version of the function.
1679 	 */
1680 	flush_dcache_page(page);
1681 }
1682 
1683 /**
1684  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1685  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1686  * instruction.
1687  * Return the address of the breakpoint instruction.
1688  */
uprobe_get_swbp_addr(struct pt_regs * regs)1689 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1690 {
1691 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1692 }
1693 
uprobe_get_trap_addr(struct pt_regs * regs)1694 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1695 {
1696 	struct uprobe_task *utask = current->utask;
1697 
1698 	if (unlikely(utask && utask->active_uprobe))
1699 		return utask->vaddr;
1700 
1701 	return instruction_pointer(regs);
1702 }
1703 
free_ret_instance(struct return_instance * ri)1704 static struct return_instance *free_ret_instance(struct return_instance *ri)
1705 {
1706 	struct return_instance *next = ri->next;
1707 	put_uprobe(ri->uprobe);
1708 	kfree(ri);
1709 	return next;
1710 }
1711 
1712 /*
1713  * Called with no locks held.
1714  * Called in context of an exiting or an exec-ing thread.
1715  */
uprobe_free_utask(struct task_struct * t)1716 void uprobe_free_utask(struct task_struct *t)
1717 {
1718 	struct uprobe_task *utask = t->utask;
1719 	struct return_instance *ri;
1720 
1721 	if (!utask)
1722 		return;
1723 
1724 	if (utask->active_uprobe)
1725 		put_uprobe(utask->active_uprobe);
1726 
1727 	ri = utask->return_instances;
1728 	while (ri)
1729 		ri = free_ret_instance(ri);
1730 
1731 	xol_free_insn_slot(t);
1732 	kfree(utask);
1733 	t->utask = NULL;
1734 }
1735 
1736 /*
1737  * Allocate a uprobe_task object for the task if necessary.
1738  * Called when the thread hits a breakpoint.
1739  *
1740  * Returns:
1741  * - pointer to new uprobe_task on success
1742  * - NULL otherwise
1743  */
get_utask(void)1744 static struct uprobe_task *get_utask(void)
1745 {
1746 	if (!current->utask)
1747 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1748 	return current->utask;
1749 }
1750 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1751 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1752 {
1753 	struct uprobe_task *n_utask;
1754 	struct return_instance **p, *o, *n;
1755 
1756 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1757 	if (!n_utask)
1758 		return -ENOMEM;
1759 	t->utask = n_utask;
1760 
1761 	p = &n_utask->return_instances;
1762 	for (o = o_utask->return_instances; o; o = o->next) {
1763 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1764 		if (!n)
1765 			return -ENOMEM;
1766 
1767 		*n = *o;
1768 		get_uprobe(n->uprobe);
1769 		n->next = NULL;
1770 
1771 		*p = n;
1772 		p = &n->next;
1773 		n_utask->depth++;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
uprobe_warn(struct task_struct * t,const char * msg)1779 static void uprobe_warn(struct task_struct *t, const char *msg)
1780 {
1781 	pr_warn("uprobe: %s:%d failed to %s\n",
1782 			current->comm, current->pid, msg);
1783 }
1784 
dup_xol_work(struct callback_head * work)1785 static void dup_xol_work(struct callback_head *work)
1786 {
1787 	if (current->flags & PF_EXITING)
1788 		return;
1789 
1790 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1791 			!fatal_signal_pending(current))
1792 		uprobe_warn(current, "dup xol area");
1793 }
1794 
1795 /*
1796  * Called in context of a new clone/fork from copy_process.
1797  */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1798 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1799 {
1800 	struct uprobe_task *utask = current->utask;
1801 	struct mm_struct *mm = current->mm;
1802 	struct xol_area *area;
1803 
1804 	t->utask = NULL;
1805 
1806 	if (!utask || !utask->return_instances)
1807 		return;
1808 
1809 	if (mm == t->mm && !(flags & CLONE_VFORK))
1810 		return;
1811 
1812 	if (dup_utask(t, utask))
1813 		return uprobe_warn(t, "dup ret instances");
1814 
1815 	/* The task can fork() after dup_xol_work() fails */
1816 	area = mm->uprobes_state.xol_area;
1817 	if (!area)
1818 		return uprobe_warn(t, "dup xol area");
1819 
1820 	if (mm == t->mm)
1821 		return;
1822 
1823 	t->utask->dup_xol_addr = area->vaddr;
1824 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1825 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1826 }
1827 
1828 /*
1829  * Current area->vaddr notion assume the trampoline address is always
1830  * equal area->vaddr.
1831  *
1832  * Returns -1 in case the xol_area is not allocated.
1833  */
get_trampoline_vaddr(void)1834 static unsigned long get_trampoline_vaddr(void)
1835 {
1836 	struct xol_area *area;
1837 	unsigned long trampoline_vaddr = -1;
1838 
1839 	/* Pairs with xol_add_vma() smp_store_release() */
1840 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1841 	if (area)
1842 		trampoline_vaddr = area->vaddr;
1843 
1844 	return trampoline_vaddr;
1845 }
1846 
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1847 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1848 					struct pt_regs *regs)
1849 {
1850 	struct return_instance *ri = utask->return_instances;
1851 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1852 
1853 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1854 		ri = free_ret_instance(ri);
1855 		utask->depth--;
1856 	}
1857 	utask->return_instances = ri;
1858 }
1859 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1860 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1861 {
1862 	struct return_instance *ri;
1863 	struct uprobe_task *utask;
1864 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1865 	bool chained;
1866 
1867 	if (!get_xol_area())
1868 		return;
1869 
1870 	utask = get_utask();
1871 	if (!utask)
1872 		return;
1873 
1874 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1875 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1876 				" nestedness limit pid/tgid=%d/%d\n",
1877 				current->pid, current->tgid);
1878 		return;
1879 	}
1880 
1881 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1882 	if (!ri)
1883 		return;
1884 
1885 	trampoline_vaddr = get_trampoline_vaddr();
1886 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1887 	if (orig_ret_vaddr == -1)
1888 		goto fail;
1889 
1890 	/* drop the entries invalidated by longjmp() */
1891 	chained = (orig_ret_vaddr == trampoline_vaddr);
1892 	cleanup_return_instances(utask, chained, regs);
1893 
1894 	/*
1895 	 * We don't want to keep trampoline address in stack, rather keep the
1896 	 * original return address of first caller thru all the consequent
1897 	 * instances. This also makes breakpoint unwrapping easier.
1898 	 */
1899 	if (chained) {
1900 		if (!utask->return_instances) {
1901 			/*
1902 			 * This situation is not possible. Likely we have an
1903 			 * attack from user-space.
1904 			 */
1905 			uprobe_warn(current, "handle tail call");
1906 			goto fail;
1907 		}
1908 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1909 	}
1910 
1911 	ri->uprobe = get_uprobe(uprobe);
1912 	ri->func = instruction_pointer(regs);
1913 	ri->stack = user_stack_pointer(regs);
1914 	ri->orig_ret_vaddr = orig_ret_vaddr;
1915 	ri->chained = chained;
1916 
1917 	utask->depth++;
1918 	ri->next = utask->return_instances;
1919 	utask->return_instances = ri;
1920 
1921 	return;
1922  fail:
1923 	kfree(ri);
1924 }
1925 
1926 /* Prepare to single-step probed instruction out of line. */
1927 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1928 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1929 {
1930 	struct uprobe_task *utask;
1931 	unsigned long xol_vaddr;
1932 	int err;
1933 
1934 	utask = get_utask();
1935 	if (!utask)
1936 		return -ENOMEM;
1937 
1938 	xol_vaddr = xol_get_insn_slot(uprobe);
1939 	if (!xol_vaddr)
1940 		return -ENOMEM;
1941 
1942 	utask->xol_vaddr = xol_vaddr;
1943 	utask->vaddr = bp_vaddr;
1944 
1945 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1946 	if (unlikely(err)) {
1947 		xol_free_insn_slot(current);
1948 		return err;
1949 	}
1950 
1951 	utask->active_uprobe = uprobe;
1952 	utask->state = UTASK_SSTEP;
1953 	return 0;
1954 }
1955 
1956 /*
1957  * If we are singlestepping, then ensure this thread is not connected to
1958  * non-fatal signals until completion of singlestep.  When xol insn itself
1959  * triggers the signal,  restart the original insn even if the task is
1960  * already SIGKILL'ed (since coredump should report the correct ip).  This
1961  * is even more important if the task has a handler for SIGSEGV/etc, The
1962  * _same_ instruction should be repeated again after return from the signal
1963  * handler, and SSTEP can never finish in this case.
1964  */
uprobe_deny_signal(void)1965 bool uprobe_deny_signal(void)
1966 {
1967 	struct task_struct *t = current;
1968 	struct uprobe_task *utask = t->utask;
1969 
1970 	if (likely(!utask || !utask->active_uprobe))
1971 		return false;
1972 
1973 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1974 
1975 	if (task_sigpending(t)) {
1976 		spin_lock_irq(&t->sighand->siglock);
1977 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1978 		spin_unlock_irq(&t->sighand->siglock);
1979 
1980 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1981 			utask->state = UTASK_SSTEP_TRAPPED;
1982 			set_tsk_thread_flag(t, TIF_UPROBE);
1983 		}
1984 	}
1985 
1986 	return true;
1987 }
1988 
mmf_recalc_uprobes(struct mm_struct * mm)1989 static void mmf_recalc_uprobes(struct mm_struct *mm)
1990 {
1991 	VMA_ITERATOR(vmi, mm, 0);
1992 	struct vm_area_struct *vma;
1993 
1994 	for_each_vma(vmi, vma) {
1995 		if (!valid_vma(vma, false))
1996 			continue;
1997 		/*
1998 		 * This is not strictly accurate, we can race with
1999 		 * uprobe_unregister() and see the already removed
2000 		 * uprobe if delete_uprobe() was not yet called.
2001 		 * Or this uprobe can be filtered out.
2002 		 */
2003 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2004 			return;
2005 	}
2006 
2007 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2008 }
2009 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2010 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2011 {
2012 	struct page *page;
2013 	uprobe_opcode_t opcode;
2014 	int result;
2015 
2016 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2017 		return -EINVAL;
2018 
2019 	pagefault_disable();
2020 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2021 	pagefault_enable();
2022 
2023 	if (likely(result == 0))
2024 		goto out;
2025 
2026 	/*
2027 	 * The NULL 'tsk' here ensures that any faults that occur here
2028 	 * will not be accounted to the task.  'mm' *is* current->mm,
2029 	 * but we treat this as a 'remote' access since it is
2030 	 * essentially a kernel access to the memory.
2031 	 */
2032 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2033 	if (result < 0)
2034 		return result;
2035 
2036 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2037 	put_page(page);
2038  out:
2039 	/* This needs to return true for any variant of the trap insn */
2040 	return is_trap_insn(&opcode);
2041 }
2042 
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)2043 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2044 {
2045 	struct mm_struct *mm = current->mm;
2046 	struct uprobe *uprobe = NULL;
2047 	struct vm_area_struct *vma;
2048 
2049 	mmap_read_lock(mm);
2050 	vma = vma_lookup(mm, bp_vaddr);
2051 	if (vma) {
2052 		if (valid_vma(vma, false)) {
2053 			struct inode *inode = file_inode(vma->vm_file);
2054 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2055 
2056 			uprobe = find_uprobe(inode, offset);
2057 		}
2058 
2059 		if (!uprobe)
2060 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2061 	} else {
2062 		*is_swbp = -EFAULT;
2063 	}
2064 
2065 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2066 		mmf_recalc_uprobes(mm);
2067 	mmap_read_unlock(mm);
2068 
2069 	return uprobe;
2070 }
2071 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2072 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2073 {
2074 	struct uprobe_consumer *uc;
2075 	int remove = UPROBE_HANDLER_REMOVE;
2076 	bool need_prep = false; /* prepare return uprobe, when needed */
2077 
2078 	down_read(&uprobe->register_rwsem);
2079 	current->utask->auprobe = &uprobe->arch;
2080 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2081 		int rc = 0;
2082 
2083 		if (uc->handler) {
2084 			rc = uc->handler(uc, regs);
2085 			WARN(rc & ~UPROBE_HANDLER_MASK,
2086 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2087 		}
2088 
2089 		if (uc->ret_handler)
2090 			need_prep = true;
2091 
2092 		remove &= rc;
2093 	}
2094 	current->utask->auprobe = NULL;
2095 
2096 	if (need_prep && !remove)
2097 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2098 
2099 	if (remove && uprobe->consumers) {
2100 		WARN_ON(!uprobe_is_active(uprobe));
2101 		unapply_uprobe(uprobe, current->mm);
2102 	}
2103 	up_read(&uprobe->register_rwsem);
2104 }
2105 
2106 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2107 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2108 {
2109 	struct uprobe *uprobe = ri->uprobe;
2110 	struct uprobe_consumer *uc;
2111 
2112 	down_read(&uprobe->register_rwsem);
2113 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2114 		if (uc->ret_handler)
2115 			uc->ret_handler(uc, ri->func, regs);
2116 	}
2117 	up_read(&uprobe->register_rwsem);
2118 }
2119 
find_next_ret_chain(struct return_instance * ri)2120 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2121 {
2122 	bool chained;
2123 
2124 	do {
2125 		chained = ri->chained;
2126 		ri = ri->next;	/* can't be NULL if chained */
2127 	} while (chained);
2128 
2129 	return ri;
2130 }
2131 
handle_trampoline(struct pt_regs * regs)2132 static void handle_trampoline(struct pt_regs *regs)
2133 {
2134 	struct uprobe_task *utask;
2135 	struct return_instance *ri, *next;
2136 	bool valid;
2137 
2138 	utask = current->utask;
2139 	if (!utask)
2140 		goto sigill;
2141 
2142 	ri = utask->return_instances;
2143 	if (!ri)
2144 		goto sigill;
2145 
2146 	do {
2147 		/*
2148 		 * We should throw out the frames invalidated by longjmp().
2149 		 * If this chain is valid, then the next one should be alive
2150 		 * or NULL; the latter case means that nobody but ri->func
2151 		 * could hit this trampoline on return. TODO: sigaltstack().
2152 		 */
2153 		next = find_next_ret_chain(ri);
2154 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2155 
2156 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2157 		do {
2158 			if (valid)
2159 				handle_uretprobe_chain(ri, regs);
2160 			ri = free_ret_instance(ri);
2161 			utask->depth--;
2162 		} while (ri != next);
2163 	} while (!valid);
2164 
2165 	utask->return_instances = ri;
2166 	return;
2167 
2168  sigill:
2169 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2170 	force_sig(SIGILL);
2171 
2172 }
2173 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2174 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2175 {
2176 	return false;
2177 }
2178 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2179 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2180 					struct pt_regs *regs)
2181 {
2182 	return true;
2183 }
2184 
2185 /*
2186  * Run handler and ask thread to singlestep.
2187  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2188  */
handle_swbp(struct pt_regs * regs)2189 static void handle_swbp(struct pt_regs *regs)
2190 {
2191 	struct uprobe *uprobe;
2192 	unsigned long bp_vaddr;
2193 	int is_swbp;
2194 
2195 	bp_vaddr = uprobe_get_swbp_addr(regs);
2196 	if (bp_vaddr == get_trampoline_vaddr())
2197 		return handle_trampoline(regs);
2198 
2199 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2200 	if (!uprobe) {
2201 		if (is_swbp > 0) {
2202 			/* No matching uprobe; signal SIGTRAP. */
2203 			force_sig(SIGTRAP);
2204 		} else {
2205 			/*
2206 			 * Either we raced with uprobe_unregister() or we can't
2207 			 * access this memory. The latter is only possible if
2208 			 * another thread plays with our ->mm. In both cases
2209 			 * we can simply restart. If this vma was unmapped we
2210 			 * can pretend this insn was not executed yet and get
2211 			 * the (correct) SIGSEGV after restart.
2212 			 */
2213 			instruction_pointer_set(regs, bp_vaddr);
2214 		}
2215 		return;
2216 	}
2217 
2218 	/* change it in advance for ->handler() and restart */
2219 	instruction_pointer_set(regs, bp_vaddr);
2220 
2221 	/*
2222 	 * TODO: move copy_insn/etc into _register and remove this hack.
2223 	 * After we hit the bp, _unregister + _register can install the
2224 	 * new and not-yet-analyzed uprobe at the same address, restart.
2225 	 */
2226 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2227 		goto out;
2228 
2229 	/*
2230 	 * Pairs with the smp_wmb() in prepare_uprobe().
2231 	 *
2232 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2233 	 * we must also see the stores to &uprobe->arch performed by the
2234 	 * prepare_uprobe() call.
2235 	 */
2236 	smp_rmb();
2237 
2238 	/* Tracing handlers use ->utask to communicate with fetch methods */
2239 	if (!get_utask())
2240 		goto out;
2241 
2242 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2243 		goto out;
2244 
2245 	handler_chain(uprobe, regs);
2246 
2247 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2248 		goto out;
2249 
2250 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2251 		return;
2252 
2253 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2254 out:
2255 	put_uprobe(uprobe);
2256 }
2257 
2258 /*
2259  * Perform required fix-ups and disable singlestep.
2260  * Allow pending signals to take effect.
2261  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2262 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2263 {
2264 	struct uprobe *uprobe;
2265 	int err = 0;
2266 
2267 	uprobe = utask->active_uprobe;
2268 	if (utask->state == UTASK_SSTEP_ACK)
2269 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2270 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2271 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2272 	else
2273 		WARN_ON_ONCE(1);
2274 
2275 	put_uprobe(uprobe);
2276 	utask->active_uprobe = NULL;
2277 	utask->state = UTASK_RUNNING;
2278 	xol_free_insn_slot(current);
2279 
2280 	spin_lock_irq(&current->sighand->siglock);
2281 	recalc_sigpending(); /* see uprobe_deny_signal() */
2282 	spin_unlock_irq(&current->sighand->siglock);
2283 
2284 	if (unlikely(err)) {
2285 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2286 		force_sig(SIGILL);
2287 	}
2288 }
2289 
2290 /*
2291  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2292  * allows the thread to return from interrupt. After that handle_swbp()
2293  * sets utask->active_uprobe.
2294  *
2295  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2296  * and allows the thread to return from interrupt.
2297  *
2298  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2299  * uprobe_notify_resume().
2300  */
uprobe_notify_resume(struct pt_regs * regs)2301 void uprobe_notify_resume(struct pt_regs *regs)
2302 {
2303 	struct uprobe_task *utask;
2304 
2305 	clear_thread_flag(TIF_UPROBE);
2306 
2307 	utask = current->utask;
2308 	if (utask && utask->active_uprobe)
2309 		handle_singlestep(utask, regs);
2310 	else
2311 		handle_swbp(regs);
2312 }
2313 
2314 /*
2315  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2316  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2317  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2318 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2319 {
2320 	if (!current->mm)
2321 		return 0;
2322 
2323 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2324 	    (!current->utask || !current->utask->return_instances))
2325 		return 0;
2326 
2327 	set_thread_flag(TIF_UPROBE);
2328 	return 1;
2329 }
2330 
2331 /*
2332  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2333  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2334  */
uprobe_post_sstep_notifier(struct pt_regs * regs)2335 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2336 {
2337 	struct uprobe_task *utask = current->utask;
2338 
2339 	if (!current->mm || !utask || !utask->active_uprobe)
2340 		/* task is currently not uprobed */
2341 		return 0;
2342 
2343 	utask->state = UTASK_SSTEP_ACK;
2344 	set_thread_flag(TIF_UPROBE);
2345 	return 1;
2346 }
2347 
2348 static struct notifier_block uprobe_exception_nb = {
2349 	.notifier_call		= arch_uprobe_exception_notify,
2350 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2351 };
2352 
uprobes_init(void)2353 void __init uprobes_init(void)
2354 {
2355 	int i;
2356 
2357 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2358 		mutex_init(&uprobes_mmap_mutex[i]);
2359 
2360 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2361 }
2362