1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h> /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h> /* folio_free_swap */
23 #include <linux/ptrace.h> /* user_enable_single_step */
24 #include <linux/kdebug.h> /* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29
30 #include <linux/uprobes.h>
31
32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
34
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37 * allows us to skip the uprobe_mmap if there are no uprobe events active
38 * at this time. Probably a fine grained per inode count is better?
39 */
40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
41
42 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
43
44 #define UPROBES_HASH_SZ 13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48
49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN 0
53
54 struct uprobe {
55 struct rb_node rb_node; /* node in the rb tree */
56 refcount_t ref;
57 struct rw_semaphore register_rwsem;
58 struct rw_semaphore consumer_rwsem;
59 struct list_head pending_list;
60 struct uprobe_consumer *consumers;
61 struct inode *inode; /* Also hold a ref to inode */
62 loff_t offset;
63 loff_t ref_ctr_offset;
64 unsigned long flags;
65
66 /*
67 * The generic code assumes that it has two members of unknown type
68 * owned by the arch-specific code:
69 *
70 * insn - copy_insn() saves the original instruction here for
71 * arch_uprobe_analyze_insn().
72 *
73 * ixol - potentially modified instruction to execute out of
74 * line, copied to xol_area by xol_get_insn_slot().
75 */
76 struct arch_uprobe arch;
77 };
78
79 struct delayed_uprobe {
80 struct list_head list;
81 struct uprobe *uprobe;
82 struct mm_struct *mm;
83 };
84
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87
88 /*
89 * Execute out of line area: anonymous executable mapping installed
90 * by the probed task to execute the copy of the original instruction
91 * mangled by set_swbp().
92 *
93 * On a breakpoint hit, thread contests for a slot. It frees the
94 * slot after singlestep. Currently a fixed number of slots are
95 * allocated.
96 */
97 struct xol_area {
98 wait_queue_head_t wq; /* if all slots are busy */
99 atomic_t slot_count; /* number of in-use slots */
100 unsigned long *bitmap; /* 0 = free slot */
101
102 struct vm_special_mapping xol_mapping;
103 struct page *pages[2];
104 /*
105 * We keep the vma's vm_start rather than a pointer to the vma
106 * itself. The probed process or a naughty kernel module could make
107 * the vma go away, and we must handle that reasonably gracefully.
108 */
109 unsigned long vaddr; /* Page(s) of instruction slots */
110 };
111
112 /*
113 * valid_vma: Verify if the specified vma is an executable vma
114 * Relax restrictions while unregistering: vm_flags might have
115 * changed after breakpoint was inserted.
116 * - is_register: indicates if we are in register context.
117 * - Return 1 if the specified virtual address is in an
118 * executable vma.
119 */
valid_vma(struct vm_area_struct * vma,bool is_register)120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123
124 if (is_register)
125 flags |= VM_WRITE;
126
127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139
140 /**
141 * __replace_page - replace page in vma by new page.
142 * based on replace_page in mm/ksm.c
143 *
144 * @vma: vma that holds the pte pointing to page
145 * @addr: address the old @page is mapped at
146 * @old_page: the page we are replacing by new_page
147 * @new_page: the modified page we replace page by
148 *
149 * If @new_page is NULL, only unmap @old_page.
150 *
151 * Returns 0 on success, negative error code otherwise.
152 */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154 struct page *old_page, struct page *new_page)
155 {
156 struct folio *old_folio = page_folio(old_page);
157 struct folio *new_folio;
158 struct mm_struct *mm = vma->vm_mm;
159 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160 int err;
161 struct mmu_notifier_range range;
162
163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
164 addr + PAGE_SIZE);
165
166 if (new_page) {
167 new_folio = page_folio(new_page);
168 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
169 if (err)
170 return err;
171 }
172
173 /* For folio_free_swap() below */
174 folio_lock(old_folio);
175
176 mmu_notifier_invalidate_range_start(&range);
177 err = -EAGAIN;
178 if (!page_vma_mapped_walk(&pvmw))
179 goto unlock;
180 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
181
182 if (new_page) {
183 folio_get(new_folio);
184 page_add_new_anon_rmap(new_page, vma, addr);
185 folio_add_lru_vma(new_folio, vma);
186 } else
187 /* no new page, just dec_mm_counter for old_page */
188 dec_mm_counter(mm, MM_ANONPAGES);
189
190 if (!folio_test_anon(old_folio)) {
191 dec_mm_counter(mm, mm_counter_file(old_page));
192 inc_mm_counter(mm, MM_ANONPAGES);
193 }
194
195 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
196 ptep_clear_flush(vma, addr, pvmw.pte);
197 if (new_page)
198 set_pte_at_notify(mm, addr, pvmw.pte,
199 mk_pte(new_page, vma->vm_page_prot));
200
201 page_remove_rmap(old_page, vma, false);
202 if (!folio_mapped(old_folio))
203 folio_free_swap(old_folio);
204 page_vma_mapped_walk_done(&pvmw);
205 folio_put(old_folio);
206
207 err = 0;
208 unlock:
209 mmu_notifier_invalidate_range_end(&range);
210 folio_unlock(old_folio);
211 return err;
212 }
213
214 /**
215 * is_swbp_insn - check if instruction is breakpoint instruction.
216 * @insn: instruction to be checked.
217 * Default implementation of is_swbp_insn
218 * Returns true if @insn is a breakpoint instruction.
219 */
is_swbp_insn(uprobe_opcode_t * insn)220 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
221 {
222 return *insn == UPROBE_SWBP_INSN;
223 }
224
225 /**
226 * is_trap_insn - check if instruction is breakpoint instruction.
227 * @insn: instruction to be checked.
228 * Default implementation of is_trap_insn
229 * Returns true if @insn is a breakpoint instruction.
230 *
231 * This function is needed for the case where an architecture has multiple
232 * trap instructions (like powerpc).
233 */
is_trap_insn(uprobe_opcode_t * insn)234 bool __weak is_trap_insn(uprobe_opcode_t *insn)
235 {
236 return is_swbp_insn(insn);
237 }
238
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)239 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
240 {
241 void *kaddr = kmap_atomic(page);
242 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
243 kunmap_atomic(kaddr);
244 }
245
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)246 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247 {
248 void *kaddr = kmap_atomic(page);
249 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250 kunmap_atomic(kaddr);
251 }
252
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)253 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254 {
255 uprobe_opcode_t old_opcode;
256 bool is_swbp;
257
258 /*
259 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260 * We do not check if it is any other 'trap variant' which could
261 * be conditional trap instruction such as the one powerpc supports.
262 *
263 * The logic is that we do not care if the underlying instruction
264 * is a trap variant; uprobes always wins over any other (gdb)
265 * breakpoint.
266 */
267 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
268 is_swbp = is_swbp_insn(&old_opcode);
269
270 if (is_swbp_insn(new_opcode)) {
271 if (is_swbp) /* register: already installed? */
272 return 0;
273 } else {
274 if (!is_swbp) /* unregister: was it changed by us? */
275 return 0;
276 }
277
278 return 1;
279 }
280
281 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)282 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283 {
284 struct delayed_uprobe *du;
285
286 list_for_each_entry(du, &delayed_uprobe_list, list)
287 if (du->uprobe == uprobe && du->mm == mm)
288 return du;
289 return NULL;
290 }
291
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)292 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293 {
294 struct delayed_uprobe *du;
295
296 if (delayed_uprobe_check(uprobe, mm))
297 return 0;
298
299 du = kzalloc(sizeof(*du), GFP_KERNEL);
300 if (!du)
301 return -ENOMEM;
302
303 du->uprobe = uprobe;
304 du->mm = mm;
305 list_add(&du->list, &delayed_uprobe_list);
306 return 0;
307 }
308
delayed_uprobe_delete(struct delayed_uprobe * du)309 static void delayed_uprobe_delete(struct delayed_uprobe *du)
310 {
311 if (WARN_ON(!du))
312 return;
313 list_del(&du->list);
314 kfree(du);
315 }
316
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)317 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318 {
319 struct list_head *pos, *q;
320 struct delayed_uprobe *du;
321
322 if (!uprobe && !mm)
323 return;
324
325 list_for_each_safe(pos, q, &delayed_uprobe_list) {
326 du = list_entry(pos, struct delayed_uprobe, list);
327
328 if (uprobe && du->uprobe != uprobe)
329 continue;
330 if (mm && du->mm != mm)
331 continue;
332
333 delayed_uprobe_delete(du);
334 }
335 }
336
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)337 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338 struct vm_area_struct *vma)
339 {
340 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341
342 return uprobe->ref_ctr_offset &&
343 vma->vm_file &&
344 file_inode(vma->vm_file) == uprobe->inode &&
345 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346 vma->vm_start <= vaddr &&
347 vma->vm_end > vaddr;
348 }
349
350 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)351 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352 {
353 VMA_ITERATOR(vmi, mm, 0);
354 struct vm_area_struct *tmp;
355
356 for_each_vma(vmi, tmp)
357 if (valid_ref_ctr_vma(uprobe, tmp))
358 return tmp;
359
360 return NULL;
361 }
362
363 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365 {
366 void *kaddr;
367 struct page *page;
368 int ret;
369 short *ptr;
370
371 if (!vaddr || !d)
372 return -EINVAL;
373
374 ret = get_user_pages_remote(mm, vaddr, 1,
375 FOLL_WRITE, &page, NULL);
376 if (unlikely(ret <= 0)) {
377 /*
378 * We are asking for 1 page. If get_user_pages_remote() fails,
379 * it may return 0, in that case we have to return error.
380 */
381 return ret == 0 ? -EBUSY : ret;
382 }
383
384 kaddr = kmap_atomic(page);
385 ptr = kaddr + (vaddr & ~PAGE_MASK);
386
387 if (unlikely(*ptr + d < 0)) {
388 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
389 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
390 ret = -EINVAL;
391 goto out;
392 }
393
394 *ptr += d;
395 ret = 0;
396 out:
397 kunmap_atomic(kaddr);
398 put_page(page);
399 return ret;
400 }
401
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)402 static void update_ref_ctr_warn(struct uprobe *uprobe,
403 struct mm_struct *mm, short d)
404 {
405 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
406 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
407 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
408 (unsigned long long) uprobe->offset,
409 (unsigned long long) uprobe->ref_ctr_offset, mm);
410 }
411
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)412 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
413 short d)
414 {
415 struct vm_area_struct *rc_vma;
416 unsigned long rc_vaddr;
417 int ret = 0;
418
419 rc_vma = find_ref_ctr_vma(uprobe, mm);
420
421 if (rc_vma) {
422 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
423 ret = __update_ref_ctr(mm, rc_vaddr, d);
424 if (ret)
425 update_ref_ctr_warn(uprobe, mm, d);
426
427 if (d > 0)
428 return ret;
429 }
430
431 mutex_lock(&delayed_uprobe_lock);
432 if (d > 0)
433 ret = delayed_uprobe_add(uprobe, mm);
434 else
435 delayed_uprobe_remove(uprobe, mm);
436 mutex_unlock(&delayed_uprobe_lock);
437
438 return ret;
439 }
440
441 /*
442 * NOTE:
443 * Expect the breakpoint instruction to be the smallest size instruction for
444 * the architecture. If an arch has variable length instruction and the
445 * breakpoint instruction is not of the smallest length instruction
446 * supported by that architecture then we need to modify is_trap_at_addr and
447 * uprobe_write_opcode accordingly. This would never be a problem for archs
448 * that have fixed length instructions.
449 *
450 * uprobe_write_opcode - write the opcode at a given virtual address.
451 * @auprobe: arch specific probepoint information.
452 * @mm: the probed process address space.
453 * @vaddr: the virtual address to store the opcode.
454 * @opcode: opcode to be written at @vaddr.
455 *
456 * Called with mm->mmap_lock held for write.
457 * Return 0 (success) or a negative errno.
458 */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460 unsigned long vaddr, uprobe_opcode_t opcode)
461 {
462 struct uprobe *uprobe;
463 struct page *old_page, *new_page;
464 struct vm_area_struct *vma;
465 int ret, is_register, ref_ctr_updated = 0;
466 bool orig_page_huge = false;
467 unsigned int gup_flags = FOLL_FORCE;
468
469 is_register = is_swbp_insn(&opcode);
470 uprobe = container_of(auprobe, struct uprobe, arch);
471
472 retry:
473 if (is_register)
474 gup_flags |= FOLL_SPLIT_PMD;
475 /* Read the page with vaddr into memory */
476 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
477 if (IS_ERR_OR_NULL(old_page))
478 return old_page ? PTR_ERR(old_page) : 0;
479
480 ret = verify_opcode(old_page, vaddr, &opcode);
481 if (ret <= 0)
482 goto put_old;
483
484 if (is_zero_page(old_page)) {
485 ret = -EINVAL;
486 goto put_old;
487 }
488
489 if (WARN(!is_register && PageCompound(old_page),
490 "uprobe unregister should never work on compound page\n")) {
491 ret = -EINVAL;
492 goto put_old;
493 }
494
495 /* We are going to replace instruction, update ref_ctr. */
496 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498 if (ret)
499 goto put_old;
500
501 ref_ctr_updated = 1;
502 }
503
504 ret = 0;
505 if (!is_register && !PageAnon(old_page))
506 goto put_old;
507
508 ret = anon_vma_prepare(vma);
509 if (ret)
510 goto put_old;
511
512 ret = -ENOMEM;
513 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514 if (!new_page)
515 goto put_old;
516
517 __SetPageUptodate(new_page);
518 copy_highpage(new_page, old_page);
519 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520
521 if (!is_register) {
522 struct page *orig_page;
523 pgoff_t index;
524
525 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526
527 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529 index);
530
531 if (orig_page) {
532 if (PageUptodate(orig_page) &&
533 pages_identical(new_page, orig_page)) {
534 /* let go new_page */
535 put_page(new_page);
536 new_page = NULL;
537
538 if (PageCompound(orig_page))
539 orig_page_huge = true;
540 }
541 put_page(orig_page);
542 }
543 }
544
545 ret = __replace_page(vma, vaddr, old_page, new_page);
546 if (new_page)
547 put_page(new_page);
548 put_old:
549 put_page(old_page);
550
551 if (unlikely(ret == -EAGAIN))
552 goto retry;
553
554 /* Revert back reference counter if instruction update failed. */
555 if (ret && is_register && ref_ctr_updated)
556 update_ref_ctr(uprobe, mm, -1);
557
558 /* try collapse pmd for compound page */
559 if (!ret && orig_page_huge)
560 collapse_pte_mapped_thp(mm, vaddr, false);
561
562 return ret;
563 }
564
565 /**
566 * set_swbp - store breakpoint at a given address.
567 * @auprobe: arch specific probepoint information.
568 * @mm: the probed process address space.
569 * @vaddr: the virtual address to insert the opcode.
570 *
571 * For mm @mm, store the breakpoint instruction at @vaddr.
572 * Return 0 (success) or a negative errno.
573 */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575 {
576 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577 }
578
579 /**
580 * set_orig_insn - Restore the original instruction.
581 * @mm: the probed process address space.
582 * @auprobe: arch specific probepoint information.
583 * @vaddr: the virtual address to insert the opcode.
584 *
585 * For mm @mm, restore the original opcode (opcode) at @vaddr.
586 * Return 0 (success) or a negative errno.
587 */
588 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590 {
591 return uprobe_write_opcode(auprobe, mm, vaddr,
592 *(uprobe_opcode_t *)&auprobe->insn);
593 }
594
get_uprobe(struct uprobe * uprobe)595 static struct uprobe *get_uprobe(struct uprobe *uprobe)
596 {
597 refcount_inc(&uprobe->ref);
598 return uprobe;
599 }
600
put_uprobe(struct uprobe * uprobe)601 static void put_uprobe(struct uprobe *uprobe)
602 {
603 if (refcount_dec_and_test(&uprobe->ref)) {
604 /*
605 * If application munmap(exec_vma) before uprobe_unregister()
606 * gets called, we don't get a chance to remove uprobe from
607 * delayed_uprobe_list from remove_breakpoint(). Do it here.
608 */
609 mutex_lock(&delayed_uprobe_lock);
610 delayed_uprobe_remove(uprobe, NULL);
611 mutex_unlock(&delayed_uprobe_lock);
612 kfree(uprobe);
613 }
614 }
615
616 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)617 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
618 const struct uprobe *r)
619 {
620 if (l_inode < r->inode)
621 return -1;
622
623 if (l_inode > r->inode)
624 return 1;
625
626 if (l_offset < r->offset)
627 return -1;
628
629 if (l_offset > r->offset)
630 return 1;
631
632 return 0;
633 }
634
635 #define __node_2_uprobe(node) \
636 rb_entry((node), struct uprobe, rb_node)
637
638 struct __uprobe_key {
639 struct inode *inode;
640 loff_t offset;
641 };
642
__uprobe_cmp_key(const void * key,const struct rb_node * b)643 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
644 {
645 const struct __uprobe_key *a = key;
646 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
647 }
648
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)649 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
650 {
651 struct uprobe *u = __node_2_uprobe(a);
652 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
653 }
654
__find_uprobe(struct inode * inode,loff_t offset)655 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
656 {
657 struct __uprobe_key key = {
658 .inode = inode,
659 .offset = offset,
660 };
661 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
662
663 if (node)
664 return get_uprobe(__node_2_uprobe(node));
665
666 return NULL;
667 }
668
669 /*
670 * Find a uprobe corresponding to a given inode:offset
671 * Acquires uprobes_treelock
672 */
find_uprobe(struct inode * inode,loff_t offset)673 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
674 {
675 struct uprobe *uprobe;
676
677 spin_lock(&uprobes_treelock);
678 uprobe = __find_uprobe(inode, offset);
679 spin_unlock(&uprobes_treelock);
680
681 return uprobe;
682 }
683
__insert_uprobe(struct uprobe * uprobe)684 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
685 {
686 struct rb_node *node;
687
688 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
689 if (node)
690 return get_uprobe(__node_2_uprobe(node));
691
692 /* get access + creation ref */
693 refcount_set(&uprobe->ref, 2);
694 return NULL;
695 }
696
697 /*
698 * Acquire uprobes_treelock.
699 * Matching uprobe already exists in rbtree;
700 * increment (access refcount) and return the matching uprobe.
701 *
702 * No matching uprobe; insert the uprobe in rb_tree;
703 * get a double refcount (access + creation) and return NULL.
704 */
insert_uprobe(struct uprobe * uprobe)705 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
706 {
707 struct uprobe *u;
708
709 spin_lock(&uprobes_treelock);
710 u = __insert_uprobe(uprobe);
711 spin_unlock(&uprobes_treelock);
712
713 return u;
714 }
715
716 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)717 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
718 {
719 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
720 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
721 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
722 (unsigned long long) cur_uprobe->ref_ctr_offset,
723 (unsigned long long) uprobe->ref_ctr_offset);
724 }
725
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)726 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
727 loff_t ref_ctr_offset)
728 {
729 struct uprobe *uprobe, *cur_uprobe;
730
731 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
732 if (!uprobe)
733 return NULL;
734
735 uprobe->inode = inode;
736 uprobe->offset = offset;
737 uprobe->ref_ctr_offset = ref_ctr_offset;
738 init_rwsem(&uprobe->register_rwsem);
739 init_rwsem(&uprobe->consumer_rwsem);
740
741 /* add to uprobes_tree, sorted on inode:offset */
742 cur_uprobe = insert_uprobe(uprobe);
743 /* a uprobe exists for this inode:offset combination */
744 if (cur_uprobe) {
745 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
746 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
747 put_uprobe(cur_uprobe);
748 kfree(uprobe);
749 return ERR_PTR(-EINVAL);
750 }
751 kfree(uprobe);
752 uprobe = cur_uprobe;
753 }
754
755 return uprobe;
756 }
757
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)758 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
759 {
760 down_write(&uprobe->consumer_rwsem);
761 uc->next = uprobe->consumers;
762 uprobe->consumers = uc;
763 up_write(&uprobe->consumer_rwsem);
764 }
765
766 /*
767 * For uprobe @uprobe, delete the consumer @uc.
768 * Return true if the @uc is deleted successfully
769 * or return false.
770 */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)771 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
772 {
773 struct uprobe_consumer **con;
774 bool ret = false;
775
776 down_write(&uprobe->consumer_rwsem);
777 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
778 if (*con == uc) {
779 *con = uc->next;
780 ret = true;
781 break;
782 }
783 }
784 up_write(&uprobe->consumer_rwsem);
785
786 return ret;
787 }
788
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)789 static int __copy_insn(struct address_space *mapping, struct file *filp,
790 void *insn, int nbytes, loff_t offset)
791 {
792 struct page *page;
793 /*
794 * Ensure that the page that has the original instruction is populated
795 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
796 * see uprobe_register().
797 */
798 if (mapping->a_ops->read_folio)
799 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
800 else
801 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802 if (IS_ERR(page))
803 return PTR_ERR(page);
804
805 copy_from_page(page, offset, insn, nbytes);
806 put_page(page);
807
808 return 0;
809 }
810
copy_insn(struct uprobe * uprobe,struct file * filp)811 static int copy_insn(struct uprobe *uprobe, struct file *filp)
812 {
813 struct address_space *mapping = uprobe->inode->i_mapping;
814 loff_t offs = uprobe->offset;
815 void *insn = &uprobe->arch.insn;
816 int size = sizeof(uprobe->arch.insn);
817 int len, err = -EIO;
818
819 /* Copy only available bytes, -EIO if nothing was read */
820 do {
821 if (offs >= i_size_read(uprobe->inode))
822 break;
823
824 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
825 err = __copy_insn(mapping, filp, insn, len, offs);
826 if (err)
827 break;
828
829 insn += len;
830 offs += len;
831 size -= len;
832 } while (size);
833
834 return err;
835 }
836
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)837 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
838 struct mm_struct *mm, unsigned long vaddr)
839 {
840 int ret = 0;
841
842 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843 return ret;
844
845 /* TODO: move this into _register, until then we abuse this sem. */
846 down_write(&uprobe->consumer_rwsem);
847 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
848 goto out;
849
850 ret = copy_insn(uprobe, file);
851 if (ret)
852 goto out;
853
854 ret = -ENOTSUPP;
855 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
856 goto out;
857
858 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
859 if (ret)
860 goto out;
861
862 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
863 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
864
865 out:
866 up_write(&uprobe->consumer_rwsem);
867
868 return ret;
869 }
870
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)871 static inline bool consumer_filter(struct uprobe_consumer *uc,
872 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
873 {
874 return !uc->filter || uc->filter(uc, ctx, mm);
875 }
876
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)877 static bool filter_chain(struct uprobe *uprobe,
878 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
879 {
880 struct uprobe_consumer *uc;
881 bool ret = false;
882
883 down_read(&uprobe->consumer_rwsem);
884 for (uc = uprobe->consumers; uc; uc = uc->next) {
885 ret = consumer_filter(uc, ctx, mm);
886 if (ret)
887 break;
888 }
889 up_read(&uprobe->consumer_rwsem);
890
891 return ret;
892 }
893
894 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)895 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
896 struct vm_area_struct *vma, unsigned long vaddr)
897 {
898 bool first_uprobe;
899 int ret;
900
901 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
902 if (ret)
903 return ret;
904
905 /*
906 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
907 * the task can hit this breakpoint right after __replace_page().
908 */
909 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
910 if (first_uprobe)
911 set_bit(MMF_HAS_UPROBES, &mm->flags);
912
913 ret = set_swbp(&uprobe->arch, mm, vaddr);
914 if (!ret)
915 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
916 else if (first_uprobe)
917 clear_bit(MMF_HAS_UPROBES, &mm->flags);
918
919 return ret;
920 }
921
922 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)923 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
924 {
925 set_bit(MMF_RECALC_UPROBES, &mm->flags);
926 return set_orig_insn(&uprobe->arch, mm, vaddr);
927 }
928
uprobe_is_active(struct uprobe * uprobe)929 static inline bool uprobe_is_active(struct uprobe *uprobe)
930 {
931 return !RB_EMPTY_NODE(&uprobe->rb_node);
932 }
933 /*
934 * There could be threads that have already hit the breakpoint. They
935 * will recheck the current insn and restart if find_uprobe() fails.
936 * See find_active_uprobe().
937 */
delete_uprobe(struct uprobe * uprobe)938 static void delete_uprobe(struct uprobe *uprobe)
939 {
940 if (WARN_ON(!uprobe_is_active(uprobe)))
941 return;
942
943 spin_lock(&uprobes_treelock);
944 rb_erase(&uprobe->rb_node, &uprobes_tree);
945 spin_unlock(&uprobes_treelock);
946 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
947 put_uprobe(uprobe);
948 }
949
950 struct map_info {
951 struct map_info *next;
952 struct mm_struct *mm;
953 unsigned long vaddr;
954 };
955
free_map_info(struct map_info * info)956 static inline struct map_info *free_map_info(struct map_info *info)
957 {
958 struct map_info *next = info->next;
959 kfree(info);
960 return next;
961 }
962
963 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)964 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
965 {
966 unsigned long pgoff = offset >> PAGE_SHIFT;
967 struct vm_area_struct *vma;
968 struct map_info *curr = NULL;
969 struct map_info *prev = NULL;
970 struct map_info *info;
971 int more = 0;
972
973 again:
974 i_mmap_lock_read(mapping);
975 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
976 if (!valid_vma(vma, is_register))
977 continue;
978
979 if (!prev && !more) {
980 /*
981 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
982 * reclaim. This is optimistic, no harm done if it fails.
983 */
984 prev = kmalloc(sizeof(struct map_info),
985 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
986 if (prev)
987 prev->next = NULL;
988 }
989 if (!prev) {
990 more++;
991 continue;
992 }
993
994 if (!mmget_not_zero(vma->vm_mm))
995 continue;
996
997 info = prev;
998 prev = prev->next;
999 info->next = curr;
1000 curr = info;
1001
1002 info->mm = vma->vm_mm;
1003 info->vaddr = offset_to_vaddr(vma, offset);
1004 }
1005 i_mmap_unlock_read(mapping);
1006
1007 if (!more)
1008 goto out;
1009
1010 prev = curr;
1011 while (curr) {
1012 mmput(curr->mm);
1013 curr = curr->next;
1014 }
1015
1016 do {
1017 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1018 if (!info) {
1019 curr = ERR_PTR(-ENOMEM);
1020 goto out;
1021 }
1022 info->next = prev;
1023 prev = info;
1024 } while (--more);
1025
1026 goto again;
1027 out:
1028 while (prev)
1029 prev = free_map_info(prev);
1030 return curr;
1031 }
1032
1033 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1034 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1035 {
1036 bool is_register = !!new;
1037 struct map_info *info;
1038 int err = 0;
1039
1040 percpu_down_write(&dup_mmap_sem);
1041 info = build_map_info(uprobe->inode->i_mapping,
1042 uprobe->offset, is_register);
1043 if (IS_ERR(info)) {
1044 err = PTR_ERR(info);
1045 goto out;
1046 }
1047
1048 while (info) {
1049 struct mm_struct *mm = info->mm;
1050 struct vm_area_struct *vma;
1051
1052 if (err && is_register)
1053 goto free;
1054
1055 mmap_write_lock(mm);
1056 vma = find_vma(mm, info->vaddr);
1057 if (!vma || !valid_vma(vma, is_register) ||
1058 file_inode(vma->vm_file) != uprobe->inode)
1059 goto unlock;
1060
1061 if (vma->vm_start > info->vaddr ||
1062 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1063 goto unlock;
1064
1065 if (is_register) {
1066 /* consult only the "caller", new consumer. */
1067 if (consumer_filter(new,
1068 UPROBE_FILTER_REGISTER, mm))
1069 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1070 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1071 if (!filter_chain(uprobe,
1072 UPROBE_FILTER_UNREGISTER, mm))
1073 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1074 }
1075
1076 unlock:
1077 mmap_write_unlock(mm);
1078 free:
1079 mmput(mm);
1080 info = free_map_info(info);
1081 }
1082 out:
1083 percpu_up_write(&dup_mmap_sem);
1084 return err;
1085 }
1086
1087 static void
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)1088 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1089 {
1090 int err;
1091
1092 if (WARN_ON(!consumer_del(uprobe, uc)))
1093 return;
1094
1095 err = register_for_each_vma(uprobe, NULL);
1096 /* TODO : cant unregister? schedule a worker thread */
1097 if (!uprobe->consumers && !err)
1098 delete_uprobe(uprobe);
1099 }
1100
1101 /*
1102 * uprobe_unregister - unregister an already registered probe.
1103 * @inode: the file in which the probe has to be removed.
1104 * @offset: offset from the start of the file.
1105 * @uc: identify which probe if multiple probes are colocated.
1106 */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1107 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1108 {
1109 struct uprobe *uprobe;
1110
1111 uprobe = find_uprobe(inode, offset);
1112 if (WARN_ON(!uprobe))
1113 return;
1114
1115 down_write(&uprobe->register_rwsem);
1116 __uprobe_unregister(uprobe, uc);
1117 up_write(&uprobe->register_rwsem);
1118 put_uprobe(uprobe);
1119 }
1120 EXPORT_SYMBOL_GPL(uprobe_unregister);
1121
1122 /*
1123 * __uprobe_register - register a probe
1124 * @inode: the file in which the probe has to be placed.
1125 * @offset: offset from the start of the file.
1126 * @uc: information on howto handle the probe..
1127 *
1128 * Apart from the access refcount, __uprobe_register() takes a creation
1129 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1130 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1131 * tuple). Creation refcount stops uprobe_unregister from freeing the
1132 * @uprobe even before the register operation is complete. Creation
1133 * refcount is released when the last @uc for the @uprobe
1134 * unregisters. Caller of __uprobe_register() is required to keep @inode
1135 * (and the containing mount) referenced.
1136 *
1137 * Return errno if it cannot successully install probes
1138 * else return 0 (success)
1139 */
__uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1140 static int __uprobe_register(struct inode *inode, loff_t offset,
1141 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1142 {
1143 struct uprobe *uprobe;
1144 int ret;
1145
1146 /* Uprobe must have at least one set consumer */
1147 if (!uc->handler && !uc->ret_handler)
1148 return -EINVAL;
1149
1150 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1151 if (!inode->i_mapping->a_ops->read_folio &&
1152 !shmem_mapping(inode->i_mapping))
1153 return -EIO;
1154 /* Racy, just to catch the obvious mistakes */
1155 if (offset > i_size_read(inode))
1156 return -EINVAL;
1157
1158 /*
1159 * This ensures that copy_from_page(), copy_to_page() and
1160 * __update_ref_ctr() can't cross page boundary.
1161 */
1162 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1163 return -EINVAL;
1164 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1165 return -EINVAL;
1166
1167 retry:
1168 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1169 if (!uprobe)
1170 return -ENOMEM;
1171 if (IS_ERR(uprobe))
1172 return PTR_ERR(uprobe);
1173
1174 /*
1175 * We can race with uprobe_unregister()->delete_uprobe().
1176 * Check uprobe_is_active() and retry if it is false.
1177 */
1178 down_write(&uprobe->register_rwsem);
1179 ret = -EAGAIN;
1180 if (likely(uprobe_is_active(uprobe))) {
1181 consumer_add(uprobe, uc);
1182 ret = register_for_each_vma(uprobe, uc);
1183 if (ret)
1184 __uprobe_unregister(uprobe, uc);
1185 }
1186 up_write(&uprobe->register_rwsem);
1187 put_uprobe(uprobe);
1188
1189 if (unlikely(ret == -EAGAIN))
1190 goto retry;
1191 return ret;
1192 }
1193
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1194 int uprobe_register(struct inode *inode, loff_t offset,
1195 struct uprobe_consumer *uc)
1196 {
1197 return __uprobe_register(inode, offset, 0, uc);
1198 }
1199 EXPORT_SYMBOL_GPL(uprobe_register);
1200
uprobe_register_refctr(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1201 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1202 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1203 {
1204 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1205 }
1206 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1207
1208 /*
1209 * uprobe_apply - unregister an already registered probe.
1210 * @inode: the file in which the probe has to be removed.
1211 * @offset: offset from the start of the file.
1212 * @uc: consumer which wants to add more or remove some breakpoints
1213 * @add: add or remove the breakpoints
1214 */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)1215 int uprobe_apply(struct inode *inode, loff_t offset,
1216 struct uprobe_consumer *uc, bool add)
1217 {
1218 struct uprobe *uprobe;
1219 struct uprobe_consumer *con;
1220 int ret = -ENOENT;
1221
1222 uprobe = find_uprobe(inode, offset);
1223 if (WARN_ON(!uprobe))
1224 return ret;
1225
1226 down_write(&uprobe->register_rwsem);
1227 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1228 ;
1229 if (con)
1230 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1231 up_write(&uprobe->register_rwsem);
1232 put_uprobe(uprobe);
1233
1234 return ret;
1235 }
1236
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1237 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1238 {
1239 VMA_ITERATOR(vmi, mm, 0);
1240 struct vm_area_struct *vma;
1241 int err = 0;
1242
1243 mmap_read_lock(mm);
1244 for_each_vma(vmi, vma) {
1245 unsigned long vaddr;
1246 loff_t offset;
1247
1248 if (!valid_vma(vma, false) ||
1249 file_inode(vma->vm_file) != uprobe->inode)
1250 continue;
1251
1252 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1253 if (uprobe->offset < offset ||
1254 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1255 continue;
1256
1257 vaddr = offset_to_vaddr(vma, uprobe->offset);
1258 err |= remove_breakpoint(uprobe, mm, vaddr);
1259 }
1260 mmap_read_unlock(mm);
1261
1262 return err;
1263 }
1264
1265 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1266 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1267 {
1268 struct rb_node *n = uprobes_tree.rb_node;
1269
1270 while (n) {
1271 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1272
1273 if (inode < u->inode) {
1274 n = n->rb_left;
1275 } else if (inode > u->inode) {
1276 n = n->rb_right;
1277 } else {
1278 if (max < u->offset)
1279 n = n->rb_left;
1280 else if (min > u->offset)
1281 n = n->rb_right;
1282 else
1283 break;
1284 }
1285 }
1286
1287 return n;
1288 }
1289
1290 /*
1291 * For a given range in vma, build a list of probes that need to be inserted.
1292 */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1293 static void build_probe_list(struct inode *inode,
1294 struct vm_area_struct *vma,
1295 unsigned long start, unsigned long end,
1296 struct list_head *head)
1297 {
1298 loff_t min, max;
1299 struct rb_node *n, *t;
1300 struct uprobe *u;
1301
1302 INIT_LIST_HEAD(head);
1303 min = vaddr_to_offset(vma, start);
1304 max = min + (end - start) - 1;
1305
1306 spin_lock(&uprobes_treelock);
1307 n = find_node_in_range(inode, min, max);
1308 if (n) {
1309 for (t = n; t; t = rb_prev(t)) {
1310 u = rb_entry(t, struct uprobe, rb_node);
1311 if (u->inode != inode || u->offset < min)
1312 break;
1313 list_add(&u->pending_list, head);
1314 get_uprobe(u);
1315 }
1316 for (t = n; (t = rb_next(t)); ) {
1317 u = rb_entry(t, struct uprobe, rb_node);
1318 if (u->inode != inode || u->offset > max)
1319 break;
1320 list_add(&u->pending_list, head);
1321 get_uprobe(u);
1322 }
1323 }
1324 spin_unlock(&uprobes_treelock);
1325 }
1326
1327 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1328 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1329 {
1330 struct list_head *pos, *q;
1331 struct delayed_uprobe *du;
1332 unsigned long vaddr;
1333 int ret = 0, err = 0;
1334
1335 mutex_lock(&delayed_uprobe_lock);
1336 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1337 du = list_entry(pos, struct delayed_uprobe, list);
1338
1339 if (du->mm != vma->vm_mm ||
1340 !valid_ref_ctr_vma(du->uprobe, vma))
1341 continue;
1342
1343 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1344 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1345 if (ret) {
1346 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1347 if (!err)
1348 err = ret;
1349 }
1350 delayed_uprobe_delete(du);
1351 }
1352 mutex_unlock(&delayed_uprobe_lock);
1353 return err;
1354 }
1355
1356 /*
1357 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1358 *
1359 * Currently we ignore all errors and always return 0, the callers
1360 * can't handle the failure anyway.
1361 */
uprobe_mmap(struct vm_area_struct * vma)1362 int uprobe_mmap(struct vm_area_struct *vma)
1363 {
1364 struct list_head tmp_list;
1365 struct uprobe *uprobe, *u;
1366 struct inode *inode;
1367
1368 if (no_uprobe_events())
1369 return 0;
1370
1371 if (vma->vm_file &&
1372 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1373 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1374 delayed_ref_ctr_inc(vma);
1375
1376 if (!valid_vma(vma, true))
1377 return 0;
1378
1379 inode = file_inode(vma->vm_file);
1380 if (!inode)
1381 return 0;
1382
1383 mutex_lock(uprobes_mmap_hash(inode));
1384 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1385 /*
1386 * We can race with uprobe_unregister(), this uprobe can be already
1387 * removed. But in this case filter_chain() must return false, all
1388 * consumers have gone away.
1389 */
1390 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1391 if (!fatal_signal_pending(current) &&
1392 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1393 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1394 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1395 }
1396 put_uprobe(uprobe);
1397 }
1398 mutex_unlock(uprobes_mmap_hash(inode));
1399
1400 return 0;
1401 }
1402
1403 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1404 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1405 {
1406 loff_t min, max;
1407 struct inode *inode;
1408 struct rb_node *n;
1409
1410 inode = file_inode(vma->vm_file);
1411
1412 min = vaddr_to_offset(vma, start);
1413 max = min + (end - start) - 1;
1414
1415 spin_lock(&uprobes_treelock);
1416 n = find_node_in_range(inode, min, max);
1417 spin_unlock(&uprobes_treelock);
1418
1419 return !!n;
1420 }
1421
1422 /*
1423 * Called in context of a munmap of a vma.
1424 */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1425 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1426 {
1427 if (no_uprobe_events() || !valid_vma(vma, false))
1428 return;
1429
1430 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1431 return;
1432
1433 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1434 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1435 return;
1436
1437 if (vma_has_uprobes(vma, start, end))
1438 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1439 }
1440
1441 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1442 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1443 {
1444 struct vm_area_struct *vma;
1445 int ret;
1446
1447 if (mmap_write_lock_killable(mm))
1448 return -EINTR;
1449
1450 if (mm->uprobes_state.xol_area) {
1451 ret = -EALREADY;
1452 goto fail;
1453 }
1454
1455 if (!area->vaddr) {
1456 /* Try to map as high as possible, this is only a hint. */
1457 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1458 PAGE_SIZE, 0, 0);
1459 if (IS_ERR_VALUE(area->vaddr)) {
1460 ret = area->vaddr;
1461 goto fail;
1462 }
1463 }
1464
1465 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1466 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1467 &area->xol_mapping);
1468 if (IS_ERR(vma)) {
1469 ret = PTR_ERR(vma);
1470 goto fail;
1471 }
1472
1473 ret = 0;
1474 /* pairs with get_xol_area() */
1475 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1476 fail:
1477 mmap_write_unlock(mm);
1478
1479 return ret;
1480 }
1481
__create_xol_area(unsigned long vaddr)1482 static struct xol_area *__create_xol_area(unsigned long vaddr)
1483 {
1484 struct mm_struct *mm = current->mm;
1485 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1486 struct xol_area *area;
1487
1488 area = kzalloc(sizeof(*area), GFP_KERNEL);
1489 if (unlikely(!area))
1490 goto out;
1491
1492 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1493 GFP_KERNEL);
1494 if (!area->bitmap)
1495 goto free_area;
1496
1497 area->xol_mapping.name = "[uprobes]";
1498 area->xol_mapping.pages = area->pages;
1499 area->pages[0] = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1500 if (!area->pages[0])
1501 goto free_bitmap;
1502 area->pages[1] = NULL;
1503
1504 area->vaddr = vaddr;
1505 init_waitqueue_head(&area->wq);
1506 /* Reserve the 1st slot for get_trampoline_vaddr() */
1507 set_bit(0, area->bitmap);
1508 atomic_set(&area->slot_count, 1);
1509 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1510
1511 if (!xol_add_vma(mm, area))
1512 return area;
1513
1514 __free_page(area->pages[0]);
1515 free_bitmap:
1516 kfree(area->bitmap);
1517 free_area:
1518 kfree(area);
1519 out:
1520 return NULL;
1521 }
1522
1523 /*
1524 * get_xol_area - Allocate process's xol_area if necessary.
1525 * This area will be used for storing instructions for execution out of line.
1526 *
1527 * Returns the allocated area or NULL.
1528 */
get_xol_area(void)1529 static struct xol_area *get_xol_area(void)
1530 {
1531 struct mm_struct *mm = current->mm;
1532 struct xol_area *area;
1533
1534 if (!mm->uprobes_state.xol_area)
1535 __create_xol_area(0);
1536
1537 /* Pairs with xol_add_vma() smp_store_release() */
1538 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1539 return area;
1540 }
1541
1542 /*
1543 * uprobe_clear_state - Free the area allocated for slots.
1544 */
uprobe_clear_state(struct mm_struct * mm)1545 void uprobe_clear_state(struct mm_struct *mm)
1546 {
1547 struct xol_area *area = mm->uprobes_state.xol_area;
1548
1549 mutex_lock(&delayed_uprobe_lock);
1550 delayed_uprobe_remove(NULL, mm);
1551 mutex_unlock(&delayed_uprobe_lock);
1552
1553 if (!area)
1554 return;
1555
1556 put_page(area->pages[0]);
1557 kfree(area->bitmap);
1558 kfree(area);
1559 }
1560
uprobe_start_dup_mmap(void)1561 void uprobe_start_dup_mmap(void)
1562 {
1563 percpu_down_read(&dup_mmap_sem);
1564 }
1565
uprobe_end_dup_mmap(void)1566 void uprobe_end_dup_mmap(void)
1567 {
1568 percpu_up_read(&dup_mmap_sem);
1569 }
1570
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1571 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1572 {
1573 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1574 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1575 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1576 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1577 }
1578 }
1579
1580 /*
1581 * - search for a free slot.
1582 */
xol_take_insn_slot(struct xol_area * area)1583 static unsigned long xol_take_insn_slot(struct xol_area *area)
1584 {
1585 unsigned long slot_addr;
1586 int slot_nr;
1587
1588 do {
1589 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1590 if (slot_nr < UINSNS_PER_PAGE) {
1591 if (!test_and_set_bit(slot_nr, area->bitmap))
1592 break;
1593
1594 slot_nr = UINSNS_PER_PAGE;
1595 continue;
1596 }
1597 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1598 } while (slot_nr >= UINSNS_PER_PAGE);
1599
1600 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1601 atomic_inc(&area->slot_count);
1602
1603 return slot_addr;
1604 }
1605
1606 /*
1607 * xol_get_insn_slot - allocate a slot for xol.
1608 * Returns the allocated slot address or 0.
1609 */
xol_get_insn_slot(struct uprobe * uprobe)1610 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1611 {
1612 struct xol_area *area;
1613 unsigned long xol_vaddr;
1614
1615 area = get_xol_area();
1616 if (!area)
1617 return 0;
1618
1619 xol_vaddr = xol_take_insn_slot(area);
1620 if (unlikely(!xol_vaddr))
1621 return 0;
1622
1623 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1624 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1625
1626 return xol_vaddr;
1627 }
1628
1629 /*
1630 * xol_free_insn_slot - If slot was earlier allocated by
1631 * @xol_get_insn_slot(), make the slot available for
1632 * subsequent requests.
1633 */
xol_free_insn_slot(struct task_struct * tsk)1634 static void xol_free_insn_slot(struct task_struct *tsk)
1635 {
1636 struct xol_area *area;
1637 unsigned long vma_end;
1638 unsigned long slot_addr;
1639
1640 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1641 return;
1642
1643 slot_addr = tsk->utask->xol_vaddr;
1644 if (unlikely(!slot_addr))
1645 return;
1646
1647 area = tsk->mm->uprobes_state.xol_area;
1648 vma_end = area->vaddr + PAGE_SIZE;
1649 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1650 unsigned long offset;
1651 int slot_nr;
1652
1653 offset = slot_addr - area->vaddr;
1654 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1655 if (slot_nr >= UINSNS_PER_PAGE)
1656 return;
1657
1658 clear_bit(slot_nr, area->bitmap);
1659 atomic_dec(&area->slot_count);
1660 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1661 if (waitqueue_active(&area->wq))
1662 wake_up(&area->wq);
1663
1664 tsk->utask->xol_vaddr = 0;
1665 }
1666 }
1667
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1668 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1669 void *src, unsigned long len)
1670 {
1671 /* Initialize the slot */
1672 copy_to_page(page, vaddr, src, len);
1673
1674 /*
1675 * We probably need flush_icache_user_page() but it needs vma.
1676 * This should work on most of architectures by default. If
1677 * architecture needs to do something different it can define
1678 * its own version of the function.
1679 */
1680 flush_dcache_page(page);
1681 }
1682
1683 /**
1684 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1685 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1686 * instruction.
1687 * Return the address of the breakpoint instruction.
1688 */
uprobe_get_swbp_addr(struct pt_regs * regs)1689 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1690 {
1691 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1692 }
1693
uprobe_get_trap_addr(struct pt_regs * regs)1694 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1695 {
1696 struct uprobe_task *utask = current->utask;
1697
1698 if (unlikely(utask && utask->active_uprobe))
1699 return utask->vaddr;
1700
1701 return instruction_pointer(regs);
1702 }
1703
free_ret_instance(struct return_instance * ri)1704 static struct return_instance *free_ret_instance(struct return_instance *ri)
1705 {
1706 struct return_instance *next = ri->next;
1707 put_uprobe(ri->uprobe);
1708 kfree(ri);
1709 return next;
1710 }
1711
1712 /*
1713 * Called with no locks held.
1714 * Called in context of an exiting or an exec-ing thread.
1715 */
uprobe_free_utask(struct task_struct * t)1716 void uprobe_free_utask(struct task_struct *t)
1717 {
1718 struct uprobe_task *utask = t->utask;
1719 struct return_instance *ri;
1720
1721 if (!utask)
1722 return;
1723
1724 if (utask->active_uprobe)
1725 put_uprobe(utask->active_uprobe);
1726
1727 ri = utask->return_instances;
1728 while (ri)
1729 ri = free_ret_instance(ri);
1730
1731 xol_free_insn_slot(t);
1732 kfree(utask);
1733 t->utask = NULL;
1734 }
1735
1736 /*
1737 * Allocate a uprobe_task object for the task if necessary.
1738 * Called when the thread hits a breakpoint.
1739 *
1740 * Returns:
1741 * - pointer to new uprobe_task on success
1742 * - NULL otherwise
1743 */
get_utask(void)1744 static struct uprobe_task *get_utask(void)
1745 {
1746 if (!current->utask)
1747 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1748 return current->utask;
1749 }
1750
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1751 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1752 {
1753 struct uprobe_task *n_utask;
1754 struct return_instance **p, *o, *n;
1755
1756 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1757 if (!n_utask)
1758 return -ENOMEM;
1759 t->utask = n_utask;
1760
1761 p = &n_utask->return_instances;
1762 for (o = o_utask->return_instances; o; o = o->next) {
1763 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1764 if (!n)
1765 return -ENOMEM;
1766
1767 *n = *o;
1768 get_uprobe(n->uprobe);
1769 n->next = NULL;
1770
1771 *p = n;
1772 p = &n->next;
1773 n_utask->depth++;
1774 }
1775
1776 return 0;
1777 }
1778
uprobe_warn(struct task_struct * t,const char * msg)1779 static void uprobe_warn(struct task_struct *t, const char *msg)
1780 {
1781 pr_warn("uprobe: %s:%d failed to %s\n",
1782 current->comm, current->pid, msg);
1783 }
1784
dup_xol_work(struct callback_head * work)1785 static void dup_xol_work(struct callback_head *work)
1786 {
1787 if (current->flags & PF_EXITING)
1788 return;
1789
1790 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1791 !fatal_signal_pending(current))
1792 uprobe_warn(current, "dup xol area");
1793 }
1794
1795 /*
1796 * Called in context of a new clone/fork from copy_process.
1797 */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1798 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1799 {
1800 struct uprobe_task *utask = current->utask;
1801 struct mm_struct *mm = current->mm;
1802 struct xol_area *area;
1803
1804 t->utask = NULL;
1805
1806 if (!utask || !utask->return_instances)
1807 return;
1808
1809 if (mm == t->mm && !(flags & CLONE_VFORK))
1810 return;
1811
1812 if (dup_utask(t, utask))
1813 return uprobe_warn(t, "dup ret instances");
1814
1815 /* The task can fork() after dup_xol_work() fails */
1816 area = mm->uprobes_state.xol_area;
1817 if (!area)
1818 return uprobe_warn(t, "dup xol area");
1819
1820 if (mm == t->mm)
1821 return;
1822
1823 t->utask->dup_xol_addr = area->vaddr;
1824 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1825 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1826 }
1827
1828 /*
1829 * Current area->vaddr notion assume the trampoline address is always
1830 * equal area->vaddr.
1831 *
1832 * Returns -1 in case the xol_area is not allocated.
1833 */
get_trampoline_vaddr(void)1834 static unsigned long get_trampoline_vaddr(void)
1835 {
1836 struct xol_area *area;
1837 unsigned long trampoline_vaddr = -1;
1838
1839 /* Pairs with xol_add_vma() smp_store_release() */
1840 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1841 if (area)
1842 trampoline_vaddr = area->vaddr;
1843
1844 return trampoline_vaddr;
1845 }
1846
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1847 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1848 struct pt_regs *regs)
1849 {
1850 struct return_instance *ri = utask->return_instances;
1851 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1852
1853 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1854 ri = free_ret_instance(ri);
1855 utask->depth--;
1856 }
1857 utask->return_instances = ri;
1858 }
1859
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1860 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1861 {
1862 struct return_instance *ri;
1863 struct uprobe_task *utask;
1864 unsigned long orig_ret_vaddr, trampoline_vaddr;
1865 bool chained;
1866
1867 if (!get_xol_area())
1868 return;
1869
1870 utask = get_utask();
1871 if (!utask)
1872 return;
1873
1874 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1875 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1876 " nestedness limit pid/tgid=%d/%d\n",
1877 current->pid, current->tgid);
1878 return;
1879 }
1880
1881 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1882 if (!ri)
1883 return;
1884
1885 trampoline_vaddr = get_trampoline_vaddr();
1886 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1887 if (orig_ret_vaddr == -1)
1888 goto fail;
1889
1890 /* drop the entries invalidated by longjmp() */
1891 chained = (orig_ret_vaddr == trampoline_vaddr);
1892 cleanup_return_instances(utask, chained, regs);
1893
1894 /*
1895 * We don't want to keep trampoline address in stack, rather keep the
1896 * original return address of first caller thru all the consequent
1897 * instances. This also makes breakpoint unwrapping easier.
1898 */
1899 if (chained) {
1900 if (!utask->return_instances) {
1901 /*
1902 * This situation is not possible. Likely we have an
1903 * attack from user-space.
1904 */
1905 uprobe_warn(current, "handle tail call");
1906 goto fail;
1907 }
1908 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1909 }
1910
1911 ri->uprobe = get_uprobe(uprobe);
1912 ri->func = instruction_pointer(regs);
1913 ri->stack = user_stack_pointer(regs);
1914 ri->orig_ret_vaddr = orig_ret_vaddr;
1915 ri->chained = chained;
1916
1917 utask->depth++;
1918 ri->next = utask->return_instances;
1919 utask->return_instances = ri;
1920
1921 return;
1922 fail:
1923 kfree(ri);
1924 }
1925
1926 /* Prepare to single-step probed instruction out of line. */
1927 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1928 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1929 {
1930 struct uprobe_task *utask;
1931 unsigned long xol_vaddr;
1932 int err;
1933
1934 utask = get_utask();
1935 if (!utask)
1936 return -ENOMEM;
1937
1938 xol_vaddr = xol_get_insn_slot(uprobe);
1939 if (!xol_vaddr)
1940 return -ENOMEM;
1941
1942 utask->xol_vaddr = xol_vaddr;
1943 utask->vaddr = bp_vaddr;
1944
1945 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1946 if (unlikely(err)) {
1947 xol_free_insn_slot(current);
1948 return err;
1949 }
1950
1951 utask->active_uprobe = uprobe;
1952 utask->state = UTASK_SSTEP;
1953 return 0;
1954 }
1955
1956 /*
1957 * If we are singlestepping, then ensure this thread is not connected to
1958 * non-fatal signals until completion of singlestep. When xol insn itself
1959 * triggers the signal, restart the original insn even if the task is
1960 * already SIGKILL'ed (since coredump should report the correct ip). This
1961 * is even more important if the task has a handler for SIGSEGV/etc, The
1962 * _same_ instruction should be repeated again after return from the signal
1963 * handler, and SSTEP can never finish in this case.
1964 */
uprobe_deny_signal(void)1965 bool uprobe_deny_signal(void)
1966 {
1967 struct task_struct *t = current;
1968 struct uprobe_task *utask = t->utask;
1969
1970 if (likely(!utask || !utask->active_uprobe))
1971 return false;
1972
1973 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1974
1975 if (task_sigpending(t)) {
1976 spin_lock_irq(&t->sighand->siglock);
1977 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1978 spin_unlock_irq(&t->sighand->siglock);
1979
1980 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1981 utask->state = UTASK_SSTEP_TRAPPED;
1982 set_tsk_thread_flag(t, TIF_UPROBE);
1983 }
1984 }
1985
1986 return true;
1987 }
1988
mmf_recalc_uprobes(struct mm_struct * mm)1989 static void mmf_recalc_uprobes(struct mm_struct *mm)
1990 {
1991 VMA_ITERATOR(vmi, mm, 0);
1992 struct vm_area_struct *vma;
1993
1994 for_each_vma(vmi, vma) {
1995 if (!valid_vma(vma, false))
1996 continue;
1997 /*
1998 * This is not strictly accurate, we can race with
1999 * uprobe_unregister() and see the already removed
2000 * uprobe if delete_uprobe() was not yet called.
2001 * Or this uprobe can be filtered out.
2002 */
2003 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2004 return;
2005 }
2006
2007 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2008 }
2009
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2010 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2011 {
2012 struct page *page;
2013 uprobe_opcode_t opcode;
2014 int result;
2015
2016 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2017 return -EINVAL;
2018
2019 pagefault_disable();
2020 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2021 pagefault_enable();
2022
2023 if (likely(result == 0))
2024 goto out;
2025
2026 /*
2027 * The NULL 'tsk' here ensures that any faults that occur here
2028 * will not be accounted to the task. 'mm' *is* current->mm,
2029 * but we treat this as a 'remote' access since it is
2030 * essentially a kernel access to the memory.
2031 */
2032 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2033 if (result < 0)
2034 return result;
2035
2036 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2037 put_page(page);
2038 out:
2039 /* This needs to return true for any variant of the trap insn */
2040 return is_trap_insn(&opcode);
2041 }
2042
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)2043 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2044 {
2045 struct mm_struct *mm = current->mm;
2046 struct uprobe *uprobe = NULL;
2047 struct vm_area_struct *vma;
2048
2049 mmap_read_lock(mm);
2050 vma = vma_lookup(mm, bp_vaddr);
2051 if (vma) {
2052 if (valid_vma(vma, false)) {
2053 struct inode *inode = file_inode(vma->vm_file);
2054 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2055
2056 uprobe = find_uprobe(inode, offset);
2057 }
2058
2059 if (!uprobe)
2060 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2061 } else {
2062 *is_swbp = -EFAULT;
2063 }
2064
2065 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2066 mmf_recalc_uprobes(mm);
2067 mmap_read_unlock(mm);
2068
2069 return uprobe;
2070 }
2071
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2072 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2073 {
2074 struct uprobe_consumer *uc;
2075 int remove = UPROBE_HANDLER_REMOVE;
2076 bool need_prep = false; /* prepare return uprobe, when needed */
2077
2078 down_read(&uprobe->register_rwsem);
2079 current->utask->auprobe = &uprobe->arch;
2080 for (uc = uprobe->consumers; uc; uc = uc->next) {
2081 int rc = 0;
2082
2083 if (uc->handler) {
2084 rc = uc->handler(uc, regs);
2085 WARN(rc & ~UPROBE_HANDLER_MASK,
2086 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2087 }
2088
2089 if (uc->ret_handler)
2090 need_prep = true;
2091
2092 remove &= rc;
2093 }
2094 current->utask->auprobe = NULL;
2095
2096 if (need_prep && !remove)
2097 prepare_uretprobe(uprobe, regs); /* put bp at return */
2098
2099 if (remove && uprobe->consumers) {
2100 WARN_ON(!uprobe_is_active(uprobe));
2101 unapply_uprobe(uprobe, current->mm);
2102 }
2103 up_read(&uprobe->register_rwsem);
2104 }
2105
2106 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2107 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2108 {
2109 struct uprobe *uprobe = ri->uprobe;
2110 struct uprobe_consumer *uc;
2111
2112 down_read(&uprobe->register_rwsem);
2113 for (uc = uprobe->consumers; uc; uc = uc->next) {
2114 if (uc->ret_handler)
2115 uc->ret_handler(uc, ri->func, regs);
2116 }
2117 up_read(&uprobe->register_rwsem);
2118 }
2119
find_next_ret_chain(struct return_instance * ri)2120 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2121 {
2122 bool chained;
2123
2124 do {
2125 chained = ri->chained;
2126 ri = ri->next; /* can't be NULL if chained */
2127 } while (chained);
2128
2129 return ri;
2130 }
2131
handle_trampoline(struct pt_regs * regs)2132 static void handle_trampoline(struct pt_regs *regs)
2133 {
2134 struct uprobe_task *utask;
2135 struct return_instance *ri, *next;
2136 bool valid;
2137
2138 utask = current->utask;
2139 if (!utask)
2140 goto sigill;
2141
2142 ri = utask->return_instances;
2143 if (!ri)
2144 goto sigill;
2145
2146 do {
2147 /*
2148 * We should throw out the frames invalidated by longjmp().
2149 * If this chain is valid, then the next one should be alive
2150 * or NULL; the latter case means that nobody but ri->func
2151 * could hit this trampoline on return. TODO: sigaltstack().
2152 */
2153 next = find_next_ret_chain(ri);
2154 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2155
2156 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2157 do {
2158 if (valid)
2159 handle_uretprobe_chain(ri, regs);
2160 ri = free_ret_instance(ri);
2161 utask->depth--;
2162 } while (ri != next);
2163 } while (!valid);
2164
2165 utask->return_instances = ri;
2166 return;
2167
2168 sigill:
2169 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2170 force_sig(SIGILL);
2171
2172 }
2173
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2174 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2175 {
2176 return false;
2177 }
2178
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2179 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2180 struct pt_regs *regs)
2181 {
2182 return true;
2183 }
2184
2185 /*
2186 * Run handler and ask thread to singlestep.
2187 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2188 */
handle_swbp(struct pt_regs * regs)2189 static void handle_swbp(struct pt_regs *regs)
2190 {
2191 struct uprobe *uprobe;
2192 unsigned long bp_vaddr;
2193 int is_swbp;
2194
2195 bp_vaddr = uprobe_get_swbp_addr(regs);
2196 if (bp_vaddr == get_trampoline_vaddr())
2197 return handle_trampoline(regs);
2198
2199 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2200 if (!uprobe) {
2201 if (is_swbp > 0) {
2202 /* No matching uprobe; signal SIGTRAP. */
2203 force_sig(SIGTRAP);
2204 } else {
2205 /*
2206 * Either we raced with uprobe_unregister() or we can't
2207 * access this memory. The latter is only possible if
2208 * another thread plays with our ->mm. In both cases
2209 * we can simply restart. If this vma was unmapped we
2210 * can pretend this insn was not executed yet and get
2211 * the (correct) SIGSEGV after restart.
2212 */
2213 instruction_pointer_set(regs, bp_vaddr);
2214 }
2215 return;
2216 }
2217
2218 /* change it in advance for ->handler() and restart */
2219 instruction_pointer_set(regs, bp_vaddr);
2220
2221 /*
2222 * TODO: move copy_insn/etc into _register and remove this hack.
2223 * After we hit the bp, _unregister + _register can install the
2224 * new and not-yet-analyzed uprobe at the same address, restart.
2225 */
2226 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2227 goto out;
2228
2229 /*
2230 * Pairs with the smp_wmb() in prepare_uprobe().
2231 *
2232 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2233 * we must also see the stores to &uprobe->arch performed by the
2234 * prepare_uprobe() call.
2235 */
2236 smp_rmb();
2237
2238 /* Tracing handlers use ->utask to communicate with fetch methods */
2239 if (!get_utask())
2240 goto out;
2241
2242 if (arch_uprobe_ignore(&uprobe->arch, regs))
2243 goto out;
2244
2245 handler_chain(uprobe, regs);
2246
2247 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2248 goto out;
2249
2250 if (!pre_ssout(uprobe, regs, bp_vaddr))
2251 return;
2252
2253 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2254 out:
2255 put_uprobe(uprobe);
2256 }
2257
2258 /*
2259 * Perform required fix-ups and disable singlestep.
2260 * Allow pending signals to take effect.
2261 */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2262 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2263 {
2264 struct uprobe *uprobe;
2265 int err = 0;
2266
2267 uprobe = utask->active_uprobe;
2268 if (utask->state == UTASK_SSTEP_ACK)
2269 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2270 else if (utask->state == UTASK_SSTEP_TRAPPED)
2271 arch_uprobe_abort_xol(&uprobe->arch, regs);
2272 else
2273 WARN_ON_ONCE(1);
2274
2275 put_uprobe(uprobe);
2276 utask->active_uprobe = NULL;
2277 utask->state = UTASK_RUNNING;
2278 xol_free_insn_slot(current);
2279
2280 spin_lock_irq(¤t->sighand->siglock);
2281 recalc_sigpending(); /* see uprobe_deny_signal() */
2282 spin_unlock_irq(¤t->sighand->siglock);
2283
2284 if (unlikely(err)) {
2285 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2286 force_sig(SIGILL);
2287 }
2288 }
2289
2290 /*
2291 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2292 * allows the thread to return from interrupt. After that handle_swbp()
2293 * sets utask->active_uprobe.
2294 *
2295 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2296 * and allows the thread to return from interrupt.
2297 *
2298 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2299 * uprobe_notify_resume().
2300 */
uprobe_notify_resume(struct pt_regs * regs)2301 void uprobe_notify_resume(struct pt_regs *regs)
2302 {
2303 struct uprobe_task *utask;
2304
2305 clear_thread_flag(TIF_UPROBE);
2306
2307 utask = current->utask;
2308 if (utask && utask->active_uprobe)
2309 handle_singlestep(utask, regs);
2310 else
2311 handle_swbp(regs);
2312 }
2313
2314 /*
2315 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2316 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2317 */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2318 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2319 {
2320 if (!current->mm)
2321 return 0;
2322
2323 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2324 (!current->utask || !current->utask->return_instances))
2325 return 0;
2326
2327 set_thread_flag(TIF_UPROBE);
2328 return 1;
2329 }
2330
2331 /*
2332 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2333 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2334 */
uprobe_post_sstep_notifier(struct pt_regs * regs)2335 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2336 {
2337 struct uprobe_task *utask = current->utask;
2338
2339 if (!current->mm || !utask || !utask->active_uprobe)
2340 /* task is currently not uprobed */
2341 return 0;
2342
2343 utask->state = UTASK_SSTEP_ACK;
2344 set_thread_flag(TIF_UPROBE);
2345 return 1;
2346 }
2347
2348 static struct notifier_block uprobe_exception_nb = {
2349 .notifier_call = arch_uprobe_exception_notify,
2350 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2351 };
2352
uprobes_init(void)2353 void __init uprobes_init(void)
2354 {
2355 int i;
2356
2357 for (i = 0; i < UPROBES_HASH_SZ; i++)
2358 mutex_init(&uprobes_mmap_mutex[i]);
2359
2360 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2361 }
2362