1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9 /*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64
65 #define MA_ROOT_PARENT 1
66
67 /*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73 #define MA_STATE_BULK 1
74 #define MA_STATE_REBALANCE 2
75 #define MA_STATE_PREALLOC 4
76
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
79 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
80 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
81 static struct kmem_cache *maple_node_cache;
82
83 #ifdef CONFIG_DEBUG_MAPLE_TREE
84 static const unsigned long mt_max[] = {
85 [maple_dense] = MAPLE_NODE_SLOTS,
86 [maple_leaf_64] = ULONG_MAX,
87 [maple_range_64] = ULONG_MAX,
88 [maple_arange_64] = ULONG_MAX,
89 };
90 #define mt_node_max(x) mt_max[mte_node_type(x)]
91 #endif
92
93 static const unsigned char mt_slots[] = {
94 [maple_dense] = MAPLE_NODE_SLOTS,
95 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
96 [maple_range_64] = MAPLE_RANGE64_SLOTS,
97 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
98 };
99 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
100
101 static const unsigned char mt_pivots[] = {
102 [maple_dense] = 0,
103 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
105 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
106 };
107 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
108
109 static const unsigned char mt_min_slots[] = {
110 [maple_dense] = MAPLE_NODE_SLOTS / 2,
111 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
113 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
114 };
115 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
116
117 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
118 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
119
120 struct maple_big_node {
121 struct maple_pnode *parent;
122 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
123 union {
124 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
125 struct {
126 unsigned long padding[MAPLE_BIG_NODE_GAPS];
127 unsigned long gap[MAPLE_BIG_NODE_GAPS];
128 };
129 };
130 unsigned char b_end;
131 enum maple_type type;
132 };
133
134 /*
135 * The maple_subtree_state is used to build a tree to replace a segment of an
136 * existing tree in a more atomic way. Any walkers of the older tree will hit a
137 * dead node and restart on updates.
138 */
139 struct maple_subtree_state {
140 struct ma_state *orig_l; /* Original left side of subtree */
141 struct ma_state *orig_r; /* Original right side of subtree */
142 struct ma_state *l; /* New left side of subtree */
143 struct ma_state *m; /* New middle of subtree (rare) */
144 struct ma_state *r; /* New right side of subtree */
145 struct ma_topiary *free; /* nodes to be freed */
146 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
147 struct maple_big_node *bn;
148 };
149
150 #ifdef CONFIG_KASAN_STACK
151 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
152 #define noinline_for_kasan noinline_for_stack
153 #else
154 #define noinline_for_kasan inline
155 #endif
156
157 /* Functions */
mt_alloc_one(gfp_t gfp)158 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
159 {
160 return kmem_cache_alloc(maple_node_cache, gfp);
161 }
162
mt_alloc_bulk(gfp_t gfp,size_t size,void ** nodes)163 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
164 {
165 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
166 }
167
mt_free_bulk(size_t size,void __rcu ** nodes)168 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
169 {
170 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
171 }
172
mt_free_rcu(struct rcu_head * head)173 static void mt_free_rcu(struct rcu_head *head)
174 {
175 struct maple_node *node = container_of(head, struct maple_node, rcu);
176
177 kmem_cache_free(maple_node_cache, node);
178 }
179
180 /*
181 * ma_free_rcu() - Use rcu callback to free a maple node
182 * @node: The node to free
183 *
184 * The maple tree uses the parent pointer to indicate this node is no longer in
185 * use and will be freed.
186 */
ma_free_rcu(struct maple_node * node)187 static void ma_free_rcu(struct maple_node *node)
188 {
189 WARN_ON(node->parent != ma_parent_ptr(node));
190 call_rcu(&node->rcu, mt_free_rcu);
191 }
192
mas_set_height(struct ma_state * mas)193 static void mas_set_height(struct ma_state *mas)
194 {
195 unsigned int new_flags = mas->tree->ma_flags;
196
197 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
198 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
199 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
200 mas->tree->ma_flags = new_flags;
201 }
202
mas_mt_height(struct ma_state * mas)203 static unsigned int mas_mt_height(struct ma_state *mas)
204 {
205 return mt_height(mas->tree);
206 }
207
mte_node_type(const struct maple_enode * entry)208 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
209 {
210 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
211 MAPLE_NODE_TYPE_MASK;
212 }
213
ma_is_dense(const enum maple_type type)214 static inline bool ma_is_dense(const enum maple_type type)
215 {
216 return type < maple_leaf_64;
217 }
218
ma_is_leaf(const enum maple_type type)219 static inline bool ma_is_leaf(const enum maple_type type)
220 {
221 return type < maple_range_64;
222 }
223
mte_is_leaf(const struct maple_enode * entry)224 static inline bool mte_is_leaf(const struct maple_enode *entry)
225 {
226 return ma_is_leaf(mte_node_type(entry));
227 }
228
229 /*
230 * We also reserve values with the bottom two bits set to '10' which are
231 * below 4096
232 */
mt_is_reserved(const void * entry)233 static inline bool mt_is_reserved(const void *entry)
234 {
235 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
236 xa_is_internal(entry);
237 }
238
mas_set_err(struct ma_state * mas,long err)239 static inline void mas_set_err(struct ma_state *mas, long err)
240 {
241 mas->node = MA_ERROR(err);
242 }
243
mas_is_ptr(const struct ma_state * mas)244 static inline bool mas_is_ptr(const struct ma_state *mas)
245 {
246 return mas->node == MAS_ROOT;
247 }
248
mas_is_start(const struct ma_state * mas)249 static inline bool mas_is_start(const struct ma_state *mas)
250 {
251 return mas->node == MAS_START;
252 }
253
mas_is_err(struct ma_state * mas)254 bool mas_is_err(struct ma_state *mas)
255 {
256 return xa_is_err(mas->node);
257 }
258
mas_is_overflow(struct ma_state * mas)259 static __always_inline bool mas_is_overflow(struct ma_state *mas)
260 {
261 if (unlikely(mas->node == MAS_OVERFLOW))
262 return true;
263
264 return false;
265 }
266
mas_is_underflow(struct ma_state * mas)267 static __always_inline bool mas_is_underflow(struct ma_state *mas)
268 {
269 if (unlikely(mas->node == MAS_UNDERFLOW))
270 return true;
271
272 return false;
273 }
274
mas_searchable(struct ma_state * mas)275 static inline bool mas_searchable(struct ma_state *mas)
276 {
277 if (mas_is_none(mas))
278 return false;
279
280 if (mas_is_ptr(mas))
281 return false;
282
283 return true;
284 }
285
mte_to_node(const struct maple_enode * entry)286 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
287 {
288 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
289 }
290
291 /*
292 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
293 * @entry: The maple encoded node
294 *
295 * Return: a maple topiary pointer
296 */
mte_to_mat(const struct maple_enode * entry)297 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
298 {
299 return (struct maple_topiary *)
300 ((unsigned long)entry & ~MAPLE_NODE_MASK);
301 }
302
303 /*
304 * mas_mn() - Get the maple state node.
305 * @mas: The maple state
306 *
307 * Return: the maple node (not encoded - bare pointer).
308 */
mas_mn(const struct ma_state * mas)309 static inline struct maple_node *mas_mn(const struct ma_state *mas)
310 {
311 return mte_to_node(mas->node);
312 }
313
314 /*
315 * mte_set_node_dead() - Set a maple encoded node as dead.
316 * @mn: The maple encoded node.
317 */
mte_set_node_dead(struct maple_enode * mn)318 static inline void mte_set_node_dead(struct maple_enode *mn)
319 {
320 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
321 smp_wmb(); /* Needed for RCU */
322 }
323
324 /* Bit 1 indicates the root is a node */
325 #define MAPLE_ROOT_NODE 0x02
326 /* maple_type stored bit 3-6 */
327 #define MAPLE_ENODE_TYPE_SHIFT 0x03
328 /* Bit 2 means a NULL somewhere below */
329 #define MAPLE_ENODE_NULL 0x04
330
mt_mk_node(const struct maple_node * node,enum maple_type type)331 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
332 enum maple_type type)
333 {
334 return (void *)((unsigned long)node |
335 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
336 }
337
mte_mk_root(const struct maple_enode * node)338 static inline void *mte_mk_root(const struct maple_enode *node)
339 {
340 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
341 }
342
mte_safe_root(const struct maple_enode * node)343 static inline void *mte_safe_root(const struct maple_enode *node)
344 {
345 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
346 }
347
mte_set_full(const struct maple_enode * node)348 static inline void *mte_set_full(const struct maple_enode *node)
349 {
350 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
351 }
352
mte_clear_full(const struct maple_enode * node)353 static inline void *mte_clear_full(const struct maple_enode *node)
354 {
355 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
356 }
357
mte_has_null(const struct maple_enode * node)358 static inline bool mte_has_null(const struct maple_enode *node)
359 {
360 return (unsigned long)node & MAPLE_ENODE_NULL;
361 }
362
ma_is_root(struct maple_node * node)363 static inline bool ma_is_root(struct maple_node *node)
364 {
365 return ((unsigned long)node->parent & MA_ROOT_PARENT);
366 }
367
mte_is_root(const struct maple_enode * node)368 static inline bool mte_is_root(const struct maple_enode *node)
369 {
370 return ma_is_root(mte_to_node(node));
371 }
372
mas_is_root_limits(const struct ma_state * mas)373 static inline bool mas_is_root_limits(const struct ma_state *mas)
374 {
375 return !mas->min && mas->max == ULONG_MAX;
376 }
377
mt_is_alloc(struct maple_tree * mt)378 static inline bool mt_is_alloc(struct maple_tree *mt)
379 {
380 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
381 }
382
383 /*
384 * The Parent Pointer
385 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
386 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
387 * bit values need an extra bit to store the offset. This extra bit comes from
388 * a reuse of the last bit in the node type. This is possible by using bit 1 to
389 * indicate if bit 2 is part of the type or the slot.
390 *
391 * Note types:
392 * 0x??1 = Root
393 * 0x?00 = 16 bit nodes
394 * 0x010 = 32 bit nodes
395 * 0x110 = 64 bit nodes
396 *
397 * Slot size and alignment
398 * 0b??1 : Root
399 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
400 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
401 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
402 */
403
404 #define MAPLE_PARENT_ROOT 0x01
405
406 #define MAPLE_PARENT_SLOT_SHIFT 0x03
407 #define MAPLE_PARENT_SLOT_MASK 0xF8
408
409 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
410 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
411
412 #define MAPLE_PARENT_RANGE64 0x06
413 #define MAPLE_PARENT_RANGE32 0x04
414 #define MAPLE_PARENT_NOT_RANGE16 0x02
415
416 /*
417 * mte_parent_shift() - Get the parent shift for the slot storage.
418 * @parent: The parent pointer cast as an unsigned long
419 * Return: The shift into that pointer to the star to of the slot
420 */
mte_parent_shift(unsigned long parent)421 static inline unsigned long mte_parent_shift(unsigned long parent)
422 {
423 /* Note bit 1 == 0 means 16B */
424 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
425 return MAPLE_PARENT_SLOT_SHIFT;
426
427 return MAPLE_PARENT_16B_SLOT_SHIFT;
428 }
429
430 /*
431 * mte_parent_slot_mask() - Get the slot mask for the parent.
432 * @parent: The parent pointer cast as an unsigned long.
433 * Return: The slot mask for that parent.
434 */
mte_parent_slot_mask(unsigned long parent)435 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
436 {
437 /* Note bit 1 == 0 means 16B */
438 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
439 return MAPLE_PARENT_SLOT_MASK;
440
441 return MAPLE_PARENT_16B_SLOT_MASK;
442 }
443
444 /*
445 * mas_parent_type() - Return the maple_type of the parent from the stored
446 * parent type.
447 * @mas: The maple state
448 * @enode: The maple_enode to extract the parent's enum
449 * Return: The node->parent maple_type
450 */
451 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)452 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
453 {
454 unsigned long p_type;
455
456 p_type = (unsigned long)mte_to_node(enode)->parent;
457 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
458 return 0;
459
460 p_type &= MAPLE_NODE_MASK;
461 p_type &= ~mte_parent_slot_mask(p_type);
462 switch (p_type) {
463 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
464 if (mt_is_alloc(mas->tree))
465 return maple_arange_64;
466 return maple_range_64;
467 }
468
469 return 0;
470 }
471
472 /*
473 * mas_set_parent() - Set the parent node and encode the slot
474 * @enode: The encoded maple node.
475 * @parent: The encoded maple node that is the parent of @enode.
476 * @slot: The slot that @enode resides in @parent.
477 *
478 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
479 * parent type.
480 */
481 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)482 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
483 const struct maple_enode *parent, unsigned char slot)
484 {
485 unsigned long val = (unsigned long)parent;
486 unsigned long shift;
487 unsigned long type;
488 enum maple_type p_type = mte_node_type(parent);
489
490 MAS_BUG_ON(mas, p_type == maple_dense);
491 MAS_BUG_ON(mas, p_type == maple_leaf_64);
492
493 switch (p_type) {
494 case maple_range_64:
495 case maple_arange_64:
496 shift = MAPLE_PARENT_SLOT_SHIFT;
497 type = MAPLE_PARENT_RANGE64;
498 break;
499 default:
500 case maple_dense:
501 case maple_leaf_64:
502 shift = type = 0;
503 break;
504 }
505
506 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
507 val |= (slot << shift) | type;
508 mte_to_node(enode)->parent = ma_parent_ptr(val);
509 }
510
511 /*
512 * mte_parent_slot() - get the parent slot of @enode.
513 * @enode: The encoded maple node.
514 *
515 * Return: The slot in the parent node where @enode resides.
516 */
mte_parent_slot(const struct maple_enode * enode)517 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
518 {
519 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
520
521 if (val & MA_ROOT_PARENT)
522 return 0;
523
524 /*
525 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
526 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
527 */
528 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
529 }
530
531 /*
532 * mte_parent() - Get the parent of @node.
533 * @node: The encoded maple node.
534 *
535 * Return: The parent maple node.
536 */
mte_parent(const struct maple_enode * enode)537 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
538 {
539 return (void *)((unsigned long)
540 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
541 }
542
543 /*
544 * ma_dead_node() - check if the @enode is dead.
545 * @enode: The encoded maple node
546 *
547 * Return: true if dead, false otherwise.
548 */
ma_dead_node(const struct maple_node * node)549 static inline bool ma_dead_node(const struct maple_node *node)
550 {
551 struct maple_node *parent;
552
553 /* Do not reorder reads from the node prior to the parent check */
554 smp_rmb();
555 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
556 return (parent == node);
557 }
558
559 /*
560 * mte_dead_node() - check if the @enode is dead.
561 * @enode: The encoded maple node
562 *
563 * Return: true if dead, false otherwise.
564 */
mte_dead_node(const struct maple_enode * enode)565 static inline bool mte_dead_node(const struct maple_enode *enode)
566 {
567 struct maple_node *parent, *node;
568
569 node = mte_to_node(enode);
570 /* Do not reorder reads from the node prior to the parent check */
571 smp_rmb();
572 parent = mte_parent(enode);
573 return (parent == node);
574 }
575
576 /*
577 * mas_allocated() - Get the number of nodes allocated in a maple state.
578 * @mas: The maple state
579 *
580 * The ma_state alloc member is overloaded to hold a pointer to the first
581 * allocated node or to the number of requested nodes to allocate. If bit 0 is
582 * set, then the alloc contains the number of requested nodes. If there is an
583 * allocated node, then the total allocated nodes is in that node.
584 *
585 * Return: The total number of nodes allocated
586 */
mas_allocated(const struct ma_state * mas)587 static inline unsigned long mas_allocated(const struct ma_state *mas)
588 {
589 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
590 return 0;
591
592 return mas->alloc->total;
593 }
594
595 /*
596 * mas_set_alloc_req() - Set the requested number of allocations.
597 * @mas: the maple state
598 * @count: the number of allocations.
599 *
600 * The requested number of allocations is either in the first allocated node,
601 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
602 * no allocated node. Set the request either in the node or do the necessary
603 * encoding to store in @mas->alloc directly.
604 */
mas_set_alloc_req(struct ma_state * mas,unsigned long count)605 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
606 {
607 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
608 if (!count)
609 mas->alloc = NULL;
610 else
611 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
612 return;
613 }
614
615 mas->alloc->request_count = count;
616 }
617
618 /*
619 * mas_alloc_req() - get the requested number of allocations.
620 * @mas: The maple state
621 *
622 * The alloc count is either stored directly in @mas, or in
623 * @mas->alloc->request_count if there is at least one node allocated. Decode
624 * the request count if it's stored directly in @mas->alloc.
625 *
626 * Return: The allocation request count.
627 */
mas_alloc_req(const struct ma_state * mas)628 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
629 {
630 if ((unsigned long)mas->alloc & 0x1)
631 return (unsigned long)(mas->alloc) >> 1;
632 else if (mas->alloc)
633 return mas->alloc->request_count;
634 return 0;
635 }
636
637 /*
638 * ma_pivots() - Get a pointer to the maple node pivots.
639 * @node - the maple node
640 * @type - the node type
641 *
642 * In the event of a dead node, this array may be %NULL
643 *
644 * Return: A pointer to the maple node pivots
645 */
ma_pivots(struct maple_node * node,enum maple_type type)646 static inline unsigned long *ma_pivots(struct maple_node *node,
647 enum maple_type type)
648 {
649 switch (type) {
650 case maple_arange_64:
651 return node->ma64.pivot;
652 case maple_range_64:
653 case maple_leaf_64:
654 return node->mr64.pivot;
655 case maple_dense:
656 return NULL;
657 }
658 return NULL;
659 }
660
661 /*
662 * ma_gaps() - Get a pointer to the maple node gaps.
663 * @node - the maple node
664 * @type - the node type
665 *
666 * Return: A pointer to the maple node gaps
667 */
ma_gaps(struct maple_node * node,enum maple_type type)668 static inline unsigned long *ma_gaps(struct maple_node *node,
669 enum maple_type type)
670 {
671 switch (type) {
672 case maple_arange_64:
673 return node->ma64.gap;
674 case maple_range_64:
675 case maple_leaf_64:
676 case maple_dense:
677 return NULL;
678 }
679 return NULL;
680 }
681
682 /*
683 * mas_pivot() - Get the pivot at @piv of the maple encoded node.
684 * @mas: The maple state.
685 * @piv: The pivot.
686 *
687 * Return: the pivot at @piv of @mn.
688 */
mas_pivot(struct ma_state * mas,unsigned char piv)689 static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
690 {
691 struct maple_node *node = mas_mn(mas);
692 enum maple_type type = mte_node_type(mas->node);
693
694 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
695 mas_set_err(mas, -EIO);
696 return 0;
697 }
698
699 switch (type) {
700 case maple_arange_64:
701 return node->ma64.pivot[piv];
702 case maple_range_64:
703 case maple_leaf_64:
704 return node->mr64.pivot[piv];
705 case maple_dense:
706 return 0;
707 }
708 return 0;
709 }
710
711 /*
712 * mas_safe_pivot() - get the pivot at @piv or mas->max.
713 * @mas: The maple state
714 * @pivots: The pointer to the maple node pivots
715 * @piv: The pivot to fetch
716 * @type: The maple node type
717 *
718 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
719 * otherwise.
720 */
721 static inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)722 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
723 unsigned char piv, enum maple_type type)
724 {
725 if (piv >= mt_pivots[type])
726 return mas->max;
727
728 return pivots[piv];
729 }
730
731 /*
732 * mas_safe_min() - Return the minimum for a given offset.
733 * @mas: The maple state
734 * @pivots: The pointer to the maple node pivots
735 * @offset: The offset into the pivot array
736 *
737 * Return: The minimum range value that is contained in @offset.
738 */
739 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)740 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
741 {
742 if (likely(offset))
743 return pivots[offset - 1] + 1;
744
745 return mas->min;
746 }
747
748 /*
749 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
750 * @mn: The encoded maple node
751 * @piv: The pivot offset
752 * @val: The value of the pivot
753 */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)754 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
755 unsigned long val)
756 {
757 struct maple_node *node = mte_to_node(mn);
758 enum maple_type type = mte_node_type(mn);
759
760 BUG_ON(piv >= mt_pivots[type]);
761 switch (type) {
762 default:
763 case maple_range_64:
764 case maple_leaf_64:
765 node->mr64.pivot[piv] = val;
766 break;
767 case maple_arange_64:
768 node->ma64.pivot[piv] = val;
769 break;
770 case maple_dense:
771 break;
772 }
773
774 }
775
776 /*
777 * ma_slots() - Get a pointer to the maple node slots.
778 * @mn: The maple node
779 * @mt: The maple node type
780 *
781 * Return: A pointer to the maple node slots
782 */
ma_slots(struct maple_node * mn,enum maple_type mt)783 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
784 {
785 switch (mt) {
786 default:
787 case maple_arange_64:
788 return mn->ma64.slot;
789 case maple_range_64:
790 case maple_leaf_64:
791 return mn->mr64.slot;
792 case maple_dense:
793 return mn->slot;
794 }
795 }
796
mt_write_locked(const struct maple_tree * mt)797 static inline bool mt_write_locked(const struct maple_tree *mt)
798 {
799 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
800 lockdep_is_held(&mt->ma_lock);
801 }
802
mt_locked(const struct maple_tree * mt)803 static inline bool mt_locked(const struct maple_tree *mt)
804 {
805 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
806 lockdep_is_held(&mt->ma_lock);
807 }
808
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)809 static inline void *mt_slot(const struct maple_tree *mt,
810 void __rcu **slots, unsigned char offset)
811 {
812 return rcu_dereference_check(slots[offset], mt_locked(mt));
813 }
814
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)815 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
816 unsigned char offset)
817 {
818 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
819 }
820 /*
821 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
822 * @mas: The maple state
823 * @slots: The pointer to the slots
824 * @offset: The offset into the slots array to fetch
825 *
826 * Return: The entry stored in @slots at the @offset.
827 */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)828 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
829 unsigned char offset)
830 {
831 return mt_slot_locked(mas->tree, slots, offset);
832 }
833
834 /*
835 * mas_slot() - Get the slot value when not holding the maple tree lock.
836 * @mas: The maple state
837 * @slots: The pointer to the slots
838 * @offset: The offset into the slots array to fetch
839 *
840 * Return: The entry stored in @slots at the @offset
841 */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)842 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
843 unsigned char offset)
844 {
845 return mt_slot(mas->tree, slots, offset);
846 }
847
848 /*
849 * mas_root() - Get the maple tree root.
850 * @mas: The maple state.
851 *
852 * Return: The pointer to the root of the tree
853 */
mas_root(struct ma_state * mas)854 static inline void *mas_root(struct ma_state *mas)
855 {
856 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
857 }
858
mt_root_locked(struct maple_tree * mt)859 static inline void *mt_root_locked(struct maple_tree *mt)
860 {
861 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
862 }
863
864 /*
865 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
866 * @mas: The maple state.
867 *
868 * Return: The pointer to the root of the tree
869 */
mas_root_locked(struct ma_state * mas)870 static inline void *mas_root_locked(struct ma_state *mas)
871 {
872 return mt_root_locked(mas->tree);
873 }
874
ma_meta(struct maple_node * mn,enum maple_type mt)875 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
876 enum maple_type mt)
877 {
878 switch (mt) {
879 case maple_arange_64:
880 return &mn->ma64.meta;
881 default:
882 return &mn->mr64.meta;
883 }
884 }
885
886 /*
887 * ma_set_meta() - Set the metadata information of a node.
888 * @mn: The maple node
889 * @mt: The maple node type
890 * @offset: The offset of the highest sub-gap in this node.
891 * @end: The end of the data in this node.
892 */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)893 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
894 unsigned char offset, unsigned char end)
895 {
896 struct maple_metadata *meta = ma_meta(mn, mt);
897
898 meta->gap = offset;
899 meta->end = end;
900 }
901
902 /*
903 * mt_clear_meta() - clear the metadata information of a node, if it exists
904 * @mt: The maple tree
905 * @mn: The maple node
906 * @type: The maple node type
907 * @offset: The offset of the highest sub-gap in this node.
908 * @end: The end of the data in this node.
909 */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)910 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
911 enum maple_type type)
912 {
913 struct maple_metadata *meta;
914 unsigned long *pivots;
915 void __rcu **slots;
916 void *next;
917
918 switch (type) {
919 case maple_range_64:
920 pivots = mn->mr64.pivot;
921 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
922 slots = mn->mr64.slot;
923 next = mt_slot_locked(mt, slots,
924 MAPLE_RANGE64_SLOTS - 1);
925 if (unlikely((mte_to_node(next) &&
926 mte_node_type(next))))
927 return; /* no metadata, could be node */
928 }
929 fallthrough;
930 case maple_arange_64:
931 meta = ma_meta(mn, type);
932 break;
933 default:
934 return;
935 }
936
937 meta->gap = 0;
938 meta->end = 0;
939 }
940
941 /*
942 * ma_meta_end() - Get the data end of a node from the metadata
943 * @mn: The maple node
944 * @mt: The maple node type
945 */
ma_meta_end(struct maple_node * mn,enum maple_type mt)946 static inline unsigned char ma_meta_end(struct maple_node *mn,
947 enum maple_type mt)
948 {
949 struct maple_metadata *meta = ma_meta(mn, mt);
950
951 return meta->end;
952 }
953
954 /*
955 * ma_meta_gap() - Get the largest gap location of a node from the metadata
956 * @mn: The maple node
957 * @mt: The maple node type
958 */
ma_meta_gap(struct maple_node * mn,enum maple_type mt)959 static inline unsigned char ma_meta_gap(struct maple_node *mn,
960 enum maple_type mt)
961 {
962 return mn->ma64.meta.gap;
963 }
964
965 /*
966 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
967 * @mn: The maple node
968 * @mn: The maple node type
969 * @offset: The location of the largest gap.
970 */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)971 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
972 unsigned char offset)
973 {
974
975 struct maple_metadata *meta = ma_meta(mn, mt);
976
977 meta->gap = offset;
978 }
979
980 /*
981 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
982 * @mat - the ma_topiary, a linked list of dead nodes.
983 * @dead_enode - the node to be marked as dead and added to the tail of the list
984 *
985 * Add the @dead_enode to the linked list in @mat.
986 */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)987 static inline void mat_add(struct ma_topiary *mat,
988 struct maple_enode *dead_enode)
989 {
990 mte_set_node_dead(dead_enode);
991 mte_to_mat(dead_enode)->next = NULL;
992 if (!mat->tail) {
993 mat->tail = mat->head = dead_enode;
994 return;
995 }
996
997 mte_to_mat(mat->tail)->next = dead_enode;
998 mat->tail = dead_enode;
999 }
1000
1001 static void mt_free_walk(struct rcu_head *head);
1002 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
1003 bool free);
1004 /*
1005 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1006 * @mas - the maple state
1007 * @mat - the ma_topiary linked list of dead nodes to free.
1008 *
1009 * Destroy walk a dead list.
1010 */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)1011 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1012 {
1013 struct maple_enode *next;
1014 struct maple_node *node;
1015 bool in_rcu = mt_in_rcu(mas->tree);
1016
1017 while (mat->head) {
1018 next = mte_to_mat(mat->head)->next;
1019 node = mte_to_node(mat->head);
1020 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1021 if (in_rcu)
1022 call_rcu(&node->rcu, mt_free_walk);
1023 mat->head = next;
1024 }
1025 }
1026 /*
1027 * mas_descend() - Descend into the slot stored in the ma_state.
1028 * @mas - the maple state.
1029 *
1030 * Note: Not RCU safe, only use in write side or debug code.
1031 */
mas_descend(struct ma_state * mas)1032 static inline void mas_descend(struct ma_state *mas)
1033 {
1034 enum maple_type type;
1035 unsigned long *pivots;
1036 struct maple_node *node;
1037 void __rcu **slots;
1038
1039 node = mas_mn(mas);
1040 type = mte_node_type(mas->node);
1041 pivots = ma_pivots(node, type);
1042 slots = ma_slots(node, type);
1043
1044 if (mas->offset)
1045 mas->min = pivots[mas->offset - 1] + 1;
1046 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1047 mas->node = mas_slot(mas, slots, mas->offset);
1048 }
1049
1050 /*
1051 * mte_set_gap() - Set a maple node gap.
1052 * @mn: The encoded maple node
1053 * @gap: The offset of the gap to set
1054 * @val: The gap value
1055 */
mte_set_gap(const struct maple_enode * mn,unsigned char gap,unsigned long val)1056 static inline void mte_set_gap(const struct maple_enode *mn,
1057 unsigned char gap, unsigned long val)
1058 {
1059 switch (mte_node_type(mn)) {
1060 default:
1061 break;
1062 case maple_arange_64:
1063 mte_to_node(mn)->ma64.gap[gap] = val;
1064 break;
1065 }
1066 }
1067
1068 /*
1069 * mas_ascend() - Walk up a level of the tree.
1070 * @mas: The maple state
1071 *
1072 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1073 * may cause several levels of walking up to find the correct min and max.
1074 * May find a dead node which will cause a premature return.
1075 * Return: 1 on dead node, 0 otherwise
1076 */
mas_ascend(struct ma_state * mas)1077 static int mas_ascend(struct ma_state *mas)
1078 {
1079 struct maple_enode *p_enode; /* parent enode. */
1080 struct maple_enode *a_enode; /* ancestor enode. */
1081 struct maple_node *a_node; /* ancestor node. */
1082 struct maple_node *p_node; /* parent node. */
1083 unsigned char a_slot;
1084 enum maple_type a_type;
1085 unsigned long min, max;
1086 unsigned long *pivots;
1087 bool set_max = false, set_min = false;
1088
1089 a_node = mas_mn(mas);
1090 if (ma_is_root(a_node)) {
1091 mas->offset = 0;
1092 return 0;
1093 }
1094
1095 p_node = mte_parent(mas->node);
1096 if (unlikely(a_node == p_node))
1097 return 1;
1098
1099 a_type = mas_parent_type(mas, mas->node);
1100 mas->offset = mte_parent_slot(mas->node);
1101 a_enode = mt_mk_node(p_node, a_type);
1102
1103 /* Check to make sure all parent information is still accurate */
1104 if (p_node != mte_parent(mas->node))
1105 return 1;
1106
1107 mas->node = a_enode;
1108
1109 if (mte_is_root(a_enode)) {
1110 mas->max = ULONG_MAX;
1111 mas->min = 0;
1112 return 0;
1113 }
1114
1115 if (!mas->min)
1116 set_min = true;
1117
1118 if (mas->max == ULONG_MAX)
1119 set_max = true;
1120
1121 min = 0;
1122 max = ULONG_MAX;
1123 do {
1124 p_enode = a_enode;
1125 a_type = mas_parent_type(mas, p_enode);
1126 a_node = mte_parent(p_enode);
1127 a_slot = mte_parent_slot(p_enode);
1128 a_enode = mt_mk_node(a_node, a_type);
1129 pivots = ma_pivots(a_node, a_type);
1130
1131 if (unlikely(ma_dead_node(a_node)))
1132 return 1;
1133
1134 if (!set_min && a_slot) {
1135 set_min = true;
1136 min = pivots[a_slot - 1] + 1;
1137 }
1138
1139 if (!set_max && a_slot < mt_pivots[a_type]) {
1140 set_max = true;
1141 max = pivots[a_slot];
1142 }
1143
1144 if (unlikely(ma_dead_node(a_node)))
1145 return 1;
1146
1147 if (unlikely(ma_is_root(a_node)))
1148 break;
1149
1150 } while (!set_min || !set_max);
1151
1152 mas->max = max;
1153 mas->min = min;
1154 return 0;
1155 }
1156
1157 /*
1158 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1159 * @mas: The maple state
1160 *
1161 * Return: A pointer to a maple node.
1162 */
mas_pop_node(struct ma_state * mas)1163 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1164 {
1165 struct maple_alloc *ret, *node = mas->alloc;
1166 unsigned long total = mas_allocated(mas);
1167 unsigned int req = mas_alloc_req(mas);
1168
1169 /* nothing or a request pending. */
1170 if (WARN_ON(!total))
1171 return NULL;
1172
1173 if (total == 1) {
1174 /* single allocation in this ma_state */
1175 mas->alloc = NULL;
1176 ret = node;
1177 goto single_node;
1178 }
1179
1180 if (node->node_count == 1) {
1181 /* Single allocation in this node. */
1182 mas->alloc = node->slot[0];
1183 mas->alloc->total = node->total - 1;
1184 ret = node;
1185 goto new_head;
1186 }
1187 node->total--;
1188 ret = node->slot[--node->node_count];
1189 node->slot[node->node_count] = NULL;
1190
1191 single_node:
1192 new_head:
1193 if (req) {
1194 req++;
1195 mas_set_alloc_req(mas, req);
1196 }
1197
1198 memset(ret, 0, sizeof(*ret));
1199 return (struct maple_node *)ret;
1200 }
1201
1202 /*
1203 * mas_push_node() - Push a node back on the maple state allocation.
1204 * @mas: The maple state
1205 * @used: The used maple node
1206 *
1207 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1208 * requested node count as necessary.
1209 */
mas_push_node(struct ma_state * mas,struct maple_node * used)1210 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1211 {
1212 struct maple_alloc *reuse = (struct maple_alloc *)used;
1213 struct maple_alloc *head = mas->alloc;
1214 unsigned long count;
1215 unsigned int requested = mas_alloc_req(mas);
1216
1217 count = mas_allocated(mas);
1218
1219 reuse->request_count = 0;
1220 reuse->node_count = 0;
1221 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1222 head->slot[head->node_count++] = reuse;
1223 head->total++;
1224 goto done;
1225 }
1226
1227 reuse->total = 1;
1228 if ((head) && !((unsigned long)head & 0x1)) {
1229 reuse->slot[0] = head;
1230 reuse->node_count = 1;
1231 reuse->total += head->total;
1232 }
1233
1234 mas->alloc = reuse;
1235 done:
1236 if (requested > 1)
1237 mas_set_alloc_req(mas, requested - 1);
1238 }
1239
1240 /*
1241 * mas_alloc_nodes() - Allocate nodes into a maple state
1242 * @mas: The maple state
1243 * @gfp: The GFP Flags
1244 */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1245 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1246 {
1247 struct maple_alloc *node;
1248 unsigned long allocated = mas_allocated(mas);
1249 unsigned int requested = mas_alloc_req(mas);
1250 unsigned int count;
1251 void **slots = NULL;
1252 unsigned int max_req = 0;
1253
1254 if (!requested)
1255 return;
1256
1257 mas_set_alloc_req(mas, 0);
1258 if (mas->mas_flags & MA_STATE_PREALLOC) {
1259 if (allocated)
1260 return;
1261 WARN_ON(!allocated);
1262 }
1263
1264 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1265 node = (struct maple_alloc *)mt_alloc_one(gfp);
1266 if (!node)
1267 goto nomem_one;
1268
1269 if (allocated) {
1270 node->slot[0] = mas->alloc;
1271 node->node_count = 1;
1272 } else {
1273 node->node_count = 0;
1274 }
1275
1276 mas->alloc = node;
1277 node->total = ++allocated;
1278 requested--;
1279 }
1280
1281 node = mas->alloc;
1282 node->request_count = 0;
1283 while (requested) {
1284 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1285 slots = (void **)&node->slot[node->node_count];
1286 max_req = min(requested, max_req);
1287 count = mt_alloc_bulk(gfp, max_req, slots);
1288 if (!count)
1289 goto nomem_bulk;
1290
1291 if (node->node_count == 0) {
1292 node->slot[0]->node_count = 0;
1293 node->slot[0]->request_count = 0;
1294 }
1295
1296 node->node_count += count;
1297 allocated += count;
1298 node = node->slot[0];
1299 requested -= count;
1300 }
1301 mas->alloc->total = allocated;
1302 return;
1303
1304 nomem_bulk:
1305 /* Clean up potential freed allocations on bulk failure */
1306 memset(slots, 0, max_req * sizeof(unsigned long));
1307 nomem_one:
1308 mas_set_alloc_req(mas, requested);
1309 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1310 mas->alloc->total = allocated;
1311 mas_set_err(mas, -ENOMEM);
1312 }
1313
1314 /*
1315 * mas_free() - Free an encoded maple node
1316 * @mas: The maple state
1317 * @used: The encoded maple node to free.
1318 *
1319 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1320 * otherwise.
1321 */
mas_free(struct ma_state * mas,struct maple_enode * used)1322 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1323 {
1324 struct maple_node *tmp = mte_to_node(used);
1325
1326 if (mt_in_rcu(mas->tree))
1327 ma_free_rcu(tmp);
1328 else
1329 mas_push_node(mas, tmp);
1330 }
1331
1332 /*
1333 * mas_node_count() - Check if enough nodes are allocated and request more if
1334 * there is not enough nodes.
1335 * @mas: The maple state
1336 * @count: The number of nodes needed
1337 * @gfp: the gfp flags
1338 */
mas_node_count_gfp(struct ma_state * mas,int count,gfp_t gfp)1339 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1340 {
1341 unsigned long allocated = mas_allocated(mas);
1342
1343 if (allocated < count) {
1344 mas_set_alloc_req(mas, count - allocated);
1345 mas_alloc_nodes(mas, gfp);
1346 }
1347 }
1348
1349 /*
1350 * mas_node_count() - Check if enough nodes are allocated and request more if
1351 * there is not enough nodes.
1352 * @mas: The maple state
1353 * @count: The number of nodes needed
1354 *
1355 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1356 */
mas_node_count(struct ma_state * mas,int count)1357 static void mas_node_count(struct ma_state *mas, int count)
1358 {
1359 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1360 }
1361
1362 /*
1363 * mas_start() - Sets up maple state for operations.
1364 * @mas: The maple state.
1365 *
1366 * If mas->node == MAS_START, then set the min, max and depth to
1367 * defaults.
1368 *
1369 * Return:
1370 * - If mas->node is an error or not MAS_START, return NULL.
1371 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1372 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1373 * - If it's a tree: NULL & mas->node == safe root node.
1374 */
mas_start(struct ma_state * mas)1375 static inline struct maple_enode *mas_start(struct ma_state *mas)
1376 {
1377 if (likely(mas_is_start(mas))) {
1378 struct maple_enode *root;
1379
1380 mas->min = 0;
1381 mas->max = ULONG_MAX;
1382
1383 retry:
1384 mas->depth = 0;
1385 root = mas_root(mas);
1386 /* Tree with nodes */
1387 if (likely(xa_is_node(root))) {
1388 mas->depth = 1;
1389 mas->node = mte_safe_root(root);
1390 mas->offset = 0;
1391 if (mte_dead_node(mas->node))
1392 goto retry;
1393
1394 return NULL;
1395 }
1396
1397 /* empty tree */
1398 if (unlikely(!root)) {
1399 mas->node = MAS_NONE;
1400 mas->offset = MAPLE_NODE_SLOTS;
1401 return NULL;
1402 }
1403
1404 /* Single entry tree */
1405 mas->node = MAS_ROOT;
1406 mas->offset = MAPLE_NODE_SLOTS;
1407
1408 /* Single entry tree. */
1409 if (mas->index > 0)
1410 return NULL;
1411
1412 return root;
1413 }
1414
1415 return NULL;
1416 }
1417
1418 /*
1419 * ma_data_end() - Find the end of the data in a node.
1420 * @node: The maple node
1421 * @type: The maple node type
1422 * @pivots: The array of pivots in the node
1423 * @max: The maximum value in the node
1424 *
1425 * Uses metadata to find the end of the data when possible.
1426 * Return: The zero indexed last slot with data (may be null).
1427 */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1428 static inline unsigned char ma_data_end(struct maple_node *node,
1429 enum maple_type type,
1430 unsigned long *pivots,
1431 unsigned long max)
1432 {
1433 unsigned char offset;
1434
1435 if (!pivots)
1436 return 0;
1437
1438 if (type == maple_arange_64)
1439 return ma_meta_end(node, type);
1440
1441 offset = mt_pivots[type] - 1;
1442 if (likely(!pivots[offset]))
1443 return ma_meta_end(node, type);
1444
1445 if (likely(pivots[offset] == max))
1446 return offset;
1447
1448 return mt_pivots[type];
1449 }
1450
1451 /*
1452 * mas_data_end() - Find the end of the data (slot).
1453 * @mas: the maple state
1454 *
1455 * This method is optimized to check the metadata of a node if the node type
1456 * supports data end metadata.
1457 *
1458 * Return: The zero indexed last slot with data (may be null).
1459 */
mas_data_end(struct ma_state * mas)1460 static inline unsigned char mas_data_end(struct ma_state *mas)
1461 {
1462 enum maple_type type;
1463 struct maple_node *node;
1464 unsigned char offset;
1465 unsigned long *pivots;
1466
1467 type = mte_node_type(mas->node);
1468 node = mas_mn(mas);
1469 if (type == maple_arange_64)
1470 return ma_meta_end(node, type);
1471
1472 pivots = ma_pivots(node, type);
1473 if (unlikely(ma_dead_node(node)))
1474 return 0;
1475
1476 offset = mt_pivots[type] - 1;
1477 if (likely(!pivots[offset]))
1478 return ma_meta_end(node, type);
1479
1480 if (likely(pivots[offset] == mas->max))
1481 return offset;
1482
1483 return mt_pivots[type];
1484 }
1485
1486 /*
1487 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1488 * @mas - the maple state
1489 *
1490 * Return: The maximum gap in the leaf.
1491 */
mas_leaf_max_gap(struct ma_state * mas)1492 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1493 {
1494 enum maple_type mt;
1495 unsigned long pstart, gap, max_gap;
1496 struct maple_node *mn;
1497 unsigned long *pivots;
1498 void __rcu **slots;
1499 unsigned char i;
1500 unsigned char max_piv;
1501
1502 mt = mte_node_type(mas->node);
1503 mn = mas_mn(mas);
1504 slots = ma_slots(mn, mt);
1505 max_gap = 0;
1506 if (unlikely(ma_is_dense(mt))) {
1507 gap = 0;
1508 for (i = 0; i < mt_slots[mt]; i++) {
1509 if (slots[i]) {
1510 if (gap > max_gap)
1511 max_gap = gap;
1512 gap = 0;
1513 } else {
1514 gap++;
1515 }
1516 }
1517 if (gap > max_gap)
1518 max_gap = gap;
1519 return max_gap;
1520 }
1521
1522 /*
1523 * Check the first implied pivot optimizes the loop below and slot 1 may
1524 * be skipped if there is a gap in slot 0.
1525 */
1526 pivots = ma_pivots(mn, mt);
1527 if (likely(!slots[0])) {
1528 max_gap = pivots[0] - mas->min + 1;
1529 i = 2;
1530 } else {
1531 i = 1;
1532 }
1533
1534 /* reduce max_piv as the special case is checked before the loop */
1535 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1536 /*
1537 * Check end implied pivot which can only be a gap on the right most
1538 * node.
1539 */
1540 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1541 gap = ULONG_MAX - pivots[max_piv];
1542 if (gap > max_gap)
1543 max_gap = gap;
1544 }
1545
1546 for (; i <= max_piv; i++) {
1547 /* data == no gap. */
1548 if (likely(slots[i]))
1549 continue;
1550
1551 pstart = pivots[i - 1];
1552 gap = pivots[i] - pstart;
1553 if (gap > max_gap)
1554 max_gap = gap;
1555
1556 /* There cannot be two gaps in a row. */
1557 i++;
1558 }
1559 return max_gap;
1560 }
1561
1562 /*
1563 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1564 * @node: The maple node
1565 * @gaps: The pointer to the gaps
1566 * @mt: The maple node type
1567 * @*off: Pointer to store the offset location of the gap.
1568 *
1569 * Uses the metadata data end to scan backwards across set gaps.
1570 *
1571 * Return: The maximum gap value
1572 */
1573 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1574 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1575 unsigned char *off)
1576 {
1577 unsigned char offset, i;
1578 unsigned long max_gap = 0;
1579
1580 i = offset = ma_meta_end(node, mt);
1581 do {
1582 if (gaps[i] > max_gap) {
1583 max_gap = gaps[i];
1584 offset = i;
1585 }
1586 } while (i--);
1587
1588 *off = offset;
1589 return max_gap;
1590 }
1591
1592 /*
1593 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1594 * @mas: The maple state.
1595 *
1596 * Return: The gap value.
1597 */
mas_max_gap(struct ma_state * mas)1598 static inline unsigned long mas_max_gap(struct ma_state *mas)
1599 {
1600 unsigned long *gaps;
1601 unsigned char offset;
1602 enum maple_type mt;
1603 struct maple_node *node;
1604
1605 mt = mte_node_type(mas->node);
1606 if (ma_is_leaf(mt))
1607 return mas_leaf_max_gap(mas);
1608
1609 node = mas_mn(mas);
1610 MAS_BUG_ON(mas, mt != maple_arange_64);
1611 offset = ma_meta_gap(node, mt);
1612 gaps = ma_gaps(node, mt);
1613 return gaps[offset];
1614 }
1615
1616 /*
1617 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1618 * @mas: The maple state
1619 * @offset: The gap offset in the parent to set
1620 * @new: The new gap value.
1621 *
1622 * Set the parent gap then continue to set the gap upwards, using the metadata
1623 * of the parent to see if it is necessary to check the node above.
1624 */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1625 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1626 unsigned long new)
1627 {
1628 unsigned long meta_gap = 0;
1629 struct maple_node *pnode;
1630 struct maple_enode *penode;
1631 unsigned long *pgaps;
1632 unsigned char meta_offset;
1633 enum maple_type pmt;
1634
1635 pnode = mte_parent(mas->node);
1636 pmt = mas_parent_type(mas, mas->node);
1637 penode = mt_mk_node(pnode, pmt);
1638 pgaps = ma_gaps(pnode, pmt);
1639
1640 ascend:
1641 MAS_BUG_ON(mas, pmt != maple_arange_64);
1642 meta_offset = ma_meta_gap(pnode, pmt);
1643 meta_gap = pgaps[meta_offset];
1644
1645 pgaps[offset] = new;
1646
1647 if (meta_gap == new)
1648 return;
1649
1650 if (offset != meta_offset) {
1651 if (meta_gap > new)
1652 return;
1653
1654 ma_set_meta_gap(pnode, pmt, offset);
1655 } else if (new < meta_gap) {
1656 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1657 ma_set_meta_gap(pnode, pmt, meta_offset);
1658 }
1659
1660 if (ma_is_root(pnode))
1661 return;
1662
1663 /* Go to the parent node. */
1664 pnode = mte_parent(penode);
1665 pmt = mas_parent_type(mas, penode);
1666 pgaps = ma_gaps(pnode, pmt);
1667 offset = mte_parent_slot(penode);
1668 penode = mt_mk_node(pnode, pmt);
1669 goto ascend;
1670 }
1671
1672 /*
1673 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1674 * @mas - the maple state.
1675 */
mas_update_gap(struct ma_state * mas)1676 static inline void mas_update_gap(struct ma_state *mas)
1677 {
1678 unsigned char pslot;
1679 unsigned long p_gap;
1680 unsigned long max_gap;
1681
1682 if (!mt_is_alloc(mas->tree))
1683 return;
1684
1685 if (mte_is_root(mas->node))
1686 return;
1687
1688 max_gap = mas_max_gap(mas);
1689
1690 pslot = mte_parent_slot(mas->node);
1691 p_gap = ma_gaps(mte_parent(mas->node),
1692 mas_parent_type(mas, mas->node))[pslot];
1693
1694 if (p_gap != max_gap)
1695 mas_parent_gap(mas, pslot, max_gap);
1696 }
1697
1698 /*
1699 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1700 * @parent with the slot encoded.
1701 * @mas - the maple state (for the tree)
1702 * @parent - the maple encoded node containing the children.
1703 */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1704 static inline void mas_adopt_children(struct ma_state *mas,
1705 struct maple_enode *parent)
1706 {
1707 enum maple_type type = mte_node_type(parent);
1708 struct maple_node *node = mte_to_node(parent);
1709 void __rcu **slots = ma_slots(node, type);
1710 unsigned long *pivots = ma_pivots(node, type);
1711 struct maple_enode *child;
1712 unsigned char offset;
1713
1714 offset = ma_data_end(node, type, pivots, mas->max);
1715 do {
1716 child = mas_slot_locked(mas, slots, offset);
1717 mas_set_parent(mas, child, parent, offset);
1718 } while (offset--);
1719 }
1720
1721 /*
1722 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1723 * node as dead.
1724 * @mas - the maple state with the new node
1725 * @old_enode - The old maple encoded node to replace.
1726 */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode)1727 static inline void mas_put_in_tree(struct ma_state *mas,
1728 struct maple_enode *old_enode)
1729 __must_hold(mas->tree->ma_lock)
1730 {
1731 unsigned char offset;
1732 void __rcu **slots;
1733
1734 if (mte_is_root(mas->node)) {
1735 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1736 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1737 mas_set_height(mas);
1738 } else {
1739
1740 offset = mte_parent_slot(mas->node);
1741 slots = ma_slots(mte_parent(mas->node),
1742 mas_parent_type(mas, mas->node));
1743 rcu_assign_pointer(slots[offset], mas->node);
1744 }
1745
1746 mte_set_node_dead(old_enode);
1747 }
1748
1749 /*
1750 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1751 * dead, and freeing it.
1752 * the parent encoding to locate the maple node in the tree.
1753 * @mas - the ma_state with @mas->node pointing to the new node.
1754 * @old_enode - The old maple encoded node.
1755 */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode)1756 static inline void mas_replace_node(struct ma_state *mas,
1757 struct maple_enode *old_enode)
1758 __must_hold(mas->tree->ma_lock)
1759 {
1760 mas_put_in_tree(mas, old_enode);
1761 mas_free(mas, old_enode);
1762 }
1763
1764 /*
1765 * mas_find_child() - Find a child who has the parent @mas->node.
1766 * @mas: the maple state with the parent.
1767 * @child: the maple state to store the child.
1768 */
mas_find_child(struct ma_state * mas,struct ma_state * child)1769 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1770 __must_hold(mas->tree->ma_lock)
1771 {
1772 enum maple_type mt;
1773 unsigned char offset;
1774 unsigned char end;
1775 unsigned long *pivots;
1776 struct maple_enode *entry;
1777 struct maple_node *node;
1778 void __rcu **slots;
1779
1780 mt = mte_node_type(mas->node);
1781 node = mas_mn(mas);
1782 slots = ma_slots(node, mt);
1783 pivots = ma_pivots(node, mt);
1784 end = ma_data_end(node, mt, pivots, mas->max);
1785 for (offset = mas->offset; offset <= end; offset++) {
1786 entry = mas_slot_locked(mas, slots, offset);
1787 if (mte_parent(entry) == node) {
1788 *child = *mas;
1789 mas->offset = offset + 1;
1790 child->offset = offset;
1791 mas_descend(child);
1792 child->offset = 0;
1793 return true;
1794 }
1795 }
1796 return false;
1797 }
1798
1799 /*
1800 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1801 * old data or set b_node->b_end.
1802 * @b_node: the maple_big_node
1803 * @shift: the shift count
1804 */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1805 static inline void mab_shift_right(struct maple_big_node *b_node,
1806 unsigned char shift)
1807 {
1808 unsigned long size = b_node->b_end * sizeof(unsigned long);
1809
1810 memmove(b_node->pivot + shift, b_node->pivot, size);
1811 memmove(b_node->slot + shift, b_node->slot, size);
1812 if (b_node->type == maple_arange_64)
1813 memmove(b_node->gap + shift, b_node->gap, size);
1814 }
1815
1816 /*
1817 * mab_middle_node() - Check if a middle node is needed (unlikely)
1818 * @b_node: the maple_big_node that contains the data.
1819 * @size: the amount of data in the b_node
1820 * @split: the potential split location
1821 * @slot_count: the size that can be stored in a single node being considered.
1822 *
1823 * Return: true if a middle node is required.
1824 */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1825 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1826 unsigned char slot_count)
1827 {
1828 unsigned char size = b_node->b_end;
1829
1830 if (size >= 2 * slot_count)
1831 return true;
1832
1833 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1834 return true;
1835
1836 return false;
1837 }
1838
1839 /*
1840 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1841 * @b_node: the maple_big_node with the data
1842 * @split: the suggested split location
1843 * @slot_count: the number of slots in the node being considered.
1844 *
1845 * Return: the split location.
1846 */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1847 static inline int mab_no_null_split(struct maple_big_node *b_node,
1848 unsigned char split, unsigned char slot_count)
1849 {
1850 if (!b_node->slot[split]) {
1851 /*
1852 * If the split is less than the max slot && the right side will
1853 * still be sufficient, then increment the split on NULL.
1854 */
1855 if ((split < slot_count - 1) &&
1856 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1857 split++;
1858 else
1859 split--;
1860 }
1861 return split;
1862 }
1863
1864 /*
1865 * mab_calc_split() - Calculate the split location and if there needs to be two
1866 * splits.
1867 * @bn: The maple_big_node with the data
1868 * @mid_split: The second split, if required. 0 otherwise.
1869 *
1870 * Return: The first split location. The middle split is set in @mid_split.
1871 */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split)1872 static inline int mab_calc_split(struct ma_state *mas,
1873 struct maple_big_node *bn, unsigned char *mid_split)
1874 {
1875 unsigned char b_end = bn->b_end;
1876 int split = b_end / 2; /* Assume equal split. */
1877 unsigned char slot_count = mt_slots[bn->type];
1878
1879 /*
1880 * To support gap tracking, all NULL entries are kept together and a node cannot
1881 * end on a NULL entry, with the exception of the left-most leaf. The
1882 * limitation means that the split of a node must be checked for this condition
1883 * and be able to put more data in one direction or the other.
1884 */
1885 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1886 *mid_split = 0;
1887 split = b_end - mt_min_slots[bn->type];
1888
1889 if (!ma_is_leaf(bn->type))
1890 return split;
1891
1892 mas->mas_flags |= MA_STATE_REBALANCE;
1893 if (!bn->slot[split])
1894 split--;
1895 return split;
1896 }
1897
1898 /*
1899 * Although extremely rare, it is possible to enter what is known as the 3-way
1900 * split scenario. The 3-way split comes about by means of a store of a range
1901 * that overwrites the end and beginning of two full nodes. The result is a set
1902 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1903 * also be located in different parent nodes which are also full. This can
1904 * carry upwards all the way to the root in the worst case.
1905 */
1906 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1907 split = b_end / 3;
1908 *mid_split = split * 2;
1909 } else {
1910 *mid_split = 0;
1911 }
1912
1913 /* Avoid ending a node on a NULL entry */
1914 split = mab_no_null_split(bn, split, slot_count);
1915
1916 if (unlikely(*mid_split))
1917 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1918
1919 return split;
1920 }
1921
1922 /*
1923 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1924 * and set @b_node->b_end to the next free slot.
1925 * @mas: The maple state
1926 * @mas_start: The starting slot to copy
1927 * @mas_end: The end slot to copy (inclusively)
1928 * @b_node: The maple_big_node to place the data
1929 * @mab_start: The starting location in maple_big_node to store the data.
1930 */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1931 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1932 unsigned char mas_end, struct maple_big_node *b_node,
1933 unsigned char mab_start)
1934 {
1935 enum maple_type mt;
1936 struct maple_node *node;
1937 void __rcu **slots;
1938 unsigned long *pivots, *gaps;
1939 int i = mas_start, j = mab_start;
1940 unsigned char piv_end;
1941
1942 node = mas_mn(mas);
1943 mt = mte_node_type(mas->node);
1944 pivots = ma_pivots(node, mt);
1945 if (!i) {
1946 b_node->pivot[j] = pivots[i++];
1947 if (unlikely(i > mas_end))
1948 goto complete;
1949 j++;
1950 }
1951
1952 piv_end = min(mas_end, mt_pivots[mt]);
1953 for (; i < piv_end; i++, j++) {
1954 b_node->pivot[j] = pivots[i];
1955 if (unlikely(!b_node->pivot[j]))
1956 break;
1957
1958 if (unlikely(mas->max == b_node->pivot[j]))
1959 goto complete;
1960 }
1961
1962 if (likely(i <= mas_end))
1963 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1964
1965 complete:
1966 b_node->b_end = ++j;
1967 j -= mab_start;
1968 slots = ma_slots(node, mt);
1969 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1970 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1971 gaps = ma_gaps(node, mt);
1972 memcpy(b_node->gap + mab_start, gaps + mas_start,
1973 sizeof(unsigned long) * j);
1974 }
1975 }
1976
1977 /*
1978 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1979 * @mas: The maple state
1980 * @node: The maple node
1981 * @pivots: pointer to the maple node pivots
1982 * @mt: The maple type
1983 * @end: The assumed end
1984 *
1985 * Note, end may be incremented within this function but not modified at the
1986 * source. This is fine since the metadata is the last thing to be stored in a
1987 * node during a write.
1988 */
mas_leaf_set_meta(struct ma_state * mas,struct maple_node * node,unsigned long * pivots,enum maple_type mt,unsigned char end)1989 static inline void mas_leaf_set_meta(struct ma_state *mas,
1990 struct maple_node *node, unsigned long *pivots,
1991 enum maple_type mt, unsigned char end)
1992 {
1993 /* There is no room for metadata already */
1994 if (mt_pivots[mt] <= end)
1995 return;
1996
1997 if (pivots[end] && pivots[end] < mas->max)
1998 end++;
1999
2000 if (end < mt_slots[mt] - 1)
2001 ma_set_meta(node, mt, 0, end);
2002 }
2003
2004 /*
2005 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2006 * @b_node: the maple_big_node that has the data
2007 * @mab_start: the start location in @b_node.
2008 * @mab_end: The end location in @b_node (inclusively)
2009 * @mas: The maple state with the maple encoded node.
2010 */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)2011 static inline void mab_mas_cp(struct maple_big_node *b_node,
2012 unsigned char mab_start, unsigned char mab_end,
2013 struct ma_state *mas, bool new_max)
2014 {
2015 int i, j = 0;
2016 enum maple_type mt = mte_node_type(mas->node);
2017 struct maple_node *node = mte_to_node(mas->node);
2018 void __rcu **slots = ma_slots(node, mt);
2019 unsigned long *pivots = ma_pivots(node, mt);
2020 unsigned long *gaps = NULL;
2021 unsigned char end;
2022
2023 if (mab_end - mab_start > mt_pivots[mt])
2024 mab_end--;
2025
2026 if (!pivots[mt_pivots[mt] - 1])
2027 slots[mt_pivots[mt]] = NULL;
2028
2029 i = mab_start;
2030 do {
2031 pivots[j++] = b_node->pivot[i++];
2032 } while (i <= mab_end && likely(b_node->pivot[i]));
2033
2034 memcpy(slots, b_node->slot + mab_start,
2035 sizeof(void *) * (i - mab_start));
2036
2037 if (new_max)
2038 mas->max = b_node->pivot[i - 1];
2039
2040 end = j - 1;
2041 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2042 unsigned long max_gap = 0;
2043 unsigned char offset = 0;
2044
2045 gaps = ma_gaps(node, mt);
2046 do {
2047 gaps[--j] = b_node->gap[--i];
2048 if (gaps[j] > max_gap) {
2049 offset = j;
2050 max_gap = gaps[j];
2051 }
2052 } while (j);
2053
2054 ma_set_meta(node, mt, offset, end);
2055 } else {
2056 mas_leaf_set_meta(mas, node, pivots, mt, end);
2057 }
2058 }
2059
2060 /*
2061 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2062 * @mas: The maple state
2063 * @end: The maple node end
2064 * @mt: The maple node type
2065 */
mas_bulk_rebalance(struct ma_state * mas,unsigned char end,enum maple_type mt)2066 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2067 enum maple_type mt)
2068 {
2069 if (!(mas->mas_flags & MA_STATE_BULK))
2070 return;
2071
2072 if (mte_is_root(mas->node))
2073 return;
2074
2075 if (end > mt_min_slots[mt]) {
2076 mas->mas_flags &= ~MA_STATE_REBALANCE;
2077 return;
2078 }
2079 }
2080
2081 /*
2082 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2083 * data from a maple encoded node.
2084 * @wr_mas: the maple write state
2085 * @b_node: the maple_big_node to fill with data
2086 * @offset_end: the offset to end copying
2087 *
2088 * Return: The actual end of the data stored in @b_node
2089 */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)2090 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2091 struct maple_big_node *b_node, unsigned char offset_end)
2092 {
2093 unsigned char slot;
2094 unsigned char b_end;
2095 /* Possible underflow of piv will wrap back to 0 before use. */
2096 unsigned long piv;
2097 struct ma_state *mas = wr_mas->mas;
2098
2099 b_node->type = wr_mas->type;
2100 b_end = 0;
2101 slot = mas->offset;
2102 if (slot) {
2103 /* Copy start data up to insert. */
2104 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2105 b_end = b_node->b_end;
2106 piv = b_node->pivot[b_end - 1];
2107 } else
2108 piv = mas->min - 1;
2109
2110 if (piv + 1 < mas->index) {
2111 /* Handle range starting after old range */
2112 b_node->slot[b_end] = wr_mas->content;
2113 if (!wr_mas->content)
2114 b_node->gap[b_end] = mas->index - 1 - piv;
2115 b_node->pivot[b_end++] = mas->index - 1;
2116 }
2117
2118 /* Store the new entry. */
2119 mas->offset = b_end;
2120 b_node->slot[b_end] = wr_mas->entry;
2121 b_node->pivot[b_end] = mas->last;
2122
2123 /* Appended. */
2124 if (mas->last >= mas->max)
2125 goto b_end;
2126
2127 /* Handle new range ending before old range ends */
2128 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2129 if (piv > mas->last) {
2130 if (piv == ULONG_MAX)
2131 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2132
2133 if (offset_end != slot)
2134 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2135 offset_end);
2136
2137 b_node->slot[++b_end] = wr_mas->content;
2138 if (!wr_mas->content)
2139 b_node->gap[b_end] = piv - mas->last + 1;
2140 b_node->pivot[b_end] = piv;
2141 }
2142
2143 slot = offset_end + 1;
2144 if (slot > wr_mas->node_end)
2145 goto b_end;
2146
2147 /* Copy end data to the end of the node. */
2148 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2149 b_node->b_end--;
2150 return;
2151
2152 b_end:
2153 b_node->b_end = b_end;
2154 }
2155
2156 /*
2157 * mas_prev_sibling() - Find the previous node with the same parent.
2158 * @mas: the maple state
2159 *
2160 * Return: True if there is a previous sibling, false otherwise.
2161 */
mas_prev_sibling(struct ma_state * mas)2162 static inline bool mas_prev_sibling(struct ma_state *mas)
2163 {
2164 unsigned int p_slot = mte_parent_slot(mas->node);
2165
2166 if (mte_is_root(mas->node))
2167 return false;
2168
2169 if (!p_slot)
2170 return false;
2171
2172 mas_ascend(mas);
2173 mas->offset = p_slot - 1;
2174 mas_descend(mas);
2175 return true;
2176 }
2177
2178 /*
2179 * mas_next_sibling() - Find the next node with the same parent.
2180 * @mas: the maple state
2181 *
2182 * Return: true if there is a next sibling, false otherwise.
2183 */
mas_next_sibling(struct ma_state * mas)2184 static inline bool mas_next_sibling(struct ma_state *mas)
2185 {
2186 MA_STATE(parent, mas->tree, mas->index, mas->last);
2187
2188 if (mte_is_root(mas->node))
2189 return false;
2190
2191 parent = *mas;
2192 mas_ascend(&parent);
2193 parent.offset = mte_parent_slot(mas->node) + 1;
2194 if (parent.offset > mas_data_end(&parent))
2195 return false;
2196
2197 *mas = parent;
2198 mas_descend(mas);
2199 return true;
2200 }
2201
2202 /*
2203 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2204 * @enode: The encoded maple node.
2205 *
2206 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2207 *
2208 * Return: @enode or MAS_NONE
2209 */
mte_node_or_none(struct maple_enode * enode)2210 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2211 {
2212 if (enode)
2213 return enode;
2214
2215 return ma_enode_ptr(MAS_NONE);
2216 }
2217
2218 /*
2219 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2220 * If @mas->index cannot be found within the containing
2221 * node, we traverse to the last entry in the node.
2222 * @wr_mas: The maple write state
2223 *
2224 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2225 */
mas_wr_node_walk(struct ma_wr_state * wr_mas)2226 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2227 {
2228 struct ma_state *mas = wr_mas->mas;
2229 unsigned char count, offset;
2230
2231 if (unlikely(ma_is_dense(wr_mas->type))) {
2232 wr_mas->r_max = wr_mas->r_min = mas->index;
2233 mas->offset = mas->index = mas->min;
2234 return;
2235 }
2236
2237 wr_mas->node = mas_mn(wr_mas->mas);
2238 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2239 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2240 wr_mas->pivots, mas->max);
2241 offset = mas->offset;
2242
2243 while (offset < count && mas->index > wr_mas->pivots[offset])
2244 offset++;
2245
2246 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2247 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2248 wr_mas->offset_end = mas->offset = offset;
2249 }
2250
2251 /*
2252 * mast_rebalance_next() - Rebalance against the next node
2253 * @mast: The maple subtree state
2254 * @old_r: The encoded maple node to the right (next node).
2255 */
mast_rebalance_next(struct maple_subtree_state * mast)2256 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2257 {
2258 unsigned char b_end = mast->bn->b_end;
2259
2260 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2261 mast->bn, b_end);
2262 mast->orig_r->last = mast->orig_r->max;
2263 }
2264
2265 /*
2266 * mast_rebalance_prev() - Rebalance against the previous node
2267 * @mast: The maple subtree state
2268 * @old_l: The encoded maple node to the left (previous node)
2269 */
mast_rebalance_prev(struct maple_subtree_state * mast)2270 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2271 {
2272 unsigned char end = mas_data_end(mast->orig_l) + 1;
2273 unsigned char b_end = mast->bn->b_end;
2274
2275 mab_shift_right(mast->bn, end);
2276 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2277 mast->l->min = mast->orig_l->min;
2278 mast->orig_l->index = mast->orig_l->min;
2279 mast->bn->b_end = end + b_end;
2280 mast->l->offset += end;
2281 }
2282
2283 /*
2284 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2285 * the node to the right. Checking the nodes to the right then the left at each
2286 * level upwards until root is reached.
2287 * Data is copied into the @mast->bn.
2288 * @mast: The maple_subtree_state.
2289 */
2290 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2291 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2292 {
2293 struct ma_state r_tmp = *mast->orig_r;
2294 struct ma_state l_tmp = *mast->orig_l;
2295 unsigned char depth = 0;
2296
2297 r_tmp = *mast->orig_r;
2298 l_tmp = *mast->orig_l;
2299 do {
2300 mas_ascend(mast->orig_r);
2301 mas_ascend(mast->orig_l);
2302 depth++;
2303 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2304 mast->orig_r->offset++;
2305 do {
2306 mas_descend(mast->orig_r);
2307 mast->orig_r->offset = 0;
2308 } while (--depth);
2309
2310 mast_rebalance_next(mast);
2311 *mast->orig_l = l_tmp;
2312 return true;
2313 } else if (mast->orig_l->offset != 0) {
2314 mast->orig_l->offset--;
2315 do {
2316 mas_descend(mast->orig_l);
2317 mast->orig_l->offset =
2318 mas_data_end(mast->orig_l);
2319 } while (--depth);
2320
2321 mast_rebalance_prev(mast);
2322 *mast->orig_r = r_tmp;
2323 return true;
2324 }
2325 } while (!mte_is_root(mast->orig_r->node));
2326
2327 *mast->orig_r = r_tmp;
2328 *mast->orig_l = l_tmp;
2329 return false;
2330 }
2331
2332 /*
2333 * mast_ascend() - Ascend the original left and right maple states.
2334 * @mast: the maple subtree state.
2335 *
2336 * Ascend the original left and right sides. Set the offsets to point to the
2337 * data already in the new tree (@mast->l and @mast->r).
2338 */
mast_ascend(struct maple_subtree_state * mast)2339 static inline void mast_ascend(struct maple_subtree_state *mast)
2340 {
2341 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2342 mas_ascend(mast->orig_l);
2343 mas_ascend(mast->orig_r);
2344
2345 mast->orig_r->offset = 0;
2346 mast->orig_r->index = mast->r->max;
2347 /* last should be larger than or equal to index */
2348 if (mast->orig_r->last < mast->orig_r->index)
2349 mast->orig_r->last = mast->orig_r->index;
2350
2351 wr_mas.type = mte_node_type(mast->orig_r->node);
2352 mas_wr_node_walk(&wr_mas);
2353 /* Set up the left side of things */
2354 mast->orig_l->offset = 0;
2355 mast->orig_l->index = mast->l->min;
2356 wr_mas.mas = mast->orig_l;
2357 wr_mas.type = mte_node_type(mast->orig_l->node);
2358 mas_wr_node_walk(&wr_mas);
2359
2360 mast->bn->type = wr_mas.type;
2361 }
2362
2363 /*
2364 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2365 * @mas: the maple state with the allocations.
2366 * @b_node: the maple_big_node with the type encoding.
2367 *
2368 * Use the node type from the maple_big_node to allocate a new node from the
2369 * ma_state. This function exists mainly for code readability.
2370 *
2371 * Return: A new maple encoded node
2372 */
2373 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2374 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2375 {
2376 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2377 }
2378
2379 /*
2380 * mas_mab_to_node() - Set up right and middle nodes
2381 *
2382 * @mas: the maple state that contains the allocations.
2383 * @b_node: the node which contains the data.
2384 * @left: The pointer which will have the left node
2385 * @right: The pointer which may have the right node
2386 * @middle: the pointer which may have the middle node (rare)
2387 * @mid_split: the split location for the middle node
2388 *
2389 * Return: the split of left.
2390 */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split)2391 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2392 struct maple_big_node *b_node, struct maple_enode **left,
2393 struct maple_enode **right, struct maple_enode **middle,
2394 unsigned char *mid_split)
2395 {
2396 unsigned char split = 0;
2397 unsigned char slot_count = mt_slots[b_node->type];
2398
2399 *left = mas_new_ma_node(mas, b_node);
2400 *right = NULL;
2401 *middle = NULL;
2402 *mid_split = 0;
2403
2404 if (b_node->b_end < slot_count) {
2405 split = b_node->b_end;
2406 } else {
2407 split = mab_calc_split(mas, b_node, mid_split);
2408 *right = mas_new_ma_node(mas, b_node);
2409 }
2410
2411 if (*mid_split)
2412 *middle = mas_new_ma_node(mas, b_node);
2413
2414 return split;
2415
2416 }
2417
2418 /*
2419 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2420 * pointer.
2421 * @b_node - the big node to add the entry
2422 * @mas - the maple state to get the pivot (mas->max)
2423 * @entry - the entry to add, if NULL nothing happens.
2424 */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2425 static inline void mab_set_b_end(struct maple_big_node *b_node,
2426 struct ma_state *mas,
2427 void *entry)
2428 {
2429 if (!entry)
2430 return;
2431
2432 b_node->slot[b_node->b_end] = entry;
2433 if (mt_is_alloc(mas->tree))
2434 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2435 b_node->pivot[b_node->b_end++] = mas->max;
2436 }
2437
2438 /*
2439 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2440 * of @mas->node to either @left or @right, depending on @slot and @split
2441 *
2442 * @mas - the maple state with the node that needs a parent
2443 * @left - possible parent 1
2444 * @right - possible parent 2
2445 * @slot - the slot the mas->node was placed
2446 * @split - the split location between @left and @right
2447 */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2448 static inline void mas_set_split_parent(struct ma_state *mas,
2449 struct maple_enode *left,
2450 struct maple_enode *right,
2451 unsigned char *slot, unsigned char split)
2452 {
2453 if (mas_is_none(mas))
2454 return;
2455
2456 if ((*slot) <= split)
2457 mas_set_parent(mas, mas->node, left, *slot);
2458 else if (right)
2459 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2460
2461 (*slot)++;
2462 }
2463
2464 /*
2465 * mte_mid_split_check() - Check if the next node passes the mid-split
2466 * @**l: Pointer to left encoded maple node.
2467 * @**m: Pointer to middle encoded maple node.
2468 * @**r: Pointer to right encoded maple node.
2469 * @slot: The offset
2470 * @*split: The split location.
2471 * @mid_split: The middle split.
2472 */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2473 static inline void mte_mid_split_check(struct maple_enode **l,
2474 struct maple_enode **r,
2475 struct maple_enode *right,
2476 unsigned char slot,
2477 unsigned char *split,
2478 unsigned char mid_split)
2479 {
2480 if (*r == right)
2481 return;
2482
2483 if (slot < mid_split)
2484 return;
2485
2486 *l = *r;
2487 *r = right;
2488 *split = mid_split;
2489 }
2490
2491 /*
2492 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2493 * is taken from @mast->l.
2494 * @mast - the maple subtree state
2495 * @left - the left node
2496 * @right - the right node
2497 * @split - the split location.
2498 */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2499 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2500 struct maple_enode *left,
2501 struct maple_enode *middle,
2502 struct maple_enode *right,
2503 unsigned char split,
2504 unsigned char mid_split)
2505 {
2506 unsigned char slot;
2507 struct maple_enode *l = left;
2508 struct maple_enode *r = right;
2509
2510 if (mas_is_none(mast->l))
2511 return;
2512
2513 if (middle)
2514 r = middle;
2515
2516 slot = mast->l->offset;
2517
2518 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2519 mas_set_split_parent(mast->l, l, r, &slot, split);
2520
2521 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2522 mas_set_split_parent(mast->m, l, r, &slot, split);
2523
2524 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2525 mas_set_split_parent(mast->r, l, r, &slot, split);
2526 }
2527
2528 /*
2529 * mas_topiary_node() - Dispose of a singe node
2530 * @mas: The maple state for pushing nodes
2531 * @enode: The encoded maple node
2532 * @in_rcu: If the tree is in rcu mode
2533 *
2534 * The node will either be RCU freed or pushed back on the maple state.
2535 */
mas_topiary_node(struct ma_state * mas,struct maple_enode * enode,bool in_rcu)2536 static inline void mas_topiary_node(struct ma_state *mas,
2537 struct maple_enode *enode, bool in_rcu)
2538 {
2539 struct maple_node *tmp;
2540
2541 if (enode == MAS_NONE)
2542 return;
2543
2544 tmp = mte_to_node(enode);
2545 mte_set_node_dead(enode);
2546 if (in_rcu)
2547 ma_free_rcu(tmp);
2548 else
2549 mas_push_node(mas, tmp);
2550 }
2551
2552 /*
2553 * mas_topiary_replace() - Replace the data with new data, then repair the
2554 * parent links within the new tree. Iterate over the dead sub-tree and collect
2555 * the dead subtrees and topiary the nodes that are no longer of use.
2556 *
2557 * The new tree will have up to three children with the correct parent. Keep
2558 * track of the new entries as they need to be followed to find the next level
2559 * of new entries.
2560 *
2561 * The old tree will have up to three children with the old parent. Keep track
2562 * of the old entries as they may have more nodes below replaced. Nodes within
2563 * [index, last] are dead subtrees, others need to be freed and followed.
2564 *
2565 * @mas: The maple state pointing at the new data
2566 * @old_enode: The maple encoded node being replaced
2567 *
2568 */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode)2569 static inline void mas_topiary_replace(struct ma_state *mas,
2570 struct maple_enode *old_enode)
2571 {
2572 struct ma_state tmp[3], tmp_next[3];
2573 MA_TOPIARY(subtrees, mas->tree);
2574 bool in_rcu;
2575 int i, n;
2576
2577 /* Place data in tree & then mark node as old */
2578 mas_put_in_tree(mas, old_enode);
2579
2580 /* Update the parent pointers in the tree */
2581 tmp[0] = *mas;
2582 tmp[0].offset = 0;
2583 tmp[1].node = MAS_NONE;
2584 tmp[2].node = MAS_NONE;
2585 while (!mte_is_leaf(tmp[0].node)) {
2586 n = 0;
2587 for (i = 0; i < 3; i++) {
2588 if (mas_is_none(&tmp[i]))
2589 continue;
2590
2591 while (n < 3) {
2592 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2593 break;
2594 n++;
2595 }
2596
2597 mas_adopt_children(&tmp[i], tmp[i].node);
2598 }
2599
2600 if (MAS_WARN_ON(mas, n == 0))
2601 break;
2602
2603 while (n < 3)
2604 tmp_next[n++].node = MAS_NONE;
2605
2606 for (i = 0; i < 3; i++)
2607 tmp[i] = tmp_next[i];
2608 }
2609
2610 /* Collect the old nodes that need to be discarded */
2611 if (mte_is_leaf(old_enode))
2612 return mas_free(mas, old_enode);
2613
2614 tmp[0] = *mas;
2615 tmp[0].offset = 0;
2616 tmp[0].node = old_enode;
2617 tmp[1].node = MAS_NONE;
2618 tmp[2].node = MAS_NONE;
2619 in_rcu = mt_in_rcu(mas->tree);
2620 do {
2621 n = 0;
2622 for (i = 0; i < 3; i++) {
2623 if (mas_is_none(&tmp[i]))
2624 continue;
2625
2626 while (n < 3) {
2627 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2628 break;
2629
2630 if ((tmp_next[n].min >= tmp_next->index) &&
2631 (tmp_next[n].max <= tmp_next->last)) {
2632 mat_add(&subtrees, tmp_next[n].node);
2633 tmp_next[n].node = MAS_NONE;
2634 } else {
2635 n++;
2636 }
2637 }
2638 }
2639
2640 if (MAS_WARN_ON(mas, n == 0))
2641 break;
2642
2643 while (n < 3)
2644 tmp_next[n++].node = MAS_NONE;
2645
2646 for (i = 0; i < 3; i++) {
2647 mas_topiary_node(mas, tmp[i].node, in_rcu);
2648 tmp[i] = tmp_next[i];
2649 }
2650 } while (!mte_is_leaf(tmp[0].node));
2651
2652 for (i = 0; i < 3; i++)
2653 mas_topiary_node(mas, tmp[i].node, in_rcu);
2654
2655 mas_mat_destroy(mas, &subtrees);
2656 }
2657
2658 /*
2659 * mas_wmb_replace() - Write memory barrier and replace
2660 * @mas: The maple state
2661 * @old: The old maple encoded node that is being replaced.
2662 *
2663 * Updates gap as necessary.
2664 */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode)2665 static inline void mas_wmb_replace(struct ma_state *mas,
2666 struct maple_enode *old_enode)
2667 {
2668 /* Insert the new data in the tree */
2669 mas_topiary_replace(mas, old_enode);
2670
2671 if (mte_is_leaf(mas->node))
2672 return;
2673
2674 mas_update_gap(mas);
2675 }
2676
2677 /*
2678 * mast_cp_to_nodes() - Copy data out to nodes.
2679 * @mast: The maple subtree state
2680 * @left: The left encoded maple node
2681 * @middle: The middle encoded maple node
2682 * @right: The right encoded maple node
2683 * @split: The location to split between left and (middle ? middle : right)
2684 * @mid_split: The location to split between middle and right.
2685 */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2686 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2687 struct maple_enode *left, struct maple_enode *middle,
2688 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2689 {
2690 bool new_lmax = true;
2691
2692 mast->l->node = mte_node_or_none(left);
2693 mast->m->node = mte_node_or_none(middle);
2694 mast->r->node = mte_node_or_none(right);
2695
2696 mast->l->min = mast->orig_l->min;
2697 if (split == mast->bn->b_end) {
2698 mast->l->max = mast->orig_r->max;
2699 new_lmax = false;
2700 }
2701
2702 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2703
2704 if (middle) {
2705 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2706 mast->m->min = mast->bn->pivot[split] + 1;
2707 split = mid_split;
2708 }
2709
2710 mast->r->max = mast->orig_r->max;
2711 if (right) {
2712 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2713 mast->r->min = mast->bn->pivot[split] + 1;
2714 }
2715 }
2716
2717 /*
2718 * mast_combine_cp_left - Copy in the original left side of the tree into the
2719 * combined data set in the maple subtree state big node.
2720 * @mast: The maple subtree state
2721 */
mast_combine_cp_left(struct maple_subtree_state * mast)2722 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2723 {
2724 unsigned char l_slot = mast->orig_l->offset;
2725
2726 if (!l_slot)
2727 return;
2728
2729 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2730 }
2731
2732 /*
2733 * mast_combine_cp_right: Copy in the original right side of the tree into the
2734 * combined data set in the maple subtree state big node.
2735 * @mast: The maple subtree state
2736 */
mast_combine_cp_right(struct maple_subtree_state * mast)2737 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2738 {
2739 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2740 return;
2741
2742 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2743 mt_slot_count(mast->orig_r->node), mast->bn,
2744 mast->bn->b_end);
2745 mast->orig_r->last = mast->orig_r->max;
2746 }
2747
2748 /*
2749 * mast_sufficient: Check if the maple subtree state has enough data in the big
2750 * node to create at least one sufficient node
2751 * @mast: the maple subtree state
2752 */
mast_sufficient(struct maple_subtree_state * mast)2753 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2754 {
2755 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2756 return true;
2757
2758 return false;
2759 }
2760
2761 /*
2762 * mast_overflow: Check if there is too much data in the subtree state for a
2763 * single node.
2764 * @mast: The maple subtree state
2765 */
mast_overflow(struct maple_subtree_state * mast)2766 static inline bool mast_overflow(struct maple_subtree_state *mast)
2767 {
2768 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2769 return true;
2770
2771 return false;
2772 }
2773
mtree_range_walk(struct ma_state * mas)2774 static inline void *mtree_range_walk(struct ma_state *mas)
2775 {
2776 unsigned long *pivots;
2777 unsigned char offset;
2778 struct maple_node *node;
2779 struct maple_enode *next, *last;
2780 enum maple_type type;
2781 void __rcu **slots;
2782 unsigned char end;
2783 unsigned long max, min;
2784 unsigned long prev_max, prev_min;
2785
2786 next = mas->node;
2787 min = mas->min;
2788 max = mas->max;
2789 do {
2790 offset = 0;
2791 last = next;
2792 node = mte_to_node(next);
2793 type = mte_node_type(next);
2794 pivots = ma_pivots(node, type);
2795 end = ma_data_end(node, type, pivots, max);
2796 if (unlikely(ma_dead_node(node)))
2797 goto dead_node;
2798
2799 if (pivots[offset] >= mas->index) {
2800 prev_max = max;
2801 prev_min = min;
2802 max = pivots[offset];
2803 goto next;
2804 }
2805
2806 do {
2807 offset++;
2808 } while ((offset < end) && (pivots[offset] < mas->index));
2809
2810 prev_min = min;
2811 min = pivots[offset - 1] + 1;
2812 prev_max = max;
2813 if (likely(offset < end && pivots[offset]))
2814 max = pivots[offset];
2815
2816 next:
2817 slots = ma_slots(node, type);
2818 next = mt_slot(mas->tree, slots, offset);
2819 if (unlikely(ma_dead_node(node)))
2820 goto dead_node;
2821 } while (!ma_is_leaf(type));
2822
2823 mas->offset = offset;
2824 mas->index = min;
2825 mas->last = max;
2826 mas->min = prev_min;
2827 mas->max = prev_max;
2828 mas->node = last;
2829 return (void *)next;
2830
2831 dead_node:
2832 mas_reset(mas);
2833 return NULL;
2834 }
2835
2836 /*
2837 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2838 * @mas: The starting maple state
2839 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2840 * @count: The estimated count of iterations needed.
2841 *
2842 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2843 * is hit. First @b_node is split into two entries which are inserted into the
2844 * next iteration of the loop. @b_node is returned populated with the final
2845 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2846 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2847 * to account of what has been copied into the new sub-tree. The update of
2848 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2849 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2850 * the new sub-tree in case the sub-tree becomes the full tree.
2851 *
2852 * Return: the number of elements in b_node during the last loop.
2853 */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2854 static int mas_spanning_rebalance(struct ma_state *mas,
2855 struct maple_subtree_state *mast, unsigned char count)
2856 {
2857 unsigned char split, mid_split;
2858 unsigned char slot = 0;
2859 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2860 struct maple_enode *old_enode;
2861
2862 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2863 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2864 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2865
2866 /*
2867 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2868 * Rebalancing is done by use of the ``struct maple_topiary``.
2869 */
2870 mast->l = &l_mas;
2871 mast->m = &m_mas;
2872 mast->r = &r_mas;
2873 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2874
2875 /* Check if this is not root and has sufficient data. */
2876 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2877 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2878 mast_spanning_rebalance(mast);
2879
2880 l_mas.depth = 0;
2881
2882 /*
2883 * Each level of the tree is examined and balanced, pushing data to the left or
2884 * right, or rebalancing against left or right nodes is employed to avoid
2885 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2886 * the tree is created, there may be a mix of new and old nodes. The old nodes
2887 * will have the incorrect parent pointers and currently be in two trees: the
2888 * original tree and the partially new tree. To remedy the parent pointers in
2889 * the old tree, the new data is swapped into the active tree and a walk down
2890 * the tree is performed and the parent pointers are updated.
2891 * See mas_topiary_replace() for more information.
2892 */
2893 while (count--) {
2894 mast->bn->b_end--;
2895 mast->bn->type = mte_node_type(mast->orig_l->node);
2896 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2897 &mid_split);
2898 mast_set_split_parents(mast, left, middle, right, split,
2899 mid_split);
2900 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2901
2902 /*
2903 * Copy data from next level in the tree to mast->bn from next
2904 * iteration
2905 */
2906 memset(mast->bn, 0, sizeof(struct maple_big_node));
2907 mast->bn->type = mte_node_type(left);
2908 l_mas.depth++;
2909
2910 /* Root already stored in l->node. */
2911 if (mas_is_root_limits(mast->l))
2912 goto new_root;
2913
2914 mast_ascend(mast);
2915 mast_combine_cp_left(mast);
2916 l_mas.offset = mast->bn->b_end;
2917 mab_set_b_end(mast->bn, &l_mas, left);
2918 mab_set_b_end(mast->bn, &m_mas, middle);
2919 mab_set_b_end(mast->bn, &r_mas, right);
2920
2921 /* Copy anything necessary out of the right node. */
2922 mast_combine_cp_right(mast);
2923 mast->orig_l->last = mast->orig_l->max;
2924
2925 if (mast_sufficient(mast))
2926 continue;
2927
2928 if (mast_overflow(mast))
2929 continue;
2930
2931 /* May be a new root stored in mast->bn */
2932 if (mas_is_root_limits(mast->orig_l))
2933 break;
2934
2935 mast_spanning_rebalance(mast);
2936
2937 /* rebalancing from other nodes may require another loop. */
2938 if (!count)
2939 count++;
2940 }
2941
2942 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2943 mte_node_type(mast->orig_l->node));
2944 l_mas.depth++;
2945 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2946 mas_set_parent(mas, left, l_mas.node, slot);
2947 if (middle)
2948 mas_set_parent(mas, middle, l_mas.node, ++slot);
2949
2950 if (right)
2951 mas_set_parent(mas, right, l_mas.node, ++slot);
2952
2953 if (mas_is_root_limits(mast->l)) {
2954 new_root:
2955 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2956 while (!mte_is_root(mast->orig_l->node))
2957 mast_ascend(mast);
2958 } else {
2959 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2960 }
2961
2962 old_enode = mast->orig_l->node;
2963 mas->depth = l_mas.depth;
2964 mas->node = l_mas.node;
2965 mas->min = l_mas.min;
2966 mas->max = l_mas.max;
2967 mas->offset = l_mas.offset;
2968 mas_wmb_replace(mas, old_enode);
2969 mtree_range_walk(mas);
2970 return mast->bn->b_end;
2971 }
2972
2973 /*
2974 * mas_rebalance() - Rebalance a given node.
2975 * @mas: The maple state
2976 * @b_node: The big maple node.
2977 *
2978 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2979 * Continue upwards until tree is sufficient.
2980 *
2981 * Return: the number of elements in b_node during the last loop.
2982 */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2983 static inline int mas_rebalance(struct ma_state *mas,
2984 struct maple_big_node *b_node)
2985 {
2986 char empty_count = mas_mt_height(mas);
2987 struct maple_subtree_state mast;
2988 unsigned char shift, b_end = ++b_node->b_end;
2989
2990 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2991 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2992
2993 trace_ma_op(__func__, mas);
2994
2995 /*
2996 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2997 * against the node to the right if it exists, otherwise the node to the
2998 * left of this node is rebalanced against this node. If rebalancing
2999 * causes just one node to be produced instead of two, then the parent
3000 * is also examined and rebalanced if it is insufficient. Every level
3001 * tries to combine the data in the same way. If one node contains the
3002 * entire range of the tree, then that node is used as a new root node.
3003 */
3004 mas_node_count(mas, empty_count * 2 - 1);
3005 if (mas_is_err(mas))
3006 return 0;
3007
3008 mast.orig_l = &l_mas;
3009 mast.orig_r = &r_mas;
3010 mast.bn = b_node;
3011 mast.bn->type = mte_node_type(mas->node);
3012
3013 l_mas = r_mas = *mas;
3014
3015 if (mas_next_sibling(&r_mas)) {
3016 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3017 r_mas.last = r_mas.index = r_mas.max;
3018 } else {
3019 mas_prev_sibling(&l_mas);
3020 shift = mas_data_end(&l_mas) + 1;
3021 mab_shift_right(b_node, shift);
3022 mas->offset += shift;
3023 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3024 b_node->b_end = shift + b_end;
3025 l_mas.index = l_mas.last = l_mas.min;
3026 }
3027
3028 return mas_spanning_rebalance(mas, &mast, empty_count);
3029 }
3030
3031 /*
3032 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3033 * state.
3034 * @mas: The maple state
3035 * @end: The end of the left-most node.
3036 *
3037 * During a mass-insert event (such as forking), it may be necessary to
3038 * rebalance the left-most node when it is not sufficient.
3039 */
mas_destroy_rebalance(struct ma_state * mas,unsigned char end)3040 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3041 {
3042 enum maple_type mt = mte_node_type(mas->node);
3043 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3044 struct maple_enode *eparent, *old_eparent;
3045 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3046 void __rcu **l_slots, **slots;
3047 unsigned long *l_pivs, *pivs, gap;
3048 bool in_rcu = mt_in_rcu(mas->tree);
3049
3050 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3051
3052 l_mas = *mas;
3053 mas_prev_sibling(&l_mas);
3054
3055 /* set up node. */
3056 if (in_rcu) {
3057 /* Allocate for both left and right as well as parent. */
3058 mas_node_count(mas, 3);
3059 if (mas_is_err(mas))
3060 return;
3061
3062 newnode = mas_pop_node(mas);
3063 } else {
3064 newnode = &reuse;
3065 }
3066
3067 node = mas_mn(mas);
3068 newnode->parent = node->parent;
3069 slots = ma_slots(newnode, mt);
3070 pivs = ma_pivots(newnode, mt);
3071 left = mas_mn(&l_mas);
3072 l_slots = ma_slots(left, mt);
3073 l_pivs = ma_pivots(left, mt);
3074 if (!l_slots[split])
3075 split++;
3076 tmp = mas_data_end(&l_mas) - split;
3077
3078 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3079 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3080 pivs[tmp] = l_mas.max;
3081 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3082 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3083
3084 l_mas.max = l_pivs[split];
3085 mas->min = l_mas.max + 1;
3086 old_eparent = mt_mk_node(mte_parent(l_mas.node),
3087 mas_parent_type(&l_mas, l_mas.node));
3088 tmp += end;
3089 if (!in_rcu) {
3090 unsigned char max_p = mt_pivots[mt];
3091 unsigned char max_s = mt_slots[mt];
3092
3093 if (tmp < max_p)
3094 memset(pivs + tmp, 0,
3095 sizeof(unsigned long) * (max_p - tmp));
3096
3097 if (tmp < mt_slots[mt])
3098 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3099
3100 memcpy(node, newnode, sizeof(struct maple_node));
3101 ma_set_meta(node, mt, 0, tmp - 1);
3102 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3103 l_pivs[split]);
3104
3105 /* Remove data from l_pivs. */
3106 tmp = split + 1;
3107 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3108 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3109 ma_set_meta(left, mt, 0, split);
3110 eparent = old_eparent;
3111
3112 goto done;
3113 }
3114
3115 /* RCU requires replacing both l_mas, mas, and parent. */
3116 mas->node = mt_mk_node(newnode, mt);
3117 ma_set_meta(newnode, mt, 0, tmp);
3118
3119 new_left = mas_pop_node(mas);
3120 new_left->parent = left->parent;
3121 mt = mte_node_type(l_mas.node);
3122 slots = ma_slots(new_left, mt);
3123 pivs = ma_pivots(new_left, mt);
3124 memcpy(slots, l_slots, sizeof(void *) * split);
3125 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3126 ma_set_meta(new_left, mt, 0, split);
3127 l_mas.node = mt_mk_node(new_left, mt);
3128
3129 /* replace parent. */
3130 offset = mte_parent_slot(mas->node);
3131 mt = mas_parent_type(&l_mas, l_mas.node);
3132 parent = mas_pop_node(mas);
3133 slots = ma_slots(parent, mt);
3134 pivs = ma_pivots(parent, mt);
3135 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3136 rcu_assign_pointer(slots[offset], mas->node);
3137 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3138 pivs[offset - 1] = l_mas.max;
3139 eparent = mt_mk_node(parent, mt);
3140 done:
3141 gap = mas_leaf_max_gap(mas);
3142 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3143 gap = mas_leaf_max_gap(&l_mas);
3144 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3145 mas_ascend(mas);
3146
3147 if (in_rcu) {
3148 mas_replace_node(mas, old_eparent);
3149 mas_adopt_children(mas, mas->node);
3150 }
3151
3152 mas_update_gap(mas);
3153 }
3154
3155 /*
3156 * mas_split_final_node() - Split the final node in a subtree operation.
3157 * @mast: the maple subtree state
3158 * @mas: The maple state
3159 * @height: The height of the tree in case it's a new root.
3160 */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas,int height)3161 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3162 struct ma_state *mas, int height)
3163 {
3164 struct maple_enode *ancestor;
3165
3166 if (mte_is_root(mas->node)) {
3167 if (mt_is_alloc(mas->tree))
3168 mast->bn->type = maple_arange_64;
3169 else
3170 mast->bn->type = maple_range_64;
3171 mas->depth = height;
3172 }
3173 /*
3174 * Only a single node is used here, could be root.
3175 * The Big_node data should just fit in a single node.
3176 */
3177 ancestor = mas_new_ma_node(mas, mast->bn);
3178 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3179 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3180 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3181
3182 mast->l->node = ancestor;
3183 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3184 mas->offset = mast->bn->b_end - 1;
3185 return true;
3186 }
3187
3188 /*
3189 * mast_fill_bnode() - Copy data into the big node in the subtree state
3190 * @mast: The maple subtree state
3191 * @mas: the maple state
3192 * @skip: The number of entries to skip for new nodes insertion.
3193 */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)3194 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3195 struct ma_state *mas,
3196 unsigned char skip)
3197 {
3198 bool cp = true;
3199 unsigned char split;
3200
3201 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3202 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3203 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3204 mast->bn->b_end = 0;
3205
3206 if (mte_is_root(mas->node)) {
3207 cp = false;
3208 } else {
3209 mas_ascend(mas);
3210 mas->offset = mte_parent_slot(mas->node);
3211 }
3212
3213 if (cp && mast->l->offset)
3214 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3215
3216 split = mast->bn->b_end;
3217 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3218 mast->r->offset = mast->bn->b_end;
3219 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3220 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3221 cp = false;
3222
3223 if (cp)
3224 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3225 mast->bn, mast->bn->b_end);
3226
3227 mast->bn->b_end--;
3228 mast->bn->type = mte_node_type(mas->node);
3229 }
3230
3231 /*
3232 * mast_split_data() - Split the data in the subtree state big node into regular
3233 * nodes.
3234 * @mast: The maple subtree state
3235 * @mas: The maple state
3236 * @split: The location to split the big node
3237 */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)3238 static inline void mast_split_data(struct maple_subtree_state *mast,
3239 struct ma_state *mas, unsigned char split)
3240 {
3241 unsigned char p_slot;
3242
3243 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3244 mte_set_pivot(mast->r->node, 0, mast->r->max);
3245 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3246 mast->l->offset = mte_parent_slot(mas->node);
3247 mast->l->max = mast->bn->pivot[split];
3248 mast->r->min = mast->l->max + 1;
3249 if (mte_is_leaf(mas->node))
3250 return;
3251
3252 p_slot = mast->orig_l->offset;
3253 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3254 &p_slot, split);
3255 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3256 &p_slot, split);
3257 }
3258
3259 /*
3260 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3261 * data to the right or left node if there is room.
3262 * @mas: The maple state
3263 * @height: The current height of the maple state
3264 * @mast: The maple subtree state
3265 * @left: Push left or not.
3266 *
3267 * Keeping the height of the tree low means faster lookups.
3268 *
3269 * Return: True if pushed, false otherwise.
3270 */
mas_push_data(struct ma_state * mas,int height,struct maple_subtree_state * mast,bool left)3271 static inline bool mas_push_data(struct ma_state *mas, int height,
3272 struct maple_subtree_state *mast, bool left)
3273 {
3274 unsigned char slot_total = mast->bn->b_end;
3275 unsigned char end, space, split;
3276
3277 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3278 tmp_mas = *mas;
3279 tmp_mas.depth = mast->l->depth;
3280
3281 if (left && !mas_prev_sibling(&tmp_mas))
3282 return false;
3283 else if (!left && !mas_next_sibling(&tmp_mas))
3284 return false;
3285
3286 end = mas_data_end(&tmp_mas);
3287 slot_total += end;
3288 space = 2 * mt_slot_count(mas->node) - 2;
3289 /* -2 instead of -1 to ensure there isn't a triple split */
3290 if (ma_is_leaf(mast->bn->type))
3291 space--;
3292
3293 if (mas->max == ULONG_MAX)
3294 space--;
3295
3296 if (slot_total >= space)
3297 return false;
3298
3299 /* Get the data; Fill mast->bn */
3300 mast->bn->b_end++;
3301 if (left) {
3302 mab_shift_right(mast->bn, end + 1);
3303 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3304 mast->bn->b_end = slot_total + 1;
3305 } else {
3306 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3307 }
3308
3309 /* Configure mast for splitting of mast->bn */
3310 split = mt_slots[mast->bn->type] - 2;
3311 if (left) {
3312 /* Switch mas to prev node */
3313 *mas = tmp_mas;
3314 /* Start using mast->l for the left side. */
3315 tmp_mas.node = mast->l->node;
3316 *mast->l = tmp_mas;
3317 } else {
3318 tmp_mas.node = mast->r->node;
3319 *mast->r = tmp_mas;
3320 split = slot_total - split;
3321 }
3322 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3323 /* Update parent slot for split calculation. */
3324 if (left)
3325 mast->orig_l->offset += end + 1;
3326
3327 mast_split_data(mast, mas, split);
3328 mast_fill_bnode(mast, mas, 2);
3329 mas_split_final_node(mast, mas, height + 1);
3330 return true;
3331 }
3332
3333 /*
3334 * mas_split() - Split data that is too big for one node into two.
3335 * @mas: The maple state
3336 * @b_node: The maple big node
3337 * Return: 1 on success, 0 on failure.
3338 */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)3339 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3340 {
3341 struct maple_subtree_state mast;
3342 int height = 0;
3343 unsigned char mid_split, split = 0;
3344 struct maple_enode *old;
3345
3346 /*
3347 * Splitting is handled differently from any other B-tree; the Maple
3348 * Tree splits upwards. Splitting up means that the split operation
3349 * occurs when the walk of the tree hits the leaves and not on the way
3350 * down. The reason for splitting up is that it is impossible to know
3351 * how much space will be needed until the leaf is (or leaves are)
3352 * reached. Since overwriting data is allowed and a range could
3353 * overwrite more than one range or result in changing one entry into 3
3354 * entries, it is impossible to know if a split is required until the
3355 * data is examined.
3356 *
3357 * Splitting is a balancing act between keeping allocations to a minimum
3358 * and avoiding a 'jitter' event where a tree is expanded to make room
3359 * for an entry followed by a contraction when the entry is removed. To
3360 * accomplish the balance, there are empty slots remaining in both left
3361 * and right nodes after a split.
3362 */
3363 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3364 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3365 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3366 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3367
3368 trace_ma_op(__func__, mas);
3369 mas->depth = mas_mt_height(mas);
3370 /* Allocation failures will happen early. */
3371 mas_node_count(mas, 1 + mas->depth * 2);
3372 if (mas_is_err(mas))
3373 return 0;
3374
3375 mast.l = &l_mas;
3376 mast.r = &r_mas;
3377 mast.orig_l = &prev_l_mas;
3378 mast.orig_r = &prev_r_mas;
3379 mast.bn = b_node;
3380
3381 while (height++ <= mas->depth) {
3382 if (mt_slots[b_node->type] > b_node->b_end) {
3383 mas_split_final_node(&mast, mas, height);
3384 break;
3385 }
3386
3387 l_mas = r_mas = *mas;
3388 l_mas.node = mas_new_ma_node(mas, b_node);
3389 r_mas.node = mas_new_ma_node(mas, b_node);
3390 /*
3391 * Another way that 'jitter' is avoided is to terminate a split up early if the
3392 * left or right node has space to spare. This is referred to as "pushing left"
3393 * or "pushing right" and is similar to the B* tree, except the nodes left or
3394 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3395 * is a significant savings.
3396 */
3397 /* Try to push left. */
3398 if (mas_push_data(mas, height, &mast, true))
3399 break;
3400
3401 /* Try to push right. */
3402 if (mas_push_data(mas, height, &mast, false))
3403 break;
3404
3405 split = mab_calc_split(mas, b_node, &mid_split);
3406 mast_split_data(&mast, mas, split);
3407 /*
3408 * Usually correct, mab_mas_cp in the above call overwrites
3409 * r->max.
3410 */
3411 mast.r->max = mas->max;
3412 mast_fill_bnode(&mast, mas, 1);
3413 prev_l_mas = *mast.l;
3414 prev_r_mas = *mast.r;
3415 }
3416
3417 /* Set the original node as dead */
3418 old = mas->node;
3419 mas->node = l_mas.node;
3420 mas_wmb_replace(mas, old);
3421 mtree_range_walk(mas);
3422 return 1;
3423 }
3424
3425 /*
3426 * mas_reuse_node() - Reuse the node to store the data.
3427 * @wr_mas: The maple write state
3428 * @bn: The maple big node
3429 * @end: The end of the data.
3430 *
3431 * Will always return false in RCU mode.
3432 *
3433 * Return: True if node was reused, false otherwise.
3434 */
mas_reuse_node(struct ma_wr_state * wr_mas,struct maple_big_node * bn,unsigned char end)3435 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3436 struct maple_big_node *bn, unsigned char end)
3437 {
3438 /* Need to be rcu safe. */
3439 if (mt_in_rcu(wr_mas->mas->tree))
3440 return false;
3441
3442 if (end > bn->b_end) {
3443 int clear = mt_slots[wr_mas->type] - bn->b_end;
3444
3445 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3446 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3447 }
3448 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3449 return true;
3450 }
3451
3452 /*
3453 * mas_commit_b_node() - Commit the big node into the tree.
3454 * @wr_mas: The maple write state
3455 * @b_node: The maple big node
3456 * @end: The end of the data.
3457 */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char end)3458 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3459 struct maple_big_node *b_node, unsigned char end)
3460 {
3461 struct maple_node *node;
3462 struct maple_enode *old_enode;
3463 unsigned char b_end = b_node->b_end;
3464 enum maple_type b_type = b_node->type;
3465
3466 old_enode = wr_mas->mas->node;
3467 if ((b_end < mt_min_slots[b_type]) &&
3468 (!mte_is_root(old_enode)) &&
3469 (mas_mt_height(wr_mas->mas) > 1))
3470 return mas_rebalance(wr_mas->mas, b_node);
3471
3472 if (b_end >= mt_slots[b_type])
3473 return mas_split(wr_mas->mas, b_node);
3474
3475 if (mas_reuse_node(wr_mas, b_node, end))
3476 goto reuse_node;
3477
3478 mas_node_count(wr_mas->mas, 1);
3479 if (mas_is_err(wr_mas->mas))
3480 return 0;
3481
3482 node = mas_pop_node(wr_mas->mas);
3483 node->parent = mas_mn(wr_mas->mas)->parent;
3484 wr_mas->mas->node = mt_mk_node(node, b_type);
3485 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3486 mas_replace_node(wr_mas->mas, old_enode);
3487 reuse_node:
3488 mas_update_gap(wr_mas->mas);
3489 return 1;
3490 }
3491
3492 /*
3493 * mas_root_expand() - Expand a root to a node
3494 * @mas: The maple state
3495 * @entry: The entry to store into the tree
3496 */
mas_root_expand(struct ma_state * mas,void * entry)3497 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3498 {
3499 void *contents = mas_root_locked(mas);
3500 enum maple_type type = maple_leaf_64;
3501 struct maple_node *node;
3502 void __rcu **slots;
3503 unsigned long *pivots;
3504 int slot = 0;
3505
3506 mas_node_count(mas, 1);
3507 if (unlikely(mas_is_err(mas)))
3508 return 0;
3509
3510 node = mas_pop_node(mas);
3511 pivots = ma_pivots(node, type);
3512 slots = ma_slots(node, type);
3513 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3514 mas->node = mt_mk_node(node, type);
3515
3516 if (mas->index) {
3517 if (contents) {
3518 rcu_assign_pointer(slots[slot], contents);
3519 if (likely(mas->index > 1))
3520 slot++;
3521 }
3522 pivots[slot++] = mas->index - 1;
3523 }
3524
3525 rcu_assign_pointer(slots[slot], entry);
3526 mas->offset = slot;
3527 pivots[slot] = mas->last;
3528 if (mas->last != ULONG_MAX)
3529 pivots[++slot] = ULONG_MAX;
3530
3531 mas->depth = 1;
3532 mas_set_height(mas);
3533 ma_set_meta(node, maple_leaf_64, 0, slot);
3534 /* swap the new root into the tree */
3535 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3536 return slot;
3537 }
3538
3539 /*
3540 * mas_store_root() - Storing value into root.
3541 * @mas: The maple state
3542 * @entry: The entry to store.
3543 *
3544 * There is no root node now and we are storing a value into the root - this
3545 * function either assigns the pointer or expands into a node.
3546 */
mas_store_root(struct ma_state * mas,void * entry)3547 static inline void mas_store_root(struct ma_state *mas, void *entry)
3548 {
3549 if (!entry) {
3550 if (!mas->index)
3551 rcu_assign_pointer(mas->tree->ma_root, NULL);
3552 } else if (likely((mas->last != 0) || (mas->index != 0)))
3553 mas_root_expand(mas, entry);
3554 else if (((unsigned long) (entry) & 3) == 2)
3555 mas_root_expand(mas, entry);
3556 else {
3557 rcu_assign_pointer(mas->tree->ma_root, entry);
3558 mas->node = MAS_START;
3559 }
3560 }
3561
3562 /*
3563 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3564 * spans the node.
3565 * @mas: The maple state
3566 * @piv: The pivot value being written
3567 * @type: The maple node type
3568 * @entry: The data to write
3569 *
3570 * Spanning writes are writes that start in one node and end in another OR if
3571 * the write of a %NULL will cause the node to end with a %NULL.
3572 *
3573 * Return: True if this is a spanning write, false otherwise.
3574 */
mas_is_span_wr(struct ma_wr_state * wr_mas)3575 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3576 {
3577 unsigned long max = wr_mas->r_max;
3578 unsigned long last = wr_mas->mas->last;
3579 enum maple_type type = wr_mas->type;
3580 void *entry = wr_mas->entry;
3581
3582 /* Contained in this pivot, fast path */
3583 if (last < max)
3584 return false;
3585
3586 if (ma_is_leaf(type)) {
3587 max = wr_mas->mas->max;
3588 if (last < max)
3589 return false;
3590 }
3591
3592 if (last == max) {
3593 /*
3594 * The last entry of leaf node cannot be NULL unless it is the
3595 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3596 */
3597 if (entry || last == ULONG_MAX)
3598 return false;
3599 }
3600
3601 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3602 return true;
3603 }
3604
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3605 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3606 {
3607 wr_mas->type = mte_node_type(wr_mas->mas->node);
3608 mas_wr_node_walk(wr_mas);
3609 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3610 }
3611
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3612 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3613 {
3614 wr_mas->mas->max = wr_mas->r_max;
3615 wr_mas->mas->min = wr_mas->r_min;
3616 wr_mas->mas->node = wr_mas->content;
3617 wr_mas->mas->offset = 0;
3618 wr_mas->mas->depth++;
3619 }
3620 /*
3621 * mas_wr_walk() - Walk the tree for a write.
3622 * @wr_mas: The maple write state
3623 *
3624 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3625 *
3626 * Return: True if it's contained in a node, false on spanning write.
3627 */
mas_wr_walk(struct ma_wr_state * wr_mas)3628 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3629 {
3630 struct ma_state *mas = wr_mas->mas;
3631
3632 while (true) {
3633 mas_wr_walk_descend(wr_mas);
3634 if (unlikely(mas_is_span_wr(wr_mas)))
3635 return false;
3636
3637 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3638 mas->offset);
3639 if (ma_is_leaf(wr_mas->type))
3640 return true;
3641
3642 mas_wr_walk_traverse(wr_mas);
3643 }
3644
3645 return true;
3646 }
3647
mas_wr_walk_index(struct ma_wr_state * wr_mas)3648 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3649 {
3650 struct ma_state *mas = wr_mas->mas;
3651
3652 while (true) {
3653 mas_wr_walk_descend(wr_mas);
3654 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3655 mas->offset);
3656 if (ma_is_leaf(wr_mas->type))
3657 return;
3658 mas_wr_walk_traverse(wr_mas);
3659 }
3660 }
3661 /*
3662 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3663 * @l_wr_mas: The left maple write state
3664 * @r_wr_mas: The right maple write state
3665 */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3666 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3667 struct ma_wr_state *r_wr_mas)
3668 {
3669 struct ma_state *r_mas = r_wr_mas->mas;
3670 struct ma_state *l_mas = l_wr_mas->mas;
3671 unsigned char l_slot;
3672
3673 l_slot = l_mas->offset;
3674 if (!l_wr_mas->content)
3675 l_mas->index = l_wr_mas->r_min;
3676
3677 if ((l_mas->index == l_wr_mas->r_min) &&
3678 (l_slot &&
3679 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3680 if (l_slot > 1)
3681 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3682 else
3683 l_mas->index = l_mas->min;
3684
3685 l_mas->offset = l_slot - 1;
3686 }
3687
3688 if (!r_wr_mas->content) {
3689 if (r_mas->last < r_wr_mas->r_max)
3690 r_mas->last = r_wr_mas->r_max;
3691 r_mas->offset++;
3692 } else if ((r_mas->last == r_wr_mas->r_max) &&
3693 (r_mas->last < r_mas->max) &&
3694 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3695 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3696 r_wr_mas->type, r_mas->offset + 1);
3697 r_mas->offset++;
3698 }
3699 }
3700
mas_state_walk(struct ma_state * mas)3701 static inline void *mas_state_walk(struct ma_state *mas)
3702 {
3703 void *entry;
3704
3705 entry = mas_start(mas);
3706 if (mas_is_none(mas))
3707 return NULL;
3708
3709 if (mas_is_ptr(mas))
3710 return entry;
3711
3712 return mtree_range_walk(mas);
3713 }
3714
3715 /*
3716 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3717 * to date.
3718 *
3719 * @mas: The maple state.
3720 *
3721 * Note: Leaves mas in undesirable state.
3722 * Return: The entry for @mas->index or %NULL on dead node.
3723 */
mtree_lookup_walk(struct ma_state * mas)3724 static inline void *mtree_lookup_walk(struct ma_state *mas)
3725 {
3726 unsigned long *pivots;
3727 unsigned char offset;
3728 struct maple_node *node;
3729 struct maple_enode *next;
3730 enum maple_type type;
3731 void __rcu **slots;
3732 unsigned char end;
3733 unsigned long max;
3734
3735 next = mas->node;
3736 max = ULONG_MAX;
3737 do {
3738 offset = 0;
3739 node = mte_to_node(next);
3740 type = mte_node_type(next);
3741 pivots = ma_pivots(node, type);
3742 end = ma_data_end(node, type, pivots, max);
3743 if (unlikely(ma_dead_node(node)))
3744 goto dead_node;
3745 do {
3746 if (pivots[offset] >= mas->index) {
3747 max = pivots[offset];
3748 break;
3749 }
3750 } while (++offset < end);
3751
3752 slots = ma_slots(node, type);
3753 next = mt_slot(mas->tree, slots, offset);
3754 if (unlikely(ma_dead_node(node)))
3755 goto dead_node;
3756 } while (!ma_is_leaf(type));
3757
3758 return (void *)next;
3759
3760 dead_node:
3761 mas_reset(mas);
3762 return NULL;
3763 }
3764
3765 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3766 /*
3767 * mas_new_root() - Create a new root node that only contains the entry passed
3768 * in.
3769 * @mas: The maple state
3770 * @entry: The entry to store.
3771 *
3772 * Only valid when the index == 0 and the last == ULONG_MAX
3773 *
3774 * Return 0 on error, 1 on success.
3775 */
mas_new_root(struct ma_state * mas,void * entry)3776 static inline int mas_new_root(struct ma_state *mas, void *entry)
3777 {
3778 struct maple_enode *root = mas_root_locked(mas);
3779 enum maple_type type = maple_leaf_64;
3780 struct maple_node *node;
3781 void __rcu **slots;
3782 unsigned long *pivots;
3783
3784 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3785 mas->depth = 0;
3786 mas_set_height(mas);
3787 rcu_assign_pointer(mas->tree->ma_root, entry);
3788 mas->node = MAS_START;
3789 goto done;
3790 }
3791
3792 mas_node_count(mas, 1);
3793 if (mas_is_err(mas))
3794 return 0;
3795
3796 node = mas_pop_node(mas);
3797 pivots = ma_pivots(node, type);
3798 slots = ma_slots(node, type);
3799 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3800 mas->node = mt_mk_node(node, type);
3801 rcu_assign_pointer(slots[0], entry);
3802 pivots[0] = mas->last;
3803 mas->depth = 1;
3804 mas_set_height(mas);
3805 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3806
3807 done:
3808 if (xa_is_node(root))
3809 mte_destroy_walk(root, mas->tree);
3810
3811 return 1;
3812 }
3813 /*
3814 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3815 * and new nodes where necessary, then place the sub-tree in the actual tree.
3816 * Note that mas is expected to point to the node which caused the store to
3817 * span.
3818 * @wr_mas: The maple write state
3819 *
3820 * Return: 0 on error, positive on success.
3821 */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3822 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3823 {
3824 struct maple_subtree_state mast;
3825 struct maple_big_node b_node;
3826 struct ma_state *mas;
3827 unsigned char height;
3828
3829 /* Left and Right side of spanning store */
3830 MA_STATE(l_mas, NULL, 0, 0);
3831 MA_STATE(r_mas, NULL, 0, 0);
3832 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3833 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3834
3835 /*
3836 * A store operation that spans multiple nodes is called a spanning
3837 * store and is handled early in the store call stack by the function
3838 * mas_is_span_wr(). When a spanning store is identified, the maple
3839 * state is duplicated. The first maple state walks the left tree path
3840 * to ``index``, the duplicate walks the right tree path to ``last``.
3841 * The data in the two nodes are combined into a single node, two nodes,
3842 * or possibly three nodes (see the 3-way split above). A ``NULL``
3843 * written to the last entry of a node is considered a spanning store as
3844 * a rebalance is required for the operation to complete and an overflow
3845 * of data may happen.
3846 */
3847 mas = wr_mas->mas;
3848 trace_ma_op(__func__, mas);
3849
3850 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3851 return mas_new_root(mas, wr_mas->entry);
3852 /*
3853 * Node rebalancing may occur due to this store, so there may be three new
3854 * entries per level plus a new root.
3855 */
3856 height = mas_mt_height(mas);
3857 mas_node_count(mas, 1 + height * 3);
3858 if (mas_is_err(mas))
3859 return 0;
3860
3861 /*
3862 * Set up right side. Need to get to the next offset after the spanning
3863 * store to ensure it's not NULL and to combine both the next node and
3864 * the node with the start together.
3865 */
3866 r_mas = *mas;
3867 /* Avoid overflow, walk to next slot in the tree. */
3868 if (r_mas.last + 1)
3869 r_mas.last++;
3870
3871 r_mas.index = r_mas.last;
3872 mas_wr_walk_index(&r_wr_mas);
3873 r_mas.last = r_mas.index = mas->last;
3874
3875 /* Set up left side. */
3876 l_mas = *mas;
3877 mas_wr_walk_index(&l_wr_mas);
3878
3879 if (!wr_mas->entry) {
3880 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3881 mas->offset = l_mas.offset;
3882 mas->index = l_mas.index;
3883 mas->last = l_mas.last = r_mas.last;
3884 }
3885
3886 /* expanding NULLs may make this cover the entire range */
3887 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3888 mas_set_range(mas, 0, ULONG_MAX);
3889 return mas_new_root(mas, wr_mas->entry);
3890 }
3891
3892 memset(&b_node, 0, sizeof(struct maple_big_node));
3893 /* Copy l_mas and store the value in b_node. */
3894 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
3895 /* Copy r_mas into b_node if there is anything to copy. */
3896 if (r_mas.max > r_mas.last)
3897 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
3898 &b_node, b_node.b_end + 1);
3899 else
3900 b_node.b_end++;
3901
3902 /* Stop spanning searches by searching for just index. */
3903 l_mas.index = l_mas.last = mas->index;
3904
3905 mast.bn = &b_node;
3906 mast.orig_l = &l_mas;
3907 mast.orig_r = &r_mas;
3908 /* Combine l_mas and r_mas and split them up evenly again. */
3909 return mas_spanning_rebalance(mas, &mast, height + 1);
3910 }
3911
3912 /*
3913 * mas_wr_node_store() - Attempt to store the value in a node
3914 * @wr_mas: The maple write state
3915 *
3916 * Attempts to reuse the node, but may allocate.
3917 *
3918 * Return: True if stored, false otherwise
3919 */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3920 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3921 unsigned char new_end)
3922 {
3923 struct ma_state *mas = wr_mas->mas;
3924 void __rcu **dst_slots;
3925 unsigned long *dst_pivots;
3926 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3927 struct maple_node reuse, *newnode;
3928 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3929 bool in_rcu = mt_in_rcu(mas->tree);
3930
3931 /* Check if there is enough data. The room is enough. */
3932 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3933 !(mas->mas_flags & MA_STATE_BULK))
3934 return false;
3935
3936 if (mas->last == wr_mas->end_piv)
3937 offset_end++; /* don't copy this offset */
3938 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3939 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
3940
3941 /* set up node. */
3942 if (in_rcu) {
3943 mas_node_count(mas, 1);
3944 if (mas_is_err(mas))
3945 return false;
3946
3947 newnode = mas_pop_node(mas);
3948 } else {
3949 memset(&reuse, 0, sizeof(struct maple_node));
3950 newnode = &reuse;
3951 }
3952
3953 newnode->parent = mas_mn(mas)->parent;
3954 dst_pivots = ma_pivots(newnode, wr_mas->type);
3955 dst_slots = ma_slots(newnode, wr_mas->type);
3956 /* Copy from start to insert point */
3957 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3958 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3959
3960 /* Handle insert of new range starting after old range */
3961 if (wr_mas->r_min < mas->index) {
3962 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3963 dst_pivots[mas->offset++] = mas->index - 1;
3964 }
3965
3966 /* Store the new entry and range end. */
3967 if (mas->offset < node_pivots)
3968 dst_pivots[mas->offset] = mas->last;
3969 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3970
3971 /*
3972 * this range wrote to the end of the node or it overwrote the rest of
3973 * the data
3974 */
3975 if (offset_end > wr_mas->node_end)
3976 goto done;
3977
3978 dst_offset = mas->offset + 1;
3979 /* Copy to the end of node if necessary. */
3980 copy_size = wr_mas->node_end - offset_end + 1;
3981 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3982 sizeof(void *) * copy_size);
3983 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3984 sizeof(unsigned long) * (copy_size - 1));
3985
3986 if (new_end < node_pivots)
3987 dst_pivots[new_end] = mas->max;
3988
3989 done:
3990 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
3991 if (in_rcu) {
3992 struct maple_enode *old_enode = mas->node;
3993
3994 mas->node = mt_mk_node(newnode, wr_mas->type);
3995 mas_replace_node(mas, old_enode);
3996 } else {
3997 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3998 }
3999 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4000 mas_update_gap(mas);
4001 return true;
4002 }
4003
4004 /*
4005 * mas_wr_slot_store: Attempt to store a value in a slot.
4006 * @wr_mas: the maple write state
4007 *
4008 * Return: True if stored, false otherwise
4009 */
mas_wr_slot_store(struct ma_wr_state * wr_mas)4010 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4011 {
4012 struct ma_state *mas = wr_mas->mas;
4013 unsigned char offset = mas->offset;
4014 void __rcu **slots = wr_mas->slots;
4015 bool gap = false;
4016
4017 gap |= !mt_slot_locked(mas->tree, slots, offset);
4018 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
4019
4020 if (wr_mas->offset_end - offset == 1) {
4021 if (mas->index == wr_mas->r_min) {
4022 /* Overwriting the range and a part of the next one */
4023 rcu_assign_pointer(slots[offset], wr_mas->entry);
4024 wr_mas->pivots[offset] = mas->last;
4025 } else {
4026 /* Overwriting a part of the range and the next one */
4027 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4028 wr_mas->pivots[offset] = mas->index - 1;
4029 mas->offset++; /* Keep mas accurate. */
4030 }
4031 } else if (!mt_in_rcu(mas->tree)) {
4032 /*
4033 * Expand the range, only partially overwriting the previous and
4034 * next ranges
4035 */
4036 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
4037 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4038 wr_mas->pivots[offset] = mas->index - 1;
4039 wr_mas->pivots[offset + 1] = mas->last;
4040 mas->offset++; /* Keep mas accurate. */
4041 } else {
4042 return false;
4043 }
4044
4045 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4046 /*
4047 * Only update gap when the new entry is empty or there is an empty
4048 * entry in the original two ranges.
4049 */
4050 if (!wr_mas->entry || gap)
4051 mas_update_gap(mas);
4052
4053 return true;
4054 }
4055
mas_wr_extend_null(struct ma_wr_state * wr_mas)4056 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4057 {
4058 struct ma_state *mas = wr_mas->mas;
4059
4060 if (!wr_mas->slots[wr_mas->offset_end]) {
4061 /* If this one is null, the next and prev are not */
4062 mas->last = wr_mas->end_piv;
4063 } else {
4064 /* Check next slot(s) if we are overwriting the end */
4065 if ((mas->last == wr_mas->end_piv) &&
4066 (wr_mas->node_end != wr_mas->offset_end) &&
4067 !wr_mas->slots[wr_mas->offset_end + 1]) {
4068 wr_mas->offset_end++;
4069 if (wr_mas->offset_end == wr_mas->node_end)
4070 mas->last = mas->max;
4071 else
4072 mas->last = wr_mas->pivots[wr_mas->offset_end];
4073 wr_mas->end_piv = mas->last;
4074 }
4075 }
4076
4077 if (!wr_mas->content) {
4078 /* If this one is null, the next and prev are not */
4079 mas->index = wr_mas->r_min;
4080 } else {
4081 /* Check prev slot if we are overwriting the start */
4082 if (mas->index == wr_mas->r_min && mas->offset &&
4083 !wr_mas->slots[mas->offset - 1]) {
4084 mas->offset--;
4085 wr_mas->r_min = mas->index =
4086 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4087 wr_mas->r_max = wr_mas->pivots[mas->offset];
4088 }
4089 }
4090 }
4091
mas_wr_end_piv(struct ma_wr_state * wr_mas)4092 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4093 {
4094 while ((wr_mas->offset_end < wr_mas->node_end) &&
4095 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4096 wr_mas->offset_end++;
4097
4098 if (wr_mas->offset_end < wr_mas->node_end)
4099 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4100 else
4101 wr_mas->end_piv = wr_mas->mas->max;
4102
4103 if (!wr_mas->entry)
4104 mas_wr_extend_null(wr_mas);
4105 }
4106
mas_wr_new_end(struct ma_wr_state * wr_mas)4107 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4108 {
4109 struct ma_state *mas = wr_mas->mas;
4110 unsigned char new_end = wr_mas->node_end + 2;
4111
4112 new_end -= wr_mas->offset_end - mas->offset;
4113 if (wr_mas->r_min == mas->index)
4114 new_end--;
4115
4116 if (wr_mas->end_piv == mas->last)
4117 new_end--;
4118
4119 return new_end;
4120 }
4121
4122 /*
4123 * mas_wr_append: Attempt to append
4124 * @wr_mas: the maple write state
4125 * @new_end: The end of the node after the modification
4126 *
4127 * This is currently unsafe in rcu mode since the end of the node may be cached
4128 * by readers while the node contents may be updated which could result in
4129 * inaccurate information.
4130 *
4131 * Return: True if appended, false otherwise
4132 */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)4133 static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4134 unsigned char new_end)
4135 {
4136 struct ma_state *mas;
4137 void __rcu **slots;
4138 unsigned char end;
4139
4140 mas = wr_mas->mas;
4141 if (mt_in_rcu(mas->tree))
4142 return false;
4143
4144 if (mas->offset != wr_mas->node_end)
4145 return false;
4146
4147 end = wr_mas->node_end;
4148 if (mas->offset != end)
4149 return false;
4150
4151 if (new_end < mt_pivots[wr_mas->type]) {
4152 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4153 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4154 }
4155
4156 slots = wr_mas->slots;
4157 if (new_end == end + 1) {
4158 if (mas->last == wr_mas->r_max) {
4159 /* Append to end of range */
4160 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4161 wr_mas->pivots[end] = mas->index - 1;
4162 mas->offset = new_end;
4163 } else {
4164 /* Append to start of range */
4165 rcu_assign_pointer(slots[new_end], wr_mas->content);
4166 wr_mas->pivots[end] = mas->last;
4167 rcu_assign_pointer(slots[end], wr_mas->entry);
4168 }
4169 } else {
4170 /* Append to the range without touching any boundaries. */
4171 rcu_assign_pointer(slots[new_end], wr_mas->content);
4172 wr_mas->pivots[end + 1] = mas->last;
4173 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4174 wr_mas->pivots[end] = mas->index - 1;
4175 mas->offset = end + 1;
4176 }
4177
4178 if (!wr_mas->content || !wr_mas->entry)
4179 mas_update_gap(mas);
4180
4181 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4182 return true;
4183 }
4184
4185 /*
4186 * mas_wr_bnode() - Slow path for a modification.
4187 * @wr_mas: The write maple state
4188 *
4189 * This is where split, rebalance end up.
4190 */
mas_wr_bnode(struct ma_wr_state * wr_mas)4191 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4192 {
4193 struct maple_big_node b_node;
4194
4195 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4196 memset(&b_node, 0, sizeof(struct maple_big_node));
4197 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4198 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4199 }
4200
mas_wr_modify(struct ma_wr_state * wr_mas)4201 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4202 {
4203 struct ma_state *mas = wr_mas->mas;
4204 unsigned char new_end;
4205
4206 /* Direct replacement */
4207 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4208 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4209 if (!!wr_mas->entry ^ !!wr_mas->content)
4210 mas_update_gap(mas);
4211 return;
4212 }
4213
4214 /*
4215 * new_end exceeds the size of the maple node and cannot enter the fast
4216 * path.
4217 */
4218 new_end = mas_wr_new_end(wr_mas);
4219 if (new_end >= mt_slots[wr_mas->type])
4220 goto slow_path;
4221
4222 /* Attempt to append */
4223 if (mas_wr_append(wr_mas, new_end))
4224 return;
4225
4226 if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
4227 return;
4228
4229 if (mas_wr_node_store(wr_mas, new_end))
4230 return;
4231
4232 if (mas_is_err(mas))
4233 return;
4234
4235 slow_path:
4236 mas_wr_bnode(wr_mas);
4237 }
4238
4239 /*
4240 * mas_wr_store_entry() - Internal call to store a value
4241 * @mas: The maple state
4242 * @entry: The entry to store.
4243 *
4244 * Return: The contents that was stored at the index.
4245 */
mas_wr_store_entry(struct ma_wr_state * wr_mas)4246 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4247 {
4248 struct ma_state *mas = wr_mas->mas;
4249
4250 wr_mas->content = mas_start(mas);
4251 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4252 mas_store_root(mas, wr_mas->entry);
4253 return wr_mas->content;
4254 }
4255
4256 if (unlikely(!mas_wr_walk(wr_mas))) {
4257 mas_wr_spanning_store(wr_mas);
4258 return wr_mas->content;
4259 }
4260
4261 /* At this point, we are at the leaf node that needs to be altered. */
4262 mas_wr_end_piv(wr_mas);
4263 /* New root for a single pointer */
4264 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4265 mas_new_root(mas, wr_mas->entry);
4266 return wr_mas->content;
4267 }
4268
4269 mas_wr_modify(wr_mas);
4270 return wr_mas->content;
4271 }
4272
4273 /**
4274 * mas_insert() - Internal call to insert a value
4275 * @mas: The maple state
4276 * @entry: The entry to store
4277 *
4278 * Return: %NULL or the contents that already exists at the requested index
4279 * otherwise. The maple state needs to be checked for error conditions.
4280 */
mas_insert(struct ma_state * mas,void * entry)4281 static inline void *mas_insert(struct ma_state *mas, void *entry)
4282 {
4283 MA_WR_STATE(wr_mas, mas, entry);
4284
4285 /*
4286 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4287 * tree. If the insert fits exactly into an existing gap with a value
4288 * of NULL, then the slot only needs to be written with the new value.
4289 * If the range being inserted is adjacent to another range, then only a
4290 * single pivot needs to be inserted (as well as writing the entry). If
4291 * the new range is within a gap but does not touch any other ranges,
4292 * then two pivots need to be inserted: the start - 1, and the end. As
4293 * usual, the entry must be written. Most operations require a new node
4294 * to be allocated and replace an existing node to ensure RCU safety,
4295 * when in RCU mode. The exception to requiring a newly allocated node
4296 * is when inserting at the end of a node (appending). When done
4297 * carefully, appending can reuse the node in place.
4298 */
4299 wr_mas.content = mas_start(mas);
4300 if (wr_mas.content)
4301 goto exists;
4302
4303 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4304 mas_store_root(mas, entry);
4305 return NULL;
4306 }
4307
4308 /* spanning writes always overwrite something */
4309 if (!mas_wr_walk(&wr_mas))
4310 goto exists;
4311
4312 /* At this point, we are at the leaf node that needs to be altered. */
4313 wr_mas.offset_end = mas->offset;
4314 wr_mas.end_piv = wr_mas.r_max;
4315
4316 if (wr_mas.content || (mas->last > wr_mas.r_max))
4317 goto exists;
4318
4319 if (!entry)
4320 return NULL;
4321
4322 mas_wr_modify(&wr_mas);
4323 return wr_mas.content;
4324
4325 exists:
4326 mas_set_err(mas, -EEXIST);
4327 return wr_mas.content;
4328
4329 }
4330
mas_rewalk(struct ma_state * mas,unsigned long index)4331 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4332 {
4333 retry:
4334 mas_set(mas, index);
4335 mas_state_walk(mas);
4336 if (mas_is_start(mas))
4337 goto retry;
4338 }
4339
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4340 static inline bool mas_rewalk_if_dead(struct ma_state *mas,
4341 struct maple_node *node, const unsigned long index)
4342 {
4343 if (unlikely(ma_dead_node(node))) {
4344 mas_rewalk(mas, index);
4345 return true;
4346 }
4347 return false;
4348 }
4349
4350 /*
4351 * mas_prev_node() - Find the prev non-null entry at the same level in the
4352 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4353 * @mas: The maple state
4354 * @min: The lower limit to search
4355 *
4356 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4357 * Return: 1 if the node is dead, 0 otherwise.
4358 */
mas_prev_node(struct ma_state * mas,unsigned long min)4359 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4360 {
4361 enum maple_type mt;
4362 int offset, level;
4363 void __rcu **slots;
4364 struct maple_node *node;
4365 unsigned long *pivots;
4366 unsigned long max;
4367
4368 node = mas_mn(mas);
4369 if (!mas->min)
4370 goto no_entry;
4371
4372 max = mas->min - 1;
4373 if (max < min)
4374 goto no_entry;
4375
4376 level = 0;
4377 do {
4378 if (ma_is_root(node))
4379 goto no_entry;
4380
4381 /* Walk up. */
4382 if (unlikely(mas_ascend(mas)))
4383 return 1;
4384 offset = mas->offset;
4385 level++;
4386 node = mas_mn(mas);
4387 } while (!offset);
4388
4389 offset--;
4390 mt = mte_node_type(mas->node);
4391 while (level > 1) {
4392 level--;
4393 slots = ma_slots(node, mt);
4394 mas->node = mas_slot(mas, slots, offset);
4395 if (unlikely(ma_dead_node(node)))
4396 return 1;
4397
4398 mt = mte_node_type(mas->node);
4399 node = mas_mn(mas);
4400 pivots = ma_pivots(node, mt);
4401 offset = ma_data_end(node, mt, pivots, max);
4402 if (unlikely(ma_dead_node(node)))
4403 return 1;
4404 }
4405
4406 slots = ma_slots(node, mt);
4407 mas->node = mas_slot(mas, slots, offset);
4408 pivots = ma_pivots(node, mt);
4409 if (unlikely(ma_dead_node(node)))
4410 return 1;
4411
4412 if (likely(offset))
4413 mas->min = pivots[offset - 1] + 1;
4414 mas->max = max;
4415 mas->offset = mas_data_end(mas);
4416 if (unlikely(mte_dead_node(mas->node)))
4417 return 1;
4418
4419 return 0;
4420
4421 no_entry:
4422 if (unlikely(ma_dead_node(node)))
4423 return 1;
4424
4425 mas->node = MAS_NONE;
4426 return 0;
4427 }
4428
4429 /*
4430 * mas_prev_slot() - Get the entry in the previous slot
4431 *
4432 * @mas: The maple state
4433 * @max: The minimum starting range
4434 * @empty: Can be empty
4435 * @set_underflow: Set the @mas->node to underflow state on limit.
4436 *
4437 * Return: The entry in the previous slot which is possibly NULL
4438 */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty,bool set_underflow)4439 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty,
4440 bool set_underflow)
4441 {
4442 void *entry;
4443 void __rcu **slots;
4444 unsigned long pivot;
4445 enum maple_type type;
4446 unsigned long *pivots;
4447 struct maple_node *node;
4448 unsigned long save_point = mas->index;
4449
4450 retry:
4451 node = mas_mn(mas);
4452 type = mte_node_type(mas->node);
4453 pivots = ma_pivots(node, type);
4454 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4455 goto retry;
4456
4457 if (mas->min <= min) {
4458 pivot = mas_safe_min(mas, pivots, mas->offset);
4459
4460 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4461 goto retry;
4462
4463 if (pivot <= min)
4464 goto underflow;
4465 }
4466
4467 again:
4468 if (likely(mas->offset)) {
4469 mas->offset--;
4470 mas->last = mas->index - 1;
4471 mas->index = mas_safe_min(mas, pivots, mas->offset);
4472 } else {
4473 if (mas_prev_node(mas, min)) {
4474 mas_rewalk(mas, save_point);
4475 goto retry;
4476 }
4477
4478 if (mas_is_none(mas))
4479 goto underflow;
4480
4481 mas->last = mas->max;
4482 node = mas_mn(mas);
4483 type = mte_node_type(mas->node);
4484 pivots = ma_pivots(node, type);
4485 mas->index = pivots[mas->offset - 1] + 1;
4486 }
4487
4488 slots = ma_slots(node, type);
4489 entry = mas_slot(mas, slots, mas->offset);
4490 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4491 goto retry;
4492
4493 if (likely(entry))
4494 return entry;
4495
4496 if (!empty) {
4497 if (mas->index <= min)
4498 goto underflow;
4499
4500 goto again;
4501 }
4502
4503 return entry;
4504
4505 underflow:
4506 if (set_underflow)
4507 mas->node = MAS_UNDERFLOW;
4508 return NULL;
4509 }
4510
4511 /*
4512 * mas_next_node() - Get the next node at the same level in the tree.
4513 * @mas: The maple state
4514 * @max: The maximum pivot value to check.
4515 *
4516 * The next value will be mas->node[mas->offset] or MAS_NONE.
4517 * Return: 1 on dead node, 0 otherwise.
4518 */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4519 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4520 unsigned long max)
4521 {
4522 unsigned long min;
4523 unsigned long *pivots;
4524 struct maple_enode *enode;
4525 int level = 0;
4526 unsigned char node_end;
4527 enum maple_type mt;
4528 void __rcu **slots;
4529
4530 if (mas->max >= max)
4531 goto no_entry;
4532
4533 min = mas->max + 1;
4534 level = 0;
4535 do {
4536 if (ma_is_root(node))
4537 goto no_entry;
4538
4539 /* Walk up. */
4540 if (unlikely(mas_ascend(mas)))
4541 return 1;
4542
4543 level++;
4544 node = mas_mn(mas);
4545 mt = mte_node_type(mas->node);
4546 pivots = ma_pivots(node, mt);
4547 node_end = ma_data_end(node, mt, pivots, mas->max);
4548 if (unlikely(ma_dead_node(node)))
4549 return 1;
4550
4551 } while (unlikely(mas->offset == node_end));
4552
4553 slots = ma_slots(node, mt);
4554 mas->offset++;
4555 enode = mas_slot(mas, slots, mas->offset);
4556 if (unlikely(ma_dead_node(node)))
4557 return 1;
4558
4559 if (level > 1)
4560 mas->offset = 0;
4561
4562 while (unlikely(level > 1)) {
4563 level--;
4564 mas->node = enode;
4565 node = mas_mn(mas);
4566 mt = mte_node_type(mas->node);
4567 slots = ma_slots(node, mt);
4568 enode = mas_slot(mas, slots, 0);
4569 if (unlikely(ma_dead_node(node)))
4570 return 1;
4571 }
4572
4573 if (!mas->offset)
4574 pivots = ma_pivots(node, mt);
4575
4576 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4577 if (unlikely(ma_dead_node(node)))
4578 return 1;
4579
4580 mas->node = enode;
4581 mas->min = min;
4582 return 0;
4583
4584 no_entry:
4585 if (unlikely(ma_dead_node(node)))
4586 return 1;
4587
4588 mas->node = MAS_NONE;
4589 return 0;
4590 }
4591
4592 /*
4593 * mas_next_slot() - Get the entry in the next slot
4594 *
4595 * @mas: The maple state
4596 * @max: The maximum starting range
4597 * @empty: Can be empty
4598 * @set_overflow: Should @mas->node be set to overflow when the limit is
4599 * reached.
4600 *
4601 * Return: The entry in the next slot which is possibly NULL
4602 */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty,bool set_overflow)4603 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty,
4604 bool set_overflow)
4605 {
4606 void __rcu **slots;
4607 unsigned long *pivots;
4608 unsigned long pivot;
4609 enum maple_type type;
4610 struct maple_node *node;
4611 unsigned char data_end;
4612 unsigned long save_point = mas->last;
4613 void *entry;
4614
4615 retry:
4616 node = mas_mn(mas);
4617 type = mte_node_type(mas->node);
4618 pivots = ma_pivots(node, type);
4619 data_end = ma_data_end(node, type, pivots, mas->max);
4620 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4621 goto retry;
4622
4623 if (mas->max >= max) {
4624 if (likely(mas->offset < data_end))
4625 pivot = pivots[mas->offset];
4626 else
4627 goto overflow;
4628
4629 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4630 goto retry;
4631
4632 if (pivot >= max)
4633 goto overflow;
4634 }
4635
4636 if (likely(mas->offset < data_end)) {
4637 mas->index = pivots[mas->offset] + 1;
4638 again:
4639 mas->offset++;
4640 if (likely(mas->offset < data_end))
4641 mas->last = pivots[mas->offset];
4642 else
4643 mas->last = mas->max;
4644 } else {
4645 if (mas_next_node(mas, node, max)) {
4646 mas_rewalk(mas, save_point);
4647 goto retry;
4648 }
4649
4650 if (WARN_ON_ONCE(mas_is_none(mas))) {
4651 mas->node = MAS_OVERFLOW;
4652 return NULL;
4653 goto overflow;
4654 }
4655
4656 mas->offset = 0;
4657 mas->index = mas->min;
4658 node = mas_mn(mas);
4659 type = mte_node_type(mas->node);
4660 pivots = ma_pivots(node, type);
4661 mas->last = pivots[0];
4662 }
4663
4664 slots = ma_slots(node, type);
4665 entry = mt_slot(mas->tree, slots, mas->offset);
4666 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4667 goto retry;
4668
4669 if (entry)
4670 return entry;
4671
4672 if (!empty) {
4673 if (mas->last >= max)
4674 goto overflow;
4675
4676 mas->index = mas->last + 1;
4677 /* Node cannot end on NULL, so it's safe to short-cut here */
4678 goto again;
4679 }
4680
4681 return entry;
4682
4683 overflow:
4684 if (set_overflow)
4685 mas->node = MAS_OVERFLOW;
4686 return NULL;
4687 }
4688
4689 /*
4690 * mas_next_entry() - Internal function to get the next entry.
4691 * @mas: The maple state
4692 * @limit: The maximum range start.
4693 *
4694 * Set the @mas->node to the next entry and the range_start to
4695 * the beginning value for the entry. Does not check beyond @limit.
4696 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4697 * @mas->last on overflow.
4698 * Restarts on dead nodes.
4699 *
4700 * Return: the next entry or %NULL.
4701 */
mas_next_entry(struct ma_state * mas,unsigned long limit)4702 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4703 {
4704 if (mas->last >= limit) {
4705 mas->node = MAS_OVERFLOW;
4706 return NULL;
4707 }
4708
4709 return mas_next_slot(mas, limit, false, true);
4710 }
4711
4712 /*
4713 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4714 * highest gap address of a given size in a given node and descend.
4715 * @mas: The maple state
4716 * @size: The needed size.
4717 *
4718 * Return: True if found in a leaf, false otherwise.
4719 *
4720 */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4721 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4722 unsigned long *gap_min, unsigned long *gap_max)
4723 {
4724 enum maple_type type = mte_node_type(mas->node);
4725 struct maple_node *node = mas_mn(mas);
4726 unsigned long *pivots, *gaps;
4727 void __rcu **slots;
4728 unsigned long gap = 0;
4729 unsigned long max, min;
4730 unsigned char offset;
4731
4732 if (unlikely(mas_is_err(mas)))
4733 return true;
4734
4735 if (ma_is_dense(type)) {
4736 /* dense nodes. */
4737 mas->offset = (unsigned char)(mas->index - mas->min);
4738 return true;
4739 }
4740
4741 pivots = ma_pivots(node, type);
4742 slots = ma_slots(node, type);
4743 gaps = ma_gaps(node, type);
4744 offset = mas->offset;
4745 min = mas_safe_min(mas, pivots, offset);
4746 /* Skip out of bounds. */
4747 while (mas->last < min)
4748 min = mas_safe_min(mas, pivots, --offset);
4749
4750 max = mas_safe_pivot(mas, pivots, offset, type);
4751 while (mas->index <= max) {
4752 gap = 0;
4753 if (gaps)
4754 gap = gaps[offset];
4755 else if (!mas_slot(mas, slots, offset))
4756 gap = max - min + 1;
4757
4758 if (gap) {
4759 if ((size <= gap) && (size <= mas->last - min + 1))
4760 break;
4761
4762 if (!gaps) {
4763 /* Skip the next slot, it cannot be a gap. */
4764 if (offset < 2)
4765 goto ascend;
4766
4767 offset -= 2;
4768 max = pivots[offset];
4769 min = mas_safe_min(mas, pivots, offset);
4770 continue;
4771 }
4772 }
4773
4774 if (!offset)
4775 goto ascend;
4776
4777 offset--;
4778 max = min - 1;
4779 min = mas_safe_min(mas, pivots, offset);
4780 }
4781
4782 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4783 goto no_space;
4784
4785 if (unlikely(ma_is_leaf(type))) {
4786 mas->offset = offset;
4787 *gap_min = min;
4788 *gap_max = min + gap - 1;
4789 return true;
4790 }
4791
4792 /* descend, only happens under lock. */
4793 mas->node = mas_slot(mas, slots, offset);
4794 mas->min = min;
4795 mas->max = max;
4796 mas->offset = mas_data_end(mas);
4797 return false;
4798
4799 ascend:
4800 if (!mte_is_root(mas->node))
4801 return false;
4802
4803 no_space:
4804 mas_set_err(mas, -EBUSY);
4805 return false;
4806 }
4807
mas_anode_descend(struct ma_state * mas,unsigned long size)4808 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4809 {
4810 enum maple_type type = mte_node_type(mas->node);
4811 unsigned long pivot, min, gap = 0;
4812 unsigned char offset, data_end;
4813 unsigned long *gaps, *pivots;
4814 void __rcu **slots;
4815 struct maple_node *node;
4816 bool found = false;
4817
4818 if (ma_is_dense(type)) {
4819 mas->offset = (unsigned char)(mas->index - mas->min);
4820 return true;
4821 }
4822
4823 node = mas_mn(mas);
4824 pivots = ma_pivots(node, type);
4825 slots = ma_slots(node, type);
4826 gaps = ma_gaps(node, type);
4827 offset = mas->offset;
4828 min = mas_safe_min(mas, pivots, offset);
4829 data_end = ma_data_end(node, type, pivots, mas->max);
4830 for (; offset <= data_end; offset++) {
4831 pivot = mas_safe_pivot(mas, pivots, offset, type);
4832
4833 /* Not within lower bounds */
4834 if (mas->index > pivot)
4835 goto next_slot;
4836
4837 if (gaps)
4838 gap = gaps[offset];
4839 else if (!mas_slot(mas, slots, offset))
4840 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4841 else
4842 goto next_slot;
4843
4844 if (gap >= size) {
4845 if (ma_is_leaf(type)) {
4846 found = true;
4847 goto done;
4848 }
4849 if (mas->index <= pivot) {
4850 mas->node = mas_slot(mas, slots, offset);
4851 mas->min = min;
4852 mas->max = pivot;
4853 offset = 0;
4854 break;
4855 }
4856 }
4857 next_slot:
4858 min = pivot + 1;
4859 if (mas->last <= pivot) {
4860 mas_set_err(mas, -EBUSY);
4861 return true;
4862 }
4863 }
4864
4865 if (mte_is_root(mas->node))
4866 found = true;
4867 done:
4868 mas->offset = offset;
4869 return found;
4870 }
4871
4872 /**
4873 * mas_walk() - Search for @mas->index in the tree.
4874 * @mas: The maple state.
4875 *
4876 * mas->index and mas->last will be set to the range if there is a value. If
4877 * mas->node is MAS_NONE, reset to MAS_START.
4878 *
4879 * Return: the entry at the location or %NULL.
4880 */
mas_walk(struct ma_state * mas)4881 void *mas_walk(struct ma_state *mas)
4882 {
4883 void *entry;
4884
4885 if (!mas_is_active(mas) || !mas_is_start(mas))
4886 mas->node = MAS_START;
4887 retry:
4888 entry = mas_state_walk(mas);
4889 if (mas_is_start(mas)) {
4890 goto retry;
4891 } else if (mas_is_none(mas)) {
4892 mas->index = 0;
4893 mas->last = ULONG_MAX;
4894 } else if (mas_is_ptr(mas)) {
4895 if (!mas->index) {
4896 mas->last = 0;
4897 return entry;
4898 }
4899
4900 mas->index = 1;
4901 mas->last = ULONG_MAX;
4902 mas->node = MAS_NONE;
4903 return NULL;
4904 }
4905
4906 return entry;
4907 }
4908 EXPORT_SYMBOL_GPL(mas_walk);
4909
mas_rewind_node(struct ma_state * mas)4910 static inline bool mas_rewind_node(struct ma_state *mas)
4911 {
4912 unsigned char slot;
4913
4914 do {
4915 if (mte_is_root(mas->node)) {
4916 slot = mas->offset;
4917 if (!slot)
4918 return false;
4919 } else {
4920 mas_ascend(mas);
4921 slot = mas->offset;
4922 }
4923 } while (!slot);
4924
4925 mas->offset = --slot;
4926 return true;
4927 }
4928
4929 /*
4930 * mas_skip_node() - Internal function. Skip over a node.
4931 * @mas: The maple state.
4932 *
4933 * Return: true if there is another node, false otherwise.
4934 */
mas_skip_node(struct ma_state * mas)4935 static inline bool mas_skip_node(struct ma_state *mas)
4936 {
4937 if (mas_is_err(mas))
4938 return false;
4939
4940 do {
4941 if (mte_is_root(mas->node)) {
4942 if (mas->offset >= mas_data_end(mas)) {
4943 mas_set_err(mas, -EBUSY);
4944 return false;
4945 }
4946 } else {
4947 mas_ascend(mas);
4948 }
4949 } while (mas->offset >= mas_data_end(mas));
4950
4951 mas->offset++;
4952 return true;
4953 }
4954
4955 /*
4956 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
4957 * @size
4958 * @mas: The maple state
4959 * @size: The size of the gap required
4960 *
4961 * Search between @mas->index and @mas->last for a gap of @size.
4962 */
mas_awalk(struct ma_state * mas,unsigned long size)4963 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4964 {
4965 struct maple_enode *last = NULL;
4966
4967 /*
4968 * There are 4 options:
4969 * go to child (descend)
4970 * go back to parent (ascend)
4971 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4972 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4973 */
4974 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4975 if (last == mas->node)
4976 mas_skip_node(mas);
4977 else
4978 last = mas->node;
4979 }
4980 }
4981
4982 /*
4983 * mas_sparse_area() - Internal function. Return upper or lower limit when
4984 * searching for a gap in an empty tree.
4985 * @mas: The maple state
4986 * @min: the minimum range
4987 * @max: The maximum range
4988 * @size: The size of the gap
4989 * @fwd: Searching forward or back
4990 */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)4991 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
4992 unsigned long max, unsigned long size, bool fwd)
4993 {
4994 if (!unlikely(mas_is_none(mas)) && min == 0) {
4995 min++;
4996 /*
4997 * At this time, min is increased, we need to recheck whether
4998 * the size is satisfied.
4999 */
5000 if (min > max || max - min + 1 < size)
5001 return -EBUSY;
5002 }
5003 /* mas_is_ptr */
5004
5005 if (fwd) {
5006 mas->index = min;
5007 mas->last = min + size - 1;
5008 } else {
5009 mas->last = max;
5010 mas->index = max - size + 1;
5011 }
5012 return 0;
5013 }
5014
5015 /*
5016 * mas_empty_area() - Get the lowest address within the range that is
5017 * sufficient for the size requested.
5018 * @mas: The maple state
5019 * @min: The lowest value of the range
5020 * @max: The highest value of the range
5021 * @size: The size needed
5022 */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5023 int mas_empty_area(struct ma_state *mas, unsigned long min,
5024 unsigned long max, unsigned long size)
5025 {
5026 unsigned char offset;
5027 unsigned long *pivots;
5028 enum maple_type mt;
5029
5030 if (min > max)
5031 return -EINVAL;
5032
5033 if (size == 0 || max - min < size - 1)
5034 return -EINVAL;
5035
5036 if (mas_is_start(mas))
5037 mas_start(mas);
5038 else if (mas->offset >= 2)
5039 mas->offset -= 2;
5040 else if (!mas_skip_node(mas))
5041 return -EBUSY;
5042
5043 /* Empty set */
5044 if (mas_is_none(mas) || mas_is_ptr(mas))
5045 return mas_sparse_area(mas, min, max, size, true);
5046
5047 /* The start of the window can only be within these values */
5048 mas->index = min;
5049 mas->last = max;
5050 mas_awalk(mas, size);
5051
5052 if (unlikely(mas_is_err(mas)))
5053 return xa_err(mas->node);
5054
5055 offset = mas->offset;
5056 if (unlikely(offset == MAPLE_NODE_SLOTS))
5057 return -EBUSY;
5058
5059 mt = mte_node_type(mas->node);
5060 pivots = ma_pivots(mas_mn(mas), mt);
5061 min = mas_safe_min(mas, pivots, offset);
5062 if (mas->index < min)
5063 mas->index = min;
5064 mas->last = mas->index + size - 1;
5065 return 0;
5066 }
5067 EXPORT_SYMBOL_GPL(mas_empty_area);
5068
5069 /*
5070 * mas_empty_area_rev() - Get the highest address within the range that is
5071 * sufficient for the size requested.
5072 * @mas: The maple state
5073 * @min: The lowest value of the range
5074 * @max: The highest value of the range
5075 * @size: The size needed
5076 */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5077 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5078 unsigned long max, unsigned long size)
5079 {
5080 struct maple_enode *last = mas->node;
5081
5082 if (min > max)
5083 return -EINVAL;
5084
5085 if (size == 0 || max - min < size - 1)
5086 return -EINVAL;
5087
5088 if (mas_is_start(mas))
5089 mas_start(mas);
5090 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5091 return -EBUSY;
5092
5093 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5094 return mas_sparse_area(mas, min, max, size, false);
5095 else if (mas->offset >= 2)
5096 mas->offset -= 2;
5097 else
5098 mas->offset = mas_data_end(mas);
5099
5100
5101 /* The start of the window can only be within these values. */
5102 mas->index = min;
5103 mas->last = max;
5104
5105 while (!mas_rev_awalk(mas, size, &min, &max)) {
5106 if (last == mas->node) {
5107 if (!mas_rewind_node(mas))
5108 return -EBUSY;
5109 } else {
5110 last = mas->node;
5111 }
5112 }
5113
5114 if (mas_is_err(mas))
5115 return xa_err(mas->node);
5116
5117 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5118 return -EBUSY;
5119
5120 /* Trim the upper limit to the max. */
5121 if (max < mas->last)
5122 mas->last = max;
5123
5124 mas->index = mas->last - size + 1;
5125 return 0;
5126 }
5127 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5128
5129 /*
5130 * mte_dead_leaves() - Mark all leaves of a node as dead.
5131 * @mas: The maple state
5132 * @slots: Pointer to the slot array
5133 * @type: The maple node type
5134 *
5135 * Must hold the write lock.
5136 *
5137 * Return: The number of leaves marked as dead.
5138 */
5139 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)5140 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5141 void __rcu **slots)
5142 {
5143 struct maple_node *node;
5144 enum maple_type type;
5145 void *entry;
5146 int offset;
5147
5148 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5149 entry = mt_slot(mt, slots, offset);
5150 type = mte_node_type(entry);
5151 node = mte_to_node(entry);
5152 /* Use both node and type to catch LE & BE metadata */
5153 if (!node || !type)
5154 break;
5155
5156 mte_set_node_dead(entry);
5157 node->type = type;
5158 rcu_assign_pointer(slots[offset], node);
5159 }
5160
5161 return offset;
5162 }
5163
5164 /**
5165 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5166 * @enode: The maple encoded node
5167 * @offset: The starting offset
5168 *
5169 * Note: This can only be used from the RCU callback context.
5170 */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)5171 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5172 {
5173 struct maple_node *node, *next;
5174 void __rcu **slots = NULL;
5175
5176 next = mte_to_node(*enode);
5177 do {
5178 *enode = ma_enode_ptr(next);
5179 node = mte_to_node(*enode);
5180 slots = ma_slots(node, node->type);
5181 next = rcu_dereference_protected(slots[offset],
5182 lock_is_held(&rcu_callback_map));
5183 offset = 0;
5184 } while (!ma_is_leaf(next->type));
5185
5186 return slots;
5187 }
5188
5189 /**
5190 * mt_free_walk() - Walk & free a tree in the RCU callback context
5191 * @head: The RCU head that's within the node.
5192 *
5193 * Note: This can only be used from the RCU callback context.
5194 */
mt_free_walk(struct rcu_head * head)5195 static void mt_free_walk(struct rcu_head *head)
5196 {
5197 void __rcu **slots;
5198 struct maple_node *node, *start;
5199 struct maple_enode *enode;
5200 unsigned char offset;
5201 enum maple_type type;
5202
5203 node = container_of(head, struct maple_node, rcu);
5204
5205 if (ma_is_leaf(node->type))
5206 goto free_leaf;
5207
5208 start = node;
5209 enode = mt_mk_node(node, node->type);
5210 slots = mte_dead_walk(&enode, 0);
5211 node = mte_to_node(enode);
5212 do {
5213 mt_free_bulk(node->slot_len, slots);
5214 offset = node->parent_slot + 1;
5215 enode = node->piv_parent;
5216 if (mte_to_node(enode) == node)
5217 goto free_leaf;
5218
5219 type = mte_node_type(enode);
5220 slots = ma_slots(mte_to_node(enode), type);
5221 if ((offset < mt_slots[type]) &&
5222 rcu_dereference_protected(slots[offset],
5223 lock_is_held(&rcu_callback_map)))
5224 slots = mte_dead_walk(&enode, offset);
5225 node = mte_to_node(enode);
5226 } while ((node != start) || (node->slot_len < offset));
5227
5228 slots = ma_slots(node, node->type);
5229 mt_free_bulk(node->slot_len, slots);
5230
5231 free_leaf:
5232 mt_free_rcu(&node->rcu);
5233 }
5234
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)5235 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5236 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5237 {
5238 struct maple_node *node;
5239 struct maple_enode *next = *enode;
5240 void __rcu **slots = NULL;
5241 enum maple_type type;
5242 unsigned char next_offset = 0;
5243
5244 do {
5245 *enode = next;
5246 node = mte_to_node(*enode);
5247 type = mte_node_type(*enode);
5248 slots = ma_slots(node, type);
5249 next = mt_slot_locked(mt, slots, next_offset);
5250 if ((mte_dead_node(next)))
5251 next = mt_slot_locked(mt, slots, ++next_offset);
5252
5253 mte_set_node_dead(*enode);
5254 node->type = type;
5255 node->piv_parent = prev;
5256 node->parent_slot = offset;
5257 offset = next_offset;
5258 next_offset = 0;
5259 prev = *enode;
5260 } while (!mte_is_leaf(next));
5261
5262 return slots;
5263 }
5264
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)5265 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5266 bool free)
5267 {
5268 void __rcu **slots;
5269 struct maple_node *node = mte_to_node(enode);
5270 struct maple_enode *start;
5271
5272 if (mte_is_leaf(enode)) {
5273 mte_set_node_dead(enode);
5274 node->type = mte_node_type(enode);
5275 goto free_leaf;
5276 }
5277
5278 start = enode;
5279 slots = mte_destroy_descend(&enode, mt, start, 0);
5280 node = mte_to_node(enode); // Updated in the above call.
5281 do {
5282 enum maple_type type;
5283 unsigned char offset;
5284 struct maple_enode *parent, *tmp;
5285
5286 node->slot_len = mte_dead_leaves(enode, mt, slots);
5287 if (free)
5288 mt_free_bulk(node->slot_len, slots);
5289 offset = node->parent_slot + 1;
5290 enode = node->piv_parent;
5291 if (mte_to_node(enode) == node)
5292 goto free_leaf;
5293
5294 type = mte_node_type(enode);
5295 slots = ma_slots(mte_to_node(enode), type);
5296 if (offset >= mt_slots[type])
5297 goto next;
5298
5299 tmp = mt_slot_locked(mt, slots, offset);
5300 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5301 parent = enode;
5302 enode = tmp;
5303 slots = mte_destroy_descend(&enode, mt, parent, offset);
5304 }
5305 next:
5306 node = mte_to_node(enode);
5307 } while (start != enode);
5308
5309 node = mte_to_node(enode);
5310 node->slot_len = mte_dead_leaves(enode, mt, slots);
5311 if (free)
5312 mt_free_bulk(node->slot_len, slots);
5313
5314 free_leaf:
5315 if (free)
5316 mt_free_rcu(&node->rcu);
5317 else
5318 mt_clear_meta(mt, node, node->type);
5319 }
5320
5321 /*
5322 * mte_destroy_walk() - Free a tree or sub-tree.
5323 * @enode: the encoded maple node (maple_enode) to start
5324 * @mt: the tree to free - needed for node types.
5325 *
5326 * Must hold the write lock.
5327 */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5328 static inline void mte_destroy_walk(struct maple_enode *enode,
5329 struct maple_tree *mt)
5330 {
5331 struct maple_node *node = mte_to_node(enode);
5332
5333 if (mt_in_rcu(mt)) {
5334 mt_destroy_walk(enode, mt, false);
5335 call_rcu(&node->rcu, mt_free_walk);
5336 } else {
5337 mt_destroy_walk(enode, mt, true);
5338 }
5339 }
5340
mas_wr_store_setup(struct ma_wr_state * wr_mas)5341 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5342 {
5343 if (!mas_is_active(wr_mas->mas)) {
5344 if (mas_is_start(wr_mas->mas))
5345 return;
5346
5347 if (unlikely(mas_is_paused(wr_mas->mas)))
5348 goto reset;
5349
5350 if (unlikely(mas_is_none(wr_mas->mas)))
5351 goto reset;
5352
5353 if (unlikely(mas_is_overflow(wr_mas->mas)))
5354 goto reset;
5355
5356 if (unlikely(mas_is_underflow(wr_mas->mas)))
5357 goto reset;
5358 }
5359
5360 /*
5361 * A less strict version of mas_is_span_wr() where we allow spanning
5362 * writes within this node. This is to stop partial walks in
5363 * mas_prealloc() from being reset.
5364 */
5365 if (wr_mas->mas->last > wr_mas->mas->max)
5366 goto reset;
5367
5368 if (wr_mas->entry)
5369 return;
5370
5371 if (mte_is_leaf(wr_mas->mas->node) &&
5372 wr_mas->mas->last == wr_mas->mas->max)
5373 goto reset;
5374
5375 return;
5376
5377 reset:
5378 mas_reset(wr_mas->mas);
5379 }
5380
5381 /* Interface */
5382
5383 /**
5384 * mas_store() - Store an @entry.
5385 * @mas: The maple state.
5386 * @entry: The entry to store.
5387 *
5388 * The @mas->index and @mas->last is used to set the range for the @entry.
5389 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5390 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5391 *
5392 * Return: the first entry between mas->index and mas->last or %NULL.
5393 */
mas_store(struct ma_state * mas,void * entry)5394 void *mas_store(struct ma_state *mas, void *entry)
5395 {
5396 MA_WR_STATE(wr_mas, mas, entry);
5397
5398 trace_ma_write(__func__, mas, 0, entry);
5399 #ifdef CONFIG_DEBUG_MAPLE_TREE
5400 if (MAS_WARN_ON(mas, mas->index > mas->last))
5401 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5402
5403 if (mas->index > mas->last) {
5404 mas_set_err(mas, -EINVAL);
5405 return NULL;
5406 }
5407
5408 #endif
5409
5410 /*
5411 * Storing is the same operation as insert with the added caveat that it
5412 * can overwrite entries. Although this seems simple enough, one may
5413 * want to examine what happens if a single store operation was to
5414 * overwrite multiple entries within a self-balancing B-Tree.
5415 */
5416 mas_wr_store_setup(&wr_mas);
5417 mas_wr_store_entry(&wr_mas);
5418 return wr_mas.content;
5419 }
5420 EXPORT_SYMBOL_GPL(mas_store);
5421
5422 /**
5423 * mas_store_gfp() - Store a value into the tree.
5424 * @mas: The maple state
5425 * @entry: The entry to store
5426 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5427 *
5428 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5429 * be allocated.
5430 */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5431 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5432 {
5433 MA_WR_STATE(wr_mas, mas, entry);
5434
5435 mas_wr_store_setup(&wr_mas);
5436 trace_ma_write(__func__, mas, 0, entry);
5437 retry:
5438 mas_wr_store_entry(&wr_mas);
5439 if (unlikely(mas_nomem(mas, gfp)))
5440 goto retry;
5441
5442 if (unlikely(mas_is_err(mas)))
5443 return xa_err(mas->node);
5444
5445 return 0;
5446 }
5447 EXPORT_SYMBOL_GPL(mas_store_gfp);
5448
5449 /**
5450 * mas_store_prealloc() - Store a value into the tree using memory
5451 * preallocated in the maple state.
5452 * @mas: The maple state
5453 * @entry: The entry to store.
5454 */
mas_store_prealloc(struct ma_state * mas,void * entry)5455 void mas_store_prealloc(struct ma_state *mas, void *entry)
5456 {
5457 MA_WR_STATE(wr_mas, mas, entry);
5458
5459 mas_wr_store_setup(&wr_mas);
5460 trace_ma_write(__func__, mas, 0, entry);
5461 mas_wr_store_entry(&wr_mas);
5462 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5463 mas_destroy(mas);
5464 }
5465 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5466
5467 /**
5468 * mas_preallocate() - Preallocate enough nodes for a store operation
5469 * @mas: The maple state
5470 * @entry: The entry that will be stored
5471 * @gfp: The GFP_FLAGS to use for allocations.
5472 *
5473 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5474 */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5475 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5476 {
5477 MA_WR_STATE(wr_mas, mas, entry);
5478 unsigned char node_size;
5479 int request = 1;
5480 int ret;
5481
5482
5483 if (unlikely(!mas->index && mas->last == ULONG_MAX))
5484 goto ask_now;
5485
5486 mas_wr_store_setup(&wr_mas);
5487 wr_mas.content = mas_start(mas);
5488 /* Root expand */
5489 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5490 goto ask_now;
5491
5492 if (unlikely(!mas_wr_walk(&wr_mas))) {
5493 /* Spanning store, use worst case for now */
5494 request = 1 + mas_mt_height(mas) * 3;
5495 goto ask_now;
5496 }
5497
5498 /* At this point, we are at the leaf node that needs to be altered. */
5499 /* Exact fit, no nodes needed. */
5500 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5501 goto set_flag;
5502
5503 mas_wr_end_piv(&wr_mas);
5504 node_size = mas_wr_new_end(&wr_mas);
5505
5506 /* Slot store, does not require additional nodes */
5507 if (node_size == wr_mas.node_end) {
5508 /* reuse node */
5509 if (!mt_in_rcu(mas->tree))
5510 goto set_flag;
5511 /* shifting boundary */
5512 if (wr_mas.offset_end - mas->offset == 1)
5513 goto set_flag;
5514 }
5515
5516 if (node_size >= mt_slots[wr_mas.type]) {
5517 /* Split, worst case for now. */
5518 request = 1 + mas_mt_height(mas) * 2;
5519 goto ask_now;
5520 }
5521
5522 /* New root needs a singe node */
5523 if (unlikely(mte_is_root(mas->node)))
5524 goto ask_now;
5525
5526 /* Potential spanning rebalance collapsing a node, use worst-case */
5527 if (node_size - 1 <= mt_min_slots[wr_mas.type])
5528 request = mas_mt_height(mas) * 2 - 1;
5529
5530 /* node store, slot store needs one node */
5531 ask_now:
5532 mas->mas_flags &= ~MA_STATE_PREALLOC;
5533 mas_node_count_gfp(mas, request, gfp);
5534 if (likely(!mas_is_err(mas))) {
5535 set_flag:
5536 mas->mas_flags |= MA_STATE_PREALLOC;
5537 return 0;
5538 }
5539
5540 mas_set_alloc_req(mas, 0);
5541 ret = xa_err(mas->node);
5542 mas_reset(mas);
5543 mas_destroy(mas);
5544 mas_reset(mas);
5545 return ret;
5546 }
5547 EXPORT_SYMBOL_GPL(mas_preallocate);
5548
5549 /*
5550 * mas_destroy() - destroy a maple state.
5551 * @mas: The maple state
5552 *
5553 * Upon completion, check the left-most node and rebalance against the node to
5554 * the right if necessary. Frees any allocated nodes associated with this maple
5555 * state.
5556 */
mas_destroy(struct ma_state * mas)5557 void mas_destroy(struct ma_state *mas)
5558 {
5559 struct maple_alloc *node;
5560 unsigned long total;
5561
5562 /*
5563 * When using mas_for_each() to insert an expected number of elements,
5564 * it is possible that the number inserted is less than the expected
5565 * number. To fix an invalid final node, a check is performed here to
5566 * rebalance the previous node with the final node.
5567 */
5568 if (mas->mas_flags & MA_STATE_REBALANCE) {
5569 unsigned char end;
5570
5571 mas_start(mas);
5572 mtree_range_walk(mas);
5573 end = mas_data_end(mas) + 1;
5574 if (end < mt_min_slot_count(mas->node) - 1)
5575 mas_destroy_rebalance(mas, end);
5576
5577 mas->mas_flags &= ~MA_STATE_REBALANCE;
5578 }
5579 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5580
5581 total = mas_allocated(mas);
5582 while (total) {
5583 node = mas->alloc;
5584 mas->alloc = node->slot[0];
5585 if (node->node_count > 1) {
5586 size_t count = node->node_count - 1;
5587
5588 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5589 total -= count;
5590 }
5591 kmem_cache_free(maple_node_cache, node);
5592 total--;
5593 }
5594
5595 mas->alloc = NULL;
5596 }
5597 EXPORT_SYMBOL_GPL(mas_destroy);
5598
5599 /*
5600 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5601 * @mas: The maple state
5602 * @nr_entries: The number of expected entries.
5603 *
5604 * This will attempt to pre-allocate enough nodes to store the expected number
5605 * of entries. The allocations will occur using the bulk allocator interface
5606 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5607 * to ensure any unused nodes are freed.
5608 *
5609 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5610 */
mas_expected_entries(struct ma_state * mas,unsigned long nr_entries)5611 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5612 {
5613 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5614 struct maple_enode *enode = mas->node;
5615 int nr_nodes;
5616 int ret;
5617
5618 /*
5619 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5620 * forking a process and duplicating the VMAs from one tree to a new
5621 * tree. When such a situation arises, it is known that the new tree is
5622 * not going to be used until the entire tree is populated. For
5623 * performance reasons, it is best to use a bulk load with RCU disabled.
5624 * This allows for optimistic splitting that favours the left and reuse
5625 * of nodes during the operation.
5626 */
5627
5628 /* Optimize splitting for bulk insert in-order */
5629 mas->mas_flags |= MA_STATE_BULK;
5630
5631 /*
5632 * Avoid overflow, assume a gap between each entry and a trailing null.
5633 * If this is wrong, it just means allocation can happen during
5634 * insertion of entries.
5635 */
5636 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5637 if (!mt_is_alloc(mas->tree))
5638 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5639
5640 /* Leaves; reduce slots to keep space for expansion */
5641 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5642 /* Internal nodes */
5643 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5644 /* Add working room for split (2 nodes) + new parents */
5645 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5646
5647 /* Detect if allocations run out */
5648 mas->mas_flags |= MA_STATE_PREALLOC;
5649
5650 if (!mas_is_err(mas))
5651 return 0;
5652
5653 ret = xa_err(mas->node);
5654 mas->node = enode;
5655 mas_destroy(mas);
5656 return ret;
5657
5658 }
5659 EXPORT_SYMBOL_GPL(mas_expected_entries);
5660
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5661 static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
5662 void **entry)
5663 {
5664 bool was_none = mas_is_none(mas);
5665
5666 if (unlikely(mas->last >= max)) {
5667 mas->node = MAS_OVERFLOW;
5668 return true;
5669 }
5670
5671 if (mas_is_active(mas))
5672 return false;
5673
5674 if (mas_is_none(mas) || mas_is_paused(mas)) {
5675 mas->node = MAS_START;
5676 } else if (mas_is_overflow(mas)) {
5677 /* Overflowed before, but the max changed */
5678 mas->node = MAS_START;
5679 } else if (mas_is_underflow(mas)) {
5680 mas->node = MAS_START;
5681 *entry = mas_walk(mas);
5682 if (*entry)
5683 return true;
5684 }
5685
5686 if (mas_is_start(mas))
5687 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5688
5689 if (mas_is_ptr(mas)) {
5690 *entry = NULL;
5691 if (was_none && mas->index == 0) {
5692 mas->index = mas->last = 0;
5693 return true;
5694 }
5695 mas->index = 1;
5696 mas->last = ULONG_MAX;
5697 mas->node = MAS_NONE;
5698 return true;
5699 }
5700
5701 if (mas_is_none(mas))
5702 return true;
5703
5704 return false;
5705 }
5706
5707 /**
5708 * mas_next() - Get the next entry.
5709 * @mas: The maple state
5710 * @max: The maximum index to check.
5711 *
5712 * Returns the next entry after @mas->index.
5713 * Must hold rcu_read_lock or the write lock.
5714 * Can return the zero entry.
5715 *
5716 * Return: The next entry or %NULL
5717 */
mas_next(struct ma_state * mas,unsigned long max)5718 void *mas_next(struct ma_state *mas, unsigned long max)
5719 {
5720 void *entry = NULL;
5721
5722 if (mas_next_setup(mas, max, &entry))
5723 return entry;
5724
5725 /* Retries on dead nodes handled by mas_next_slot */
5726 return mas_next_slot(mas, max, false, true);
5727 }
5728 EXPORT_SYMBOL_GPL(mas_next);
5729
5730 /**
5731 * mas_next_range() - Advance the maple state to the next range
5732 * @mas: The maple state
5733 * @max: The maximum index to check.
5734 *
5735 * Sets @mas->index and @mas->last to the range.
5736 * Must hold rcu_read_lock or the write lock.
5737 * Can return the zero entry.
5738 *
5739 * Return: The next entry or %NULL
5740 */
mas_next_range(struct ma_state * mas,unsigned long max)5741 void *mas_next_range(struct ma_state *mas, unsigned long max)
5742 {
5743 void *entry = NULL;
5744
5745 if (mas_next_setup(mas, max, &entry))
5746 return entry;
5747
5748 /* Retries on dead nodes handled by mas_next_slot */
5749 return mas_next_slot(mas, max, true, true);
5750 }
5751 EXPORT_SYMBOL_GPL(mas_next_range);
5752
5753 /**
5754 * mt_next() - get the next value in the maple tree
5755 * @mt: The maple tree
5756 * @index: The start index
5757 * @max: The maximum index to check
5758 *
5759 * Takes RCU read lock internally to protect the search, which does not
5760 * protect the returned pointer after dropping RCU read lock.
5761 * See also: Documentation/core-api/maple_tree.rst
5762 *
5763 * Return: The entry higher than @index or %NULL if nothing is found.
5764 */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5765 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5766 {
5767 void *entry = NULL;
5768 MA_STATE(mas, mt, index, index);
5769
5770 rcu_read_lock();
5771 entry = mas_next(&mas, max);
5772 rcu_read_unlock();
5773 return entry;
5774 }
5775 EXPORT_SYMBOL_GPL(mt_next);
5776
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5777 static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
5778 void **entry)
5779 {
5780 if (unlikely(mas->index <= min)) {
5781 mas->node = MAS_UNDERFLOW;
5782 return true;
5783 }
5784
5785 if (mas_is_active(mas))
5786 return false;
5787
5788 if (mas_is_overflow(mas)) {
5789 mas->node = MAS_START;
5790 *entry = mas_walk(mas);
5791 if (*entry)
5792 return true;
5793 }
5794
5795 if (mas_is_none(mas) || mas_is_paused(mas)) {
5796 mas->node = MAS_START;
5797 } else if (mas_is_underflow(mas)) {
5798 /* underflowed before but the min changed */
5799 mas->node = MAS_START;
5800 }
5801
5802 if (mas_is_start(mas))
5803 mas_walk(mas);
5804
5805 if (unlikely(mas_is_ptr(mas))) {
5806 if (!mas->index)
5807 goto none;
5808 mas->index = mas->last = 0;
5809 *entry = mas_root(mas);
5810 return true;
5811 }
5812
5813 if (mas_is_none(mas)) {
5814 if (mas->index) {
5815 /* Walked to out-of-range pointer? */
5816 mas->index = mas->last = 0;
5817 mas->node = MAS_ROOT;
5818 *entry = mas_root(mas);
5819 return true;
5820 }
5821 return true;
5822 }
5823
5824 return false;
5825
5826 none:
5827 mas->node = MAS_NONE;
5828 return true;
5829 }
5830
5831 /**
5832 * mas_prev() - Get the previous entry
5833 * @mas: The maple state
5834 * @min: The minimum value to check.
5835 *
5836 * Must hold rcu_read_lock or the write lock.
5837 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5838 * searchable nodes.
5839 *
5840 * Return: the previous value or %NULL.
5841 */
mas_prev(struct ma_state * mas,unsigned long min)5842 void *mas_prev(struct ma_state *mas, unsigned long min)
5843 {
5844 void *entry = NULL;
5845
5846 if (mas_prev_setup(mas, min, &entry))
5847 return entry;
5848
5849 return mas_prev_slot(mas, min, false, true);
5850 }
5851 EXPORT_SYMBOL_GPL(mas_prev);
5852
5853 /**
5854 * mas_prev_range() - Advance to the previous range
5855 * @mas: The maple state
5856 * @min: The minimum value to check.
5857 *
5858 * Sets @mas->index and @mas->last to the range.
5859 * Must hold rcu_read_lock or the write lock.
5860 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5861 * searchable nodes.
5862 *
5863 * Return: the previous value or %NULL.
5864 */
mas_prev_range(struct ma_state * mas,unsigned long min)5865 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5866 {
5867 void *entry = NULL;
5868
5869 if (mas_prev_setup(mas, min, &entry))
5870 return entry;
5871
5872 return mas_prev_slot(mas, min, true, true);
5873 }
5874 EXPORT_SYMBOL_GPL(mas_prev_range);
5875
5876 /**
5877 * mt_prev() - get the previous value in the maple tree
5878 * @mt: The maple tree
5879 * @index: The start index
5880 * @min: The minimum index to check
5881 *
5882 * Takes RCU read lock internally to protect the search, which does not
5883 * protect the returned pointer after dropping RCU read lock.
5884 * See also: Documentation/core-api/maple_tree.rst
5885 *
5886 * Return: The entry before @index or %NULL if nothing is found.
5887 */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5888 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5889 {
5890 void *entry = NULL;
5891 MA_STATE(mas, mt, index, index);
5892
5893 rcu_read_lock();
5894 entry = mas_prev(&mas, min);
5895 rcu_read_unlock();
5896 return entry;
5897 }
5898 EXPORT_SYMBOL_GPL(mt_prev);
5899
5900 /**
5901 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5902 * @mas: The maple state to pause
5903 *
5904 * Some users need to pause a walk and drop the lock they're holding in
5905 * order to yield to a higher priority thread or carry out an operation
5906 * on an entry. Those users should call this function before they drop
5907 * the lock. It resets the @mas to be suitable for the next iteration
5908 * of the loop after the user has reacquired the lock. If most entries
5909 * found during a walk require you to call mas_pause(), the mt_for_each()
5910 * iterator may be more appropriate.
5911 *
5912 */
mas_pause(struct ma_state * mas)5913 void mas_pause(struct ma_state *mas)
5914 {
5915 mas->node = MAS_PAUSE;
5916 }
5917 EXPORT_SYMBOL_GPL(mas_pause);
5918
5919 /**
5920 * mas_find_setup() - Internal function to set up mas_find*().
5921 * @mas: The maple state
5922 * @max: The maximum index
5923 * @entry: Pointer to the entry
5924 *
5925 * Returns: True if entry is the answer, false otherwise.
5926 */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5927 static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
5928 void **entry)
5929 {
5930 if (mas_is_active(mas)) {
5931 if (mas->last < max)
5932 return false;
5933
5934 return true;
5935 }
5936
5937 if (mas_is_paused(mas)) {
5938 if (unlikely(mas->last >= max))
5939 return true;
5940
5941 mas->index = ++mas->last;
5942 mas->node = MAS_START;
5943 } else if (mas_is_none(mas)) {
5944 if (unlikely(mas->last >= max))
5945 return true;
5946
5947 mas->index = mas->last;
5948 mas->node = MAS_START;
5949 } else if (mas_is_overflow(mas) || mas_is_underflow(mas)) {
5950 if (mas->index > max) {
5951 mas->node = MAS_OVERFLOW;
5952 return true;
5953 }
5954
5955 mas->node = MAS_START;
5956 }
5957
5958 if (mas_is_start(mas)) {
5959 /* First run or continue */
5960 if (mas->index > max)
5961 return true;
5962
5963 *entry = mas_walk(mas);
5964 if (*entry)
5965 return true;
5966
5967 }
5968
5969 if (unlikely(!mas_searchable(mas))) {
5970 if (unlikely(mas_is_ptr(mas)))
5971 goto ptr_out_of_range;
5972
5973 return true;
5974 }
5975
5976 if (mas->index == max)
5977 return true;
5978
5979 return false;
5980
5981 ptr_out_of_range:
5982 mas->node = MAS_NONE;
5983 mas->index = 1;
5984 mas->last = ULONG_MAX;
5985 return true;
5986 }
5987
5988 /**
5989 * mas_find() - On the first call, find the entry at or after mas->index up to
5990 * %max. Otherwise, find the entry after mas->index.
5991 * @mas: The maple state
5992 * @max: The maximum value to check.
5993 *
5994 * Must hold rcu_read_lock or the write lock.
5995 * If an entry exists, last and index are updated accordingly.
5996 * May set @mas->node to MAS_NONE.
5997 *
5998 * Return: The entry or %NULL.
5999 */
mas_find(struct ma_state * mas,unsigned long max)6000 void *mas_find(struct ma_state *mas, unsigned long max)
6001 {
6002 void *entry = NULL;
6003
6004 if (mas_find_setup(mas, max, &entry))
6005 return entry;
6006
6007 /* Retries on dead nodes handled by mas_next_slot */
6008 return mas_next_slot(mas, max, false, false);
6009 }
6010 EXPORT_SYMBOL_GPL(mas_find);
6011
6012 /**
6013 * mas_find_range() - On the first call, find the entry at or after
6014 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6015 * @mas: The maple state
6016 * @max: The maximum value to check.
6017 *
6018 * Must hold rcu_read_lock or the write lock.
6019 * If an entry exists, last and index are updated accordingly.
6020 * May set @mas->node to MAS_NONE.
6021 *
6022 * Return: The entry or %NULL.
6023 */
mas_find_range(struct ma_state * mas,unsigned long max)6024 void *mas_find_range(struct ma_state *mas, unsigned long max)
6025 {
6026 void *entry = NULL;
6027
6028 if (mas_find_setup(mas, max, &entry))
6029 return entry;
6030
6031 /* Retries on dead nodes handled by mas_next_slot */
6032 return mas_next_slot(mas, max, true, false);
6033 }
6034 EXPORT_SYMBOL_GPL(mas_find_range);
6035
6036 /**
6037 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6038 * @mas: The maple state
6039 * @min: The minimum index
6040 * @entry: Pointer to the entry
6041 *
6042 * Returns: True if entry is the answer, false otherwise.
6043 */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)6044 static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6045 void **entry)
6046 {
6047 if (mas_is_active(mas)) {
6048 if (mas->index > min)
6049 return false;
6050
6051 return true;
6052 }
6053
6054 if (mas_is_paused(mas)) {
6055 if (unlikely(mas->index <= min)) {
6056 mas->node = MAS_NONE;
6057 return true;
6058 }
6059 mas->node = MAS_START;
6060 mas->last = --mas->index;
6061 } else if (mas_is_none(mas)) {
6062 if (mas->index <= min)
6063 goto none;
6064
6065 mas->last = mas->index;
6066 mas->node = MAS_START;
6067 } else if (mas_is_underflow(mas) || mas_is_overflow(mas)) {
6068 if (mas->last <= min) {
6069 mas->node = MAS_UNDERFLOW;
6070 return true;
6071 }
6072
6073 mas->node = MAS_START;
6074 }
6075
6076 if (mas_is_start(mas)) {
6077 /* First run or continue */
6078 if (mas->index < min)
6079 return true;
6080
6081 *entry = mas_walk(mas);
6082 if (*entry)
6083 return true;
6084 }
6085
6086 if (unlikely(!mas_searchable(mas))) {
6087 if (mas_is_ptr(mas))
6088 goto none;
6089
6090 if (mas_is_none(mas)) {
6091 /*
6092 * Walked to the location, and there was nothing so the
6093 * previous location is 0.
6094 */
6095 mas->last = mas->index = 0;
6096 mas->node = MAS_ROOT;
6097 *entry = mas_root(mas);
6098 return true;
6099 }
6100 }
6101
6102 if (mas->index < min)
6103 return true;
6104
6105 return false;
6106
6107 none:
6108 mas->node = MAS_NONE;
6109 return true;
6110 }
6111
6112 /**
6113 * mas_find_rev: On the first call, find the first non-null entry at or below
6114 * mas->index down to %min. Otherwise find the first non-null entry below
6115 * mas->index down to %min.
6116 * @mas: The maple state
6117 * @min: The minimum value to check.
6118 *
6119 * Must hold rcu_read_lock or the write lock.
6120 * If an entry exists, last and index are updated accordingly.
6121 * May set @mas->node to MAS_NONE.
6122 *
6123 * Return: The entry or %NULL.
6124 */
mas_find_rev(struct ma_state * mas,unsigned long min)6125 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6126 {
6127 void *entry = NULL;
6128
6129 if (mas_find_rev_setup(mas, min, &entry))
6130 return entry;
6131
6132 /* Retries on dead nodes handled by mas_prev_slot */
6133 return mas_prev_slot(mas, min, false, false);
6134
6135 }
6136 EXPORT_SYMBOL_GPL(mas_find_rev);
6137
6138 /**
6139 * mas_find_range_rev: On the first call, find the first non-null entry at or
6140 * below mas->index down to %min. Otherwise advance to the previous slot after
6141 * mas->index down to %min.
6142 * @mas: The maple state
6143 * @min: The minimum value to check.
6144 *
6145 * Must hold rcu_read_lock or the write lock.
6146 * If an entry exists, last and index are updated accordingly.
6147 * May set @mas->node to MAS_NONE.
6148 *
6149 * Return: The entry or %NULL.
6150 */
mas_find_range_rev(struct ma_state * mas,unsigned long min)6151 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6152 {
6153 void *entry = NULL;
6154
6155 if (mas_find_rev_setup(mas, min, &entry))
6156 return entry;
6157
6158 /* Retries on dead nodes handled by mas_prev_slot */
6159 return mas_prev_slot(mas, min, true, false);
6160 }
6161 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6162
6163 /**
6164 * mas_erase() - Find the range in which index resides and erase the entire
6165 * range.
6166 * @mas: The maple state
6167 *
6168 * Must hold the write lock.
6169 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6170 * erases that range.
6171 *
6172 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6173 */
mas_erase(struct ma_state * mas)6174 void *mas_erase(struct ma_state *mas)
6175 {
6176 void *entry;
6177 MA_WR_STATE(wr_mas, mas, NULL);
6178
6179 if (mas_is_none(mas) || mas_is_paused(mas))
6180 mas->node = MAS_START;
6181
6182 /* Retry unnecessary when holding the write lock. */
6183 entry = mas_state_walk(mas);
6184 if (!entry)
6185 return NULL;
6186
6187 write_retry:
6188 /* Must reset to ensure spanning writes of last slot are detected */
6189 mas_reset(mas);
6190 mas_wr_store_setup(&wr_mas);
6191 mas_wr_store_entry(&wr_mas);
6192 if (mas_nomem(mas, GFP_KERNEL))
6193 goto write_retry;
6194
6195 return entry;
6196 }
6197 EXPORT_SYMBOL_GPL(mas_erase);
6198
6199 /**
6200 * mas_nomem() - Check if there was an error allocating and do the allocation
6201 * if necessary If there are allocations, then free them.
6202 * @mas: The maple state
6203 * @gfp: The GFP_FLAGS to use for allocations
6204 * Return: true on allocation, false otherwise.
6205 */
mas_nomem(struct ma_state * mas,gfp_t gfp)6206 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6207 __must_hold(mas->tree->ma_lock)
6208 {
6209 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6210 mas_destroy(mas);
6211 return false;
6212 }
6213
6214 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6215 mtree_unlock(mas->tree);
6216 mas_alloc_nodes(mas, gfp);
6217 mtree_lock(mas->tree);
6218 } else {
6219 mas_alloc_nodes(mas, gfp);
6220 }
6221
6222 if (!mas_allocated(mas))
6223 return false;
6224
6225 mas->node = MAS_START;
6226 return true;
6227 }
6228
maple_tree_init(void)6229 void __init maple_tree_init(void)
6230 {
6231 maple_node_cache = kmem_cache_create("maple_node",
6232 sizeof(struct maple_node), sizeof(struct maple_node),
6233 SLAB_PANIC, NULL);
6234 }
6235
6236 /**
6237 * mtree_load() - Load a value stored in a maple tree
6238 * @mt: The maple tree
6239 * @index: The index to load
6240 *
6241 * Return: the entry or %NULL
6242 */
mtree_load(struct maple_tree * mt,unsigned long index)6243 void *mtree_load(struct maple_tree *mt, unsigned long index)
6244 {
6245 MA_STATE(mas, mt, index, index);
6246 void *entry;
6247
6248 trace_ma_read(__func__, &mas);
6249 rcu_read_lock();
6250 retry:
6251 entry = mas_start(&mas);
6252 if (unlikely(mas_is_none(&mas)))
6253 goto unlock;
6254
6255 if (unlikely(mas_is_ptr(&mas))) {
6256 if (index)
6257 entry = NULL;
6258
6259 goto unlock;
6260 }
6261
6262 entry = mtree_lookup_walk(&mas);
6263 if (!entry && unlikely(mas_is_start(&mas)))
6264 goto retry;
6265 unlock:
6266 rcu_read_unlock();
6267 if (xa_is_zero(entry))
6268 return NULL;
6269
6270 return entry;
6271 }
6272 EXPORT_SYMBOL(mtree_load);
6273
6274 /**
6275 * mtree_store_range() - Store an entry at a given range.
6276 * @mt: The maple tree
6277 * @index: The start of the range
6278 * @last: The end of the range
6279 * @entry: The entry to store
6280 * @gfp: The GFP_FLAGS to use for allocations
6281 *
6282 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6283 * be allocated.
6284 */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)6285 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6286 unsigned long last, void *entry, gfp_t gfp)
6287 {
6288 MA_STATE(mas, mt, index, last);
6289 MA_WR_STATE(wr_mas, &mas, entry);
6290
6291 trace_ma_write(__func__, &mas, 0, entry);
6292 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6293 return -EINVAL;
6294
6295 if (index > last)
6296 return -EINVAL;
6297
6298 mtree_lock(mt);
6299 retry:
6300 mas_wr_store_entry(&wr_mas);
6301 if (mas_nomem(&mas, gfp))
6302 goto retry;
6303
6304 mtree_unlock(mt);
6305 if (mas_is_err(&mas))
6306 return xa_err(mas.node);
6307
6308 return 0;
6309 }
6310 EXPORT_SYMBOL(mtree_store_range);
6311
6312 /**
6313 * mtree_store() - Store an entry at a given index.
6314 * @mt: The maple tree
6315 * @index: The index to store the value
6316 * @entry: The entry to store
6317 * @gfp: The GFP_FLAGS to use for allocations
6318 *
6319 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6320 * be allocated.
6321 */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6322 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6323 gfp_t gfp)
6324 {
6325 return mtree_store_range(mt, index, index, entry, gfp);
6326 }
6327 EXPORT_SYMBOL(mtree_store);
6328
6329 /**
6330 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6331 * @mt: The maple tree
6332 * @first: The start of the range
6333 * @last: The end of the range
6334 * @entry: The entry to store
6335 * @gfp: The GFP_FLAGS to use for allocations.
6336 *
6337 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6338 * request, -ENOMEM if memory could not be allocated.
6339 */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)6340 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6341 unsigned long last, void *entry, gfp_t gfp)
6342 {
6343 MA_STATE(ms, mt, first, last);
6344
6345 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6346 return -EINVAL;
6347
6348 if (first > last)
6349 return -EINVAL;
6350
6351 mtree_lock(mt);
6352 retry:
6353 mas_insert(&ms, entry);
6354 if (mas_nomem(&ms, gfp))
6355 goto retry;
6356
6357 mtree_unlock(mt);
6358 if (mas_is_err(&ms))
6359 return xa_err(ms.node);
6360
6361 return 0;
6362 }
6363 EXPORT_SYMBOL(mtree_insert_range);
6364
6365 /**
6366 * mtree_insert() - Insert an entry at a given index if there is no value.
6367 * @mt: The maple tree
6368 * @index : The index to store the value
6369 * @entry: The entry to store
6370 * @gfp: The GFP_FLAGS to use for allocations.
6371 *
6372 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6373 * request, -ENOMEM if memory could not be allocated.
6374 */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6375 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6376 gfp_t gfp)
6377 {
6378 return mtree_insert_range(mt, index, index, entry, gfp);
6379 }
6380 EXPORT_SYMBOL(mtree_insert);
6381
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6382 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6383 void *entry, unsigned long size, unsigned long min,
6384 unsigned long max, gfp_t gfp)
6385 {
6386 int ret = 0;
6387
6388 MA_STATE(mas, mt, 0, 0);
6389 if (!mt_is_alloc(mt))
6390 return -EINVAL;
6391
6392 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6393 return -EINVAL;
6394
6395 mtree_lock(mt);
6396 retry:
6397 ret = mas_empty_area(&mas, min, max, size);
6398 if (ret)
6399 goto unlock;
6400
6401 mas_insert(&mas, entry);
6402 /*
6403 * mas_nomem() may release the lock, causing the allocated area
6404 * to be unavailable, so try to allocate a free area again.
6405 */
6406 if (mas_nomem(&mas, gfp))
6407 goto retry;
6408
6409 if (mas_is_err(&mas))
6410 ret = xa_err(mas.node);
6411 else
6412 *startp = mas.index;
6413
6414 unlock:
6415 mtree_unlock(mt);
6416 return ret;
6417 }
6418 EXPORT_SYMBOL(mtree_alloc_range);
6419
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6420 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6421 void *entry, unsigned long size, unsigned long min,
6422 unsigned long max, gfp_t gfp)
6423 {
6424 int ret = 0;
6425
6426 MA_STATE(mas, mt, 0, 0);
6427 if (!mt_is_alloc(mt))
6428 return -EINVAL;
6429
6430 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6431 return -EINVAL;
6432
6433 mtree_lock(mt);
6434 retry:
6435 ret = mas_empty_area_rev(&mas, min, max, size);
6436 if (ret)
6437 goto unlock;
6438
6439 mas_insert(&mas, entry);
6440 /*
6441 * mas_nomem() may release the lock, causing the allocated area
6442 * to be unavailable, so try to allocate a free area again.
6443 */
6444 if (mas_nomem(&mas, gfp))
6445 goto retry;
6446
6447 if (mas_is_err(&mas))
6448 ret = xa_err(mas.node);
6449 else
6450 *startp = mas.index;
6451
6452 unlock:
6453 mtree_unlock(mt);
6454 return ret;
6455 }
6456 EXPORT_SYMBOL(mtree_alloc_rrange);
6457
6458 /**
6459 * mtree_erase() - Find an index and erase the entire range.
6460 * @mt: The maple tree
6461 * @index: The index to erase
6462 *
6463 * Erasing is the same as a walk to an entry then a store of a NULL to that
6464 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6465 *
6466 * Return: The entry stored at the @index or %NULL
6467 */
mtree_erase(struct maple_tree * mt,unsigned long index)6468 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6469 {
6470 void *entry = NULL;
6471
6472 MA_STATE(mas, mt, index, index);
6473 trace_ma_op(__func__, &mas);
6474
6475 mtree_lock(mt);
6476 entry = mas_erase(&mas);
6477 mtree_unlock(mt);
6478
6479 return entry;
6480 }
6481 EXPORT_SYMBOL(mtree_erase);
6482
6483 /**
6484 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6485 * @mt: The maple tree
6486 *
6487 * Note: Does not handle locking.
6488 */
__mt_destroy(struct maple_tree * mt)6489 void __mt_destroy(struct maple_tree *mt)
6490 {
6491 void *root = mt_root_locked(mt);
6492
6493 rcu_assign_pointer(mt->ma_root, NULL);
6494 if (xa_is_node(root))
6495 mte_destroy_walk(root, mt);
6496
6497 mt->ma_flags = 0;
6498 }
6499 EXPORT_SYMBOL_GPL(__mt_destroy);
6500
6501 /**
6502 * mtree_destroy() - Destroy a maple tree
6503 * @mt: The maple tree
6504 *
6505 * Frees all resources used by the tree. Handles locking.
6506 */
mtree_destroy(struct maple_tree * mt)6507 void mtree_destroy(struct maple_tree *mt)
6508 {
6509 mtree_lock(mt);
6510 __mt_destroy(mt);
6511 mtree_unlock(mt);
6512 }
6513 EXPORT_SYMBOL(mtree_destroy);
6514
6515 /**
6516 * mt_find() - Search from the start up until an entry is found.
6517 * @mt: The maple tree
6518 * @index: Pointer which contains the start location of the search
6519 * @max: The maximum value of the search range
6520 *
6521 * Takes RCU read lock internally to protect the search, which does not
6522 * protect the returned pointer after dropping RCU read lock.
6523 * See also: Documentation/core-api/maple_tree.rst
6524 *
6525 * In case that an entry is found @index is updated to point to the next
6526 * possible entry independent whether the found entry is occupying a
6527 * single index or a range if indices.
6528 *
6529 * Return: The entry at or after the @index or %NULL
6530 */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6531 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6532 {
6533 MA_STATE(mas, mt, *index, *index);
6534 void *entry;
6535 #ifdef CONFIG_DEBUG_MAPLE_TREE
6536 unsigned long copy = *index;
6537 #endif
6538
6539 trace_ma_read(__func__, &mas);
6540
6541 if ((*index) > max)
6542 return NULL;
6543
6544 rcu_read_lock();
6545 retry:
6546 entry = mas_state_walk(&mas);
6547 if (mas_is_start(&mas))
6548 goto retry;
6549
6550 if (unlikely(xa_is_zero(entry)))
6551 entry = NULL;
6552
6553 if (entry)
6554 goto unlock;
6555
6556 while (mas_searchable(&mas) && (mas.last < max)) {
6557 entry = mas_next_entry(&mas, max);
6558 if (likely(entry && !xa_is_zero(entry)))
6559 break;
6560 }
6561
6562 if (unlikely(xa_is_zero(entry)))
6563 entry = NULL;
6564 unlock:
6565 rcu_read_unlock();
6566 if (likely(entry)) {
6567 *index = mas.last + 1;
6568 #ifdef CONFIG_DEBUG_MAPLE_TREE
6569 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6570 pr_err("index not increased! %lx <= %lx\n",
6571 *index, copy);
6572 #endif
6573 }
6574
6575 return entry;
6576 }
6577 EXPORT_SYMBOL(mt_find);
6578
6579 /**
6580 * mt_find_after() - Search from the start up until an entry is found.
6581 * @mt: The maple tree
6582 * @index: Pointer which contains the start location of the search
6583 * @max: The maximum value to check
6584 *
6585 * Same as mt_find() except that it checks @index for 0 before
6586 * searching. If @index == 0, the search is aborted. This covers a wrap
6587 * around of @index to 0 in an iterator loop.
6588 *
6589 * Return: The entry at or after the @index or %NULL
6590 */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6591 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6592 unsigned long max)
6593 {
6594 if (!(*index))
6595 return NULL;
6596
6597 return mt_find(mt, index, max);
6598 }
6599 EXPORT_SYMBOL(mt_find_after);
6600
6601 #ifdef CONFIG_DEBUG_MAPLE_TREE
6602 atomic_t maple_tree_tests_run;
6603 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6604 atomic_t maple_tree_tests_passed;
6605 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6606
6607 #ifndef __KERNEL__
6608 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6609 void mt_set_non_kernel(unsigned int val)
6610 {
6611 kmem_cache_set_non_kernel(maple_node_cache, val);
6612 }
6613
6614 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)6615 unsigned long mt_get_alloc_size(void)
6616 {
6617 return kmem_cache_get_alloc(maple_node_cache);
6618 }
6619
6620 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)6621 void mt_zero_nr_tallocated(void)
6622 {
6623 kmem_cache_zero_nr_tallocated(maple_node_cache);
6624 }
6625
6626 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)6627 unsigned int mt_nr_tallocated(void)
6628 {
6629 return kmem_cache_nr_tallocated(maple_node_cache);
6630 }
6631
6632 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)6633 unsigned int mt_nr_allocated(void)
6634 {
6635 return kmem_cache_nr_allocated(maple_node_cache);
6636 }
6637
6638 /*
6639 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6640 * @mas: The maple state
6641 * @index: The index to restore in @mas.
6642 *
6643 * Used in test code.
6644 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6645 */
mas_dead_node(struct ma_state * mas,unsigned long index)6646 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6647 {
6648 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6649 return 0;
6650
6651 if (likely(!mte_dead_node(mas->node)))
6652 return 0;
6653
6654 mas_rewalk(mas, index);
6655 return 1;
6656 }
6657
mt_cache_shrink(void)6658 void mt_cache_shrink(void)
6659 {
6660 }
6661 #else
6662 /*
6663 * mt_cache_shrink() - For testing, don't use this.
6664 *
6665 * Certain testcases can trigger an OOM when combined with other memory
6666 * debugging configuration options. This function is used to reduce the
6667 * possibility of an out of memory even due to kmem_cache objects remaining
6668 * around for longer than usual.
6669 */
mt_cache_shrink(void)6670 void mt_cache_shrink(void)
6671 {
6672 kmem_cache_shrink(maple_node_cache);
6673
6674 }
6675 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6676
6677 #endif /* not defined __KERNEL__ */
6678 /*
6679 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6680 * @mas: The maple state
6681 * @offset: The offset into the slot array to fetch.
6682 *
6683 * Return: The entry stored at @offset.
6684 */
mas_get_slot(struct ma_state * mas,unsigned char offset)6685 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6686 unsigned char offset)
6687 {
6688 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6689 offset);
6690 }
6691
6692 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)6693 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6694 {
6695
6696 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6697 unsigned long p_min, p_max;
6698
6699 mas_next_node(mas, mas_mn(mas), max);
6700 if (!mas_is_none(mas))
6701 return;
6702
6703 if (mte_is_root(mn))
6704 return;
6705
6706 mas->node = mn;
6707 mas_ascend(mas);
6708 do {
6709 p = mas->node;
6710 p_min = mas->min;
6711 p_max = mas->max;
6712 mas_prev_node(mas, 0);
6713 } while (!mas_is_none(mas));
6714
6715 mas->node = p;
6716 mas->max = p_max;
6717 mas->min = p_min;
6718 }
6719
6720 /* Tree validations */
6721 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6722 unsigned long min, unsigned long max, unsigned int depth,
6723 enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6724 static void mt_dump_range(unsigned long min, unsigned long max,
6725 unsigned int depth, enum mt_dump_format format)
6726 {
6727 static const char spaces[] = " ";
6728
6729 switch(format) {
6730 case mt_dump_hex:
6731 if (min == max)
6732 pr_info("%.*s%lx: ", depth * 2, spaces, min);
6733 else
6734 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6735 break;
6736 default:
6737 case mt_dump_dec:
6738 if (min == max)
6739 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6740 else
6741 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6742 }
6743 }
6744
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6745 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6746 unsigned int depth, enum mt_dump_format format)
6747 {
6748 mt_dump_range(min, max, depth, format);
6749
6750 if (xa_is_value(entry))
6751 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6752 xa_to_value(entry), entry);
6753 else if (xa_is_zero(entry))
6754 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6755 else if (mt_is_reserved(entry))
6756 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6757 else
6758 pr_cont("%p\n", entry);
6759 }
6760
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6761 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6762 unsigned long min, unsigned long max, unsigned int depth,
6763 enum mt_dump_format format)
6764 {
6765 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6766 bool leaf = mte_is_leaf(entry);
6767 unsigned long first = min;
6768 int i;
6769
6770 pr_cont(" contents: ");
6771 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6772 switch(format) {
6773 case mt_dump_hex:
6774 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6775 break;
6776 default:
6777 case mt_dump_dec:
6778 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6779 }
6780 }
6781 pr_cont("%p\n", node->slot[i]);
6782 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6783 unsigned long last = max;
6784
6785 if (i < (MAPLE_RANGE64_SLOTS - 1))
6786 last = node->pivot[i];
6787 else if (!node->slot[i] && max != mt_node_max(entry))
6788 break;
6789 if (last == 0 && i > 0)
6790 break;
6791 if (leaf)
6792 mt_dump_entry(mt_slot(mt, node->slot, i),
6793 first, last, depth + 1, format);
6794 else if (node->slot[i])
6795 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6796 first, last, depth + 1, format);
6797
6798 if (last == max)
6799 break;
6800 if (last > max) {
6801 switch(format) {
6802 case mt_dump_hex:
6803 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
6804 node, last, max, i);
6805 break;
6806 default:
6807 case mt_dump_dec:
6808 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6809 node, last, max, i);
6810 }
6811 }
6812 first = last + 1;
6813 }
6814 }
6815
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6816 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6817 unsigned long min, unsigned long max, unsigned int depth,
6818 enum mt_dump_format format)
6819 {
6820 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6821 bool leaf = mte_is_leaf(entry);
6822 unsigned long first = min;
6823 int i;
6824
6825 pr_cont(" contents: ");
6826 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6827 switch (format) {
6828 case mt_dump_hex:
6829 pr_cont("%lx ", node->gap[i]);
6830 break;
6831 default:
6832 case mt_dump_dec:
6833 pr_cont("%lu ", node->gap[i]);
6834 }
6835 }
6836 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6837 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
6838 switch (format) {
6839 case mt_dump_hex:
6840 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6841 break;
6842 default:
6843 case mt_dump_dec:
6844 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6845 }
6846 }
6847 pr_cont("%p\n", node->slot[i]);
6848 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6849 unsigned long last = max;
6850
6851 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6852 last = node->pivot[i];
6853 else if (!node->slot[i])
6854 break;
6855 if (last == 0 && i > 0)
6856 break;
6857 if (leaf)
6858 mt_dump_entry(mt_slot(mt, node->slot, i),
6859 first, last, depth + 1, format);
6860 else if (node->slot[i])
6861 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6862 first, last, depth + 1, format);
6863
6864 if (last == max)
6865 break;
6866 if (last > max) {
6867 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6868 node, last, max, i);
6869 break;
6870 }
6871 first = last + 1;
6872 }
6873 }
6874
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6875 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6876 unsigned long min, unsigned long max, unsigned int depth,
6877 enum mt_dump_format format)
6878 {
6879 struct maple_node *node = mte_to_node(entry);
6880 unsigned int type = mte_node_type(entry);
6881 unsigned int i;
6882
6883 mt_dump_range(min, max, depth, format);
6884
6885 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6886 node ? node->parent : NULL);
6887 switch (type) {
6888 case maple_dense:
6889 pr_cont("\n");
6890 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6891 if (min + i > max)
6892 pr_cont("OUT OF RANGE: ");
6893 mt_dump_entry(mt_slot(mt, node->slot, i),
6894 min + i, min + i, depth, format);
6895 }
6896 break;
6897 case maple_leaf_64:
6898 case maple_range_64:
6899 mt_dump_range64(mt, entry, min, max, depth, format);
6900 break;
6901 case maple_arange_64:
6902 mt_dump_arange64(mt, entry, min, max, depth, format);
6903 break;
6904
6905 default:
6906 pr_cont(" UNKNOWN TYPE\n");
6907 }
6908 }
6909
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)6910 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
6911 {
6912 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6913
6914 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6915 mt, mt->ma_flags, mt_height(mt), entry);
6916 if (!xa_is_node(entry))
6917 mt_dump_entry(entry, 0, 0, 0, format);
6918 else if (entry)
6919 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
6920 }
6921 EXPORT_SYMBOL_GPL(mt_dump);
6922
6923 /*
6924 * Calculate the maximum gap in a node and check if that's what is reported in
6925 * the parent (unless root).
6926 */
mas_validate_gaps(struct ma_state * mas)6927 static void mas_validate_gaps(struct ma_state *mas)
6928 {
6929 struct maple_enode *mte = mas->node;
6930 struct maple_node *p_mn, *node = mte_to_node(mte);
6931 enum maple_type mt = mte_node_type(mas->node);
6932 unsigned long gap = 0, max_gap = 0;
6933 unsigned long p_end, p_start = mas->min;
6934 unsigned char p_slot, offset;
6935 unsigned long *gaps = NULL;
6936 unsigned long *pivots = ma_pivots(node, mt);
6937 unsigned int i;
6938
6939 if (ma_is_dense(mt)) {
6940 for (i = 0; i < mt_slot_count(mte); i++) {
6941 if (mas_get_slot(mas, i)) {
6942 if (gap > max_gap)
6943 max_gap = gap;
6944 gap = 0;
6945 continue;
6946 }
6947 gap++;
6948 }
6949 goto counted;
6950 }
6951
6952 gaps = ma_gaps(node, mt);
6953 for (i = 0; i < mt_slot_count(mte); i++) {
6954 p_end = mas_safe_pivot(mas, pivots, i, mt);
6955
6956 if (!gaps) {
6957 if (!mas_get_slot(mas, i))
6958 gap = p_end - p_start + 1;
6959 } else {
6960 void *entry = mas_get_slot(mas, i);
6961
6962 gap = gaps[i];
6963 MT_BUG_ON(mas->tree, !entry);
6964
6965 if (gap > p_end - p_start + 1) {
6966 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6967 mas_mn(mas), i, gap, p_end, p_start,
6968 p_end - p_start + 1);
6969 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
6970 }
6971 }
6972
6973 if (gap > max_gap)
6974 max_gap = gap;
6975
6976 p_start = p_end + 1;
6977 if (p_end >= mas->max)
6978 break;
6979 }
6980
6981 counted:
6982 if (mt == maple_arange_64) {
6983 offset = ma_meta_gap(node, mt);
6984 if (offset > i) {
6985 pr_err("gap offset %p[%u] is invalid\n", node, offset);
6986 MT_BUG_ON(mas->tree, 1);
6987 }
6988
6989 if (gaps[offset] != max_gap) {
6990 pr_err("gap %p[%u] is not the largest gap %lu\n",
6991 node, offset, max_gap);
6992 MT_BUG_ON(mas->tree, 1);
6993 }
6994
6995 MT_BUG_ON(mas->tree, !gaps);
6996 for (i++ ; i < mt_slot_count(mte); i++) {
6997 if (gaps[i] != 0) {
6998 pr_err("gap %p[%u] beyond node limit != 0\n",
6999 node, i);
7000 MT_BUG_ON(mas->tree, 1);
7001 }
7002 }
7003 }
7004
7005 if (mte_is_root(mte))
7006 return;
7007
7008 p_slot = mte_parent_slot(mas->node);
7009 p_mn = mte_parent(mte);
7010 MT_BUG_ON(mas->tree, max_gap > mas->max);
7011 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7012 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7013 mt_dump(mas->tree, mt_dump_hex);
7014 MT_BUG_ON(mas->tree, 1);
7015 }
7016 }
7017
mas_validate_parent_slot(struct ma_state * mas)7018 static void mas_validate_parent_slot(struct ma_state *mas)
7019 {
7020 struct maple_node *parent;
7021 struct maple_enode *node;
7022 enum maple_type p_type;
7023 unsigned char p_slot;
7024 void __rcu **slots;
7025 int i;
7026
7027 if (mte_is_root(mas->node))
7028 return;
7029
7030 p_slot = mte_parent_slot(mas->node);
7031 p_type = mas_parent_type(mas, mas->node);
7032 parent = mte_parent(mas->node);
7033 slots = ma_slots(parent, p_type);
7034 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7035
7036 /* Check prev/next parent slot for duplicate node entry */
7037
7038 for (i = 0; i < mt_slots[p_type]; i++) {
7039 node = mas_slot(mas, slots, i);
7040 if (i == p_slot) {
7041 if (node != mas->node)
7042 pr_err("parent %p[%u] does not have %p\n",
7043 parent, i, mas_mn(mas));
7044 MT_BUG_ON(mas->tree, node != mas->node);
7045 } else if (node == mas->node) {
7046 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7047 mas_mn(mas), parent, i, p_slot);
7048 MT_BUG_ON(mas->tree, node == mas->node);
7049 }
7050 }
7051 }
7052
mas_validate_child_slot(struct ma_state * mas)7053 static void mas_validate_child_slot(struct ma_state *mas)
7054 {
7055 enum maple_type type = mte_node_type(mas->node);
7056 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7057 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7058 struct maple_enode *child;
7059 unsigned char i;
7060
7061 if (mte_is_leaf(mas->node))
7062 return;
7063
7064 for (i = 0; i < mt_slots[type]; i++) {
7065 child = mas_slot(mas, slots, i);
7066
7067 if (!child) {
7068 pr_err("Non-leaf node lacks child at %p[%u]\n",
7069 mas_mn(mas), i);
7070 MT_BUG_ON(mas->tree, 1);
7071 }
7072
7073 if (mte_parent_slot(child) != i) {
7074 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7075 mas_mn(mas), i, mte_to_node(child),
7076 mte_parent_slot(child));
7077 MT_BUG_ON(mas->tree, 1);
7078 }
7079
7080 if (mte_parent(child) != mte_to_node(mas->node)) {
7081 pr_err("child %p has parent %p not %p\n",
7082 mte_to_node(child), mte_parent(child),
7083 mte_to_node(mas->node));
7084 MT_BUG_ON(mas->tree, 1);
7085 }
7086
7087 if (i < mt_pivots[type] && pivots[i] == mas->max)
7088 break;
7089 }
7090 }
7091
7092 /*
7093 * Validate all pivots are within mas->min and mas->max, check metadata ends
7094 * where the maximum ends and ensure there is no slots or pivots set outside of
7095 * the end of the data.
7096 */
mas_validate_limits(struct ma_state * mas)7097 static void mas_validate_limits(struct ma_state *mas)
7098 {
7099 int i;
7100 unsigned long prev_piv = 0;
7101 enum maple_type type = mte_node_type(mas->node);
7102 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7103 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7104
7105 for (i = 0; i < mt_slots[type]; i++) {
7106 unsigned long piv;
7107
7108 piv = mas_safe_pivot(mas, pivots, i, type);
7109
7110 if (!piv && (i != 0)) {
7111 pr_err("Missing node limit pivot at %p[%u]",
7112 mas_mn(mas), i);
7113 MAS_WARN_ON(mas, 1);
7114 }
7115
7116 if (prev_piv > piv) {
7117 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7118 mas_mn(mas), i, piv, prev_piv);
7119 MAS_WARN_ON(mas, piv < prev_piv);
7120 }
7121
7122 if (piv < mas->min) {
7123 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7124 piv, mas->min);
7125 MAS_WARN_ON(mas, piv < mas->min);
7126 }
7127 if (piv > mas->max) {
7128 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7129 piv, mas->max);
7130 MAS_WARN_ON(mas, piv > mas->max);
7131 }
7132 prev_piv = piv;
7133 if (piv == mas->max)
7134 break;
7135 }
7136
7137 if (mas_data_end(mas) != i) {
7138 pr_err("node%p: data_end %u != the last slot offset %u\n",
7139 mas_mn(mas), mas_data_end(mas), i);
7140 MT_BUG_ON(mas->tree, 1);
7141 }
7142
7143 for (i += 1; i < mt_slots[type]; i++) {
7144 void *entry = mas_slot(mas, slots, i);
7145
7146 if (entry && (i != mt_slots[type] - 1)) {
7147 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7148 i, entry);
7149 MT_BUG_ON(mas->tree, entry != NULL);
7150 }
7151
7152 if (i < mt_pivots[type]) {
7153 unsigned long piv = pivots[i];
7154
7155 if (!piv)
7156 continue;
7157
7158 pr_err("%p[%u] should not have piv %lu\n",
7159 mas_mn(mas), i, piv);
7160 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7161 }
7162 }
7163 }
7164
mt_validate_nulls(struct maple_tree * mt)7165 static void mt_validate_nulls(struct maple_tree *mt)
7166 {
7167 void *entry, *last = (void *)1;
7168 unsigned char offset = 0;
7169 void __rcu **slots;
7170 MA_STATE(mas, mt, 0, 0);
7171
7172 mas_start(&mas);
7173 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7174 return;
7175
7176 while (!mte_is_leaf(mas.node))
7177 mas_descend(&mas);
7178
7179 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7180 do {
7181 entry = mas_slot(&mas, slots, offset);
7182 if (!last && !entry) {
7183 pr_err("Sequential nulls end at %p[%u]\n",
7184 mas_mn(&mas), offset);
7185 }
7186 MT_BUG_ON(mt, !last && !entry);
7187 last = entry;
7188 if (offset == mas_data_end(&mas)) {
7189 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7190 if (mas_is_none(&mas))
7191 return;
7192 offset = 0;
7193 slots = ma_slots(mte_to_node(mas.node),
7194 mte_node_type(mas.node));
7195 } else {
7196 offset++;
7197 }
7198
7199 } while (!mas_is_none(&mas));
7200 }
7201
7202 /*
7203 * validate a maple tree by checking:
7204 * 1. The limits (pivots are within mas->min to mas->max)
7205 * 2. The gap is correctly set in the parents
7206 */
mt_validate(struct maple_tree * mt)7207 void mt_validate(struct maple_tree *mt)
7208 {
7209 unsigned char end;
7210
7211 MA_STATE(mas, mt, 0, 0);
7212 rcu_read_lock();
7213 mas_start(&mas);
7214 if (!mas_searchable(&mas))
7215 goto done;
7216
7217 while (!mte_is_leaf(mas.node))
7218 mas_descend(&mas);
7219
7220 while (!mas_is_none(&mas)) {
7221 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7222 end = mas_data_end(&mas);
7223 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7224 (mas.max != ULONG_MAX))) {
7225 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7226 }
7227
7228 mas_validate_parent_slot(&mas);
7229 mas_validate_limits(&mas);
7230 mas_validate_child_slot(&mas);
7231 if (mt_is_alloc(mt))
7232 mas_validate_gaps(&mas);
7233 mas_dfs_postorder(&mas, ULONG_MAX);
7234 }
7235 mt_validate_nulls(mt);
7236 done:
7237 rcu_read_unlock();
7238
7239 }
7240 EXPORT_SYMBOL_GPL(mt_validate);
7241
mas_dump(const struct ma_state * mas)7242 void mas_dump(const struct ma_state *mas)
7243 {
7244 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7245 if (mas_is_none(mas))
7246 pr_err("(MAS_NONE) ");
7247 else if (mas_is_ptr(mas))
7248 pr_err("(MAS_ROOT) ");
7249 else if (mas_is_start(mas))
7250 pr_err("(MAS_START) ");
7251 else if (mas_is_paused(mas))
7252 pr_err("(MAS_PAUSED) ");
7253
7254 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7255 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7256 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7257 if (mas->index > mas->last)
7258 pr_err("Check index & last\n");
7259 }
7260 EXPORT_SYMBOL_GPL(mas_dump);
7261
mas_wr_dump(const struct ma_wr_state * wr_mas)7262 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7263 {
7264 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7265 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7266 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7267 wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7268 wr_mas->end_piv);
7269 }
7270 EXPORT_SYMBOL_GPL(mas_wr_dump);
7271
7272 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7273