xref: /openbmc/qemu/target/ppc/mem_helper.c (revision 93b799fafd9170da3a79a533ea6f73a18de82e22)
1 /*
2  *  PowerPC memory access emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/host-utils.h"
24 #include "exec/helper-proto.h"
25 #include "helper_regs.h"
26 #include "exec/cpu_ldst.h"
27 #include "internal.h"
28 #include "qemu/atomic128.h"
29 
30 /* #define DEBUG_OP */
31 
needs_byteswap(const CPUPPCState * env)32 static inline bool needs_byteswap(const CPUPPCState *env)
33 {
34 #if TARGET_BIG_ENDIAN
35   return FIELD_EX64(env->msr, MSR, LE);
36 #else
37   return !FIELD_EX64(env->msr, MSR, LE);
38 #endif
39 }
40 
41 /*****************************************************************************/
42 /* Memory load and stores */
43 
addr_add(CPUPPCState * env,target_ulong addr,target_long arg)44 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
45                                     target_long arg)
46 {
47 #if defined(TARGET_PPC64)
48     if (!msr_is_64bit(env, env->msr)) {
49         return (uint32_t)(addr + arg);
50     } else
51 #endif
52     {
53         return addr + arg;
54     }
55 }
56 
probe_contiguous(CPUPPCState * env,target_ulong addr,uint32_t nb,MMUAccessType access_type,int mmu_idx,uintptr_t raddr)57 static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb,
58                               MMUAccessType access_type, int mmu_idx,
59                               uintptr_t raddr)
60 {
61     void *host1, *host2;
62     uint32_t nb_pg1, nb_pg2;
63 
64     nb_pg1 = -(addr | TARGET_PAGE_MASK);
65     if (likely(nb <= nb_pg1)) {
66         /* The entire operation is on a single page.  */
67         return probe_access(env, addr, nb, access_type, mmu_idx, raddr);
68     }
69 
70     /* The operation spans two pages.  */
71     nb_pg2 = nb - nb_pg1;
72     host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr);
73     addr = addr_add(env, addr, nb_pg1);
74     host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr);
75 
76     /* If the two host pages are contiguous, optimize.  */
77     if (host2 == host1 + nb_pg1) {
78         return host1;
79     }
80     return NULL;
81 }
82 
helper_lmw(CPUPPCState * env,target_ulong addr,uint32_t reg)83 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
84 {
85     uintptr_t raddr = GETPC();
86     int mmu_idx = ppc_env_mmu_index(env, false);
87     void *host = probe_contiguous(env, addr, (32 - reg) * 4,
88                                   MMU_DATA_LOAD, mmu_idx, raddr);
89 
90     if (likely(host)) {
91         /* Fast path -- the entire operation is in RAM at host.  */
92         for (; reg < 32; reg++) {
93             env->gpr[reg] = (uint32_t)ldl_be_p(host);
94             host += 4;
95         }
96     } else {
97         /* Slow path -- at least some of the operation requires i/o.  */
98         for (; reg < 32; reg++) {
99             env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
100             addr = addr_add(env, addr, 4);
101         }
102     }
103 }
104 
helper_stmw(CPUPPCState * env,target_ulong addr,uint32_t reg)105 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
106 {
107     uintptr_t raddr = GETPC();
108     int mmu_idx = ppc_env_mmu_index(env, false);
109     void *host = probe_contiguous(env, addr, (32 - reg) * 4,
110                                   MMU_DATA_STORE, mmu_idx, raddr);
111 
112     if (likely(host)) {
113         /* Fast path -- the entire operation is in RAM at host.  */
114         for (; reg < 32; reg++) {
115             stl_be_p(host, env->gpr[reg]);
116             host += 4;
117         }
118     } else {
119         /* Slow path -- at least some of the operation requires i/o.  */
120         for (; reg < 32; reg++) {
121             cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
122             addr = addr_add(env, addr, 4);
123         }
124     }
125 }
126 
do_lsw(CPUPPCState * env,target_ulong addr,uint32_t nb,uint32_t reg,uintptr_t raddr)127 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
128                    uint32_t reg, uintptr_t raddr)
129 {
130     int mmu_idx;
131     void *host;
132     uint32_t val;
133 
134     if (unlikely(nb == 0)) {
135         return;
136     }
137 
138     mmu_idx = ppc_env_mmu_index(env, false);
139     host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr);
140 
141     if (likely(host)) {
142         /* Fast path -- the entire operation is in RAM at host.  */
143         for (; nb > 3; nb -= 4) {
144             env->gpr[reg] = (uint32_t)ldl_be_p(host);
145             reg = (reg + 1) % 32;
146             host += 4;
147         }
148         switch (nb) {
149         default:
150             return;
151         case 1:
152             val = ldub_p(host) << 24;
153             break;
154         case 2:
155             val = lduw_be_p(host) << 16;
156             break;
157         case 3:
158             val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8);
159             break;
160         }
161     } else {
162         /* Slow path -- at least some of the operation requires i/o.  */
163         for (; nb > 3; nb -= 4) {
164             env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
165             reg = (reg + 1) % 32;
166             addr = addr_add(env, addr, 4);
167         }
168         switch (nb) {
169         default:
170             return;
171         case 1:
172             val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24;
173             break;
174         case 2:
175             val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
176             break;
177         case 3:
178             val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
179             addr = addr_add(env, addr, 2);
180             val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8;
181             break;
182         }
183     }
184     env->gpr[reg] = val;
185 }
186 
helper_lsw(CPUPPCState * env,target_ulong addr,uint32_t nb,uint32_t reg)187 void helper_lsw(CPUPPCState *env, target_ulong addr,
188                 uint32_t nb, uint32_t reg)
189 {
190     do_lsw(env, addr, nb, reg, GETPC());
191 }
192 
193 /*
194  * PPC32 specification says we must generate an exception if rA is in
195  * the range of registers to be loaded.  In an other hand, IBM says
196  * this is valid, but rA won't be loaded.  For now, I'll follow the
197  * spec...
198  */
helper_lswx(CPUPPCState * env,target_ulong addr,uint32_t reg,uint32_t ra,uint32_t rb)199 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
200                  uint32_t ra, uint32_t rb)
201 {
202     if (likely(xer_bc != 0)) {
203         int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
204         if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
205                      lsw_reg_in_range(reg, num_used_regs, rb))) {
206             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
207                                    POWERPC_EXCP_INVAL |
208                                    POWERPC_EXCP_INVAL_LSWX, GETPC());
209         } else {
210             do_lsw(env, addr, xer_bc, reg, GETPC());
211         }
212     }
213 }
214 
helper_stsw(CPUPPCState * env,target_ulong addr,uint32_t nb,uint32_t reg)215 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
216                  uint32_t reg)
217 {
218     uintptr_t raddr = GETPC();
219     int mmu_idx;
220     void *host;
221     uint32_t val;
222 
223     if (unlikely(nb == 0)) {
224         return;
225     }
226 
227     mmu_idx = ppc_env_mmu_index(env, false);
228     host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr);
229 
230     if (likely(host)) {
231         /* Fast path -- the entire operation is in RAM at host.  */
232         for (; nb > 3; nb -= 4) {
233             stl_be_p(host, env->gpr[reg]);
234             reg = (reg + 1) % 32;
235             host += 4;
236         }
237         val = env->gpr[reg];
238         switch (nb) {
239         case 1:
240             stb_p(host, val >> 24);
241             break;
242         case 2:
243             stw_be_p(host, val >> 16);
244             break;
245         case 3:
246             stw_be_p(host, val >> 16);
247             stb_p(host + 2, val >> 8);
248             break;
249         }
250     } else {
251         for (; nb > 3; nb -= 4) {
252             cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
253             reg = (reg + 1) % 32;
254             addr = addr_add(env, addr, 4);
255         }
256         val = env->gpr[reg];
257         switch (nb) {
258         case 1:
259             cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr);
260             break;
261         case 2:
262             cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
263             break;
264         case 3:
265             cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
266             addr = addr_add(env, addr, 2);
267             cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr);
268             break;
269         }
270     }
271 }
272 
dcbz_common(CPUPPCState * env,target_ulong addr,int mmu_idx,int dcbz_size,uintptr_t retaddr)273 static void dcbz_common(CPUPPCState *env, target_ulong addr,
274                         int mmu_idx, int dcbz_size, uintptr_t retaddr)
275 {
276     target_ulong mask = ~(target_ulong)(dcbz_size - 1);
277     void *haddr;
278 
279     /* Align address */
280     addr &= mask;
281 
282     /* Check reservation */
283     if (unlikely((env->reserve_addr & mask) == addr))  {
284         env->reserve_addr = (target_ulong)-1ULL;
285     }
286 
287     /* Try fast path translate */
288 #ifdef CONFIG_USER_ONLY
289     haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
290 #else
291     haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr);
292     if (unlikely(!haddr)) {
293         /* Slow path */
294         for (int i = 0; i < dcbz_size; i += 8) {
295             cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr);
296         }
297         return;
298     }
299 #endif
300 
301     set_helper_retaddr(retaddr);
302     memset(haddr, 0, dcbz_size);
303     clear_helper_retaddr();
304 }
305 
helper_dcbz(CPUPPCState * env,target_ulong addr,int mmu_idx)306 void helper_dcbz(CPUPPCState *env, target_ulong addr, int mmu_idx)
307 {
308     dcbz_common(env, addr, mmu_idx, env->dcache_line_size, GETPC());
309 }
310 
311 #ifdef TARGET_PPC64
helper_dcbzl(CPUPPCState * env,target_ulong addr)312 void helper_dcbzl(CPUPPCState *env, target_ulong addr)
313 {
314     int dcbz_size = env->dcache_line_size;
315 
316     /*
317      * The translator checked for POWERPC_EXCP_970.
318      * All that's left is to check HID5.
319      */
320     if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
321         dcbz_size = 32;
322     }
323 
324     dcbz_common(env, addr, ppc_env_mmu_index(env, false), dcbz_size, GETPC());
325 }
326 #endif
327 
helper_icbi(CPUPPCState * env,target_ulong addr)328 void helper_icbi(CPUPPCState *env, target_ulong addr)
329 {
330     addr &= ~(env->dcache_line_size - 1);
331     /*
332      * Invalidate one cache line :
333      * PowerPC specification says this is to be treated like a load
334      * (not a fetch) by the MMU. To be sure it will be so,
335      * do the load "by hand".
336      */
337     cpu_ldl_data_ra(env, addr, GETPC());
338 }
339 
helper_icbiep(CPUPPCState * env,target_ulong addr)340 void helper_icbiep(CPUPPCState *env, target_ulong addr)
341 {
342 #if !defined(CONFIG_USER_ONLY)
343     /* See comments above */
344     addr &= ~(env->dcache_line_size - 1);
345     cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC());
346 #endif
347 }
348 
349 /* XXX: to be tested */
helper_lscbx(CPUPPCState * env,target_ulong addr,uint32_t reg,uint32_t ra,uint32_t rb)350 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
351                           uint32_t ra, uint32_t rb)
352 {
353     int i, c, d;
354 
355     d = 24;
356     for (i = 0; i < xer_bc; i++) {
357         c = cpu_ldub_data_ra(env, addr, GETPC());
358         addr = addr_add(env, addr, 1);
359         /* ra (if not 0) and rb are never modified */
360         if (likely(reg != rb && (ra == 0 || reg != ra))) {
361             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
362         }
363         if (unlikely(c == xer_cmp)) {
364             break;
365         }
366         if (likely(d != 0)) {
367             d -= 8;
368         } else {
369             d = 24;
370             reg++;
371             reg = reg & 0x1F;
372         }
373     }
374     return i;
375 }
376 
377 /*****************************************************************************/
378 /* Altivec extension helpers */
379 #if HOST_BIG_ENDIAN
380 #define HI_IDX 0
381 #define LO_IDX 1
382 #else
383 #define HI_IDX 1
384 #define LO_IDX 0
385 #endif
386 
387 /*
388  * We use MSR_LE to determine index ordering in a vector.  However,
389  * byteswapping is not simply controlled by MSR_LE.  We also need to
390  * take into account endianness of the target.  This is done for the
391  * little-endian PPC64 user-mode target.
392  */
393 
394 #define LVE(name, access, swap, element)                        \
395     void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
396                        target_ulong addr)                       \
397     {                                                           \
398         size_t n_elems = ARRAY_SIZE(r->element);                \
399         int adjust = HI_IDX * (n_elems - 1);                    \
400         int sh = sizeof(r->element[0]) >> 1;                    \
401         int index = (addr & 0xf) >> sh;                         \
402         if (FIELD_EX64(env->msr, MSR, LE)) {                    \
403             index = n_elems - index - 1;                        \
404         }                                                       \
405                                                                 \
406         if (needs_byteswap(env)) {                              \
407             r->element[LO_IDX ? index : (adjust - index)] =     \
408                 swap(access(env, addr, GETPC()));               \
409         } else {                                                \
410             r->element[LO_IDX ? index : (adjust - index)] =     \
411                 access(env, addr, GETPC());                     \
412         }                                                       \
413     }
414 #define I(x) (x)
LVE(LVEBX,cpu_ldub_data_ra,I,u8)415 LVE(LVEBX, cpu_ldub_data_ra, I, u8)
416 LVE(LVEHX, cpu_lduw_data_ra, bswap16, u16)
417 LVE(LVEWX, cpu_ldl_data_ra, bswap32, u32)
418 #undef I
419 #undef LVE
420 
421 #define STVE(name, access, swap, element)                               \
422     void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
423                        target_ulong addr)                               \
424     {                                                                   \
425         size_t n_elems = ARRAY_SIZE(r->element);                        \
426         int adjust = HI_IDX * (n_elems - 1);                            \
427         int sh = sizeof(r->element[0]) >> 1;                            \
428         int index = (addr & 0xf) >> sh;                                 \
429         if (FIELD_EX64(env->msr, MSR, LE)) {                            \
430             index = n_elems - index - 1;                                \
431         }                                                               \
432                                                                         \
433         if (needs_byteswap(env)) {                                      \
434             access(env, addr, swap(r->element[LO_IDX ? index :          \
435                                               (adjust - index)]),       \
436                         GETPC());                                       \
437         } else {                                                        \
438             access(env, addr, r->element[LO_IDX ? index :               \
439                                          (adjust - index)], GETPC());   \
440         }                                                               \
441     }
442 #define I(x) (x)
443 STVE(STVEBX, cpu_stb_data_ra, I, u8)
444 STVE(STVEHX, cpu_stw_data_ra, bswap16, u16)
445 STVE(STVEWX, cpu_stl_data_ra, bswap32, u32)
446 #undef I
447 #undef LVE
448 
449 #ifdef TARGET_PPC64
450 #define GET_NB(rb) ((rb >> 56) & 0xFF)
451 
452 #define VSX_LXVL(name, lj)                                              \
453 void helper_##name(CPUPPCState *env, target_ulong addr,                 \
454                    ppc_vsr_t *xt, target_ulong rb)                      \
455 {                                                                       \
456     ppc_vsr_t t;                                                        \
457     uint64_t nb = GET_NB(rb);                                           \
458     int i;                                                              \
459                                                                         \
460     t.s128 = int128_zero();                                             \
461     if (nb) {                                                           \
462         nb = (nb >= 16) ? 16 : nb;                                      \
463         if (FIELD_EX64(env->msr, MSR, LE) && !lj) {                     \
464             for (i = 16; i > 16 - nb; i--) {                            \
465                 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());   \
466                 addr = addr_add(env, addr, 1);                          \
467             }                                                           \
468         } else {                                                        \
469             for (i = 0; i < nb; i++) {                                  \
470                 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());       \
471                 addr = addr_add(env, addr, 1);                          \
472             }                                                           \
473         }                                                               \
474     }                                                                   \
475     *xt = t;                                                            \
476 }
477 
478 VSX_LXVL(LXVL, 0)
479 VSX_LXVL(LXVLL, 1)
480 #undef VSX_LXVL
481 
482 #define VSX_STXVL(name, lj)                                       \
483 void helper_##name(CPUPPCState *env, target_ulong addr,           \
484                    ppc_vsr_t *xt, target_ulong rb)                \
485 {                                                                 \
486     target_ulong nb = GET_NB(rb);                                 \
487     int i;                                                        \
488                                                                   \
489     if (!nb) {                                                    \
490         return;                                                   \
491     }                                                             \
492                                                                   \
493     nb = (nb >= 16) ? 16 : nb;                                    \
494     if (FIELD_EX64(env->msr, MSR, LE) && !lj) {                   \
495         for (i = 16; i > 16 - nb; i--) {                          \
496             cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
497             addr = addr_add(env, addr, 1);                        \
498         }                                                         \
499     } else {                                                      \
500         for (i = 0; i < nb; i++) {                                \
501             cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC());     \
502             addr = addr_add(env, addr, 1);                        \
503         }                                                         \
504     }                                                             \
505 }
506 
507 VSX_STXVL(STXVL, 0)
508 VSX_STXVL(STXVLL, 1)
509 #undef VSX_STXVL
510 #undef GET_NB
511 #endif /* TARGET_PPC64 */
512 
513 #undef HI_IDX
514 #undef LO_IDX
515 
516 void helper_tbegin(CPUPPCState *env)
517 {
518     /*
519      * As a degenerate implementation, always fail tbegin.  The reason
520      * given is "Nesting overflow".  The "persistent" bit is set,
521      * providing a hint to the error handler to not retry.  The TFIAR
522      * captures the address of the failure, which is this tbegin
523      * instruction.  Instruction execution will continue with the next
524      * instruction in memory, which is precisely what we want.
525      */
526 
527     env->spr[SPR_TEXASR] =
528         (1ULL << TEXASR_FAILURE_PERSISTENT) |
529         (1ULL << TEXASR_NESTING_OVERFLOW) |
530         (FIELD_EX64_HV(env->msr) << TEXASR_PRIVILEGE_HV) |
531         (FIELD_EX64(env->msr, MSR, PR) << TEXASR_PRIVILEGE_PR) |
532         (1ULL << TEXASR_FAILURE_SUMMARY) |
533         (1ULL << TEXASR_TFIAR_EXACT);
534     env->spr[SPR_TFIAR] = env->nip | (FIELD_EX64_HV(env->msr) << 1) |
535                           FIELD_EX64(env->msr, MSR, PR);
536     env->spr[SPR_TFHAR] = env->nip + 4;
537     env->crf[0] = 0xB; /* 0b1010 = transaction failure */
538 }
539