1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2005-2009 Samsung Electronics
4 * Copyright © 2007 Nokia Corporation
5 *
6 * Kyungmin Park <kyungmin.park@samsung.com>
7 *
8 * Credits:
9 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
10 * auto-placement support, read-while load support, various fixes
11 *
12 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13 * Flex-OneNAND support
14 * Amul Kumar Saha <amul.saha at samsung.com>
15 * OTP support
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
29
30 #include <asm/io.h>
31
32 /*
33 * Multiblock erase if number of blocks to erase is 2 or more.
34 * Maximum number of blocks for simultaneous erase is 64.
35 */
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
38
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41
42 module_param_array(flex_bdry, int, NULL, 0400);
43 MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
44 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45 "DIE_BDRY: SLC boundary of the die"
46 "LOCK: Locking information for SLC boundary"
47 " : 0->Set boundary in unlocked status"
48 " : 1->Set boundary in locked status");
49
50 /* Default OneNAND/Flex-OneNAND OTP options*/
51 static int otp;
52
53 module_param(otp, int, 0400);
54 MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
55 "Syntax : otp=LOCK_TYPE"
56 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
57 " : 0 -> Default (No Blocks Locked)"
58 " : 1 -> OTP Block lock"
59 " : 2 -> 1st Block lock"
60 " : 3 -> BOTH OTP Block and 1st Block lock");
61
62 /*
63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64 * For now, we expose only 64 out of 80 ecc bytes
65 */
flexonenand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)66 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67 struct mtd_oob_region *oobregion)
68 {
69 if (section > 7)
70 return -ERANGE;
71
72 oobregion->offset = (section * 16) + 6;
73 oobregion->length = 10;
74
75 return 0;
76 }
77
flexonenand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)78 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79 struct mtd_oob_region *oobregion)
80 {
81 if (section > 7)
82 return -ERANGE;
83
84 oobregion->offset = (section * 16) + 2;
85 oobregion->length = 4;
86
87 return 0;
88 }
89
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91 .ecc = flexonenand_ooblayout_ecc,
92 .free = flexonenand_ooblayout_free,
93 };
94
95 /*
96 * onenand_oob_128 - oob info for OneNAND with 4KB page
97 *
98 * Based on specification:
99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100 *
101 */
onenand_ooblayout_128_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)102 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103 struct mtd_oob_region *oobregion)
104 {
105 if (section > 7)
106 return -ERANGE;
107
108 oobregion->offset = (section * 16) + 7;
109 oobregion->length = 9;
110
111 return 0;
112 }
113
onenand_ooblayout_128_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)114 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115 struct mtd_oob_region *oobregion)
116 {
117 if (section >= 8)
118 return -ERANGE;
119
120 /*
121 * free bytes are using the spare area fields marked as
122 * "Managed by internal ECC logic for Logical Sector Number area"
123 */
124 oobregion->offset = (section * 16) + 2;
125 oobregion->length = 3;
126
127 return 0;
128 }
129
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131 .ecc = onenand_ooblayout_128_ecc,
132 .free = onenand_ooblayout_128_free,
133 };
134
135 /*
136 * onenand_oob_32_64 - oob info for large (2KB) page
137 */
onenand_ooblayout_32_64_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)138 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139 struct mtd_oob_region *oobregion)
140 {
141 if (section > 3)
142 return -ERANGE;
143
144 oobregion->offset = (section * 16) + 8;
145 oobregion->length = 5;
146
147 return 0;
148 }
149
onenand_ooblayout_32_64_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)150 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151 struct mtd_oob_region *oobregion)
152 {
153 int sections = (mtd->oobsize / 32) * 2;
154
155 if (section >= sections)
156 return -ERANGE;
157
158 if (section & 1) {
159 oobregion->offset = ((section - 1) * 16) + 14;
160 oobregion->length = 2;
161 } else {
162 oobregion->offset = (section * 16) + 2;
163 oobregion->length = 3;
164 }
165
166 return 0;
167 }
168
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170 .ecc = onenand_ooblayout_32_64_ecc,
171 .free = onenand_ooblayout_32_64_free,
172 };
173
174 static const unsigned char ffchars[] = {
175 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
177 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
179 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
181 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
183 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
185 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
191 };
192
193 /**
194 * onenand_readw - [OneNAND Interface] Read OneNAND register
195 * @addr: address to read
196 *
197 * Read OneNAND register
198 */
onenand_readw(void __iomem * addr)199 static unsigned short onenand_readw(void __iomem *addr)
200 {
201 return readw(addr);
202 }
203
204 /**
205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206 * @value: value to write
207 * @addr: address to write
208 *
209 * Write OneNAND register with value
210 */
onenand_writew(unsigned short value,void __iomem * addr)211 static void onenand_writew(unsigned short value, void __iomem *addr)
212 {
213 writew(value, addr);
214 }
215
216 /**
217 * onenand_block_address - [DEFAULT] Get block address
218 * @this: onenand chip data structure
219 * @block: the block
220 * @return translated block address if DDP, otherwise same
221 *
222 * Setup Start Address 1 Register (F100h)
223 */
onenand_block_address(struct onenand_chip * this,int block)224 static int onenand_block_address(struct onenand_chip *this, int block)
225 {
226 /* Device Flash Core select, NAND Flash Block Address */
227 if (block & this->density_mask)
228 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229
230 return block;
231 }
232
233 /**
234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
235 * @this: onenand chip data structure
236 * @block: the block
237 * @return set DBS value if DDP, otherwise 0
238 *
239 * Setup Start Address 2 Register (F101h) for DDP
240 */
onenand_bufferram_address(struct onenand_chip * this,int block)241 static int onenand_bufferram_address(struct onenand_chip *this, int block)
242 {
243 /* Device BufferRAM Select */
244 if (block & this->density_mask)
245 return ONENAND_DDP_CHIP1;
246
247 return ONENAND_DDP_CHIP0;
248 }
249
250 /**
251 * onenand_page_address - [DEFAULT] Get page address
252 * @page: the page address
253 * @sector: the sector address
254 * @return combined page and sector address
255 *
256 * Setup Start Address 8 Register (F107h)
257 */
onenand_page_address(int page,int sector)258 static int onenand_page_address(int page, int sector)
259 {
260 /* Flash Page Address, Flash Sector Address */
261 int fpa, fsa;
262
263 fpa = page & ONENAND_FPA_MASK;
264 fsa = sector & ONENAND_FSA_MASK;
265
266 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267 }
268
269 /**
270 * onenand_buffer_address - [DEFAULT] Get buffer address
271 * @dataram1: DataRAM index
272 * @sectors: the sector address
273 * @count: the number of sectors
274 * Return: the start buffer value
275 *
276 * Setup Start Buffer Register (F200h)
277 */
onenand_buffer_address(int dataram1,int sectors,int count)278 static int onenand_buffer_address(int dataram1, int sectors, int count)
279 {
280 int bsa, bsc;
281
282 /* BufferRAM Sector Address */
283 bsa = sectors & ONENAND_BSA_MASK;
284
285 if (dataram1)
286 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
287 else
288 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
289
290 /* BufferRAM Sector Count */
291 bsc = count & ONENAND_BSC_MASK;
292
293 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294 }
295
296 /**
297 * flexonenand_block- For given address return block number
298 * @this: - OneNAND device structure
299 * @addr: - Address for which block number is needed
300 */
flexonenand_block(struct onenand_chip * this,loff_t addr)301 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302 {
303 unsigned boundary, blk, die = 0;
304
305 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306 die = 1;
307 addr -= this->diesize[0];
308 }
309
310 boundary = this->boundary[die];
311
312 blk = addr >> (this->erase_shift - 1);
313 if (blk > boundary)
314 blk = (blk + boundary + 1) >> 1;
315
316 blk += die ? this->density_mask : 0;
317 return blk;
318 }
319
onenand_block(struct onenand_chip * this,loff_t addr)320 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321 {
322 if (!FLEXONENAND(this))
323 return addr >> this->erase_shift;
324 return flexonenand_block(this, addr);
325 }
326
327 /**
328 * flexonenand_addr - Return address of the block
329 * @this: OneNAND device structure
330 * @block: Block number on Flex-OneNAND
331 *
332 * Return address of the block
333 */
flexonenand_addr(struct onenand_chip * this,int block)334 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335 {
336 loff_t ofs = 0;
337 int die = 0, boundary;
338
339 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340 block -= this->density_mask;
341 die = 1;
342 ofs = this->diesize[0];
343 }
344
345 boundary = this->boundary[die];
346 ofs += (loff_t)block << (this->erase_shift - 1);
347 if (block > (boundary + 1))
348 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349 return ofs;
350 }
351
onenand_addr(struct onenand_chip * this,int block)352 loff_t onenand_addr(struct onenand_chip *this, int block)
353 {
354 if (!FLEXONENAND(this))
355 return (loff_t)block << this->erase_shift;
356 return flexonenand_addr(this, block);
357 }
358 EXPORT_SYMBOL(onenand_addr);
359
360 /**
361 * onenand_get_density - [DEFAULT] Get OneNAND density
362 * @dev_id: OneNAND device ID
363 *
364 * Get OneNAND density from device ID
365 */
onenand_get_density(int dev_id)366 static inline int onenand_get_density(int dev_id)
367 {
368 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369 return (density & ONENAND_DEVICE_DENSITY_MASK);
370 }
371
372 /**
373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374 * @mtd: MTD device structure
375 * @addr: address whose erase region needs to be identified
376 */
flexonenand_region(struct mtd_info * mtd,loff_t addr)377 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378 {
379 int i;
380
381 for (i = 0; i < mtd->numeraseregions; i++)
382 if (addr < mtd->eraseregions[i].offset)
383 break;
384 return i - 1;
385 }
386 EXPORT_SYMBOL(flexonenand_region);
387
388 /**
389 * onenand_command - [DEFAULT] Send command to OneNAND device
390 * @mtd: MTD device structure
391 * @cmd: the command to be sent
392 * @addr: offset to read from or write to
393 * @len: number of bytes to read or write
394 *
395 * Send command to OneNAND device. This function is used for middle/large page
396 * devices (1KB/2KB Bytes per page)
397 */
onenand_command(struct mtd_info * mtd,int cmd,loff_t addr,size_t len)398 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399 {
400 struct onenand_chip *this = mtd->priv;
401 int value, block, page;
402
403 /* Address translation */
404 switch (cmd) {
405 case ONENAND_CMD_UNLOCK:
406 case ONENAND_CMD_LOCK:
407 case ONENAND_CMD_LOCK_TIGHT:
408 case ONENAND_CMD_UNLOCK_ALL:
409 block = -1;
410 page = -1;
411 break;
412
413 case FLEXONENAND_CMD_PI_ACCESS:
414 /* addr contains die index */
415 block = addr * this->density_mask;
416 page = -1;
417 break;
418
419 case ONENAND_CMD_ERASE:
420 case ONENAND_CMD_MULTIBLOCK_ERASE:
421 case ONENAND_CMD_ERASE_VERIFY:
422 case ONENAND_CMD_BUFFERRAM:
423 case ONENAND_CMD_OTP_ACCESS:
424 block = onenand_block(this, addr);
425 page = -1;
426 break;
427
428 case FLEXONENAND_CMD_READ_PI:
429 cmd = ONENAND_CMD_READ;
430 block = addr * this->density_mask;
431 page = 0;
432 break;
433
434 default:
435 block = onenand_block(this, addr);
436 if (FLEXONENAND(this))
437 page = (int) (addr - onenand_addr(this, block))>>\
438 this->page_shift;
439 else
440 page = (int) (addr >> this->page_shift);
441 if (ONENAND_IS_2PLANE(this)) {
442 /* Make the even block number */
443 block &= ~1;
444 /* Is it the odd plane? */
445 if (addr & this->writesize)
446 block++;
447 page >>= 1;
448 }
449 page &= this->page_mask;
450 break;
451 }
452
453 /* NOTE: The setting order of the registers is very important! */
454 if (cmd == ONENAND_CMD_BUFFERRAM) {
455 /* Select DataRAM for DDP */
456 value = onenand_bufferram_address(this, block);
457 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458
459 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460 /* It is always BufferRAM0 */
461 ONENAND_SET_BUFFERRAM0(this);
462 else
463 /* Switch to the next data buffer */
464 ONENAND_SET_NEXT_BUFFERRAM(this);
465
466 return 0;
467 }
468
469 if (block != -1) {
470 /* Write 'DFS, FBA' of Flash */
471 value = onenand_block_address(this, block);
472 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473
474 /* Select DataRAM for DDP */
475 value = onenand_bufferram_address(this, block);
476 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477 }
478
479 if (page != -1) {
480 /* Now we use page size operation */
481 int sectors = 0, count = 0;
482 int dataram;
483
484 switch (cmd) {
485 case FLEXONENAND_CMD_RECOVER_LSB:
486 case ONENAND_CMD_READ:
487 case ONENAND_CMD_READOOB:
488 if (ONENAND_IS_4KB_PAGE(this))
489 /* It is always BufferRAM0 */
490 dataram = ONENAND_SET_BUFFERRAM0(this);
491 else
492 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493 break;
494
495 default:
496 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497 cmd = ONENAND_CMD_2X_PROG;
498 dataram = ONENAND_CURRENT_BUFFERRAM(this);
499 break;
500 }
501
502 /* Write 'FPA, FSA' of Flash */
503 value = onenand_page_address(page, sectors);
504 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505
506 /* Write 'BSA, BSC' of DataRAM */
507 value = onenand_buffer_address(dataram, sectors, count);
508 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509 }
510
511 /* Interrupt clear */
512 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513
514 /* Write command */
515 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516
517 return 0;
518 }
519
520 /**
521 * onenand_read_ecc - return ecc status
522 * @this: onenand chip structure
523 */
onenand_read_ecc(struct onenand_chip * this)524 static inline int onenand_read_ecc(struct onenand_chip *this)
525 {
526 int ecc, i, result = 0;
527
528 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530
531 for (i = 0; i < 4; i++) {
532 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533 if (likely(!ecc))
534 continue;
535 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536 return ONENAND_ECC_2BIT_ALL;
537 else
538 result = ONENAND_ECC_1BIT_ALL;
539 }
540
541 return result;
542 }
543
544 /**
545 * onenand_wait - [DEFAULT] wait until the command is done
546 * @mtd: MTD device structure
547 * @state: state to select the max. timeout value
548 *
549 * Wait for command done. This applies to all OneNAND command
550 * Read can take up to 30us, erase up to 2ms and program up to 350us
551 * according to general OneNAND specs
552 */
onenand_wait(struct mtd_info * mtd,int state)553 static int onenand_wait(struct mtd_info *mtd, int state)
554 {
555 struct onenand_chip * this = mtd->priv;
556 unsigned long timeout;
557 unsigned int flags = ONENAND_INT_MASTER;
558 unsigned int interrupt = 0;
559 unsigned int ctrl;
560
561 /* The 20 msec is enough */
562 timeout = jiffies + msecs_to_jiffies(20);
563 while (time_before(jiffies, timeout)) {
564 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565
566 if (interrupt & flags)
567 break;
568
569 if (state != FL_READING && state != FL_PREPARING_ERASE)
570 cond_resched();
571 }
572 /* To get correct interrupt status in timeout case */
573 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574
575 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576
577 /*
578 * In the Spec. it checks the controller status first
579 * However if you get the correct information in case of
580 * power off recovery (POR) test, it should read ECC status first
581 */
582 if (interrupt & ONENAND_INT_READ) {
583 int ecc = onenand_read_ecc(this);
584 if (ecc) {
585 if (ecc & ONENAND_ECC_2BIT_ALL) {
586 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587 __func__, ecc);
588 mtd->ecc_stats.failed++;
589 return -EBADMSG;
590 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
591 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592 __func__, ecc);
593 mtd->ecc_stats.corrected++;
594 }
595 }
596 } else if (state == FL_READING) {
597 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598 __func__, ctrl, interrupt);
599 return -EIO;
600 }
601
602 if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604 __func__, ctrl, interrupt);
605 return -EIO;
606 }
607
608 if (!(interrupt & ONENAND_INT_MASTER)) {
609 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610 __func__, ctrl, interrupt);
611 return -EIO;
612 }
613
614 /* If there's controller error, it's a real error */
615 if (ctrl & ONENAND_CTRL_ERROR) {
616 printk(KERN_ERR "%s: controller error = 0x%04x\n",
617 __func__, ctrl);
618 if (ctrl & ONENAND_CTRL_LOCK)
619 printk(KERN_ERR "%s: it's locked error.\n", __func__);
620 return -EIO;
621 }
622
623 return 0;
624 }
625
626 /*
627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
628 * @irq: onenand interrupt number
629 * @dev_id: interrupt data
630 *
631 * complete the work
632 */
onenand_interrupt(int irq,void * data)633 static irqreturn_t onenand_interrupt(int irq, void *data)
634 {
635 struct onenand_chip *this = data;
636
637 /* To handle shared interrupt */
638 if (!this->complete.done)
639 complete(&this->complete);
640
641 return IRQ_HANDLED;
642 }
643
644 /*
645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646 * @mtd: MTD device structure
647 * @state: state to select the max. timeout value
648 *
649 * Wait for command done.
650 */
onenand_interrupt_wait(struct mtd_info * mtd,int state)651 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652 {
653 struct onenand_chip *this = mtd->priv;
654
655 wait_for_completion(&this->complete);
656
657 return onenand_wait(mtd, state);
658 }
659
660 /*
661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662 * @mtd: MTD device structure
663 * @state: state to select the max. timeout value
664 *
665 * Try interrupt based wait (It is used one-time)
666 */
onenand_try_interrupt_wait(struct mtd_info * mtd,int state)667 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668 {
669 struct onenand_chip *this = mtd->priv;
670 unsigned long remain, timeout;
671
672 /* We use interrupt wait first */
673 this->wait = onenand_interrupt_wait;
674
675 timeout = msecs_to_jiffies(100);
676 remain = wait_for_completion_timeout(&this->complete, timeout);
677 if (!remain) {
678 printk(KERN_INFO "OneNAND: There's no interrupt. "
679 "We use the normal wait\n");
680
681 /* Release the irq */
682 free_irq(this->irq, this);
683
684 this->wait = onenand_wait;
685 }
686
687 return onenand_wait(mtd, state);
688 }
689
690 /*
691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692 * @mtd: MTD device structure
693 *
694 * There's two method to wait onenand work
695 * 1. polling - read interrupt status register
696 * 2. interrupt - use the kernel interrupt method
697 */
onenand_setup_wait(struct mtd_info * mtd)698 static void onenand_setup_wait(struct mtd_info *mtd)
699 {
700 struct onenand_chip *this = mtd->priv;
701 int syscfg;
702
703 init_completion(&this->complete);
704
705 if (this->irq <= 0) {
706 this->wait = onenand_wait;
707 return;
708 }
709
710 if (request_irq(this->irq, &onenand_interrupt,
711 IRQF_SHARED, "onenand", this)) {
712 /* If we can't get irq, use the normal wait */
713 this->wait = onenand_wait;
714 return;
715 }
716
717 /* Enable interrupt */
718 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719 syscfg |= ONENAND_SYS_CFG1_IOBE;
720 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721
722 this->wait = onenand_try_interrupt_wait;
723 }
724
725 /**
726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727 * @mtd: MTD data structure
728 * @area: BufferRAM area
729 * @return offset given area
730 *
731 * Return BufferRAM offset given area
732 */
onenand_bufferram_offset(struct mtd_info * mtd,int area)733 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734 {
735 struct onenand_chip *this = mtd->priv;
736
737 if (ONENAND_CURRENT_BUFFERRAM(this)) {
738 /* Note: the 'this->writesize' is a real page size */
739 if (area == ONENAND_DATARAM)
740 return this->writesize;
741 if (area == ONENAND_SPARERAM)
742 return mtd->oobsize;
743 }
744
745 return 0;
746 }
747
748 /**
749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750 * @mtd: MTD data structure
751 * @area: BufferRAM area
752 * @buffer: the databuffer to put/get data
753 * @offset: offset to read from or write to
754 * @count: number of bytes to read/write
755 *
756 * Read the BufferRAM area
757 */
onenand_read_bufferram(struct mtd_info * mtd,int area,unsigned char * buffer,int offset,size_t count)758 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759 unsigned char *buffer, int offset, size_t count)
760 {
761 struct onenand_chip *this = mtd->priv;
762 void __iomem *bufferram;
763
764 bufferram = this->base + area;
765
766 bufferram += onenand_bufferram_offset(mtd, area);
767
768 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769 unsigned short word;
770
771 /* Align with word(16-bit) size */
772 count--;
773
774 /* Read word and save byte */
775 word = this->read_word(bufferram + offset + count);
776 buffer[count] = (word & 0xff);
777 }
778
779 memcpy(buffer, bufferram + offset, count);
780
781 return 0;
782 }
783
784 /**
785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786 * @mtd: MTD data structure
787 * @area: BufferRAM area
788 * @buffer: the databuffer to put/get data
789 * @offset: offset to read from or write to
790 * @count: number of bytes to read/write
791 *
792 * Read the BufferRAM area with Sync. Burst Mode
793 */
onenand_sync_read_bufferram(struct mtd_info * mtd,int area,unsigned char * buffer,int offset,size_t count)794 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795 unsigned char *buffer, int offset, size_t count)
796 {
797 struct onenand_chip *this = mtd->priv;
798 void __iomem *bufferram;
799
800 bufferram = this->base + area;
801
802 bufferram += onenand_bufferram_offset(mtd, area);
803
804 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805
806 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807 unsigned short word;
808
809 /* Align with word(16-bit) size */
810 count--;
811
812 /* Read word and save byte */
813 word = this->read_word(bufferram + offset + count);
814 buffer[count] = (word & 0xff);
815 }
816
817 memcpy(buffer, bufferram + offset, count);
818
819 this->mmcontrol(mtd, 0);
820
821 return 0;
822 }
823
824 /**
825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826 * @mtd: MTD data structure
827 * @area: BufferRAM area
828 * @buffer: the databuffer to put/get data
829 * @offset: offset to read from or write to
830 * @count: number of bytes to read/write
831 *
832 * Write the BufferRAM area
833 */
onenand_write_bufferram(struct mtd_info * mtd,int area,const unsigned char * buffer,int offset,size_t count)834 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835 const unsigned char *buffer, int offset, size_t count)
836 {
837 struct onenand_chip *this = mtd->priv;
838 void __iomem *bufferram;
839
840 bufferram = this->base + area;
841
842 bufferram += onenand_bufferram_offset(mtd, area);
843
844 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845 unsigned short word;
846 int byte_offset;
847
848 /* Align with word(16-bit) size */
849 count--;
850
851 /* Calculate byte access offset */
852 byte_offset = offset + count;
853
854 /* Read word and save byte */
855 word = this->read_word(bufferram + byte_offset);
856 word = (word & ~0xff) | buffer[count];
857 this->write_word(word, bufferram + byte_offset);
858 }
859
860 memcpy(bufferram + offset, buffer, count);
861
862 return 0;
863 }
864
865 /**
866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867 * @mtd: MTD data structure
868 * @addr: address to check
869 * @return blockpage address
870 *
871 * Get blockpage address at 2x program mode
872 */
onenand_get_2x_blockpage(struct mtd_info * mtd,loff_t addr)873 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874 {
875 struct onenand_chip *this = mtd->priv;
876 int blockpage, block, page;
877
878 /* Calculate the even block number */
879 block = (int) (addr >> this->erase_shift) & ~1;
880 /* Is it the odd plane? */
881 if (addr & this->writesize)
882 block++;
883 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884 blockpage = (block << 7) | page;
885
886 return blockpage;
887 }
888
889 /**
890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891 * @mtd: MTD data structure
892 * @addr: address to check
893 * @return 1 if there are valid data, otherwise 0
894 *
895 * Check bufferram if there is data we required
896 */
onenand_check_bufferram(struct mtd_info * mtd,loff_t addr)897 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898 {
899 struct onenand_chip *this = mtd->priv;
900 int blockpage, found = 0;
901 unsigned int i;
902
903 if (ONENAND_IS_2PLANE(this))
904 blockpage = onenand_get_2x_blockpage(mtd, addr);
905 else
906 blockpage = (int) (addr >> this->page_shift);
907
908 /* Is there valid data? */
909 i = ONENAND_CURRENT_BUFFERRAM(this);
910 if (this->bufferram[i].blockpage == blockpage)
911 found = 1;
912 else {
913 /* Check another BufferRAM */
914 i = ONENAND_NEXT_BUFFERRAM(this);
915 if (this->bufferram[i].blockpage == blockpage) {
916 ONENAND_SET_NEXT_BUFFERRAM(this);
917 found = 1;
918 }
919 }
920
921 if (found && ONENAND_IS_DDP(this)) {
922 /* Select DataRAM for DDP */
923 int block = onenand_block(this, addr);
924 int value = onenand_bufferram_address(this, block);
925 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926 }
927
928 return found;
929 }
930
931 /**
932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933 * @mtd: MTD data structure
934 * @addr: address to update
935 * @valid: valid flag
936 *
937 * Update BufferRAM information
938 */
onenand_update_bufferram(struct mtd_info * mtd,loff_t addr,int valid)939 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940 int valid)
941 {
942 struct onenand_chip *this = mtd->priv;
943 int blockpage;
944 unsigned int i;
945
946 if (ONENAND_IS_2PLANE(this))
947 blockpage = onenand_get_2x_blockpage(mtd, addr);
948 else
949 blockpage = (int) (addr >> this->page_shift);
950
951 /* Invalidate another BufferRAM */
952 i = ONENAND_NEXT_BUFFERRAM(this);
953 if (this->bufferram[i].blockpage == blockpage)
954 this->bufferram[i].blockpage = -1;
955
956 /* Update BufferRAM */
957 i = ONENAND_CURRENT_BUFFERRAM(this);
958 if (valid)
959 this->bufferram[i].blockpage = blockpage;
960 else
961 this->bufferram[i].blockpage = -1;
962 }
963
964 /**
965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966 * @mtd: MTD data structure
967 * @addr: start address to invalidate
968 * @len: length to invalidate
969 *
970 * Invalidate BufferRAM information
971 */
onenand_invalidate_bufferram(struct mtd_info * mtd,loff_t addr,unsigned int len)972 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973 unsigned int len)
974 {
975 struct onenand_chip *this = mtd->priv;
976 int i;
977 loff_t end_addr = addr + len;
978
979 /* Invalidate BufferRAM */
980 for (i = 0; i < MAX_BUFFERRAM; i++) {
981 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982 if (buf_addr >= addr && buf_addr < end_addr)
983 this->bufferram[i].blockpage = -1;
984 }
985 }
986
987 /**
988 * onenand_get_device - [GENERIC] Get chip for selected access
989 * @mtd: MTD device structure
990 * @new_state: the state which is requested
991 *
992 * Get the device and lock it for exclusive access
993 */
onenand_get_device(struct mtd_info * mtd,int new_state)994 static int onenand_get_device(struct mtd_info *mtd, int new_state)
995 {
996 struct onenand_chip *this = mtd->priv;
997 DECLARE_WAITQUEUE(wait, current);
998
999 /*
1000 * Grab the lock and see if the device is available
1001 */
1002 while (1) {
1003 spin_lock(&this->chip_lock);
1004 if (this->state == FL_READY) {
1005 this->state = new_state;
1006 spin_unlock(&this->chip_lock);
1007 if (new_state != FL_PM_SUSPENDED && this->enable)
1008 this->enable(mtd);
1009 break;
1010 }
1011 if (new_state == FL_PM_SUSPENDED) {
1012 spin_unlock(&this->chip_lock);
1013 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014 }
1015 set_current_state(TASK_UNINTERRUPTIBLE);
1016 add_wait_queue(&this->wq, &wait);
1017 spin_unlock(&this->chip_lock);
1018 schedule();
1019 remove_wait_queue(&this->wq, &wait);
1020 }
1021
1022 return 0;
1023 }
1024
1025 /**
1026 * onenand_release_device - [GENERIC] release chip
1027 * @mtd: MTD device structure
1028 *
1029 * Deselect, release chip lock and wake up anyone waiting on the device
1030 */
onenand_release_device(struct mtd_info * mtd)1031 static void onenand_release_device(struct mtd_info *mtd)
1032 {
1033 struct onenand_chip *this = mtd->priv;
1034
1035 if (this->state != FL_PM_SUSPENDED && this->disable)
1036 this->disable(mtd);
1037 /* Release the chip */
1038 spin_lock(&this->chip_lock);
1039 this->state = FL_READY;
1040 wake_up(&this->wq);
1041 spin_unlock(&this->chip_lock);
1042 }
1043
1044 /**
1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046 * @mtd: MTD device structure
1047 * @buf: destination address
1048 * @column: oob offset to read from
1049 * @thislen: oob length to read
1050 */
onenand_transfer_auto_oob(struct mtd_info * mtd,uint8_t * buf,int column,int thislen)1051 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052 int thislen)
1053 {
1054 struct onenand_chip *this = mtd->priv;
1055
1056 this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057 mtd->oobsize);
1058 return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1059 column, thislen);
1060 }
1061
1062 /**
1063 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064 * @mtd: MTD device structure
1065 * @addr: address to recover
1066 * @status: return value from onenand_wait / onenand_bbt_wait
1067 *
1068 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069 * lower page address and MSB page has higher page address in paired pages.
1070 * If power off occurs during MSB page program, the paired LSB page data can
1071 * become corrupt. LSB page recovery read is a way to read LSB page though page
1072 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073 * read after power up, issue LSB page recovery read.
1074 */
onenand_recover_lsb(struct mtd_info * mtd,loff_t addr,int status)1075 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076 {
1077 struct onenand_chip *this = mtd->priv;
1078 int i;
1079
1080 /* Recovery is only for Flex-OneNAND */
1081 if (!FLEXONENAND(this))
1082 return status;
1083
1084 /* check if we failed due to uncorrectable error */
1085 if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086 return status;
1087
1088 /* check if address lies in MLC region */
1089 i = flexonenand_region(mtd, addr);
1090 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091 return status;
1092
1093 /* We are attempting to reread, so decrement stats.failed
1094 * which was incremented by onenand_wait due to read failure
1095 */
1096 printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097 __func__);
1098 mtd->ecc_stats.failed--;
1099
1100 /* Issue the LSB page recovery command */
1101 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102 return this->wait(mtd, FL_READING);
1103 }
1104
1105 /**
1106 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107 * @mtd: MTD device structure
1108 * @from: offset to read from
1109 * @ops: oob operation description structure
1110 *
1111 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112 * So, read-while-load is not present.
1113 */
onenand_mlc_read_ops_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1114 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115 struct mtd_oob_ops *ops)
1116 {
1117 struct onenand_chip *this = mtd->priv;
1118 struct mtd_ecc_stats stats;
1119 size_t len = ops->len;
1120 size_t ooblen = ops->ooblen;
1121 u_char *buf = ops->datbuf;
1122 u_char *oobbuf = ops->oobbuf;
1123 int read = 0, column, thislen;
1124 int oobread = 0, oobcolumn, thisooblen, oobsize;
1125 int ret = 0;
1126 int writesize = this->writesize;
1127
1128 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129 (int)len);
1130
1131 oobsize = mtd_oobavail(mtd, ops);
1132 oobcolumn = from & (mtd->oobsize - 1);
1133
1134 /* Do not allow reads past end of device */
1135 if (from + len > mtd->size) {
1136 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137 __func__);
1138 ops->retlen = 0;
1139 ops->oobretlen = 0;
1140 return -EINVAL;
1141 }
1142
1143 stats = mtd->ecc_stats;
1144
1145 while (read < len) {
1146 cond_resched();
1147
1148 thislen = min_t(int, writesize, len - read);
1149
1150 column = from & (writesize - 1);
1151 if (column + thislen > writesize)
1152 thislen = writesize - column;
1153
1154 if (!onenand_check_bufferram(mtd, from)) {
1155 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156
1157 ret = this->wait(mtd, FL_READING);
1158 if (unlikely(ret))
1159 ret = onenand_recover_lsb(mtd, from, ret);
1160 onenand_update_bufferram(mtd, from, !ret);
1161 if (mtd_is_eccerr(ret))
1162 ret = 0;
1163 if (ret)
1164 break;
1165 }
1166
1167 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168 if (oobbuf) {
1169 thisooblen = oobsize - oobcolumn;
1170 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171
1172 if (ops->mode == MTD_OPS_AUTO_OOB)
1173 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174 else
1175 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176 oobread += thisooblen;
1177 oobbuf += thisooblen;
1178 oobcolumn = 0;
1179 }
1180
1181 read += thislen;
1182 if (read == len)
1183 break;
1184
1185 from += thislen;
1186 buf += thislen;
1187 }
1188
1189 /*
1190 * Return success, if no ECC failures, else -EBADMSG
1191 * fs driver will take care of that, because
1192 * retlen == desired len and result == -EBADMSG
1193 */
1194 ops->retlen = read;
1195 ops->oobretlen = oobread;
1196
1197 if (ret)
1198 return ret;
1199
1200 if (mtd->ecc_stats.failed - stats.failed)
1201 return -EBADMSG;
1202
1203 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205 }
1206
1207 /**
1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209 * @mtd: MTD device structure
1210 * @from: offset to read from
1211 * @ops: oob operation description structure
1212 *
1213 * OneNAND read main and/or out-of-band data
1214 */
onenand_read_ops_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1215 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216 struct mtd_oob_ops *ops)
1217 {
1218 struct onenand_chip *this = mtd->priv;
1219 struct mtd_ecc_stats stats;
1220 size_t len = ops->len;
1221 size_t ooblen = ops->ooblen;
1222 u_char *buf = ops->datbuf;
1223 u_char *oobbuf = ops->oobbuf;
1224 int read = 0, column, thislen;
1225 int oobread = 0, oobcolumn, thisooblen, oobsize;
1226 int ret = 0, boundary = 0;
1227 int writesize = this->writesize;
1228
1229 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230 (int)len);
1231
1232 oobsize = mtd_oobavail(mtd, ops);
1233 oobcolumn = from & (mtd->oobsize - 1);
1234
1235 /* Do not allow reads past end of device */
1236 if ((from + len) > mtd->size) {
1237 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238 __func__);
1239 ops->retlen = 0;
1240 ops->oobretlen = 0;
1241 return -EINVAL;
1242 }
1243
1244 stats = mtd->ecc_stats;
1245
1246 /* Read-while-load method */
1247
1248 /* Do first load to bufferRAM */
1249 if (read < len) {
1250 if (!onenand_check_bufferram(mtd, from)) {
1251 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252 ret = this->wait(mtd, FL_READING);
1253 onenand_update_bufferram(mtd, from, !ret);
1254 if (mtd_is_eccerr(ret))
1255 ret = 0;
1256 }
1257 }
1258
1259 thislen = min_t(int, writesize, len - read);
1260 column = from & (writesize - 1);
1261 if (column + thislen > writesize)
1262 thislen = writesize - column;
1263
1264 while (!ret) {
1265 /* If there is more to load then start next load */
1266 from += thislen;
1267 if (read + thislen < len) {
1268 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269 /*
1270 * Chip boundary handling in DDP
1271 * Now we issued chip 1 read and pointed chip 1
1272 * bufferram so we have to point chip 0 bufferram.
1273 */
1274 if (ONENAND_IS_DDP(this) &&
1275 unlikely(from == (this->chipsize >> 1))) {
1276 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277 boundary = 1;
1278 } else
1279 boundary = 0;
1280 ONENAND_SET_PREV_BUFFERRAM(this);
1281 }
1282 /* While load is going, read from last bufferRAM */
1283 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284
1285 /* Read oob area if needed */
1286 if (oobbuf) {
1287 thisooblen = oobsize - oobcolumn;
1288 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289
1290 if (ops->mode == MTD_OPS_AUTO_OOB)
1291 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1292 else
1293 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294 oobread += thisooblen;
1295 oobbuf += thisooblen;
1296 oobcolumn = 0;
1297 }
1298
1299 /* See if we are done */
1300 read += thislen;
1301 if (read == len)
1302 break;
1303 /* Set up for next read from bufferRAM */
1304 if (unlikely(boundary))
1305 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306 ONENAND_SET_NEXT_BUFFERRAM(this);
1307 buf += thislen;
1308 thislen = min_t(int, writesize, len - read);
1309 column = 0;
1310 cond_resched();
1311 /* Now wait for load */
1312 ret = this->wait(mtd, FL_READING);
1313 onenand_update_bufferram(mtd, from, !ret);
1314 if (mtd_is_eccerr(ret))
1315 ret = 0;
1316 }
1317
1318 /*
1319 * Return success, if no ECC failures, else -EBADMSG
1320 * fs driver will take care of that, because
1321 * retlen == desired len and result == -EBADMSG
1322 */
1323 ops->retlen = read;
1324 ops->oobretlen = oobread;
1325
1326 if (ret)
1327 return ret;
1328
1329 if (mtd->ecc_stats.failed - stats.failed)
1330 return -EBADMSG;
1331
1332 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334 }
1335
1336 /**
1337 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338 * @mtd: MTD device structure
1339 * @from: offset to read from
1340 * @ops: oob operation description structure
1341 *
1342 * OneNAND read out-of-band data from the spare area
1343 */
onenand_read_oob_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1344 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345 struct mtd_oob_ops *ops)
1346 {
1347 struct onenand_chip *this = mtd->priv;
1348 struct mtd_ecc_stats stats;
1349 int read = 0, thislen, column, oobsize;
1350 size_t len = ops->ooblen;
1351 unsigned int mode = ops->mode;
1352 u_char *buf = ops->oobbuf;
1353 int ret = 0, readcmd;
1354
1355 from += ops->ooboffs;
1356
1357 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358 (int)len);
1359
1360 /* Initialize return length value */
1361 ops->oobretlen = 0;
1362
1363 if (mode == MTD_OPS_AUTO_OOB)
1364 oobsize = mtd->oobavail;
1365 else
1366 oobsize = mtd->oobsize;
1367
1368 column = from & (mtd->oobsize - 1);
1369
1370 if (unlikely(column >= oobsize)) {
1371 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372 __func__);
1373 return -EINVAL;
1374 }
1375
1376 stats = mtd->ecc_stats;
1377
1378 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379
1380 while (read < len) {
1381 cond_resched();
1382
1383 thislen = oobsize - column;
1384 thislen = min_t(int, thislen, len);
1385
1386 this->command(mtd, readcmd, from, mtd->oobsize);
1387
1388 onenand_update_bufferram(mtd, from, 0);
1389
1390 ret = this->wait(mtd, FL_READING);
1391 if (unlikely(ret))
1392 ret = onenand_recover_lsb(mtd, from, ret);
1393
1394 if (ret && !mtd_is_eccerr(ret)) {
1395 printk(KERN_ERR "%s: read failed = 0x%x\n",
1396 __func__, ret);
1397 break;
1398 }
1399
1400 if (mode == MTD_OPS_AUTO_OOB)
1401 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402 else
1403 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404
1405 read += thislen;
1406
1407 if (read == len)
1408 break;
1409
1410 buf += thislen;
1411
1412 /* Read more? */
1413 if (read < len) {
1414 /* Page size */
1415 from += mtd->writesize;
1416 column = 0;
1417 }
1418 }
1419
1420 ops->oobretlen = read;
1421
1422 if (ret)
1423 return ret;
1424
1425 if (mtd->ecc_stats.failed - stats.failed)
1426 return -EBADMSG;
1427
1428 return 0;
1429 }
1430
1431 /**
1432 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433 * @mtd: MTD device structure
1434 * @from: offset to read from
1435 * @ops: oob operation description structure
1436 *
1437 * Read main and/or out-of-band
1438 */
onenand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1439 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440 struct mtd_oob_ops *ops)
1441 {
1442 struct onenand_chip *this = mtd->priv;
1443 struct mtd_ecc_stats old_stats;
1444 int ret;
1445
1446 switch (ops->mode) {
1447 case MTD_OPS_PLACE_OOB:
1448 case MTD_OPS_AUTO_OOB:
1449 break;
1450 case MTD_OPS_RAW:
1451 /* Not implemented yet */
1452 default:
1453 return -EINVAL;
1454 }
1455
1456 onenand_get_device(mtd, FL_READING);
1457
1458 old_stats = mtd->ecc_stats;
1459
1460 if (ops->datbuf)
1461 ret = ONENAND_IS_4KB_PAGE(this) ?
1462 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1463 onenand_read_ops_nolock(mtd, from, ops);
1464 else
1465 ret = onenand_read_oob_nolock(mtd, from, ops);
1466
1467 if (ops->stats) {
1468 ops->stats->uncorrectable_errors +=
1469 mtd->ecc_stats.failed - old_stats.failed;
1470 ops->stats->corrected_bitflips +=
1471 mtd->ecc_stats.corrected - old_stats.corrected;
1472 }
1473
1474 onenand_release_device(mtd);
1475
1476 return ret;
1477 }
1478
1479 /**
1480 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1481 * @mtd: MTD device structure
1482 * @state: state to select the max. timeout value
1483 *
1484 * Wait for command done.
1485 */
onenand_bbt_wait(struct mtd_info * mtd,int state)1486 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1487 {
1488 struct onenand_chip *this = mtd->priv;
1489 unsigned long timeout;
1490 unsigned int interrupt, ctrl, ecc, addr1, addr8;
1491
1492 /* The 20 msec is enough */
1493 timeout = jiffies + msecs_to_jiffies(20);
1494 while (time_before(jiffies, timeout)) {
1495 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1496 if (interrupt & ONENAND_INT_MASTER)
1497 break;
1498 }
1499 /* To get correct interrupt status in timeout case */
1500 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1501 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1502 addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1503 addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1504
1505 if (interrupt & ONENAND_INT_READ) {
1506 ecc = onenand_read_ecc(this);
1507 if (ecc & ONENAND_ECC_2BIT_ALL) {
1508 printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1509 "intr 0x%04x addr1 %#x addr8 %#x\n",
1510 __func__, ecc, ctrl, interrupt, addr1, addr8);
1511 return ONENAND_BBT_READ_ECC_ERROR;
1512 }
1513 } else {
1514 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1515 "intr 0x%04x addr1 %#x addr8 %#x\n",
1516 __func__, ctrl, interrupt, addr1, addr8);
1517 return ONENAND_BBT_READ_FATAL_ERROR;
1518 }
1519
1520 /* Initial bad block case: 0x2400 or 0x0400 */
1521 if (ctrl & ONENAND_CTRL_ERROR) {
1522 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1523 "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1524 return ONENAND_BBT_READ_ERROR;
1525 }
1526
1527 return 0;
1528 }
1529
1530 /**
1531 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1532 * @mtd: MTD device structure
1533 * @from: offset to read from
1534 * @ops: oob operation description structure
1535 *
1536 * OneNAND read out-of-band data from the spare area for bbt scan
1537 */
onenand_bbt_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1538 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1539 struct mtd_oob_ops *ops)
1540 {
1541 struct onenand_chip *this = mtd->priv;
1542 int read = 0, thislen, column;
1543 int ret = 0, readcmd;
1544 size_t len = ops->ooblen;
1545 u_char *buf = ops->oobbuf;
1546
1547 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1548 len);
1549
1550 /* Initialize return value */
1551 ops->oobretlen = 0;
1552
1553 /* Do not allow reads past end of device */
1554 if (unlikely((from + len) > mtd->size)) {
1555 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1556 __func__);
1557 return ONENAND_BBT_READ_FATAL_ERROR;
1558 }
1559
1560 /* Grab the lock and see if the device is available */
1561 onenand_get_device(mtd, FL_READING);
1562
1563 column = from & (mtd->oobsize - 1);
1564
1565 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1566
1567 while (read < len) {
1568 cond_resched();
1569
1570 thislen = mtd->oobsize - column;
1571 thislen = min_t(int, thislen, len);
1572
1573 this->command(mtd, readcmd, from, mtd->oobsize);
1574
1575 onenand_update_bufferram(mtd, from, 0);
1576
1577 ret = this->bbt_wait(mtd, FL_READING);
1578 if (unlikely(ret))
1579 ret = onenand_recover_lsb(mtd, from, ret);
1580
1581 if (ret)
1582 break;
1583
1584 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1585 read += thislen;
1586 if (read == len)
1587 break;
1588
1589 buf += thislen;
1590
1591 /* Read more? */
1592 if (read < len) {
1593 /* Update Page size */
1594 from += this->writesize;
1595 column = 0;
1596 }
1597 }
1598
1599 /* Deselect and wake up anyone waiting on the device */
1600 onenand_release_device(mtd);
1601
1602 ops->oobretlen = read;
1603 return ret;
1604 }
1605
1606 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1607 /**
1608 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1609 * @mtd: MTD device structure
1610 * @buf: the databuffer to verify
1611 * @to: offset to read from
1612 */
onenand_verify_oob(struct mtd_info * mtd,const u_char * buf,loff_t to)1613 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1614 {
1615 struct onenand_chip *this = mtd->priv;
1616 u_char *oob_buf = this->oob_buf;
1617 int status, i, readcmd;
1618
1619 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1620
1621 this->command(mtd, readcmd, to, mtd->oobsize);
1622 onenand_update_bufferram(mtd, to, 0);
1623 status = this->wait(mtd, FL_READING);
1624 if (status)
1625 return status;
1626
1627 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1628 for (i = 0; i < mtd->oobsize; i++)
1629 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1630 return -EBADMSG;
1631
1632 return 0;
1633 }
1634
1635 /**
1636 * onenand_verify - [GENERIC] verify the chip contents after a write
1637 * @mtd: MTD device structure
1638 * @buf: the databuffer to verify
1639 * @addr: offset to read from
1640 * @len: number of bytes to read and compare
1641 */
onenand_verify(struct mtd_info * mtd,const u_char * buf,loff_t addr,size_t len)1642 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1643 {
1644 struct onenand_chip *this = mtd->priv;
1645 int ret = 0;
1646 int thislen, column;
1647
1648 column = addr & (this->writesize - 1);
1649
1650 while (len != 0) {
1651 thislen = min_t(int, this->writesize - column, len);
1652
1653 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1654
1655 onenand_update_bufferram(mtd, addr, 0);
1656
1657 ret = this->wait(mtd, FL_READING);
1658 if (ret)
1659 return ret;
1660
1661 onenand_update_bufferram(mtd, addr, 1);
1662
1663 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1664
1665 if (memcmp(buf, this->verify_buf + column, thislen))
1666 return -EBADMSG;
1667
1668 len -= thislen;
1669 buf += thislen;
1670 addr += thislen;
1671 column = 0;
1672 }
1673
1674 return 0;
1675 }
1676 #else
1677 #define onenand_verify(...) (0)
1678 #define onenand_verify_oob(...) (0)
1679 #endif
1680
1681 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1682
onenand_panic_wait(struct mtd_info * mtd)1683 static void onenand_panic_wait(struct mtd_info *mtd)
1684 {
1685 struct onenand_chip *this = mtd->priv;
1686 unsigned int interrupt;
1687 int i;
1688
1689 for (i = 0; i < 2000; i++) {
1690 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1691 if (interrupt & ONENAND_INT_MASTER)
1692 break;
1693 udelay(10);
1694 }
1695 }
1696
1697 /**
1698 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1699 * @mtd: MTD device structure
1700 * @to: offset to write to
1701 * @len: number of bytes to write
1702 * @retlen: pointer to variable to store the number of written bytes
1703 * @buf: the data to write
1704 *
1705 * Write with ECC
1706 */
onenand_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1707 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1708 size_t *retlen, const u_char *buf)
1709 {
1710 struct onenand_chip *this = mtd->priv;
1711 int column, subpage;
1712 int written = 0;
1713
1714 if (this->state == FL_PM_SUSPENDED)
1715 return -EBUSY;
1716
1717 /* Wait for any existing operation to clear */
1718 onenand_panic_wait(mtd);
1719
1720 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1721 (int)len);
1722
1723 /* Reject writes, which are not page aligned */
1724 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1725 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1726 __func__);
1727 return -EINVAL;
1728 }
1729
1730 column = to & (mtd->writesize - 1);
1731
1732 /* Loop until all data write */
1733 while (written < len) {
1734 int thislen = min_t(int, mtd->writesize - column, len - written);
1735 u_char *wbuf = (u_char *) buf;
1736
1737 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1738
1739 /* Partial page write */
1740 subpage = thislen < mtd->writesize;
1741 if (subpage) {
1742 memset(this->page_buf, 0xff, mtd->writesize);
1743 memcpy(this->page_buf + column, buf, thislen);
1744 wbuf = this->page_buf;
1745 }
1746
1747 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1748 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1749
1750 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1751
1752 onenand_panic_wait(mtd);
1753
1754 /* In partial page write we don't update bufferram */
1755 onenand_update_bufferram(mtd, to, !subpage);
1756 if (ONENAND_IS_2PLANE(this)) {
1757 ONENAND_SET_BUFFERRAM1(this);
1758 onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1759 }
1760
1761 written += thislen;
1762
1763 if (written == len)
1764 break;
1765
1766 column = 0;
1767 to += thislen;
1768 buf += thislen;
1769 }
1770
1771 *retlen = written;
1772 return 0;
1773 }
1774
1775 /**
1776 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1777 * @mtd: MTD device structure
1778 * @oob_buf: oob buffer
1779 * @buf: source address
1780 * @column: oob offset to write to
1781 * @thislen: oob length to write
1782 */
onenand_fill_auto_oob(struct mtd_info * mtd,u_char * oob_buf,const u_char * buf,int column,int thislen)1783 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1784 const u_char *buf, int column, int thislen)
1785 {
1786 return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1787 }
1788
1789 /**
1790 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1791 * @mtd: MTD device structure
1792 * @to: offset to write to
1793 * @ops: oob operation description structure
1794 *
1795 * Write main and/or oob with ECC
1796 */
onenand_write_ops_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1797 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1798 struct mtd_oob_ops *ops)
1799 {
1800 struct onenand_chip *this = mtd->priv;
1801 int written = 0, column, thislen = 0, subpage = 0;
1802 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1803 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1804 size_t len = ops->len;
1805 size_t ooblen = ops->ooblen;
1806 const u_char *buf = ops->datbuf;
1807 const u_char *oob = ops->oobbuf;
1808 u_char *oobbuf;
1809 int ret = 0, cmd;
1810
1811 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1812 (int)len);
1813
1814 /* Initialize retlen, in case of early exit */
1815 ops->retlen = 0;
1816 ops->oobretlen = 0;
1817
1818 /* Reject writes, which are not page aligned */
1819 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1820 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1821 __func__);
1822 return -EINVAL;
1823 }
1824
1825 /* Check zero length */
1826 if (!len)
1827 return 0;
1828 oobsize = mtd_oobavail(mtd, ops);
1829 oobcolumn = to & (mtd->oobsize - 1);
1830
1831 column = to & (mtd->writesize - 1);
1832
1833 /* Loop until all data write */
1834 while (1) {
1835 if (written < len) {
1836 u_char *wbuf = (u_char *) buf;
1837
1838 thislen = min_t(int, mtd->writesize - column, len - written);
1839 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1840
1841 cond_resched();
1842
1843 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1844
1845 /* Partial page write */
1846 subpage = thislen < mtd->writesize;
1847 if (subpage) {
1848 memset(this->page_buf, 0xff, mtd->writesize);
1849 memcpy(this->page_buf + column, buf, thislen);
1850 wbuf = this->page_buf;
1851 }
1852
1853 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1854
1855 if (oob) {
1856 oobbuf = this->oob_buf;
1857
1858 /* We send data to spare ram with oobsize
1859 * to prevent byte access */
1860 memset(oobbuf, 0xff, mtd->oobsize);
1861 if (ops->mode == MTD_OPS_AUTO_OOB)
1862 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1863 else
1864 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1865
1866 oobwritten += thisooblen;
1867 oob += thisooblen;
1868 oobcolumn = 0;
1869 } else
1870 oobbuf = (u_char *) ffchars;
1871
1872 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1873 } else
1874 ONENAND_SET_NEXT_BUFFERRAM(this);
1875
1876 /*
1877 * 2 PLANE, MLC, and Flex-OneNAND do not support
1878 * write-while-program feature.
1879 */
1880 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1881 ONENAND_SET_PREV_BUFFERRAM(this);
1882
1883 ret = this->wait(mtd, FL_WRITING);
1884
1885 /* In partial page write we don't update bufferram */
1886 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1887 if (ret) {
1888 written -= prevlen;
1889 printk(KERN_ERR "%s: write failed %d\n",
1890 __func__, ret);
1891 break;
1892 }
1893
1894 if (written == len) {
1895 /* Only check verify write turn on */
1896 ret = onenand_verify(mtd, buf - len, to - len, len);
1897 if (ret)
1898 printk(KERN_ERR "%s: verify failed %d\n",
1899 __func__, ret);
1900 break;
1901 }
1902
1903 ONENAND_SET_NEXT_BUFFERRAM(this);
1904 }
1905
1906 this->ongoing = 0;
1907 cmd = ONENAND_CMD_PROG;
1908
1909 /* Exclude 1st OTP and OTP blocks for cache program feature */
1910 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1911 likely(onenand_block(this, to) != 0) &&
1912 ONENAND_IS_4KB_PAGE(this) &&
1913 ((written + thislen) < len)) {
1914 cmd = ONENAND_CMD_2X_CACHE_PROG;
1915 this->ongoing = 1;
1916 }
1917
1918 this->command(mtd, cmd, to, mtd->writesize);
1919
1920 /*
1921 * 2 PLANE, MLC, and Flex-OneNAND wait here
1922 */
1923 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1924 ret = this->wait(mtd, FL_WRITING);
1925
1926 /* In partial page write we don't update bufferram */
1927 onenand_update_bufferram(mtd, to, !ret && !subpage);
1928 if (ret) {
1929 printk(KERN_ERR "%s: write failed %d\n",
1930 __func__, ret);
1931 break;
1932 }
1933
1934 /* Only check verify write turn on */
1935 ret = onenand_verify(mtd, buf, to, thislen);
1936 if (ret) {
1937 printk(KERN_ERR "%s: verify failed %d\n",
1938 __func__, ret);
1939 break;
1940 }
1941
1942 written += thislen;
1943
1944 if (written == len)
1945 break;
1946
1947 } else
1948 written += thislen;
1949
1950 column = 0;
1951 prev_subpage = subpage;
1952 prev = to;
1953 prevlen = thislen;
1954 to += thislen;
1955 buf += thislen;
1956 first = 0;
1957 }
1958
1959 /* In error case, clear all bufferrams */
1960 if (written != len)
1961 onenand_invalidate_bufferram(mtd, 0, -1);
1962
1963 ops->retlen = written;
1964 ops->oobretlen = oobwritten;
1965
1966 return ret;
1967 }
1968
1969
1970 /**
1971 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1972 * @mtd: MTD device structure
1973 * @to: offset to write to
1974 * @ops: oob operation description structure
1975 *
1976 * OneNAND write out-of-band
1977 */
onenand_write_oob_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1978 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1979 struct mtd_oob_ops *ops)
1980 {
1981 struct onenand_chip *this = mtd->priv;
1982 int column, ret = 0, oobsize;
1983 int written = 0, oobcmd;
1984 u_char *oobbuf;
1985 size_t len = ops->ooblen;
1986 const u_char *buf = ops->oobbuf;
1987 unsigned int mode = ops->mode;
1988
1989 to += ops->ooboffs;
1990
1991 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1992 (int)len);
1993
1994 /* Initialize retlen, in case of early exit */
1995 ops->oobretlen = 0;
1996
1997 if (mode == MTD_OPS_AUTO_OOB)
1998 oobsize = mtd->oobavail;
1999 else
2000 oobsize = mtd->oobsize;
2001
2002 column = to & (mtd->oobsize - 1);
2003
2004 if (unlikely(column >= oobsize)) {
2005 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2006 __func__);
2007 return -EINVAL;
2008 }
2009
2010 /* For compatibility with NAND: Do not allow write past end of page */
2011 if (unlikely(column + len > oobsize)) {
2012 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2013 __func__);
2014 return -EINVAL;
2015 }
2016
2017 oobbuf = this->oob_buf;
2018
2019 oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2020
2021 /* Loop until all data write */
2022 while (written < len) {
2023 int thislen = min_t(int, oobsize, len - written);
2024
2025 cond_resched();
2026
2027 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2028
2029 /* We send data to spare ram with oobsize
2030 * to prevent byte access */
2031 memset(oobbuf, 0xff, mtd->oobsize);
2032 if (mode == MTD_OPS_AUTO_OOB)
2033 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2034 else
2035 memcpy(oobbuf + column, buf, thislen);
2036 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2037
2038 if (ONENAND_IS_4KB_PAGE(this)) {
2039 /* Set main area of DataRAM to 0xff*/
2040 memset(this->page_buf, 0xff, mtd->writesize);
2041 this->write_bufferram(mtd, ONENAND_DATARAM,
2042 this->page_buf, 0, mtd->writesize);
2043 }
2044
2045 this->command(mtd, oobcmd, to, mtd->oobsize);
2046
2047 onenand_update_bufferram(mtd, to, 0);
2048 if (ONENAND_IS_2PLANE(this)) {
2049 ONENAND_SET_BUFFERRAM1(this);
2050 onenand_update_bufferram(mtd, to + this->writesize, 0);
2051 }
2052
2053 ret = this->wait(mtd, FL_WRITING);
2054 if (ret) {
2055 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2056 break;
2057 }
2058
2059 ret = onenand_verify_oob(mtd, oobbuf, to);
2060 if (ret) {
2061 printk(KERN_ERR "%s: verify failed %d\n",
2062 __func__, ret);
2063 break;
2064 }
2065
2066 written += thislen;
2067 if (written == len)
2068 break;
2069
2070 to += mtd->writesize;
2071 buf += thislen;
2072 column = 0;
2073 }
2074
2075 ops->oobretlen = written;
2076
2077 return ret;
2078 }
2079
2080 /**
2081 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2082 * @mtd: MTD device structure
2083 * @to: offset to write
2084 * @ops: oob operation description structure
2085 */
onenand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2086 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2087 struct mtd_oob_ops *ops)
2088 {
2089 int ret;
2090
2091 switch (ops->mode) {
2092 case MTD_OPS_PLACE_OOB:
2093 case MTD_OPS_AUTO_OOB:
2094 break;
2095 case MTD_OPS_RAW:
2096 /* Not implemented yet */
2097 default:
2098 return -EINVAL;
2099 }
2100
2101 onenand_get_device(mtd, FL_WRITING);
2102 if (ops->datbuf)
2103 ret = onenand_write_ops_nolock(mtd, to, ops);
2104 else
2105 ret = onenand_write_oob_nolock(mtd, to, ops);
2106 onenand_release_device(mtd);
2107
2108 return ret;
2109 }
2110
2111 /**
2112 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2113 * @mtd: MTD device structure
2114 * @ofs: offset from device start
2115 * @allowbbt: 1, if its allowed to access the bbt area
2116 *
2117 * Check, if the block is bad. Either by reading the bad block table or
2118 * calling of the scan function.
2119 */
onenand_block_isbad_nolock(struct mtd_info * mtd,loff_t ofs,int allowbbt)2120 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2121 {
2122 struct onenand_chip *this = mtd->priv;
2123 struct bbm_info *bbm = this->bbm;
2124
2125 /* Return info from the table */
2126 return bbm->isbad_bbt(mtd, ofs, allowbbt);
2127 }
2128
2129
onenand_multiblock_erase_verify(struct mtd_info * mtd,struct erase_info * instr)2130 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2131 struct erase_info *instr)
2132 {
2133 struct onenand_chip *this = mtd->priv;
2134 loff_t addr = instr->addr;
2135 int len = instr->len;
2136 unsigned int block_size = (1 << this->erase_shift);
2137 int ret = 0;
2138
2139 while (len) {
2140 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2141 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2142 if (ret) {
2143 printk(KERN_ERR "%s: Failed verify, block %d\n",
2144 __func__, onenand_block(this, addr));
2145 instr->fail_addr = addr;
2146 return -1;
2147 }
2148 len -= block_size;
2149 addr += block_size;
2150 }
2151 return 0;
2152 }
2153
2154 /**
2155 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2156 * @mtd: MTD device structure
2157 * @instr: erase instruction
2158 * @block_size: block size
2159 *
2160 * Erase one or more blocks up to 64 block at a time
2161 */
onenand_multiblock_erase(struct mtd_info * mtd,struct erase_info * instr,unsigned int block_size)2162 static int onenand_multiblock_erase(struct mtd_info *mtd,
2163 struct erase_info *instr,
2164 unsigned int block_size)
2165 {
2166 struct onenand_chip *this = mtd->priv;
2167 loff_t addr = instr->addr;
2168 int len = instr->len;
2169 int eb_count = 0;
2170 int ret = 0;
2171 int bdry_block = 0;
2172
2173 if (ONENAND_IS_DDP(this)) {
2174 loff_t bdry_addr = this->chipsize >> 1;
2175 if (addr < bdry_addr && (addr + len) > bdry_addr)
2176 bdry_block = bdry_addr >> this->erase_shift;
2177 }
2178
2179 /* Pre-check bbs */
2180 while (len) {
2181 /* Check if we have a bad block, we do not erase bad blocks */
2182 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2183 printk(KERN_WARNING "%s: attempt to erase a bad block "
2184 "at addr 0x%012llx\n",
2185 __func__, (unsigned long long) addr);
2186 return -EIO;
2187 }
2188 len -= block_size;
2189 addr += block_size;
2190 }
2191
2192 len = instr->len;
2193 addr = instr->addr;
2194
2195 /* loop over 64 eb batches */
2196 while (len) {
2197 struct erase_info verify_instr = *instr;
2198 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2199
2200 verify_instr.addr = addr;
2201 verify_instr.len = 0;
2202
2203 /* do not cross chip boundary */
2204 if (bdry_block) {
2205 int this_block = (addr >> this->erase_shift);
2206
2207 if (this_block < bdry_block) {
2208 max_eb_count = min(max_eb_count,
2209 (bdry_block - this_block));
2210 }
2211 }
2212
2213 eb_count = 0;
2214
2215 while (len > block_size && eb_count < (max_eb_count - 1)) {
2216 this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2217 addr, block_size);
2218 onenand_invalidate_bufferram(mtd, addr, block_size);
2219
2220 ret = this->wait(mtd, FL_PREPARING_ERASE);
2221 if (ret) {
2222 printk(KERN_ERR "%s: Failed multiblock erase, "
2223 "block %d\n", __func__,
2224 onenand_block(this, addr));
2225 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2226 return -EIO;
2227 }
2228
2229 len -= block_size;
2230 addr += block_size;
2231 eb_count++;
2232 }
2233
2234 /* last block of 64-eb series */
2235 cond_resched();
2236 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2237 onenand_invalidate_bufferram(mtd, addr, block_size);
2238
2239 ret = this->wait(mtd, FL_ERASING);
2240 /* Check if it is write protected */
2241 if (ret) {
2242 printk(KERN_ERR "%s: Failed erase, block %d\n",
2243 __func__, onenand_block(this, addr));
2244 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2245 return -EIO;
2246 }
2247
2248 len -= block_size;
2249 addr += block_size;
2250 eb_count++;
2251
2252 /* verify */
2253 verify_instr.len = eb_count * block_size;
2254 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2255 instr->fail_addr = verify_instr.fail_addr;
2256 return -EIO;
2257 }
2258
2259 }
2260 return 0;
2261 }
2262
2263
2264 /**
2265 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2266 * @mtd: MTD device structure
2267 * @instr: erase instruction
2268 * @region: erase region
2269 * @block_size: erase block size
2270 *
2271 * Erase one or more blocks one block at a time
2272 */
onenand_block_by_block_erase(struct mtd_info * mtd,struct erase_info * instr,struct mtd_erase_region_info * region,unsigned int block_size)2273 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2274 struct erase_info *instr,
2275 struct mtd_erase_region_info *region,
2276 unsigned int block_size)
2277 {
2278 struct onenand_chip *this = mtd->priv;
2279 loff_t addr = instr->addr;
2280 int len = instr->len;
2281 loff_t region_end = 0;
2282 int ret = 0;
2283
2284 if (region) {
2285 /* region is set for Flex-OneNAND */
2286 region_end = region->offset + region->erasesize * region->numblocks;
2287 }
2288
2289 /* Loop through the blocks */
2290 while (len) {
2291 cond_resched();
2292
2293 /* Check if we have a bad block, we do not erase bad blocks */
2294 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2295 printk(KERN_WARNING "%s: attempt to erase a bad block "
2296 "at addr 0x%012llx\n",
2297 __func__, (unsigned long long) addr);
2298 return -EIO;
2299 }
2300
2301 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2302
2303 onenand_invalidate_bufferram(mtd, addr, block_size);
2304
2305 ret = this->wait(mtd, FL_ERASING);
2306 /* Check, if it is write protected */
2307 if (ret) {
2308 printk(KERN_ERR "%s: Failed erase, block %d\n",
2309 __func__, onenand_block(this, addr));
2310 instr->fail_addr = addr;
2311 return -EIO;
2312 }
2313
2314 len -= block_size;
2315 addr += block_size;
2316
2317 if (region && addr == region_end) {
2318 if (!len)
2319 break;
2320 region++;
2321
2322 block_size = region->erasesize;
2323 region_end = region->offset + region->erasesize * region->numblocks;
2324
2325 if (len & (block_size - 1)) {
2326 /* FIXME: This should be handled at MTD partitioning level. */
2327 printk(KERN_ERR "%s: Unaligned address\n",
2328 __func__);
2329 return -EIO;
2330 }
2331 }
2332 }
2333 return 0;
2334 }
2335
2336 /**
2337 * onenand_erase - [MTD Interface] erase block(s)
2338 * @mtd: MTD device structure
2339 * @instr: erase instruction
2340 *
2341 * Erase one or more blocks
2342 */
onenand_erase(struct mtd_info * mtd,struct erase_info * instr)2343 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2344 {
2345 struct onenand_chip *this = mtd->priv;
2346 unsigned int block_size;
2347 loff_t addr = instr->addr;
2348 loff_t len = instr->len;
2349 int ret = 0;
2350 struct mtd_erase_region_info *region = NULL;
2351 loff_t region_offset = 0;
2352
2353 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2354 (unsigned long long)instr->addr,
2355 (unsigned long long)instr->len);
2356
2357 if (FLEXONENAND(this)) {
2358 /* Find the eraseregion of this address */
2359 int i = flexonenand_region(mtd, addr);
2360
2361 region = &mtd->eraseregions[i];
2362 block_size = region->erasesize;
2363
2364 /* Start address within region must align on block boundary.
2365 * Erase region's start offset is always block start address.
2366 */
2367 region_offset = region->offset;
2368 } else
2369 block_size = 1 << this->erase_shift;
2370
2371 /* Start address must align on block boundary */
2372 if (unlikely((addr - region_offset) & (block_size - 1))) {
2373 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2374 return -EINVAL;
2375 }
2376
2377 /* Length must align on block boundary */
2378 if (unlikely(len & (block_size - 1))) {
2379 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2380 return -EINVAL;
2381 }
2382
2383 /* Grab the lock and see if the device is available */
2384 onenand_get_device(mtd, FL_ERASING);
2385
2386 if (ONENAND_IS_4KB_PAGE(this) || region ||
2387 instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2388 /* region is set for Flex-OneNAND (no mb erase) */
2389 ret = onenand_block_by_block_erase(mtd, instr,
2390 region, block_size);
2391 } else {
2392 ret = onenand_multiblock_erase(mtd, instr, block_size);
2393 }
2394
2395 /* Deselect and wake up anyone waiting on the device */
2396 onenand_release_device(mtd);
2397
2398 return ret;
2399 }
2400
2401 /**
2402 * onenand_sync - [MTD Interface] sync
2403 * @mtd: MTD device structure
2404 *
2405 * Sync is actually a wait for chip ready function
2406 */
onenand_sync(struct mtd_info * mtd)2407 static void onenand_sync(struct mtd_info *mtd)
2408 {
2409 pr_debug("%s: called\n", __func__);
2410
2411 /* Grab the lock and see if the device is available */
2412 onenand_get_device(mtd, FL_SYNCING);
2413
2414 /* Release it and go back */
2415 onenand_release_device(mtd);
2416 }
2417
2418 /**
2419 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2420 * @mtd: MTD device structure
2421 * @ofs: offset relative to mtd start
2422 *
2423 * Check whether the block is bad
2424 */
onenand_block_isbad(struct mtd_info * mtd,loff_t ofs)2425 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2426 {
2427 int ret;
2428
2429 onenand_get_device(mtd, FL_READING);
2430 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2431 onenand_release_device(mtd);
2432 return ret;
2433 }
2434
2435 /**
2436 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2437 * @mtd: MTD device structure
2438 * @ofs: offset from device start
2439 *
2440 * This is the default implementation, which can be overridden by
2441 * a hardware specific driver.
2442 */
onenand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)2443 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2444 {
2445 struct onenand_chip *this = mtd->priv;
2446 struct bbm_info *bbm = this->bbm;
2447 u_char buf[2] = {0, 0};
2448 struct mtd_oob_ops ops = {
2449 .mode = MTD_OPS_PLACE_OOB,
2450 .ooblen = 2,
2451 .oobbuf = buf,
2452 .ooboffs = 0,
2453 };
2454 int block;
2455
2456 /* Get block number */
2457 block = onenand_block(this, ofs);
2458 if (bbm->bbt)
2459 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2460
2461 /* We write two bytes, so we don't have to mess with 16-bit access */
2462 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2463 /* FIXME : What to do when marking SLC block in partition
2464 * with MLC erasesize? For now, it is not advisable to
2465 * create partitions containing both SLC and MLC regions.
2466 */
2467 return onenand_write_oob_nolock(mtd, ofs, &ops);
2468 }
2469
2470 /**
2471 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2472 * @mtd: MTD device structure
2473 * @ofs: offset relative to mtd start
2474 *
2475 * Mark the block as bad
2476 */
onenand_block_markbad(struct mtd_info * mtd,loff_t ofs)2477 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2478 {
2479 struct onenand_chip *this = mtd->priv;
2480 int ret;
2481
2482 ret = onenand_block_isbad(mtd, ofs);
2483 if (ret) {
2484 /* If it was bad already, return success and do nothing */
2485 if (ret > 0)
2486 return 0;
2487 return ret;
2488 }
2489
2490 onenand_get_device(mtd, FL_WRITING);
2491 ret = this->block_markbad(mtd, ofs);
2492 onenand_release_device(mtd);
2493 return ret;
2494 }
2495
2496 /**
2497 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2498 * @mtd: MTD device structure
2499 * @ofs: offset relative to mtd start
2500 * @len: number of bytes to lock or unlock
2501 * @cmd: lock or unlock command
2502 *
2503 * Lock or unlock one or more blocks
2504 */
onenand_do_lock_cmd(struct mtd_info * mtd,loff_t ofs,size_t len,int cmd)2505 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2506 {
2507 struct onenand_chip *this = mtd->priv;
2508 int start, end, block, value, status;
2509 int wp_status_mask;
2510
2511 start = onenand_block(this, ofs);
2512 end = onenand_block(this, ofs + len) - 1;
2513
2514 if (cmd == ONENAND_CMD_LOCK)
2515 wp_status_mask = ONENAND_WP_LS;
2516 else
2517 wp_status_mask = ONENAND_WP_US;
2518
2519 /* Continuous lock scheme */
2520 if (this->options & ONENAND_HAS_CONT_LOCK) {
2521 /* Set start block address */
2522 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2523 /* Set end block address */
2524 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
2525 /* Write lock command */
2526 this->command(mtd, cmd, 0, 0);
2527
2528 /* There's no return value */
2529 this->wait(mtd, FL_LOCKING);
2530
2531 /* Sanity check */
2532 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2533 & ONENAND_CTRL_ONGO)
2534 continue;
2535
2536 /* Check lock status */
2537 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2538 if (!(status & wp_status_mask))
2539 printk(KERN_ERR "%s: wp status = 0x%x\n",
2540 __func__, status);
2541
2542 return 0;
2543 }
2544
2545 /* Block lock scheme */
2546 for (block = start; block < end + 1; block++) {
2547 /* Set block address */
2548 value = onenand_block_address(this, block);
2549 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2550 /* Select DataRAM for DDP */
2551 value = onenand_bufferram_address(this, block);
2552 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2553 /* Set start block address */
2554 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2555 /* Write lock command */
2556 this->command(mtd, cmd, 0, 0);
2557
2558 /* There's no return value */
2559 this->wait(mtd, FL_LOCKING);
2560
2561 /* Sanity check */
2562 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2563 & ONENAND_CTRL_ONGO)
2564 continue;
2565
2566 /* Check lock status */
2567 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2568 if (!(status & wp_status_mask))
2569 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2570 __func__, block, status);
2571 }
2572
2573 return 0;
2574 }
2575
2576 /**
2577 * onenand_lock - [MTD Interface] Lock block(s)
2578 * @mtd: MTD device structure
2579 * @ofs: offset relative to mtd start
2580 * @len: number of bytes to unlock
2581 *
2582 * Lock one or more blocks
2583 */
onenand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2584 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2585 {
2586 int ret;
2587
2588 onenand_get_device(mtd, FL_LOCKING);
2589 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2590 onenand_release_device(mtd);
2591 return ret;
2592 }
2593
2594 /**
2595 * onenand_unlock - [MTD Interface] Unlock block(s)
2596 * @mtd: MTD device structure
2597 * @ofs: offset relative to mtd start
2598 * @len: number of bytes to unlock
2599 *
2600 * Unlock one or more blocks
2601 */
onenand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2602 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2603 {
2604 int ret;
2605
2606 onenand_get_device(mtd, FL_LOCKING);
2607 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2608 onenand_release_device(mtd);
2609 return ret;
2610 }
2611
2612 /**
2613 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2614 * @this: onenand chip data structure
2615 *
2616 * Check lock status
2617 */
onenand_check_lock_status(struct onenand_chip * this)2618 static int onenand_check_lock_status(struct onenand_chip *this)
2619 {
2620 unsigned int value, block, status;
2621 unsigned int end;
2622
2623 end = this->chipsize >> this->erase_shift;
2624 for (block = 0; block < end; block++) {
2625 /* Set block address */
2626 value = onenand_block_address(this, block);
2627 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2628 /* Select DataRAM for DDP */
2629 value = onenand_bufferram_address(this, block);
2630 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2631 /* Set start block address */
2632 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2633
2634 /* Check lock status */
2635 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2636 if (!(status & ONENAND_WP_US)) {
2637 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2638 __func__, block, status);
2639 return 0;
2640 }
2641 }
2642
2643 return 1;
2644 }
2645
2646 /**
2647 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2648 * @mtd: MTD device structure
2649 *
2650 * Unlock all blocks
2651 */
onenand_unlock_all(struct mtd_info * mtd)2652 static void onenand_unlock_all(struct mtd_info *mtd)
2653 {
2654 struct onenand_chip *this = mtd->priv;
2655 loff_t ofs = 0;
2656 loff_t len = mtd->size;
2657
2658 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2659 /* Set start block address */
2660 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2661 /* Write unlock command */
2662 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2663
2664 /* There's no return value */
2665 this->wait(mtd, FL_LOCKING);
2666
2667 /* Sanity check */
2668 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2669 & ONENAND_CTRL_ONGO)
2670 continue;
2671
2672 /* Don't check lock status */
2673 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2674 return;
2675
2676 /* Check lock status */
2677 if (onenand_check_lock_status(this))
2678 return;
2679
2680 /* Workaround for all block unlock in DDP */
2681 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2682 /* All blocks on another chip */
2683 ofs = this->chipsize >> 1;
2684 len = this->chipsize >> 1;
2685 }
2686 }
2687
2688 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2689 }
2690
2691 #ifdef CONFIG_MTD_ONENAND_OTP
2692
2693 /**
2694 * onenand_otp_command - Send OTP specific command to OneNAND device
2695 * @mtd: MTD device structure
2696 * @cmd: the command to be sent
2697 * @addr: offset to read from or write to
2698 * @len: number of bytes to read or write
2699 */
onenand_otp_command(struct mtd_info * mtd,int cmd,loff_t addr,size_t len)2700 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2701 size_t len)
2702 {
2703 struct onenand_chip *this = mtd->priv;
2704 int value, block, page;
2705
2706 /* Address translation */
2707 switch (cmd) {
2708 case ONENAND_CMD_OTP_ACCESS:
2709 block = (int) (addr >> this->erase_shift);
2710 page = -1;
2711 break;
2712
2713 default:
2714 block = (int) (addr >> this->erase_shift);
2715 page = (int) (addr >> this->page_shift);
2716
2717 if (ONENAND_IS_2PLANE(this)) {
2718 /* Make the even block number */
2719 block &= ~1;
2720 /* Is it the odd plane? */
2721 if (addr & this->writesize)
2722 block++;
2723 page >>= 1;
2724 }
2725 page &= this->page_mask;
2726 break;
2727 }
2728
2729 if (block != -1) {
2730 /* Write 'DFS, FBA' of Flash */
2731 value = onenand_block_address(this, block);
2732 this->write_word(value, this->base +
2733 ONENAND_REG_START_ADDRESS1);
2734 }
2735
2736 if (page != -1) {
2737 /* Now we use page size operation */
2738 int sectors = 4, count = 4;
2739 int dataram;
2740
2741 switch (cmd) {
2742 default:
2743 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2744 cmd = ONENAND_CMD_2X_PROG;
2745 dataram = ONENAND_CURRENT_BUFFERRAM(this);
2746 break;
2747 }
2748
2749 /* Write 'FPA, FSA' of Flash */
2750 value = onenand_page_address(page, sectors);
2751 this->write_word(value, this->base +
2752 ONENAND_REG_START_ADDRESS8);
2753
2754 /* Write 'BSA, BSC' of DataRAM */
2755 value = onenand_buffer_address(dataram, sectors, count);
2756 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2757 }
2758
2759 /* Interrupt clear */
2760 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2761
2762 /* Write command */
2763 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2764
2765 return 0;
2766 }
2767
2768 /**
2769 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2770 * @mtd: MTD device structure
2771 * @to: offset to write to
2772 * @ops: oob operation description structure
2773 *
2774 * OneNAND write out-of-band only for OTP
2775 */
onenand_otp_write_oob_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2776 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2777 struct mtd_oob_ops *ops)
2778 {
2779 struct onenand_chip *this = mtd->priv;
2780 int column, ret = 0, oobsize;
2781 int written = 0;
2782 u_char *oobbuf;
2783 size_t len = ops->ooblen;
2784 const u_char *buf = ops->oobbuf;
2785 int block, value, status;
2786
2787 to += ops->ooboffs;
2788
2789 /* Initialize retlen, in case of early exit */
2790 ops->oobretlen = 0;
2791
2792 oobsize = mtd->oobsize;
2793
2794 column = to & (mtd->oobsize - 1);
2795
2796 oobbuf = this->oob_buf;
2797
2798 /* Loop until all data write */
2799 while (written < len) {
2800 int thislen = min_t(int, oobsize, len - written);
2801
2802 cond_resched();
2803
2804 block = (int) (to >> this->erase_shift);
2805 /*
2806 * Write 'DFS, FBA' of Flash
2807 * Add: F100h DQ=DFS, FBA
2808 */
2809
2810 value = onenand_block_address(this, block);
2811 this->write_word(value, this->base +
2812 ONENAND_REG_START_ADDRESS1);
2813
2814 /*
2815 * Select DataRAM for DDP
2816 * Add: F101h DQ=DBS
2817 */
2818
2819 value = onenand_bufferram_address(this, block);
2820 this->write_word(value, this->base +
2821 ONENAND_REG_START_ADDRESS2);
2822 ONENAND_SET_NEXT_BUFFERRAM(this);
2823
2824 /*
2825 * Enter OTP access mode
2826 */
2827 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2828 this->wait(mtd, FL_OTPING);
2829
2830 /* We send data to spare ram with oobsize
2831 * to prevent byte access */
2832 memcpy(oobbuf + column, buf, thislen);
2833
2834 /*
2835 * Write Data into DataRAM
2836 * Add: 8th Word
2837 * in sector0/spare/page0
2838 * DQ=XXFCh
2839 */
2840 this->write_bufferram(mtd, ONENAND_SPARERAM,
2841 oobbuf, 0, mtd->oobsize);
2842
2843 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2844 onenand_update_bufferram(mtd, to, 0);
2845 if (ONENAND_IS_2PLANE(this)) {
2846 ONENAND_SET_BUFFERRAM1(this);
2847 onenand_update_bufferram(mtd, to + this->writesize, 0);
2848 }
2849
2850 ret = this->wait(mtd, FL_WRITING);
2851 if (ret) {
2852 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2853 break;
2854 }
2855
2856 /* Exit OTP access mode */
2857 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2858 this->wait(mtd, FL_RESETTING);
2859
2860 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2861 status &= 0x60;
2862
2863 if (status == 0x60) {
2864 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2865 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2866 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2867 } else if (status == 0x20) {
2868 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2869 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2870 printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2871 } else if (status == 0x40) {
2872 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2873 printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2874 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2875 } else {
2876 printk(KERN_DEBUG "Reboot to check\n");
2877 }
2878
2879 written += thislen;
2880 if (written == len)
2881 break;
2882
2883 to += mtd->writesize;
2884 buf += thislen;
2885 column = 0;
2886 }
2887
2888 ops->oobretlen = written;
2889
2890 return ret;
2891 }
2892
2893 /* Internal OTP operation */
2894 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2895 size_t *retlen, u_char *buf);
2896
2897 /**
2898 * do_otp_read - [DEFAULT] Read OTP block area
2899 * @mtd: MTD device structure
2900 * @from: The offset to read
2901 * @len: number of bytes to read
2902 * @retlen: pointer to variable to store the number of readbytes
2903 * @buf: the databuffer to put/get data
2904 *
2905 * Read OTP block area.
2906 */
do_otp_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2907 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2908 size_t *retlen, u_char *buf)
2909 {
2910 struct onenand_chip *this = mtd->priv;
2911 struct mtd_oob_ops ops = {
2912 .len = len,
2913 .ooblen = 0,
2914 .datbuf = buf,
2915 .oobbuf = NULL,
2916 };
2917 int ret;
2918
2919 /* Enter OTP access mode */
2920 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2921 this->wait(mtd, FL_OTPING);
2922
2923 ret = ONENAND_IS_4KB_PAGE(this) ?
2924 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2925 onenand_read_ops_nolock(mtd, from, &ops);
2926 *retlen = ops.retlen;
2927
2928 /* Exit OTP access mode */
2929 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2930 this->wait(mtd, FL_RESETTING);
2931
2932 return ret;
2933 }
2934
2935 /**
2936 * do_otp_write - [DEFAULT] Write OTP block area
2937 * @mtd: MTD device structure
2938 * @to: The offset to write
2939 * @len: number of bytes to write
2940 * @retlen: pointer to variable to store the number of write bytes
2941 * @buf: the databuffer to put/get data
2942 *
2943 * Write OTP block area.
2944 */
do_otp_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)2945 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2946 size_t *retlen, u_char *buf)
2947 {
2948 struct onenand_chip *this = mtd->priv;
2949 unsigned char *pbuf = buf;
2950 int ret;
2951 struct mtd_oob_ops ops = { };
2952
2953 /* Force buffer page aligned */
2954 if (len < mtd->writesize) {
2955 memcpy(this->page_buf, buf, len);
2956 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2957 pbuf = this->page_buf;
2958 len = mtd->writesize;
2959 }
2960
2961 /* Enter OTP access mode */
2962 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2963 this->wait(mtd, FL_OTPING);
2964
2965 ops.len = len;
2966 ops.ooblen = 0;
2967 ops.datbuf = pbuf;
2968 ops.oobbuf = NULL;
2969 ret = onenand_write_ops_nolock(mtd, to, &ops);
2970 *retlen = ops.retlen;
2971
2972 /* Exit OTP access mode */
2973 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2974 this->wait(mtd, FL_RESETTING);
2975
2976 return ret;
2977 }
2978
2979 /**
2980 * do_otp_lock - [DEFAULT] Lock OTP block area
2981 * @mtd: MTD device structure
2982 * @from: The offset to lock
2983 * @len: number of bytes to lock
2984 * @retlen: pointer to variable to store the number of lock bytes
2985 * @buf: the databuffer to put/get data
2986 *
2987 * Lock OTP block area.
2988 */
do_otp_lock(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2989 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2990 size_t *retlen, u_char *buf)
2991 {
2992 struct onenand_chip *this = mtd->priv;
2993 struct mtd_oob_ops ops = { };
2994 int ret;
2995
2996 if (FLEXONENAND(this)) {
2997
2998 /* Enter OTP access mode */
2999 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3000 this->wait(mtd, FL_OTPING);
3001 /*
3002 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3003 * main area of page 49.
3004 */
3005 ops.len = mtd->writesize;
3006 ops.ooblen = 0;
3007 ops.datbuf = buf;
3008 ops.oobbuf = NULL;
3009 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3010 *retlen = ops.retlen;
3011
3012 /* Exit OTP access mode */
3013 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3014 this->wait(mtd, FL_RESETTING);
3015 } else {
3016 ops.mode = MTD_OPS_PLACE_OOB;
3017 ops.ooblen = len;
3018 ops.oobbuf = buf;
3019 ops.ooboffs = 0;
3020 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3021 *retlen = ops.oobretlen;
3022 }
3023
3024 return ret;
3025 }
3026
3027 /**
3028 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3029 * @mtd: MTD device structure
3030 * @from: The offset to read/write
3031 * @len: number of bytes to read/write
3032 * @retlen: pointer to variable to store the number of read bytes
3033 * @buf: the databuffer to put/get data
3034 * @action: do given action
3035 * @mode: specify user and factory
3036 *
3037 * Handle OTP operation.
3038 */
onenand_otp_walk(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,otp_op_t action,int mode)3039 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3040 size_t *retlen, u_char *buf,
3041 otp_op_t action, int mode)
3042 {
3043 struct onenand_chip *this = mtd->priv;
3044 int otp_pages;
3045 int density;
3046 int ret = 0;
3047
3048 *retlen = 0;
3049
3050 density = onenand_get_density(this->device_id);
3051 if (density < ONENAND_DEVICE_DENSITY_512Mb)
3052 otp_pages = 20;
3053 else
3054 otp_pages = 50;
3055
3056 if (mode == MTD_OTP_FACTORY) {
3057 from += mtd->writesize * otp_pages;
3058 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3059 }
3060
3061 /* Check User/Factory boundary */
3062 if (mode == MTD_OTP_USER) {
3063 if (mtd->writesize * otp_pages < from + len)
3064 return 0;
3065 } else {
3066 if (mtd->writesize * otp_pages < len)
3067 return 0;
3068 }
3069
3070 onenand_get_device(mtd, FL_OTPING);
3071 while (len > 0 && otp_pages > 0) {
3072 if (!action) { /* OTP Info functions */
3073 struct otp_info *otpinfo;
3074
3075 len -= sizeof(struct otp_info);
3076 if (len <= 0) {
3077 ret = -ENOSPC;
3078 break;
3079 }
3080
3081 otpinfo = (struct otp_info *) buf;
3082 otpinfo->start = from;
3083 otpinfo->length = mtd->writesize;
3084 otpinfo->locked = 0;
3085
3086 from += mtd->writesize;
3087 buf += sizeof(struct otp_info);
3088 *retlen += sizeof(struct otp_info);
3089 } else {
3090 size_t tmp_retlen;
3091
3092 ret = action(mtd, from, len, &tmp_retlen, buf);
3093 if (ret)
3094 break;
3095
3096 buf += tmp_retlen;
3097 len -= tmp_retlen;
3098 *retlen += tmp_retlen;
3099
3100 }
3101 otp_pages--;
3102 }
3103 onenand_release_device(mtd);
3104
3105 return ret;
3106 }
3107
3108 /**
3109 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3110 * @mtd: MTD device structure
3111 * @len: number of bytes to read
3112 * @retlen: pointer to variable to store the number of read bytes
3113 * @buf: the databuffer to put/get data
3114 *
3115 * Read factory OTP info.
3116 */
onenand_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)3117 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3118 size_t *retlen, struct otp_info *buf)
3119 {
3120 return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3121 MTD_OTP_FACTORY);
3122 }
3123
3124 /**
3125 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3126 * @mtd: MTD device structure
3127 * @from: The offset to read
3128 * @len: number of bytes to read
3129 * @retlen: pointer to variable to store the number of read bytes
3130 * @buf: the databuffer to put/get data
3131 *
3132 * Read factory OTP area.
3133 */
onenand_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3134 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3135 size_t len, size_t *retlen, u_char *buf)
3136 {
3137 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3138 }
3139
3140 /**
3141 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3142 * @mtd: MTD device structure
3143 * @retlen: pointer to variable to store the number of read bytes
3144 * @len: number of bytes to read
3145 * @buf: the databuffer to put/get data
3146 *
3147 * Read user OTP info.
3148 */
onenand_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)3149 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3150 size_t *retlen, struct otp_info *buf)
3151 {
3152 return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3153 MTD_OTP_USER);
3154 }
3155
3156 /**
3157 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3158 * @mtd: MTD device structure
3159 * @from: The offset to read
3160 * @len: number of bytes to read
3161 * @retlen: pointer to variable to store the number of read bytes
3162 * @buf: the databuffer to put/get data
3163 *
3164 * Read user OTP area.
3165 */
onenand_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3166 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3167 size_t len, size_t *retlen, u_char *buf)
3168 {
3169 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3170 }
3171
3172 /**
3173 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3174 * @mtd: MTD device structure
3175 * @from: The offset to write
3176 * @len: number of bytes to write
3177 * @retlen: pointer to variable to store the number of write bytes
3178 * @buf: the databuffer to put/get data
3179 *
3180 * Write user OTP area.
3181 */
onenand_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,const u_char * buf)3182 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3183 size_t len, size_t *retlen, const u_char *buf)
3184 {
3185 return onenand_otp_walk(mtd, from, len, retlen, (u_char *)buf,
3186 do_otp_write, MTD_OTP_USER);
3187 }
3188
3189 /**
3190 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3191 * @mtd: MTD device structure
3192 * @from: The offset to lock
3193 * @len: number of bytes to unlock
3194 *
3195 * Write lock mark on spare area in page 0 in OTP block
3196 */
onenand_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)3197 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3198 size_t len)
3199 {
3200 struct onenand_chip *this = mtd->priv;
3201 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3202 size_t retlen;
3203 int ret;
3204 unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3205
3206 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3207 : mtd->oobsize);
3208 /*
3209 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3210 * We write 16 bytes spare area instead of 2 bytes.
3211 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3212 * main area of page 49.
3213 */
3214
3215 from = 0;
3216 len = FLEXONENAND(this) ? mtd->writesize : 16;
3217
3218 /*
3219 * Note: OTP lock operation
3220 * OTP block : 0xXXFC XX 1111 1100
3221 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3222 * Both : 0xXXF0 (If chip support) XX 1111 0000
3223 */
3224 if (FLEXONENAND(this))
3225 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3226
3227 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3228 if (otp == 1)
3229 buf[otp_lock_offset] = 0xFC;
3230 else if (otp == 2)
3231 buf[otp_lock_offset] = 0xF3;
3232 else if (otp == 3)
3233 buf[otp_lock_offset] = 0xF0;
3234 else if (otp != 0)
3235 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3236
3237 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3238
3239 return ret ? : retlen;
3240 }
3241
3242 #endif /* CONFIG_MTD_ONENAND_OTP */
3243
3244 /**
3245 * onenand_check_features - Check and set OneNAND features
3246 * @mtd: MTD data structure
3247 *
3248 * Check and set OneNAND features
3249 * - lock scheme
3250 * - two plane
3251 */
onenand_check_features(struct mtd_info * mtd)3252 static void onenand_check_features(struct mtd_info *mtd)
3253 {
3254 struct onenand_chip *this = mtd->priv;
3255 unsigned int density, process, numbufs;
3256
3257 /* Lock scheme depends on density and process */
3258 density = onenand_get_density(this->device_id);
3259 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3260 numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3261
3262 /* Lock scheme */
3263 switch (density) {
3264 case ONENAND_DEVICE_DENSITY_8Gb:
3265 this->options |= ONENAND_HAS_NOP_1;
3266 fallthrough;
3267 case ONENAND_DEVICE_DENSITY_4Gb:
3268 if (ONENAND_IS_DDP(this))
3269 this->options |= ONENAND_HAS_2PLANE;
3270 else if (numbufs == 1) {
3271 this->options |= ONENAND_HAS_4KB_PAGE;
3272 this->options |= ONENAND_HAS_CACHE_PROGRAM;
3273 /*
3274 * There are two different 4KiB pagesize chips
3275 * and no way to detect it by H/W config values.
3276 *
3277 * To detect the correct NOP for each chips,
3278 * It should check the version ID as workaround.
3279 *
3280 * Now it has as following
3281 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3282 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3283 */
3284 if ((this->version_id & 0xf) == 0xe)
3285 this->options |= ONENAND_HAS_NOP_1;
3286 }
3287 this->options |= ONENAND_HAS_UNLOCK_ALL;
3288 break;
3289
3290 case ONENAND_DEVICE_DENSITY_2Gb:
3291 /* 2Gb DDP does not have 2 plane */
3292 if (!ONENAND_IS_DDP(this))
3293 this->options |= ONENAND_HAS_2PLANE;
3294 this->options |= ONENAND_HAS_UNLOCK_ALL;
3295 break;
3296
3297 case ONENAND_DEVICE_DENSITY_1Gb:
3298 /* A-Die has all block unlock */
3299 if (process)
3300 this->options |= ONENAND_HAS_UNLOCK_ALL;
3301 break;
3302
3303 default:
3304 /* Some OneNAND has continuous lock scheme */
3305 if (!process)
3306 this->options |= ONENAND_HAS_CONT_LOCK;
3307 break;
3308 }
3309
3310 /* The MLC has 4KiB pagesize. */
3311 if (ONENAND_IS_MLC(this))
3312 this->options |= ONENAND_HAS_4KB_PAGE;
3313
3314 if (ONENAND_IS_4KB_PAGE(this))
3315 this->options &= ~ONENAND_HAS_2PLANE;
3316
3317 if (FLEXONENAND(this)) {
3318 this->options &= ~ONENAND_HAS_CONT_LOCK;
3319 this->options |= ONENAND_HAS_UNLOCK_ALL;
3320 }
3321
3322 if (this->options & ONENAND_HAS_CONT_LOCK)
3323 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3324 if (this->options & ONENAND_HAS_UNLOCK_ALL)
3325 printk(KERN_DEBUG "Chip support all block unlock\n");
3326 if (this->options & ONENAND_HAS_2PLANE)
3327 printk(KERN_DEBUG "Chip has 2 plane\n");
3328 if (this->options & ONENAND_HAS_4KB_PAGE)
3329 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3330 if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3331 printk(KERN_DEBUG "Chip has cache program feature\n");
3332 }
3333
3334 /**
3335 * onenand_print_device_info - Print device & version ID
3336 * @device: device ID
3337 * @version: version ID
3338 *
3339 * Print device & version ID
3340 */
onenand_print_device_info(int device,int version)3341 static void onenand_print_device_info(int device, int version)
3342 {
3343 int vcc, demuxed, ddp, density, flexonenand;
3344
3345 vcc = device & ONENAND_DEVICE_VCC_MASK;
3346 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3347 ddp = device & ONENAND_DEVICE_IS_DDP;
3348 density = onenand_get_density(device);
3349 flexonenand = device & DEVICE_IS_FLEXONENAND;
3350 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3351 demuxed ? "" : "Muxed ",
3352 flexonenand ? "Flex-" : "",
3353 ddp ? "(DDP)" : "",
3354 (16 << density),
3355 vcc ? "2.65/3.3" : "1.8",
3356 device);
3357 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3358 }
3359
3360 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3361 {ONENAND_MFR_SAMSUNG, "Samsung"},
3362 {ONENAND_MFR_NUMONYX, "Numonyx"},
3363 };
3364
3365 /**
3366 * onenand_check_maf - Check manufacturer ID
3367 * @manuf: manufacturer ID
3368 *
3369 * Check manufacturer ID
3370 */
onenand_check_maf(int manuf)3371 static int onenand_check_maf(int manuf)
3372 {
3373 int size = ARRAY_SIZE(onenand_manuf_ids);
3374 char *name;
3375 int i;
3376
3377 for (i = 0; i < size; i++)
3378 if (manuf == onenand_manuf_ids[i].id)
3379 break;
3380
3381 if (i < size)
3382 name = onenand_manuf_ids[i].name;
3383 else
3384 name = "Unknown";
3385
3386 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3387
3388 return (i == size);
3389 }
3390
3391 /**
3392 * flexonenand_get_boundary - Reads the SLC boundary
3393 * @mtd: MTD data structure
3394 */
flexonenand_get_boundary(struct mtd_info * mtd)3395 static int flexonenand_get_boundary(struct mtd_info *mtd)
3396 {
3397 struct onenand_chip *this = mtd->priv;
3398 unsigned die, bdry;
3399 int syscfg, locked;
3400
3401 /* Disable ECC */
3402 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3403 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3404
3405 for (die = 0; die < this->dies; die++) {
3406 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3407 this->wait(mtd, FL_SYNCING);
3408
3409 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3410 this->wait(mtd, FL_READING);
3411
3412 bdry = this->read_word(this->base + ONENAND_DATARAM);
3413 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3414 locked = 0;
3415 else
3416 locked = 1;
3417 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3418
3419 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3420 this->wait(mtd, FL_RESETTING);
3421
3422 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3423 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3424 }
3425
3426 /* Enable ECC */
3427 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3428 return 0;
3429 }
3430
3431 /**
3432 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3433 * boundary[], diesize[], mtd->size, mtd->erasesize
3434 * @mtd: - MTD device structure
3435 */
flexonenand_get_size(struct mtd_info * mtd)3436 static void flexonenand_get_size(struct mtd_info *mtd)
3437 {
3438 struct onenand_chip *this = mtd->priv;
3439 int die, i, eraseshift, density;
3440 int blksperdie, maxbdry;
3441 loff_t ofs;
3442
3443 density = onenand_get_density(this->device_id);
3444 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3445 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3446 maxbdry = blksperdie - 1;
3447 eraseshift = this->erase_shift - 1;
3448
3449 mtd->numeraseregions = this->dies << 1;
3450
3451 /* This fills up the device boundary */
3452 flexonenand_get_boundary(mtd);
3453 die = ofs = 0;
3454 i = -1;
3455 for (; die < this->dies; die++) {
3456 if (!die || this->boundary[die-1] != maxbdry) {
3457 i++;
3458 mtd->eraseregions[i].offset = ofs;
3459 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3460 mtd->eraseregions[i].numblocks =
3461 this->boundary[die] + 1;
3462 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3463 eraseshift++;
3464 } else {
3465 mtd->numeraseregions -= 1;
3466 mtd->eraseregions[i].numblocks +=
3467 this->boundary[die] + 1;
3468 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3469 }
3470 if (this->boundary[die] != maxbdry) {
3471 i++;
3472 mtd->eraseregions[i].offset = ofs;
3473 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3474 mtd->eraseregions[i].numblocks = maxbdry ^
3475 this->boundary[die];
3476 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3477 eraseshift--;
3478 } else
3479 mtd->numeraseregions -= 1;
3480 }
3481
3482 /* Expose MLC erase size except when all blocks are SLC */
3483 mtd->erasesize = 1 << this->erase_shift;
3484 if (mtd->numeraseregions == 1)
3485 mtd->erasesize >>= 1;
3486
3487 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3488 for (i = 0; i < mtd->numeraseregions; i++)
3489 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3490 " numblocks: %04u]\n",
3491 (unsigned int) mtd->eraseregions[i].offset,
3492 mtd->eraseregions[i].erasesize,
3493 mtd->eraseregions[i].numblocks);
3494
3495 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3496 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3497 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3498 << (this->erase_shift - 1);
3499 mtd->size += this->diesize[die];
3500 }
3501 }
3502
3503 /**
3504 * flexonenand_check_blocks_erased - Check if blocks are erased
3505 * @mtd: mtd info structure
3506 * @start: first erase block to check
3507 * @end: last erase block to check
3508 *
3509 * Converting an unerased block from MLC to SLC
3510 * causes byte values to change. Since both data and its ECC
3511 * have changed, reads on the block give uncorrectable error.
3512 * This might lead to the block being detected as bad.
3513 *
3514 * Avoid this by ensuring that the block to be converted is
3515 * erased.
3516 */
flexonenand_check_blocks_erased(struct mtd_info * mtd,int start,int end)3517 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3518 {
3519 struct onenand_chip *this = mtd->priv;
3520 int i, ret;
3521 int block;
3522 struct mtd_oob_ops ops = {
3523 .mode = MTD_OPS_PLACE_OOB,
3524 .ooboffs = 0,
3525 .ooblen = mtd->oobsize,
3526 .datbuf = NULL,
3527 .oobbuf = this->oob_buf,
3528 };
3529 loff_t addr;
3530
3531 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3532
3533 for (block = start; block <= end; block++) {
3534 addr = flexonenand_addr(this, block);
3535 if (onenand_block_isbad_nolock(mtd, addr, 0))
3536 continue;
3537
3538 /*
3539 * Since main area write results in ECC write to spare,
3540 * it is sufficient to check only ECC bytes for change.
3541 */
3542 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3543 if (ret)
3544 return ret;
3545
3546 for (i = 0; i < mtd->oobsize; i++)
3547 if (this->oob_buf[i] != 0xff)
3548 break;
3549
3550 if (i != mtd->oobsize) {
3551 printk(KERN_WARNING "%s: Block %d not erased.\n",
3552 __func__, block);
3553 return 1;
3554 }
3555 }
3556
3557 return 0;
3558 }
3559
3560 /*
3561 * flexonenand_set_boundary - Writes the SLC boundary
3562 */
flexonenand_set_boundary(struct mtd_info * mtd,int die,int boundary,int lock)3563 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3564 int boundary, int lock)
3565 {
3566 struct onenand_chip *this = mtd->priv;
3567 int ret, density, blksperdie, old, new, thisboundary;
3568 loff_t addr;
3569
3570 /* Change only once for SDP Flex-OneNAND */
3571 if (die && (!ONENAND_IS_DDP(this)))
3572 return 0;
3573
3574 /* boundary value of -1 indicates no required change */
3575 if (boundary < 0 || boundary == this->boundary[die])
3576 return 0;
3577
3578 density = onenand_get_density(this->device_id);
3579 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3580 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3581
3582 if (boundary >= blksperdie) {
3583 printk(KERN_ERR "%s: Invalid boundary value. "
3584 "Boundary not changed.\n", __func__);
3585 return -EINVAL;
3586 }
3587
3588 /* Check if converting blocks are erased */
3589 old = this->boundary[die] + (die * this->density_mask);
3590 new = boundary + (die * this->density_mask);
3591 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3592 if (ret) {
3593 printk(KERN_ERR "%s: Please erase blocks "
3594 "before boundary change\n", __func__);
3595 return ret;
3596 }
3597
3598 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3599 this->wait(mtd, FL_SYNCING);
3600
3601 /* Check is boundary is locked */
3602 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3603 this->wait(mtd, FL_READING);
3604
3605 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3606 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3607 printk(KERN_ERR "%s: boundary locked\n", __func__);
3608 ret = 1;
3609 goto out;
3610 }
3611
3612 printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3613 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3614
3615 addr = die ? this->diesize[0] : 0;
3616
3617 boundary &= FLEXONENAND_PI_MASK;
3618 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3619
3620 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3621 ret = this->wait(mtd, FL_ERASING);
3622 if (ret) {
3623 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3624 __func__, die);
3625 goto out;
3626 }
3627
3628 this->write_word(boundary, this->base + ONENAND_DATARAM);
3629 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3630 ret = this->wait(mtd, FL_WRITING);
3631 if (ret) {
3632 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3633 __func__, die);
3634 goto out;
3635 }
3636
3637 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3638 ret = this->wait(mtd, FL_WRITING);
3639 out:
3640 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3641 this->wait(mtd, FL_RESETTING);
3642 if (!ret)
3643 /* Recalculate device size on boundary change*/
3644 flexonenand_get_size(mtd);
3645
3646 return ret;
3647 }
3648
3649 /**
3650 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3651 * @mtd: MTD device structure
3652 *
3653 * OneNAND detection method:
3654 * Compare the values from command with ones from register
3655 */
onenand_chip_probe(struct mtd_info * mtd)3656 static int onenand_chip_probe(struct mtd_info *mtd)
3657 {
3658 struct onenand_chip *this = mtd->priv;
3659 int bram_maf_id, bram_dev_id, maf_id, dev_id;
3660 int syscfg;
3661
3662 /* Save system configuration 1 */
3663 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3664 /* Clear Sync. Burst Read mode to read BootRAM */
3665 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3666
3667 /* Send the command for reading device ID from BootRAM */
3668 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3669
3670 /* Read manufacturer and device IDs from BootRAM */
3671 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3672 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3673
3674 /* Reset OneNAND to read default register values */
3675 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3676 /* Wait reset */
3677 this->wait(mtd, FL_RESETTING);
3678
3679 /* Restore system configuration 1 */
3680 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3681
3682 /* Check manufacturer ID */
3683 if (onenand_check_maf(bram_maf_id))
3684 return -ENXIO;
3685
3686 /* Read manufacturer and device IDs from Register */
3687 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3688 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3689
3690 /* Check OneNAND device */
3691 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3692 return -ENXIO;
3693
3694 return 0;
3695 }
3696
3697 /**
3698 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3699 * @mtd: MTD device structure
3700 */
onenand_probe(struct mtd_info * mtd)3701 static int onenand_probe(struct mtd_info *mtd)
3702 {
3703 struct onenand_chip *this = mtd->priv;
3704 int dev_id, ver_id;
3705 int density;
3706 int ret;
3707
3708 ret = this->chip_probe(mtd);
3709 if (ret)
3710 return ret;
3711
3712 /* Device and version IDs from Register */
3713 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3714 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3715 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3716
3717 /* Flash device information */
3718 onenand_print_device_info(dev_id, ver_id);
3719 this->device_id = dev_id;
3720 this->version_id = ver_id;
3721
3722 /* Check OneNAND features */
3723 onenand_check_features(mtd);
3724
3725 density = onenand_get_density(dev_id);
3726 if (FLEXONENAND(this)) {
3727 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3728 /* Maximum possible erase regions */
3729 mtd->numeraseregions = this->dies << 1;
3730 mtd->eraseregions =
3731 kcalloc(this->dies << 1,
3732 sizeof(struct mtd_erase_region_info),
3733 GFP_KERNEL);
3734 if (!mtd->eraseregions)
3735 return -ENOMEM;
3736 }
3737
3738 /*
3739 * For Flex-OneNAND, chipsize represents maximum possible device size.
3740 * mtd->size represents the actual device size.
3741 */
3742 this->chipsize = (16 << density) << 20;
3743
3744 /* OneNAND page size & block size */
3745 /* The data buffer size is equal to page size */
3746 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3747 /* We use the full BufferRAM */
3748 if (ONENAND_IS_4KB_PAGE(this))
3749 mtd->writesize <<= 1;
3750
3751 mtd->oobsize = mtd->writesize >> 5;
3752 /* Pages per a block are always 64 in OneNAND */
3753 mtd->erasesize = mtd->writesize << 6;
3754 /*
3755 * Flex-OneNAND SLC area has 64 pages per block.
3756 * Flex-OneNAND MLC area has 128 pages per block.
3757 * Expose MLC erase size to find erase_shift and page_mask.
3758 */
3759 if (FLEXONENAND(this))
3760 mtd->erasesize <<= 1;
3761
3762 this->erase_shift = ffs(mtd->erasesize) - 1;
3763 this->page_shift = ffs(mtd->writesize) - 1;
3764 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3765 /* Set density mask. it is used for DDP */
3766 if (ONENAND_IS_DDP(this))
3767 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3768 /* It's real page size */
3769 this->writesize = mtd->writesize;
3770
3771 /* REVISIT: Multichip handling */
3772
3773 if (FLEXONENAND(this))
3774 flexonenand_get_size(mtd);
3775 else
3776 mtd->size = this->chipsize;
3777
3778 /*
3779 * We emulate the 4KiB page and 256KiB erase block size
3780 * But oobsize is still 64 bytes.
3781 * It is only valid if you turn on 2X program support,
3782 * Otherwise it will be ignored by compiler.
3783 */
3784 if (ONENAND_IS_2PLANE(this)) {
3785 mtd->writesize <<= 1;
3786 mtd->erasesize <<= 1;
3787 }
3788
3789 return 0;
3790 }
3791
3792 /**
3793 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3794 * @mtd: MTD device structure
3795 */
onenand_suspend(struct mtd_info * mtd)3796 static int onenand_suspend(struct mtd_info *mtd)
3797 {
3798 return onenand_get_device(mtd, FL_PM_SUSPENDED);
3799 }
3800
3801 /**
3802 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3803 * @mtd: MTD device structure
3804 */
onenand_resume(struct mtd_info * mtd)3805 static void onenand_resume(struct mtd_info *mtd)
3806 {
3807 struct onenand_chip *this = mtd->priv;
3808
3809 if (this->state == FL_PM_SUSPENDED)
3810 onenand_release_device(mtd);
3811 else
3812 printk(KERN_ERR "%s: resume() called for the chip which is not "
3813 "in suspended state\n", __func__);
3814 }
3815
3816 /**
3817 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3818 * @mtd: MTD device structure
3819 * @maxchips: Number of chips to scan for
3820 *
3821 * This fills out all the not initialized function pointers
3822 * with the defaults.
3823 * The flash ID is read and the mtd/chip structures are
3824 * filled with the appropriate values.
3825 */
onenand_scan(struct mtd_info * mtd,int maxchips)3826 int onenand_scan(struct mtd_info *mtd, int maxchips)
3827 {
3828 int i, ret;
3829 struct onenand_chip *this = mtd->priv;
3830
3831 if (!this->read_word)
3832 this->read_word = onenand_readw;
3833 if (!this->write_word)
3834 this->write_word = onenand_writew;
3835
3836 if (!this->command)
3837 this->command = onenand_command;
3838 if (!this->wait)
3839 onenand_setup_wait(mtd);
3840 if (!this->bbt_wait)
3841 this->bbt_wait = onenand_bbt_wait;
3842 if (!this->unlock_all)
3843 this->unlock_all = onenand_unlock_all;
3844
3845 if (!this->chip_probe)
3846 this->chip_probe = onenand_chip_probe;
3847
3848 if (!this->read_bufferram)
3849 this->read_bufferram = onenand_read_bufferram;
3850 if (!this->write_bufferram)
3851 this->write_bufferram = onenand_write_bufferram;
3852
3853 if (!this->block_markbad)
3854 this->block_markbad = onenand_default_block_markbad;
3855 if (!this->scan_bbt)
3856 this->scan_bbt = onenand_default_bbt;
3857
3858 if (onenand_probe(mtd))
3859 return -ENXIO;
3860
3861 /* Set Sync. Burst Read after probing */
3862 if (this->mmcontrol) {
3863 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3864 this->read_bufferram = onenand_sync_read_bufferram;
3865 }
3866
3867 /* Allocate buffers, if necessary */
3868 if (!this->page_buf) {
3869 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3870 if (!this->page_buf)
3871 return -ENOMEM;
3872 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3873 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3874 if (!this->verify_buf) {
3875 kfree(this->page_buf);
3876 return -ENOMEM;
3877 }
3878 #endif
3879 this->options |= ONENAND_PAGEBUF_ALLOC;
3880 }
3881 if (!this->oob_buf) {
3882 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3883 if (!this->oob_buf) {
3884 if (this->options & ONENAND_PAGEBUF_ALLOC) {
3885 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3886 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3887 kfree(this->verify_buf);
3888 #endif
3889 kfree(this->page_buf);
3890 }
3891 return -ENOMEM;
3892 }
3893 this->options |= ONENAND_OOBBUF_ALLOC;
3894 }
3895
3896 this->state = FL_READY;
3897 init_waitqueue_head(&this->wq);
3898 spin_lock_init(&this->chip_lock);
3899
3900 /*
3901 * Allow subpage writes up to oobsize.
3902 */
3903 switch (mtd->oobsize) {
3904 case 128:
3905 if (FLEXONENAND(this)) {
3906 mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3907 mtd->subpage_sft = 0;
3908 } else {
3909 mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3910 mtd->subpage_sft = 2;
3911 }
3912 if (ONENAND_IS_NOP_1(this))
3913 mtd->subpage_sft = 0;
3914 break;
3915 case 64:
3916 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3917 mtd->subpage_sft = 2;
3918 break;
3919
3920 case 32:
3921 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3922 mtd->subpage_sft = 1;
3923 break;
3924
3925 default:
3926 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3927 __func__, mtd->oobsize);
3928 mtd->subpage_sft = 0;
3929 /* To prevent kernel oops */
3930 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3931 break;
3932 }
3933
3934 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3935
3936 /*
3937 * The number of bytes available for a client to place data into
3938 * the out of band area
3939 */
3940 ret = mtd_ooblayout_count_freebytes(mtd);
3941 if (ret < 0)
3942 ret = 0;
3943
3944 mtd->oobavail = ret;
3945
3946 mtd->ecc_strength = 1;
3947
3948 /* Fill in remaining MTD driver data */
3949 mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3950 mtd->flags = MTD_CAP_NANDFLASH;
3951 mtd->_erase = onenand_erase;
3952 mtd->_point = NULL;
3953 mtd->_unpoint = NULL;
3954 mtd->_read_oob = onenand_read_oob;
3955 mtd->_write_oob = onenand_write_oob;
3956 mtd->_panic_write = onenand_panic_write;
3957 #ifdef CONFIG_MTD_ONENAND_OTP
3958 mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3959 mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3960 mtd->_get_user_prot_info = onenand_get_user_prot_info;
3961 mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3962 mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3963 mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3964 #endif
3965 mtd->_sync = onenand_sync;
3966 mtd->_lock = onenand_lock;
3967 mtd->_unlock = onenand_unlock;
3968 mtd->_suspend = onenand_suspend;
3969 mtd->_resume = onenand_resume;
3970 mtd->_block_isbad = onenand_block_isbad;
3971 mtd->_block_markbad = onenand_block_markbad;
3972 mtd->owner = THIS_MODULE;
3973 mtd->writebufsize = mtd->writesize;
3974
3975 /* Unlock whole block */
3976 if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3977 this->unlock_all(mtd);
3978
3979 /* Set the bad block marker position */
3980 this->badblockpos = ONENAND_BADBLOCK_POS;
3981
3982 ret = this->scan_bbt(mtd);
3983 if ((!FLEXONENAND(this)) || ret)
3984 return ret;
3985
3986 /* Change Flex-OneNAND boundaries if required */
3987 for (i = 0; i < MAX_DIES; i++)
3988 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3989 flex_bdry[(2 * i) + 1]);
3990
3991 return 0;
3992 }
3993
3994 /**
3995 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3996 * @mtd: MTD device structure
3997 */
onenand_release(struct mtd_info * mtd)3998 void onenand_release(struct mtd_info *mtd)
3999 {
4000 struct onenand_chip *this = mtd->priv;
4001
4002 /* Deregister partitions */
4003 mtd_device_unregister(mtd);
4004
4005 /* Free bad block table memory, if allocated */
4006 if (this->bbm) {
4007 struct bbm_info *bbm = this->bbm;
4008 kfree(bbm->bbt);
4009 kfree(this->bbm);
4010 }
4011 /* Buffers allocated by onenand_scan */
4012 if (this->options & ONENAND_PAGEBUF_ALLOC) {
4013 kfree(this->page_buf);
4014 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4015 kfree(this->verify_buf);
4016 #endif
4017 }
4018 if (this->options & ONENAND_OOBBUF_ALLOC)
4019 kfree(this->oob_buf);
4020 kfree(mtd->eraseregions);
4021 }
4022
4023 EXPORT_SYMBOL_GPL(onenand_scan);
4024 EXPORT_SYMBOL_GPL(onenand_release);
4025
4026 MODULE_LICENSE("GPL");
4027 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4028 MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4029