xref: /openbmc/linux/drivers/irqchip/irq-gic-v3.c (revision 24f68eb5bf14a74027946970a18bc902e19d986a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 
23 #include <linux/irqchip.h>
24 #include <linux/irqchip/arm-gic-common.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26 #include <linux/irqchip/irq-partition-percpu.h>
27 #include <linux/bitfield.h>
28 #include <linux/bits.h>
29 #include <linux/arm-smccc.h>
30 
31 #include <asm/cputype.h>
32 #include <asm/exception.h>
33 #include <asm/smp_plat.h>
34 #include <asm/virt.h>
35 
36 #include "irq-gic-common.h"
37 
38 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
39 
40 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
41 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
42 #define FLAGS_WORKAROUND_MTK_GICR_SAVE		(1ULL << 2)
43 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 3)
44 
45 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
46 
47 struct redist_region {
48 	void __iomem		*redist_base;
49 	phys_addr_t		phys_base;
50 	bool			single_redist;
51 };
52 
53 struct gic_chip_data {
54 	struct fwnode_handle	*fwnode;
55 	phys_addr_t		dist_phys_base;
56 	void __iomem		*dist_base;
57 	struct redist_region	*redist_regions;
58 	struct rdists		rdists;
59 	struct irq_domain	*domain;
60 	u64			redist_stride;
61 	u32			nr_redist_regions;
62 	u64			flags;
63 	bool			has_rss;
64 	unsigned int		ppi_nr;
65 	struct partition_desc	**ppi_descs;
66 };
67 
68 #define T241_CHIPS_MAX		4
69 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
70 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
71 
72 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
73 
74 static struct gic_chip_data gic_data __read_mostly;
75 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
76 
77 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
78 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
79 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
80 
81 /*
82  * The behaviours of RPR and PMR registers differ depending on the value of
83  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
84  * distributor and redistributors depends on whether security is enabled in the
85  * GIC.
86  *
87  * When security is enabled, non-secure priority values from the (re)distributor
88  * are presented to the GIC CPUIF as follow:
89  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
90  *
91  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
92  * EL1 are subject to a similar operation thus matching the priorities presented
93  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
94  * these values are unchanged by the GIC.
95  *
96  * see GICv3/GICv4 Architecture Specification (IHI0069D):
97  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
98  *   priorities.
99  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
100  *   interrupt.
101  */
102 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
103 
104 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
105 EXPORT_SYMBOL(gic_nonsecure_priorities);
106 
107 /*
108  * When the Non-secure world has access to group 0 interrupts (as a
109  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
110  * return the Distributor's view of the interrupt priority.
111  *
112  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
113  * written by software is moved to the Non-secure range by the Distributor.
114  *
115  * If both are true (which is when gic_nonsecure_priorities gets enabled),
116  * we need to shift down the priority programmed by software to match it
117  * against the value returned by ICC_RPR_EL1.
118  */
119 #define GICD_INT_RPR_PRI(priority)					\
120 	({								\
121 		u32 __priority = (priority);				\
122 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
123 			__priority = 0x80 | (__priority >> 1);		\
124 									\
125 		__priority;						\
126 	})
127 
128 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
129 static refcount_t *ppi_nmi_refs;
130 
131 static struct gic_kvm_info gic_v3_kvm_info __initdata;
132 static DEFINE_PER_CPU(bool, has_rss);
133 
134 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
135 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
136 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
137 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
138 
139 /* Our default, arbitrary priority value. Linux only uses one anyway. */
140 #define DEFAULT_PMR_VALUE	0xf0
141 
142 enum gic_intid_range {
143 	SGI_RANGE,
144 	PPI_RANGE,
145 	SPI_RANGE,
146 	EPPI_RANGE,
147 	ESPI_RANGE,
148 	LPI_RANGE,
149 	__INVALID_RANGE__
150 };
151 
__get_intid_range(irq_hw_number_t hwirq)152 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
153 {
154 	switch (hwirq) {
155 	case 0 ... 15:
156 		return SGI_RANGE;
157 	case 16 ... 31:
158 		return PPI_RANGE;
159 	case 32 ... 1019:
160 		return SPI_RANGE;
161 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
162 		return EPPI_RANGE;
163 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
164 		return ESPI_RANGE;
165 	case 8192 ... GENMASK(23, 0):
166 		return LPI_RANGE;
167 	default:
168 		return __INVALID_RANGE__;
169 	}
170 }
171 
get_intid_range(struct irq_data * d)172 static enum gic_intid_range get_intid_range(struct irq_data *d)
173 {
174 	return __get_intid_range(d->hwirq);
175 }
176 
gic_irq(struct irq_data * d)177 static inline unsigned int gic_irq(struct irq_data *d)
178 {
179 	return d->hwirq;
180 }
181 
gic_irq_in_rdist(struct irq_data * d)182 static inline bool gic_irq_in_rdist(struct irq_data *d)
183 {
184 	switch (get_intid_range(d)) {
185 	case SGI_RANGE:
186 	case PPI_RANGE:
187 	case EPPI_RANGE:
188 		return true;
189 	default:
190 		return false;
191 	}
192 }
193 
gic_dist_base_alias(struct irq_data * d)194 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
195 {
196 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
197 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
198 		u32 chip;
199 
200 		/*
201 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
202 		 * registers are directed to the chip that owns the SPI. The
203 		 * the alias region can also be used for writes to the
204 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
205 		 * for 320 {E}SPIs. Mappings for all 4 chips:
206 		 *    Chip0 = 32-351
207 		 *    Chip1 = 352-671
208 		 *    Chip2 = 672-991
209 		 *    Chip3 = 4096-4415
210 		 */
211 		switch (__get_intid_range(hwirq)) {
212 		case SPI_RANGE:
213 			chip = (hwirq - 32) / 320;
214 			break;
215 		case ESPI_RANGE:
216 			chip = 3;
217 			break;
218 		default:
219 			unreachable();
220 		}
221 		return t241_dist_base_alias[chip];
222 	}
223 
224 	return gic_data.dist_base;
225 }
226 
gic_dist_base(struct irq_data * d)227 static inline void __iomem *gic_dist_base(struct irq_data *d)
228 {
229 	switch (get_intid_range(d)) {
230 	case SGI_RANGE:
231 	case PPI_RANGE:
232 	case EPPI_RANGE:
233 		/* SGI+PPI -> SGI_base for this CPU */
234 		return gic_data_rdist_sgi_base();
235 
236 	case SPI_RANGE:
237 	case ESPI_RANGE:
238 		/* SPI -> dist_base */
239 		return gic_data.dist_base;
240 
241 	default:
242 		return NULL;
243 	}
244 }
245 
gic_do_wait_for_rwp(void __iomem * base,u32 bit)246 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
247 {
248 	u32 count = 1000000;	/* 1s! */
249 
250 	while (readl_relaxed(base + GICD_CTLR) & bit) {
251 		count--;
252 		if (!count) {
253 			pr_err_ratelimited("RWP timeout, gone fishing\n");
254 			return;
255 		}
256 		cpu_relax();
257 		udelay(1);
258 	}
259 }
260 
261 /* Wait for completion of a distributor change */
gic_dist_wait_for_rwp(void)262 static void gic_dist_wait_for_rwp(void)
263 {
264 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
265 }
266 
267 /* Wait for completion of a redistributor change */
gic_redist_wait_for_rwp(void)268 static void gic_redist_wait_for_rwp(void)
269 {
270 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
271 }
272 
273 #ifdef CONFIG_ARM64
274 
gic_read_iar(void)275 static u64 __maybe_unused gic_read_iar(void)
276 {
277 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
278 		return gic_read_iar_cavium_thunderx();
279 	else
280 		return gic_read_iar_common();
281 }
282 #endif
283 
gic_enable_redist(bool enable)284 static void gic_enable_redist(bool enable)
285 {
286 	void __iomem *rbase;
287 	u32 count = 1000000;	/* 1s! */
288 	u32 val;
289 
290 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
291 		return;
292 
293 	rbase = gic_data_rdist_rd_base();
294 
295 	val = readl_relaxed(rbase + GICR_WAKER);
296 	if (enable)
297 		/* Wake up this CPU redistributor */
298 		val &= ~GICR_WAKER_ProcessorSleep;
299 	else
300 		val |= GICR_WAKER_ProcessorSleep;
301 	writel_relaxed(val, rbase + GICR_WAKER);
302 
303 	if (!enable) {		/* Check that GICR_WAKER is writeable */
304 		val = readl_relaxed(rbase + GICR_WAKER);
305 		if (!(val & GICR_WAKER_ProcessorSleep))
306 			return;	/* No PM support in this redistributor */
307 	}
308 
309 	while (--count) {
310 		val = readl_relaxed(rbase + GICR_WAKER);
311 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
312 			break;
313 		cpu_relax();
314 		udelay(1);
315 	}
316 	if (!count)
317 		pr_err_ratelimited("redistributor failed to %s...\n",
318 				   enable ? "wakeup" : "sleep");
319 }
320 
321 /*
322  * Routines to disable, enable, EOI and route interrupts
323  */
convert_offset_index(struct irq_data * d,u32 offset,u32 * index)324 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
325 {
326 	switch (get_intid_range(d)) {
327 	case SGI_RANGE:
328 	case PPI_RANGE:
329 	case SPI_RANGE:
330 		*index = d->hwirq;
331 		return offset;
332 	case EPPI_RANGE:
333 		/*
334 		 * Contrary to the ESPI range, the EPPI range is contiguous
335 		 * to the PPI range in the registers, so let's adjust the
336 		 * displacement accordingly. Consistency is overrated.
337 		 */
338 		*index = d->hwirq - EPPI_BASE_INTID + 32;
339 		return offset;
340 	case ESPI_RANGE:
341 		*index = d->hwirq - ESPI_BASE_INTID;
342 		switch (offset) {
343 		case GICD_ISENABLER:
344 			return GICD_ISENABLERnE;
345 		case GICD_ICENABLER:
346 			return GICD_ICENABLERnE;
347 		case GICD_ISPENDR:
348 			return GICD_ISPENDRnE;
349 		case GICD_ICPENDR:
350 			return GICD_ICPENDRnE;
351 		case GICD_ISACTIVER:
352 			return GICD_ISACTIVERnE;
353 		case GICD_ICACTIVER:
354 			return GICD_ICACTIVERnE;
355 		case GICD_IPRIORITYR:
356 			return GICD_IPRIORITYRnE;
357 		case GICD_ICFGR:
358 			return GICD_ICFGRnE;
359 		case GICD_IROUTER:
360 			return GICD_IROUTERnE;
361 		default:
362 			break;
363 		}
364 		break;
365 	default:
366 		break;
367 	}
368 
369 	WARN_ON(1);
370 	*index = d->hwirq;
371 	return offset;
372 }
373 
gic_peek_irq(struct irq_data * d,u32 offset)374 static int gic_peek_irq(struct irq_data *d, u32 offset)
375 {
376 	void __iomem *base;
377 	u32 index, mask;
378 
379 	offset = convert_offset_index(d, offset, &index);
380 	mask = 1 << (index % 32);
381 
382 	if (gic_irq_in_rdist(d))
383 		base = gic_data_rdist_sgi_base();
384 	else
385 		base = gic_dist_base_alias(d);
386 
387 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
388 }
389 
gic_poke_irq(struct irq_data * d,u32 offset)390 static void gic_poke_irq(struct irq_data *d, u32 offset)
391 {
392 	void __iomem *base;
393 	u32 index, mask;
394 
395 	offset = convert_offset_index(d, offset, &index);
396 	mask = 1 << (index % 32);
397 
398 	if (gic_irq_in_rdist(d))
399 		base = gic_data_rdist_sgi_base();
400 	else
401 		base = gic_data.dist_base;
402 
403 	writel_relaxed(mask, base + offset + (index / 32) * 4);
404 }
405 
gic_mask_irq(struct irq_data * d)406 static void gic_mask_irq(struct irq_data *d)
407 {
408 	gic_poke_irq(d, GICD_ICENABLER);
409 	if (gic_irq_in_rdist(d))
410 		gic_redist_wait_for_rwp();
411 	else
412 		gic_dist_wait_for_rwp();
413 }
414 
gic_eoimode1_mask_irq(struct irq_data * d)415 static void gic_eoimode1_mask_irq(struct irq_data *d)
416 {
417 	gic_mask_irq(d);
418 	/*
419 	 * When masking a forwarded interrupt, make sure it is
420 	 * deactivated as well.
421 	 *
422 	 * This ensures that an interrupt that is getting
423 	 * disabled/masked will not get "stuck", because there is
424 	 * noone to deactivate it (guest is being terminated).
425 	 */
426 	if (irqd_is_forwarded_to_vcpu(d))
427 		gic_poke_irq(d, GICD_ICACTIVER);
428 }
429 
gic_unmask_irq(struct irq_data * d)430 static void gic_unmask_irq(struct irq_data *d)
431 {
432 	gic_poke_irq(d, GICD_ISENABLER);
433 }
434 
gic_supports_nmi(void)435 static inline bool gic_supports_nmi(void)
436 {
437 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
438 	       static_branch_likely(&supports_pseudo_nmis);
439 }
440 
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)441 static int gic_irq_set_irqchip_state(struct irq_data *d,
442 				     enum irqchip_irq_state which, bool val)
443 {
444 	u32 reg;
445 
446 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
447 		return -EINVAL;
448 
449 	switch (which) {
450 	case IRQCHIP_STATE_PENDING:
451 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
452 		break;
453 
454 	case IRQCHIP_STATE_ACTIVE:
455 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
456 		break;
457 
458 	case IRQCHIP_STATE_MASKED:
459 		if (val) {
460 			gic_mask_irq(d);
461 			return 0;
462 		}
463 		reg = GICD_ISENABLER;
464 		break;
465 
466 	default:
467 		return -EINVAL;
468 	}
469 
470 	gic_poke_irq(d, reg);
471 
472 	/*
473 	 * Force read-back to guarantee that the active state has taken
474 	 * effect, and won't race with a guest-driven deactivation.
475 	 */
476 	if (reg == GICD_ISACTIVER)
477 		gic_peek_irq(d, reg);
478 	return 0;
479 }
480 
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)481 static int gic_irq_get_irqchip_state(struct irq_data *d,
482 				     enum irqchip_irq_state which, bool *val)
483 {
484 	if (d->hwirq >= 8192) /* PPI/SPI only */
485 		return -EINVAL;
486 
487 	switch (which) {
488 	case IRQCHIP_STATE_PENDING:
489 		*val = gic_peek_irq(d, GICD_ISPENDR);
490 		break;
491 
492 	case IRQCHIP_STATE_ACTIVE:
493 		*val = gic_peek_irq(d, GICD_ISACTIVER);
494 		break;
495 
496 	case IRQCHIP_STATE_MASKED:
497 		*val = !gic_peek_irq(d, GICD_ISENABLER);
498 		break;
499 
500 	default:
501 		return -EINVAL;
502 	}
503 
504 	return 0;
505 }
506 
gic_irq_set_prio(struct irq_data * d,u8 prio)507 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
508 {
509 	void __iomem *base = gic_dist_base(d);
510 	u32 offset, index;
511 
512 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
513 
514 	writeb_relaxed(prio, base + offset + index);
515 }
516 
__gic_get_ppi_index(irq_hw_number_t hwirq)517 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
518 {
519 	switch (__get_intid_range(hwirq)) {
520 	case PPI_RANGE:
521 		return hwirq - 16;
522 	case EPPI_RANGE:
523 		return hwirq - EPPI_BASE_INTID + 16;
524 	default:
525 		unreachable();
526 	}
527 }
528 
gic_get_ppi_index(struct irq_data * d)529 static u32 gic_get_ppi_index(struct irq_data *d)
530 {
531 	return __gic_get_ppi_index(d->hwirq);
532 }
533 
gic_irq_nmi_setup(struct irq_data * d)534 static int gic_irq_nmi_setup(struct irq_data *d)
535 {
536 	struct irq_desc *desc = irq_to_desc(d->irq);
537 
538 	if (!gic_supports_nmi())
539 		return -EINVAL;
540 
541 	if (gic_peek_irq(d, GICD_ISENABLER)) {
542 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
543 		return -EINVAL;
544 	}
545 
546 	/*
547 	 * A secondary irq_chip should be in charge of LPI request,
548 	 * it should not be possible to get there
549 	 */
550 	if (WARN_ON(gic_irq(d) >= 8192))
551 		return -EINVAL;
552 
553 	/* desc lock should already be held */
554 	if (gic_irq_in_rdist(d)) {
555 		u32 idx = gic_get_ppi_index(d);
556 
557 		/* Setting up PPI as NMI, only switch handler for first NMI */
558 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
559 			refcount_set(&ppi_nmi_refs[idx], 1);
560 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
561 		}
562 	} else {
563 		desc->handle_irq = handle_fasteoi_nmi;
564 	}
565 
566 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
567 
568 	return 0;
569 }
570 
gic_irq_nmi_teardown(struct irq_data * d)571 static void gic_irq_nmi_teardown(struct irq_data *d)
572 {
573 	struct irq_desc *desc = irq_to_desc(d->irq);
574 
575 	if (WARN_ON(!gic_supports_nmi()))
576 		return;
577 
578 	if (gic_peek_irq(d, GICD_ISENABLER)) {
579 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
580 		return;
581 	}
582 
583 	/*
584 	 * A secondary irq_chip should be in charge of LPI request,
585 	 * it should not be possible to get there
586 	 */
587 	if (WARN_ON(gic_irq(d) >= 8192))
588 		return;
589 
590 	/* desc lock should already be held */
591 	if (gic_irq_in_rdist(d)) {
592 		u32 idx = gic_get_ppi_index(d);
593 
594 		/* Tearing down NMI, only switch handler for last NMI */
595 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
596 			desc->handle_irq = handle_percpu_devid_irq;
597 	} else {
598 		desc->handle_irq = handle_fasteoi_irq;
599 	}
600 
601 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
602 }
603 
gic_arm64_erratum_2941627_needed(struct irq_data * d)604 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
605 {
606 	enum gic_intid_range range;
607 
608 	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
609 		return false;
610 
611 	range = get_intid_range(d);
612 
613 	/*
614 	 * The workaround is needed if the IRQ is an SPI and
615 	 * the target cpu is different from the one we are
616 	 * executing on.
617 	 */
618 	return (range == SPI_RANGE || range == ESPI_RANGE) &&
619 		!cpumask_test_cpu(raw_smp_processor_id(),
620 				  irq_data_get_effective_affinity_mask(d));
621 }
622 
gic_eoi_irq(struct irq_data * d)623 static void gic_eoi_irq(struct irq_data *d)
624 {
625 	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
626 	isb();
627 
628 	if (gic_arm64_erratum_2941627_needed(d)) {
629 		/*
630 		 * Make sure the GIC stream deactivate packet
631 		 * issued by ICC_EOIR1_EL1 has completed before
632 		 * deactivating through GICD_IACTIVER.
633 		 */
634 		dsb(sy);
635 		gic_poke_irq(d, GICD_ICACTIVER);
636 	}
637 }
638 
gic_eoimode1_eoi_irq(struct irq_data * d)639 static void gic_eoimode1_eoi_irq(struct irq_data *d)
640 {
641 	/*
642 	 * No need to deactivate an LPI, or an interrupt that
643 	 * is is getting forwarded to a vcpu.
644 	 */
645 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
646 		return;
647 
648 	if (!gic_arm64_erratum_2941627_needed(d))
649 		gic_write_dir(gic_irq(d));
650 	else
651 		gic_poke_irq(d, GICD_ICACTIVER);
652 }
653 
gic_set_type(struct irq_data * d,unsigned int type)654 static int gic_set_type(struct irq_data *d, unsigned int type)
655 {
656 	enum gic_intid_range range;
657 	unsigned int irq = gic_irq(d);
658 	void __iomem *base;
659 	u32 offset, index;
660 	int ret;
661 
662 	range = get_intid_range(d);
663 
664 	/* Interrupt configuration for SGIs can't be changed */
665 	if (range == SGI_RANGE)
666 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
667 
668 	/* SPIs have restrictions on the supported types */
669 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
670 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
671 		return -EINVAL;
672 
673 	if (gic_irq_in_rdist(d))
674 		base = gic_data_rdist_sgi_base();
675 	else
676 		base = gic_dist_base_alias(d);
677 
678 	offset = convert_offset_index(d, GICD_ICFGR, &index);
679 
680 	ret = gic_configure_irq(index, type, base + offset, NULL);
681 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
682 		/* Misconfigured PPIs are usually not fatal */
683 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
684 		ret = 0;
685 	}
686 
687 	return ret;
688 }
689 
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)690 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
691 {
692 	if (get_intid_range(d) == SGI_RANGE)
693 		return -EINVAL;
694 
695 	if (vcpu)
696 		irqd_set_forwarded_to_vcpu(d);
697 	else
698 		irqd_clr_forwarded_to_vcpu(d);
699 	return 0;
700 }
701 
gic_cpu_to_affinity(int cpu)702 static u64 gic_cpu_to_affinity(int cpu)
703 {
704 	u64 mpidr = cpu_logical_map(cpu);
705 	u64 aff;
706 
707 	/* ASR8601 needs to have its affinities shifted down... */
708 	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
709 		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
710 			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
711 
712 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
713 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
714 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
715 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
716 
717 	return aff;
718 }
719 
gic_deactivate_unhandled(u32 irqnr)720 static void gic_deactivate_unhandled(u32 irqnr)
721 {
722 	if (static_branch_likely(&supports_deactivate_key)) {
723 		if (irqnr < 8192)
724 			gic_write_dir(irqnr);
725 	} else {
726 		write_gicreg(irqnr, ICC_EOIR1_EL1);
727 		isb();
728 	}
729 }
730 
731 /*
732  * Follow a read of the IAR with any HW maintenance that needs to happen prior
733  * to invoking the relevant IRQ handler. We must do two things:
734  *
735  * (1) Ensure instruction ordering between a read of IAR and subsequent
736  *     instructions in the IRQ handler using an ISB.
737  *
738  *     It is possible for the IAR to report an IRQ which was signalled *after*
739  *     the CPU took an IRQ exception as multiple interrupts can race to be
740  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
741  *     later interrupts could be prioritized by the GIC.
742  *
743  *     For devices which are tightly coupled to the CPU, such as PMUs, a
744  *     context synchronization event is necessary to ensure that system
745  *     register state is not stale, as these may have been indirectly written
746  *     *after* exception entry.
747  *
748  * (2) Deactivate the interrupt when EOI mode 1 is in use.
749  */
gic_complete_ack(u32 irqnr)750 static inline void gic_complete_ack(u32 irqnr)
751 {
752 	if (static_branch_likely(&supports_deactivate_key))
753 		write_gicreg(irqnr, ICC_EOIR1_EL1);
754 
755 	isb();
756 }
757 
gic_rpr_is_nmi_prio(void)758 static bool gic_rpr_is_nmi_prio(void)
759 {
760 	if (!gic_supports_nmi())
761 		return false;
762 
763 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
764 }
765 
gic_irqnr_is_special(u32 irqnr)766 static bool gic_irqnr_is_special(u32 irqnr)
767 {
768 	return irqnr >= 1020 && irqnr <= 1023;
769 }
770 
__gic_handle_irq(u32 irqnr,struct pt_regs * regs)771 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
772 {
773 	if (gic_irqnr_is_special(irqnr))
774 		return;
775 
776 	gic_complete_ack(irqnr);
777 
778 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
779 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
780 		gic_deactivate_unhandled(irqnr);
781 	}
782 }
783 
__gic_handle_nmi(u32 irqnr,struct pt_regs * regs)784 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
785 {
786 	if (gic_irqnr_is_special(irqnr))
787 		return;
788 
789 	gic_complete_ack(irqnr);
790 
791 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
792 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
793 		gic_deactivate_unhandled(irqnr);
794 	}
795 }
796 
797 /*
798  * An exception has been taken from a context with IRQs enabled, and this could
799  * be an IRQ or an NMI.
800  *
801  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
802  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
803  * after handling any NMI but before handling any IRQ.
804  *
805  * The entry code has performed IRQ entry, and if an NMI is detected we must
806  * perform NMI entry/exit around invoking the handler.
807  */
__gic_handle_irq_from_irqson(struct pt_regs * regs)808 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
809 {
810 	bool is_nmi;
811 	u32 irqnr;
812 
813 	irqnr = gic_read_iar();
814 
815 	is_nmi = gic_rpr_is_nmi_prio();
816 
817 	if (is_nmi) {
818 		nmi_enter();
819 		__gic_handle_nmi(irqnr, regs);
820 		nmi_exit();
821 	}
822 
823 	if (gic_prio_masking_enabled()) {
824 		gic_pmr_mask_irqs();
825 		gic_arch_enable_irqs();
826 	}
827 
828 	if (!is_nmi)
829 		__gic_handle_irq(irqnr, regs);
830 }
831 
832 /*
833  * An exception has been taken from a context with IRQs disabled, which can only
834  * be an NMI.
835  *
836  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
837  * DAIF.IF (and ICC_PMR_EL1) unchanged.
838  *
839  * The entry code has performed NMI entry.
840  */
__gic_handle_irq_from_irqsoff(struct pt_regs * regs)841 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
842 {
843 	u64 pmr;
844 	u32 irqnr;
845 
846 	/*
847 	 * We were in a context with IRQs disabled. However, the
848 	 * entry code has set PMR to a value that allows any
849 	 * interrupt to be acknowledged, and not just NMIs. This can
850 	 * lead to surprising effects if the NMI has been retired in
851 	 * the meantime, and that there is an IRQ pending. The IRQ
852 	 * would then be taken in NMI context, something that nobody
853 	 * wants to debug twice.
854 	 *
855 	 * Until we sort this, drop PMR again to a level that will
856 	 * actually only allow NMIs before reading IAR, and then
857 	 * restore it to what it was.
858 	 */
859 	pmr = gic_read_pmr();
860 	gic_pmr_mask_irqs();
861 	isb();
862 	irqnr = gic_read_iar();
863 	gic_write_pmr(pmr);
864 
865 	__gic_handle_nmi(irqnr, regs);
866 }
867 
gic_handle_irq(struct pt_regs * regs)868 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
869 {
870 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
871 		__gic_handle_irq_from_irqsoff(regs);
872 	else
873 		__gic_handle_irq_from_irqson(regs);
874 }
875 
gic_get_pribits(void)876 static u32 gic_get_pribits(void)
877 {
878 	u32 pribits;
879 
880 	pribits = gic_read_ctlr();
881 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
882 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
883 	pribits++;
884 
885 	return pribits;
886 }
887 
gic_has_group0(void)888 static bool gic_has_group0(void)
889 {
890 	u32 val;
891 	u32 old_pmr;
892 
893 	old_pmr = gic_read_pmr();
894 
895 	/*
896 	 * Let's find out if Group0 is under control of EL3 or not by
897 	 * setting the highest possible, non-zero priority in PMR.
898 	 *
899 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
900 	 * order for the CPU interface to set bit 7, and keep the
901 	 * actual priority in the non-secure range. In the process, it
902 	 * looses the least significant bit and the actual priority
903 	 * becomes 0x80. Reading it back returns 0, indicating that
904 	 * we're don't have access to Group0.
905 	 */
906 	gic_write_pmr(BIT(8 - gic_get_pribits()));
907 	val = gic_read_pmr();
908 
909 	gic_write_pmr(old_pmr);
910 
911 	return val != 0;
912 }
913 
gic_dist_init(void)914 static void __init gic_dist_init(void)
915 {
916 	unsigned int i;
917 	u64 affinity;
918 	void __iomem *base = gic_data.dist_base;
919 	u32 val;
920 
921 	/* Disable the distributor */
922 	writel_relaxed(0, base + GICD_CTLR);
923 	gic_dist_wait_for_rwp();
924 
925 	/*
926 	 * Configure SPIs as non-secure Group-1. This will only matter
927 	 * if the GIC only has a single security state. This will not
928 	 * do the right thing if the kernel is running in secure mode,
929 	 * but that's not the intended use case anyway.
930 	 */
931 	for (i = 32; i < GIC_LINE_NR; i += 32)
932 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
933 
934 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
935 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
936 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
937 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
938 	}
939 
940 	for (i = 0; i < GIC_ESPI_NR; i += 32)
941 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
942 
943 	for (i = 0; i < GIC_ESPI_NR; i += 16)
944 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
945 
946 	for (i = 0; i < GIC_ESPI_NR; i += 4)
947 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
948 
949 	/* Now do the common stuff */
950 	gic_dist_config(base, GIC_LINE_NR, NULL);
951 
952 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
953 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
954 		pr_info("Enabling SGIs without active state\n");
955 		val |= GICD_CTLR_nASSGIreq;
956 	}
957 
958 	/* Enable distributor with ARE, Group1, and wait for it to drain */
959 	writel_relaxed(val, base + GICD_CTLR);
960 	gic_dist_wait_for_rwp();
961 
962 	/*
963 	 * Set all global interrupts to the boot CPU only. ARE must be
964 	 * enabled.
965 	 */
966 	affinity = gic_cpu_to_affinity(smp_processor_id());
967 	for (i = 32; i < GIC_LINE_NR; i++)
968 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
969 
970 	for (i = 0; i < GIC_ESPI_NR; i++)
971 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
972 }
973 
gic_iterate_rdists(int (* fn)(struct redist_region *,void __iomem *))974 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
975 {
976 	int ret = -ENODEV;
977 	int i;
978 
979 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
980 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
981 		u64 typer;
982 		u32 reg;
983 
984 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
985 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
986 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
987 			pr_warn("No redistributor present @%p\n", ptr);
988 			break;
989 		}
990 
991 		do {
992 			typer = gic_read_typer(ptr + GICR_TYPER);
993 			ret = fn(gic_data.redist_regions + i, ptr);
994 			if (!ret)
995 				return 0;
996 
997 			if (gic_data.redist_regions[i].single_redist)
998 				break;
999 
1000 			if (gic_data.redist_stride) {
1001 				ptr += gic_data.redist_stride;
1002 			} else {
1003 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
1004 				if (typer & GICR_TYPER_VLPIS)
1005 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
1006 			}
1007 		} while (!(typer & GICR_TYPER_LAST));
1008 	}
1009 
1010 	return ret ? -ENODEV : 0;
1011 }
1012 
__gic_populate_rdist(struct redist_region * region,void __iomem * ptr)1013 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1014 {
1015 	unsigned long mpidr;
1016 	u64 typer;
1017 	u32 aff;
1018 
1019 	/*
1020 	 * Convert affinity to a 32bit value that can be matched to
1021 	 * GICR_TYPER bits [63:32].
1022 	 */
1023 	mpidr = gic_cpu_to_affinity(smp_processor_id());
1024 
1025 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1026 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1027 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1028 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1029 
1030 	typer = gic_read_typer(ptr + GICR_TYPER);
1031 	if ((typer >> 32) == aff) {
1032 		u64 offset = ptr - region->redist_base;
1033 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1034 		gic_data_rdist_rd_base() = ptr;
1035 		gic_data_rdist()->phys_base = region->phys_base + offset;
1036 
1037 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1038 			smp_processor_id(), mpidr,
1039 			(int)(region - gic_data.redist_regions),
1040 			&gic_data_rdist()->phys_base);
1041 		return 0;
1042 	}
1043 
1044 	/* Try next one */
1045 	return 1;
1046 }
1047 
gic_populate_rdist(void)1048 static int gic_populate_rdist(void)
1049 {
1050 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1051 		return 0;
1052 
1053 	/* We couldn't even deal with ourselves... */
1054 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1055 	     smp_processor_id(),
1056 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1057 	return -ENODEV;
1058 }
1059 
__gic_update_rdist_properties(struct redist_region * region,void __iomem * ptr)1060 static int __gic_update_rdist_properties(struct redist_region *region,
1061 					 void __iomem *ptr)
1062 {
1063 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1064 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1065 
1066 	/* Boot-time cleanup */
1067 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1068 		u64 val;
1069 
1070 		/* Deactivate any present vPE */
1071 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1072 		if (val & GICR_VPENDBASER_Valid)
1073 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1074 					      ptr + SZ_128K + GICR_VPENDBASER);
1075 
1076 		/* Mark the VPE table as invalid */
1077 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1078 		val &= ~GICR_VPROPBASER_4_1_VALID;
1079 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1080 	}
1081 
1082 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1083 
1084 	/*
1085 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1086 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1087 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1088 	 *
1089 	 * These are 3 different ways to express the same thing, depending
1090 	 * on the revision of the architecture and its relaxations over
1091 	 * time. Just group them under the 'direct_lpi' banner.
1092 	 */
1093 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1094 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1095 					   !!(ctlr & GICR_CTLR_IR) |
1096 					   gic_data.rdists.has_rvpeid);
1097 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1098 
1099 	/* Detect non-sensical configurations */
1100 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1101 		gic_data.rdists.has_direct_lpi = false;
1102 		gic_data.rdists.has_vlpis = false;
1103 		gic_data.rdists.has_rvpeid = false;
1104 	}
1105 
1106 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1107 
1108 	return 1;
1109 }
1110 
gic_update_rdist_properties(void)1111 static void gic_update_rdist_properties(void)
1112 {
1113 	gic_data.ppi_nr = UINT_MAX;
1114 	gic_iterate_rdists(__gic_update_rdist_properties);
1115 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1116 		gic_data.ppi_nr = 0;
1117 	pr_info("GICv3 features: %d PPIs%s%s\n",
1118 		gic_data.ppi_nr,
1119 		gic_data.has_rss ? ", RSS" : "",
1120 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1121 
1122 	if (gic_data.rdists.has_vlpis)
1123 		pr_info("GICv4 features: %s%s%s\n",
1124 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1125 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1126 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1127 }
1128 
1129 /* Check whether it's single security state view */
gic_dist_security_disabled(void)1130 static inline bool gic_dist_security_disabled(void)
1131 {
1132 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1133 }
1134 
gic_cpu_sys_reg_init(void)1135 static void gic_cpu_sys_reg_init(void)
1136 {
1137 	int i, cpu = smp_processor_id();
1138 	u64 mpidr = gic_cpu_to_affinity(cpu);
1139 	u64 need_rss = MPIDR_RS(mpidr);
1140 	bool group0;
1141 	u32 pribits;
1142 
1143 	/*
1144 	 * Need to check that the SRE bit has actually been set. If
1145 	 * not, it means that SRE is disabled at EL2. We're going to
1146 	 * die painfully, and there is nothing we can do about it.
1147 	 *
1148 	 * Kindly inform the luser.
1149 	 */
1150 	if (!gic_enable_sre())
1151 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1152 
1153 	pribits = gic_get_pribits();
1154 
1155 	group0 = gic_has_group0();
1156 
1157 	/* Set priority mask register */
1158 	if (!gic_prio_masking_enabled()) {
1159 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1160 	} else if (gic_supports_nmi()) {
1161 		/*
1162 		 * Mismatch configuration with boot CPU, the system is likely
1163 		 * to die as interrupt masking will not work properly on all
1164 		 * CPUs
1165 		 *
1166 		 * The boot CPU calls this function before enabling NMI support,
1167 		 * and as a result we'll never see this warning in the boot path
1168 		 * for that CPU.
1169 		 */
1170 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1171 			WARN_ON(!group0 || gic_dist_security_disabled());
1172 		else
1173 			WARN_ON(group0 && !gic_dist_security_disabled());
1174 	}
1175 
1176 	/*
1177 	 * Some firmwares hand over to the kernel with the BPR changed from
1178 	 * its reset value (and with a value large enough to prevent
1179 	 * any pre-emptive interrupts from working at all). Writing a zero
1180 	 * to BPR restores is reset value.
1181 	 */
1182 	gic_write_bpr1(0);
1183 
1184 	if (static_branch_likely(&supports_deactivate_key)) {
1185 		/* EOI drops priority only (mode 1) */
1186 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1187 	} else {
1188 		/* EOI deactivates interrupt too (mode 0) */
1189 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1190 	}
1191 
1192 	/* Always whack Group0 before Group1 */
1193 	if (group0) {
1194 		switch(pribits) {
1195 		case 8:
1196 		case 7:
1197 			write_gicreg(0, ICC_AP0R3_EL1);
1198 			write_gicreg(0, ICC_AP0R2_EL1);
1199 			fallthrough;
1200 		case 6:
1201 			write_gicreg(0, ICC_AP0R1_EL1);
1202 			fallthrough;
1203 		case 5:
1204 		case 4:
1205 			write_gicreg(0, ICC_AP0R0_EL1);
1206 		}
1207 
1208 		isb();
1209 	}
1210 
1211 	switch(pribits) {
1212 	case 8:
1213 	case 7:
1214 		write_gicreg(0, ICC_AP1R3_EL1);
1215 		write_gicreg(0, ICC_AP1R2_EL1);
1216 		fallthrough;
1217 	case 6:
1218 		write_gicreg(0, ICC_AP1R1_EL1);
1219 		fallthrough;
1220 	case 5:
1221 	case 4:
1222 		write_gicreg(0, ICC_AP1R0_EL1);
1223 	}
1224 
1225 	isb();
1226 
1227 	/* ... and let's hit the road... */
1228 	gic_write_grpen1(1);
1229 
1230 	/* Keep the RSS capability status in per_cpu variable */
1231 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1232 
1233 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1234 	for_each_online_cpu(i) {
1235 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1236 
1237 		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1238 		if (need_rss && (!have_rss))
1239 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1240 				cpu, (unsigned long)mpidr,
1241 				i, (unsigned long)gic_cpu_to_affinity(i));
1242 	}
1243 
1244 	/**
1245 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1246 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1247 	 * UNPREDICTABLE choice of :
1248 	 *   - The write is ignored.
1249 	 *   - The RS field is treated as 0.
1250 	 */
1251 	if (need_rss && (!gic_data.has_rss))
1252 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1253 }
1254 
1255 static bool gicv3_nolpi;
1256 
gicv3_nolpi_cfg(char * buf)1257 static int __init gicv3_nolpi_cfg(char *buf)
1258 {
1259 	return kstrtobool(buf, &gicv3_nolpi);
1260 }
1261 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1262 
gic_dist_supports_lpis(void)1263 static int gic_dist_supports_lpis(void)
1264 {
1265 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1266 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1267 		!gicv3_nolpi);
1268 }
1269 
gic_cpu_init(void)1270 static void gic_cpu_init(void)
1271 {
1272 	void __iomem *rbase;
1273 	int i;
1274 
1275 	/* Register ourselves with the rest of the world */
1276 	if (gic_populate_rdist())
1277 		return;
1278 
1279 	gic_enable_redist(true);
1280 
1281 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1282 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1283 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1284 	     smp_processor_id());
1285 
1286 	rbase = gic_data_rdist_sgi_base();
1287 
1288 	/* Configure SGIs/PPIs as non-secure Group-1 */
1289 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1290 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1291 
1292 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1293 
1294 	/* initialise system registers */
1295 	gic_cpu_sys_reg_init();
1296 }
1297 
1298 #ifdef CONFIG_SMP
1299 
1300 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1301 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1302 
gic_starting_cpu(unsigned int cpu)1303 static int gic_starting_cpu(unsigned int cpu)
1304 {
1305 	gic_cpu_init();
1306 
1307 	if (gic_dist_supports_lpis())
1308 		its_cpu_init();
1309 
1310 	return 0;
1311 }
1312 
gic_compute_target_list(int * base_cpu,const struct cpumask * mask,unsigned long cluster_id)1313 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1314 				   unsigned long cluster_id)
1315 {
1316 	int next_cpu, cpu = *base_cpu;
1317 	unsigned long mpidr;
1318 	u16 tlist = 0;
1319 
1320 	mpidr = gic_cpu_to_affinity(cpu);
1321 
1322 	while (cpu < nr_cpu_ids) {
1323 		tlist |= 1 << (mpidr & 0xf);
1324 
1325 		next_cpu = cpumask_next(cpu, mask);
1326 		if (next_cpu >= nr_cpu_ids)
1327 			goto out;
1328 		cpu = next_cpu;
1329 
1330 		mpidr = gic_cpu_to_affinity(cpu);
1331 
1332 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1333 			cpu--;
1334 			goto out;
1335 		}
1336 	}
1337 out:
1338 	*base_cpu = cpu;
1339 	return tlist;
1340 }
1341 
1342 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1343 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1344 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1345 
gic_send_sgi(u64 cluster_id,u16 tlist,unsigned int irq)1346 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1347 {
1348 	u64 val;
1349 
1350 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1351 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1352 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1353 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1354 	       MPIDR_TO_SGI_RS(cluster_id)		|
1355 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1356 
1357 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1358 	gic_write_sgi1r(val);
1359 }
1360 
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)1361 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1362 {
1363 	int cpu;
1364 
1365 	if (WARN_ON(d->hwirq >= 16))
1366 		return;
1367 
1368 	/*
1369 	 * Ensure that stores to Normal memory are visible to the
1370 	 * other CPUs before issuing the IPI.
1371 	 */
1372 	dsb(ishst);
1373 
1374 	for_each_cpu(cpu, mask) {
1375 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1376 		u16 tlist;
1377 
1378 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1379 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1380 	}
1381 
1382 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1383 	isb();
1384 }
1385 
gic_smp_init(void)1386 static void __init gic_smp_init(void)
1387 {
1388 	struct irq_fwspec sgi_fwspec = {
1389 		.fwnode		= gic_data.fwnode,
1390 		.param_count	= 1,
1391 	};
1392 	int base_sgi;
1393 
1394 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1395 				  "irqchip/arm/gicv3:starting",
1396 				  gic_starting_cpu, NULL);
1397 
1398 	/* Register all 8 non-secure SGIs */
1399 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1400 	if (WARN_ON(base_sgi <= 0))
1401 		return;
1402 
1403 	set_smp_ipi_range(base_sgi, 8);
1404 }
1405 
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1406 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1407 			    bool force)
1408 {
1409 	unsigned int cpu;
1410 	u32 offset, index;
1411 	void __iomem *reg;
1412 	int enabled;
1413 	u64 val;
1414 
1415 	if (force)
1416 		cpu = cpumask_first(mask_val);
1417 	else
1418 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1419 
1420 	if (cpu >= nr_cpu_ids)
1421 		return -EINVAL;
1422 
1423 	if (gic_irq_in_rdist(d))
1424 		return -EINVAL;
1425 
1426 	/* If interrupt was enabled, disable it first */
1427 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1428 	if (enabled)
1429 		gic_mask_irq(d);
1430 
1431 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1432 	reg = gic_dist_base(d) + offset + (index * 8);
1433 	val = gic_cpu_to_affinity(cpu);
1434 
1435 	gic_write_irouter(val, reg);
1436 
1437 	/*
1438 	 * If the interrupt was enabled, enabled it again. Otherwise,
1439 	 * just wait for the distributor to have digested our changes.
1440 	 */
1441 	if (enabled)
1442 		gic_unmask_irq(d);
1443 
1444 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1445 
1446 	return IRQ_SET_MASK_OK_DONE;
1447 }
1448 #else
1449 #define gic_set_affinity	NULL
1450 #define gic_ipi_send_mask	NULL
1451 #define gic_smp_init()		do { } while(0)
1452 #endif
1453 
gic_retrigger(struct irq_data * data)1454 static int gic_retrigger(struct irq_data *data)
1455 {
1456 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1457 }
1458 
1459 #ifdef CONFIG_CPU_PM
gic_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1460 static int gic_cpu_pm_notifier(struct notifier_block *self,
1461 			       unsigned long cmd, void *v)
1462 {
1463 	if (cmd == CPU_PM_EXIT) {
1464 		if (gic_dist_security_disabled())
1465 			gic_enable_redist(true);
1466 		gic_cpu_sys_reg_init();
1467 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1468 		gic_write_grpen1(0);
1469 		gic_enable_redist(false);
1470 	}
1471 	return NOTIFY_OK;
1472 }
1473 
1474 static struct notifier_block gic_cpu_pm_notifier_block = {
1475 	.notifier_call = gic_cpu_pm_notifier,
1476 };
1477 
gic_cpu_pm_init(void)1478 static void gic_cpu_pm_init(void)
1479 {
1480 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1481 }
1482 
1483 #else
gic_cpu_pm_init(void)1484 static inline void gic_cpu_pm_init(void) { }
1485 #endif /* CONFIG_CPU_PM */
1486 
1487 static struct irq_chip gic_chip = {
1488 	.name			= "GICv3",
1489 	.irq_mask		= gic_mask_irq,
1490 	.irq_unmask		= gic_unmask_irq,
1491 	.irq_eoi		= gic_eoi_irq,
1492 	.irq_set_type		= gic_set_type,
1493 	.irq_set_affinity	= gic_set_affinity,
1494 	.irq_retrigger          = gic_retrigger,
1495 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1496 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1497 	.irq_nmi_setup		= gic_irq_nmi_setup,
1498 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1499 	.ipi_send_mask		= gic_ipi_send_mask,
1500 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1501 				  IRQCHIP_SKIP_SET_WAKE |
1502 				  IRQCHIP_MASK_ON_SUSPEND,
1503 };
1504 
1505 static struct irq_chip gic_eoimode1_chip = {
1506 	.name			= "GICv3",
1507 	.irq_mask		= gic_eoimode1_mask_irq,
1508 	.irq_unmask		= gic_unmask_irq,
1509 	.irq_eoi		= gic_eoimode1_eoi_irq,
1510 	.irq_set_type		= gic_set_type,
1511 	.irq_set_affinity	= gic_set_affinity,
1512 	.irq_retrigger          = gic_retrigger,
1513 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1514 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1515 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1516 	.irq_nmi_setup		= gic_irq_nmi_setup,
1517 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1518 	.ipi_send_mask		= gic_ipi_send_mask,
1519 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1520 				  IRQCHIP_SKIP_SET_WAKE |
1521 				  IRQCHIP_MASK_ON_SUSPEND,
1522 };
1523 
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1524 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1525 			      irq_hw_number_t hw)
1526 {
1527 	struct irq_chip *chip = &gic_chip;
1528 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1529 
1530 	if (static_branch_likely(&supports_deactivate_key))
1531 		chip = &gic_eoimode1_chip;
1532 
1533 	switch (__get_intid_range(hw)) {
1534 	case SGI_RANGE:
1535 	case PPI_RANGE:
1536 	case EPPI_RANGE:
1537 		irq_set_percpu_devid(irq);
1538 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1539 				    handle_percpu_devid_irq, NULL, NULL);
1540 		break;
1541 
1542 	case SPI_RANGE:
1543 	case ESPI_RANGE:
1544 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1545 				    handle_fasteoi_irq, NULL, NULL);
1546 		irq_set_probe(irq);
1547 		irqd_set_single_target(irqd);
1548 		break;
1549 
1550 	case LPI_RANGE:
1551 		if (!gic_dist_supports_lpis())
1552 			return -EPERM;
1553 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1554 				    handle_fasteoi_irq, NULL, NULL);
1555 		break;
1556 
1557 	default:
1558 		return -EPERM;
1559 	}
1560 
1561 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1562 	irqd_set_handle_enforce_irqctx(irqd);
1563 	return 0;
1564 }
1565 
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1566 static int gic_irq_domain_translate(struct irq_domain *d,
1567 				    struct irq_fwspec *fwspec,
1568 				    unsigned long *hwirq,
1569 				    unsigned int *type)
1570 {
1571 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1572 		*hwirq = fwspec->param[0];
1573 		*type = IRQ_TYPE_EDGE_RISING;
1574 		return 0;
1575 	}
1576 
1577 	if (is_of_node(fwspec->fwnode)) {
1578 		if (fwspec->param_count < 3)
1579 			return -EINVAL;
1580 
1581 		switch (fwspec->param[0]) {
1582 		case 0:			/* SPI */
1583 			*hwirq = fwspec->param[1] + 32;
1584 			break;
1585 		case 1:			/* PPI */
1586 			*hwirq = fwspec->param[1] + 16;
1587 			break;
1588 		case 2:			/* ESPI */
1589 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1590 			break;
1591 		case 3:			/* EPPI */
1592 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1593 			break;
1594 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1595 			*hwirq = fwspec->param[1];
1596 			break;
1597 		case GIC_IRQ_TYPE_PARTITION:
1598 			*hwirq = fwspec->param[1];
1599 			if (fwspec->param[1] >= 16)
1600 				*hwirq += EPPI_BASE_INTID - 16;
1601 			else
1602 				*hwirq += 16;
1603 			break;
1604 		default:
1605 			return -EINVAL;
1606 		}
1607 
1608 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1609 
1610 		/*
1611 		 * Make it clear that broken DTs are... broken.
1612 		 * Partitioned PPIs are an unfortunate exception.
1613 		 */
1614 		WARN_ON(*type == IRQ_TYPE_NONE &&
1615 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1616 		return 0;
1617 	}
1618 
1619 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1620 		if(fwspec->param_count != 2)
1621 			return -EINVAL;
1622 
1623 		if (fwspec->param[0] < 16) {
1624 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1625 			       fwspec->param[0]);
1626 			return -EINVAL;
1627 		}
1628 
1629 		*hwirq = fwspec->param[0];
1630 		*type = fwspec->param[1];
1631 
1632 		WARN_ON(*type == IRQ_TYPE_NONE);
1633 		return 0;
1634 	}
1635 
1636 	return -EINVAL;
1637 }
1638 
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1639 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1640 				unsigned int nr_irqs, void *arg)
1641 {
1642 	int i, ret;
1643 	irq_hw_number_t hwirq;
1644 	unsigned int type = IRQ_TYPE_NONE;
1645 	struct irq_fwspec *fwspec = arg;
1646 
1647 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1648 	if (ret)
1649 		return ret;
1650 
1651 	for (i = 0; i < nr_irqs; i++) {
1652 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1653 		if (ret)
1654 			return ret;
1655 	}
1656 
1657 	return 0;
1658 }
1659 
gic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1660 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1661 				unsigned int nr_irqs)
1662 {
1663 	int i;
1664 
1665 	for (i = 0; i < nr_irqs; i++) {
1666 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1667 		irq_set_handler(virq + i, NULL);
1668 		irq_domain_reset_irq_data(d);
1669 	}
1670 }
1671 
fwspec_is_partitioned_ppi(struct irq_fwspec * fwspec,irq_hw_number_t hwirq)1672 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1673 				      irq_hw_number_t hwirq)
1674 {
1675 	enum gic_intid_range range;
1676 
1677 	if (!gic_data.ppi_descs)
1678 		return false;
1679 
1680 	if (!is_of_node(fwspec->fwnode))
1681 		return false;
1682 
1683 	if (fwspec->param_count < 4 || !fwspec->param[3])
1684 		return false;
1685 
1686 	range = __get_intid_range(hwirq);
1687 	if (range != PPI_RANGE && range != EPPI_RANGE)
1688 		return false;
1689 
1690 	return true;
1691 }
1692 
gic_irq_domain_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1693 static int gic_irq_domain_select(struct irq_domain *d,
1694 				 struct irq_fwspec *fwspec,
1695 				 enum irq_domain_bus_token bus_token)
1696 {
1697 	unsigned int type, ret, ppi_idx;
1698 	irq_hw_number_t hwirq;
1699 
1700 	/* Not for us */
1701         if (fwspec->fwnode != d->fwnode)
1702 		return 0;
1703 
1704 	/* If this is not DT, then we have a single domain */
1705 	if (!is_of_node(fwspec->fwnode))
1706 		return 1;
1707 
1708 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1709 	if (WARN_ON_ONCE(ret))
1710 		return 0;
1711 
1712 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1713 		return d == gic_data.domain;
1714 
1715 	/*
1716 	 * If this is a PPI and we have a 4th (non-null) parameter,
1717 	 * then we need to match the partition domain.
1718 	 */
1719 	ppi_idx = __gic_get_ppi_index(hwirq);
1720 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1721 }
1722 
1723 static const struct irq_domain_ops gic_irq_domain_ops = {
1724 	.translate = gic_irq_domain_translate,
1725 	.alloc = gic_irq_domain_alloc,
1726 	.free = gic_irq_domain_free,
1727 	.select = gic_irq_domain_select,
1728 };
1729 
partition_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1730 static int partition_domain_translate(struct irq_domain *d,
1731 				      struct irq_fwspec *fwspec,
1732 				      unsigned long *hwirq,
1733 				      unsigned int *type)
1734 {
1735 	unsigned long ppi_intid;
1736 	struct device_node *np;
1737 	unsigned int ppi_idx;
1738 	int ret;
1739 
1740 	if (!gic_data.ppi_descs)
1741 		return -ENOMEM;
1742 
1743 	np = of_find_node_by_phandle(fwspec->param[3]);
1744 	if (WARN_ON(!np))
1745 		return -EINVAL;
1746 
1747 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1748 	if (WARN_ON_ONCE(ret))
1749 		return 0;
1750 
1751 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1752 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1753 				     of_node_to_fwnode(np));
1754 	if (ret < 0)
1755 		return ret;
1756 
1757 	*hwirq = ret;
1758 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1759 
1760 	return 0;
1761 }
1762 
1763 static const struct irq_domain_ops partition_domain_ops = {
1764 	.translate = partition_domain_translate,
1765 	.select = gic_irq_domain_select,
1766 };
1767 
gic_enable_quirk_msm8996(void * data)1768 static bool gic_enable_quirk_msm8996(void *data)
1769 {
1770 	struct gic_chip_data *d = data;
1771 
1772 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1773 
1774 	return true;
1775 }
1776 
gic_enable_quirk_mtk_gicr(void * data)1777 static bool gic_enable_quirk_mtk_gicr(void *data)
1778 {
1779 	struct gic_chip_data *d = data;
1780 
1781 	d->flags |= FLAGS_WORKAROUND_MTK_GICR_SAVE;
1782 
1783 	return true;
1784 }
1785 
gic_enable_quirk_cavium_38539(void * data)1786 static bool gic_enable_quirk_cavium_38539(void *data)
1787 {
1788 	struct gic_chip_data *d = data;
1789 
1790 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1791 
1792 	return true;
1793 }
1794 
gic_enable_quirk_hip06_07(void * data)1795 static bool gic_enable_quirk_hip06_07(void *data)
1796 {
1797 	struct gic_chip_data *d = data;
1798 
1799 	/*
1800 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1801 	 * not being an actual ARM implementation). The saving grace is
1802 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1803 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1804 	 * have ESPI. In both cases, put them right.
1805 	 */
1806 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1807 		/* Zero both ESPI and the RES0 field next to it... */
1808 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1809 		return true;
1810 	}
1811 
1812 	return false;
1813 }
1814 
1815 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1816 #define T241_CHIP_GICDA_OFFSET	0x1580000
1817 #define SMCCC_SOC_ID_T241	0x036b0241
1818 
gic_enable_quirk_nvidia_t241(void * data)1819 static bool gic_enable_quirk_nvidia_t241(void *data)
1820 {
1821 	s32 soc_id = arm_smccc_get_soc_id_version();
1822 	unsigned long chip_bmask = 0;
1823 	phys_addr_t phys;
1824 	u32 i;
1825 
1826 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1827 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1828 		return false;
1829 
1830 	/* Find the chips based on GICR regions PHYS addr */
1831 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1832 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1833 				  (u64)gic_data.redist_regions[i].phys_base));
1834 	}
1835 
1836 	if (hweight32(chip_bmask) < 3)
1837 		return false;
1838 
1839 	/* Setup GICD alias regions */
1840 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1841 		if (chip_bmask & BIT(i)) {
1842 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1843 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1844 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1845 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1846 		}
1847 	}
1848 	static_branch_enable(&gic_nvidia_t241_erratum);
1849 	return true;
1850 }
1851 
gic_enable_quirk_asr8601(void * data)1852 static bool gic_enable_quirk_asr8601(void *data)
1853 {
1854 	struct gic_chip_data *d = data;
1855 
1856 	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1857 
1858 	return true;
1859 }
1860 
gic_enable_quirk_arm64_2941627(void * data)1861 static bool gic_enable_quirk_arm64_2941627(void *data)
1862 {
1863 	static_branch_enable(&gic_arm64_2941627_erratum);
1864 	return true;
1865 }
1866 
rd_set_non_coherent(void * data)1867 static bool rd_set_non_coherent(void *data)
1868 {
1869 	struct gic_chip_data *d = data;
1870 
1871 	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1872 	return true;
1873 }
1874 
1875 static const struct gic_quirk gic_quirks[] = {
1876 	{
1877 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1878 		.compatible = "qcom,msm8996-gic-v3",
1879 		.init	= gic_enable_quirk_msm8996,
1880 	},
1881 	{
1882 		.desc	= "GICv3: ASR erratum 8601001",
1883 		.compatible = "asr,asr8601-gic-v3",
1884 		.init	= gic_enable_quirk_asr8601,
1885 	},
1886 	{
1887 		.desc	= "GICv3: Mediatek Chromebook GICR save problem",
1888 		.property = "mediatek,broken-save-restore-fw",
1889 		.init	= gic_enable_quirk_mtk_gicr,
1890 	},
1891 	{
1892 		.desc	= "GICv3: HIP06 erratum 161010803",
1893 		.iidr	= 0x0204043b,
1894 		.mask	= 0xffffffff,
1895 		.init	= gic_enable_quirk_hip06_07,
1896 	},
1897 	{
1898 		.desc	= "GICv3: HIP07 erratum 161010803",
1899 		.iidr	= 0x00000000,
1900 		.mask	= 0xffffffff,
1901 		.init	= gic_enable_quirk_hip06_07,
1902 	},
1903 	{
1904 		/*
1905 		 * Reserved register accesses generate a Synchronous
1906 		 * External Abort. This erratum applies to:
1907 		 * - ThunderX: CN88xx
1908 		 * - OCTEON TX: CN83xx, CN81xx
1909 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1910 		 */
1911 		.desc	= "GICv3: Cavium erratum 38539",
1912 		.iidr	= 0xa000034c,
1913 		.mask	= 0xe8f00fff,
1914 		.init	= gic_enable_quirk_cavium_38539,
1915 	},
1916 	{
1917 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1918 		.iidr	= 0x0402043b,
1919 		.mask	= 0xffffffff,
1920 		.init	= gic_enable_quirk_nvidia_t241,
1921 	},
1922 	{
1923 		/*
1924 		 * GIC-700: 2941627 workaround - IP variant [0,1]
1925 		 *
1926 		 */
1927 		.desc	= "GICv3: ARM64 erratum 2941627",
1928 		.iidr	= 0x0400043b,
1929 		.mask	= 0xff0e0fff,
1930 		.init	= gic_enable_quirk_arm64_2941627,
1931 	},
1932 	{
1933 		/*
1934 		 * GIC-700: 2941627 workaround - IP variant [2]
1935 		 */
1936 		.desc	= "GICv3: ARM64 erratum 2941627",
1937 		.iidr	= 0x0402043b,
1938 		.mask	= 0xff0f0fff,
1939 		.init	= gic_enable_quirk_arm64_2941627,
1940 	},
1941 	{
1942 		.desc   = "GICv3: non-coherent attribute",
1943 		.property = "dma-noncoherent",
1944 		.init   = rd_set_non_coherent,
1945 	},
1946 	{
1947 	}
1948 };
1949 
gic_enable_nmi_support(void)1950 static void gic_enable_nmi_support(void)
1951 {
1952 	int i;
1953 
1954 	if (!gic_prio_masking_enabled())
1955 		return;
1956 
1957 	if (gic_data.flags & FLAGS_WORKAROUND_MTK_GICR_SAVE) {
1958 		pr_warn("Skipping NMI enable due to firmware issues\n");
1959 		return;
1960 	}
1961 
1962 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1963 	if (!ppi_nmi_refs)
1964 		return;
1965 
1966 	for (i = 0; i < gic_data.ppi_nr; i++)
1967 		refcount_set(&ppi_nmi_refs[i], 0);
1968 
1969 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1970 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1971 
1972 	/*
1973 	 * How priority values are used by the GIC depends on two things:
1974 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1975 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1976 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1977 	 * ICC_PMR_EL1 register and the priority that software assigns to
1978 	 * interrupts:
1979 	 *
1980 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1981 	 * -----------------------------------------------------------
1982 	 *      1       |      -      |  unchanged  |    unchanged
1983 	 * -----------------------------------------------------------
1984 	 *      0       |      1      |  non-secure |    non-secure
1985 	 * -----------------------------------------------------------
1986 	 *      0       |      0      |  unchanged  |    non-secure
1987 	 *
1988 	 * where non-secure means that the value is right-shifted by one and the
1989 	 * MSB bit set, to make it fit in the non-secure priority range.
1990 	 *
1991 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1992 	 * are both either modified or unchanged, we can use the same set of
1993 	 * priorities.
1994 	 *
1995 	 * In the last case, where only the interrupt priorities are modified to
1996 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1997 	 * and the rest of the values that we use remain unchanged.
1998 	 */
1999 	if (gic_has_group0() && !gic_dist_security_disabled())
2000 		static_branch_enable(&gic_nonsecure_priorities);
2001 
2002 	static_branch_enable(&supports_pseudo_nmis);
2003 
2004 	if (static_branch_likely(&supports_deactivate_key))
2005 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2006 	else
2007 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2008 }
2009 
gic_init_bases(phys_addr_t dist_phys_base,void __iomem * dist_base,struct redist_region * rdist_regs,u32 nr_redist_regions,u64 redist_stride,struct fwnode_handle * handle)2010 static int __init gic_init_bases(phys_addr_t dist_phys_base,
2011 				 void __iomem *dist_base,
2012 				 struct redist_region *rdist_regs,
2013 				 u32 nr_redist_regions,
2014 				 u64 redist_stride,
2015 				 struct fwnode_handle *handle)
2016 {
2017 	u32 typer;
2018 	int err;
2019 
2020 	if (!is_hyp_mode_available())
2021 		static_branch_disable(&supports_deactivate_key);
2022 
2023 	if (static_branch_likely(&supports_deactivate_key))
2024 		pr_info("GIC: Using split EOI/Deactivate mode\n");
2025 
2026 	gic_data.fwnode = handle;
2027 	gic_data.dist_phys_base = dist_phys_base;
2028 	gic_data.dist_base = dist_base;
2029 	gic_data.redist_regions = rdist_regs;
2030 	gic_data.nr_redist_regions = nr_redist_regions;
2031 	gic_data.redist_stride = redist_stride;
2032 
2033 	/*
2034 	 * Find out how many interrupts are supported.
2035 	 */
2036 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2037 	gic_data.rdists.gicd_typer = typer;
2038 
2039 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2040 			  gic_quirks, &gic_data);
2041 
2042 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2043 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2044 
2045 	/*
2046 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2047 	 * architecture spec (which says that reserved registers are RES0).
2048 	 */
2049 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2050 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2051 
2052 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2053 						 &gic_data);
2054 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2055 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2056 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2057 		gic_data.rdists.has_rvpeid = true;
2058 		gic_data.rdists.has_vlpis = true;
2059 		gic_data.rdists.has_direct_lpi = true;
2060 		gic_data.rdists.has_vpend_valid_dirty = true;
2061 	}
2062 
2063 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2064 		err = -ENOMEM;
2065 		goto out_free;
2066 	}
2067 
2068 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2069 
2070 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2071 
2072 	if (typer & GICD_TYPER_MBIS) {
2073 		err = mbi_init(handle, gic_data.domain);
2074 		if (err)
2075 			pr_err("Failed to initialize MBIs\n");
2076 	}
2077 
2078 	set_handle_irq(gic_handle_irq);
2079 
2080 	gic_update_rdist_properties();
2081 
2082 	gic_dist_init();
2083 	gic_cpu_init();
2084 	gic_smp_init();
2085 	gic_cpu_pm_init();
2086 
2087 	if (gic_dist_supports_lpis()) {
2088 		its_init(handle, &gic_data.rdists, gic_data.domain);
2089 		its_cpu_init();
2090 		its_lpi_memreserve_init();
2091 	} else {
2092 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2093 			gicv2m_init(handle, gic_data.domain);
2094 	}
2095 
2096 	gic_enable_nmi_support();
2097 
2098 	return 0;
2099 
2100 out_free:
2101 	if (gic_data.domain)
2102 		irq_domain_remove(gic_data.domain);
2103 	free_percpu(gic_data.rdists.rdist);
2104 	return err;
2105 }
2106 
gic_validate_dist_version(void __iomem * dist_base)2107 static int __init gic_validate_dist_version(void __iomem *dist_base)
2108 {
2109 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2110 
2111 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2112 		return -ENODEV;
2113 
2114 	return 0;
2115 }
2116 
2117 /* Create all possible partitions at boot time */
gic_populate_ppi_partitions(struct device_node * gic_node)2118 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2119 {
2120 	struct device_node *parts_node, *child_part;
2121 	int part_idx = 0, i;
2122 	int nr_parts;
2123 	struct partition_affinity *parts;
2124 
2125 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2126 	if (!parts_node)
2127 		return;
2128 
2129 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2130 	if (!gic_data.ppi_descs)
2131 		goto out_put_node;
2132 
2133 	nr_parts = of_get_child_count(parts_node);
2134 
2135 	if (!nr_parts)
2136 		goto out_put_node;
2137 
2138 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2139 	if (WARN_ON(!parts))
2140 		goto out_put_node;
2141 
2142 	for_each_child_of_node(parts_node, child_part) {
2143 		struct partition_affinity *part;
2144 		int n;
2145 
2146 		part = &parts[part_idx];
2147 
2148 		part->partition_id = of_node_to_fwnode(child_part);
2149 
2150 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2151 			child_part, part_idx);
2152 
2153 		n = of_property_count_elems_of_size(child_part, "affinity",
2154 						    sizeof(u32));
2155 		WARN_ON(n <= 0);
2156 
2157 		for (i = 0; i < n; i++) {
2158 			int err, cpu;
2159 			u32 cpu_phandle;
2160 			struct device_node *cpu_node;
2161 
2162 			err = of_property_read_u32_index(child_part, "affinity",
2163 							 i, &cpu_phandle);
2164 			if (WARN_ON(err))
2165 				continue;
2166 
2167 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2168 			if (WARN_ON(!cpu_node))
2169 				continue;
2170 
2171 			cpu = of_cpu_node_to_id(cpu_node);
2172 			if (WARN_ON(cpu < 0)) {
2173 				of_node_put(cpu_node);
2174 				continue;
2175 			}
2176 
2177 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2178 
2179 			cpumask_set_cpu(cpu, &part->mask);
2180 			of_node_put(cpu_node);
2181 		}
2182 
2183 		pr_cont("}\n");
2184 		part_idx++;
2185 	}
2186 
2187 	for (i = 0; i < gic_data.ppi_nr; i++) {
2188 		unsigned int irq;
2189 		struct partition_desc *desc;
2190 		struct irq_fwspec ppi_fwspec = {
2191 			.fwnode		= gic_data.fwnode,
2192 			.param_count	= 3,
2193 			.param		= {
2194 				[0]	= GIC_IRQ_TYPE_PARTITION,
2195 				[1]	= i,
2196 				[2]	= IRQ_TYPE_NONE,
2197 			},
2198 		};
2199 
2200 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2201 		if (WARN_ON(!irq))
2202 			continue;
2203 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2204 					     irq, &partition_domain_ops);
2205 		if (WARN_ON(!desc))
2206 			continue;
2207 
2208 		gic_data.ppi_descs[i] = desc;
2209 	}
2210 
2211 out_put_node:
2212 	of_node_put(parts_node);
2213 }
2214 
gic_of_setup_kvm_info(struct device_node * node)2215 static void __init gic_of_setup_kvm_info(struct device_node *node)
2216 {
2217 	int ret;
2218 	struct resource r;
2219 	u32 gicv_idx;
2220 
2221 	gic_v3_kvm_info.type = GIC_V3;
2222 
2223 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2224 	if (!gic_v3_kvm_info.maint_irq)
2225 		return;
2226 
2227 	if (of_property_read_u32(node, "#redistributor-regions",
2228 				 &gicv_idx))
2229 		gicv_idx = 1;
2230 
2231 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2232 	ret = of_address_to_resource(node, gicv_idx, &r);
2233 	if (!ret)
2234 		gic_v3_kvm_info.vcpu = r;
2235 
2236 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2237 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2238 	vgic_set_kvm_info(&gic_v3_kvm_info);
2239 }
2240 
gic_request_region(resource_size_t base,resource_size_t size,const char * name)2241 static void gic_request_region(resource_size_t base, resource_size_t size,
2242 			       const char *name)
2243 {
2244 	if (!request_mem_region(base, size, name))
2245 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2246 			     name, &base);
2247 }
2248 
gic_of_iomap(struct device_node * node,int idx,const char * name,struct resource * res)2249 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2250 				  const char *name, struct resource *res)
2251 {
2252 	void __iomem *base;
2253 	int ret;
2254 
2255 	ret = of_address_to_resource(node, idx, res);
2256 	if (ret)
2257 		return IOMEM_ERR_PTR(ret);
2258 
2259 	gic_request_region(res->start, resource_size(res), name);
2260 	base = of_iomap(node, idx);
2261 
2262 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2263 }
2264 
gic_of_init(struct device_node * node,struct device_node * parent)2265 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2266 {
2267 	phys_addr_t dist_phys_base;
2268 	void __iomem *dist_base;
2269 	struct redist_region *rdist_regs;
2270 	struct resource res;
2271 	u64 redist_stride;
2272 	u32 nr_redist_regions;
2273 	int err, i;
2274 
2275 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2276 	if (IS_ERR(dist_base)) {
2277 		pr_err("%pOF: unable to map gic dist registers\n", node);
2278 		return PTR_ERR(dist_base);
2279 	}
2280 
2281 	dist_phys_base = res.start;
2282 
2283 	err = gic_validate_dist_version(dist_base);
2284 	if (err) {
2285 		pr_err("%pOF: no distributor detected, giving up\n", node);
2286 		goto out_unmap_dist;
2287 	}
2288 
2289 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2290 		nr_redist_regions = 1;
2291 
2292 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2293 			     GFP_KERNEL);
2294 	if (!rdist_regs) {
2295 		err = -ENOMEM;
2296 		goto out_unmap_dist;
2297 	}
2298 
2299 	for (i = 0; i < nr_redist_regions; i++) {
2300 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2301 		if (IS_ERR(rdist_regs[i].redist_base)) {
2302 			pr_err("%pOF: couldn't map region %d\n", node, i);
2303 			err = -ENODEV;
2304 			goto out_unmap_rdist;
2305 		}
2306 		rdist_regs[i].phys_base = res.start;
2307 	}
2308 
2309 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2310 		redist_stride = 0;
2311 
2312 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2313 
2314 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2315 			     nr_redist_regions, redist_stride, &node->fwnode);
2316 	if (err)
2317 		goto out_unmap_rdist;
2318 
2319 	gic_populate_ppi_partitions(node);
2320 
2321 	if (static_branch_likely(&supports_deactivate_key))
2322 		gic_of_setup_kvm_info(node);
2323 	return 0;
2324 
2325 out_unmap_rdist:
2326 	for (i = 0; i < nr_redist_regions; i++)
2327 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2328 			iounmap(rdist_regs[i].redist_base);
2329 	kfree(rdist_regs);
2330 out_unmap_dist:
2331 	iounmap(dist_base);
2332 	return err;
2333 }
2334 
2335 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2336 
2337 #ifdef CONFIG_ACPI
2338 static struct
2339 {
2340 	void __iomem *dist_base;
2341 	struct redist_region *redist_regs;
2342 	u32 nr_redist_regions;
2343 	bool single_redist;
2344 	int enabled_rdists;
2345 	u32 maint_irq;
2346 	int maint_irq_mode;
2347 	phys_addr_t vcpu_base;
2348 } acpi_data __initdata;
2349 
2350 static void __init
gic_acpi_register_redist(phys_addr_t phys_base,void __iomem * redist_base)2351 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2352 {
2353 	static int count = 0;
2354 
2355 	acpi_data.redist_regs[count].phys_base = phys_base;
2356 	acpi_data.redist_regs[count].redist_base = redist_base;
2357 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2358 	count++;
2359 }
2360 
2361 static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers * header,const unsigned long end)2362 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2363 			   const unsigned long end)
2364 {
2365 	struct acpi_madt_generic_redistributor *redist =
2366 			(struct acpi_madt_generic_redistributor *)header;
2367 	void __iomem *redist_base;
2368 
2369 	redist_base = ioremap(redist->base_address, redist->length);
2370 	if (!redist_base) {
2371 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2372 		return -ENOMEM;
2373 	}
2374 	gic_request_region(redist->base_address, redist->length, "GICR");
2375 
2376 	gic_acpi_register_redist(redist->base_address, redist_base);
2377 	return 0;
2378 }
2379 
2380 static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2381 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2382 			 const unsigned long end)
2383 {
2384 	struct acpi_madt_generic_interrupt *gicc =
2385 				(struct acpi_madt_generic_interrupt *)header;
2386 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2387 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2388 	void __iomem *redist_base;
2389 
2390 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2391 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2392 		return 0;
2393 
2394 	redist_base = ioremap(gicc->gicr_base_address, size);
2395 	if (!redist_base)
2396 		return -ENOMEM;
2397 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2398 
2399 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2400 	return 0;
2401 }
2402 
gic_acpi_collect_gicr_base(void)2403 static int __init gic_acpi_collect_gicr_base(void)
2404 {
2405 	acpi_tbl_entry_handler redist_parser;
2406 	enum acpi_madt_type type;
2407 
2408 	if (acpi_data.single_redist) {
2409 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2410 		redist_parser = gic_acpi_parse_madt_gicc;
2411 	} else {
2412 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2413 		redist_parser = gic_acpi_parse_madt_redist;
2414 	}
2415 
2416 	/* Collect redistributor base addresses in GICR entries */
2417 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2418 		return 0;
2419 
2420 	pr_info("No valid GICR entries exist\n");
2421 	return -ENODEV;
2422 }
2423 
gic_acpi_match_gicr(union acpi_subtable_headers * header,const unsigned long end)2424 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2425 				  const unsigned long end)
2426 {
2427 	/* Subtable presence means that redist exists, that's it */
2428 	return 0;
2429 }
2430 
gic_acpi_match_gicc(union acpi_subtable_headers * header,const unsigned long end)2431 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2432 				      const unsigned long end)
2433 {
2434 	struct acpi_madt_generic_interrupt *gicc =
2435 				(struct acpi_madt_generic_interrupt *)header;
2436 
2437 	/*
2438 	 * If GICC is enabled and has valid gicr base address, then it means
2439 	 * GICR base is presented via GICC
2440 	 */
2441 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2442 		acpi_data.enabled_rdists++;
2443 		return 0;
2444 	}
2445 
2446 	/*
2447 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2448 	 * should not treat as errors, skip the entry instead of probe fail.
2449 	 */
2450 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2451 		return 0;
2452 
2453 	return -ENODEV;
2454 }
2455 
gic_acpi_count_gicr_regions(void)2456 static int __init gic_acpi_count_gicr_regions(void)
2457 {
2458 	int count;
2459 
2460 	/*
2461 	 * Count how many redistributor regions we have. It is not allowed
2462 	 * to mix redistributor description, GICR and GICC subtables have to be
2463 	 * mutually exclusive.
2464 	 */
2465 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2466 				      gic_acpi_match_gicr, 0);
2467 	if (count > 0) {
2468 		acpi_data.single_redist = false;
2469 		return count;
2470 	}
2471 
2472 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2473 				      gic_acpi_match_gicc, 0);
2474 	if (count > 0) {
2475 		acpi_data.single_redist = true;
2476 		count = acpi_data.enabled_rdists;
2477 	}
2478 
2479 	return count;
2480 }
2481 
acpi_validate_gic_table(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)2482 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2483 					   struct acpi_probe_entry *ape)
2484 {
2485 	struct acpi_madt_generic_distributor *dist;
2486 	int count;
2487 
2488 	dist = (struct acpi_madt_generic_distributor *)header;
2489 	if (dist->version != ape->driver_data)
2490 		return false;
2491 
2492 	/* We need to do that exercise anyway, the sooner the better */
2493 	count = gic_acpi_count_gicr_regions();
2494 	if (count <= 0)
2495 		return false;
2496 
2497 	acpi_data.nr_redist_regions = count;
2498 	return true;
2499 }
2500 
gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2501 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2502 						const unsigned long end)
2503 {
2504 	struct acpi_madt_generic_interrupt *gicc =
2505 		(struct acpi_madt_generic_interrupt *)header;
2506 	int maint_irq_mode;
2507 	static int first_madt = true;
2508 
2509 	/* Skip unusable CPUs */
2510 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2511 		return 0;
2512 
2513 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2514 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2515 
2516 	if (first_madt) {
2517 		first_madt = false;
2518 
2519 		acpi_data.maint_irq = gicc->vgic_interrupt;
2520 		acpi_data.maint_irq_mode = maint_irq_mode;
2521 		acpi_data.vcpu_base = gicc->gicv_base_address;
2522 
2523 		return 0;
2524 	}
2525 
2526 	/*
2527 	 * The maintenance interrupt and GICV should be the same for every CPU
2528 	 */
2529 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2530 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2531 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2532 		return -EINVAL;
2533 
2534 	return 0;
2535 }
2536 
gic_acpi_collect_virt_info(void)2537 static bool __init gic_acpi_collect_virt_info(void)
2538 {
2539 	int count;
2540 
2541 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2542 				      gic_acpi_parse_virt_madt_gicc, 0);
2543 
2544 	return (count > 0);
2545 }
2546 
2547 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2548 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2549 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2550 
gic_acpi_setup_kvm_info(void)2551 static void __init gic_acpi_setup_kvm_info(void)
2552 {
2553 	int irq;
2554 
2555 	if (!gic_acpi_collect_virt_info()) {
2556 		pr_warn("Unable to get hardware information used for virtualization\n");
2557 		return;
2558 	}
2559 
2560 	gic_v3_kvm_info.type = GIC_V3;
2561 
2562 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2563 				acpi_data.maint_irq_mode,
2564 				ACPI_ACTIVE_HIGH);
2565 	if (irq <= 0)
2566 		return;
2567 
2568 	gic_v3_kvm_info.maint_irq = irq;
2569 
2570 	if (acpi_data.vcpu_base) {
2571 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2572 
2573 		vcpu->flags = IORESOURCE_MEM;
2574 		vcpu->start = acpi_data.vcpu_base;
2575 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2576 	}
2577 
2578 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2579 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2580 	vgic_set_kvm_info(&gic_v3_kvm_info);
2581 }
2582 
2583 static struct fwnode_handle *gsi_domain_handle;
2584 
gic_v3_get_gsi_domain_id(u32 gsi)2585 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2586 {
2587 	return gsi_domain_handle;
2588 }
2589 
2590 static int __init
gic_acpi_init(union acpi_subtable_headers * header,const unsigned long end)2591 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2592 {
2593 	struct acpi_madt_generic_distributor *dist;
2594 	size_t size;
2595 	int i, err;
2596 
2597 	/* Get distributor base address */
2598 	dist = (struct acpi_madt_generic_distributor *)header;
2599 	acpi_data.dist_base = ioremap(dist->base_address,
2600 				      ACPI_GICV3_DIST_MEM_SIZE);
2601 	if (!acpi_data.dist_base) {
2602 		pr_err("Unable to map GICD registers\n");
2603 		return -ENOMEM;
2604 	}
2605 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2606 
2607 	err = gic_validate_dist_version(acpi_data.dist_base);
2608 	if (err) {
2609 		pr_err("No distributor detected at @%p, giving up\n",
2610 		       acpi_data.dist_base);
2611 		goto out_dist_unmap;
2612 	}
2613 
2614 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2615 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2616 	if (!acpi_data.redist_regs) {
2617 		err = -ENOMEM;
2618 		goto out_dist_unmap;
2619 	}
2620 
2621 	err = gic_acpi_collect_gicr_base();
2622 	if (err)
2623 		goto out_redist_unmap;
2624 
2625 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2626 	if (!gsi_domain_handle) {
2627 		err = -ENOMEM;
2628 		goto out_redist_unmap;
2629 	}
2630 
2631 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2632 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2633 			     0, gsi_domain_handle);
2634 	if (err)
2635 		goto out_fwhandle_free;
2636 
2637 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2638 
2639 	if (static_branch_likely(&supports_deactivate_key))
2640 		gic_acpi_setup_kvm_info();
2641 
2642 	return 0;
2643 
2644 out_fwhandle_free:
2645 	irq_domain_free_fwnode(gsi_domain_handle);
2646 out_redist_unmap:
2647 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2648 		if (acpi_data.redist_regs[i].redist_base)
2649 			iounmap(acpi_data.redist_regs[i].redist_base);
2650 	kfree(acpi_data.redist_regs);
2651 out_dist_unmap:
2652 	iounmap(acpi_data.dist_base);
2653 	return err;
2654 }
2655 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2656 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2657 		     gic_acpi_init);
2658 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2659 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2660 		     gic_acpi_init);
2661 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2662 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2663 		     gic_acpi_init);
2664 #endif
2665