xref: /openbmc/linux/include/linux/pgtable.h (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER	(PUD_SHIFT - PAGE_SHIFT)
10 
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13 
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19 
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24 
25 /*
26  * On almost all architectures and configurations, 0 can be used as the
27  * upper ceiling to free_pgtables(): on many architectures it has the same
28  * effect as using TASK_SIZE.  However, there is one configuration which
29  * must impose a more careful limit, to avoid freeing kernel pgtables.
30  */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING	0UL
33 #endif
34 
35 /*
36  * This defines the first usable user address. Platforms
37  * can override its value with custom FIRST_USER_ADDRESS
38  * defined in their respective <asm/pgtable.h>.
39  */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS	0UL
42 #endif
43 
44 /*
45  * This defines the generic helper for accessing PMD page
46  * table page. Although platforms can still override this
47  * via their respective <asm/pgtable.h>.
48  */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52 
53 /*
54  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
55  *
56  * The pXx_index() functions return the index of the entry in the page
57  * table page which would control the given virtual address
58  *
59  * As these functions may be used by the same code for different levels of
60  * the page table folding, they are always available, regardless of
61  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
62  * because in such cases PTRS_PER_PxD equals 1.
63  */
64 
pte_index(unsigned long address)65 static inline unsigned long pte_index(unsigned long address)
66 {
67 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
68 }
69 
70 #ifndef pmd_index
pmd_index(unsigned long address)71 static inline unsigned long pmd_index(unsigned long address)
72 {
73 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
74 }
75 #define pmd_index pmd_index
76 #endif
77 
78 #ifndef pud_index
pud_index(unsigned long address)79 static inline unsigned long pud_index(unsigned long address)
80 {
81 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
82 }
83 #define pud_index pud_index
84 #endif
85 
86 #ifndef pgd_index
87 /* Must be a compile-time constant, so implement it as a macro */
88 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
89 #endif
90 
91 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)92 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
93 {
94 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
95 }
96 #define pte_offset_kernel pte_offset_kernel
97 #endif
98 
99 #ifdef CONFIG_HIGHPTE
100 #define __pte_map(pmd, address) \
101 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
102 #define pte_unmap(pte)	do {	\
103 	kunmap_local((pte));	\
104 	rcu_read_unlock();	\
105 } while (0)
106 #else
__pte_map(pmd_t * pmd,unsigned long address)107 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
108 {
109 	return pte_offset_kernel(pmd, address);
110 }
pte_unmap(pte_t * pte)111 static inline void pte_unmap(pte_t *pte)
112 {
113 	rcu_read_unlock();
114 }
115 #endif
116 
117 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
118 
119 /* Find an entry in the second-level page table.. */
120 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)121 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
122 {
123 	return pud_pgtable(*pud) + pmd_index(address);
124 }
125 #define pmd_offset pmd_offset
126 #endif
127 
128 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)129 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
130 {
131 	return p4d_pgtable(*p4d) + pud_index(address);
132 }
133 #define pud_offset pud_offset
134 #endif
135 
pgd_offset_pgd(pgd_t * pgd,unsigned long address)136 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
137 {
138 	return (pgd + pgd_index(address));
139 };
140 
141 /*
142  * a shortcut to get a pgd_t in a given mm
143  */
144 #ifndef pgd_offset
145 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
146 #endif
147 
148 /*
149  * a shortcut which implies the use of the kernel's pgd, instead
150  * of a process's
151  */
152 #ifndef pgd_offset_k
153 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
154 #endif
155 
156 /*
157  * In many cases it is known that a virtual address is mapped at PMD or PTE
158  * level, so instead of traversing all the page table levels, we can get a
159  * pointer to the PMD entry in user or kernel page table or translate a virtual
160  * address to the pointer in the PTE in the kernel page tables with simple
161  * helpers.
162  */
pmd_off(struct mm_struct * mm,unsigned long va)163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167 
pmd_off_k(unsigned long va)168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172 
virt_to_kpte(unsigned long vaddr)173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175 	pmd_t *pmd = pmd_off_k(vaddr);
176 
177 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179 
180 #ifndef pmd_young
pmd_young(pmd_t pmd)181 static inline int pmd_young(pmd_t pmd)
182 {
183 	return 0;
184 }
185 #endif
186 
187 /*
188  * A facility to provide lazy MMU batching.  This allows PTE updates and
189  * page invalidations to be delayed until a call to leave lazy MMU mode
190  * is issued.  Some architectures may benefit from doing this, and it is
191  * beneficial for both shadow and direct mode hypervisors, which may batch
192  * the PTE updates which happen during this window.  Note that using this
193  * interface requires that read hazards be removed from the code.  A read
194  * hazard could result in the direct mode hypervisor case, since the actual
195  * write to the page tables may not yet have taken place, so reads though
196  * a raw PTE pointer after it has been modified are not guaranteed to be
197  * up to date.
198  *
199  * In the general case, no lock is guaranteed to be held between entry and exit
200  * of the lazy mode. So the implementation must assume preemption may be enabled
201  * and cpu migration is possible; it must take steps to be robust against this.
202  * (In practice, for user PTE updates, the appropriate page table lock(s) are
203  * held, but for kernel PTE updates, no lock is held). Nesting is not permitted
204  * and the mode cannot be used in interrupt context.
205  */
206 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
207 #define arch_enter_lazy_mmu_mode()	do {} while (0)
208 #define arch_leave_lazy_mmu_mode()	do {} while (0)
209 #define arch_flush_lazy_mmu_mode()	do {} while (0)
210 #endif
211 
212 #ifndef set_ptes
213 
214 #ifndef pte_next_pfn
pte_next_pfn(pte_t pte)215 static inline pte_t pte_next_pfn(pte_t pte)
216 {
217 	return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
218 }
219 #endif
220 
221 /**
222  * set_ptes - Map consecutive pages to a contiguous range of addresses.
223  * @mm: Address space to map the pages into.
224  * @addr: Address to map the first page at.
225  * @ptep: Page table pointer for the first entry.
226  * @pte: Page table entry for the first page.
227  * @nr: Number of pages to map.
228  *
229  * May be overridden by the architecture, or the architecture can define
230  * set_pte() and PFN_PTE_SHIFT.
231  *
232  * Context: The caller holds the page table lock.  The pages all belong
233  * to the same folio.  The PTEs are all in the same PMD.
234  */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)235 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
236 		pte_t *ptep, pte_t pte, unsigned int nr)
237 {
238 	page_table_check_ptes_set(mm, ptep, pte, nr);
239 
240 	for (;;) {
241 		set_pte(ptep, pte);
242 		if (--nr == 0)
243 			break;
244 		ptep++;
245 		pte = pte_next_pfn(pte);
246 	}
247 }
248 #endif
249 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
250 
251 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
252 extern int ptep_set_access_flags(struct vm_area_struct *vma,
253 				 unsigned long address, pte_t *ptep,
254 				 pte_t entry, int dirty);
255 #endif
256 
257 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
260 				 unsigned long address, pmd_t *pmdp,
261 				 pmd_t entry, int dirty);
262 extern int pudp_set_access_flags(struct vm_area_struct *vma,
263 				 unsigned long address, pud_t *pudp,
264 				 pud_t entry, int dirty);
265 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)266 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
267 					unsigned long address, pmd_t *pmdp,
268 					pmd_t entry, int dirty)
269 {
270 	BUILD_BUG();
271 	return 0;
272 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)273 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
274 					unsigned long address, pud_t *pudp,
275 					pud_t entry, int dirty)
276 {
277 	BUILD_BUG();
278 	return 0;
279 }
280 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
281 #endif
282 
283 #ifndef ptep_get
ptep_get(pte_t * ptep)284 static inline pte_t ptep_get(pte_t *ptep)
285 {
286 	return READ_ONCE(*ptep);
287 }
288 #endif
289 
290 #ifndef pmdp_get
pmdp_get(pmd_t * pmdp)291 static inline pmd_t pmdp_get(pmd_t *pmdp)
292 {
293 	return READ_ONCE(*pmdp);
294 }
295 #endif
296 
297 #ifndef pudp_get
pudp_get(pud_t * pudp)298 static inline pud_t pudp_get(pud_t *pudp)
299 {
300 	return READ_ONCE(*pudp);
301 }
302 #endif
303 
304 #ifndef p4dp_get
p4dp_get(p4d_t * p4dp)305 static inline p4d_t p4dp_get(p4d_t *p4dp)
306 {
307 	return READ_ONCE(*p4dp);
308 }
309 #endif
310 
311 #ifndef pgdp_get
pgdp_get(pgd_t * pgdp)312 static inline pgd_t pgdp_get(pgd_t *pgdp)
313 {
314 	return READ_ONCE(*pgdp);
315 }
316 #endif
317 
318 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)319 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
320 					    unsigned long address,
321 					    pte_t *ptep)
322 {
323 	pte_t pte = ptep_get(ptep);
324 	int r = 1;
325 	if (!pte_young(pte))
326 		r = 0;
327 	else
328 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
329 	return r;
330 }
331 #endif
332 
333 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
334 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)335 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
336 					    unsigned long address,
337 					    pmd_t *pmdp)
338 {
339 	pmd_t pmd = *pmdp;
340 	int r = 1;
341 	if (!pmd_young(pmd))
342 		r = 0;
343 	else
344 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
345 	return r;
346 }
347 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)348 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
349 					    unsigned long address,
350 					    pmd_t *pmdp)
351 {
352 	BUILD_BUG();
353 	return 0;
354 }
355 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
356 #endif
357 
358 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
359 int ptep_clear_flush_young(struct vm_area_struct *vma,
360 			   unsigned long address, pte_t *ptep);
361 #endif
362 
363 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
365 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
366 				  unsigned long address, pmd_t *pmdp);
367 #else
368 /*
369  * Despite relevant to THP only, this API is called from generic rmap code
370  * under PageTransHuge(), hence needs a dummy implementation for !THP
371  */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)372 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
373 					 unsigned long address, pmd_t *pmdp)
374 {
375 	BUILD_BUG();
376 	return 0;
377 }
378 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
379 #endif
380 
381 #ifndef arch_has_hw_nonleaf_pmd_young
382 /*
383  * Return whether the accessed bit in non-leaf PMD entries is supported on the
384  * local CPU.
385  */
arch_has_hw_nonleaf_pmd_young(void)386 static inline bool arch_has_hw_nonleaf_pmd_young(void)
387 {
388 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
389 }
390 #endif
391 
392 #ifndef arch_has_hw_pte_young
393 /*
394  * Return whether the accessed bit is supported on the local CPU.
395  *
396  * This stub assumes accessing through an old PTE triggers a page fault.
397  * Architectures that automatically set the access bit should overwrite it.
398  */
arch_has_hw_pte_young(void)399 static inline bool arch_has_hw_pte_young(void)
400 {
401 	return false;
402 }
403 #endif
404 
405 #ifndef arch_check_zapped_pte
arch_check_zapped_pte(struct vm_area_struct * vma,pte_t pte)406 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
407 					 pte_t pte)
408 {
409 }
410 #endif
411 
412 #ifndef arch_check_zapped_pmd
arch_check_zapped_pmd(struct vm_area_struct * vma,pmd_t pmd)413 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
414 					 pmd_t pmd)
415 {
416 }
417 #endif
418 
419 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)420 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
421 				       unsigned long address,
422 				       pte_t *ptep)
423 {
424 	pte_t pte = ptep_get(ptep);
425 	pte_clear(mm, address, ptep);
426 	page_table_check_pte_clear(mm, pte);
427 	return pte;
428 }
429 #endif
430 
ptep_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)431 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
432 			      pte_t *ptep)
433 {
434 	ptep_get_and_clear(mm, addr, ptep);
435 }
436 
437 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
438 /*
439  * For walking the pagetables without holding any locks.  Some architectures
440  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
441  * instructions.  We are guaranteed that a PTE will only either go from not
442  * present to present, or present to not present -- it will not switch to a
443  * completely different present page without a TLB flush inbetween; which we
444  * are blocking by holding interrupts off.
445  *
446  * Setting ptes from not present to present goes:
447  *
448  *   ptep->pte_high = h;
449  *   smp_wmb();
450  *   ptep->pte_low = l;
451  *
452  * And present to not present goes:
453  *
454  *   ptep->pte_low = 0;
455  *   smp_wmb();
456  *   ptep->pte_high = 0;
457  *
458  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
459  * We load pte_high *after* loading pte_low, which ensures we don't see an older
460  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
461  * picked up a changed pte high. We might have gotten rubbish values from
462  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
463  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
464  * operates on present ptes we're safe.
465  */
ptep_get_lockless(pte_t * ptep)466 static inline pte_t ptep_get_lockless(pte_t *ptep)
467 {
468 	pte_t pte;
469 
470 	do {
471 		pte.pte_low = ptep->pte_low;
472 		smp_rmb();
473 		pte.pte_high = ptep->pte_high;
474 		smp_rmb();
475 	} while (unlikely(pte.pte_low != ptep->pte_low));
476 
477 	return pte;
478 }
479 #define ptep_get_lockless ptep_get_lockless
480 
481 #if CONFIG_PGTABLE_LEVELS > 2
pmdp_get_lockless(pmd_t * pmdp)482 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
483 {
484 	pmd_t pmd;
485 
486 	do {
487 		pmd.pmd_low = pmdp->pmd_low;
488 		smp_rmb();
489 		pmd.pmd_high = pmdp->pmd_high;
490 		smp_rmb();
491 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
492 
493 	return pmd;
494 }
495 #define pmdp_get_lockless pmdp_get_lockless
496 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
497 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
498 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
499 
500 /*
501  * We require that the PTE can be read atomically.
502  */
503 #ifndef ptep_get_lockless
ptep_get_lockless(pte_t * ptep)504 static inline pte_t ptep_get_lockless(pte_t *ptep)
505 {
506 	return ptep_get(ptep);
507 }
508 #endif
509 
510 #ifndef pmdp_get_lockless
pmdp_get_lockless(pmd_t * pmdp)511 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
512 {
513 	return pmdp_get(pmdp);
514 }
pmdp_get_lockless_sync(void)515 static inline void pmdp_get_lockless_sync(void)
516 {
517 }
518 #endif
519 
520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
521 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)522 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
523 					    unsigned long address,
524 					    pmd_t *pmdp)
525 {
526 	pmd_t pmd = *pmdp;
527 
528 	pmd_clear(pmdp);
529 	page_table_check_pmd_clear(mm, pmd);
530 
531 	return pmd;
532 }
533 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
534 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)535 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
536 					    unsigned long address,
537 					    pud_t *pudp)
538 {
539 	pud_t pud = *pudp;
540 
541 	pud_clear(pudp);
542 	page_table_check_pud_clear(mm, pud);
543 
544 	return pud;
545 }
546 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
548 
549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
550 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)551 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
552 					    unsigned long address, pmd_t *pmdp,
553 					    int full)
554 {
555 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
556 }
557 #endif
558 
559 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,int full)560 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
561 					    unsigned long address, pud_t *pudp,
562 					    int full)
563 {
564 	return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
565 }
566 #endif
567 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
568 
569 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)570 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
571 					    unsigned long address, pte_t *ptep,
572 					    int full)
573 {
574 	return ptep_get_and_clear(mm, address, ptep);
575 }
576 #endif
577 
578 
579 /*
580  * If two threads concurrently fault at the same page, the thread that
581  * won the race updates the PTE and its local TLB/Cache. The other thread
582  * gives up, simply does nothing, and continues; on architectures where
583  * software can update TLB,  local TLB can be updated here to avoid next page
584  * fault. This function updates TLB only, do nothing with cache or others.
585  * It is the difference with function update_mmu_cache.
586  */
587 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)588 static inline void update_mmu_tlb(struct vm_area_struct *vma,
589 				unsigned long address, pte_t *ptep)
590 {
591 }
592 #define __HAVE_ARCH_UPDATE_MMU_TLB
593 #endif
594 
595 /*
596  * Some architectures may be able to avoid expensive synchronization
597  * primitives when modifications are made to PTE's which are already
598  * not present, or in the process of an address space destruction.
599  */
600 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)601 static inline void pte_clear_not_present_full(struct mm_struct *mm,
602 					      unsigned long address,
603 					      pte_t *ptep,
604 					      int full)
605 {
606 	pte_clear(mm, address, ptep);
607 }
608 #endif
609 
610 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
611 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
612 			      unsigned long address,
613 			      pte_t *ptep);
614 #endif
615 
616 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
617 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
618 			      unsigned long address,
619 			      pmd_t *pmdp);
620 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
621 			      unsigned long address,
622 			      pud_t *pudp);
623 #endif
624 
625 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte,struct vm_area_struct * vma)626 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
627 {
628 	return pte_mkwrite_novma(pte);
629 }
630 #endif
631 
632 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)633 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
634 {
635 	return pmd_mkwrite_novma(pmd);
636 }
637 #endif
638 
639 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
640 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)641 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
642 {
643 	pte_t old_pte = ptep_get(ptep);
644 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
645 }
646 #endif
647 
648 /*
649  * On some architectures hardware does not set page access bit when accessing
650  * memory page, it is responsibility of software setting this bit. It brings
651  * out extra page fault penalty to track page access bit. For optimization page
652  * access bit can be set during all page fault flow on these arches.
653  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
654  * where software maintains page access bit.
655  */
656 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)657 static inline pte_t pte_sw_mkyoung(pte_t pte)
658 {
659 	return pte;
660 }
661 #define pte_sw_mkyoung	pte_sw_mkyoung
662 #endif
663 
664 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)666 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
667 				      unsigned long address, pmd_t *pmdp)
668 {
669 	pmd_t old_pmd = *pmdp;
670 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
671 }
672 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)673 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
674 				      unsigned long address, pmd_t *pmdp)
675 {
676 	BUILD_BUG();
677 }
678 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
679 #endif
680 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
681 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)683 static inline void pudp_set_wrprotect(struct mm_struct *mm,
684 				      unsigned long address, pud_t *pudp)
685 {
686 	pud_t old_pud = *pudp;
687 
688 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
689 }
690 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)691 static inline void pudp_set_wrprotect(struct mm_struct *mm,
692 				      unsigned long address, pud_t *pudp)
693 {
694 	BUILD_BUG();
695 }
696 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
697 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
698 #endif
699 
700 #ifndef pmdp_collapse_flush
701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
702 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
703 				 unsigned long address, pmd_t *pmdp);
704 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)705 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
706 					unsigned long address,
707 					pmd_t *pmdp)
708 {
709 	BUILD_BUG();
710 	return *pmdp;
711 }
712 #define pmdp_collapse_flush pmdp_collapse_flush
713 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
714 #endif
715 
716 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
717 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
718 				       pgtable_t pgtable);
719 #endif
720 
721 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
722 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
723 #endif
724 
725 #ifndef arch_needs_pgtable_deposit
726 #define arch_needs_pgtable_deposit() (false)
727 #endif
728 
729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
730 /*
731  * This is an implementation of pmdp_establish() that is only suitable for an
732  * architecture that doesn't have hardware dirty/accessed bits. In this case we
733  * can't race with CPU which sets these bits and non-atomic approach is fine.
734  */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)735 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
736 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
737 {
738 	pmd_t old_pmd = *pmdp;
739 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
740 	return old_pmd;
741 }
742 #endif
743 
744 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
745 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
746 			    pmd_t *pmdp);
747 #endif
748 
749 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
750 
751 /*
752  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
753  * hugepage mapping in the page tables. This function is similar to
754  * pmdp_invalidate(), but should only be used if the access and dirty bits would
755  * not be cleared by the software in the new PMD value. The function ensures
756  * that hardware changes of the access and dirty bits updates would not be lost.
757  *
758  * Doing so can allow in certain architectures to avoid a TLB flush in most
759  * cases. Yet, another TLB flush might be necessary later if the PMD update
760  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
761  * even when a TLB flush is needed because of the update, the caller may be able
762  * to batch these TLB flushing operations, so fewer TLB flush operations are
763  * needed.
764  */
765 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
766 				unsigned long address, pmd_t *pmdp);
767 #endif
768 
769 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)770 static inline int pte_same(pte_t pte_a, pte_t pte_b)
771 {
772 	return pte_val(pte_a) == pte_val(pte_b);
773 }
774 #endif
775 
776 #ifndef __HAVE_ARCH_PTE_UNUSED
777 /*
778  * Some architectures provide facilities to virtualization guests
779  * so that they can flag allocated pages as unused. This allows the
780  * host to transparently reclaim unused pages. This function returns
781  * whether the pte's page is unused.
782  */
pte_unused(pte_t pte)783 static inline int pte_unused(pte_t pte)
784 {
785 	return 0;
786 }
787 #endif
788 
789 #ifndef pte_access_permitted
790 #define pte_access_permitted(pte, write) \
791 	(pte_present(pte) && (!(write) || pte_write(pte)))
792 #endif
793 
794 #ifndef pmd_access_permitted
795 #define pmd_access_permitted(pmd, write) \
796 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
797 #endif
798 
799 #ifndef pud_access_permitted
800 #define pud_access_permitted(pud, write) \
801 	(pud_present(pud) && (!(write) || pud_write(pud)))
802 #endif
803 
804 #ifndef p4d_access_permitted
805 #define p4d_access_permitted(p4d, write) \
806 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
807 #endif
808 
809 #ifndef pgd_access_permitted
810 #define pgd_access_permitted(pgd, write) \
811 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
812 #endif
813 
814 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)815 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
816 {
817 	return pmd_val(pmd_a) == pmd_val(pmd_b);
818 }
819 #endif
820 
821 #ifndef pud_same
pud_same(pud_t pud_a,pud_t pud_b)822 static inline int pud_same(pud_t pud_a, pud_t pud_b)
823 {
824 	return pud_val(pud_a) == pud_val(pud_b);
825 }
826 #define pud_same pud_same
827 #endif
828 
829 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)830 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
831 {
832 	return p4d_val(p4d_a) == p4d_val(p4d_b);
833 }
834 #endif
835 
836 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)837 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
838 {
839 	return pgd_val(pgd_a) == pgd_val(pgd_b);
840 }
841 #endif
842 
843 /*
844  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
845  * TLB flush will be required as a result of the "set". For example, use
846  * in scenarios where it is known ahead of time that the routine is
847  * setting non-present entries, or re-setting an existing entry to the
848  * same value. Otherwise, use the typical "set" helpers and flush the
849  * TLB.
850  */
851 #define set_pte_safe(ptep, pte) \
852 ({ \
853 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
854 	set_pte(ptep, pte); \
855 })
856 
857 #define set_pmd_safe(pmdp, pmd) \
858 ({ \
859 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
860 	set_pmd(pmdp, pmd); \
861 })
862 
863 #define set_pud_safe(pudp, pud) \
864 ({ \
865 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
866 	set_pud(pudp, pud); \
867 })
868 
869 #define set_p4d_safe(p4dp, p4d) \
870 ({ \
871 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
872 	set_p4d(p4dp, p4d); \
873 })
874 
875 #define set_pgd_safe(pgdp, pgd) \
876 ({ \
877 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
878 	set_pgd(pgdp, pgd); \
879 })
880 
881 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
882 /*
883  * Some architectures support metadata associated with a page. When a
884  * page is being swapped out, this metadata must be saved so it can be
885  * restored when the page is swapped back in. SPARC M7 and newer
886  * processors support an ADI (Application Data Integrity) tag for the
887  * page as metadata for the page. arch_do_swap_page() can restore this
888  * metadata when a page is swapped back in.
889  */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)890 static inline void arch_do_swap_page(struct mm_struct *mm,
891 				     struct vm_area_struct *vma,
892 				     unsigned long addr,
893 				     pte_t pte, pte_t oldpte)
894 {
895 
896 }
897 #endif
898 
899 #ifndef __HAVE_ARCH_UNMAP_ONE
900 /*
901  * Some architectures support metadata associated with a page. When a
902  * page is being swapped out, this metadata must be saved so it can be
903  * restored when the page is swapped back in. SPARC M7 and newer
904  * processors support an ADI (Application Data Integrity) tag for the
905  * page as metadata for the page. arch_unmap_one() can save this
906  * metadata on a swap-out of a page.
907  */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)908 static inline int arch_unmap_one(struct mm_struct *mm,
909 				  struct vm_area_struct *vma,
910 				  unsigned long addr,
911 				  pte_t orig_pte)
912 {
913 	return 0;
914 }
915 #endif
916 
917 /*
918  * Allow architectures to preserve additional metadata associated with
919  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
920  * prototypes must be defined in the arch-specific asm/pgtable.h file.
921  */
922 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)923 static inline int arch_prepare_to_swap(struct page *page)
924 {
925 	return 0;
926 }
927 #endif
928 
929 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)930 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
931 {
932 }
933 
arch_swap_invalidate_area(int type)934 static inline void arch_swap_invalidate_area(int type)
935 {
936 }
937 #endif
938 
939 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct folio * folio)940 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
941 {
942 }
943 #endif
944 
945 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
946 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
947 #endif
948 
949 #ifndef __HAVE_ARCH_MOVE_PTE
950 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
951 #endif
952 
953 #ifndef pte_accessible
954 # define pte_accessible(mm, pte)	((void)(pte), 1)
955 #endif
956 
957 #ifndef flush_tlb_fix_spurious_fault
958 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
959 #endif
960 
961 /*
962  * When walking page tables, get the address of the next boundary,
963  * or the end address of the range if that comes earlier.  Although no
964  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
965  */
966 
967 #define pgd_addr_end(addr, end)						\
968 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
969 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
970 })
971 
972 #ifndef p4d_addr_end
973 #define p4d_addr_end(addr, end)						\
974 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
975 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
976 })
977 #endif
978 
979 #ifndef pud_addr_end
980 #define pud_addr_end(addr, end)						\
981 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
982 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
983 })
984 #endif
985 
986 #ifndef pmd_addr_end
987 #define pmd_addr_end(addr, end)						\
988 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
989 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
990 })
991 #endif
992 
993 /*
994  * When walking page tables, we usually want to skip any p?d_none entries;
995  * and any p?d_bad entries - reporting the error before resetting to none.
996  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
997  */
998 void pgd_clear_bad(pgd_t *);
999 
1000 #ifndef __PAGETABLE_P4D_FOLDED
1001 void p4d_clear_bad(p4d_t *);
1002 #else
1003 #define p4d_clear_bad(p4d)        do { } while (0)
1004 #endif
1005 
1006 #ifndef __PAGETABLE_PUD_FOLDED
1007 void pud_clear_bad(pud_t *);
1008 #else
1009 #define pud_clear_bad(p4d)        do { } while (0)
1010 #endif
1011 
1012 void pmd_clear_bad(pmd_t *);
1013 
pgd_none_or_clear_bad(pgd_t * pgd)1014 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1015 {
1016 	if (pgd_none(*pgd))
1017 		return 1;
1018 	if (unlikely(pgd_bad(*pgd))) {
1019 		pgd_clear_bad(pgd);
1020 		return 1;
1021 	}
1022 	return 0;
1023 }
1024 
p4d_none_or_clear_bad(p4d_t * p4d)1025 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1026 {
1027 	if (p4d_none(*p4d))
1028 		return 1;
1029 	if (unlikely(p4d_bad(*p4d))) {
1030 		p4d_clear_bad(p4d);
1031 		return 1;
1032 	}
1033 	return 0;
1034 }
1035 
pud_none_or_clear_bad(pud_t * pud)1036 static inline int pud_none_or_clear_bad(pud_t *pud)
1037 {
1038 	if (pud_none(*pud))
1039 		return 1;
1040 	if (unlikely(pud_bad(*pud))) {
1041 		pud_clear_bad(pud);
1042 		return 1;
1043 	}
1044 	return 0;
1045 }
1046 
pmd_none_or_clear_bad(pmd_t * pmd)1047 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1048 {
1049 	if (pmd_none(*pmd))
1050 		return 1;
1051 	if (unlikely(pmd_bad(*pmd))) {
1052 		pmd_clear_bad(pmd);
1053 		return 1;
1054 	}
1055 	return 0;
1056 }
1057 
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1058 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1059 					     unsigned long addr,
1060 					     pte_t *ptep)
1061 {
1062 	/*
1063 	 * Get the current pte state, but zero it out to make it
1064 	 * non-present, preventing the hardware from asynchronously
1065 	 * updating it.
1066 	 */
1067 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1068 }
1069 
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)1070 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1071 					     unsigned long addr,
1072 					     pte_t *ptep, pte_t pte)
1073 {
1074 	/*
1075 	 * The pte is non-present, so there's no hardware state to
1076 	 * preserve.
1077 	 */
1078 	set_pte_at(vma->vm_mm, addr, ptep, pte);
1079 }
1080 
1081 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1082 /*
1083  * Start a pte protection read-modify-write transaction, which
1084  * protects against asynchronous hardware modifications to the pte.
1085  * The intention is not to prevent the hardware from making pte
1086  * updates, but to prevent any updates it may make from being lost.
1087  *
1088  * This does not protect against other software modifications of the
1089  * pte; the appropriate pte lock must be held over the transaction.
1090  *
1091  * Note that this interface is intended to be batchable, meaning that
1092  * ptep_modify_prot_commit may not actually update the pte, but merely
1093  * queue the update to be done at some later time.  The update must be
1094  * actually committed before the pte lock is released, however.
1095  */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1096 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1097 					   unsigned long addr,
1098 					   pte_t *ptep)
1099 {
1100 	return __ptep_modify_prot_start(vma, addr, ptep);
1101 }
1102 
1103 /*
1104  * Commit an update to a pte, leaving any hardware-controlled bits in
1105  * the PTE unmodified.
1106  */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1107 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1108 					   unsigned long addr,
1109 					   pte_t *ptep, pte_t old_pte, pte_t pte)
1110 {
1111 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
1112 }
1113 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1114 #endif /* CONFIG_MMU */
1115 
1116 /*
1117  * No-op macros that just return the current protection value. Defined here
1118  * because these macros can be used even if CONFIG_MMU is not defined.
1119  */
1120 
1121 #ifndef pgprot_nx
1122 #define pgprot_nx(prot)	(prot)
1123 #endif
1124 
1125 #ifndef pgprot_noncached
1126 #define pgprot_noncached(prot)	(prot)
1127 #endif
1128 
1129 #ifndef pgprot_writecombine
1130 #define pgprot_writecombine pgprot_noncached
1131 #endif
1132 
1133 #ifndef pgprot_writethrough
1134 #define pgprot_writethrough pgprot_noncached
1135 #endif
1136 
1137 #ifndef pgprot_device
1138 #define pgprot_device pgprot_noncached
1139 #endif
1140 
1141 #ifndef pgprot_mhp
1142 #define pgprot_mhp(prot)	(prot)
1143 #endif
1144 
1145 #ifdef CONFIG_MMU
1146 #ifndef pgprot_modify
1147 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)1148 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1149 {
1150 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1151 		newprot = pgprot_noncached(newprot);
1152 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1153 		newprot = pgprot_writecombine(newprot);
1154 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1155 		newprot = pgprot_device(newprot);
1156 	return newprot;
1157 }
1158 #endif
1159 #endif /* CONFIG_MMU */
1160 
1161 #ifndef pgprot_encrypted
1162 #define pgprot_encrypted(prot)	(prot)
1163 #endif
1164 
1165 #ifndef pgprot_decrypted
1166 #define pgprot_decrypted(prot)	(prot)
1167 #endif
1168 
1169 /*
1170  * A facility to provide batching of the reload of page tables and
1171  * other process state with the actual context switch code for
1172  * paravirtualized guests.  By convention, only one of the batched
1173  * update (lazy) modes (CPU, MMU) should be active at any given time,
1174  * entry should never be nested, and entry and exits should always be
1175  * paired.  This is for sanity of maintaining and reasoning about the
1176  * kernel code.  In this case, the exit (end of the context switch) is
1177  * in architecture-specific code, and so doesn't need a generic
1178  * definition.
1179  */
1180 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1181 #define arch_start_context_switch(prev)	do {} while (0)
1182 #endif
1183 
1184 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1185 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1186 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1187 {
1188 	return pmd;
1189 }
1190 
pmd_swp_soft_dirty(pmd_t pmd)1191 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1192 {
1193 	return 0;
1194 }
1195 
pmd_swp_clear_soft_dirty(pmd_t pmd)1196 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1197 {
1198 	return pmd;
1199 }
1200 #endif
1201 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1202 static inline int pte_soft_dirty(pte_t pte)
1203 {
1204 	return 0;
1205 }
1206 
pmd_soft_dirty(pmd_t pmd)1207 static inline int pmd_soft_dirty(pmd_t pmd)
1208 {
1209 	return 0;
1210 }
1211 
pte_mksoft_dirty(pte_t pte)1212 static inline pte_t pte_mksoft_dirty(pte_t pte)
1213 {
1214 	return pte;
1215 }
1216 
pmd_mksoft_dirty(pmd_t pmd)1217 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1218 {
1219 	return pmd;
1220 }
1221 
pte_clear_soft_dirty(pte_t pte)1222 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1223 {
1224 	return pte;
1225 }
1226 
pmd_clear_soft_dirty(pmd_t pmd)1227 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1228 {
1229 	return pmd;
1230 }
1231 
pte_swp_mksoft_dirty(pte_t pte)1232 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1233 {
1234 	return pte;
1235 }
1236 
pte_swp_soft_dirty(pte_t pte)1237 static inline int pte_swp_soft_dirty(pte_t pte)
1238 {
1239 	return 0;
1240 }
1241 
pte_swp_clear_soft_dirty(pte_t pte)1242 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1243 {
1244 	return pte;
1245 }
1246 
pmd_swp_mksoft_dirty(pmd_t pmd)1247 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1248 {
1249 	return pmd;
1250 }
1251 
pmd_swp_soft_dirty(pmd_t pmd)1252 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1253 {
1254 	return 0;
1255 }
1256 
pmd_swp_clear_soft_dirty(pmd_t pmd)1257 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1258 {
1259 	return pmd;
1260 }
1261 #endif
1262 
1263 #ifndef __HAVE_PFNMAP_TRACKING
1264 /*
1265  * Interfaces that can be used by architecture code to keep track of
1266  * memory type of pfn mappings specified by the remap_pfn_range,
1267  * vmf_insert_pfn.
1268  */
1269 
1270 /*
1271  * track_pfn_remap is called when a _new_ pfn mapping is being established
1272  * by remap_pfn_range() for physical range indicated by pfn and size.
1273  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1274 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1275 				  unsigned long pfn, unsigned long addr,
1276 				  unsigned long size)
1277 {
1278 	return 0;
1279 }
1280 
1281 /*
1282  * track_pfn_insert is called when a _new_ single pfn is established
1283  * by vmf_insert_pfn().
1284  */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1285 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1286 				    pfn_t pfn)
1287 {
1288 }
1289 
1290 /*
1291  * track_pfn_copy is called when a VM_PFNMAP VMA is about to get the page
1292  * tables copied during copy_page_range(). On success, stores the pfn to be
1293  * passed to untrack_pfn_copy().
1294  */
track_pfn_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long * pfn)1295 static inline int track_pfn_copy(struct vm_area_struct *dst_vma,
1296 		struct vm_area_struct *src_vma, unsigned long *pfn)
1297 {
1298 	return 0;
1299 }
1300 
1301 /*
1302  * untrack_pfn_copy is called when a VM_PFNMAP VMA failed to copy during
1303  * copy_page_range(), but after track_pfn_copy() was already called.
1304  */
untrack_pfn_copy(struct vm_area_struct * dst_vma,unsigned long pfn)1305 static inline void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1306 		unsigned long pfn)
1307 {
1308 }
1309 
1310 /*
1311  * untrack_pfn is called while unmapping a pfnmap for a region.
1312  * untrack can be called for a specific region indicated by pfn and size or
1313  * can be for the entire vma (in which case pfn, size are zero).
1314  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1315 static inline void untrack_pfn(struct vm_area_struct *vma,
1316 			       unsigned long pfn, unsigned long size,
1317 			       bool mm_wr_locked)
1318 {
1319 }
1320 
1321 /*
1322  * untrack_pfn_clear is called in the following cases on a VM_PFNMAP VMA:
1323  *
1324  * 1) During mremap() on the src VMA after the page tables were moved.
1325  * 2) During fork() on the dst VMA, immediately after duplicating the src VMA.
1326  */
untrack_pfn_clear(struct vm_area_struct * vma)1327 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1328 {
1329 }
1330 #else
1331 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1332 			   unsigned long pfn, unsigned long addr,
1333 			   unsigned long size);
1334 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1335 			     pfn_t pfn);
1336 extern int track_pfn_copy(struct vm_area_struct *dst_vma,
1337 		struct vm_area_struct *src_vma, unsigned long *pfn);
1338 extern void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1339 		unsigned long pfn);
1340 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1341 			unsigned long size, bool mm_wr_locked);
1342 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1343 #endif
1344 
1345 #ifdef CONFIG_MMU
1346 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1347 static inline int is_zero_pfn(unsigned long pfn)
1348 {
1349 	extern unsigned long zero_pfn;
1350 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1351 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1352 }
1353 
1354 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1355 
1356 #else
is_zero_pfn(unsigned long pfn)1357 static inline int is_zero_pfn(unsigned long pfn)
1358 {
1359 	extern unsigned long zero_pfn;
1360 	return pfn == zero_pfn;
1361 }
1362 
my_zero_pfn(unsigned long addr)1363 static inline unsigned long my_zero_pfn(unsigned long addr)
1364 {
1365 	extern unsigned long zero_pfn;
1366 	return zero_pfn;
1367 }
1368 #endif
1369 #else
is_zero_pfn(unsigned long pfn)1370 static inline int is_zero_pfn(unsigned long pfn)
1371 {
1372 	return 0;
1373 }
1374 
my_zero_pfn(unsigned long addr)1375 static inline unsigned long my_zero_pfn(unsigned long addr)
1376 {
1377 	return 0;
1378 }
1379 #endif /* CONFIG_MMU */
1380 
1381 #ifdef CONFIG_MMU
1382 
1383 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1384 static inline int pmd_trans_huge(pmd_t pmd)
1385 {
1386 	return 0;
1387 }
1388 #ifndef pmd_write
pmd_write(pmd_t pmd)1389 static inline int pmd_write(pmd_t pmd)
1390 {
1391 	BUG();
1392 	return 0;
1393 }
1394 #endif /* pmd_write */
1395 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1396 
1397 #ifndef pud_write
pud_write(pud_t pud)1398 static inline int pud_write(pud_t pud)
1399 {
1400 	BUG();
1401 	return 0;
1402 }
1403 #endif /* pud_write */
1404 
1405 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1406 static inline int pmd_devmap(pmd_t pmd)
1407 {
1408 	return 0;
1409 }
pud_devmap(pud_t pud)1410 static inline int pud_devmap(pud_t pud)
1411 {
1412 	return 0;
1413 }
pgd_devmap(pgd_t pgd)1414 static inline int pgd_devmap(pgd_t pgd)
1415 {
1416 	return 0;
1417 }
1418 #endif
1419 
1420 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1421 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_trans_huge(pud_t pud)1422 static inline int pud_trans_huge(pud_t pud)
1423 {
1424 	return 0;
1425 }
1426 #endif
1427 
pud_trans_unstable(pud_t * pud)1428 static inline int pud_trans_unstable(pud_t *pud)
1429 {
1430 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1431 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1432 	pud_t pudval = READ_ONCE(*pud);
1433 
1434 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1435 		return 1;
1436 	if (unlikely(pud_bad(pudval))) {
1437 		pud_clear_bad(pud);
1438 		return 1;
1439 	}
1440 #endif
1441 	return 0;
1442 }
1443 
1444 #ifndef CONFIG_NUMA_BALANCING
1445 /*
1446  * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1447  * perfectly valid to indicate "no" in that case, which is why our default
1448  * implementation defaults to "always no".
1449  *
1450  * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1451  * page protection due to NUMA hinting. NUMA hinting faults only apply in
1452  * accessible VMAs.
1453  *
1454  * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1455  * looking at the VMA accessibility is sufficient.
1456  */
pte_protnone(pte_t pte)1457 static inline int pte_protnone(pte_t pte)
1458 {
1459 	return 0;
1460 }
1461 
pmd_protnone(pmd_t pmd)1462 static inline int pmd_protnone(pmd_t pmd)
1463 {
1464 	return 0;
1465 }
1466 #endif /* CONFIG_NUMA_BALANCING */
1467 
1468 #endif /* CONFIG_MMU */
1469 
1470 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1471 
1472 #ifndef __PAGETABLE_P4D_FOLDED
1473 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1474 void p4d_clear_huge(p4d_t *p4d);
1475 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1476 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1477 {
1478 	return 0;
1479 }
p4d_clear_huge(p4d_t * p4d)1480 static inline void p4d_clear_huge(p4d_t *p4d) { }
1481 #endif /* !__PAGETABLE_P4D_FOLDED */
1482 
1483 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1484 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1485 int pud_clear_huge(pud_t *pud);
1486 int pmd_clear_huge(pmd_t *pmd);
1487 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1488 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1489 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1490 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1491 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1492 {
1493 	return 0;
1494 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1495 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1496 {
1497 	return 0;
1498 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1499 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1500 {
1501 	return 0;
1502 }
p4d_clear_huge(p4d_t * p4d)1503 static inline void p4d_clear_huge(p4d_t *p4d) { }
pud_clear_huge(pud_t * pud)1504 static inline int pud_clear_huge(pud_t *pud)
1505 {
1506 	return 0;
1507 }
pmd_clear_huge(pmd_t * pmd)1508 static inline int pmd_clear_huge(pmd_t *pmd)
1509 {
1510 	return 0;
1511 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1512 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1513 {
1514 	return 0;
1515 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1516 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1517 {
1518 	return 0;
1519 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1520 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1521 {
1522 	return 0;
1523 }
1524 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1525 
1526 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 /*
1529  * ARCHes with special requirements for evicting THP backing TLB entries can
1530  * implement this. Otherwise also, it can help optimize normal TLB flush in
1531  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1532  * entire TLB if flush span is greater than a threshold, which will
1533  * likely be true for a single huge page. Thus a single THP flush will
1534  * invalidate the entire TLB which is not desirable.
1535  * e.g. see arch/arc: flush_pmd_tlb_range
1536  */
1537 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1538 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1539 #else
1540 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1541 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1542 #endif
1543 #endif
1544 
1545 struct file;
1546 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1547 			unsigned long size, pgprot_t *vma_prot);
1548 
1549 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1550 static inline void init_espfix_bsp(void) { }
1551 #endif
1552 
1553 extern void __init pgtable_cache_init(void);
1554 
1555 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1556 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1557 {
1558 	return true;
1559 }
1560 
arch_has_pfn_modify_check(void)1561 static inline bool arch_has_pfn_modify_check(void)
1562 {
1563 	return false;
1564 }
1565 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1566 
1567 /*
1568  * Architecture PAGE_KERNEL_* fallbacks
1569  *
1570  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1571  * because they really don't support them, or the port needs to be updated to
1572  * reflect the required functionality. Below are a set of relatively safe
1573  * fallbacks, as best effort, which we can count on in lieu of the architectures
1574  * not defining them on their own yet.
1575  */
1576 
1577 #ifndef PAGE_KERNEL_RO
1578 # define PAGE_KERNEL_RO PAGE_KERNEL
1579 #endif
1580 
1581 #ifndef PAGE_KERNEL_EXEC
1582 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1583 #endif
1584 
1585 /*
1586  * Page Table Modification bits for pgtbl_mod_mask.
1587  *
1588  * These are used by the p?d_alloc_track*() set of functions an in the generic
1589  * vmalloc/ioremap code to track at which page-table levels entries have been
1590  * modified. Based on that the code can better decide when vmalloc and ioremap
1591  * mapping changes need to be synchronized to other page-tables in the system.
1592  */
1593 #define		__PGTBL_PGD_MODIFIED	0
1594 #define		__PGTBL_P4D_MODIFIED	1
1595 #define		__PGTBL_PUD_MODIFIED	2
1596 #define		__PGTBL_PMD_MODIFIED	3
1597 #define		__PGTBL_PTE_MODIFIED	4
1598 
1599 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1600 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1601 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1602 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1603 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1604 
1605 /* Page-Table Modification Mask */
1606 typedef unsigned int pgtbl_mod_mask;
1607 
1608 #endif /* !__ASSEMBLY__ */
1609 
1610 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1611 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1612 /*
1613  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1614  * with physical address space extension, but falls back to
1615  * BITS_PER_LONG otherwise.
1616  */
1617 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1618 #else
1619 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1620 #endif
1621 #endif
1622 
1623 #ifndef has_transparent_hugepage
1624 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1625 #endif
1626 
1627 #ifndef has_transparent_pud_hugepage
1628 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1629 #endif
1630 /*
1631  * On some architectures it depends on the mm if the p4d/pud or pmd
1632  * layer of the page table hierarchy is folded or not.
1633  */
1634 #ifndef mm_p4d_folded
1635 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1636 #endif
1637 
1638 #ifndef mm_pud_folded
1639 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1640 #endif
1641 
1642 #ifndef mm_pmd_folded
1643 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1644 #endif
1645 
1646 #ifndef p4d_offset_lockless
1647 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1648 #endif
1649 #ifndef pud_offset_lockless
1650 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1651 #endif
1652 #ifndef pmd_offset_lockless
1653 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1654 #endif
1655 
1656 /*
1657  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1658  * This differs from p?d_huge() by the fact that they are always available (if
1659  * the architecture supports large pages at the appropriate level) even
1660  * if CONFIG_HUGETLB_PAGE is not defined.
1661  * Only meaningful when called on a valid entry.
1662  */
1663 #ifndef pgd_leaf
1664 #define pgd_leaf(x)	0
1665 #endif
1666 #ifndef p4d_leaf
1667 #define p4d_leaf(x)	0
1668 #endif
1669 #ifndef pud_leaf
1670 #define pud_leaf(x)	0
1671 #endif
1672 #ifndef pmd_leaf
1673 #define pmd_leaf(x)	0
1674 #endif
1675 
1676 #ifndef pgd_leaf_size
1677 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1678 #endif
1679 #ifndef p4d_leaf_size
1680 #define p4d_leaf_size(x) P4D_SIZE
1681 #endif
1682 #ifndef pud_leaf_size
1683 #define pud_leaf_size(x) PUD_SIZE
1684 #endif
1685 #ifndef pmd_leaf_size
1686 #define pmd_leaf_size(x) PMD_SIZE
1687 #endif
1688 #ifndef pte_leaf_size
1689 #define pte_leaf_size(x) PAGE_SIZE
1690 #endif
1691 
1692 /*
1693  * Some architectures have MMUs that are configurable or selectable at boot
1694  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1695  * helps to have a static maximum value.
1696  */
1697 
1698 #ifndef MAX_PTRS_PER_PTE
1699 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1700 #endif
1701 
1702 #ifndef MAX_PTRS_PER_PMD
1703 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1704 #endif
1705 
1706 #ifndef MAX_PTRS_PER_PUD
1707 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1708 #endif
1709 
1710 #ifndef MAX_PTRS_PER_P4D
1711 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1712 #endif
1713 
1714 /* description of effects of mapping type and prot in current implementation.
1715  * this is due to the limited x86 page protection hardware.  The expected
1716  * behavior is in parens:
1717  *
1718  * map_type	prot
1719  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1720  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1721  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1722  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1723  *
1724  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1725  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1726  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1727  *
1728  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1729  * MAP_PRIVATE (with Enhanced PAN supported):
1730  *								r: (no) no
1731  *								w: (no) no
1732  *								x: (yes) yes
1733  */
1734 #define DECLARE_VM_GET_PAGE_PROT					\
1735 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1736 {									\
1737 		return protection_map[vm_flags &			\
1738 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1739 }									\
1740 EXPORT_SYMBOL(vm_get_page_prot);
1741 
1742 #endif /* _LINUX_PGTABLE_H */
1743