1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7
8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24
25 /*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING 0UL
33 #endif
34
35 /*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS 0UL
42 #endif
43
44 /*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52
53 /*
54 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
55 *
56 * The pXx_index() functions return the index of the entry in the page
57 * table page which would control the given virtual address
58 *
59 * As these functions may be used by the same code for different levels of
60 * the page table folding, they are always available, regardless of
61 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
62 * because in such cases PTRS_PER_PxD equals 1.
63 */
64
pte_index(unsigned long address)65 static inline unsigned long pte_index(unsigned long address)
66 {
67 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
68 }
69
70 #ifndef pmd_index
pmd_index(unsigned long address)71 static inline unsigned long pmd_index(unsigned long address)
72 {
73 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
74 }
75 #define pmd_index pmd_index
76 #endif
77
78 #ifndef pud_index
pud_index(unsigned long address)79 static inline unsigned long pud_index(unsigned long address)
80 {
81 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
82 }
83 #define pud_index pud_index
84 #endif
85
86 #ifndef pgd_index
87 /* Must be a compile-time constant, so implement it as a macro */
88 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
89 #endif
90
91 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)92 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
93 {
94 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
95 }
96 #define pte_offset_kernel pte_offset_kernel
97 #endif
98
99 #ifdef CONFIG_HIGHPTE
100 #define __pte_map(pmd, address) \
101 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
102 #define pte_unmap(pte) do { \
103 kunmap_local((pte)); \
104 rcu_read_unlock(); \
105 } while (0)
106 #else
__pte_map(pmd_t * pmd,unsigned long address)107 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
108 {
109 return pte_offset_kernel(pmd, address);
110 }
pte_unmap(pte_t * pte)111 static inline void pte_unmap(pte_t *pte)
112 {
113 rcu_read_unlock();
114 }
115 #endif
116
117 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
118
119 /* Find an entry in the second-level page table.. */
120 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)121 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
122 {
123 return pud_pgtable(*pud) + pmd_index(address);
124 }
125 #define pmd_offset pmd_offset
126 #endif
127
128 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)129 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
130 {
131 return p4d_pgtable(*p4d) + pud_index(address);
132 }
133 #define pud_offset pud_offset
134 #endif
135
pgd_offset_pgd(pgd_t * pgd,unsigned long address)136 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
137 {
138 return (pgd + pgd_index(address));
139 };
140
141 /*
142 * a shortcut to get a pgd_t in a given mm
143 */
144 #ifndef pgd_offset
145 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
146 #endif
147
148 /*
149 * a shortcut which implies the use of the kernel's pgd, instead
150 * of a process's
151 */
152 #ifndef pgd_offset_k
153 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
154 #endif
155
156 /*
157 * In many cases it is known that a virtual address is mapped at PMD or PTE
158 * level, so instead of traversing all the page table levels, we can get a
159 * pointer to the PMD entry in user or kernel page table or translate a virtual
160 * address to the pointer in the PTE in the kernel page tables with simple
161 * helpers.
162 */
pmd_off(struct mm_struct * mm,unsigned long va)163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167
pmd_off_k(unsigned long va)168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172
virt_to_kpte(unsigned long vaddr)173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175 pmd_t *pmd = pmd_off_k(vaddr);
176
177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179
180 #ifndef pmd_young
pmd_young(pmd_t pmd)181 static inline int pmd_young(pmd_t pmd)
182 {
183 return 0;
184 }
185 #endif
186
187 /*
188 * A facility to provide lazy MMU batching. This allows PTE updates and
189 * page invalidations to be delayed until a call to leave lazy MMU mode
190 * is issued. Some architectures may benefit from doing this, and it is
191 * beneficial for both shadow and direct mode hypervisors, which may batch
192 * the PTE updates which happen during this window. Note that using this
193 * interface requires that read hazards be removed from the code. A read
194 * hazard could result in the direct mode hypervisor case, since the actual
195 * write to the page tables may not yet have taken place, so reads though
196 * a raw PTE pointer after it has been modified are not guaranteed to be
197 * up to date.
198 *
199 * In the general case, no lock is guaranteed to be held between entry and exit
200 * of the lazy mode. So the implementation must assume preemption may be enabled
201 * and cpu migration is possible; it must take steps to be robust against this.
202 * (In practice, for user PTE updates, the appropriate page table lock(s) are
203 * held, but for kernel PTE updates, no lock is held). Nesting is not permitted
204 * and the mode cannot be used in interrupt context.
205 */
206 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
207 #define arch_enter_lazy_mmu_mode() do {} while (0)
208 #define arch_leave_lazy_mmu_mode() do {} while (0)
209 #define arch_flush_lazy_mmu_mode() do {} while (0)
210 #endif
211
212 #ifndef set_ptes
213
214 #ifndef pte_next_pfn
pte_next_pfn(pte_t pte)215 static inline pte_t pte_next_pfn(pte_t pte)
216 {
217 return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
218 }
219 #endif
220
221 /**
222 * set_ptes - Map consecutive pages to a contiguous range of addresses.
223 * @mm: Address space to map the pages into.
224 * @addr: Address to map the first page at.
225 * @ptep: Page table pointer for the first entry.
226 * @pte: Page table entry for the first page.
227 * @nr: Number of pages to map.
228 *
229 * May be overridden by the architecture, or the architecture can define
230 * set_pte() and PFN_PTE_SHIFT.
231 *
232 * Context: The caller holds the page table lock. The pages all belong
233 * to the same folio. The PTEs are all in the same PMD.
234 */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)235 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
236 pte_t *ptep, pte_t pte, unsigned int nr)
237 {
238 page_table_check_ptes_set(mm, ptep, pte, nr);
239
240 for (;;) {
241 set_pte(ptep, pte);
242 if (--nr == 0)
243 break;
244 ptep++;
245 pte = pte_next_pfn(pte);
246 }
247 }
248 #endif
249 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
250
251 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
252 extern int ptep_set_access_flags(struct vm_area_struct *vma,
253 unsigned long address, pte_t *ptep,
254 pte_t entry, int dirty);
255 #endif
256
257 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
260 unsigned long address, pmd_t *pmdp,
261 pmd_t entry, int dirty);
262 extern int pudp_set_access_flags(struct vm_area_struct *vma,
263 unsigned long address, pud_t *pudp,
264 pud_t entry, int dirty);
265 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)266 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
267 unsigned long address, pmd_t *pmdp,
268 pmd_t entry, int dirty)
269 {
270 BUILD_BUG();
271 return 0;
272 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)273 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
274 unsigned long address, pud_t *pudp,
275 pud_t entry, int dirty)
276 {
277 BUILD_BUG();
278 return 0;
279 }
280 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
281 #endif
282
283 #ifndef ptep_get
ptep_get(pte_t * ptep)284 static inline pte_t ptep_get(pte_t *ptep)
285 {
286 return READ_ONCE(*ptep);
287 }
288 #endif
289
290 #ifndef pmdp_get
pmdp_get(pmd_t * pmdp)291 static inline pmd_t pmdp_get(pmd_t *pmdp)
292 {
293 return READ_ONCE(*pmdp);
294 }
295 #endif
296
297 #ifndef pudp_get
pudp_get(pud_t * pudp)298 static inline pud_t pudp_get(pud_t *pudp)
299 {
300 return READ_ONCE(*pudp);
301 }
302 #endif
303
304 #ifndef p4dp_get
p4dp_get(p4d_t * p4dp)305 static inline p4d_t p4dp_get(p4d_t *p4dp)
306 {
307 return READ_ONCE(*p4dp);
308 }
309 #endif
310
311 #ifndef pgdp_get
pgdp_get(pgd_t * pgdp)312 static inline pgd_t pgdp_get(pgd_t *pgdp)
313 {
314 return READ_ONCE(*pgdp);
315 }
316 #endif
317
318 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)319 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
320 unsigned long address,
321 pte_t *ptep)
322 {
323 pte_t pte = ptep_get(ptep);
324 int r = 1;
325 if (!pte_young(pte))
326 r = 0;
327 else
328 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
329 return r;
330 }
331 #endif
332
333 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
334 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)335 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
336 unsigned long address,
337 pmd_t *pmdp)
338 {
339 pmd_t pmd = *pmdp;
340 int r = 1;
341 if (!pmd_young(pmd))
342 r = 0;
343 else
344 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
345 return r;
346 }
347 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)348 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
349 unsigned long address,
350 pmd_t *pmdp)
351 {
352 BUILD_BUG();
353 return 0;
354 }
355 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
356 #endif
357
358 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
359 int ptep_clear_flush_young(struct vm_area_struct *vma,
360 unsigned long address, pte_t *ptep);
361 #endif
362
363 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
365 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
366 unsigned long address, pmd_t *pmdp);
367 #else
368 /*
369 * Despite relevant to THP only, this API is called from generic rmap code
370 * under PageTransHuge(), hence needs a dummy implementation for !THP
371 */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)372 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
373 unsigned long address, pmd_t *pmdp)
374 {
375 BUILD_BUG();
376 return 0;
377 }
378 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
379 #endif
380
381 #ifndef arch_has_hw_nonleaf_pmd_young
382 /*
383 * Return whether the accessed bit in non-leaf PMD entries is supported on the
384 * local CPU.
385 */
arch_has_hw_nonleaf_pmd_young(void)386 static inline bool arch_has_hw_nonleaf_pmd_young(void)
387 {
388 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
389 }
390 #endif
391
392 #ifndef arch_has_hw_pte_young
393 /*
394 * Return whether the accessed bit is supported on the local CPU.
395 *
396 * This stub assumes accessing through an old PTE triggers a page fault.
397 * Architectures that automatically set the access bit should overwrite it.
398 */
arch_has_hw_pte_young(void)399 static inline bool arch_has_hw_pte_young(void)
400 {
401 return false;
402 }
403 #endif
404
405 #ifndef arch_check_zapped_pte
arch_check_zapped_pte(struct vm_area_struct * vma,pte_t pte)406 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
407 pte_t pte)
408 {
409 }
410 #endif
411
412 #ifndef arch_check_zapped_pmd
arch_check_zapped_pmd(struct vm_area_struct * vma,pmd_t pmd)413 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
414 pmd_t pmd)
415 {
416 }
417 #endif
418
419 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)420 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
421 unsigned long address,
422 pte_t *ptep)
423 {
424 pte_t pte = ptep_get(ptep);
425 pte_clear(mm, address, ptep);
426 page_table_check_pte_clear(mm, pte);
427 return pte;
428 }
429 #endif
430
ptep_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)431 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
432 pte_t *ptep)
433 {
434 ptep_get_and_clear(mm, addr, ptep);
435 }
436
437 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
438 /*
439 * For walking the pagetables without holding any locks. Some architectures
440 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
441 * instructions. We are guaranteed that a PTE will only either go from not
442 * present to present, or present to not present -- it will not switch to a
443 * completely different present page without a TLB flush inbetween; which we
444 * are blocking by holding interrupts off.
445 *
446 * Setting ptes from not present to present goes:
447 *
448 * ptep->pte_high = h;
449 * smp_wmb();
450 * ptep->pte_low = l;
451 *
452 * And present to not present goes:
453 *
454 * ptep->pte_low = 0;
455 * smp_wmb();
456 * ptep->pte_high = 0;
457 *
458 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
459 * We load pte_high *after* loading pte_low, which ensures we don't see an older
460 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
461 * picked up a changed pte high. We might have gotten rubbish values from
462 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
463 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
464 * operates on present ptes we're safe.
465 */
ptep_get_lockless(pte_t * ptep)466 static inline pte_t ptep_get_lockless(pte_t *ptep)
467 {
468 pte_t pte;
469
470 do {
471 pte.pte_low = ptep->pte_low;
472 smp_rmb();
473 pte.pte_high = ptep->pte_high;
474 smp_rmb();
475 } while (unlikely(pte.pte_low != ptep->pte_low));
476
477 return pte;
478 }
479 #define ptep_get_lockless ptep_get_lockless
480
481 #if CONFIG_PGTABLE_LEVELS > 2
pmdp_get_lockless(pmd_t * pmdp)482 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
483 {
484 pmd_t pmd;
485
486 do {
487 pmd.pmd_low = pmdp->pmd_low;
488 smp_rmb();
489 pmd.pmd_high = pmdp->pmd_high;
490 smp_rmb();
491 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
492
493 return pmd;
494 }
495 #define pmdp_get_lockless pmdp_get_lockless
496 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
497 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
498 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
499
500 /*
501 * We require that the PTE can be read atomically.
502 */
503 #ifndef ptep_get_lockless
ptep_get_lockless(pte_t * ptep)504 static inline pte_t ptep_get_lockless(pte_t *ptep)
505 {
506 return ptep_get(ptep);
507 }
508 #endif
509
510 #ifndef pmdp_get_lockless
pmdp_get_lockless(pmd_t * pmdp)511 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
512 {
513 return pmdp_get(pmdp);
514 }
pmdp_get_lockless_sync(void)515 static inline void pmdp_get_lockless_sync(void)
516 {
517 }
518 #endif
519
520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
521 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)522 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
523 unsigned long address,
524 pmd_t *pmdp)
525 {
526 pmd_t pmd = *pmdp;
527
528 pmd_clear(pmdp);
529 page_table_check_pmd_clear(mm, pmd);
530
531 return pmd;
532 }
533 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
534 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)535 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
536 unsigned long address,
537 pud_t *pudp)
538 {
539 pud_t pud = *pudp;
540
541 pud_clear(pudp);
542 page_table_check_pud_clear(mm, pud);
543
544 return pud;
545 }
546 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
548
549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
550 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)551 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
552 unsigned long address, pmd_t *pmdp,
553 int full)
554 {
555 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
556 }
557 #endif
558
559 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,int full)560 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
561 unsigned long address, pud_t *pudp,
562 int full)
563 {
564 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
565 }
566 #endif
567 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
568
569 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)570 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
571 unsigned long address, pte_t *ptep,
572 int full)
573 {
574 return ptep_get_and_clear(mm, address, ptep);
575 }
576 #endif
577
578
579 /*
580 * If two threads concurrently fault at the same page, the thread that
581 * won the race updates the PTE and its local TLB/Cache. The other thread
582 * gives up, simply does nothing, and continues; on architectures where
583 * software can update TLB, local TLB can be updated here to avoid next page
584 * fault. This function updates TLB only, do nothing with cache or others.
585 * It is the difference with function update_mmu_cache.
586 */
587 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)588 static inline void update_mmu_tlb(struct vm_area_struct *vma,
589 unsigned long address, pte_t *ptep)
590 {
591 }
592 #define __HAVE_ARCH_UPDATE_MMU_TLB
593 #endif
594
595 /*
596 * Some architectures may be able to avoid expensive synchronization
597 * primitives when modifications are made to PTE's which are already
598 * not present, or in the process of an address space destruction.
599 */
600 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)601 static inline void pte_clear_not_present_full(struct mm_struct *mm,
602 unsigned long address,
603 pte_t *ptep,
604 int full)
605 {
606 pte_clear(mm, address, ptep);
607 }
608 #endif
609
610 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
611 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
612 unsigned long address,
613 pte_t *ptep);
614 #endif
615
616 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
617 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
618 unsigned long address,
619 pmd_t *pmdp);
620 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
621 unsigned long address,
622 pud_t *pudp);
623 #endif
624
625 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte,struct vm_area_struct * vma)626 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
627 {
628 return pte_mkwrite_novma(pte);
629 }
630 #endif
631
632 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)633 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
634 {
635 return pmd_mkwrite_novma(pmd);
636 }
637 #endif
638
639 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
640 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)641 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
642 {
643 pte_t old_pte = ptep_get(ptep);
644 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
645 }
646 #endif
647
648 /*
649 * On some architectures hardware does not set page access bit when accessing
650 * memory page, it is responsibility of software setting this bit. It brings
651 * out extra page fault penalty to track page access bit. For optimization page
652 * access bit can be set during all page fault flow on these arches.
653 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
654 * where software maintains page access bit.
655 */
656 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)657 static inline pte_t pte_sw_mkyoung(pte_t pte)
658 {
659 return pte;
660 }
661 #define pte_sw_mkyoung pte_sw_mkyoung
662 #endif
663
664 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)666 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
667 unsigned long address, pmd_t *pmdp)
668 {
669 pmd_t old_pmd = *pmdp;
670 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
671 }
672 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)673 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
674 unsigned long address, pmd_t *pmdp)
675 {
676 BUILD_BUG();
677 }
678 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
679 #endif
680 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
681 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)683 static inline void pudp_set_wrprotect(struct mm_struct *mm,
684 unsigned long address, pud_t *pudp)
685 {
686 pud_t old_pud = *pudp;
687
688 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
689 }
690 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)691 static inline void pudp_set_wrprotect(struct mm_struct *mm,
692 unsigned long address, pud_t *pudp)
693 {
694 BUILD_BUG();
695 }
696 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
697 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
698 #endif
699
700 #ifndef pmdp_collapse_flush
701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
702 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
703 unsigned long address, pmd_t *pmdp);
704 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)705 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
706 unsigned long address,
707 pmd_t *pmdp)
708 {
709 BUILD_BUG();
710 return *pmdp;
711 }
712 #define pmdp_collapse_flush pmdp_collapse_flush
713 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
714 #endif
715
716 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
717 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
718 pgtable_t pgtable);
719 #endif
720
721 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
722 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
723 #endif
724
725 #ifndef arch_needs_pgtable_deposit
726 #define arch_needs_pgtable_deposit() (false)
727 #endif
728
729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
730 /*
731 * This is an implementation of pmdp_establish() that is only suitable for an
732 * architecture that doesn't have hardware dirty/accessed bits. In this case we
733 * can't race with CPU which sets these bits and non-atomic approach is fine.
734 */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)735 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
736 unsigned long address, pmd_t *pmdp, pmd_t pmd)
737 {
738 pmd_t old_pmd = *pmdp;
739 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
740 return old_pmd;
741 }
742 #endif
743
744 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
745 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
746 pmd_t *pmdp);
747 #endif
748
749 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
750
751 /*
752 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
753 * hugepage mapping in the page tables. This function is similar to
754 * pmdp_invalidate(), but should only be used if the access and dirty bits would
755 * not be cleared by the software in the new PMD value. The function ensures
756 * that hardware changes of the access and dirty bits updates would not be lost.
757 *
758 * Doing so can allow in certain architectures to avoid a TLB flush in most
759 * cases. Yet, another TLB flush might be necessary later if the PMD update
760 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
761 * even when a TLB flush is needed because of the update, the caller may be able
762 * to batch these TLB flushing operations, so fewer TLB flush operations are
763 * needed.
764 */
765 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
766 unsigned long address, pmd_t *pmdp);
767 #endif
768
769 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)770 static inline int pte_same(pte_t pte_a, pte_t pte_b)
771 {
772 return pte_val(pte_a) == pte_val(pte_b);
773 }
774 #endif
775
776 #ifndef __HAVE_ARCH_PTE_UNUSED
777 /*
778 * Some architectures provide facilities to virtualization guests
779 * so that they can flag allocated pages as unused. This allows the
780 * host to transparently reclaim unused pages. This function returns
781 * whether the pte's page is unused.
782 */
pte_unused(pte_t pte)783 static inline int pte_unused(pte_t pte)
784 {
785 return 0;
786 }
787 #endif
788
789 #ifndef pte_access_permitted
790 #define pte_access_permitted(pte, write) \
791 (pte_present(pte) && (!(write) || pte_write(pte)))
792 #endif
793
794 #ifndef pmd_access_permitted
795 #define pmd_access_permitted(pmd, write) \
796 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
797 #endif
798
799 #ifndef pud_access_permitted
800 #define pud_access_permitted(pud, write) \
801 (pud_present(pud) && (!(write) || pud_write(pud)))
802 #endif
803
804 #ifndef p4d_access_permitted
805 #define p4d_access_permitted(p4d, write) \
806 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
807 #endif
808
809 #ifndef pgd_access_permitted
810 #define pgd_access_permitted(pgd, write) \
811 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
812 #endif
813
814 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)815 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
816 {
817 return pmd_val(pmd_a) == pmd_val(pmd_b);
818 }
819 #endif
820
821 #ifndef pud_same
pud_same(pud_t pud_a,pud_t pud_b)822 static inline int pud_same(pud_t pud_a, pud_t pud_b)
823 {
824 return pud_val(pud_a) == pud_val(pud_b);
825 }
826 #define pud_same pud_same
827 #endif
828
829 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)830 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
831 {
832 return p4d_val(p4d_a) == p4d_val(p4d_b);
833 }
834 #endif
835
836 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)837 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
838 {
839 return pgd_val(pgd_a) == pgd_val(pgd_b);
840 }
841 #endif
842
843 /*
844 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
845 * TLB flush will be required as a result of the "set". For example, use
846 * in scenarios where it is known ahead of time that the routine is
847 * setting non-present entries, or re-setting an existing entry to the
848 * same value. Otherwise, use the typical "set" helpers and flush the
849 * TLB.
850 */
851 #define set_pte_safe(ptep, pte) \
852 ({ \
853 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
854 set_pte(ptep, pte); \
855 })
856
857 #define set_pmd_safe(pmdp, pmd) \
858 ({ \
859 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
860 set_pmd(pmdp, pmd); \
861 })
862
863 #define set_pud_safe(pudp, pud) \
864 ({ \
865 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
866 set_pud(pudp, pud); \
867 })
868
869 #define set_p4d_safe(p4dp, p4d) \
870 ({ \
871 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
872 set_p4d(p4dp, p4d); \
873 })
874
875 #define set_pgd_safe(pgdp, pgd) \
876 ({ \
877 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
878 set_pgd(pgdp, pgd); \
879 })
880
881 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
882 /*
883 * Some architectures support metadata associated with a page. When a
884 * page is being swapped out, this metadata must be saved so it can be
885 * restored when the page is swapped back in. SPARC M7 and newer
886 * processors support an ADI (Application Data Integrity) tag for the
887 * page as metadata for the page. arch_do_swap_page() can restore this
888 * metadata when a page is swapped back in.
889 */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)890 static inline void arch_do_swap_page(struct mm_struct *mm,
891 struct vm_area_struct *vma,
892 unsigned long addr,
893 pte_t pte, pte_t oldpte)
894 {
895
896 }
897 #endif
898
899 #ifndef __HAVE_ARCH_UNMAP_ONE
900 /*
901 * Some architectures support metadata associated with a page. When a
902 * page is being swapped out, this metadata must be saved so it can be
903 * restored when the page is swapped back in. SPARC M7 and newer
904 * processors support an ADI (Application Data Integrity) tag for the
905 * page as metadata for the page. arch_unmap_one() can save this
906 * metadata on a swap-out of a page.
907 */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)908 static inline int arch_unmap_one(struct mm_struct *mm,
909 struct vm_area_struct *vma,
910 unsigned long addr,
911 pte_t orig_pte)
912 {
913 return 0;
914 }
915 #endif
916
917 /*
918 * Allow architectures to preserve additional metadata associated with
919 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
920 * prototypes must be defined in the arch-specific asm/pgtable.h file.
921 */
922 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)923 static inline int arch_prepare_to_swap(struct page *page)
924 {
925 return 0;
926 }
927 #endif
928
929 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)930 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
931 {
932 }
933
arch_swap_invalidate_area(int type)934 static inline void arch_swap_invalidate_area(int type)
935 {
936 }
937 #endif
938
939 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct folio * folio)940 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
941 {
942 }
943 #endif
944
945 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
946 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
947 #endif
948
949 #ifndef __HAVE_ARCH_MOVE_PTE
950 #define move_pte(pte, prot, old_addr, new_addr) (pte)
951 #endif
952
953 #ifndef pte_accessible
954 # define pte_accessible(mm, pte) ((void)(pte), 1)
955 #endif
956
957 #ifndef flush_tlb_fix_spurious_fault
958 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
959 #endif
960
961 /*
962 * When walking page tables, get the address of the next boundary,
963 * or the end address of the range if that comes earlier. Although no
964 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
965 */
966
967 #define pgd_addr_end(addr, end) \
968 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
969 (__boundary - 1 < (end) - 1)? __boundary: (end); \
970 })
971
972 #ifndef p4d_addr_end
973 #define p4d_addr_end(addr, end) \
974 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
975 (__boundary - 1 < (end) - 1)? __boundary: (end); \
976 })
977 #endif
978
979 #ifndef pud_addr_end
980 #define pud_addr_end(addr, end) \
981 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
982 (__boundary - 1 < (end) - 1)? __boundary: (end); \
983 })
984 #endif
985
986 #ifndef pmd_addr_end
987 #define pmd_addr_end(addr, end) \
988 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
989 (__boundary - 1 < (end) - 1)? __boundary: (end); \
990 })
991 #endif
992
993 /*
994 * When walking page tables, we usually want to skip any p?d_none entries;
995 * and any p?d_bad entries - reporting the error before resetting to none.
996 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
997 */
998 void pgd_clear_bad(pgd_t *);
999
1000 #ifndef __PAGETABLE_P4D_FOLDED
1001 void p4d_clear_bad(p4d_t *);
1002 #else
1003 #define p4d_clear_bad(p4d) do { } while (0)
1004 #endif
1005
1006 #ifndef __PAGETABLE_PUD_FOLDED
1007 void pud_clear_bad(pud_t *);
1008 #else
1009 #define pud_clear_bad(p4d) do { } while (0)
1010 #endif
1011
1012 void pmd_clear_bad(pmd_t *);
1013
pgd_none_or_clear_bad(pgd_t * pgd)1014 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1015 {
1016 if (pgd_none(*pgd))
1017 return 1;
1018 if (unlikely(pgd_bad(*pgd))) {
1019 pgd_clear_bad(pgd);
1020 return 1;
1021 }
1022 return 0;
1023 }
1024
p4d_none_or_clear_bad(p4d_t * p4d)1025 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1026 {
1027 if (p4d_none(*p4d))
1028 return 1;
1029 if (unlikely(p4d_bad(*p4d))) {
1030 p4d_clear_bad(p4d);
1031 return 1;
1032 }
1033 return 0;
1034 }
1035
pud_none_or_clear_bad(pud_t * pud)1036 static inline int pud_none_or_clear_bad(pud_t *pud)
1037 {
1038 if (pud_none(*pud))
1039 return 1;
1040 if (unlikely(pud_bad(*pud))) {
1041 pud_clear_bad(pud);
1042 return 1;
1043 }
1044 return 0;
1045 }
1046
pmd_none_or_clear_bad(pmd_t * pmd)1047 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1048 {
1049 if (pmd_none(*pmd))
1050 return 1;
1051 if (unlikely(pmd_bad(*pmd))) {
1052 pmd_clear_bad(pmd);
1053 return 1;
1054 }
1055 return 0;
1056 }
1057
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1058 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1059 unsigned long addr,
1060 pte_t *ptep)
1061 {
1062 /*
1063 * Get the current pte state, but zero it out to make it
1064 * non-present, preventing the hardware from asynchronously
1065 * updating it.
1066 */
1067 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1068 }
1069
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)1070 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1071 unsigned long addr,
1072 pte_t *ptep, pte_t pte)
1073 {
1074 /*
1075 * The pte is non-present, so there's no hardware state to
1076 * preserve.
1077 */
1078 set_pte_at(vma->vm_mm, addr, ptep, pte);
1079 }
1080
1081 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1082 /*
1083 * Start a pte protection read-modify-write transaction, which
1084 * protects against asynchronous hardware modifications to the pte.
1085 * The intention is not to prevent the hardware from making pte
1086 * updates, but to prevent any updates it may make from being lost.
1087 *
1088 * This does not protect against other software modifications of the
1089 * pte; the appropriate pte lock must be held over the transaction.
1090 *
1091 * Note that this interface is intended to be batchable, meaning that
1092 * ptep_modify_prot_commit may not actually update the pte, but merely
1093 * queue the update to be done at some later time. The update must be
1094 * actually committed before the pte lock is released, however.
1095 */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1096 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1097 unsigned long addr,
1098 pte_t *ptep)
1099 {
1100 return __ptep_modify_prot_start(vma, addr, ptep);
1101 }
1102
1103 /*
1104 * Commit an update to a pte, leaving any hardware-controlled bits in
1105 * the PTE unmodified.
1106 */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1107 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1108 unsigned long addr,
1109 pte_t *ptep, pte_t old_pte, pte_t pte)
1110 {
1111 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1112 }
1113 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1114 #endif /* CONFIG_MMU */
1115
1116 /*
1117 * No-op macros that just return the current protection value. Defined here
1118 * because these macros can be used even if CONFIG_MMU is not defined.
1119 */
1120
1121 #ifndef pgprot_nx
1122 #define pgprot_nx(prot) (prot)
1123 #endif
1124
1125 #ifndef pgprot_noncached
1126 #define pgprot_noncached(prot) (prot)
1127 #endif
1128
1129 #ifndef pgprot_writecombine
1130 #define pgprot_writecombine pgprot_noncached
1131 #endif
1132
1133 #ifndef pgprot_writethrough
1134 #define pgprot_writethrough pgprot_noncached
1135 #endif
1136
1137 #ifndef pgprot_device
1138 #define pgprot_device pgprot_noncached
1139 #endif
1140
1141 #ifndef pgprot_mhp
1142 #define pgprot_mhp(prot) (prot)
1143 #endif
1144
1145 #ifdef CONFIG_MMU
1146 #ifndef pgprot_modify
1147 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)1148 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1149 {
1150 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1151 newprot = pgprot_noncached(newprot);
1152 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1153 newprot = pgprot_writecombine(newprot);
1154 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1155 newprot = pgprot_device(newprot);
1156 return newprot;
1157 }
1158 #endif
1159 #endif /* CONFIG_MMU */
1160
1161 #ifndef pgprot_encrypted
1162 #define pgprot_encrypted(prot) (prot)
1163 #endif
1164
1165 #ifndef pgprot_decrypted
1166 #define pgprot_decrypted(prot) (prot)
1167 #endif
1168
1169 /*
1170 * A facility to provide batching of the reload of page tables and
1171 * other process state with the actual context switch code for
1172 * paravirtualized guests. By convention, only one of the batched
1173 * update (lazy) modes (CPU, MMU) should be active at any given time,
1174 * entry should never be nested, and entry and exits should always be
1175 * paired. This is for sanity of maintaining and reasoning about the
1176 * kernel code. In this case, the exit (end of the context switch) is
1177 * in architecture-specific code, and so doesn't need a generic
1178 * definition.
1179 */
1180 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1181 #define arch_start_context_switch(prev) do {} while (0)
1182 #endif
1183
1184 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1185 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1186 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1187 {
1188 return pmd;
1189 }
1190
pmd_swp_soft_dirty(pmd_t pmd)1191 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1192 {
1193 return 0;
1194 }
1195
pmd_swp_clear_soft_dirty(pmd_t pmd)1196 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1197 {
1198 return pmd;
1199 }
1200 #endif
1201 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1202 static inline int pte_soft_dirty(pte_t pte)
1203 {
1204 return 0;
1205 }
1206
pmd_soft_dirty(pmd_t pmd)1207 static inline int pmd_soft_dirty(pmd_t pmd)
1208 {
1209 return 0;
1210 }
1211
pte_mksoft_dirty(pte_t pte)1212 static inline pte_t pte_mksoft_dirty(pte_t pte)
1213 {
1214 return pte;
1215 }
1216
pmd_mksoft_dirty(pmd_t pmd)1217 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1218 {
1219 return pmd;
1220 }
1221
pte_clear_soft_dirty(pte_t pte)1222 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1223 {
1224 return pte;
1225 }
1226
pmd_clear_soft_dirty(pmd_t pmd)1227 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1228 {
1229 return pmd;
1230 }
1231
pte_swp_mksoft_dirty(pte_t pte)1232 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1233 {
1234 return pte;
1235 }
1236
pte_swp_soft_dirty(pte_t pte)1237 static inline int pte_swp_soft_dirty(pte_t pte)
1238 {
1239 return 0;
1240 }
1241
pte_swp_clear_soft_dirty(pte_t pte)1242 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1243 {
1244 return pte;
1245 }
1246
pmd_swp_mksoft_dirty(pmd_t pmd)1247 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1248 {
1249 return pmd;
1250 }
1251
pmd_swp_soft_dirty(pmd_t pmd)1252 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1253 {
1254 return 0;
1255 }
1256
pmd_swp_clear_soft_dirty(pmd_t pmd)1257 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1258 {
1259 return pmd;
1260 }
1261 #endif
1262
1263 #ifndef __HAVE_PFNMAP_TRACKING
1264 /*
1265 * Interfaces that can be used by architecture code to keep track of
1266 * memory type of pfn mappings specified by the remap_pfn_range,
1267 * vmf_insert_pfn.
1268 */
1269
1270 /*
1271 * track_pfn_remap is called when a _new_ pfn mapping is being established
1272 * by remap_pfn_range() for physical range indicated by pfn and size.
1273 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1274 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1275 unsigned long pfn, unsigned long addr,
1276 unsigned long size)
1277 {
1278 return 0;
1279 }
1280
1281 /*
1282 * track_pfn_insert is called when a _new_ single pfn is established
1283 * by vmf_insert_pfn().
1284 */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1285 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1286 pfn_t pfn)
1287 {
1288 }
1289
1290 /*
1291 * track_pfn_copy is called when a VM_PFNMAP VMA is about to get the page
1292 * tables copied during copy_page_range(). On success, stores the pfn to be
1293 * passed to untrack_pfn_copy().
1294 */
track_pfn_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long * pfn)1295 static inline int track_pfn_copy(struct vm_area_struct *dst_vma,
1296 struct vm_area_struct *src_vma, unsigned long *pfn)
1297 {
1298 return 0;
1299 }
1300
1301 /*
1302 * untrack_pfn_copy is called when a VM_PFNMAP VMA failed to copy during
1303 * copy_page_range(), but after track_pfn_copy() was already called.
1304 */
untrack_pfn_copy(struct vm_area_struct * dst_vma,unsigned long pfn)1305 static inline void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1306 unsigned long pfn)
1307 {
1308 }
1309
1310 /*
1311 * untrack_pfn is called while unmapping a pfnmap for a region.
1312 * untrack can be called for a specific region indicated by pfn and size or
1313 * can be for the entire vma (in which case pfn, size are zero).
1314 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1315 static inline void untrack_pfn(struct vm_area_struct *vma,
1316 unsigned long pfn, unsigned long size,
1317 bool mm_wr_locked)
1318 {
1319 }
1320
1321 /*
1322 * untrack_pfn_clear is called in the following cases on a VM_PFNMAP VMA:
1323 *
1324 * 1) During mremap() on the src VMA after the page tables were moved.
1325 * 2) During fork() on the dst VMA, immediately after duplicating the src VMA.
1326 */
untrack_pfn_clear(struct vm_area_struct * vma)1327 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1328 {
1329 }
1330 #else
1331 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1332 unsigned long pfn, unsigned long addr,
1333 unsigned long size);
1334 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1335 pfn_t pfn);
1336 extern int track_pfn_copy(struct vm_area_struct *dst_vma,
1337 struct vm_area_struct *src_vma, unsigned long *pfn);
1338 extern void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1339 unsigned long pfn);
1340 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1341 unsigned long size, bool mm_wr_locked);
1342 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1343 #endif
1344
1345 #ifdef CONFIG_MMU
1346 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1347 static inline int is_zero_pfn(unsigned long pfn)
1348 {
1349 extern unsigned long zero_pfn;
1350 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1351 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1352 }
1353
1354 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1355
1356 #else
is_zero_pfn(unsigned long pfn)1357 static inline int is_zero_pfn(unsigned long pfn)
1358 {
1359 extern unsigned long zero_pfn;
1360 return pfn == zero_pfn;
1361 }
1362
my_zero_pfn(unsigned long addr)1363 static inline unsigned long my_zero_pfn(unsigned long addr)
1364 {
1365 extern unsigned long zero_pfn;
1366 return zero_pfn;
1367 }
1368 #endif
1369 #else
is_zero_pfn(unsigned long pfn)1370 static inline int is_zero_pfn(unsigned long pfn)
1371 {
1372 return 0;
1373 }
1374
my_zero_pfn(unsigned long addr)1375 static inline unsigned long my_zero_pfn(unsigned long addr)
1376 {
1377 return 0;
1378 }
1379 #endif /* CONFIG_MMU */
1380
1381 #ifdef CONFIG_MMU
1382
1383 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1384 static inline int pmd_trans_huge(pmd_t pmd)
1385 {
1386 return 0;
1387 }
1388 #ifndef pmd_write
pmd_write(pmd_t pmd)1389 static inline int pmd_write(pmd_t pmd)
1390 {
1391 BUG();
1392 return 0;
1393 }
1394 #endif /* pmd_write */
1395 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1396
1397 #ifndef pud_write
pud_write(pud_t pud)1398 static inline int pud_write(pud_t pud)
1399 {
1400 BUG();
1401 return 0;
1402 }
1403 #endif /* pud_write */
1404
1405 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1406 static inline int pmd_devmap(pmd_t pmd)
1407 {
1408 return 0;
1409 }
pud_devmap(pud_t pud)1410 static inline int pud_devmap(pud_t pud)
1411 {
1412 return 0;
1413 }
pgd_devmap(pgd_t pgd)1414 static inline int pgd_devmap(pgd_t pgd)
1415 {
1416 return 0;
1417 }
1418 #endif
1419
1420 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1421 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_trans_huge(pud_t pud)1422 static inline int pud_trans_huge(pud_t pud)
1423 {
1424 return 0;
1425 }
1426 #endif
1427
pud_trans_unstable(pud_t * pud)1428 static inline int pud_trans_unstable(pud_t *pud)
1429 {
1430 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1431 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1432 pud_t pudval = READ_ONCE(*pud);
1433
1434 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1435 return 1;
1436 if (unlikely(pud_bad(pudval))) {
1437 pud_clear_bad(pud);
1438 return 1;
1439 }
1440 #endif
1441 return 0;
1442 }
1443
1444 #ifndef CONFIG_NUMA_BALANCING
1445 /*
1446 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1447 * perfectly valid to indicate "no" in that case, which is why our default
1448 * implementation defaults to "always no".
1449 *
1450 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1451 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1452 * accessible VMAs.
1453 *
1454 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1455 * looking at the VMA accessibility is sufficient.
1456 */
pte_protnone(pte_t pte)1457 static inline int pte_protnone(pte_t pte)
1458 {
1459 return 0;
1460 }
1461
pmd_protnone(pmd_t pmd)1462 static inline int pmd_protnone(pmd_t pmd)
1463 {
1464 return 0;
1465 }
1466 #endif /* CONFIG_NUMA_BALANCING */
1467
1468 #endif /* CONFIG_MMU */
1469
1470 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1471
1472 #ifndef __PAGETABLE_P4D_FOLDED
1473 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1474 void p4d_clear_huge(p4d_t *p4d);
1475 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1476 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1477 {
1478 return 0;
1479 }
p4d_clear_huge(p4d_t * p4d)1480 static inline void p4d_clear_huge(p4d_t *p4d) { }
1481 #endif /* !__PAGETABLE_P4D_FOLDED */
1482
1483 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1484 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1485 int pud_clear_huge(pud_t *pud);
1486 int pmd_clear_huge(pmd_t *pmd);
1487 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1488 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1489 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1490 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1491 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1492 {
1493 return 0;
1494 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1495 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1496 {
1497 return 0;
1498 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1499 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1500 {
1501 return 0;
1502 }
p4d_clear_huge(p4d_t * p4d)1503 static inline void p4d_clear_huge(p4d_t *p4d) { }
pud_clear_huge(pud_t * pud)1504 static inline int pud_clear_huge(pud_t *pud)
1505 {
1506 return 0;
1507 }
pmd_clear_huge(pmd_t * pmd)1508 static inline int pmd_clear_huge(pmd_t *pmd)
1509 {
1510 return 0;
1511 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1512 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1513 {
1514 return 0;
1515 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1516 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1517 {
1518 return 0;
1519 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1520 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1521 {
1522 return 0;
1523 }
1524 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1525
1526 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 /*
1529 * ARCHes with special requirements for evicting THP backing TLB entries can
1530 * implement this. Otherwise also, it can help optimize normal TLB flush in
1531 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1532 * entire TLB if flush span is greater than a threshold, which will
1533 * likely be true for a single huge page. Thus a single THP flush will
1534 * invalidate the entire TLB which is not desirable.
1535 * e.g. see arch/arc: flush_pmd_tlb_range
1536 */
1537 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1538 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1539 #else
1540 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1541 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1542 #endif
1543 #endif
1544
1545 struct file;
1546 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1547 unsigned long size, pgprot_t *vma_prot);
1548
1549 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1550 static inline void init_espfix_bsp(void) { }
1551 #endif
1552
1553 extern void __init pgtable_cache_init(void);
1554
1555 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1556 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1557 {
1558 return true;
1559 }
1560
arch_has_pfn_modify_check(void)1561 static inline bool arch_has_pfn_modify_check(void)
1562 {
1563 return false;
1564 }
1565 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1566
1567 /*
1568 * Architecture PAGE_KERNEL_* fallbacks
1569 *
1570 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1571 * because they really don't support them, or the port needs to be updated to
1572 * reflect the required functionality. Below are a set of relatively safe
1573 * fallbacks, as best effort, which we can count on in lieu of the architectures
1574 * not defining them on their own yet.
1575 */
1576
1577 #ifndef PAGE_KERNEL_RO
1578 # define PAGE_KERNEL_RO PAGE_KERNEL
1579 #endif
1580
1581 #ifndef PAGE_KERNEL_EXEC
1582 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1583 #endif
1584
1585 /*
1586 * Page Table Modification bits for pgtbl_mod_mask.
1587 *
1588 * These are used by the p?d_alloc_track*() set of functions an in the generic
1589 * vmalloc/ioremap code to track at which page-table levels entries have been
1590 * modified. Based on that the code can better decide when vmalloc and ioremap
1591 * mapping changes need to be synchronized to other page-tables in the system.
1592 */
1593 #define __PGTBL_PGD_MODIFIED 0
1594 #define __PGTBL_P4D_MODIFIED 1
1595 #define __PGTBL_PUD_MODIFIED 2
1596 #define __PGTBL_PMD_MODIFIED 3
1597 #define __PGTBL_PTE_MODIFIED 4
1598
1599 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1600 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1601 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1602 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1603 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1604
1605 /* Page-Table Modification Mask */
1606 typedef unsigned int pgtbl_mod_mask;
1607
1608 #endif /* !__ASSEMBLY__ */
1609
1610 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1611 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1612 /*
1613 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1614 * with physical address space extension, but falls back to
1615 * BITS_PER_LONG otherwise.
1616 */
1617 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1618 #else
1619 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1620 #endif
1621 #endif
1622
1623 #ifndef has_transparent_hugepage
1624 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1625 #endif
1626
1627 #ifndef has_transparent_pud_hugepage
1628 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1629 #endif
1630 /*
1631 * On some architectures it depends on the mm if the p4d/pud or pmd
1632 * layer of the page table hierarchy is folded or not.
1633 */
1634 #ifndef mm_p4d_folded
1635 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1636 #endif
1637
1638 #ifndef mm_pud_folded
1639 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1640 #endif
1641
1642 #ifndef mm_pmd_folded
1643 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1644 #endif
1645
1646 #ifndef p4d_offset_lockless
1647 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1648 #endif
1649 #ifndef pud_offset_lockless
1650 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1651 #endif
1652 #ifndef pmd_offset_lockless
1653 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1654 #endif
1655
1656 /*
1657 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1658 * This differs from p?d_huge() by the fact that they are always available (if
1659 * the architecture supports large pages at the appropriate level) even
1660 * if CONFIG_HUGETLB_PAGE is not defined.
1661 * Only meaningful when called on a valid entry.
1662 */
1663 #ifndef pgd_leaf
1664 #define pgd_leaf(x) 0
1665 #endif
1666 #ifndef p4d_leaf
1667 #define p4d_leaf(x) 0
1668 #endif
1669 #ifndef pud_leaf
1670 #define pud_leaf(x) 0
1671 #endif
1672 #ifndef pmd_leaf
1673 #define pmd_leaf(x) 0
1674 #endif
1675
1676 #ifndef pgd_leaf_size
1677 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1678 #endif
1679 #ifndef p4d_leaf_size
1680 #define p4d_leaf_size(x) P4D_SIZE
1681 #endif
1682 #ifndef pud_leaf_size
1683 #define pud_leaf_size(x) PUD_SIZE
1684 #endif
1685 #ifndef pmd_leaf_size
1686 #define pmd_leaf_size(x) PMD_SIZE
1687 #endif
1688 #ifndef pte_leaf_size
1689 #define pte_leaf_size(x) PAGE_SIZE
1690 #endif
1691
1692 /*
1693 * Some architectures have MMUs that are configurable or selectable at boot
1694 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1695 * helps to have a static maximum value.
1696 */
1697
1698 #ifndef MAX_PTRS_PER_PTE
1699 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1700 #endif
1701
1702 #ifndef MAX_PTRS_PER_PMD
1703 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1704 #endif
1705
1706 #ifndef MAX_PTRS_PER_PUD
1707 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1708 #endif
1709
1710 #ifndef MAX_PTRS_PER_P4D
1711 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1712 #endif
1713
1714 /* description of effects of mapping type and prot in current implementation.
1715 * this is due to the limited x86 page protection hardware. The expected
1716 * behavior is in parens:
1717 *
1718 * map_type prot
1719 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1720 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1721 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1722 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1723 *
1724 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1725 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1726 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1727 *
1728 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1729 * MAP_PRIVATE (with Enhanced PAN supported):
1730 * r: (no) no
1731 * w: (no) no
1732 * x: (yes) yes
1733 */
1734 #define DECLARE_VM_GET_PAGE_PROT \
1735 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1736 { \
1737 return protection_map[vm_flags & \
1738 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1739 } \
1740 EXPORT_SYMBOL(vm_get_page_prot);
1741
1742 #endif /* _LINUX_PGTABLE_H */
1743