1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/of.h>
23 #include <linux/thermal.h>
24 #include "pmbus.h"
25
26 /*
27 * Number of additional attribute pointers to allocate
28 * with each call to krealloc
29 */
30 #define PMBUS_ATTR_ALLOC_SIZE 32
31 #define PMBUS_NAME_SIZE 24
32
33 struct pmbus_sensor {
34 struct pmbus_sensor *next;
35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
36 struct device_attribute attribute;
37 u8 page; /* page number */
38 u8 phase; /* phase number, 0xff for all phases */
39 u16 reg; /* register */
40 enum pmbus_sensor_classes class; /* sensor class */
41 bool update; /* runtime sensor update needed */
42 bool convert; /* Whether or not to apply linear/vid/direct */
43 int data; /* Sensor data.
44 Negative if there was a read error */
45 };
46 #define to_pmbus_sensor(_attr) \
47 container_of(_attr, struct pmbus_sensor, attribute)
48
49 struct pmbus_boolean {
50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
51 struct sensor_device_attribute attribute;
52 struct pmbus_sensor *s1;
53 struct pmbus_sensor *s2;
54 };
55 #define to_pmbus_boolean(_attr) \
56 container_of(_attr, struct pmbus_boolean, attribute)
57
58 struct pmbus_label {
59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
60 struct device_attribute attribute;
61 char label[PMBUS_NAME_SIZE]; /* label */
62 };
63 #define to_pmbus_label(_attr) \
64 container_of(_attr, struct pmbus_label, attribute)
65
66 /* Macros for converting between sensor index and register/page/status mask */
67
68 #define PB_STATUS_MASK 0xffff
69 #define PB_REG_SHIFT 16
70 #define PB_REG_MASK 0x3ff
71 #define PB_PAGE_SHIFT 26
72 #define PB_PAGE_MASK 0x3f
73
74 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
75 ((reg) << PB_REG_SHIFT) | (mask))
76
77 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
78 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
79 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
80
81 struct pmbus_data {
82 struct device *dev;
83 struct device *hwmon_dev;
84 struct regulator_dev **rdevs;
85
86 u32 flags; /* from platform data */
87
88 u8 revision; /* The PMBus revision the device is compliant with */
89
90 int exponent[PMBUS_PAGES];
91 /* linear mode: exponent for output voltages */
92
93 const struct pmbus_driver_info *info;
94
95 int max_attributes;
96 int num_attributes;
97 struct attribute_group group;
98 const struct attribute_group **groups;
99 struct dentry *debugfs; /* debugfs device directory */
100
101 struct pmbus_sensor *sensors;
102
103 struct mutex update_lock;
104
105 bool has_status_word; /* device uses STATUS_WORD register */
106 int (*read_status)(struct i2c_client *client, int page);
107
108 s16 currpage; /* current page, -1 for unknown/unset */
109 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
110
111 int vout_low[PMBUS_PAGES]; /* voltage low margin */
112 int vout_high[PMBUS_PAGES]; /* voltage high margin */
113 };
114
115 struct pmbus_debugfs_entry {
116 struct i2c_client *client;
117 u8 page;
118 u8 reg;
119 };
120
121 static const int pmbus_fan_rpm_mask[] = {
122 PB_FAN_1_RPM,
123 PB_FAN_2_RPM,
124 PB_FAN_1_RPM,
125 PB_FAN_2_RPM,
126 };
127
128 static const int pmbus_fan_config_registers[] = {
129 PMBUS_FAN_CONFIG_12,
130 PMBUS_FAN_CONFIG_12,
131 PMBUS_FAN_CONFIG_34,
132 PMBUS_FAN_CONFIG_34
133 };
134
135 static const int pmbus_fan_command_registers[] = {
136 PMBUS_FAN_COMMAND_1,
137 PMBUS_FAN_COMMAND_2,
138 PMBUS_FAN_COMMAND_3,
139 PMBUS_FAN_COMMAND_4,
140 };
141
pmbus_clear_cache(struct i2c_client * client)142 void pmbus_clear_cache(struct i2c_client *client)
143 {
144 struct pmbus_data *data = i2c_get_clientdata(client);
145 struct pmbus_sensor *sensor;
146
147 for (sensor = data->sensors; sensor; sensor = sensor->next)
148 sensor->data = -ENODATA;
149 }
150 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
151
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)152 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
153 {
154 struct pmbus_data *data = i2c_get_clientdata(client);
155 struct pmbus_sensor *sensor;
156
157 for (sensor = data->sensors; sensor; sensor = sensor->next)
158 if (sensor->reg == reg)
159 sensor->update = update;
160 }
161 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
162
pmbus_set_page(struct i2c_client * client,int page,int phase)163 int pmbus_set_page(struct i2c_client *client, int page, int phase)
164 {
165 struct pmbus_data *data = i2c_get_clientdata(client);
166 int rv;
167
168 if (page < 0)
169 return 0;
170
171 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
172 data->info->pages > 1 && page != data->currpage) {
173 dev_dbg(&client->dev, "Want page %u, %u cached\n", page,
174 data->currpage);
175
176 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
177 if (rv < 0) {
178 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE,
179 page);
180 dev_dbg(&client->dev,
181 "Failed to set page %u, performed one-shot retry %s: %d\n",
182 page, rv ? "and failed" : "with success", rv);
183 if (rv < 0)
184 return rv;
185 }
186
187 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
188 if (rv < 0)
189 return rv;
190
191 if (rv != page)
192 return -EIO;
193 }
194 data->currpage = page;
195
196 if (data->info->phases[page] && data->currphase != phase &&
197 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
198 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
199 phase);
200 if (rv)
201 return rv;
202 }
203 data->currphase = phase;
204
205 return 0;
206 }
207 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
208
pmbus_write_byte(struct i2c_client * client,int page,u8 value)209 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
210 {
211 int rv;
212
213 rv = pmbus_set_page(client, page, 0xff);
214 if (rv < 0)
215 return rv;
216
217 return i2c_smbus_write_byte(client, value);
218 }
219 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
220
221 /*
222 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
223 * a device specific mapping function exists and calls it if necessary.
224 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)225 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
226 {
227 struct pmbus_data *data = i2c_get_clientdata(client);
228 const struct pmbus_driver_info *info = data->info;
229 int status;
230
231 if (info->write_byte) {
232 status = info->write_byte(client, page, value);
233 if (status != -ENODATA)
234 return status;
235 }
236 return pmbus_write_byte(client, page, value);
237 }
238
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)239 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
240 u16 word)
241 {
242 int rv;
243
244 rv = pmbus_set_page(client, page, 0xff);
245 if (rv < 0)
246 return rv;
247
248 return i2c_smbus_write_word_data(client, reg, word);
249 }
250 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
251
252
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)253 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
254 u16 word)
255 {
256 int bit;
257 int id;
258 int rv;
259
260 switch (reg) {
261 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
262 id = reg - PMBUS_VIRT_FAN_TARGET_1;
263 bit = pmbus_fan_rpm_mask[id];
264 rv = pmbus_update_fan(client, page, id, bit, bit, word);
265 break;
266 default:
267 rv = -ENXIO;
268 break;
269 }
270
271 return rv;
272 }
273
274 /*
275 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
276 * a device specific mapping function exists and calls it if necessary.
277 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)278 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
279 u16 word)
280 {
281 struct pmbus_data *data = i2c_get_clientdata(client);
282 const struct pmbus_driver_info *info = data->info;
283 int status;
284
285 if (info->write_word_data) {
286 status = info->write_word_data(client, page, reg, word);
287 if (status != -ENODATA)
288 return status;
289 }
290
291 if (reg >= PMBUS_VIRT_BASE)
292 return pmbus_write_virt_reg(client, page, reg, word);
293
294 return pmbus_write_word_data(client, page, reg, word);
295 }
296
297 /*
298 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
299 * a device specific mapping function exists and calls it if necessary.
300 */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)301 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
302 {
303 struct pmbus_data *data = i2c_get_clientdata(client);
304 const struct pmbus_driver_info *info = data->info;
305 int status;
306
307 if (info->write_byte_data) {
308 status = info->write_byte_data(client, page, reg, value);
309 if (status != -ENODATA)
310 return status;
311 }
312 return pmbus_write_byte_data(client, page, reg, value);
313 }
314
315 /*
316 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
317 * a device specific mapping function exists and calls it if necessary.
318 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)319 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
320 {
321 struct pmbus_data *data = i2c_get_clientdata(client);
322 const struct pmbus_driver_info *info = data->info;
323 int status;
324
325 if (info->read_byte_data) {
326 status = info->read_byte_data(client, page, reg);
327 if (status != -ENODATA)
328 return status;
329 }
330 return pmbus_read_byte_data(client, page, reg);
331 }
332
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)333 int pmbus_update_fan(struct i2c_client *client, int page, int id,
334 u8 config, u8 mask, u16 command)
335 {
336 int from;
337 int rv;
338 u8 to;
339
340 from = _pmbus_read_byte_data(client, page,
341 pmbus_fan_config_registers[id]);
342 if (from < 0)
343 return from;
344
345 to = (from & ~mask) | (config & mask);
346 if (to != from) {
347 rv = _pmbus_write_byte_data(client, page,
348 pmbus_fan_config_registers[id], to);
349 if (rv < 0)
350 return rv;
351 }
352
353 return _pmbus_write_word_data(client, page,
354 pmbus_fan_command_registers[id], command);
355 }
356 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
357
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)358 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
359 {
360 int rv;
361
362 rv = pmbus_set_page(client, page, phase);
363 if (rv < 0)
364 return rv;
365
366 return i2c_smbus_read_word_data(client, reg);
367 }
368 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
369
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)370 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
371 {
372 int rv;
373 int id;
374
375 switch (reg) {
376 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
377 id = reg - PMBUS_VIRT_FAN_TARGET_1;
378 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
379 break;
380 default:
381 rv = -ENXIO;
382 break;
383 }
384
385 return rv;
386 }
387
388 /*
389 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
390 * a device specific mapping function exists and calls it if necessary.
391 */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)392 static int _pmbus_read_word_data(struct i2c_client *client, int page,
393 int phase, int reg)
394 {
395 struct pmbus_data *data = i2c_get_clientdata(client);
396 const struct pmbus_driver_info *info = data->info;
397 int status;
398
399 if (info->read_word_data) {
400 status = info->read_word_data(client, page, phase, reg);
401 if (status != -ENODATA)
402 return status;
403 }
404
405 if (reg >= PMBUS_VIRT_BASE)
406 return pmbus_read_virt_reg(client, page, reg);
407
408 return pmbus_read_word_data(client, page, phase, reg);
409 }
410
411 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)412 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
413 {
414 return _pmbus_read_word_data(client, page, 0xff, reg);
415 }
416
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)417 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
418 {
419 int rv;
420
421 rv = pmbus_set_page(client, page, 0xff);
422 if (rv < 0)
423 return rv;
424
425 return i2c_smbus_read_byte_data(client, reg);
426 }
427 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
428
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)429 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
430 {
431 int rv;
432
433 rv = pmbus_set_page(client, page, 0xff);
434 if (rv < 0)
435 return rv;
436
437 return i2c_smbus_write_byte_data(client, reg, value);
438 }
439 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
440
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)441 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
442 u8 mask, u8 value)
443 {
444 unsigned int tmp;
445 int rv;
446
447 rv = _pmbus_read_byte_data(client, page, reg);
448 if (rv < 0)
449 return rv;
450
451 tmp = (rv & ~mask) | (value & mask);
452
453 if (tmp != rv)
454 rv = _pmbus_write_byte_data(client, page, reg, tmp);
455
456 return rv;
457 }
458 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
459
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)460 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
461 char *data_buf)
462 {
463 int rv;
464
465 rv = pmbus_set_page(client, page, 0xff);
466 if (rv < 0)
467 return rv;
468
469 return i2c_smbus_read_block_data(client, reg, data_buf);
470 }
471
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)472 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
473 int reg)
474 {
475 struct pmbus_sensor *sensor;
476
477 for (sensor = data->sensors; sensor; sensor = sensor->next) {
478 if (sensor->page == page && sensor->reg == reg)
479 return sensor;
480 }
481
482 return ERR_PTR(-EINVAL);
483 }
484
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)485 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
486 enum pmbus_fan_mode mode,
487 bool from_cache)
488 {
489 struct pmbus_data *data = i2c_get_clientdata(client);
490 bool want_rpm, have_rpm;
491 struct pmbus_sensor *s;
492 int config;
493 int reg;
494
495 want_rpm = (mode == rpm);
496
497 if (from_cache) {
498 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
499 s = pmbus_find_sensor(data, page, reg + id);
500 if (IS_ERR(s))
501 return PTR_ERR(s);
502
503 return s->data;
504 }
505
506 config = _pmbus_read_byte_data(client, page,
507 pmbus_fan_config_registers[id]);
508 if (config < 0)
509 return config;
510
511 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
512 if (want_rpm == have_rpm)
513 return pmbus_read_word_data(client, page, 0xff,
514 pmbus_fan_command_registers[id]);
515
516 /* Can't sensibly map between RPM and PWM, just return zero */
517 return 0;
518 }
519
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)520 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
521 enum pmbus_fan_mode mode)
522 {
523 return pmbus_get_fan_rate(client, page, id, mode, false);
524 }
525 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
526
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)527 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
528 enum pmbus_fan_mode mode)
529 {
530 return pmbus_get_fan_rate(client, page, id, mode, true);
531 }
532 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
533
pmbus_clear_fault_page(struct i2c_client * client,int page)534 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
535 {
536 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
537 }
538
pmbus_clear_faults(struct i2c_client * client)539 void pmbus_clear_faults(struct i2c_client *client)
540 {
541 struct pmbus_data *data = i2c_get_clientdata(client);
542 int i;
543
544 for (i = 0; i < data->info->pages; i++)
545 pmbus_clear_fault_page(client, i);
546 }
547 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
548
pmbus_check_status_cml(struct i2c_client * client)549 static int pmbus_check_status_cml(struct i2c_client *client)
550 {
551 struct pmbus_data *data = i2c_get_clientdata(client);
552 int status, status2;
553
554 status = data->read_status(client, -1);
555 if (status < 0 || (status & PB_STATUS_CML)) {
556 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
557 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
558 return -EIO;
559 }
560 return 0;
561 }
562
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)563 static bool pmbus_check_register(struct i2c_client *client,
564 int (*func)(struct i2c_client *client,
565 int page, int reg),
566 int page, int reg)
567 {
568 int rv;
569 struct pmbus_data *data = i2c_get_clientdata(client);
570
571 rv = func(client, page, reg);
572 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
573 rv = pmbus_check_status_cml(client);
574 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
575 data->read_status(client, -1);
576 if (reg < PMBUS_VIRT_BASE)
577 pmbus_clear_fault_page(client, -1);
578 return rv >= 0;
579 }
580
pmbus_check_status_register(struct i2c_client * client,int page)581 static bool pmbus_check_status_register(struct i2c_client *client, int page)
582 {
583 int status;
584 struct pmbus_data *data = i2c_get_clientdata(client);
585
586 status = data->read_status(client, page);
587 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
588 (status & PB_STATUS_CML)) {
589 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
590 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
591 status = -EIO;
592 }
593
594 pmbus_clear_fault_page(client, -1);
595 return status >= 0;
596 }
597
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)598 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
599 {
600 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
601 }
602 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
603
pmbus_check_word_register(struct i2c_client * client,int page,int reg)604 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
605 {
606 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
607 }
608 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
609
pmbus_check_block_register(struct i2c_client * client,int page,int reg)610 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
611 int page, int reg)
612 {
613 int rv;
614 struct pmbus_data *data = i2c_get_clientdata(client);
615 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
616
617 rv = pmbus_read_block_data(client, page, reg, data_buf);
618 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
619 rv = pmbus_check_status_cml(client);
620 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
621 data->read_status(client, -1);
622 pmbus_clear_fault_page(client, -1);
623 return rv >= 0;
624 }
625
pmbus_get_driver_info(struct i2c_client * client)626 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
627 {
628 struct pmbus_data *data = i2c_get_clientdata(client);
629
630 return data->info;
631 }
632 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
633
pmbus_get_status(struct i2c_client * client,int page,int reg)634 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
635 {
636 struct pmbus_data *data = i2c_get_clientdata(client);
637 int status;
638
639 switch (reg) {
640 case PMBUS_STATUS_WORD:
641 status = data->read_status(client, page);
642 break;
643 default:
644 status = _pmbus_read_byte_data(client, page, reg);
645 break;
646 }
647 if (status < 0)
648 pmbus_clear_faults(client);
649 return status;
650 }
651
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)652 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
653 {
654 if (sensor->data < 0 || sensor->update)
655 sensor->data = _pmbus_read_word_data(client, sensor->page,
656 sensor->phase, sensor->reg);
657 }
658
659 /*
660 * Convert ieee754 sensor values to milli- or micro-units
661 * depending on sensor type.
662 *
663 * ieee754 data format:
664 * bit 15: sign
665 * bit 10..14: exponent
666 * bit 0..9: mantissa
667 * exponent=0:
668 * v=(−1)^signbit * 2^(−14) * 0.significantbits
669 * exponent=1..30:
670 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
671 * exponent=31:
672 * v=NaN
673 *
674 * Add the number mantissa bits into the calculations for simplicity.
675 * To do that, add '10' to the exponent. By doing that, we can just add
676 * 0x400 to normal values and get the expected result.
677 */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)678 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
679 struct pmbus_sensor *sensor)
680 {
681 int exponent;
682 bool sign;
683 long val;
684
685 /* only support half precision for now */
686 sign = sensor->data & 0x8000;
687 exponent = (sensor->data >> 10) & 0x1f;
688 val = sensor->data & 0x3ff;
689
690 if (exponent == 0) { /* subnormal */
691 exponent = -(14 + 10);
692 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
693 exponent = 0;
694 val = 65504;
695 } else {
696 exponent -= (15 + 10); /* normal */
697 val |= 0x400;
698 }
699
700 /* scale result to milli-units for all sensors except fans */
701 if (sensor->class != PSC_FAN)
702 val = val * 1000L;
703
704 /* scale result to micro-units for power sensors */
705 if (sensor->class == PSC_POWER)
706 val = val * 1000L;
707
708 if (exponent >= 0)
709 val <<= exponent;
710 else
711 val >>= -exponent;
712
713 if (sign)
714 val = -val;
715
716 return val;
717 }
718
719 /*
720 * Convert linear sensor values to milli- or micro-units
721 * depending on sensor type.
722 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)723 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
724 struct pmbus_sensor *sensor)
725 {
726 s16 exponent;
727 s32 mantissa;
728 s64 val;
729
730 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
731 exponent = data->exponent[sensor->page];
732 mantissa = (u16) sensor->data;
733 } else { /* LINEAR11 */
734 exponent = ((s16)sensor->data) >> 11;
735 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
736 }
737
738 val = mantissa;
739
740 /* scale result to milli-units for all sensors except fans */
741 if (sensor->class != PSC_FAN)
742 val = val * 1000LL;
743
744 /* scale result to micro-units for power sensors */
745 if (sensor->class == PSC_POWER)
746 val = val * 1000LL;
747
748 if (exponent >= 0)
749 val <<= exponent;
750 else
751 val >>= -exponent;
752
753 return val;
754 }
755
756 /*
757 * Convert direct sensor values to milli- or micro-units
758 * depending on sensor type.
759 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)760 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
761 struct pmbus_sensor *sensor)
762 {
763 s64 b, val = (s16)sensor->data;
764 s32 m, R;
765
766 m = data->info->m[sensor->class];
767 b = data->info->b[sensor->class];
768 R = data->info->R[sensor->class];
769
770 if (m == 0)
771 return 0;
772
773 /* X = 1/m * (Y * 10^-R - b) */
774 R = -R;
775 /* scale result to milli-units for everything but fans */
776 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
777 R += 3;
778 b *= 1000;
779 }
780
781 /* scale result to micro-units for power sensors */
782 if (sensor->class == PSC_POWER) {
783 R += 3;
784 b *= 1000;
785 }
786
787 while (R > 0) {
788 val *= 10;
789 R--;
790 }
791 while (R < 0) {
792 val = div_s64(val + 5LL, 10L); /* round closest */
793 R++;
794 }
795
796 val = div_s64(val - b, m);
797 return val;
798 }
799
800 /*
801 * Convert VID sensor values to milli- or micro-units
802 * depending on sensor type.
803 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)804 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
805 struct pmbus_sensor *sensor)
806 {
807 long val = sensor->data;
808 long rv = 0;
809
810 switch (data->info->vrm_version[sensor->page]) {
811 case vr11:
812 if (val >= 0x02 && val <= 0xb2)
813 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
814 break;
815 case vr12:
816 if (val >= 0x01)
817 rv = 250 + (val - 1) * 5;
818 break;
819 case vr13:
820 if (val >= 0x01)
821 rv = 500 + (val - 1) * 10;
822 break;
823 case imvp9:
824 if (val >= 0x01)
825 rv = 200 + (val - 1) * 10;
826 break;
827 case amd625mv:
828 if (val >= 0x0 && val <= 0xd8)
829 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
830 break;
831 }
832 return rv;
833 }
834
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)835 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
836 {
837 s64 val;
838
839 if (!sensor->convert)
840 return sensor->data;
841
842 switch (data->info->format[sensor->class]) {
843 case direct:
844 val = pmbus_reg2data_direct(data, sensor);
845 break;
846 case vid:
847 val = pmbus_reg2data_vid(data, sensor);
848 break;
849 case ieee754:
850 val = pmbus_reg2data_ieee754(data, sensor);
851 break;
852 case linear:
853 default:
854 val = pmbus_reg2data_linear(data, sensor);
855 break;
856 }
857 return val;
858 }
859
860 #define MAX_IEEE_MANTISSA (0x7ff * 1000)
861 #define MIN_IEEE_MANTISSA (0x400 * 1000)
862
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)863 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
864 struct pmbus_sensor *sensor, long val)
865 {
866 u16 exponent = (15 + 10);
867 long mantissa;
868 u16 sign = 0;
869
870 /* simple case */
871 if (val == 0)
872 return 0;
873
874 if (val < 0) {
875 sign = 0x8000;
876 val = -val;
877 }
878
879 /* Power is in uW. Convert to mW before converting. */
880 if (sensor->class == PSC_POWER)
881 val = DIV_ROUND_CLOSEST(val, 1000L);
882
883 /*
884 * For simplicity, convert fan data to milli-units
885 * before calculating the exponent.
886 */
887 if (sensor->class == PSC_FAN)
888 val = val * 1000;
889
890 /* Reduce large mantissa until it fits into 10 bit */
891 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
892 exponent++;
893 val >>= 1;
894 }
895 /*
896 * Increase small mantissa to generate valid 'normal'
897 * number
898 */
899 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
900 exponent--;
901 val <<= 1;
902 }
903
904 /* Convert mantissa from milli-units to units */
905 mantissa = DIV_ROUND_CLOSEST(val, 1000);
906
907 /*
908 * Ensure that the resulting number is within range.
909 * Valid range is 0x400..0x7ff, where bit 10 reflects
910 * the implied high bit in normalized ieee754 numbers.
911 * Set the range to 0x400..0x7ff to reflect this.
912 * The upper bit is then removed by the mask against
913 * 0x3ff in the final assignment.
914 */
915 if (mantissa > 0x7ff)
916 mantissa = 0x7ff;
917 else if (mantissa < 0x400)
918 mantissa = 0x400;
919
920 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
921 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
922 }
923
924 #define MAX_LIN_MANTISSA (1023 * 1000)
925 #define MIN_LIN_MANTISSA (511 * 1000)
926
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)927 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
928 struct pmbus_sensor *sensor, s64 val)
929 {
930 s16 exponent = 0, mantissa;
931 bool negative = false;
932
933 /* simple case */
934 if (val == 0)
935 return 0;
936
937 if (sensor->class == PSC_VOLTAGE_OUT) {
938 /* LINEAR16 does not support negative voltages */
939 if (val < 0)
940 return 0;
941
942 /*
943 * For a static exponents, we don't have a choice
944 * but to adjust the value to it.
945 */
946 if (data->exponent[sensor->page] < 0)
947 val <<= -data->exponent[sensor->page];
948 else
949 val >>= data->exponent[sensor->page];
950 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
951 return clamp_val(val, 0, 0xffff);
952 }
953
954 if (val < 0) {
955 negative = true;
956 val = -val;
957 }
958
959 /* Power is in uW. Convert to mW before converting. */
960 if (sensor->class == PSC_POWER)
961 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
962
963 /*
964 * For simplicity, convert fan data to milli-units
965 * before calculating the exponent.
966 */
967 if (sensor->class == PSC_FAN)
968 val = val * 1000LL;
969
970 /* Reduce large mantissa until it fits into 10 bit */
971 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
972 exponent++;
973 val >>= 1;
974 }
975 /* Increase small mantissa to improve precision */
976 while (val < MIN_LIN_MANTISSA && exponent > -15) {
977 exponent--;
978 val <<= 1;
979 }
980
981 /* Convert mantissa from milli-units to units */
982 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
983
984 /* restore sign */
985 if (negative)
986 mantissa = -mantissa;
987
988 /* Convert to 5 bit exponent, 11 bit mantissa */
989 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
990 }
991
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)992 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
993 struct pmbus_sensor *sensor, s64 val)
994 {
995 s64 b;
996 s32 m, R;
997
998 m = data->info->m[sensor->class];
999 b = data->info->b[sensor->class];
1000 R = data->info->R[sensor->class];
1001
1002 /* Power is in uW. Adjust R and b. */
1003 if (sensor->class == PSC_POWER) {
1004 R -= 3;
1005 b *= 1000;
1006 }
1007
1008 /* Calculate Y = (m * X + b) * 10^R */
1009 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1010 R -= 3; /* Adjust R and b for data in milli-units */
1011 b *= 1000;
1012 }
1013 val = val * m + b;
1014
1015 while (R > 0) {
1016 val *= 10;
1017 R--;
1018 }
1019 while (R < 0) {
1020 val = div_s64(val + 5LL, 10L); /* round closest */
1021 R++;
1022 }
1023
1024 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1025 }
1026
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1027 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1028 struct pmbus_sensor *sensor, s64 val)
1029 {
1030 val = clamp_val(val, 500, 1600);
1031
1032 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1033 }
1034
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1035 static u16 pmbus_data2reg(struct pmbus_data *data,
1036 struct pmbus_sensor *sensor, s64 val)
1037 {
1038 u16 regval;
1039
1040 if (!sensor->convert)
1041 return val;
1042
1043 switch (data->info->format[sensor->class]) {
1044 case direct:
1045 regval = pmbus_data2reg_direct(data, sensor, val);
1046 break;
1047 case vid:
1048 regval = pmbus_data2reg_vid(data, sensor, val);
1049 break;
1050 case ieee754:
1051 regval = pmbus_data2reg_ieee754(data, sensor, val);
1052 break;
1053 case linear:
1054 default:
1055 regval = pmbus_data2reg_linear(data, sensor, val);
1056 break;
1057 }
1058 return regval;
1059 }
1060
1061 /*
1062 * Return boolean calculated from converted data.
1063 * <index> defines a status register index and mask.
1064 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1065 *
1066 * The associated pmbus_boolean structure contains optional pointers to two
1067 * sensor attributes. If specified, those attributes are compared against each
1068 * other to determine if a limit has been exceeded.
1069 *
1070 * If the sensor attribute pointers are NULL, the function returns true if
1071 * (status[reg] & mask) is true.
1072 *
1073 * If sensor attribute pointers are provided, a comparison against a specified
1074 * limit has to be performed to determine the boolean result.
1075 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1076 * sensor values referenced by sensor attribute pointers s1 and s2).
1077 *
1078 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1079 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1080 *
1081 * If a negative value is stored in any of the referenced registers, this value
1082 * reflects an error code which will be returned.
1083 */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1084 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1085 int index)
1086 {
1087 struct pmbus_data *data = i2c_get_clientdata(client);
1088 struct pmbus_sensor *s1 = b->s1;
1089 struct pmbus_sensor *s2 = b->s2;
1090 u16 mask = pb_index_to_mask(index);
1091 u8 page = pb_index_to_page(index);
1092 u16 reg = pb_index_to_reg(index);
1093 int ret, status;
1094 u16 regval;
1095
1096 mutex_lock(&data->update_lock);
1097 status = pmbus_get_status(client, page, reg);
1098 if (status < 0) {
1099 ret = status;
1100 goto unlock;
1101 }
1102
1103 if (s1)
1104 pmbus_update_sensor_data(client, s1);
1105 if (s2)
1106 pmbus_update_sensor_data(client, s2);
1107
1108 regval = status & mask;
1109 if (regval) {
1110 if (data->revision >= PMBUS_REV_12) {
1111 ret = _pmbus_write_byte_data(client, page, reg, regval);
1112 if (ret)
1113 goto unlock;
1114 } else {
1115 pmbus_clear_fault_page(client, page);
1116 }
1117
1118 }
1119 if (s1 && s2) {
1120 s64 v1, v2;
1121
1122 if (s1->data < 0) {
1123 ret = s1->data;
1124 goto unlock;
1125 }
1126 if (s2->data < 0) {
1127 ret = s2->data;
1128 goto unlock;
1129 }
1130
1131 v1 = pmbus_reg2data(data, s1);
1132 v2 = pmbus_reg2data(data, s2);
1133 ret = !!(regval && v1 >= v2);
1134 } else {
1135 ret = !!regval;
1136 }
1137 unlock:
1138 mutex_unlock(&data->update_lock);
1139 return ret;
1140 }
1141
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1142 static ssize_t pmbus_show_boolean(struct device *dev,
1143 struct device_attribute *da, char *buf)
1144 {
1145 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1146 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1147 struct i2c_client *client = to_i2c_client(dev->parent);
1148 int val;
1149
1150 val = pmbus_get_boolean(client, boolean, attr->index);
1151 if (val < 0)
1152 return val;
1153 return sysfs_emit(buf, "%d\n", val);
1154 }
1155
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1156 static ssize_t pmbus_show_sensor(struct device *dev,
1157 struct device_attribute *devattr, char *buf)
1158 {
1159 struct i2c_client *client = to_i2c_client(dev->parent);
1160 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1161 struct pmbus_data *data = i2c_get_clientdata(client);
1162 ssize_t ret;
1163
1164 mutex_lock(&data->update_lock);
1165 pmbus_update_sensor_data(client, sensor);
1166 if (sensor->data < 0)
1167 ret = sensor->data;
1168 else
1169 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1170 mutex_unlock(&data->update_lock);
1171 return ret;
1172 }
1173
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1174 static ssize_t pmbus_set_sensor(struct device *dev,
1175 struct device_attribute *devattr,
1176 const char *buf, size_t count)
1177 {
1178 struct i2c_client *client = to_i2c_client(dev->parent);
1179 struct pmbus_data *data = i2c_get_clientdata(client);
1180 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1181 ssize_t rv = count;
1182 s64 val;
1183 int ret;
1184 u16 regval;
1185
1186 if (kstrtos64(buf, 10, &val) < 0)
1187 return -EINVAL;
1188
1189 mutex_lock(&data->update_lock);
1190 regval = pmbus_data2reg(data, sensor, val);
1191 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1192 if (ret < 0)
1193 rv = ret;
1194 else
1195 sensor->data = -ENODATA;
1196 mutex_unlock(&data->update_lock);
1197 return rv;
1198 }
1199
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1200 static ssize_t pmbus_show_label(struct device *dev,
1201 struct device_attribute *da, char *buf)
1202 {
1203 struct pmbus_label *label = to_pmbus_label(da);
1204
1205 return sysfs_emit(buf, "%s\n", label->label);
1206 }
1207
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1208 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1209 {
1210 if (data->num_attributes >= data->max_attributes - 1) {
1211 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1212 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1213 new_max_attrs, sizeof(void *),
1214 GFP_KERNEL);
1215 if (!new_attrs)
1216 return -ENOMEM;
1217 data->group.attrs = new_attrs;
1218 data->max_attributes = new_max_attrs;
1219 }
1220
1221 data->group.attrs[data->num_attributes++] = attr;
1222 data->group.attrs[data->num_attributes] = NULL;
1223 return 0;
1224 }
1225
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1226 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1227 const char *name,
1228 umode_t mode,
1229 ssize_t (*show)(struct device *dev,
1230 struct device_attribute *attr,
1231 char *buf),
1232 ssize_t (*store)(struct device *dev,
1233 struct device_attribute *attr,
1234 const char *buf, size_t count))
1235 {
1236 sysfs_attr_init(&dev_attr->attr);
1237 dev_attr->attr.name = name;
1238 dev_attr->attr.mode = mode;
1239 dev_attr->show = show;
1240 dev_attr->store = store;
1241 }
1242
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1243 static void pmbus_attr_init(struct sensor_device_attribute *a,
1244 const char *name,
1245 umode_t mode,
1246 ssize_t (*show)(struct device *dev,
1247 struct device_attribute *attr,
1248 char *buf),
1249 ssize_t (*store)(struct device *dev,
1250 struct device_attribute *attr,
1251 const char *buf, size_t count),
1252 int idx)
1253 {
1254 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1255 a->index = idx;
1256 }
1257
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1258 static int pmbus_add_boolean(struct pmbus_data *data,
1259 const char *name, const char *type, int seq,
1260 struct pmbus_sensor *s1,
1261 struct pmbus_sensor *s2,
1262 u8 page, u16 reg, u16 mask)
1263 {
1264 struct pmbus_boolean *boolean;
1265 struct sensor_device_attribute *a;
1266
1267 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1268 return -EINVAL;
1269
1270 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1271 if (!boolean)
1272 return -ENOMEM;
1273
1274 a = &boolean->attribute;
1275
1276 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1277 name, seq, type);
1278 boolean->s1 = s1;
1279 boolean->s2 = s2;
1280 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1281 pb_reg_to_index(page, reg, mask));
1282
1283 return pmbus_add_attribute(data, &a->dev_attr.attr);
1284 }
1285
1286 /* of thermal for pmbus temperature sensors */
1287 struct pmbus_thermal_data {
1288 struct pmbus_data *pmbus_data;
1289 struct pmbus_sensor *sensor;
1290 };
1291
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1292 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1293 {
1294 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1295 struct pmbus_sensor *sensor = tdata->sensor;
1296 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1297 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1298 struct device *dev = pmbus_data->hwmon_dev;
1299 int ret = 0;
1300
1301 if (!dev) {
1302 /* May not even get to hwmon yet */
1303 *temp = 0;
1304 return 0;
1305 }
1306
1307 mutex_lock(&pmbus_data->update_lock);
1308 pmbus_update_sensor_data(client, sensor);
1309 if (sensor->data < 0)
1310 ret = sensor->data;
1311 else
1312 *temp = (int)pmbus_reg2data(pmbus_data, sensor);
1313 mutex_unlock(&pmbus_data->update_lock);
1314
1315 return ret;
1316 }
1317
1318 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1319 .get_temp = pmbus_thermal_get_temp,
1320 };
1321
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1322 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1323 struct pmbus_sensor *sensor, int index)
1324 {
1325 struct device *dev = pmbus_data->dev;
1326 struct pmbus_thermal_data *tdata;
1327 struct thermal_zone_device *tzd;
1328
1329 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1330 if (!tdata)
1331 return -ENOMEM;
1332
1333 tdata->sensor = sensor;
1334 tdata->pmbus_data = pmbus_data;
1335
1336 tzd = devm_thermal_of_zone_register(dev, index, tdata,
1337 &pmbus_thermal_ops);
1338 /*
1339 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1340 * so ignore that error but forward any other error.
1341 */
1342 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1343 return PTR_ERR(tzd);
1344
1345 return 0;
1346 }
1347
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1348 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1349 const char *name, const char *type,
1350 int seq, int page, int phase,
1351 int reg,
1352 enum pmbus_sensor_classes class,
1353 bool update, bool readonly,
1354 bool convert)
1355 {
1356 struct pmbus_sensor *sensor;
1357 struct device_attribute *a;
1358
1359 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1360 if (!sensor)
1361 return NULL;
1362 a = &sensor->attribute;
1363
1364 if (type)
1365 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1366 name, seq, type);
1367 else
1368 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1369 name, seq);
1370
1371 if (data->flags & PMBUS_WRITE_PROTECTED)
1372 readonly = true;
1373
1374 sensor->page = page;
1375 sensor->phase = phase;
1376 sensor->reg = reg;
1377 sensor->class = class;
1378 sensor->update = update;
1379 sensor->convert = convert;
1380 sensor->data = -ENODATA;
1381 pmbus_dev_attr_init(a, sensor->name,
1382 readonly ? 0444 : 0644,
1383 pmbus_show_sensor, pmbus_set_sensor);
1384
1385 if (pmbus_add_attribute(data, &a->attr))
1386 return NULL;
1387
1388 sensor->next = data->sensors;
1389 data->sensors = sensor;
1390
1391 /* temperature sensors with _input values are registered with thermal */
1392 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1393 pmbus_thermal_add_sensor(data, sensor, seq);
1394
1395 return sensor;
1396 }
1397
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1398 static int pmbus_add_label(struct pmbus_data *data,
1399 const char *name, int seq,
1400 const char *lstring, int index, int phase)
1401 {
1402 struct pmbus_label *label;
1403 struct device_attribute *a;
1404
1405 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1406 if (!label)
1407 return -ENOMEM;
1408
1409 a = &label->attribute;
1410
1411 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1412 if (!index) {
1413 if (phase == 0xff)
1414 strncpy(label->label, lstring,
1415 sizeof(label->label) - 1);
1416 else
1417 snprintf(label->label, sizeof(label->label), "%s.%d",
1418 lstring, phase);
1419 } else {
1420 if (phase == 0xff)
1421 snprintf(label->label, sizeof(label->label), "%s%d",
1422 lstring, index);
1423 else
1424 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1425 lstring, index, phase);
1426 }
1427
1428 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1429 return pmbus_add_attribute(data, &a->attr);
1430 }
1431
1432 /*
1433 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1434 */
1435
1436 /*
1437 * The pmbus_limit_attr structure describes a single limit attribute
1438 * and its associated alarm attribute.
1439 */
1440 struct pmbus_limit_attr {
1441 u16 reg; /* Limit register */
1442 u16 sbit; /* Alarm attribute status bit */
1443 bool update; /* True if register needs updates */
1444 bool low; /* True if low limit; for limits with compare
1445 functions only */
1446 const char *attr; /* Attribute name */
1447 const char *alarm; /* Alarm attribute name */
1448 };
1449
1450 /*
1451 * The pmbus_sensor_attr structure describes one sensor attribute. This
1452 * description includes a reference to the associated limit attributes.
1453 */
1454 struct pmbus_sensor_attr {
1455 u16 reg; /* sensor register */
1456 u16 gbit; /* generic status bit */
1457 u8 nlimit; /* # of limit registers */
1458 enum pmbus_sensor_classes class;/* sensor class */
1459 const char *label; /* sensor label */
1460 bool paged; /* true if paged sensor */
1461 bool update; /* true if update needed */
1462 bool compare; /* true if compare function needed */
1463 u32 func; /* sensor mask */
1464 u32 sfunc; /* sensor status mask */
1465 int sreg; /* status register */
1466 const struct pmbus_limit_attr *limit;/* limit registers */
1467 };
1468
1469 /*
1470 * Add a set of limit attributes and, if supported, the associated
1471 * alarm attributes.
1472 * returns 0 if no alarm register found, 1 if an alarm register was found,
1473 * < 0 on errors.
1474 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1475 static int pmbus_add_limit_attrs(struct i2c_client *client,
1476 struct pmbus_data *data,
1477 const struct pmbus_driver_info *info,
1478 const char *name, int index, int page,
1479 struct pmbus_sensor *base,
1480 const struct pmbus_sensor_attr *attr)
1481 {
1482 const struct pmbus_limit_attr *l = attr->limit;
1483 int nlimit = attr->nlimit;
1484 int have_alarm = 0;
1485 int i, ret;
1486 struct pmbus_sensor *curr;
1487
1488 for (i = 0; i < nlimit; i++) {
1489 if (pmbus_check_word_register(client, page, l->reg)) {
1490 curr = pmbus_add_sensor(data, name, l->attr, index,
1491 page, 0xff, l->reg, attr->class,
1492 attr->update || l->update,
1493 false, true);
1494 if (!curr)
1495 return -ENOMEM;
1496 if (l->sbit && (info->func[page] & attr->sfunc)) {
1497 ret = pmbus_add_boolean(data, name,
1498 l->alarm, index,
1499 attr->compare ? l->low ? curr : base
1500 : NULL,
1501 attr->compare ? l->low ? base : curr
1502 : NULL,
1503 page, attr->sreg, l->sbit);
1504 if (ret)
1505 return ret;
1506 have_alarm = 1;
1507 }
1508 }
1509 l++;
1510 }
1511 return have_alarm;
1512 }
1513
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1514 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1515 struct pmbus_data *data,
1516 const struct pmbus_driver_info *info,
1517 const char *name,
1518 int index, int page, int phase,
1519 const struct pmbus_sensor_attr *attr,
1520 bool paged)
1521 {
1522 struct pmbus_sensor *base;
1523 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1524 int ret;
1525
1526 if (attr->label) {
1527 ret = pmbus_add_label(data, name, index, attr->label,
1528 paged ? page + 1 : 0, phase);
1529 if (ret)
1530 return ret;
1531 }
1532 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1533 attr->reg, attr->class, true, true, true);
1534 if (!base)
1535 return -ENOMEM;
1536 /* No limit and alarm attributes for phase specific sensors */
1537 if (attr->sfunc && phase == 0xff) {
1538 ret = pmbus_add_limit_attrs(client, data, info, name,
1539 index, page, base, attr);
1540 if (ret < 0)
1541 return ret;
1542 /*
1543 * Add generic alarm attribute only if there are no individual
1544 * alarm attributes, if there is a global alarm bit, and if
1545 * the generic status register (word or byte, depending on
1546 * which global bit is set) for this page is accessible.
1547 */
1548 if (!ret && attr->gbit &&
1549 (!upper || data->has_status_word) &&
1550 pmbus_check_status_register(client, page)) {
1551 ret = pmbus_add_boolean(data, name, "alarm", index,
1552 NULL, NULL,
1553 page, PMBUS_STATUS_WORD,
1554 attr->gbit);
1555 if (ret)
1556 return ret;
1557 }
1558 }
1559 return 0;
1560 }
1561
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1562 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1563 const struct pmbus_sensor_attr *attr)
1564 {
1565 int p;
1566
1567 if (attr->paged)
1568 return true;
1569
1570 /*
1571 * Some attributes may be present on more than one page despite
1572 * not being marked with the paged attribute. If that is the case,
1573 * then treat the sensor as being paged and add the page suffix to the
1574 * attribute name.
1575 * We don't just add the paged attribute to all such attributes, in
1576 * order to maintain the un-suffixed labels in the case where the
1577 * attribute is only on page 0.
1578 */
1579 for (p = 1; p < info->pages; p++) {
1580 if (info->func[p] & attr->func)
1581 return true;
1582 }
1583 return false;
1584 }
1585
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1586 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1587 struct pmbus_data *data,
1588 const char *name,
1589 const struct pmbus_sensor_attr *attrs,
1590 int nattrs)
1591 {
1592 const struct pmbus_driver_info *info = data->info;
1593 int index, i;
1594 int ret;
1595
1596 index = 1;
1597 for (i = 0; i < nattrs; i++) {
1598 int page, pages;
1599 bool paged = pmbus_sensor_is_paged(info, attrs);
1600
1601 pages = paged ? info->pages : 1;
1602 for (page = 0; page < pages; page++) {
1603 if (info->func[page] & attrs->func) {
1604 ret = pmbus_add_sensor_attrs_one(client, data, info,
1605 name, index, page,
1606 0xff, attrs, paged);
1607 if (ret)
1608 return ret;
1609 index++;
1610 }
1611 if (info->phases[page]) {
1612 int phase;
1613
1614 for (phase = 0; phase < info->phases[page];
1615 phase++) {
1616 if (!(info->pfunc[phase] & attrs->func))
1617 continue;
1618 ret = pmbus_add_sensor_attrs_one(client,
1619 data, info, name, index, page,
1620 phase, attrs, paged);
1621 if (ret)
1622 return ret;
1623 index++;
1624 }
1625 }
1626 }
1627 attrs++;
1628 }
1629 return 0;
1630 }
1631
1632 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1633 {
1634 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1635 .attr = "min",
1636 .alarm = "min_alarm",
1637 .sbit = PB_VOLTAGE_UV_WARNING,
1638 }, {
1639 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1640 .attr = "lcrit",
1641 .alarm = "lcrit_alarm",
1642 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1643 }, {
1644 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1645 .attr = "max",
1646 .alarm = "max_alarm",
1647 .sbit = PB_VOLTAGE_OV_WARNING,
1648 }, {
1649 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1650 .attr = "crit",
1651 .alarm = "crit_alarm",
1652 .sbit = PB_VOLTAGE_OV_FAULT,
1653 }, {
1654 .reg = PMBUS_VIRT_READ_VIN_AVG,
1655 .update = true,
1656 .attr = "average",
1657 }, {
1658 .reg = PMBUS_VIRT_READ_VIN_MIN,
1659 .update = true,
1660 .attr = "lowest",
1661 }, {
1662 .reg = PMBUS_VIRT_READ_VIN_MAX,
1663 .update = true,
1664 .attr = "highest",
1665 }, {
1666 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1667 .attr = "reset_history",
1668 }, {
1669 .reg = PMBUS_MFR_VIN_MIN,
1670 .attr = "rated_min",
1671 }, {
1672 .reg = PMBUS_MFR_VIN_MAX,
1673 .attr = "rated_max",
1674 },
1675 };
1676
1677 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1678 {
1679 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1680 .attr = "min",
1681 .alarm = "min_alarm",
1682 .sbit = PB_VOLTAGE_UV_WARNING,
1683 }, {
1684 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1685 .attr = "lcrit",
1686 .alarm = "lcrit_alarm",
1687 .sbit = PB_VOLTAGE_UV_FAULT,
1688 }, {
1689 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1690 .attr = "max",
1691 .alarm = "max_alarm",
1692 .sbit = PB_VOLTAGE_OV_WARNING,
1693 }, {
1694 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1695 .attr = "crit",
1696 .alarm = "crit_alarm",
1697 .sbit = PB_VOLTAGE_OV_FAULT,
1698 }
1699 };
1700
1701 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1702 {
1703 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1704 .attr = "min",
1705 .alarm = "min_alarm",
1706 .sbit = PB_VOLTAGE_UV_WARNING,
1707 }, {
1708 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1709 .attr = "lcrit",
1710 .alarm = "lcrit_alarm",
1711 .sbit = PB_VOLTAGE_UV_FAULT,
1712 }, {
1713 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1714 .attr = "max",
1715 .alarm = "max_alarm",
1716 .sbit = PB_VOLTAGE_OV_WARNING,
1717 }, {
1718 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1719 .attr = "crit",
1720 .alarm = "crit_alarm",
1721 .sbit = PB_VOLTAGE_OV_FAULT,
1722 }, {
1723 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1724 .update = true,
1725 .attr = "average",
1726 }, {
1727 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1728 .update = true,
1729 .attr = "lowest",
1730 }, {
1731 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1732 .update = true,
1733 .attr = "highest",
1734 }, {
1735 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1736 .attr = "reset_history",
1737 }, {
1738 .reg = PMBUS_MFR_VOUT_MIN,
1739 .attr = "rated_min",
1740 }, {
1741 .reg = PMBUS_MFR_VOUT_MAX,
1742 .attr = "rated_max",
1743 },
1744 };
1745
1746 static const struct pmbus_sensor_attr voltage_attributes[] = {
1747 {
1748 .reg = PMBUS_READ_VIN,
1749 .class = PSC_VOLTAGE_IN,
1750 .label = "vin",
1751 .func = PMBUS_HAVE_VIN,
1752 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1753 .sreg = PMBUS_STATUS_INPUT,
1754 .gbit = PB_STATUS_VIN_UV,
1755 .limit = vin_limit_attrs,
1756 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1757 }, {
1758 .reg = PMBUS_VIRT_READ_VMON,
1759 .class = PSC_VOLTAGE_IN,
1760 .label = "vmon",
1761 .func = PMBUS_HAVE_VMON,
1762 .sfunc = PMBUS_HAVE_STATUS_VMON,
1763 .sreg = PMBUS_VIRT_STATUS_VMON,
1764 .limit = vmon_limit_attrs,
1765 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1766 }, {
1767 .reg = PMBUS_READ_VCAP,
1768 .class = PSC_VOLTAGE_IN,
1769 .label = "vcap",
1770 .func = PMBUS_HAVE_VCAP,
1771 }, {
1772 .reg = PMBUS_READ_VOUT,
1773 .class = PSC_VOLTAGE_OUT,
1774 .label = "vout",
1775 .paged = true,
1776 .func = PMBUS_HAVE_VOUT,
1777 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1778 .sreg = PMBUS_STATUS_VOUT,
1779 .gbit = PB_STATUS_VOUT_OV,
1780 .limit = vout_limit_attrs,
1781 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1782 }
1783 };
1784
1785 /* Current attributes */
1786
1787 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1788 {
1789 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1790 .attr = "max",
1791 .alarm = "max_alarm",
1792 .sbit = PB_IIN_OC_WARNING,
1793 }, {
1794 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1795 .attr = "crit",
1796 .alarm = "crit_alarm",
1797 .sbit = PB_IIN_OC_FAULT,
1798 }, {
1799 .reg = PMBUS_VIRT_READ_IIN_AVG,
1800 .update = true,
1801 .attr = "average",
1802 }, {
1803 .reg = PMBUS_VIRT_READ_IIN_MIN,
1804 .update = true,
1805 .attr = "lowest",
1806 }, {
1807 .reg = PMBUS_VIRT_READ_IIN_MAX,
1808 .update = true,
1809 .attr = "highest",
1810 }, {
1811 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1812 .attr = "reset_history",
1813 }, {
1814 .reg = PMBUS_MFR_IIN_MAX,
1815 .attr = "rated_max",
1816 },
1817 };
1818
1819 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1820 {
1821 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1822 .attr = "max",
1823 .alarm = "max_alarm",
1824 .sbit = PB_IOUT_OC_WARNING,
1825 }, {
1826 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1827 .attr = "lcrit",
1828 .alarm = "lcrit_alarm",
1829 .sbit = PB_IOUT_UC_FAULT,
1830 }, {
1831 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1832 .attr = "crit",
1833 .alarm = "crit_alarm",
1834 .sbit = PB_IOUT_OC_FAULT,
1835 }, {
1836 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1837 .update = true,
1838 .attr = "average",
1839 }, {
1840 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1841 .update = true,
1842 .attr = "lowest",
1843 }, {
1844 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1845 .update = true,
1846 .attr = "highest",
1847 }, {
1848 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1849 .attr = "reset_history",
1850 }, {
1851 .reg = PMBUS_MFR_IOUT_MAX,
1852 .attr = "rated_max",
1853 },
1854 };
1855
1856 static const struct pmbus_sensor_attr current_attributes[] = {
1857 {
1858 .reg = PMBUS_READ_IIN,
1859 .class = PSC_CURRENT_IN,
1860 .label = "iin",
1861 .func = PMBUS_HAVE_IIN,
1862 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1863 .sreg = PMBUS_STATUS_INPUT,
1864 .gbit = PB_STATUS_INPUT,
1865 .limit = iin_limit_attrs,
1866 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1867 }, {
1868 .reg = PMBUS_READ_IOUT,
1869 .class = PSC_CURRENT_OUT,
1870 .label = "iout",
1871 .paged = true,
1872 .func = PMBUS_HAVE_IOUT,
1873 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1874 .sreg = PMBUS_STATUS_IOUT,
1875 .gbit = PB_STATUS_IOUT_OC,
1876 .limit = iout_limit_attrs,
1877 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1878 }
1879 };
1880
1881 /* Power attributes */
1882
1883 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1884 {
1885 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1886 .attr = "max",
1887 .alarm = "alarm",
1888 .sbit = PB_PIN_OP_WARNING,
1889 }, {
1890 .reg = PMBUS_VIRT_READ_PIN_AVG,
1891 .update = true,
1892 .attr = "average",
1893 }, {
1894 .reg = PMBUS_VIRT_READ_PIN_MIN,
1895 .update = true,
1896 .attr = "input_lowest",
1897 }, {
1898 .reg = PMBUS_VIRT_READ_PIN_MAX,
1899 .update = true,
1900 .attr = "input_highest",
1901 }, {
1902 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1903 .attr = "reset_history",
1904 }, {
1905 .reg = PMBUS_MFR_PIN_MAX,
1906 .attr = "rated_max",
1907 },
1908 };
1909
1910 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1911 {
1912 .reg = PMBUS_POUT_MAX,
1913 .attr = "cap",
1914 .alarm = "cap_alarm",
1915 .sbit = PB_POWER_LIMITING,
1916 }, {
1917 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1918 .attr = "max",
1919 .alarm = "max_alarm",
1920 .sbit = PB_POUT_OP_WARNING,
1921 }, {
1922 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1923 .attr = "crit",
1924 .alarm = "crit_alarm",
1925 .sbit = PB_POUT_OP_FAULT,
1926 }, {
1927 .reg = PMBUS_VIRT_READ_POUT_AVG,
1928 .update = true,
1929 .attr = "average",
1930 }, {
1931 .reg = PMBUS_VIRT_READ_POUT_MIN,
1932 .update = true,
1933 .attr = "input_lowest",
1934 }, {
1935 .reg = PMBUS_VIRT_READ_POUT_MAX,
1936 .update = true,
1937 .attr = "input_highest",
1938 }, {
1939 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1940 .attr = "reset_history",
1941 }, {
1942 .reg = PMBUS_MFR_POUT_MAX,
1943 .attr = "rated_max",
1944 },
1945 };
1946
1947 static const struct pmbus_sensor_attr power_attributes[] = {
1948 {
1949 .reg = PMBUS_READ_PIN,
1950 .class = PSC_POWER,
1951 .label = "pin",
1952 .func = PMBUS_HAVE_PIN,
1953 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1954 .sreg = PMBUS_STATUS_INPUT,
1955 .gbit = PB_STATUS_INPUT,
1956 .limit = pin_limit_attrs,
1957 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1958 }, {
1959 .reg = PMBUS_READ_POUT,
1960 .class = PSC_POWER,
1961 .label = "pout",
1962 .paged = true,
1963 .func = PMBUS_HAVE_POUT,
1964 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1965 .sreg = PMBUS_STATUS_IOUT,
1966 .limit = pout_limit_attrs,
1967 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1968 }
1969 };
1970
1971 /* Temperature atributes */
1972
1973 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1974 {
1975 .reg = PMBUS_UT_WARN_LIMIT,
1976 .low = true,
1977 .attr = "min",
1978 .alarm = "min_alarm",
1979 .sbit = PB_TEMP_UT_WARNING,
1980 }, {
1981 .reg = PMBUS_UT_FAULT_LIMIT,
1982 .low = true,
1983 .attr = "lcrit",
1984 .alarm = "lcrit_alarm",
1985 .sbit = PB_TEMP_UT_FAULT,
1986 }, {
1987 .reg = PMBUS_OT_WARN_LIMIT,
1988 .attr = "max",
1989 .alarm = "max_alarm",
1990 .sbit = PB_TEMP_OT_WARNING,
1991 }, {
1992 .reg = PMBUS_OT_FAULT_LIMIT,
1993 .attr = "crit",
1994 .alarm = "crit_alarm",
1995 .sbit = PB_TEMP_OT_FAULT,
1996 }, {
1997 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1998 .attr = "lowest",
1999 }, {
2000 .reg = PMBUS_VIRT_READ_TEMP_AVG,
2001 .attr = "average",
2002 }, {
2003 .reg = PMBUS_VIRT_READ_TEMP_MAX,
2004 .attr = "highest",
2005 }, {
2006 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2007 .attr = "reset_history",
2008 }, {
2009 .reg = PMBUS_MFR_MAX_TEMP_1,
2010 .attr = "rated_max",
2011 },
2012 };
2013
2014 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2015 {
2016 .reg = PMBUS_UT_WARN_LIMIT,
2017 .low = true,
2018 .attr = "min",
2019 .alarm = "min_alarm",
2020 .sbit = PB_TEMP_UT_WARNING,
2021 }, {
2022 .reg = PMBUS_UT_FAULT_LIMIT,
2023 .low = true,
2024 .attr = "lcrit",
2025 .alarm = "lcrit_alarm",
2026 .sbit = PB_TEMP_UT_FAULT,
2027 }, {
2028 .reg = PMBUS_OT_WARN_LIMIT,
2029 .attr = "max",
2030 .alarm = "max_alarm",
2031 .sbit = PB_TEMP_OT_WARNING,
2032 }, {
2033 .reg = PMBUS_OT_FAULT_LIMIT,
2034 .attr = "crit",
2035 .alarm = "crit_alarm",
2036 .sbit = PB_TEMP_OT_FAULT,
2037 }, {
2038 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2039 .attr = "lowest",
2040 }, {
2041 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2042 .attr = "average",
2043 }, {
2044 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2045 .attr = "highest",
2046 }, {
2047 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2048 .attr = "reset_history",
2049 }, {
2050 .reg = PMBUS_MFR_MAX_TEMP_2,
2051 .attr = "rated_max",
2052 },
2053 };
2054
2055 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2056 {
2057 .reg = PMBUS_UT_WARN_LIMIT,
2058 .low = true,
2059 .attr = "min",
2060 .alarm = "min_alarm",
2061 .sbit = PB_TEMP_UT_WARNING,
2062 }, {
2063 .reg = PMBUS_UT_FAULT_LIMIT,
2064 .low = true,
2065 .attr = "lcrit",
2066 .alarm = "lcrit_alarm",
2067 .sbit = PB_TEMP_UT_FAULT,
2068 }, {
2069 .reg = PMBUS_OT_WARN_LIMIT,
2070 .attr = "max",
2071 .alarm = "max_alarm",
2072 .sbit = PB_TEMP_OT_WARNING,
2073 }, {
2074 .reg = PMBUS_OT_FAULT_LIMIT,
2075 .attr = "crit",
2076 .alarm = "crit_alarm",
2077 .sbit = PB_TEMP_OT_FAULT,
2078 }, {
2079 .reg = PMBUS_MFR_MAX_TEMP_3,
2080 .attr = "rated_max",
2081 },
2082 };
2083
2084 static const struct pmbus_sensor_attr temp_attributes[] = {
2085 {
2086 .reg = PMBUS_READ_TEMPERATURE_1,
2087 .class = PSC_TEMPERATURE,
2088 .paged = true,
2089 .update = true,
2090 .compare = true,
2091 .func = PMBUS_HAVE_TEMP,
2092 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2093 .sreg = PMBUS_STATUS_TEMPERATURE,
2094 .gbit = PB_STATUS_TEMPERATURE,
2095 .limit = temp_limit_attrs,
2096 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2097 }, {
2098 .reg = PMBUS_READ_TEMPERATURE_2,
2099 .class = PSC_TEMPERATURE,
2100 .paged = true,
2101 .update = true,
2102 .compare = true,
2103 .func = PMBUS_HAVE_TEMP2,
2104 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2105 .sreg = PMBUS_STATUS_TEMPERATURE,
2106 .gbit = PB_STATUS_TEMPERATURE,
2107 .limit = temp_limit_attrs2,
2108 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2109 }, {
2110 .reg = PMBUS_READ_TEMPERATURE_3,
2111 .class = PSC_TEMPERATURE,
2112 .paged = true,
2113 .update = true,
2114 .compare = true,
2115 .func = PMBUS_HAVE_TEMP3,
2116 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2117 .sreg = PMBUS_STATUS_TEMPERATURE,
2118 .gbit = PB_STATUS_TEMPERATURE,
2119 .limit = temp_limit_attrs3,
2120 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2121 }
2122 };
2123
2124 static const int pmbus_fan_registers[] = {
2125 PMBUS_READ_FAN_SPEED_1,
2126 PMBUS_READ_FAN_SPEED_2,
2127 PMBUS_READ_FAN_SPEED_3,
2128 PMBUS_READ_FAN_SPEED_4
2129 };
2130
2131 static const int pmbus_fan_status_registers[] = {
2132 PMBUS_STATUS_FAN_12,
2133 PMBUS_STATUS_FAN_12,
2134 PMBUS_STATUS_FAN_34,
2135 PMBUS_STATUS_FAN_34
2136 };
2137
2138 static const u32 pmbus_fan_flags[] = {
2139 PMBUS_HAVE_FAN12,
2140 PMBUS_HAVE_FAN12,
2141 PMBUS_HAVE_FAN34,
2142 PMBUS_HAVE_FAN34
2143 };
2144
2145 static const u32 pmbus_fan_status_flags[] = {
2146 PMBUS_HAVE_STATUS_FAN12,
2147 PMBUS_HAVE_STATUS_FAN12,
2148 PMBUS_HAVE_STATUS_FAN34,
2149 PMBUS_HAVE_STATUS_FAN34
2150 };
2151
2152 /* Fans */
2153
2154 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2155 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2156 struct pmbus_data *data, int index, int page, int id,
2157 u8 config)
2158 {
2159 struct pmbus_sensor *sensor;
2160
2161 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2162 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2163 false, false, true);
2164
2165 if (!sensor)
2166 return -ENOMEM;
2167
2168 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2169 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2170 return 0;
2171
2172 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2173 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2174 false, false, true);
2175
2176 if (!sensor)
2177 return -ENOMEM;
2178
2179 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2180 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2181 true, false, false);
2182
2183 if (!sensor)
2184 return -ENOMEM;
2185
2186 return 0;
2187 }
2188
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2189 static int pmbus_add_fan_attributes(struct i2c_client *client,
2190 struct pmbus_data *data)
2191 {
2192 const struct pmbus_driver_info *info = data->info;
2193 int index = 1;
2194 int page;
2195 int ret;
2196
2197 for (page = 0; page < info->pages; page++) {
2198 int f;
2199
2200 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2201 int regval;
2202
2203 if (!(info->func[page] & pmbus_fan_flags[f]))
2204 break;
2205
2206 if (!pmbus_check_word_register(client, page,
2207 pmbus_fan_registers[f]))
2208 break;
2209
2210 /*
2211 * Skip fan if not installed.
2212 * Each fan configuration register covers multiple fans,
2213 * so we have to do some magic.
2214 */
2215 regval = _pmbus_read_byte_data(client, page,
2216 pmbus_fan_config_registers[f]);
2217 if (regval < 0 ||
2218 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2219 continue;
2220
2221 if (pmbus_add_sensor(data, "fan", "input", index,
2222 page, 0xff, pmbus_fan_registers[f],
2223 PSC_FAN, true, true, true) == NULL)
2224 return -ENOMEM;
2225
2226 /* Fan control */
2227 if (pmbus_check_word_register(client, page,
2228 pmbus_fan_command_registers[f])) {
2229 ret = pmbus_add_fan_ctrl(client, data, index,
2230 page, f, regval);
2231 if (ret < 0)
2232 return ret;
2233 }
2234
2235 /*
2236 * Each fan status register covers multiple fans,
2237 * so we have to do some magic.
2238 */
2239 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2240 pmbus_check_byte_register(client,
2241 page, pmbus_fan_status_registers[f])) {
2242 int reg;
2243
2244 if (f > 1) /* fan 3, 4 */
2245 reg = PMBUS_STATUS_FAN_34;
2246 else
2247 reg = PMBUS_STATUS_FAN_12;
2248 ret = pmbus_add_boolean(data, "fan",
2249 "alarm", index, NULL, NULL, page, reg,
2250 PB_FAN_FAN1_WARNING >> (f & 1));
2251 if (ret)
2252 return ret;
2253 ret = pmbus_add_boolean(data, "fan",
2254 "fault", index, NULL, NULL, page, reg,
2255 PB_FAN_FAN1_FAULT >> (f & 1));
2256 if (ret)
2257 return ret;
2258 }
2259 index++;
2260 }
2261 }
2262 return 0;
2263 }
2264
2265 struct pmbus_samples_attr {
2266 int reg;
2267 char *name;
2268 };
2269
2270 struct pmbus_samples_reg {
2271 int page;
2272 struct pmbus_samples_attr *attr;
2273 struct device_attribute dev_attr;
2274 };
2275
2276 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2277 {
2278 .reg = PMBUS_VIRT_SAMPLES,
2279 .name = "samples",
2280 }, {
2281 .reg = PMBUS_VIRT_IN_SAMPLES,
2282 .name = "in_samples",
2283 }, {
2284 .reg = PMBUS_VIRT_CURR_SAMPLES,
2285 .name = "curr_samples",
2286 }, {
2287 .reg = PMBUS_VIRT_POWER_SAMPLES,
2288 .name = "power_samples",
2289 }, {
2290 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2291 .name = "temp_samples",
2292 }
2293 };
2294
2295 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2296
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2297 static ssize_t pmbus_show_samples(struct device *dev,
2298 struct device_attribute *devattr, char *buf)
2299 {
2300 int val;
2301 struct i2c_client *client = to_i2c_client(dev->parent);
2302 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2303 struct pmbus_data *data = i2c_get_clientdata(client);
2304
2305 mutex_lock(&data->update_lock);
2306 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2307 mutex_unlock(&data->update_lock);
2308 if (val < 0)
2309 return val;
2310
2311 return sysfs_emit(buf, "%d\n", val);
2312 }
2313
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2314 static ssize_t pmbus_set_samples(struct device *dev,
2315 struct device_attribute *devattr,
2316 const char *buf, size_t count)
2317 {
2318 int ret;
2319 long val;
2320 struct i2c_client *client = to_i2c_client(dev->parent);
2321 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2322 struct pmbus_data *data = i2c_get_clientdata(client);
2323
2324 if (kstrtol(buf, 0, &val) < 0)
2325 return -EINVAL;
2326
2327 mutex_lock(&data->update_lock);
2328 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2329 mutex_unlock(&data->update_lock);
2330
2331 return ret ? : count;
2332 }
2333
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2334 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2335 struct pmbus_samples_attr *attr)
2336 {
2337 struct pmbus_samples_reg *reg;
2338
2339 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2340 if (!reg)
2341 return -ENOMEM;
2342
2343 reg->attr = attr;
2344 reg->page = page;
2345
2346 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2347 pmbus_show_samples, pmbus_set_samples);
2348
2349 return pmbus_add_attribute(data, ®->dev_attr.attr);
2350 }
2351
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2352 static int pmbus_add_samples_attributes(struct i2c_client *client,
2353 struct pmbus_data *data)
2354 {
2355 const struct pmbus_driver_info *info = data->info;
2356 int s;
2357
2358 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2359 return 0;
2360
2361 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2362 struct pmbus_samples_attr *attr;
2363 int ret;
2364
2365 attr = &pmbus_samples_registers[s];
2366 if (!pmbus_check_word_register(client, 0, attr->reg))
2367 continue;
2368
2369 ret = pmbus_add_samples_attr(data, 0, attr);
2370 if (ret)
2371 return ret;
2372 }
2373
2374 return 0;
2375 }
2376
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2377 static int pmbus_find_attributes(struct i2c_client *client,
2378 struct pmbus_data *data)
2379 {
2380 int ret;
2381
2382 /* Voltage sensors */
2383 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2384 ARRAY_SIZE(voltage_attributes));
2385 if (ret)
2386 return ret;
2387
2388 /* Current sensors */
2389 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2390 ARRAY_SIZE(current_attributes));
2391 if (ret)
2392 return ret;
2393
2394 /* Power sensors */
2395 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2396 ARRAY_SIZE(power_attributes));
2397 if (ret)
2398 return ret;
2399
2400 /* Temperature sensors */
2401 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2402 ARRAY_SIZE(temp_attributes));
2403 if (ret)
2404 return ret;
2405
2406 /* Fans */
2407 ret = pmbus_add_fan_attributes(client, data);
2408 if (ret)
2409 return ret;
2410
2411 ret = pmbus_add_samples_attributes(client, data);
2412 return ret;
2413 }
2414
2415 /*
2416 * The pmbus_class_attr_map structure maps one sensor class to
2417 * it's corresponding sensor attributes array.
2418 */
2419 struct pmbus_class_attr_map {
2420 enum pmbus_sensor_classes class;
2421 int nattr;
2422 const struct pmbus_sensor_attr *attr;
2423 };
2424
2425 static const struct pmbus_class_attr_map class_attr_map[] = {
2426 {
2427 .class = PSC_VOLTAGE_IN,
2428 .attr = voltage_attributes,
2429 .nattr = ARRAY_SIZE(voltage_attributes),
2430 }, {
2431 .class = PSC_VOLTAGE_OUT,
2432 .attr = voltage_attributes,
2433 .nattr = ARRAY_SIZE(voltage_attributes),
2434 }, {
2435 .class = PSC_CURRENT_IN,
2436 .attr = current_attributes,
2437 .nattr = ARRAY_SIZE(current_attributes),
2438 }, {
2439 .class = PSC_CURRENT_OUT,
2440 .attr = current_attributes,
2441 .nattr = ARRAY_SIZE(current_attributes),
2442 }, {
2443 .class = PSC_POWER,
2444 .attr = power_attributes,
2445 .nattr = ARRAY_SIZE(power_attributes),
2446 }, {
2447 .class = PSC_TEMPERATURE,
2448 .attr = temp_attributes,
2449 .nattr = ARRAY_SIZE(temp_attributes),
2450 }
2451 };
2452
2453 /*
2454 * Read the coefficients for direct mode.
2455 */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2456 static int pmbus_read_coefficients(struct i2c_client *client,
2457 struct pmbus_driver_info *info,
2458 const struct pmbus_sensor_attr *attr)
2459 {
2460 int rv;
2461 union i2c_smbus_data data;
2462 enum pmbus_sensor_classes class = attr->class;
2463 s8 R;
2464 s16 m, b;
2465
2466 data.block[0] = 2;
2467 data.block[1] = attr->reg;
2468 data.block[2] = 0x01;
2469
2470 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2471 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2472 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2473
2474 if (rv < 0)
2475 return rv;
2476
2477 if (data.block[0] != 5)
2478 return -EIO;
2479
2480 m = data.block[1] | (data.block[2] << 8);
2481 b = data.block[3] | (data.block[4] << 8);
2482 R = data.block[5];
2483 info->m[class] = m;
2484 info->b[class] = b;
2485 info->R[class] = R;
2486
2487 return rv;
2488 }
2489
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2490 static int pmbus_init_coefficients(struct i2c_client *client,
2491 struct pmbus_driver_info *info)
2492 {
2493 int i, n, ret = -EINVAL;
2494 const struct pmbus_class_attr_map *map;
2495 const struct pmbus_sensor_attr *attr;
2496
2497 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2498 map = &class_attr_map[i];
2499 if (info->format[map->class] != direct)
2500 continue;
2501 for (n = 0; n < map->nattr; n++) {
2502 attr = &map->attr[n];
2503 if (map->class != attr->class)
2504 continue;
2505 ret = pmbus_read_coefficients(client, info, attr);
2506 if (ret >= 0)
2507 break;
2508 }
2509 if (ret < 0) {
2510 dev_err(&client->dev,
2511 "No coefficients found for sensor class %d\n",
2512 map->class);
2513 return -EINVAL;
2514 }
2515 }
2516
2517 return 0;
2518 }
2519
2520 /*
2521 * Identify chip parameters.
2522 * This function is called for all chips.
2523 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2524 static int pmbus_identify_common(struct i2c_client *client,
2525 struct pmbus_data *data, int page)
2526 {
2527 int vout_mode = -1;
2528
2529 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2530 vout_mode = _pmbus_read_byte_data(client, page,
2531 PMBUS_VOUT_MODE);
2532 if (vout_mode >= 0 && vout_mode != 0xff) {
2533 /*
2534 * Not all chips support the VOUT_MODE command,
2535 * so a failure to read it is not an error.
2536 */
2537 switch (vout_mode >> 5) {
2538 case 0: /* linear mode */
2539 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2540 return -ENODEV;
2541
2542 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2543 break;
2544 case 1: /* VID mode */
2545 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2546 return -ENODEV;
2547 break;
2548 case 2: /* direct mode */
2549 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2550 return -ENODEV;
2551 break;
2552 case 3: /* ieee 754 half precision */
2553 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2554 return -ENODEV;
2555 break;
2556 default:
2557 return -ENODEV;
2558 }
2559 }
2560
2561 return 0;
2562 }
2563
pmbus_read_status_byte(struct i2c_client * client,int page)2564 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2565 {
2566 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2567 }
2568
pmbus_read_status_word(struct i2c_client * client,int page)2569 static int pmbus_read_status_word(struct i2c_client *client, int page)
2570 {
2571 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2572 }
2573
2574 /* PEC attribute support */
2575
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2576 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2577 char *buf)
2578 {
2579 struct i2c_client *client = to_i2c_client(dev);
2580
2581 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2582 }
2583
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2584 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2585 const char *buf, size_t count)
2586 {
2587 struct i2c_client *client = to_i2c_client(dev);
2588 bool enable;
2589 int err;
2590
2591 err = kstrtobool(buf, &enable);
2592 if (err < 0)
2593 return err;
2594
2595 if (enable)
2596 client->flags |= I2C_CLIENT_PEC;
2597 else
2598 client->flags &= ~I2C_CLIENT_PEC;
2599
2600 return count;
2601 }
2602
2603 static DEVICE_ATTR_RW(pec);
2604
pmbus_remove_pec(void * dev)2605 static void pmbus_remove_pec(void *dev)
2606 {
2607 device_remove_file(dev, &dev_attr_pec);
2608 }
2609
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2610 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2611 struct pmbus_driver_info *info)
2612 {
2613 struct device *dev = &client->dev;
2614 int page, ret;
2615
2616 /*
2617 * Figure out if PEC is enabled before accessing any other register.
2618 * Make sure PEC is disabled, will be enabled later if needed.
2619 */
2620 client->flags &= ~I2C_CLIENT_PEC;
2621
2622 /* Enable PEC if the controller and bus supports it */
2623 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2624 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2625 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2626 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2627 client->flags |= I2C_CLIENT_PEC;
2628 }
2629 }
2630
2631 /*
2632 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2633 * to use PMBUS_STATUS_BYTE instead if that is the case.
2634 * Bail out if both registers are not supported.
2635 */
2636 data->read_status = pmbus_read_status_word;
2637 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2638 if (ret < 0 || ret == 0xffff) {
2639 data->read_status = pmbus_read_status_byte;
2640 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2641 if (ret < 0 || ret == 0xff) {
2642 dev_err(dev, "PMBus status register not found\n");
2643 return -ENODEV;
2644 }
2645 } else {
2646 data->has_status_word = true;
2647 }
2648
2649 /*
2650 * Check if the chip is write protected. If it is, we can not clear
2651 * faults, and we should not try it. Also, in that case, writes into
2652 * limit registers need to be disabled.
2653 */
2654 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2655 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2656 if (ret > 0 && (ret & PB_WP_ANY))
2657 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2658 }
2659
2660 ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2661 if (ret >= 0)
2662 data->revision = ret;
2663
2664 if (data->info->pages)
2665 pmbus_clear_faults(client);
2666 else
2667 pmbus_clear_fault_page(client, -1);
2668
2669 if (info->identify) {
2670 ret = (*info->identify)(client, info);
2671 if (ret < 0) {
2672 dev_err(dev, "Chip identification failed\n");
2673 return ret;
2674 }
2675 }
2676
2677 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2678 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2679 return -ENODEV;
2680 }
2681
2682 for (page = 0; page < info->pages; page++) {
2683 ret = pmbus_identify_common(client, data, page);
2684 if (ret < 0) {
2685 dev_err(dev, "Failed to identify chip capabilities\n");
2686 return ret;
2687 }
2688 }
2689
2690 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2691 if (!i2c_check_functionality(client->adapter,
2692 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2693 return -ENODEV;
2694
2695 ret = pmbus_init_coefficients(client, info);
2696 if (ret < 0)
2697 return ret;
2698 }
2699
2700 if (client->flags & I2C_CLIENT_PEC) {
2701 /*
2702 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2703 * chip support PEC. Add 'pec' attribute to client device to let
2704 * the user control it.
2705 */
2706 ret = device_create_file(dev, &dev_attr_pec);
2707 if (ret)
2708 return ret;
2709 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2710 if (ret)
2711 return ret;
2712 }
2713
2714 return 0;
2715 }
2716
2717 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2718 struct pmbus_status_assoc {
2719 int pflag, rflag, eflag;
2720 };
2721
2722 /* PMBus->regulator bit mappings for a PMBus status register */
2723 struct pmbus_status_category {
2724 int func;
2725 int reg;
2726 const struct pmbus_status_assoc *bits; /* zero-terminated */
2727 };
2728
2729 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2730 {
2731 .func = PMBUS_HAVE_STATUS_VOUT,
2732 .reg = PMBUS_STATUS_VOUT,
2733 .bits = (const struct pmbus_status_assoc[]) {
2734 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2735 REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2736 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE,
2737 REGULATOR_EVENT_UNDER_VOLTAGE },
2738 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2739 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2740 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT,
2741 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2742 { },
2743 },
2744 }, {
2745 .func = PMBUS_HAVE_STATUS_IOUT,
2746 .reg = PMBUS_STATUS_IOUT,
2747 .bits = (const struct pmbus_status_assoc[]) {
2748 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN,
2749 REGULATOR_EVENT_OVER_CURRENT_WARN },
2750 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2751 REGULATOR_EVENT_OVER_CURRENT },
2752 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2753 REGULATOR_EVENT_OVER_CURRENT },
2754 { },
2755 },
2756 }, {
2757 .func = PMBUS_HAVE_STATUS_TEMP,
2758 .reg = PMBUS_STATUS_TEMPERATURE,
2759 .bits = (const struct pmbus_status_assoc[]) {
2760 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN,
2761 REGULATOR_EVENT_OVER_TEMP_WARN },
2762 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP,
2763 REGULATOR_EVENT_OVER_TEMP },
2764 { },
2765 },
2766 },
2767 };
2768
_pmbus_is_enabled(struct i2c_client * client,u8 page)2769 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2770 {
2771 int ret;
2772
2773 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2774
2775 if (ret < 0)
2776 return ret;
2777
2778 return !!(ret & PB_OPERATION_CONTROL_ON);
2779 }
2780
pmbus_is_enabled(struct i2c_client * client,u8 page)2781 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2782 {
2783 struct pmbus_data *data = i2c_get_clientdata(client);
2784 int ret;
2785
2786 mutex_lock(&data->update_lock);
2787 ret = _pmbus_is_enabled(client, page);
2788 mutex_unlock(&data->update_lock);
2789
2790 return ret;
2791 }
2792
2793 #define to_dev_attr(_dev_attr) \
2794 container_of(_dev_attr, struct device_attribute, attr)
2795
pmbus_notify(struct pmbus_data * data,int page,int reg,int flags)2796 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2797 {
2798 int i;
2799
2800 for (i = 0; i < data->num_attributes; i++) {
2801 struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2802 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2803 int index = attr->index;
2804 u16 smask = pb_index_to_mask(index);
2805 u8 spage = pb_index_to_page(index);
2806 u16 sreg = pb_index_to_reg(index);
2807
2808 if (reg == sreg && page == spage && (smask & flags)) {
2809 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2810 sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2811 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2812 flags &= ~smask;
2813 }
2814
2815 if (!flags)
2816 break;
2817 }
2818 }
2819
_pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2820 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2821 unsigned int *event, bool notify)
2822 {
2823 int i, status;
2824 const struct pmbus_status_category *cat;
2825 const struct pmbus_status_assoc *bit;
2826 struct device *dev = data->dev;
2827 struct i2c_client *client = to_i2c_client(dev);
2828 int func = data->info->func[page];
2829
2830 *flags = 0;
2831 *event = 0;
2832
2833 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2834 cat = &pmbus_status_flag_map[i];
2835 if (!(func & cat->func))
2836 continue;
2837
2838 status = _pmbus_read_byte_data(client, page, cat->reg);
2839 if (status < 0)
2840 return status;
2841
2842 for (bit = cat->bits; bit->pflag; bit++)
2843 if (status & bit->pflag) {
2844 *flags |= bit->rflag;
2845 *event |= bit->eflag;
2846 }
2847
2848 if (notify && status)
2849 pmbus_notify(data, page, cat->reg, status);
2850
2851 }
2852
2853 /*
2854 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2855 * bits. Some of the other bits are tempting (especially for cases
2856 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2857 * functionality), but there's an unfortunate ambiguity in that
2858 * they're defined as indicating a fault *or* a warning, so we can't
2859 * easily determine whether to report REGULATOR_ERROR_<foo> or
2860 * REGULATOR_ERROR_<foo>_WARN.
2861 */
2862 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2863 if (status < 0)
2864 return status;
2865
2866 if (_pmbus_is_enabled(client, page)) {
2867 if (status & PB_STATUS_OFF) {
2868 *flags |= REGULATOR_ERROR_FAIL;
2869 *event |= REGULATOR_EVENT_FAIL;
2870 }
2871
2872 if (status & PB_STATUS_POWER_GOOD_N) {
2873 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2874 *event |= REGULATOR_EVENT_REGULATION_OUT;
2875 }
2876 }
2877 /*
2878 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2879 * defined strictly as fault indicators (not warnings).
2880 */
2881 if (status & PB_STATUS_IOUT_OC) {
2882 *flags |= REGULATOR_ERROR_OVER_CURRENT;
2883 *event |= REGULATOR_EVENT_OVER_CURRENT;
2884 }
2885 if (status & PB_STATUS_VOUT_OV) {
2886 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2887 *event |= REGULATOR_EVENT_FAIL;
2888 }
2889
2890 /*
2891 * If we haven't discovered any thermal faults or warnings via
2892 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2893 * a (conservative) best-effort interpretation.
2894 */
2895 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2896 (status & PB_STATUS_TEMPERATURE)) {
2897 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2898 *event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2899 }
2900
2901
2902 return 0;
2903 }
2904
pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2905 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2906 unsigned int *event, bool notify)
2907 {
2908 int ret;
2909
2910 mutex_lock(&data->update_lock);
2911 ret = _pmbus_get_flags(data, page, flags, event, notify);
2912 mutex_unlock(&data->update_lock);
2913
2914 return ret;
2915 }
2916
2917 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2918 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2919 {
2920 struct device *dev = rdev_get_dev(rdev);
2921 struct i2c_client *client = to_i2c_client(dev->parent);
2922
2923 return pmbus_is_enabled(client, rdev_get_id(rdev));
2924 }
2925
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2926 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2927 {
2928 struct device *dev = rdev_get_dev(rdev);
2929 struct i2c_client *client = to_i2c_client(dev->parent);
2930 struct pmbus_data *data = i2c_get_clientdata(client);
2931 u8 page = rdev_get_id(rdev);
2932 int ret;
2933
2934 mutex_lock(&data->update_lock);
2935 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2936 PB_OPERATION_CONTROL_ON,
2937 enable ? PB_OPERATION_CONTROL_ON : 0);
2938 mutex_unlock(&data->update_lock);
2939
2940 return ret;
2941 }
2942
pmbus_regulator_enable(struct regulator_dev * rdev)2943 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2944 {
2945 return _pmbus_regulator_on_off(rdev, 1);
2946 }
2947
pmbus_regulator_disable(struct regulator_dev * rdev)2948 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2949 {
2950 return _pmbus_regulator_on_off(rdev, 0);
2951 }
2952
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)2953 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2954 {
2955 struct device *dev = rdev_get_dev(rdev);
2956 struct i2c_client *client = to_i2c_client(dev->parent);
2957 struct pmbus_data *data = i2c_get_clientdata(client);
2958 int event;
2959
2960 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
2961 }
2962
pmbus_regulator_get_status(struct regulator_dev * rdev)2963 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
2964 {
2965 struct device *dev = rdev_get_dev(rdev);
2966 struct i2c_client *client = to_i2c_client(dev->parent);
2967 struct pmbus_data *data = i2c_get_clientdata(client);
2968 u8 page = rdev_get_id(rdev);
2969 int status, ret;
2970 int event;
2971
2972 mutex_lock(&data->update_lock);
2973 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2974 if (status < 0) {
2975 ret = status;
2976 goto unlock;
2977 }
2978
2979 if (status & PB_STATUS_OFF) {
2980 ret = REGULATOR_STATUS_OFF;
2981 goto unlock;
2982 }
2983
2984 /* If regulator is ON & reports power good then return ON */
2985 if (!(status & PB_STATUS_POWER_GOOD_N)) {
2986 ret = REGULATOR_STATUS_ON;
2987 goto unlock;
2988 }
2989
2990 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
2991 if (ret)
2992 goto unlock;
2993
2994 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
2995 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
2996 ret = REGULATOR_STATUS_ERROR;
2997 goto unlock;
2998 }
2999
3000 ret = REGULATOR_STATUS_UNDEFINED;
3001
3002 unlock:
3003 mutex_unlock(&data->update_lock);
3004 return ret;
3005 }
3006
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)3007 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3008 {
3009 struct pmbus_data *data = i2c_get_clientdata(client);
3010 struct pmbus_sensor s = {
3011 .page = page,
3012 .class = PSC_VOLTAGE_OUT,
3013 .convert = true,
3014 .data = -1,
3015 };
3016
3017 if (data->vout_low[page] < 0) {
3018 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3019 s.data = _pmbus_read_word_data(client, page, 0xff,
3020 PMBUS_MFR_VOUT_MIN);
3021 if (s.data < 0) {
3022 s.data = _pmbus_read_word_data(client, page, 0xff,
3023 PMBUS_VOUT_MARGIN_LOW);
3024 if (s.data < 0)
3025 return s.data;
3026 }
3027 data->vout_low[page] = pmbus_reg2data(data, &s);
3028 }
3029
3030 return data->vout_low[page];
3031 }
3032
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)3033 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3034 {
3035 struct pmbus_data *data = i2c_get_clientdata(client);
3036 struct pmbus_sensor s = {
3037 .page = page,
3038 .class = PSC_VOLTAGE_OUT,
3039 .convert = true,
3040 .data = -1,
3041 };
3042
3043 if (data->vout_high[page] < 0) {
3044 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3045 s.data = _pmbus_read_word_data(client, page, 0xff,
3046 PMBUS_MFR_VOUT_MAX);
3047 if (s.data < 0) {
3048 s.data = _pmbus_read_word_data(client, page, 0xff,
3049 PMBUS_VOUT_MARGIN_HIGH);
3050 if (s.data < 0)
3051 return s.data;
3052 }
3053 data->vout_high[page] = pmbus_reg2data(data, &s);
3054 }
3055
3056 return data->vout_high[page];
3057 }
3058
pmbus_regulator_get_voltage(struct regulator_dev * rdev)3059 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3060 {
3061 struct device *dev = rdev_get_dev(rdev);
3062 struct i2c_client *client = to_i2c_client(dev->parent);
3063 struct pmbus_data *data = i2c_get_clientdata(client);
3064 struct pmbus_sensor s = {
3065 .page = rdev_get_id(rdev),
3066 .class = PSC_VOLTAGE_OUT,
3067 .convert = true,
3068 };
3069
3070 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3071 if (s.data < 0)
3072 return s.data;
3073
3074 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3075 }
3076
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)3077 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3078 int max_uv, unsigned int *selector)
3079 {
3080 struct device *dev = rdev_get_dev(rdev);
3081 struct i2c_client *client = to_i2c_client(dev->parent);
3082 struct pmbus_data *data = i2c_get_clientdata(client);
3083 struct pmbus_sensor s = {
3084 .page = rdev_get_id(rdev),
3085 .class = PSC_VOLTAGE_OUT,
3086 .convert = true,
3087 .data = -1,
3088 };
3089 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3090 int low, high;
3091
3092 *selector = 0;
3093
3094 low = pmbus_regulator_get_low_margin(client, s.page);
3095 if (low < 0)
3096 return low;
3097
3098 high = pmbus_regulator_get_high_margin(client, s.page);
3099 if (high < 0)
3100 return high;
3101
3102 /* Make sure we are within margins */
3103 if (low > val)
3104 val = low;
3105 if (high < val)
3106 val = high;
3107
3108 val = pmbus_data2reg(data, &s, val);
3109
3110 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3111 }
3112
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)3113 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3114 unsigned int selector)
3115 {
3116 struct device *dev = rdev_get_dev(rdev);
3117 struct i2c_client *client = to_i2c_client(dev->parent);
3118 int val, low, high;
3119
3120 if (selector >= rdev->desc->n_voltages ||
3121 selector < rdev->desc->linear_min_sel)
3122 return -EINVAL;
3123
3124 selector -= rdev->desc->linear_min_sel;
3125 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3126 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
3127
3128 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3129 if (low < 0)
3130 return low;
3131
3132 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3133 if (high < 0)
3134 return high;
3135
3136 if (val >= low && val <= high)
3137 return val * 1000; /* unit is uV */
3138
3139 return 0;
3140 }
3141
3142 const struct regulator_ops pmbus_regulator_ops = {
3143 .enable = pmbus_regulator_enable,
3144 .disable = pmbus_regulator_disable,
3145 .is_enabled = pmbus_regulator_is_enabled,
3146 .get_error_flags = pmbus_regulator_get_error_flags,
3147 .get_status = pmbus_regulator_get_status,
3148 .get_voltage = pmbus_regulator_get_voltage,
3149 .set_voltage = pmbus_regulator_set_voltage,
3150 .list_voltage = pmbus_regulator_list_voltage,
3151 };
3152 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3153
pmbus_regulator_register(struct pmbus_data * data)3154 static int pmbus_regulator_register(struct pmbus_data *data)
3155 {
3156 struct device *dev = data->dev;
3157 const struct pmbus_driver_info *info = data->info;
3158 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3159 int i;
3160
3161 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3162 GFP_KERNEL);
3163 if (!data->rdevs)
3164 return -ENOMEM;
3165
3166 for (i = 0; i < info->num_regulators; i++) {
3167 struct regulator_config config = { };
3168
3169 config.dev = dev;
3170 config.driver_data = data;
3171
3172 if (pdata && pdata->reg_init_data)
3173 config.init_data = &pdata->reg_init_data[i];
3174
3175 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3176 &config);
3177 if (IS_ERR(data->rdevs[i]))
3178 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3179 "Failed to register %s regulator\n",
3180 info->reg_desc[i].name);
3181 }
3182
3183 return 0;
3184 }
3185
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3186 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3187 {
3188 int j;
3189
3190 for (j = 0; j < data->info->num_regulators; j++) {
3191 if (page == rdev_get_id(data->rdevs[j])) {
3192 regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3193 break;
3194 }
3195 }
3196 return 0;
3197 }
3198 #else
pmbus_regulator_register(struct pmbus_data * data)3199 static int pmbus_regulator_register(struct pmbus_data *data)
3200 {
3201 return 0;
3202 }
3203
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3204 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3205 {
3206 return 0;
3207 }
3208 #endif
3209
pmbus_write_smbalert_mask(struct i2c_client * client,u8 page,u8 reg,u8 val)3210 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3211 {
3212 int ret;
3213
3214 ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3215
3216 /*
3217 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3218 * is not supported by the chip.
3219 */
3220 pmbus_clear_fault_page(client, page);
3221
3222 return ret;
3223 }
3224
pmbus_fault_handler(int irq,void * pdata)3225 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3226 {
3227 struct pmbus_data *data = pdata;
3228 struct i2c_client *client = to_i2c_client(data->dev);
3229
3230 int i, status, event;
3231 mutex_lock(&data->update_lock);
3232 for (i = 0; i < data->info->pages; i++) {
3233 _pmbus_get_flags(data, i, &status, &event, true);
3234
3235 if (event)
3236 pmbus_regulator_notify(data, i, event);
3237 }
3238
3239 pmbus_clear_faults(client);
3240 mutex_unlock(&data->update_lock);
3241
3242 return IRQ_HANDLED;
3243 }
3244
pmbus_irq_setup(struct i2c_client * client,struct pmbus_data * data)3245 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3246 {
3247 struct device *dev = &client->dev;
3248 const struct pmbus_status_category *cat;
3249 const struct pmbus_status_assoc *bit;
3250 int i, j, err, func;
3251 u8 mask;
3252
3253 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3254 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3255 PMBUS_STATUS_FAN_34};
3256
3257 if (!client->irq)
3258 return 0;
3259
3260 for (i = 0; i < data->info->pages; i++) {
3261 func = data->info->func[i];
3262
3263 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3264 cat = &pmbus_status_flag_map[j];
3265 if (!(func & cat->func))
3266 continue;
3267 mask = 0;
3268 for (bit = cat->bits; bit->pflag; bit++)
3269 mask |= bit->pflag;
3270
3271 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3272 if (err)
3273 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3274 cat->reg);
3275 }
3276
3277 for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3278 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3279 }
3280
3281 /* Register notifiers */
3282 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3283 IRQF_ONESHOT, "pmbus-irq", data);
3284 if (err) {
3285 dev_err(dev, "failed to request an irq %d\n", err);
3286 return err;
3287 }
3288
3289 return 0;
3290 }
3291
3292 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3293
3294 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)3295 static int pmbus_debugfs_get(void *data, u64 *val)
3296 {
3297 int rc;
3298 struct pmbus_debugfs_entry *entry = data;
3299 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3300
3301 rc = mutex_lock_interruptible(&pdata->update_lock);
3302 if (rc)
3303 return rc;
3304 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3305 mutex_unlock(&pdata->update_lock);
3306 if (rc < 0)
3307 return rc;
3308
3309 *val = rc;
3310
3311 return 0;
3312 }
3313 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3314 "0x%02llx\n");
3315
pmbus_debugfs_get_status(void * data,u64 * val)3316 static int pmbus_debugfs_get_status(void *data, u64 *val)
3317 {
3318 int rc;
3319 struct pmbus_debugfs_entry *entry = data;
3320 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3321
3322 rc = mutex_lock_interruptible(&pdata->update_lock);
3323 if (rc)
3324 return rc;
3325 rc = pdata->read_status(entry->client, entry->page);
3326 mutex_unlock(&pdata->update_lock);
3327 if (rc < 0)
3328 return rc;
3329
3330 *val = rc;
3331
3332 return 0;
3333 }
3334 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3335 NULL, "0x%04llx\n");
3336
pmbus_debugfs_mfr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3337 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3338 size_t count, loff_t *ppos)
3339 {
3340 int rc;
3341 struct pmbus_debugfs_entry *entry = file->private_data;
3342 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3343 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3344
3345 rc = mutex_lock_interruptible(&pdata->update_lock);
3346 if (rc)
3347 return rc;
3348 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3349 data);
3350 mutex_unlock(&pdata->update_lock);
3351 if (rc < 0)
3352 return rc;
3353
3354 /* Add newline at the end of a read data */
3355 data[rc] = '\n';
3356
3357 /* Include newline into the length */
3358 rc += 1;
3359
3360 return simple_read_from_buffer(buf, count, ppos, data, rc);
3361 }
3362
3363 static const struct file_operations pmbus_debugfs_ops_mfr = {
3364 .llseek = noop_llseek,
3365 .read = pmbus_debugfs_mfr_read,
3366 .write = NULL,
3367 .open = simple_open,
3368 };
3369
pmbus_remove_debugfs(void * data)3370 static void pmbus_remove_debugfs(void *data)
3371 {
3372 struct dentry *entry = data;
3373
3374 debugfs_remove_recursive(entry);
3375 }
3376
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3377 static int pmbus_init_debugfs(struct i2c_client *client,
3378 struct pmbus_data *data)
3379 {
3380 int i, idx = 0;
3381 char name[PMBUS_NAME_SIZE];
3382 struct pmbus_debugfs_entry *entries;
3383
3384 if (!pmbus_debugfs_dir)
3385 return -ENODEV;
3386
3387 /*
3388 * Create the debugfs directory for this device. Use the hwmon device
3389 * name to avoid conflicts (hwmon numbers are globally unique).
3390 */
3391 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3392 pmbus_debugfs_dir);
3393 if (IS_ERR_OR_NULL(data->debugfs)) {
3394 data->debugfs = NULL;
3395 return -ENODEV;
3396 }
3397
3398 /*
3399 * Allocate the max possible entries we need.
3400 * 7 entries device-specific
3401 * 10 entries page-specific
3402 */
3403 entries = devm_kcalloc(data->dev,
3404 7 + data->info->pages * 10, sizeof(*entries),
3405 GFP_KERNEL);
3406 if (!entries)
3407 return -ENOMEM;
3408
3409 /*
3410 * Add device-specific entries.
3411 * Please note that the PMBUS standard allows all registers to be
3412 * page-specific.
3413 * To reduce the number of debugfs entries for devices with many pages
3414 * assume that values of the following registers are the same for all
3415 * pages and report values only for page 0.
3416 */
3417 if (pmbus_check_byte_register(client, 0, PMBUS_REVISION)) {
3418 entries[idx].client = client;
3419 entries[idx].page = 0;
3420 entries[idx].reg = PMBUS_REVISION;
3421 debugfs_create_file("revision", 0444, data->debugfs,
3422 &entries[idx++],
3423 &pmbus_debugfs_ops);
3424 }
3425
3426 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3427 entries[idx].client = client;
3428 entries[idx].page = 0;
3429 entries[idx].reg = PMBUS_MFR_ID;
3430 debugfs_create_file("mfr_id", 0444, data->debugfs,
3431 &entries[idx++],
3432 &pmbus_debugfs_ops_mfr);
3433 }
3434
3435 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3436 entries[idx].client = client;
3437 entries[idx].page = 0;
3438 entries[idx].reg = PMBUS_MFR_MODEL;
3439 debugfs_create_file("mfr_model", 0444, data->debugfs,
3440 &entries[idx++],
3441 &pmbus_debugfs_ops_mfr);
3442 }
3443
3444 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3445 entries[idx].client = client;
3446 entries[idx].page = 0;
3447 entries[idx].reg = PMBUS_MFR_REVISION;
3448 debugfs_create_file("mfr_revision", 0444, data->debugfs,
3449 &entries[idx++],
3450 &pmbus_debugfs_ops_mfr);
3451 }
3452
3453 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3454 entries[idx].client = client;
3455 entries[idx].page = 0;
3456 entries[idx].reg = PMBUS_MFR_LOCATION;
3457 debugfs_create_file("mfr_location", 0444, data->debugfs,
3458 &entries[idx++],
3459 &pmbus_debugfs_ops_mfr);
3460 }
3461
3462 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3463 entries[idx].client = client;
3464 entries[idx].page = 0;
3465 entries[idx].reg = PMBUS_MFR_DATE;
3466 debugfs_create_file("mfr_date", 0444, data->debugfs,
3467 &entries[idx++],
3468 &pmbus_debugfs_ops_mfr);
3469 }
3470
3471 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3472 entries[idx].client = client;
3473 entries[idx].page = 0;
3474 entries[idx].reg = PMBUS_MFR_SERIAL;
3475 debugfs_create_file("mfr_serial", 0444, data->debugfs,
3476 &entries[idx++],
3477 &pmbus_debugfs_ops_mfr);
3478 }
3479
3480 /* Add page specific entries */
3481 for (i = 0; i < data->info->pages; ++i) {
3482 /* Check accessibility of status register if it's not page 0 */
3483 if (!i || pmbus_check_status_register(client, i)) {
3484 /* No need to set reg as we have special read op. */
3485 entries[idx].client = client;
3486 entries[idx].page = i;
3487 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3488 debugfs_create_file(name, 0444, data->debugfs,
3489 &entries[idx++],
3490 &pmbus_debugfs_ops_status);
3491 }
3492
3493 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3494 entries[idx].client = client;
3495 entries[idx].page = i;
3496 entries[idx].reg = PMBUS_STATUS_VOUT;
3497 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3498 debugfs_create_file(name, 0444, data->debugfs,
3499 &entries[idx++],
3500 &pmbus_debugfs_ops);
3501 }
3502
3503 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3504 entries[idx].client = client;
3505 entries[idx].page = i;
3506 entries[idx].reg = PMBUS_STATUS_IOUT;
3507 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3508 debugfs_create_file(name, 0444, data->debugfs,
3509 &entries[idx++],
3510 &pmbus_debugfs_ops);
3511 }
3512
3513 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3514 entries[idx].client = client;
3515 entries[idx].page = i;
3516 entries[idx].reg = PMBUS_STATUS_INPUT;
3517 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3518 debugfs_create_file(name, 0444, data->debugfs,
3519 &entries[idx++],
3520 &pmbus_debugfs_ops);
3521 }
3522
3523 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3524 entries[idx].client = client;
3525 entries[idx].page = i;
3526 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3527 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3528 debugfs_create_file(name, 0444, data->debugfs,
3529 &entries[idx++],
3530 &pmbus_debugfs_ops);
3531 }
3532
3533 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3534 entries[idx].client = client;
3535 entries[idx].page = i;
3536 entries[idx].reg = PMBUS_STATUS_CML;
3537 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3538 debugfs_create_file(name, 0444, data->debugfs,
3539 &entries[idx++],
3540 &pmbus_debugfs_ops);
3541 }
3542
3543 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3544 entries[idx].client = client;
3545 entries[idx].page = i;
3546 entries[idx].reg = PMBUS_STATUS_OTHER;
3547 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3548 debugfs_create_file(name, 0444, data->debugfs,
3549 &entries[idx++],
3550 &pmbus_debugfs_ops);
3551 }
3552
3553 if (pmbus_check_byte_register(client, i,
3554 PMBUS_STATUS_MFR_SPECIFIC)) {
3555 entries[idx].client = client;
3556 entries[idx].page = i;
3557 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3558 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3559 debugfs_create_file(name, 0444, data->debugfs,
3560 &entries[idx++],
3561 &pmbus_debugfs_ops);
3562 }
3563
3564 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3565 entries[idx].client = client;
3566 entries[idx].page = i;
3567 entries[idx].reg = PMBUS_STATUS_FAN_12;
3568 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3569 debugfs_create_file(name, 0444, data->debugfs,
3570 &entries[idx++],
3571 &pmbus_debugfs_ops);
3572 }
3573
3574 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3575 entries[idx].client = client;
3576 entries[idx].page = i;
3577 entries[idx].reg = PMBUS_STATUS_FAN_34;
3578 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3579 debugfs_create_file(name, 0444, data->debugfs,
3580 &entries[idx++],
3581 &pmbus_debugfs_ops);
3582 }
3583 }
3584
3585 return devm_add_action_or_reset(data->dev,
3586 pmbus_remove_debugfs, data->debugfs);
3587 }
3588 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3589 static int pmbus_init_debugfs(struct i2c_client *client,
3590 struct pmbus_data *data)
3591 {
3592 return 0;
3593 }
3594 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
3595
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3596 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3597 {
3598 struct device *dev = &client->dev;
3599 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3600 struct pmbus_data *data;
3601 size_t groups_num = 0;
3602 int ret;
3603 int i;
3604 char *name;
3605
3606 if (!info)
3607 return -ENODEV;
3608
3609 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3610 | I2C_FUNC_SMBUS_BYTE_DATA
3611 | I2C_FUNC_SMBUS_WORD_DATA))
3612 return -ENODEV;
3613
3614 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3615 if (!data)
3616 return -ENOMEM;
3617
3618 if (info->groups)
3619 while (info->groups[groups_num])
3620 groups_num++;
3621
3622 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3623 GFP_KERNEL);
3624 if (!data->groups)
3625 return -ENOMEM;
3626
3627 i2c_set_clientdata(client, data);
3628 mutex_init(&data->update_lock);
3629 data->dev = dev;
3630
3631 if (pdata)
3632 data->flags = pdata->flags;
3633 data->info = info;
3634 data->currpage = -1;
3635 data->currphase = -1;
3636
3637 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3638 data->vout_low[i] = -1;
3639 data->vout_high[i] = -1;
3640 }
3641
3642 ret = pmbus_init_common(client, data, info);
3643 if (ret < 0)
3644 return ret;
3645
3646 ret = pmbus_find_attributes(client, data);
3647 if (ret)
3648 return ret;
3649
3650 /*
3651 * If there are no attributes, something is wrong.
3652 * Bail out instead of trying to register nothing.
3653 */
3654 if (!data->num_attributes) {
3655 dev_err(dev, "No attributes found\n");
3656 return -ENODEV;
3657 }
3658
3659 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3660 if (!name)
3661 return -ENOMEM;
3662 strreplace(name, '-', '_');
3663
3664 data->groups[0] = &data->group;
3665 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3666 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3667 name, data, data->groups);
3668 if (IS_ERR(data->hwmon_dev)) {
3669 dev_err(dev, "Failed to register hwmon device\n");
3670 return PTR_ERR(data->hwmon_dev);
3671 }
3672
3673 ret = pmbus_regulator_register(data);
3674 if (ret)
3675 return ret;
3676
3677 ret = pmbus_irq_setup(client, data);
3678 if (ret)
3679 return ret;
3680
3681 ret = pmbus_init_debugfs(client, data);
3682 if (ret)
3683 dev_warn(dev, "Failed to register debugfs\n");
3684
3685 return 0;
3686 }
3687 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3688
pmbus_get_debugfs_dir(struct i2c_client * client)3689 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3690 {
3691 struct pmbus_data *data = i2c_get_clientdata(client);
3692
3693 return data->debugfs;
3694 }
3695 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3696
pmbus_lock_interruptible(struct i2c_client * client)3697 int pmbus_lock_interruptible(struct i2c_client *client)
3698 {
3699 struct pmbus_data *data = i2c_get_clientdata(client);
3700
3701 return mutex_lock_interruptible(&data->update_lock);
3702 }
3703 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS);
3704
pmbus_unlock(struct i2c_client * client)3705 void pmbus_unlock(struct i2c_client *client)
3706 {
3707 struct pmbus_data *data = i2c_get_clientdata(client);
3708
3709 mutex_unlock(&data->update_lock);
3710 }
3711 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS);
3712
pmbus_core_init(void)3713 static int __init pmbus_core_init(void)
3714 {
3715 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3716 if (IS_ERR(pmbus_debugfs_dir))
3717 pmbus_debugfs_dir = NULL;
3718
3719 return 0;
3720 }
3721
pmbus_core_exit(void)3722 static void __exit pmbus_core_exit(void)
3723 {
3724 debugfs_remove_recursive(pmbus_debugfs_dir);
3725 }
3726
3727 module_init(pmbus_core_init);
3728 module_exit(pmbus_core_exit);
3729
3730 MODULE_AUTHOR("Guenter Roeck");
3731 MODULE_DESCRIPTION("PMBus core driver");
3732 MODULE_LICENSE("GPL");
3733