xref: /openbmc/linux/fs/pipe.c (revision 86aa961bb4619a68077ebeba21c52e9ba0eab43d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32 
33 #include "internal.h"
34 
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49 
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55 
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61 
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78 
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81 	if (pipe->files)
82 		mutex_lock_nested(&pipe->mutex, subclass);
83 }
84 
pipe_lock(struct pipe_inode_info * pipe)85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87 	/*
88 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 	 */
90 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93 
pipe_unlock(struct pipe_inode_info * pipe)94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96 	if (pipe->files)
97 		mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100 
__pipe_lock(struct pipe_inode_info * pipe)101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105 
__pipe_unlock(struct pipe_inode_info * pipe)106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108 	mutex_unlock(&pipe->mutex);
109 }
110 
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 		      struct pipe_inode_info *pipe2)
113 {
114 	BUG_ON(pipe1 == pipe2);
115 
116 	if (pipe1 < pipe2) {
117 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 	} else {
120 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 	}
123 }
124 
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 				  struct pipe_buffer *buf)
127 {
128 	struct page *page = buf->page;
129 
130 	/*
131 	 * If nobody else uses this page, and we don't already have a
132 	 * temporary page, let's keep track of it as a one-deep
133 	 * allocation cache. (Otherwise just release our reference to it)
134 	 */
135 	if (page_count(page) == 1 && !pipe->tmp_page)
136 		pipe->tmp_page = page;
137 	else
138 		put_page(page);
139 }
140 
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 		struct pipe_buffer *buf)
143 {
144 	struct page *page = buf->page;
145 
146 	if (page_count(page) != 1)
147 		return false;
148 	memcg_kmem_uncharge_page(page, 0);
149 	__SetPageLocked(page);
150 	return true;
151 }
152 
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:	the pipe that the buffer belongs to
156  * @buf:	the buffer to attempt to steal
157  *
158  * Description:
159  *	This function attempts to steal the &struct page attached to
160  *	@buf. If successful, this function returns 0 and returns with
161  *	the page locked. The caller may then reuse the page for whatever
162  *	he wishes; the typical use is insertion into a different file
163  *	page cache.
164  */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 		struct pipe_buffer *buf)
167 {
168 	struct page *page = buf->page;
169 
170 	/*
171 	 * A reference of one is golden, that means that the owner of this
172 	 * page is the only one holding a reference to it. lock the page
173 	 * and return OK.
174 	 */
175 	if (page_count(page) == 1) {
176 		lock_page(page);
177 		return true;
178 	}
179 	return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182 
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:	the pipe that the buffer belongs to
186  * @buf:	the buffer to get a reference to
187  *
188  * Description:
189  *	This function grabs an extra reference to @buf. It's used in
190  *	the tee() system call, when we duplicate the buffers in one
191  *	pipe into another.
192  */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195 	return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198 
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:	the pipe that the buffer belongs to
202  * @buf:	the buffer to put a reference to
203  *
204  * Description:
205  *	This function releases a reference to @buf.
206  */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 			      struct pipe_buffer *buf)
209 {
210 	put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213 
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 	.release	= anon_pipe_buf_release,
216 	.try_steal	= anon_pipe_buf_try_steal,
217 	.get		= generic_pipe_buf_get,
218 };
219 
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223 	unsigned int head = READ_ONCE(pipe->head);
224 	unsigned int tail = READ_ONCE(pipe->tail);
225 	unsigned int writers = READ_ONCE(pipe->writers);
226 
227 	return !pipe_empty(head, tail) || !writers;
228 }
229 
230 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233 	size_t total_len = iov_iter_count(to);
234 	struct file *filp = iocb->ki_filp;
235 	struct pipe_inode_info *pipe = filp->private_data;
236 	bool was_full, wake_next_reader = false;
237 	ssize_t ret;
238 
239 	/* Null read succeeds. */
240 	if (unlikely(total_len == 0))
241 		return 0;
242 
243 	ret = 0;
244 	__pipe_lock(pipe);
245 
246 	/*
247 	 * We only wake up writers if the pipe was full when we started
248 	 * reading in order to avoid unnecessary wakeups.
249 	 *
250 	 * But when we do wake up writers, we do so using a sync wakeup
251 	 * (WF_SYNC), because we want them to get going and generate more
252 	 * data for us.
253 	 */
254 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255 	for (;;) {
256 		/* Read ->head with a barrier vs post_one_notification() */
257 		unsigned int head = smp_load_acquire(&pipe->head);
258 		unsigned int tail = pipe->tail;
259 		unsigned int mask = pipe->ring_size - 1;
260 
261 #ifdef CONFIG_WATCH_QUEUE
262 		if (pipe->note_loss) {
263 			struct watch_notification n;
264 
265 			if (total_len < 8) {
266 				if (ret == 0)
267 					ret = -ENOBUFS;
268 				break;
269 			}
270 
271 			n.type = WATCH_TYPE_META;
272 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
273 			n.info = watch_sizeof(n);
274 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275 				if (ret == 0)
276 					ret = -EFAULT;
277 				break;
278 			}
279 			ret += sizeof(n);
280 			total_len -= sizeof(n);
281 			pipe->note_loss = false;
282 		}
283 #endif
284 
285 		if (!pipe_empty(head, tail)) {
286 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287 			size_t chars = buf->len;
288 			size_t written;
289 			int error;
290 
291 			if (chars > total_len) {
292 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293 					if (ret == 0)
294 						ret = -ENOBUFS;
295 					break;
296 				}
297 				chars = total_len;
298 			}
299 
300 			error = pipe_buf_confirm(pipe, buf);
301 			if (error) {
302 				if (!ret)
303 					ret = error;
304 				break;
305 			}
306 
307 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308 			if (unlikely(written < chars)) {
309 				if (!ret)
310 					ret = -EFAULT;
311 				break;
312 			}
313 			ret += chars;
314 			buf->offset += chars;
315 			buf->len -= chars;
316 
317 			/* Was it a packet buffer? Clean up and exit */
318 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319 				total_len = chars;
320 				buf->len = 0;
321 			}
322 
323 			if (!buf->len) {
324 				pipe_buf_release(pipe, buf);
325 				spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327 				if (buf->flags & PIPE_BUF_FLAG_LOSS)
328 					pipe->note_loss = true;
329 #endif
330 				tail++;
331 				pipe->tail = tail;
332 				spin_unlock_irq(&pipe->rd_wait.lock);
333 			}
334 			total_len -= chars;
335 			if (!total_len)
336 				break;	/* common path: read succeeded */
337 			if (!pipe_empty(head, tail))	/* More to do? */
338 				continue;
339 		}
340 
341 		if (!pipe->writers)
342 			break;
343 		if (ret)
344 			break;
345 		if ((filp->f_flags & O_NONBLOCK) ||
346 		    (iocb->ki_flags & IOCB_NOWAIT)) {
347 			ret = -EAGAIN;
348 			break;
349 		}
350 		__pipe_unlock(pipe);
351 
352 		/*
353 		 * We only get here if we didn't actually read anything.
354 		 *
355 		 * However, we could have seen (and removed) a zero-sized
356 		 * pipe buffer, and might have made space in the buffers
357 		 * that way.
358 		 *
359 		 * You can't make zero-sized pipe buffers by doing an empty
360 		 * write (not even in packet mode), but they can happen if
361 		 * the writer gets an EFAULT when trying to fill a buffer
362 		 * that already got allocated and inserted in the buffer
363 		 * array.
364 		 *
365 		 * So we still need to wake up any pending writers in the
366 		 * _very_ unlikely case that the pipe was full, but we got
367 		 * no data.
368 		 */
369 		if (unlikely(was_full))
370 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
371 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
372 
373 		/*
374 		 * But because we didn't read anything, at this point we can
375 		 * just return directly with -ERESTARTSYS if we're interrupted,
376 		 * since we've done any required wakeups and there's no need
377 		 * to mark anything accessed. And we've dropped the lock.
378 		 */
379 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
380 			return -ERESTARTSYS;
381 
382 		__pipe_lock(pipe);
383 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
384 		wake_next_reader = true;
385 	}
386 	if (pipe_empty(pipe->head, pipe->tail))
387 		wake_next_reader = false;
388 	__pipe_unlock(pipe);
389 
390 	if (was_full)
391 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392 	if (wake_next_reader)
393 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
394 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395 	if (ret > 0)
396 		file_accessed(filp);
397 	return ret;
398 }
399 
is_packetized(struct file * file)400 static inline int is_packetized(struct file *file)
401 {
402 	return (file->f_flags & O_DIRECT) != 0;
403 }
404 
405 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)406 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
407 {
408 	unsigned int head = READ_ONCE(pipe->head);
409 	unsigned int tail = READ_ONCE(pipe->tail);
410 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
411 
412 	return !pipe_full(head, tail, max_usage) ||
413 		!READ_ONCE(pipe->readers);
414 }
415 
416 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)417 pipe_write(struct kiocb *iocb, struct iov_iter *from)
418 {
419 	struct file *filp = iocb->ki_filp;
420 	struct pipe_inode_info *pipe = filp->private_data;
421 	unsigned int head;
422 	ssize_t ret = 0;
423 	size_t total_len = iov_iter_count(from);
424 	ssize_t chars;
425 	bool was_empty = false;
426 	bool wake_next_writer = false;
427 
428 	/*
429 	 * Reject writing to watch queue pipes before the point where we lock
430 	 * the pipe.
431 	 * Otherwise, lockdep would be unhappy if the caller already has another
432 	 * pipe locked.
433 	 * If we had to support locking a normal pipe and a notification pipe at
434 	 * the same time, we could set up lockdep annotations for that, but
435 	 * since we don't actually need that, it's simpler to just bail here.
436 	 */
437 	if (pipe_has_watch_queue(pipe))
438 		return -EXDEV;
439 
440 	/* Null write succeeds. */
441 	if (unlikely(total_len == 0))
442 		return 0;
443 
444 	__pipe_lock(pipe);
445 
446 	if (!pipe->readers) {
447 		send_sig(SIGPIPE, current, 0);
448 		ret = -EPIPE;
449 		goto out;
450 	}
451 
452 	/*
453 	 * If it wasn't empty we try to merge new data into
454 	 * the last buffer.
455 	 *
456 	 * That naturally merges small writes, but it also
457 	 * page-aligns the rest of the writes for large writes
458 	 * spanning multiple pages.
459 	 */
460 	head = pipe->head;
461 	was_empty = pipe_empty(head, pipe->tail);
462 	chars = total_len & (PAGE_SIZE-1);
463 	if (chars && !was_empty) {
464 		unsigned int mask = pipe->ring_size - 1;
465 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
466 		int offset = buf->offset + buf->len;
467 
468 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
469 		    offset + chars <= PAGE_SIZE) {
470 			ret = pipe_buf_confirm(pipe, buf);
471 			if (ret)
472 				goto out;
473 
474 			ret = copy_page_from_iter(buf->page, offset, chars, from);
475 			if (unlikely(ret < chars)) {
476 				ret = -EFAULT;
477 				goto out;
478 			}
479 
480 			buf->len += ret;
481 			if (!iov_iter_count(from))
482 				goto out;
483 		}
484 	}
485 
486 	for (;;) {
487 		if (!pipe->readers) {
488 			send_sig(SIGPIPE, current, 0);
489 			if (!ret)
490 				ret = -EPIPE;
491 			break;
492 		}
493 
494 		head = pipe->head;
495 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
496 			unsigned int mask = pipe->ring_size - 1;
497 			struct pipe_buffer *buf;
498 			struct page *page = pipe->tmp_page;
499 			int copied;
500 
501 			if (!page) {
502 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
503 				if (unlikely(!page)) {
504 					ret = ret ? : -ENOMEM;
505 					break;
506 				}
507 				pipe->tmp_page = page;
508 			}
509 
510 			/* Allocate a slot in the ring in advance and attach an
511 			 * empty buffer.  If we fault or otherwise fail to use
512 			 * it, either the reader will consume it or it'll still
513 			 * be there for the next write.
514 			 */
515 			spin_lock_irq(&pipe->rd_wait.lock);
516 
517 			head = pipe->head;
518 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
519 				spin_unlock_irq(&pipe->rd_wait.lock);
520 				continue;
521 			}
522 
523 			pipe->head = head + 1;
524 			spin_unlock_irq(&pipe->rd_wait.lock);
525 
526 			/* Insert it into the buffer array */
527 			buf = &pipe->bufs[head & mask];
528 			buf->page = page;
529 			buf->ops = &anon_pipe_buf_ops;
530 			buf->offset = 0;
531 			buf->len = 0;
532 			if (is_packetized(filp))
533 				buf->flags = PIPE_BUF_FLAG_PACKET;
534 			else
535 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
536 			pipe->tmp_page = NULL;
537 
538 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
539 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
540 				if (!ret)
541 					ret = -EFAULT;
542 				break;
543 			}
544 			ret += copied;
545 			buf->len = copied;
546 
547 			if (!iov_iter_count(from))
548 				break;
549 		}
550 
551 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
552 			continue;
553 
554 		/* Wait for buffer space to become available. */
555 		if ((filp->f_flags & O_NONBLOCK) ||
556 		    (iocb->ki_flags & IOCB_NOWAIT)) {
557 			if (!ret)
558 				ret = -EAGAIN;
559 			break;
560 		}
561 		if (signal_pending(current)) {
562 			if (!ret)
563 				ret = -ERESTARTSYS;
564 			break;
565 		}
566 
567 		/*
568 		 * We're going to release the pipe lock and wait for more
569 		 * space. We wake up any readers if necessary, and then
570 		 * after waiting we need to re-check whether the pipe
571 		 * become empty while we dropped the lock.
572 		 */
573 		__pipe_unlock(pipe);
574 		if (was_empty)
575 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
576 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
577 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
578 		__pipe_lock(pipe);
579 		was_empty = pipe_empty(pipe->head, pipe->tail);
580 		wake_next_writer = true;
581 	}
582 out:
583 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
584 		wake_next_writer = false;
585 	__pipe_unlock(pipe);
586 
587 	/*
588 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
589 	 * want the reader to start processing things asap, rather than
590 	 * leave the data pending.
591 	 *
592 	 * This is particularly important for small writes, because of
593 	 * how (for example) the GNU make jobserver uses small writes to
594 	 * wake up pending jobs
595 	 *
596 	 * Epoll nonsensically wants a wakeup whether the pipe
597 	 * was already empty or not.
598 	 */
599 	if (was_empty || pipe->poll_usage)
600 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
601 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
602 	if (wake_next_writer)
603 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
604 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
605 		int err = file_update_time(filp);
606 		if (err)
607 			ret = err;
608 		sb_end_write(file_inode(filp)->i_sb);
609 	}
610 	return ret;
611 }
612 
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)613 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
614 {
615 	struct pipe_inode_info *pipe = filp->private_data;
616 	unsigned int count, head, tail, mask;
617 
618 	switch (cmd) {
619 	case FIONREAD:
620 		__pipe_lock(pipe);
621 		count = 0;
622 		head = pipe->head;
623 		tail = pipe->tail;
624 		mask = pipe->ring_size - 1;
625 
626 		while (tail != head) {
627 			count += pipe->bufs[tail & mask].len;
628 			tail++;
629 		}
630 		__pipe_unlock(pipe);
631 
632 		return put_user(count, (int __user *)arg);
633 
634 #ifdef CONFIG_WATCH_QUEUE
635 	case IOC_WATCH_QUEUE_SET_SIZE: {
636 		int ret;
637 		__pipe_lock(pipe);
638 		ret = watch_queue_set_size(pipe, arg);
639 		__pipe_unlock(pipe);
640 		return ret;
641 	}
642 
643 	case IOC_WATCH_QUEUE_SET_FILTER:
644 		return watch_queue_set_filter(
645 			pipe, (struct watch_notification_filter __user *)arg);
646 #endif
647 
648 	default:
649 		return -ENOIOCTLCMD;
650 	}
651 }
652 
653 /* No kernel lock held - fine */
654 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)655 pipe_poll(struct file *filp, poll_table *wait)
656 {
657 	__poll_t mask;
658 	struct pipe_inode_info *pipe = filp->private_data;
659 	unsigned int head, tail;
660 
661 	/* Epoll has some historical nasty semantics, this enables them */
662 	WRITE_ONCE(pipe->poll_usage, true);
663 
664 	/*
665 	 * Reading pipe state only -- no need for acquiring the semaphore.
666 	 *
667 	 * But because this is racy, the code has to add the
668 	 * entry to the poll table _first_ ..
669 	 */
670 	if (filp->f_mode & FMODE_READ)
671 		poll_wait(filp, &pipe->rd_wait, wait);
672 	if (filp->f_mode & FMODE_WRITE)
673 		poll_wait(filp, &pipe->wr_wait, wait);
674 
675 	/*
676 	 * .. and only then can you do the racy tests. That way,
677 	 * if something changes and you got it wrong, the poll
678 	 * table entry will wake you up and fix it.
679 	 */
680 	head = READ_ONCE(pipe->head);
681 	tail = READ_ONCE(pipe->tail);
682 
683 	mask = 0;
684 	if (filp->f_mode & FMODE_READ) {
685 		if (!pipe_empty(head, tail))
686 			mask |= EPOLLIN | EPOLLRDNORM;
687 		if (!pipe->writers && filp->f_version != pipe->w_counter)
688 			mask |= EPOLLHUP;
689 	}
690 
691 	if (filp->f_mode & FMODE_WRITE) {
692 		if (!pipe_full(head, tail, pipe->max_usage))
693 			mask |= EPOLLOUT | EPOLLWRNORM;
694 		/*
695 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
696 		 * behave exactly like pipes for poll().
697 		 */
698 		if (!pipe->readers)
699 			mask |= EPOLLERR;
700 	}
701 
702 	return mask;
703 }
704 
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)705 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
706 {
707 	int kill = 0;
708 
709 	spin_lock(&inode->i_lock);
710 	if (!--pipe->files) {
711 		inode->i_pipe = NULL;
712 		kill = 1;
713 	}
714 	spin_unlock(&inode->i_lock);
715 
716 	if (kill)
717 		free_pipe_info(pipe);
718 }
719 
720 static int
pipe_release(struct inode * inode,struct file * file)721 pipe_release(struct inode *inode, struct file *file)
722 {
723 	struct pipe_inode_info *pipe = file->private_data;
724 
725 	__pipe_lock(pipe);
726 	if (file->f_mode & FMODE_READ)
727 		pipe->readers--;
728 	if (file->f_mode & FMODE_WRITE)
729 		pipe->writers--;
730 
731 	/* Was that the last reader or writer, but not the other side? */
732 	if (!pipe->readers != !pipe->writers) {
733 		wake_up_interruptible_all(&pipe->rd_wait);
734 		wake_up_interruptible_all(&pipe->wr_wait);
735 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
736 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
737 	}
738 	__pipe_unlock(pipe);
739 
740 	put_pipe_info(inode, pipe);
741 	return 0;
742 }
743 
744 static int
pipe_fasync(int fd,struct file * filp,int on)745 pipe_fasync(int fd, struct file *filp, int on)
746 {
747 	struct pipe_inode_info *pipe = filp->private_data;
748 	int retval = 0;
749 
750 	__pipe_lock(pipe);
751 	if (filp->f_mode & FMODE_READ)
752 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
753 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
754 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
755 		if (retval < 0 && (filp->f_mode & FMODE_READ))
756 			/* this can happen only if on == T */
757 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
758 	}
759 	__pipe_unlock(pipe);
760 	return retval;
761 }
762 
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)763 unsigned long account_pipe_buffers(struct user_struct *user,
764 				   unsigned long old, unsigned long new)
765 {
766 	return atomic_long_add_return(new - old, &user->pipe_bufs);
767 }
768 
too_many_pipe_buffers_soft(unsigned long user_bufs)769 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
770 {
771 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
772 
773 	return soft_limit && user_bufs > soft_limit;
774 }
775 
too_many_pipe_buffers_hard(unsigned long user_bufs)776 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
777 {
778 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
779 
780 	return hard_limit && user_bufs > hard_limit;
781 }
782 
pipe_is_unprivileged_user(void)783 bool pipe_is_unprivileged_user(void)
784 {
785 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
786 }
787 
alloc_pipe_info(void)788 struct pipe_inode_info *alloc_pipe_info(void)
789 {
790 	struct pipe_inode_info *pipe;
791 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
792 	struct user_struct *user = get_current_user();
793 	unsigned long user_bufs;
794 	unsigned int max_size = READ_ONCE(pipe_max_size);
795 
796 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
797 	if (pipe == NULL)
798 		goto out_free_uid;
799 
800 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
801 		pipe_bufs = max_size >> PAGE_SHIFT;
802 
803 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
804 
805 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
806 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
807 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
808 	}
809 
810 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
811 		goto out_revert_acct;
812 
813 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
814 			     GFP_KERNEL_ACCOUNT);
815 
816 	if (pipe->bufs) {
817 		init_waitqueue_head(&pipe->rd_wait);
818 		init_waitqueue_head(&pipe->wr_wait);
819 		pipe->r_counter = pipe->w_counter = 1;
820 		pipe->max_usage = pipe_bufs;
821 		pipe->ring_size = pipe_bufs;
822 		pipe->nr_accounted = pipe_bufs;
823 		pipe->user = user;
824 		mutex_init(&pipe->mutex);
825 		return pipe;
826 	}
827 
828 out_revert_acct:
829 	(void) account_pipe_buffers(user, pipe_bufs, 0);
830 	kfree(pipe);
831 out_free_uid:
832 	free_uid(user);
833 	return NULL;
834 }
835 
free_pipe_info(struct pipe_inode_info * pipe)836 void free_pipe_info(struct pipe_inode_info *pipe)
837 {
838 	unsigned int i;
839 
840 #ifdef CONFIG_WATCH_QUEUE
841 	if (pipe->watch_queue)
842 		watch_queue_clear(pipe->watch_queue);
843 #endif
844 
845 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
846 	free_uid(pipe->user);
847 	for (i = 0; i < pipe->ring_size; i++) {
848 		struct pipe_buffer *buf = pipe->bufs + i;
849 		if (buf->ops)
850 			pipe_buf_release(pipe, buf);
851 	}
852 #ifdef CONFIG_WATCH_QUEUE
853 	if (pipe->watch_queue)
854 		put_watch_queue(pipe->watch_queue);
855 #endif
856 	if (pipe->tmp_page)
857 		__free_page(pipe->tmp_page);
858 	kfree(pipe->bufs);
859 	kfree(pipe);
860 }
861 
862 static struct vfsmount *pipe_mnt __read_mostly;
863 
864 /*
865  * pipefs_dname() is called from d_path().
866  */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)867 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
868 {
869 	return dynamic_dname(buffer, buflen, "pipe:[%lu]",
870 				d_inode(dentry)->i_ino);
871 }
872 
873 static const struct dentry_operations pipefs_dentry_operations = {
874 	.d_dname	= pipefs_dname,
875 };
876 
get_pipe_inode(void)877 static struct inode * get_pipe_inode(void)
878 {
879 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
880 	struct pipe_inode_info *pipe;
881 
882 	if (!inode)
883 		goto fail_inode;
884 
885 	inode->i_ino = get_next_ino();
886 
887 	pipe = alloc_pipe_info();
888 	if (!pipe)
889 		goto fail_iput;
890 
891 	inode->i_pipe = pipe;
892 	pipe->files = 2;
893 	pipe->readers = pipe->writers = 1;
894 	inode->i_fop = &pipefifo_fops;
895 
896 	/*
897 	 * Mark the inode dirty from the very beginning,
898 	 * that way it will never be moved to the dirty
899 	 * list because "mark_inode_dirty()" will think
900 	 * that it already _is_ on the dirty list.
901 	 */
902 	inode->i_state = I_DIRTY;
903 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
904 	inode->i_uid = current_fsuid();
905 	inode->i_gid = current_fsgid();
906 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
907 
908 	return inode;
909 
910 fail_iput:
911 	iput(inode);
912 
913 fail_inode:
914 	return NULL;
915 }
916 
create_pipe_files(struct file ** res,int flags)917 int create_pipe_files(struct file **res, int flags)
918 {
919 	struct inode *inode = get_pipe_inode();
920 	struct file *f;
921 	int error;
922 
923 	if (!inode)
924 		return -ENFILE;
925 
926 	if (flags & O_NOTIFICATION_PIPE) {
927 		error = watch_queue_init(inode->i_pipe);
928 		if (error) {
929 			free_pipe_info(inode->i_pipe);
930 			iput(inode);
931 			return error;
932 		}
933 	}
934 
935 	f = alloc_file_pseudo(inode, pipe_mnt, "",
936 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
937 				&pipefifo_fops);
938 	if (IS_ERR(f)) {
939 		free_pipe_info(inode->i_pipe);
940 		iput(inode);
941 		return PTR_ERR(f);
942 	}
943 
944 	f->private_data = inode->i_pipe;
945 
946 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
947 				  &pipefifo_fops);
948 	if (IS_ERR(res[0])) {
949 		put_pipe_info(inode, inode->i_pipe);
950 		fput(f);
951 		return PTR_ERR(res[0]);
952 	}
953 	res[0]->private_data = inode->i_pipe;
954 	res[1] = f;
955 	stream_open(inode, res[0]);
956 	stream_open(inode, res[1]);
957 	return 0;
958 }
959 
__do_pipe_flags(int * fd,struct file ** files,int flags)960 static int __do_pipe_flags(int *fd, struct file **files, int flags)
961 {
962 	int error;
963 	int fdw, fdr;
964 
965 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
966 		return -EINVAL;
967 
968 	error = create_pipe_files(files, flags);
969 	if (error)
970 		return error;
971 
972 	error = get_unused_fd_flags(flags);
973 	if (error < 0)
974 		goto err_read_pipe;
975 	fdr = error;
976 
977 	error = get_unused_fd_flags(flags);
978 	if (error < 0)
979 		goto err_fdr;
980 	fdw = error;
981 
982 	audit_fd_pair(fdr, fdw);
983 	fd[0] = fdr;
984 	fd[1] = fdw;
985 	/* pipe groks IOCB_NOWAIT */
986 	files[0]->f_mode |= FMODE_NOWAIT;
987 	files[1]->f_mode |= FMODE_NOWAIT;
988 	return 0;
989 
990  err_fdr:
991 	put_unused_fd(fdr);
992  err_read_pipe:
993 	fput(files[0]);
994 	fput(files[1]);
995 	return error;
996 }
997 
do_pipe_flags(int * fd,int flags)998 int do_pipe_flags(int *fd, int flags)
999 {
1000 	struct file *files[2];
1001 	int error = __do_pipe_flags(fd, files, flags);
1002 	if (!error) {
1003 		fd_install(fd[0], files[0]);
1004 		fd_install(fd[1], files[1]);
1005 	}
1006 	return error;
1007 }
1008 
1009 /*
1010  * sys_pipe() is the normal C calling standard for creating
1011  * a pipe. It's not the way Unix traditionally does this, though.
1012  */
do_pipe2(int __user * fildes,int flags)1013 static int do_pipe2(int __user *fildes, int flags)
1014 {
1015 	struct file *files[2];
1016 	int fd[2];
1017 	int error;
1018 
1019 	error = __do_pipe_flags(fd, files, flags);
1020 	if (!error) {
1021 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1022 			fput(files[0]);
1023 			fput(files[1]);
1024 			put_unused_fd(fd[0]);
1025 			put_unused_fd(fd[1]);
1026 			error = -EFAULT;
1027 		} else {
1028 			fd_install(fd[0], files[0]);
1029 			fd_install(fd[1], files[1]);
1030 		}
1031 	}
1032 	return error;
1033 }
1034 
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1035 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1036 {
1037 	return do_pipe2(fildes, flags);
1038 }
1039 
SYSCALL_DEFINE1(pipe,int __user *,fildes)1040 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1041 {
1042 	return do_pipe2(fildes, 0);
1043 }
1044 
1045 /*
1046  * This is the stupid "wait for pipe to be readable or writable"
1047  * model.
1048  *
1049  * See pipe_read/write() for the proper kind of exclusive wait,
1050  * but that requires that we wake up any other readers/writers
1051  * if we then do not end up reading everything (ie the whole
1052  * "wake_next_reader/writer" logic in pipe_read/write()).
1053  */
pipe_wait_readable(struct pipe_inode_info * pipe)1054 void pipe_wait_readable(struct pipe_inode_info *pipe)
1055 {
1056 	pipe_unlock(pipe);
1057 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1058 	pipe_lock(pipe);
1059 }
1060 
pipe_wait_writable(struct pipe_inode_info * pipe)1061 void pipe_wait_writable(struct pipe_inode_info *pipe)
1062 {
1063 	pipe_unlock(pipe);
1064 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1065 	pipe_lock(pipe);
1066 }
1067 
1068 /*
1069  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1070  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1071  * race with the count check and waitqueue prep.
1072  *
1073  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1074  * then check the condition you're waiting for, and only then sleep. But
1075  * because of the pipe lock, we can check the condition before being on
1076  * the wait queue.
1077  *
1078  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1079  */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1080 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1081 {
1082 	DEFINE_WAIT(rdwait);
1083 	int cur = *cnt;
1084 
1085 	while (cur == *cnt) {
1086 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1087 		pipe_unlock(pipe);
1088 		schedule();
1089 		finish_wait(&pipe->rd_wait, &rdwait);
1090 		pipe_lock(pipe);
1091 		if (signal_pending(current))
1092 			break;
1093 	}
1094 	return cur == *cnt ? -ERESTARTSYS : 0;
1095 }
1096 
wake_up_partner(struct pipe_inode_info * pipe)1097 static void wake_up_partner(struct pipe_inode_info *pipe)
1098 {
1099 	wake_up_interruptible_all(&pipe->rd_wait);
1100 }
1101 
fifo_open(struct inode * inode,struct file * filp)1102 static int fifo_open(struct inode *inode, struct file *filp)
1103 {
1104 	struct pipe_inode_info *pipe;
1105 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1106 	int ret;
1107 
1108 	filp->f_version = 0;
1109 
1110 	spin_lock(&inode->i_lock);
1111 	if (inode->i_pipe) {
1112 		pipe = inode->i_pipe;
1113 		pipe->files++;
1114 		spin_unlock(&inode->i_lock);
1115 	} else {
1116 		spin_unlock(&inode->i_lock);
1117 		pipe = alloc_pipe_info();
1118 		if (!pipe)
1119 			return -ENOMEM;
1120 		pipe->files = 1;
1121 		spin_lock(&inode->i_lock);
1122 		if (unlikely(inode->i_pipe)) {
1123 			inode->i_pipe->files++;
1124 			spin_unlock(&inode->i_lock);
1125 			free_pipe_info(pipe);
1126 			pipe = inode->i_pipe;
1127 		} else {
1128 			inode->i_pipe = pipe;
1129 			spin_unlock(&inode->i_lock);
1130 		}
1131 	}
1132 	filp->private_data = pipe;
1133 	/* OK, we have a pipe and it's pinned down */
1134 
1135 	__pipe_lock(pipe);
1136 
1137 	/* We can only do regular read/write on fifos */
1138 	stream_open(inode, filp);
1139 
1140 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1141 	case FMODE_READ:
1142 	/*
1143 	 *  O_RDONLY
1144 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1145 	 *  opened, even when there is no process writing the FIFO.
1146 	 */
1147 		pipe->r_counter++;
1148 		if (pipe->readers++ == 0)
1149 			wake_up_partner(pipe);
1150 
1151 		if (!is_pipe && !pipe->writers) {
1152 			if ((filp->f_flags & O_NONBLOCK)) {
1153 				/* suppress EPOLLHUP until we have
1154 				 * seen a writer */
1155 				filp->f_version = pipe->w_counter;
1156 			} else {
1157 				if (wait_for_partner(pipe, &pipe->w_counter))
1158 					goto err_rd;
1159 			}
1160 		}
1161 		break;
1162 
1163 	case FMODE_WRITE:
1164 	/*
1165 	 *  O_WRONLY
1166 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1167 	 *  errno=ENXIO when there is no process reading the FIFO.
1168 	 */
1169 		ret = -ENXIO;
1170 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1171 			goto err;
1172 
1173 		pipe->w_counter++;
1174 		if (!pipe->writers++)
1175 			wake_up_partner(pipe);
1176 
1177 		if (!is_pipe && !pipe->readers) {
1178 			if (wait_for_partner(pipe, &pipe->r_counter))
1179 				goto err_wr;
1180 		}
1181 		break;
1182 
1183 	case FMODE_READ | FMODE_WRITE:
1184 	/*
1185 	 *  O_RDWR
1186 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1187 	 *  This implementation will NEVER block on a O_RDWR open, since
1188 	 *  the process can at least talk to itself.
1189 	 */
1190 
1191 		pipe->readers++;
1192 		pipe->writers++;
1193 		pipe->r_counter++;
1194 		pipe->w_counter++;
1195 		if (pipe->readers == 1 || pipe->writers == 1)
1196 			wake_up_partner(pipe);
1197 		break;
1198 
1199 	default:
1200 		ret = -EINVAL;
1201 		goto err;
1202 	}
1203 
1204 	/* Ok! */
1205 	__pipe_unlock(pipe);
1206 	return 0;
1207 
1208 err_rd:
1209 	if (!--pipe->readers)
1210 		wake_up_interruptible(&pipe->wr_wait);
1211 	ret = -ERESTARTSYS;
1212 	goto err;
1213 
1214 err_wr:
1215 	if (!--pipe->writers)
1216 		wake_up_interruptible_all(&pipe->rd_wait);
1217 	ret = -ERESTARTSYS;
1218 	goto err;
1219 
1220 err:
1221 	__pipe_unlock(pipe);
1222 
1223 	put_pipe_info(inode, pipe);
1224 	return ret;
1225 }
1226 
1227 const struct file_operations pipefifo_fops = {
1228 	.open		= fifo_open,
1229 	.llseek		= no_llseek,
1230 	.read_iter	= pipe_read,
1231 	.write_iter	= pipe_write,
1232 	.poll		= pipe_poll,
1233 	.unlocked_ioctl	= pipe_ioctl,
1234 	.release	= pipe_release,
1235 	.fasync		= pipe_fasync,
1236 	.splice_write	= iter_file_splice_write,
1237 };
1238 
1239 /*
1240  * Currently we rely on the pipe array holding a power-of-2 number
1241  * of pages. Returns 0 on error.
1242  */
round_pipe_size(unsigned int size)1243 unsigned int round_pipe_size(unsigned int size)
1244 {
1245 	if (size > (1U << 31))
1246 		return 0;
1247 
1248 	/* Minimum pipe size, as required by POSIX */
1249 	if (size < PAGE_SIZE)
1250 		return PAGE_SIZE;
1251 
1252 	return roundup_pow_of_two(size);
1253 }
1254 
1255 /*
1256  * Resize the pipe ring to a number of slots.
1257  *
1258  * Note the pipe can be reduced in capacity, but only if the current
1259  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1260  * returned instead.
1261  */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1262 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1263 {
1264 	struct pipe_buffer *bufs;
1265 	unsigned int head, tail, mask, n;
1266 
1267 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1268 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1269 	if (unlikely(!bufs))
1270 		return -ENOMEM;
1271 
1272 	spin_lock_irq(&pipe->rd_wait.lock);
1273 	mask = pipe->ring_size - 1;
1274 	head = pipe->head;
1275 	tail = pipe->tail;
1276 
1277 	n = pipe_occupancy(head, tail);
1278 	if (nr_slots < n) {
1279 		spin_unlock_irq(&pipe->rd_wait.lock);
1280 		kfree(bufs);
1281 		return -EBUSY;
1282 	}
1283 
1284 	/*
1285 	 * The pipe array wraps around, so just start the new one at zero
1286 	 * and adjust the indices.
1287 	 */
1288 	if (n > 0) {
1289 		unsigned int h = head & mask;
1290 		unsigned int t = tail & mask;
1291 		if (h > t) {
1292 			memcpy(bufs, pipe->bufs + t,
1293 			       n * sizeof(struct pipe_buffer));
1294 		} else {
1295 			unsigned int tsize = pipe->ring_size - t;
1296 			if (h > 0)
1297 				memcpy(bufs + tsize, pipe->bufs,
1298 				       h * sizeof(struct pipe_buffer));
1299 			memcpy(bufs, pipe->bufs + t,
1300 			       tsize * sizeof(struct pipe_buffer));
1301 		}
1302 	}
1303 
1304 	head = n;
1305 	tail = 0;
1306 
1307 	kfree(pipe->bufs);
1308 	pipe->bufs = bufs;
1309 	pipe->ring_size = nr_slots;
1310 	if (pipe->max_usage > nr_slots)
1311 		pipe->max_usage = nr_slots;
1312 	pipe->tail = tail;
1313 	pipe->head = head;
1314 
1315 	if (!pipe_has_watch_queue(pipe)) {
1316 		pipe->max_usage = nr_slots;
1317 		pipe->nr_accounted = nr_slots;
1318 	}
1319 
1320 	spin_unlock_irq(&pipe->rd_wait.lock);
1321 
1322 	/* This might have made more room for writers */
1323 	wake_up_interruptible(&pipe->wr_wait);
1324 	return 0;
1325 }
1326 
1327 /*
1328  * Allocate a new array of pipe buffers and copy the info over. Returns the
1329  * pipe size if successful, or return -ERROR on error.
1330  */
pipe_set_size(struct pipe_inode_info * pipe,unsigned int arg)1331 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1332 {
1333 	unsigned long user_bufs;
1334 	unsigned int nr_slots, size;
1335 	long ret = 0;
1336 
1337 	if (pipe_has_watch_queue(pipe))
1338 		return -EBUSY;
1339 
1340 	size = round_pipe_size(arg);
1341 	nr_slots = size >> PAGE_SHIFT;
1342 
1343 	if (!nr_slots)
1344 		return -EINVAL;
1345 
1346 	/*
1347 	 * If trying to increase the pipe capacity, check that an
1348 	 * unprivileged user is not trying to exceed various limits
1349 	 * (soft limit check here, hard limit check just below).
1350 	 * Decreasing the pipe capacity is always permitted, even
1351 	 * if the user is currently over a limit.
1352 	 */
1353 	if (nr_slots > pipe->max_usage &&
1354 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1355 		return -EPERM;
1356 
1357 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1358 
1359 	if (nr_slots > pipe->max_usage &&
1360 			(too_many_pipe_buffers_hard(user_bufs) ||
1361 			 too_many_pipe_buffers_soft(user_bufs)) &&
1362 			pipe_is_unprivileged_user()) {
1363 		ret = -EPERM;
1364 		goto out_revert_acct;
1365 	}
1366 
1367 	ret = pipe_resize_ring(pipe, nr_slots);
1368 	if (ret < 0)
1369 		goto out_revert_acct;
1370 
1371 	return pipe->max_usage * PAGE_SIZE;
1372 
1373 out_revert_acct:
1374 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1375 	return ret;
1376 }
1377 
1378 /*
1379  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1380  * not enough to verify that this is a pipe.
1381  */
get_pipe_info(struct file * file,bool for_splice)1382 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1383 {
1384 	struct pipe_inode_info *pipe = file->private_data;
1385 
1386 	if (file->f_op != &pipefifo_fops || !pipe)
1387 		return NULL;
1388 	if (for_splice && pipe_has_watch_queue(pipe))
1389 		return NULL;
1390 	return pipe;
1391 }
1392 
pipe_fcntl(struct file * file,unsigned int cmd,unsigned int arg)1393 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1394 {
1395 	struct pipe_inode_info *pipe;
1396 	long ret;
1397 
1398 	pipe = get_pipe_info(file, false);
1399 	if (!pipe)
1400 		return -EBADF;
1401 
1402 	__pipe_lock(pipe);
1403 
1404 	switch (cmd) {
1405 	case F_SETPIPE_SZ:
1406 		ret = pipe_set_size(pipe, arg);
1407 		break;
1408 	case F_GETPIPE_SZ:
1409 		ret = pipe->max_usage * PAGE_SIZE;
1410 		break;
1411 	default:
1412 		ret = -EINVAL;
1413 		break;
1414 	}
1415 
1416 	__pipe_unlock(pipe);
1417 	return ret;
1418 }
1419 
1420 static const struct super_operations pipefs_ops = {
1421 	.destroy_inode = free_inode_nonrcu,
1422 	.statfs = simple_statfs,
1423 };
1424 
1425 /*
1426  * pipefs should _never_ be mounted by userland - too much of security hassle,
1427  * no real gain from having the whole whorehouse mounted. So we don't need
1428  * any operations on the root directory. However, we need a non-trivial
1429  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1430  */
1431 
pipefs_init_fs_context(struct fs_context * fc)1432 static int pipefs_init_fs_context(struct fs_context *fc)
1433 {
1434 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1435 	if (!ctx)
1436 		return -ENOMEM;
1437 	ctx->ops = &pipefs_ops;
1438 	ctx->dops = &pipefs_dentry_operations;
1439 	return 0;
1440 }
1441 
1442 static struct file_system_type pipe_fs_type = {
1443 	.name		= "pipefs",
1444 	.init_fs_context = pipefs_init_fs_context,
1445 	.kill_sb	= kill_anon_super,
1446 };
1447 
1448 #ifdef CONFIG_SYSCTL
do_proc_dopipe_max_size_conv(unsigned long * lvalp,unsigned int * valp,int write,void * data)1449 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1450 					unsigned int *valp,
1451 					int write, void *data)
1452 {
1453 	if (write) {
1454 		unsigned int val;
1455 
1456 		val = round_pipe_size(*lvalp);
1457 		if (val == 0)
1458 			return -EINVAL;
1459 
1460 		*valp = val;
1461 	} else {
1462 		unsigned int val = *valp;
1463 		*lvalp = (unsigned long) val;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
proc_dopipe_max_size(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1469 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1470 				void *buffer, size_t *lenp, loff_t *ppos)
1471 {
1472 	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1473 				 do_proc_dopipe_max_size_conv, NULL);
1474 }
1475 
1476 static struct ctl_table fs_pipe_sysctls[] = {
1477 	{
1478 		.procname	= "pipe-max-size",
1479 		.data		= &pipe_max_size,
1480 		.maxlen		= sizeof(pipe_max_size),
1481 		.mode		= 0644,
1482 		.proc_handler	= proc_dopipe_max_size,
1483 	},
1484 	{
1485 		.procname	= "pipe-user-pages-hard",
1486 		.data		= &pipe_user_pages_hard,
1487 		.maxlen		= sizeof(pipe_user_pages_hard),
1488 		.mode		= 0644,
1489 		.proc_handler	= proc_doulongvec_minmax,
1490 	},
1491 	{
1492 		.procname	= "pipe-user-pages-soft",
1493 		.data		= &pipe_user_pages_soft,
1494 		.maxlen		= sizeof(pipe_user_pages_soft),
1495 		.mode		= 0644,
1496 		.proc_handler	= proc_doulongvec_minmax,
1497 	},
1498 	{ }
1499 };
1500 #endif
1501 
init_pipe_fs(void)1502 static int __init init_pipe_fs(void)
1503 {
1504 	int err = register_filesystem(&pipe_fs_type);
1505 
1506 	if (!err) {
1507 		pipe_mnt = kern_mount(&pipe_fs_type);
1508 		if (IS_ERR(pipe_mnt)) {
1509 			err = PTR_ERR(pipe_mnt);
1510 			unregister_filesystem(&pipe_fs_type);
1511 		}
1512 	}
1513 #ifdef CONFIG_SYSCTL
1514 	register_sysctl_init("fs", fs_pipe_sysctls);
1515 #endif
1516 	return err;
1517 }
1518 
1519 fs_initcall(init_pipe_fs);
1520