xref: /openbmc/linux/drivers/pinctrl/core.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/debugfs.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kref.h>
22 #include <linux/list.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/pinctrl/devinfo.h>
28 #include <linux/pinctrl/machine.h>
29 #include <linux/pinctrl/pinctrl.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include "../gpio/gpiolib.h"
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39 
40 static bool pinctrl_dummy_state;
41 
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44 
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47 
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50 
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53 
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56 
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59 
60 
61 /**
62  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63  *
64  * Usually this function is called by platforms without pinctrl driver support
65  * but run with some shared drivers using pinctrl APIs.
66  * After calling this function, the pinctrl core will return successfully
67  * with creating a dummy state for the driver to keep going smoothly.
68  */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 	pinctrl_dummy_state = true;
72 }
73 
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 	/* We're not allowed to register devices without name */
77 	return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80 
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 	return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86 
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 	return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92 
93 /**
94  * get_pinctrl_dev_from_devname() - look up pin controller device
95  * @devname: the name of a device instance, as returned by dev_name()
96  *
97  * Looks up a pin control device matching a certain device name or pure device
98  * pointer, the pure device pointer will take precedence.
99  */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 	struct pinctrl_dev *pctldev;
103 
104 	if (!devname)
105 		return NULL;
106 
107 	mutex_lock(&pinctrldev_list_mutex);
108 
109 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 		if (!strcmp(dev_name(pctldev->dev), devname)) {
111 			/* Matched on device name */
112 			mutex_unlock(&pinctrldev_list_mutex);
113 			return pctldev;
114 		}
115 	}
116 
117 	mutex_unlock(&pinctrldev_list_mutex);
118 
119 	return NULL;
120 }
121 
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 	struct pinctrl_dev *pctldev;
125 
126 	mutex_lock(&pinctrldev_list_mutex);
127 
128 	list_for_each_entry(pctldev, &pinctrldev_list, node)
129 		if (device_match_of_node(pctldev->dev, np)) {
130 			mutex_unlock(&pinctrldev_list_mutex);
131 			return pctldev;
132 		}
133 
134 	mutex_unlock(&pinctrldev_list_mutex);
135 
136 	return NULL;
137 }
138 
139 /**
140  * pin_get_from_name() - look up a pin number from a name
141  * @pctldev: the pin control device to lookup the pin on
142  * @name: the name of the pin to look up
143  */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 	unsigned i, pin;
147 
148 	/* The pin number can be retrived from the pin controller descriptor */
149 	for (i = 0; i < pctldev->desc->npins; i++) {
150 		struct pin_desc *desc;
151 
152 		pin = pctldev->desc->pins[i].number;
153 		desc = pin_desc_get(pctldev, pin);
154 		/* Pin space may be sparse */
155 		if (desc && !strcmp(name, desc->name))
156 			return pin;
157 	}
158 
159 	return -EINVAL;
160 }
161 
162 /**
163  * pin_get_name() - look up a pin name from a pin id
164  * @pctldev: the pin control device to lookup the pin on
165  * @pin: pin number/id to look up
166  */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 {
169 	const struct pin_desc *desc;
170 
171 	desc = pin_desc_get(pctldev, pin);
172 	if (!desc) {
173 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 			pin);
175 		return NULL;
176 	}
177 
178 	return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181 
182 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_pins)183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 				  const struct pinctrl_pin_desc *pins,
185 				  unsigned num_pins)
186 {
187 	int i;
188 
189 	for (i = 0; i < num_pins; i++) {
190 		struct pin_desc *pindesc;
191 
192 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 					    pins[i].number);
194 		if (pindesc) {
195 			radix_tree_delete(&pctldev->pin_desc_tree,
196 					  pins[i].number);
197 			if (pindesc->dynamic_name)
198 				kfree(pindesc->name);
199 		}
200 		kfree(pindesc);
201 	}
202 }
203 
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 				    const struct pinctrl_pin_desc *pin)
206 {
207 	struct pin_desc *pindesc;
208 	int error;
209 
210 	pindesc = pin_desc_get(pctldev, pin->number);
211 	if (pindesc) {
212 		dev_err(pctldev->dev, "pin %d already registered\n",
213 			pin->number);
214 		return -EINVAL;
215 	}
216 
217 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 	if (!pindesc)
219 		return -ENOMEM;
220 
221 	/* Set owner */
222 	pindesc->pctldev = pctldev;
223 #ifdef CONFIG_PINMUX
224 	mutex_init(&pindesc->mux_lock);
225 #endif
226 
227 	/* Copy basic pin info */
228 	if (pin->name) {
229 		pindesc->name = pin->name;
230 	} else {
231 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
232 		if (!pindesc->name) {
233 			error = -ENOMEM;
234 			goto failed;
235 		}
236 		pindesc->dynamic_name = true;
237 	}
238 
239 	pindesc->drv_data = pin->drv_data;
240 
241 	error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
242 	if (error)
243 		goto failed;
244 
245 	pr_debug("registered pin %d (%s) on %s\n",
246 		 pin->number, pindesc->name, pctldev->desc->name);
247 	return 0;
248 
249 failed:
250 	kfree(pindesc);
251 	return error;
252 }
253 
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_descs)254 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
255 				 const struct pinctrl_pin_desc *pins,
256 				 unsigned num_descs)
257 {
258 	unsigned i;
259 	int ret = 0;
260 
261 	for (i = 0; i < num_descs; i++) {
262 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
263 		if (ret)
264 			return ret;
265 	}
266 
267 	return 0;
268 }
269 
270 /**
271  * gpio_to_pin() - GPIO range GPIO number to pin number translation
272  * @range: GPIO range used for the translation
273  * @gpio: gpio pin to translate to a pin number
274  *
275  * Finds the pin number for a given GPIO using the specified GPIO range
276  * as a base for translation. The distinction between linear GPIO ranges
277  * and pin list based GPIO ranges is managed correctly by this function.
278  *
279  * This function assumes the gpio is part of the specified GPIO range, use
280  * only after making sure this is the case (e.g. by calling it on the
281  * result of successful pinctrl_get_device_gpio_range calls)!
282  */
gpio_to_pin(struct pinctrl_gpio_range * range,unsigned int gpio)283 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
284 				unsigned int gpio)
285 {
286 	unsigned int offset = gpio - range->base;
287 	if (range->pins)
288 		return range->pins[offset];
289 	else
290 		return range->pin_base + offset;
291 }
292 
293 /**
294  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
295  * @pctldev: pin controller device to check
296  * @gpio: gpio pin to check taken from the global GPIO pin space
297  *
298  * Tries to match a GPIO pin number to the ranges handled by a certain pin
299  * controller, return the range or NULL
300  */
301 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,unsigned gpio)302 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
303 {
304 	struct pinctrl_gpio_range *range;
305 
306 	mutex_lock(&pctldev->mutex);
307 	/* Loop over the ranges */
308 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
309 		/* Check if we're in the valid range */
310 		if (gpio >= range->base &&
311 		    gpio < range->base + range->npins) {
312 			mutex_unlock(&pctldev->mutex);
313 			return range;
314 		}
315 	}
316 	mutex_unlock(&pctldev->mutex);
317 	return NULL;
318 }
319 
320 /**
321  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
322  * the same GPIO chip are in range
323  * @gpio: gpio pin to check taken from the global GPIO pin space
324  *
325  * This function is complement of pinctrl_match_gpio_range(). If the return
326  * value of pinctrl_match_gpio_range() is NULL, this function could be used
327  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
328  * of the same GPIO chip don't have back-end pinctrl interface.
329  * If the return value is true, it means that pinctrl device is ready & the
330  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
331  * is false, it means that pinctrl device may not be ready.
332  */
333 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(unsigned gpio)334 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
335 {
336 	struct pinctrl_dev *pctldev;
337 	struct pinctrl_gpio_range *range = NULL;
338 	/*
339 	 * FIXME: "gpio" here is a number in the global GPIO numberspace.
340 	 * get rid of this from the ranges eventually and get the GPIO
341 	 * descriptor from the gpio_chip.
342 	 */
343 	struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio));
344 
345 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
346 		return false;
347 
348 	mutex_lock(&pinctrldev_list_mutex);
349 
350 	/* Loop over the pin controllers */
351 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
352 		/* Loop over the ranges */
353 		mutex_lock(&pctldev->mutex);
354 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
355 			/* Check if any gpio range overlapped with gpio chip */
356 			if (range->base + range->npins - 1 < chip->base ||
357 			    range->base > chip->base + chip->ngpio - 1)
358 				continue;
359 			mutex_unlock(&pctldev->mutex);
360 			mutex_unlock(&pinctrldev_list_mutex);
361 			return true;
362 		}
363 		mutex_unlock(&pctldev->mutex);
364 	}
365 
366 	mutex_unlock(&pinctrldev_list_mutex);
367 
368 	return false;
369 }
370 #else
pinctrl_ready_for_gpio_range(unsigned gpio)371 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
372 #endif
373 
374 /**
375  * pinctrl_get_device_gpio_range() - find device for GPIO range
376  * @gpio: the pin to locate the pin controller for
377  * @outdev: the pin control device if found
378  * @outrange: the GPIO range if found
379  *
380  * Find the pin controller handling a certain GPIO pin from the pinspace of
381  * the GPIO subsystem, return the device and the matching GPIO range. Returns
382  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
383  * may still have not been registered.
384  */
pinctrl_get_device_gpio_range(unsigned gpio,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)385 static int pinctrl_get_device_gpio_range(unsigned gpio,
386 					 struct pinctrl_dev **outdev,
387 					 struct pinctrl_gpio_range **outrange)
388 {
389 	struct pinctrl_dev *pctldev;
390 
391 	mutex_lock(&pinctrldev_list_mutex);
392 
393 	/* Loop over the pin controllers */
394 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
395 		struct pinctrl_gpio_range *range;
396 
397 		range = pinctrl_match_gpio_range(pctldev, gpio);
398 		if (range) {
399 			*outdev = pctldev;
400 			*outrange = range;
401 			mutex_unlock(&pinctrldev_list_mutex);
402 			return 0;
403 		}
404 	}
405 
406 	mutex_unlock(&pinctrldev_list_mutex);
407 
408 	return -EPROBE_DEFER;
409 }
410 
411 /**
412  * pinctrl_add_gpio_range() - register a GPIO range for a controller
413  * @pctldev: pin controller device to add the range to
414  * @range: the GPIO range to add
415  *
416  * This adds a range of GPIOs to be handled by a certain pin controller. Call
417  * this to register handled ranges after registering your pin controller.
418  */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)419 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
420 			    struct pinctrl_gpio_range *range)
421 {
422 	mutex_lock(&pctldev->mutex);
423 	list_add_tail(&range->node, &pctldev->gpio_ranges);
424 	mutex_unlock(&pctldev->mutex);
425 }
426 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
427 
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned nranges)428 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
429 			     struct pinctrl_gpio_range *ranges,
430 			     unsigned nranges)
431 {
432 	int i;
433 
434 	for (i = 0; i < nranges; i++)
435 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
436 }
437 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
438 
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)439 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
440 		struct pinctrl_gpio_range *range)
441 {
442 	struct pinctrl_dev *pctldev;
443 
444 	pctldev = get_pinctrl_dev_from_devname(devname);
445 
446 	/*
447 	 * If we can't find this device, let's assume that is because
448 	 * it has not probed yet, so the driver trying to register this
449 	 * range need to defer probing.
450 	 */
451 	if (!pctldev) {
452 		return ERR_PTR(-EPROBE_DEFER);
453 	}
454 	pinctrl_add_gpio_range(pctldev, range);
455 
456 	return pctldev;
457 }
458 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
459 
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned ** pins,unsigned * num_pins)460 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
461 				const unsigned **pins, unsigned *num_pins)
462 {
463 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
464 	int gs;
465 
466 	if (!pctlops->get_group_pins)
467 		return -EINVAL;
468 
469 	gs = pinctrl_get_group_selector(pctldev, pin_group);
470 	if (gs < 0)
471 		return gs;
472 
473 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
474 }
475 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
476 
477 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)478 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
479 					unsigned int pin)
480 {
481 	struct pinctrl_gpio_range *range;
482 
483 	/* Loop over the ranges */
484 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
485 		/* Check if we're in the valid range */
486 		if (range->pins) {
487 			int a;
488 			for (a = 0; a < range->npins; a++) {
489 				if (range->pins[a] == pin)
490 					return range;
491 			}
492 		} else if (pin >= range->pin_base &&
493 			   pin < range->pin_base + range->npins)
494 			return range;
495 	}
496 
497 	return NULL;
498 }
499 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
500 
501 /**
502  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
503  * @pctldev: the pin controller device to look in
504  * @pin: a controller-local number to find the range for
505  */
506 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)507 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
508 				 unsigned int pin)
509 {
510 	struct pinctrl_gpio_range *range;
511 
512 	mutex_lock(&pctldev->mutex);
513 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
514 	mutex_unlock(&pctldev->mutex);
515 
516 	return range;
517 }
518 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
519 
520 /**
521  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
522  * @pctldev: pin controller device to remove the range from
523  * @range: the GPIO range to remove
524  */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)525 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
526 			       struct pinctrl_gpio_range *range)
527 {
528 	mutex_lock(&pctldev->mutex);
529 	list_del(&range->node);
530 	mutex_unlock(&pctldev->mutex);
531 }
532 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
533 
534 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
535 
536 /**
537  * pinctrl_generic_get_group_count() - returns the number of pin groups
538  * @pctldev: pin controller device
539  */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)540 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
541 {
542 	return pctldev->num_groups;
543 }
544 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
545 
546 /**
547  * pinctrl_generic_get_group_name() - returns the name of a pin group
548  * @pctldev: pin controller device
549  * @selector: group number
550  */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)551 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
552 					   unsigned int selector)
553 {
554 	struct group_desc *group;
555 
556 	group = radix_tree_lookup(&pctldev->pin_group_tree,
557 				  selector);
558 	if (!group)
559 		return NULL;
560 
561 	return group->name;
562 }
563 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
564 
565 /**
566  * pinctrl_generic_get_group_pins() - gets the pin group pins
567  * @pctldev: pin controller device
568  * @selector: group number
569  * @pins: pins in the group
570  * @num_pins: number of pins in the group
571  */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)572 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
573 				   unsigned int selector,
574 				   const unsigned int **pins,
575 				   unsigned int *num_pins)
576 {
577 	struct group_desc *group;
578 
579 	group = radix_tree_lookup(&pctldev->pin_group_tree,
580 				  selector);
581 	if (!group) {
582 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
583 			__func__, selector);
584 		return -EINVAL;
585 	}
586 
587 	*pins = group->pins;
588 	*num_pins = group->num_pins;
589 
590 	return 0;
591 }
592 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
593 
594 /**
595  * pinctrl_generic_get_group() - returns a pin group based on the number
596  * @pctldev: pin controller device
597  * @selector: group number
598  */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)599 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
600 					     unsigned int selector)
601 {
602 	struct group_desc *group;
603 
604 	group = radix_tree_lookup(&pctldev->pin_group_tree,
605 				  selector);
606 	if (!group)
607 		return NULL;
608 
609 	return group;
610 }
611 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
612 
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)613 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
614 						  const char *function)
615 {
616 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
617 	int ngroups = ops->get_groups_count(pctldev);
618 	int selector = 0;
619 
620 	/* See if this pctldev has this group */
621 	while (selector < ngroups) {
622 		const char *gname = ops->get_group_name(pctldev, selector);
623 
624 		if (gname && !strcmp(function, gname))
625 			return selector;
626 
627 		selector++;
628 	}
629 
630 	return -EINVAL;
631 }
632 
633 /**
634  * pinctrl_generic_add_group() - adds a new pin group
635  * @pctldev: pin controller device
636  * @name: name of the pin group
637  * @pins: pins in the pin group
638  * @num_pins: number of pins in the pin group
639  * @data: pin controller driver specific data
640  *
641  * Note that the caller must take care of locking.
642  */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,int * pins,int num_pins,void * data)643 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
644 			      int *pins, int num_pins, void *data)
645 {
646 	struct group_desc *group;
647 	int selector, error;
648 
649 	if (!name)
650 		return -EINVAL;
651 
652 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
653 	if (selector >= 0)
654 		return selector;
655 
656 	selector = pctldev->num_groups;
657 
658 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
659 	if (!group)
660 		return -ENOMEM;
661 
662 	group->name = name;
663 	group->pins = pins;
664 	group->num_pins = num_pins;
665 	group->data = data;
666 
667 	error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
668 	if (error)
669 		return error;
670 
671 	pctldev->num_groups++;
672 
673 	return selector;
674 }
675 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
676 
677 /**
678  * pinctrl_generic_remove_group() - removes a numbered pin group
679  * @pctldev: pin controller device
680  * @selector: group number
681  *
682  * Note that the caller must take care of locking.
683  */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)684 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
685 				 unsigned int selector)
686 {
687 	struct group_desc *group;
688 
689 	group = radix_tree_lookup(&pctldev->pin_group_tree,
690 				  selector);
691 	if (!group)
692 		return -ENOENT;
693 
694 	radix_tree_delete(&pctldev->pin_group_tree, selector);
695 	devm_kfree(pctldev->dev, group);
696 
697 	pctldev->num_groups--;
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
702 
703 /**
704  * pinctrl_generic_free_groups() - removes all pin groups
705  * @pctldev: pin controller device
706  *
707  * Note that the caller must take care of locking. The pinctrl groups
708  * are allocated with devm_kzalloc() so no need to free them here.
709  */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)710 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
711 {
712 	struct radix_tree_iter iter;
713 	void __rcu **slot;
714 
715 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
716 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
717 
718 	pctldev->num_groups = 0;
719 }
720 
721 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)722 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
723 {
724 }
725 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
726 
727 /**
728  * pinctrl_get_group_selector() - returns the group selector for a group
729  * @pctldev: the pin controller handling the group
730  * @pin_group: the pin group to look up
731  */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)732 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
733 			       const char *pin_group)
734 {
735 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
736 	unsigned ngroups = pctlops->get_groups_count(pctldev);
737 	unsigned group_selector = 0;
738 
739 	while (group_selector < ngroups) {
740 		const char *gname = pctlops->get_group_name(pctldev,
741 							    group_selector);
742 		if (gname && !strcmp(gname, pin_group)) {
743 			dev_dbg(pctldev->dev,
744 				"found group selector %u for %s\n",
745 				group_selector,
746 				pin_group);
747 			return group_selector;
748 		}
749 
750 		group_selector++;
751 	}
752 
753 	dev_err(pctldev->dev, "does not have pin group %s\n",
754 		pin_group);
755 
756 	return -EINVAL;
757 }
758 
pinctrl_gpio_can_use_line(unsigned gpio)759 bool pinctrl_gpio_can_use_line(unsigned gpio)
760 {
761 	struct pinctrl_dev *pctldev;
762 	struct pinctrl_gpio_range *range;
763 	bool result;
764 	int pin;
765 
766 	/*
767 	 * Try to obtain GPIO range, if it fails
768 	 * we're probably dealing with GPIO driver
769 	 * without a backing pin controller - bail out.
770 	 */
771 	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
772 		return true;
773 
774 	mutex_lock(&pctldev->mutex);
775 
776 	/* Convert to the pin controllers number space */
777 	pin = gpio_to_pin(range, gpio);
778 
779 	result = pinmux_can_be_used_for_gpio(pctldev, pin);
780 
781 	mutex_unlock(&pctldev->mutex);
782 
783 	return result;
784 }
785 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
786 
787 /**
788  * pinctrl_gpio_request() - request a single pin to be used as GPIO
789  * @gpio: the GPIO pin number from the GPIO subsystem number space
790  *
791  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
792  * as part of their gpio_request() semantics, platforms and individual drivers
793  * shall *NOT* request GPIO pins to be muxed in.
794  */
pinctrl_gpio_request(unsigned gpio)795 int pinctrl_gpio_request(unsigned gpio)
796 {
797 	struct pinctrl_dev *pctldev;
798 	struct pinctrl_gpio_range *range;
799 	int ret;
800 	int pin;
801 
802 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
803 	if (ret) {
804 		if (pinctrl_ready_for_gpio_range(gpio))
805 			ret = 0;
806 		return ret;
807 	}
808 
809 	mutex_lock(&pctldev->mutex);
810 
811 	/* Convert to the pin controllers number space */
812 	pin = gpio_to_pin(range, gpio);
813 
814 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
815 
816 	mutex_unlock(&pctldev->mutex);
817 
818 	return ret;
819 }
820 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
821 
822 /**
823  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
824  * @gpio: the GPIO pin number from the GPIO subsystem number space
825  *
826  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
827  * as part of their gpio_free() semantics, platforms and individual drivers
828  * shall *NOT* request GPIO pins to be muxed out.
829  */
pinctrl_gpio_free(unsigned gpio)830 void pinctrl_gpio_free(unsigned gpio)
831 {
832 	struct pinctrl_dev *pctldev;
833 	struct pinctrl_gpio_range *range;
834 	int ret;
835 	int pin;
836 
837 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
838 	if (ret) {
839 		return;
840 	}
841 	mutex_lock(&pctldev->mutex);
842 
843 	/* Convert to the pin controllers number space */
844 	pin = gpio_to_pin(range, gpio);
845 
846 	pinmux_free_gpio(pctldev, pin, range);
847 
848 	mutex_unlock(&pctldev->mutex);
849 }
850 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
851 
pinctrl_gpio_direction(unsigned gpio,bool input)852 static int pinctrl_gpio_direction(unsigned gpio, bool input)
853 {
854 	struct pinctrl_dev *pctldev;
855 	struct pinctrl_gpio_range *range;
856 	int ret;
857 	int pin;
858 
859 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
860 	if (ret) {
861 		return ret;
862 	}
863 
864 	mutex_lock(&pctldev->mutex);
865 
866 	/* Convert to the pin controllers number space */
867 	pin = gpio_to_pin(range, gpio);
868 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
869 
870 	mutex_unlock(&pctldev->mutex);
871 
872 	return ret;
873 }
874 
875 /**
876  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
877  * @gpio: the GPIO pin number from the GPIO subsystem number space
878  *
879  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
880  * as part of their gpio_direction_input() semantics, platforms and individual
881  * drivers shall *NOT* touch pin control GPIO calls.
882  */
pinctrl_gpio_direction_input(unsigned gpio)883 int pinctrl_gpio_direction_input(unsigned gpio)
884 {
885 	return pinctrl_gpio_direction(gpio, true);
886 }
887 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
888 
889 /**
890  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
891  * @gpio: the GPIO pin number from the GPIO subsystem number space
892  *
893  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
894  * as part of their gpio_direction_output() semantics, platforms and individual
895  * drivers shall *NOT* touch pin control GPIO calls.
896  */
pinctrl_gpio_direction_output(unsigned gpio)897 int pinctrl_gpio_direction_output(unsigned gpio)
898 {
899 	return pinctrl_gpio_direction(gpio, false);
900 }
901 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
902 
903 /**
904  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
905  * @gpio: the GPIO pin number from the GPIO subsystem number space
906  * @config: the configuration to apply to the GPIO
907  *
908  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
909  * they need to call the underlying pin controller to change GPIO config
910  * (for example set debounce time).
911  */
pinctrl_gpio_set_config(unsigned gpio,unsigned long config)912 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
913 {
914 	unsigned long configs[] = { config };
915 	struct pinctrl_gpio_range *range;
916 	struct pinctrl_dev *pctldev;
917 	int ret, pin;
918 
919 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
920 	if (ret)
921 		return ret;
922 
923 	mutex_lock(&pctldev->mutex);
924 	pin = gpio_to_pin(range, gpio);
925 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
926 	mutex_unlock(&pctldev->mutex);
927 
928 	return ret;
929 }
930 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
931 
find_state(struct pinctrl * p,const char * name)932 static struct pinctrl_state *find_state(struct pinctrl *p,
933 					const char *name)
934 {
935 	struct pinctrl_state *state;
936 
937 	list_for_each_entry(state, &p->states, node)
938 		if (!strcmp(state->name, name))
939 			return state;
940 
941 	return NULL;
942 }
943 
create_state(struct pinctrl * p,const char * name)944 static struct pinctrl_state *create_state(struct pinctrl *p,
945 					  const char *name)
946 {
947 	struct pinctrl_state *state;
948 
949 	state = kzalloc(sizeof(*state), GFP_KERNEL);
950 	if (!state)
951 		return ERR_PTR(-ENOMEM);
952 
953 	state->name = name;
954 	INIT_LIST_HEAD(&state->settings);
955 
956 	list_add_tail(&state->node, &p->states);
957 
958 	return state;
959 }
960 
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)961 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
962 		       const struct pinctrl_map *map)
963 {
964 	struct pinctrl_state *state;
965 	struct pinctrl_setting *setting;
966 	int ret;
967 
968 	state = find_state(p, map->name);
969 	if (!state)
970 		state = create_state(p, map->name);
971 	if (IS_ERR(state))
972 		return PTR_ERR(state);
973 
974 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
975 		return 0;
976 
977 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
978 	if (!setting)
979 		return -ENOMEM;
980 
981 	setting->type = map->type;
982 
983 	if (pctldev)
984 		setting->pctldev = pctldev;
985 	else
986 		setting->pctldev =
987 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
988 	if (!setting->pctldev) {
989 		kfree(setting);
990 		/* Do not defer probing of hogs (circular loop) */
991 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
992 			return -ENODEV;
993 		/*
994 		 * OK let us guess that the driver is not there yet, and
995 		 * let's defer obtaining this pinctrl handle to later...
996 		 */
997 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
998 			map->ctrl_dev_name);
999 		return -EPROBE_DEFER;
1000 	}
1001 
1002 	setting->dev_name = map->dev_name;
1003 
1004 	switch (map->type) {
1005 	case PIN_MAP_TYPE_MUX_GROUP:
1006 		ret = pinmux_map_to_setting(map, setting);
1007 		break;
1008 	case PIN_MAP_TYPE_CONFIGS_PIN:
1009 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1010 		ret = pinconf_map_to_setting(map, setting);
1011 		break;
1012 	default:
1013 		ret = -EINVAL;
1014 		break;
1015 	}
1016 	if (ret < 0) {
1017 		kfree(setting);
1018 		return ret;
1019 	}
1020 
1021 	list_add_tail(&setting->node, &state->settings);
1022 
1023 	return 0;
1024 }
1025 
find_pinctrl(struct device * dev)1026 static struct pinctrl *find_pinctrl(struct device *dev)
1027 {
1028 	struct pinctrl *p;
1029 
1030 	mutex_lock(&pinctrl_list_mutex);
1031 	list_for_each_entry(p, &pinctrl_list, node)
1032 		if (p->dev == dev) {
1033 			mutex_unlock(&pinctrl_list_mutex);
1034 			return p;
1035 		}
1036 
1037 	mutex_unlock(&pinctrl_list_mutex);
1038 	return NULL;
1039 }
1040 
1041 static void pinctrl_free(struct pinctrl *p, bool inlist);
1042 
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1043 static struct pinctrl *create_pinctrl(struct device *dev,
1044 				      struct pinctrl_dev *pctldev)
1045 {
1046 	struct pinctrl *p;
1047 	const char *devname;
1048 	struct pinctrl_maps *maps_node;
1049 	const struct pinctrl_map *map;
1050 	int ret;
1051 
1052 	/*
1053 	 * create the state cookie holder struct pinctrl for each
1054 	 * mapping, this is what consumers will get when requesting
1055 	 * a pin control handle with pinctrl_get()
1056 	 */
1057 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1058 	if (!p)
1059 		return ERR_PTR(-ENOMEM);
1060 	p->dev = dev;
1061 	INIT_LIST_HEAD(&p->states);
1062 	INIT_LIST_HEAD(&p->dt_maps);
1063 
1064 	ret = pinctrl_dt_to_map(p, pctldev);
1065 	if (ret < 0) {
1066 		kfree(p);
1067 		return ERR_PTR(ret);
1068 	}
1069 
1070 	devname = dev_name(dev);
1071 
1072 	mutex_lock(&pinctrl_maps_mutex);
1073 	/* Iterate over the pin control maps to locate the right ones */
1074 	for_each_pin_map(maps_node, map) {
1075 		/* Map must be for this device */
1076 		if (strcmp(map->dev_name, devname))
1077 			continue;
1078 		/*
1079 		 * If pctldev is not null, we are claiming hog for it,
1080 		 * that means, setting that is served by pctldev by itself.
1081 		 *
1082 		 * Thus we must skip map that is for this device but is served
1083 		 * by other device.
1084 		 */
1085 		if (pctldev &&
1086 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1087 			continue;
1088 
1089 		ret = add_setting(p, pctldev, map);
1090 		/*
1091 		 * At this point the adding of a setting may:
1092 		 *
1093 		 * - Defer, if the pinctrl device is not yet available
1094 		 * - Fail, if the pinctrl device is not yet available,
1095 		 *   AND the setting is a hog. We cannot defer that, since
1096 		 *   the hog will kick in immediately after the device
1097 		 *   is registered.
1098 		 *
1099 		 * If the error returned was not -EPROBE_DEFER then we
1100 		 * accumulate the errors to see if we end up with
1101 		 * an -EPROBE_DEFER later, as that is the worst case.
1102 		 */
1103 		if (ret == -EPROBE_DEFER) {
1104 			mutex_unlock(&pinctrl_maps_mutex);
1105 			pinctrl_free(p, false);
1106 			return ERR_PTR(ret);
1107 		}
1108 	}
1109 	mutex_unlock(&pinctrl_maps_mutex);
1110 
1111 	if (ret < 0) {
1112 		/* If some other error than deferral occurred, return here */
1113 		pinctrl_free(p, false);
1114 		return ERR_PTR(ret);
1115 	}
1116 
1117 	kref_init(&p->users);
1118 
1119 	/* Add the pinctrl handle to the global list */
1120 	mutex_lock(&pinctrl_list_mutex);
1121 	list_add_tail(&p->node, &pinctrl_list);
1122 	mutex_unlock(&pinctrl_list_mutex);
1123 
1124 	return p;
1125 }
1126 
1127 /**
1128  * pinctrl_get() - retrieves the pinctrl handle for a device
1129  * @dev: the device to obtain the handle for
1130  */
pinctrl_get(struct device * dev)1131 struct pinctrl *pinctrl_get(struct device *dev)
1132 {
1133 	struct pinctrl *p;
1134 
1135 	if (WARN_ON(!dev))
1136 		return ERR_PTR(-EINVAL);
1137 
1138 	/*
1139 	 * See if somebody else (such as the device core) has already
1140 	 * obtained a handle to the pinctrl for this device. In that case,
1141 	 * return another pointer to it.
1142 	 */
1143 	p = find_pinctrl(dev);
1144 	if (p) {
1145 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1146 		kref_get(&p->users);
1147 		return p;
1148 	}
1149 
1150 	return create_pinctrl(dev, NULL);
1151 }
1152 EXPORT_SYMBOL_GPL(pinctrl_get);
1153 
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1154 static void pinctrl_free_setting(bool disable_setting,
1155 				 struct pinctrl_setting *setting)
1156 {
1157 	switch (setting->type) {
1158 	case PIN_MAP_TYPE_MUX_GROUP:
1159 		if (disable_setting)
1160 			pinmux_disable_setting(setting);
1161 		pinmux_free_setting(setting);
1162 		break;
1163 	case PIN_MAP_TYPE_CONFIGS_PIN:
1164 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1165 		pinconf_free_setting(setting);
1166 		break;
1167 	default:
1168 		break;
1169 	}
1170 }
1171 
pinctrl_free(struct pinctrl * p,bool inlist)1172 static void pinctrl_free(struct pinctrl *p, bool inlist)
1173 {
1174 	struct pinctrl_state *state, *n1;
1175 	struct pinctrl_setting *setting, *n2;
1176 
1177 	mutex_lock(&pinctrl_list_mutex);
1178 	list_for_each_entry_safe(state, n1, &p->states, node) {
1179 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1180 			pinctrl_free_setting(state == p->state, setting);
1181 			list_del(&setting->node);
1182 			kfree(setting);
1183 		}
1184 		list_del(&state->node);
1185 		kfree(state);
1186 	}
1187 
1188 	pinctrl_dt_free_maps(p);
1189 
1190 	if (inlist)
1191 		list_del(&p->node);
1192 	kfree(p);
1193 	mutex_unlock(&pinctrl_list_mutex);
1194 }
1195 
1196 /**
1197  * pinctrl_release() - release the pinctrl handle
1198  * @kref: the kref in the pinctrl being released
1199  */
pinctrl_release(struct kref * kref)1200 static void pinctrl_release(struct kref *kref)
1201 {
1202 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1203 
1204 	pinctrl_free(p, true);
1205 }
1206 
1207 /**
1208  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1209  * @p: the pinctrl handle to release
1210  */
pinctrl_put(struct pinctrl * p)1211 void pinctrl_put(struct pinctrl *p)
1212 {
1213 	kref_put(&p->users, pinctrl_release);
1214 }
1215 EXPORT_SYMBOL_GPL(pinctrl_put);
1216 
1217 /**
1218  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1219  * @p: the pinctrl handle to retrieve the state from
1220  * @name: the state name to retrieve
1221  */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1222 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1223 						 const char *name)
1224 {
1225 	struct pinctrl_state *state;
1226 
1227 	state = find_state(p, name);
1228 	if (!state) {
1229 		if (pinctrl_dummy_state) {
1230 			/* create dummy state */
1231 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1232 				name);
1233 			state = create_state(p, name);
1234 		} else
1235 			state = ERR_PTR(-ENODEV);
1236 	}
1237 
1238 	return state;
1239 }
1240 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1241 
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1242 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1243 			     struct device *consumer)
1244 {
1245 	if (pctldev->desc->link_consumers)
1246 		device_link_add(consumer, pctldev->dev,
1247 				DL_FLAG_PM_RUNTIME |
1248 				DL_FLAG_AUTOREMOVE_CONSUMER);
1249 }
1250 
1251 /**
1252  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1253  * @p: the pinctrl handle for the device that requests configuration
1254  * @state: the state handle to select/activate/program
1255  */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1256 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1257 {
1258 	struct pinctrl_setting *setting, *setting2;
1259 	struct pinctrl_state *old_state = READ_ONCE(p->state);
1260 	int ret;
1261 
1262 	if (old_state) {
1263 		/*
1264 		 * For each pinmux setting in the old state, forget SW's record
1265 		 * of mux owner for that pingroup. Any pingroups which are
1266 		 * still owned by the new state will be re-acquired by the call
1267 		 * to pinmux_enable_setting() in the loop below.
1268 		 */
1269 		list_for_each_entry(setting, &old_state->settings, node) {
1270 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1271 				continue;
1272 			pinmux_disable_setting(setting);
1273 		}
1274 	}
1275 
1276 	p->state = NULL;
1277 
1278 	/* Apply all the settings for the new state - pinmux first */
1279 	list_for_each_entry(setting, &state->settings, node) {
1280 		switch (setting->type) {
1281 		case PIN_MAP_TYPE_MUX_GROUP:
1282 			ret = pinmux_enable_setting(setting);
1283 			break;
1284 		case PIN_MAP_TYPE_CONFIGS_PIN:
1285 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1286 			ret = 0;
1287 			break;
1288 		default:
1289 			ret = -EINVAL;
1290 			break;
1291 		}
1292 
1293 		if (ret < 0)
1294 			goto unapply_new_state;
1295 
1296 		/* Do not link hogs (circular dependency) */
1297 		if (p != setting->pctldev->p)
1298 			pinctrl_link_add(setting->pctldev, p->dev);
1299 	}
1300 
1301 	/* Apply all the settings for the new state - pinconf after */
1302 	list_for_each_entry(setting, &state->settings, node) {
1303 		switch (setting->type) {
1304 		case PIN_MAP_TYPE_MUX_GROUP:
1305 			ret = 0;
1306 			break;
1307 		case PIN_MAP_TYPE_CONFIGS_PIN:
1308 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1309 			ret = pinconf_apply_setting(setting);
1310 			break;
1311 		default:
1312 			ret = -EINVAL;
1313 			break;
1314 		}
1315 
1316 		if (ret < 0) {
1317 			goto unapply_new_state;
1318 		}
1319 
1320 		/* Do not link hogs (circular dependency) */
1321 		if (p != setting->pctldev->p)
1322 			pinctrl_link_add(setting->pctldev, p->dev);
1323 	}
1324 
1325 	p->state = state;
1326 
1327 	return 0;
1328 
1329 unapply_new_state:
1330 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1331 
1332 	list_for_each_entry(setting2, &state->settings, node) {
1333 		if (&setting2->node == &setting->node)
1334 			break;
1335 		/*
1336 		 * All we can do here is pinmux_disable_setting.
1337 		 * That means that some pins are muxed differently now
1338 		 * than they were before applying the setting (We can't
1339 		 * "unmux a pin"!), but it's not a big deal since the pins
1340 		 * are free to be muxed by another apply_setting.
1341 		 */
1342 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1343 			pinmux_disable_setting(setting2);
1344 	}
1345 
1346 	/* There's no infinite recursive loop here because p->state is NULL */
1347 	if (old_state)
1348 		pinctrl_select_state(p, old_state);
1349 
1350 	return ret;
1351 }
1352 
1353 /**
1354  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1355  * @p: the pinctrl handle for the device that requests configuration
1356  * @state: the state handle to select/activate/program
1357  */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1358 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1359 {
1360 	if (p->state == state)
1361 		return 0;
1362 
1363 	return pinctrl_commit_state(p, state);
1364 }
1365 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1366 
devm_pinctrl_release(struct device * dev,void * res)1367 static void devm_pinctrl_release(struct device *dev, void *res)
1368 {
1369 	pinctrl_put(*(struct pinctrl **)res);
1370 }
1371 
1372 /**
1373  * devm_pinctrl_get() - Resource managed pinctrl_get()
1374  * @dev: the device to obtain the handle for
1375  *
1376  * If there is a need to explicitly destroy the returned struct pinctrl,
1377  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1378  */
devm_pinctrl_get(struct device * dev)1379 struct pinctrl *devm_pinctrl_get(struct device *dev)
1380 {
1381 	struct pinctrl **ptr, *p;
1382 
1383 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1384 	if (!ptr)
1385 		return ERR_PTR(-ENOMEM);
1386 
1387 	p = pinctrl_get(dev);
1388 	if (!IS_ERR(p)) {
1389 		*ptr = p;
1390 		devres_add(dev, ptr);
1391 	} else {
1392 		devres_free(ptr);
1393 	}
1394 
1395 	return p;
1396 }
1397 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1398 
devm_pinctrl_match(struct device * dev,void * res,void * data)1399 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1400 {
1401 	struct pinctrl **p = res;
1402 
1403 	return *p == data;
1404 }
1405 
1406 /**
1407  * devm_pinctrl_put() - Resource managed pinctrl_put()
1408  * @p: the pinctrl handle to release
1409  *
1410  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1411  * this function will not need to be called and the resource management
1412  * code will ensure that the resource is freed.
1413  */
devm_pinctrl_put(struct pinctrl * p)1414 void devm_pinctrl_put(struct pinctrl *p)
1415 {
1416 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1417 			       devm_pinctrl_match, p));
1418 }
1419 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1420 
1421 /**
1422  * pinctrl_register_mappings() - register a set of pin controller mappings
1423  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1424  *	keeps a reference to the passed in maps, so they should _not_ be
1425  *	marked with __initdata.
1426  * @num_maps: the number of maps in the mapping table
1427  */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned num_maps)1428 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1429 			      unsigned num_maps)
1430 {
1431 	int i, ret;
1432 	struct pinctrl_maps *maps_node;
1433 
1434 	pr_debug("add %u pinctrl maps\n", num_maps);
1435 
1436 	/* First sanity check the new mapping */
1437 	for (i = 0; i < num_maps; i++) {
1438 		if (!maps[i].dev_name) {
1439 			pr_err("failed to register map %s (%d): no device given\n",
1440 			       maps[i].name, i);
1441 			return -EINVAL;
1442 		}
1443 
1444 		if (!maps[i].name) {
1445 			pr_err("failed to register map %d: no map name given\n",
1446 			       i);
1447 			return -EINVAL;
1448 		}
1449 
1450 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1451 				!maps[i].ctrl_dev_name) {
1452 			pr_err("failed to register map %s (%d): no pin control device given\n",
1453 			       maps[i].name, i);
1454 			return -EINVAL;
1455 		}
1456 
1457 		switch (maps[i].type) {
1458 		case PIN_MAP_TYPE_DUMMY_STATE:
1459 			break;
1460 		case PIN_MAP_TYPE_MUX_GROUP:
1461 			ret = pinmux_validate_map(&maps[i], i);
1462 			if (ret < 0)
1463 				return ret;
1464 			break;
1465 		case PIN_MAP_TYPE_CONFIGS_PIN:
1466 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1467 			ret = pinconf_validate_map(&maps[i], i);
1468 			if (ret < 0)
1469 				return ret;
1470 			break;
1471 		default:
1472 			pr_err("failed to register map %s (%d): invalid type given\n",
1473 			       maps[i].name, i);
1474 			return -EINVAL;
1475 		}
1476 	}
1477 
1478 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1479 	if (!maps_node)
1480 		return -ENOMEM;
1481 
1482 	maps_node->maps = maps;
1483 	maps_node->num_maps = num_maps;
1484 
1485 	mutex_lock(&pinctrl_maps_mutex);
1486 	list_add_tail(&maps_node->node, &pinctrl_maps);
1487 	mutex_unlock(&pinctrl_maps_mutex);
1488 
1489 	return 0;
1490 }
1491 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1492 
1493 /**
1494  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1495  * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1496  *	when registering the mappings.
1497  */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1498 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1499 {
1500 	struct pinctrl_maps *maps_node;
1501 
1502 	mutex_lock(&pinctrl_maps_mutex);
1503 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1504 		if (maps_node->maps == map) {
1505 			list_del(&maps_node->node);
1506 			kfree(maps_node);
1507 			mutex_unlock(&pinctrl_maps_mutex);
1508 			return;
1509 		}
1510 	}
1511 	mutex_unlock(&pinctrl_maps_mutex);
1512 }
1513 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1514 
1515 /**
1516  * pinctrl_force_sleep() - turn a given controller device into sleep state
1517  * @pctldev: pin controller device
1518  */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1519 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1520 {
1521 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1522 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1523 	return 0;
1524 }
1525 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1526 
1527 /**
1528  * pinctrl_force_default() - turn a given controller device into default state
1529  * @pctldev: pin controller device
1530  */
pinctrl_force_default(struct pinctrl_dev * pctldev)1531 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1532 {
1533 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1534 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1535 	return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1538 
1539 /**
1540  * pinctrl_init_done() - tell pinctrl probe is done
1541  *
1542  * We'll use this time to switch the pins from "init" to "default" unless the
1543  * driver selected some other state.
1544  *
1545  * @dev: device to that's done probing
1546  */
pinctrl_init_done(struct device * dev)1547 int pinctrl_init_done(struct device *dev)
1548 {
1549 	struct dev_pin_info *pins = dev->pins;
1550 	int ret;
1551 
1552 	if (!pins)
1553 		return 0;
1554 
1555 	if (IS_ERR(pins->init_state))
1556 		return 0; /* No such state */
1557 
1558 	if (pins->p->state != pins->init_state)
1559 		return 0; /* Not at init anyway */
1560 
1561 	if (IS_ERR(pins->default_state))
1562 		return 0; /* No default state */
1563 
1564 	ret = pinctrl_select_state(pins->p, pins->default_state);
1565 	if (ret)
1566 		dev_err(dev, "failed to activate default pinctrl state\n");
1567 
1568 	return ret;
1569 }
1570 
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1571 static int pinctrl_select_bound_state(struct device *dev,
1572 				      struct pinctrl_state *state)
1573 {
1574 	struct dev_pin_info *pins = dev->pins;
1575 	int ret;
1576 
1577 	if (IS_ERR(state))
1578 		return 0; /* No such state */
1579 	ret = pinctrl_select_state(pins->p, state);
1580 	if (ret)
1581 		dev_err(dev, "failed to activate pinctrl state %s\n",
1582 			state->name);
1583 	return ret;
1584 }
1585 
1586 /**
1587  * pinctrl_select_default_state() - select default pinctrl state
1588  * @dev: device to select default state for
1589  */
pinctrl_select_default_state(struct device * dev)1590 int pinctrl_select_default_state(struct device *dev)
1591 {
1592 	if (!dev->pins)
1593 		return 0;
1594 
1595 	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1596 }
1597 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1598 
1599 #ifdef CONFIG_PM
1600 
1601 /**
1602  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1603  * @dev: device to select default state for
1604  */
pinctrl_pm_select_default_state(struct device * dev)1605 int pinctrl_pm_select_default_state(struct device *dev)
1606 {
1607 	return pinctrl_select_default_state(dev);
1608 }
1609 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1610 
1611 /**
1612  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1613  * @dev: device to select sleep state for
1614  */
pinctrl_pm_select_sleep_state(struct device * dev)1615 int pinctrl_pm_select_sleep_state(struct device *dev)
1616 {
1617 	if (!dev->pins)
1618 		return 0;
1619 
1620 	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1621 }
1622 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1623 
1624 /**
1625  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1626  * @dev: device to select idle state for
1627  */
pinctrl_pm_select_idle_state(struct device * dev)1628 int pinctrl_pm_select_idle_state(struct device *dev)
1629 {
1630 	if (!dev->pins)
1631 		return 0;
1632 
1633 	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1634 }
1635 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1636 #endif
1637 
1638 #ifdef CONFIG_DEBUG_FS
1639 
pinctrl_pins_show(struct seq_file * s,void * what)1640 static int pinctrl_pins_show(struct seq_file *s, void *what)
1641 {
1642 	struct pinctrl_dev *pctldev = s->private;
1643 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1644 	unsigned i, pin;
1645 #ifdef CONFIG_GPIOLIB
1646 	struct pinctrl_gpio_range *range;
1647 	struct gpio_chip *chip;
1648 	int gpio_num;
1649 #endif
1650 
1651 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1652 
1653 	mutex_lock(&pctldev->mutex);
1654 
1655 	/* The pin number can be retrived from the pin controller descriptor */
1656 	for (i = 0; i < pctldev->desc->npins; i++) {
1657 		struct pin_desc *desc;
1658 
1659 		pin = pctldev->desc->pins[i].number;
1660 		desc = pin_desc_get(pctldev, pin);
1661 		/* Pin space may be sparse */
1662 		if (!desc)
1663 			continue;
1664 
1665 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1666 
1667 #ifdef CONFIG_GPIOLIB
1668 		gpio_num = -1;
1669 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1670 			if ((pin >= range->pin_base) &&
1671 			    (pin < (range->pin_base + range->npins))) {
1672 				gpio_num = range->base + (pin - range->pin_base);
1673 				break;
1674 			}
1675 		}
1676 		if (gpio_num >= 0)
1677 			/*
1678 			 * FIXME: gpio_num comes from the global GPIO numberspace.
1679 			 * we need to get rid of the range->base eventually and
1680 			 * get the descriptor directly from the gpio_chip.
1681 			 */
1682 			chip = gpiod_to_chip(gpio_to_desc(gpio_num));
1683 		else
1684 			chip = NULL;
1685 		if (chip)
1686 			seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1687 		else
1688 			seq_puts(s, "0:? ");
1689 #endif
1690 
1691 		/* Driver-specific info per pin */
1692 		if (ops->pin_dbg_show)
1693 			ops->pin_dbg_show(pctldev, s, pin);
1694 
1695 		seq_puts(s, "\n");
1696 	}
1697 
1698 	mutex_unlock(&pctldev->mutex);
1699 
1700 	return 0;
1701 }
1702 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1703 
pinctrl_groups_show(struct seq_file * s,void * what)1704 static int pinctrl_groups_show(struct seq_file *s, void *what)
1705 {
1706 	struct pinctrl_dev *pctldev = s->private;
1707 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1708 	unsigned ngroups, selector = 0;
1709 
1710 	mutex_lock(&pctldev->mutex);
1711 
1712 	ngroups = ops->get_groups_count(pctldev);
1713 
1714 	seq_puts(s, "registered pin groups:\n");
1715 	while (selector < ngroups) {
1716 		const unsigned *pins = NULL;
1717 		unsigned num_pins = 0;
1718 		const char *gname = ops->get_group_name(pctldev, selector);
1719 		const char *pname;
1720 		int ret = 0;
1721 		int i;
1722 
1723 		if (ops->get_group_pins)
1724 			ret = ops->get_group_pins(pctldev, selector,
1725 						  &pins, &num_pins);
1726 		if (ret)
1727 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1728 				   gname);
1729 		else {
1730 			seq_printf(s, "group: %s\n", gname);
1731 			for (i = 0; i < num_pins; i++) {
1732 				pname = pin_get_name(pctldev, pins[i]);
1733 				if (WARN_ON(!pname)) {
1734 					mutex_unlock(&pctldev->mutex);
1735 					return -EINVAL;
1736 				}
1737 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1738 			}
1739 			seq_puts(s, "\n");
1740 		}
1741 		selector++;
1742 	}
1743 
1744 	mutex_unlock(&pctldev->mutex);
1745 
1746 	return 0;
1747 }
1748 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1749 
pinctrl_gpioranges_show(struct seq_file * s,void * what)1750 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1751 {
1752 	struct pinctrl_dev *pctldev = s->private;
1753 	struct pinctrl_gpio_range *range;
1754 
1755 	seq_puts(s, "GPIO ranges handled:\n");
1756 
1757 	mutex_lock(&pctldev->mutex);
1758 
1759 	/* Loop over the ranges */
1760 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1761 		if (range->pins) {
1762 			int a;
1763 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1764 				range->id, range->name,
1765 				range->base, (range->base + range->npins - 1));
1766 			for (a = 0; a < range->npins - 1; a++)
1767 				seq_printf(s, "%u, ", range->pins[a]);
1768 			seq_printf(s, "%u}\n", range->pins[a]);
1769 		}
1770 		else
1771 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1772 				range->id, range->name,
1773 				range->base, (range->base + range->npins - 1),
1774 				range->pin_base,
1775 				(range->pin_base + range->npins - 1));
1776 	}
1777 
1778 	mutex_unlock(&pctldev->mutex);
1779 
1780 	return 0;
1781 }
1782 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1783 
pinctrl_devices_show(struct seq_file * s,void * what)1784 static int pinctrl_devices_show(struct seq_file *s, void *what)
1785 {
1786 	struct pinctrl_dev *pctldev;
1787 
1788 	seq_puts(s, "name [pinmux] [pinconf]\n");
1789 
1790 	mutex_lock(&pinctrldev_list_mutex);
1791 
1792 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1793 		seq_printf(s, "%s ", pctldev->desc->name);
1794 		if (pctldev->desc->pmxops)
1795 			seq_puts(s, "yes ");
1796 		else
1797 			seq_puts(s, "no ");
1798 		if (pctldev->desc->confops)
1799 			seq_puts(s, "yes");
1800 		else
1801 			seq_puts(s, "no");
1802 		seq_puts(s, "\n");
1803 	}
1804 
1805 	mutex_unlock(&pinctrldev_list_mutex);
1806 
1807 	return 0;
1808 }
1809 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1810 
map_type(enum pinctrl_map_type type)1811 static inline const char *map_type(enum pinctrl_map_type type)
1812 {
1813 	static const char * const names[] = {
1814 		"INVALID",
1815 		"DUMMY_STATE",
1816 		"MUX_GROUP",
1817 		"CONFIGS_PIN",
1818 		"CONFIGS_GROUP",
1819 	};
1820 
1821 	if (type >= ARRAY_SIZE(names))
1822 		return "UNKNOWN";
1823 
1824 	return names[type];
1825 }
1826 
pinctrl_maps_show(struct seq_file * s,void * what)1827 static int pinctrl_maps_show(struct seq_file *s, void *what)
1828 {
1829 	struct pinctrl_maps *maps_node;
1830 	const struct pinctrl_map *map;
1831 
1832 	seq_puts(s, "Pinctrl maps:\n");
1833 
1834 	mutex_lock(&pinctrl_maps_mutex);
1835 	for_each_pin_map(maps_node, map) {
1836 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1837 			   map->dev_name, map->name, map_type(map->type),
1838 			   map->type);
1839 
1840 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1841 			seq_printf(s, "controlling device %s\n",
1842 				   map->ctrl_dev_name);
1843 
1844 		switch (map->type) {
1845 		case PIN_MAP_TYPE_MUX_GROUP:
1846 			pinmux_show_map(s, map);
1847 			break;
1848 		case PIN_MAP_TYPE_CONFIGS_PIN:
1849 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1850 			pinconf_show_map(s, map);
1851 			break;
1852 		default:
1853 			break;
1854 		}
1855 
1856 		seq_putc(s, '\n');
1857 	}
1858 	mutex_unlock(&pinctrl_maps_mutex);
1859 
1860 	return 0;
1861 }
1862 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1863 
pinctrl_show(struct seq_file * s,void * what)1864 static int pinctrl_show(struct seq_file *s, void *what)
1865 {
1866 	struct pinctrl *p;
1867 	struct pinctrl_state *state;
1868 	struct pinctrl_setting *setting;
1869 
1870 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1871 
1872 	mutex_lock(&pinctrl_list_mutex);
1873 
1874 	list_for_each_entry(p, &pinctrl_list, node) {
1875 		seq_printf(s, "device: %s current state: %s\n",
1876 			   dev_name(p->dev),
1877 			   p->state ? p->state->name : "none");
1878 
1879 		list_for_each_entry(state, &p->states, node) {
1880 			seq_printf(s, "  state: %s\n", state->name);
1881 
1882 			list_for_each_entry(setting, &state->settings, node) {
1883 				struct pinctrl_dev *pctldev = setting->pctldev;
1884 
1885 				seq_printf(s, "    type: %s controller %s ",
1886 					   map_type(setting->type),
1887 					   pinctrl_dev_get_name(pctldev));
1888 
1889 				switch (setting->type) {
1890 				case PIN_MAP_TYPE_MUX_GROUP:
1891 					pinmux_show_setting(s, setting);
1892 					break;
1893 				case PIN_MAP_TYPE_CONFIGS_PIN:
1894 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1895 					pinconf_show_setting(s, setting);
1896 					break;
1897 				default:
1898 					break;
1899 				}
1900 			}
1901 		}
1902 	}
1903 
1904 	mutex_unlock(&pinctrl_list_mutex);
1905 
1906 	return 0;
1907 }
1908 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1909 
1910 static struct dentry *debugfs_root;
1911 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1912 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1913 {
1914 	struct dentry *device_root;
1915 	const char *debugfs_name;
1916 
1917 	if (pctldev->desc->name &&
1918 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1919 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1920 				"%s-%s", dev_name(pctldev->dev),
1921 				pctldev->desc->name);
1922 		if (!debugfs_name) {
1923 			pr_warn("failed to determine debugfs dir name for %s\n",
1924 				dev_name(pctldev->dev));
1925 			return;
1926 		}
1927 	} else {
1928 		debugfs_name = dev_name(pctldev->dev);
1929 	}
1930 
1931 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1932 	pctldev->device_root = device_root;
1933 
1934 	if (IS_ERR(device_root) || !device_root) {
1935 		pr_warn("failed to create debugfs directory for %s\n",
1936 			dev_name(pctldev->dev));
1937 		return;
1938 	}
1939 	debugfs_create_file("pins", 0444,
1940 			    device_root, pctldev, &pinctrl_pins_fops);
1941 	debugfs_create_file("pingroups", 0444,
1942 			    device_root, pctldev, &pinctrl_groups_fops);
1943 	debugfs_create_file("gpio-ranges", 0444,
1944 			    device_root, pctldev, &pinctrl_gpioranges_fops);
1945 	if (pctldev->desc->pmxops)
1946 		pinmux_init_device_debugfs(device_root, pctldev);
1947 	if (pctldev->desc->confops)
1948 		pinconf_init_device_debugfs(device_root, pctldev);
1949 }
1950 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1951 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1952 {
1953 	debugfs_remove_recursive(pctldev->device_root);
1954 }
1955 
pinctrl_init_debugfs(void)1956 static void pinctrl_init_debugfs(void)
1957 {
1958 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1959 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1960 		pr_warn("failed to create debugfs directory\n");
1961 		debugfs_root = NULL;
1962 		return;
1963 	}
1964 
1965 	debugfs_create_file("pinctrl-devices", 0444,
1966 			    debugfs_root, NULL, &pinctrl_devices_fops);
1967 	debugfs_create_file("pinctrl-maps", 0444,
1968 			    debugfs_root, NULL, &pinctrl_maps_fops);
1969 	debugfs_create_file("pinctrl-handles", 0444,
1970 			    debugfs_root, NULL, &pinctrl_fops);
1971 }
1972 
1973 #else /* CONFIG_DEBUG_FS */
1974 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1975 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1976 {
1977 }
1978 
pinctrl_init_debugfs(void)1979 static void pinctrl_init_debugfs(void)
1980 {
1981 }
1982 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1983 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1984 {
1985 }
1986 
1987 #endif
1988 
pinctrl_check_ops(struct pinctrl_dev * pctldev)1989 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1990 {
1991 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1992 
1993 	if (!ops ||
1994 	    !ops->get_groups_count ||
1995 	    !ops->get_group_name)
1996 		return -EINVAL;
1997 
1998 	return 0;
1999 }
2000 
2001 /**
2002  * pinctrl_init_controller() - init a pin controller device
2003  * @pctldesc: descriptor for this pin controller
2004  * @dev: parent device for this pin controller
2005  * @driver_data: private pin controller data for this pin controller
2006  */
2007 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2008 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2009 			void *driver_data)
2010 {
2011 	struct pinctrl_dev *pctldev;
2012 	int ret;
2013 
2014 	if (!pctldesc)
2015 		return ERR_PTR(-EINVAL);
2016 	if (!pctldesc->name)
2017 		return ERR_PTR(-EINVAL);
2018 
2019 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2020 	if (!pctldev)
2021 		return ERR_PTR(-ENOMEM);
2022 
2023 	/* Initialize pin control device struct */
2024 	pctldev->owner = pctldesc->owner;
2025 	pctldev->desc = pctldesc;
2026 	pctldev->driver_data = driver_data;
2027 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2028 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2029 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2030 #endif
2031 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2032 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2033 #endif
2034 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2035 	INIT_LIST_HEAD(&pctldev->node);
2036 	pctldev->dev = dev;
2037 	mutex_init(&pctldev->mutex);
2038 
2039 	/* check core ops for sanity */
2040 	ret = pinctrl_check_ops(pctldev);
2041 	if (ret) {
2042 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2043 		goto out_err;
2044 	}
2045 
2046 	/* If we're implementing pinmuxing, check the ops for sanity */
2047 	if (pctldesc->pmxops) {
2048 		ret = pinmux_check_ops(pctldev);
2049 		if (ret)
2050 			goto out_err;
2051 	}
2052 
2053 	/* If we're implementing pinconfig, check the ops for sanity */
2054 	if (pctldesc->confops) {
2055 		ret = pinconf_check_ops(pctldev);
2056 		if (ret)
2057 			goto out_err;
2058 	}
2059 
2060 	/* Register all the pins */
2061 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2062 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2063 	if (ret) {
2064 		dev_err(dev, "error during pin registration\n");
2065 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2066 				      pctldesc->npins);
2067 		goto out_err;
2068 	}
2069 
2070 	return pctldev;
2071 
2072 out_err:
2073 	mutex_destroy(&pctldev->mutex);
2074 	kfree(pctldev);
2075 	return ERR_PTR(ret);
2076 }
2077 
pinctrl_uninit_controller(struct pinctrl_dev * pctldev,struct pinctrl_desc * pctldesc)2078 static void pinctrl_uninit_controller(struct pinctrl_dev *pctldev, struct pinctrl_desc *pctldesc)
2079 {
2080 	pinctrl_free_pindescs(pctldev, pctldesc->pins,
2081 			      pctldesc->npins);
2082 	mutex_destroy(&pctldev->mutex);
2083 	kfree(pctldev);
2084 }
2085 
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2086 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2087 {
2088 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2089 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2090 		dev_dbg(pctldev->dev, "no hogs found\n");
2091 
2092 		return 0;
2093 	}
2094 
2095 	if (IS_ERR(pctldev->p)) {
2096 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2097 			PTR_ERR(pctldev->p));
2098 
2099 		return PTR_ERR(pctldev->p);
2100 	}
2101 
2102 	pctldev->hog_default =
2103 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2104 	if (IS_ERR(pctldev->hog_default)) {
2105 		dev_dbg(pctldev->dev,
2106 			"failed to lookup the default state\n");
2107 	} else {
2108 		if (pinctrl_select_state(pctldev->p,
2109 					 pctldev->hog_default))
2110 			dev_err(pctldev->dev,
2111 				"failed to select default state\n");
2112 	}
2113 
2114 	pctldev->hog_sleep =
2115 		pinctrl_lookup_state(pctldev->p,
2116 				     PINCTRL_STATE_SLEEP);
2117 	if (IS_ERR(pctldev->hog_sleep))
2118 		dev_dbg(pctldev->dev,
2119 			"failed to lookup the sleep state\n");
2120 
2121 	return 0;
2122 }
2123 
pinctrl_enable(struct pinctrl_dev * pctldev)2124 int pinctrl_enable(struct pinctrl_dev *pctldev)
2125 {
2126 	int error;
2127 
2128 	error = pinctrl_claim_hogs(pctldev);
2129 	if (error) {
2130 		dev_err(pctldev->dev, "could not claim hogs: %i\n", error);
2131 		return error;
2132 	}
2133 
2134 	mutex_lock(&pinctrldev_list_mutex);
2135 	list_add_tail(&pctldev->node, &pinctrldev_list);
2136 	mutex_unlock(&pinctrldev_list_mutex);
2137 
2138 	pinctrl_init_device_debugfs(pctldev);
2139 
2140 	return 0;
2141 }
2142 EXPORT_SYMBOL_GPL(pinctrl_enable);
2143 
2144 /**
2145  * pinctrl_register() - register a pin controller device
2146  * @pctldesc: descriptor for this pin controller
2147  * @dev: parent device for this pin controller
2148  * @driver_data: private pin controller data for this pin controller
2149  *
2150  * Note that pinctrl_register() is known to have problems as the pin
2151  * controller driver functions are called before the driver has a
2152  * struct pinctrl_dev handle. To avoid issues later on, please use the
2153  * new pinctrl_register_and_init() below instead.
2154  */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2155 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2156 				    struct device *dev, void *driver_data)
2157 {
2158 	struct pinctrl_dev *pctldev;
2159 	int error;
2160 
2161 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2162 	if (IS_ERR(pctldev))
2163 		return pctldev;
2164 
2165 	error = pinctrl_enable(pctldev);
2166 	if (error) {
2167 		pinctrl_uninit_controller(pctldev, pctldesc);
2168 		return ERR_PTR(error);
2169 	}
2170 
2171 	return pctldev;
2172 }
2173 EXPORT_SYMBOL_GPL(pinctrl_register);
2174 
2175 /**
2176  * pinctrl_register_and_init() - register and init pin controller device
2177  * @pctldesc: descriptor for this pin controller
2178  * @dev: parent device for this pin controller
2179  * @driver_data: private pin controller data for this pin controller
2180  * @pctldev: pin controller device
2181  *
2182  * Note that pinctrl_enable() still needs to be manually called after
2183  * this once the driver is ready.
2184  */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2185 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2186 			      struct device *dev, void *driver_data,
2187 			      struct pinctrl_dev **pctldev)
2188 {
2189 	struct pinctrl_dev *p;
2190 
2191 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2192 	if (IS_ERR(p))
2193 		return PTR_ERR(p);
2194 
2195 	/*
2196 	 * We have pinctrl_start() call functions in the pin controller
2197 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2198 	 * let's make sure pctldev is properly initialized for the
2199 	 * pin controller driver before we do anything.
2200 	 */
2201 	*pctldev = p;
2202 
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2206 
2207 /**
2208  * pinctrl_unregister() - unregister pinmux
2209  * @pctldev: pin controller to unregister
2210  *
2211  * Called by pinmux drivers to unregister a pinmux.
2212  */
pinctrl_unregister(struct pinctrl_dev * pctldev)2213 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2214 {
2215 	struct pinctrl_gpio_range *range, *n;
2216 
2217 	if (!pctldev)
2218 		return;
2219 
2220 	mutex_lock(&pctldev->mutex);
2221 	pinctrl_remove_device_debugfs(pctldev);
2222 	mutex_unlock(&pctldev->mutex);
2223 
2224 	if (!IS_ERR_OR_NULL(pctldev->p))
2225 		pinctrl_put(pctldev->p);
2226 
2227 	mutex_lock(&pinctrldev_list_mutex);
2228 	mutex_lock(&pctldev->mutex);
2229 	/* TODO: check that no pinmuxes are still active? */
2230 	list_del(&pctldev->node);
2231 	pinmux_generic_free_functions(pctldev);
2232 	pinctrl_generic_free_groups(pctldev);
2233 	/* Destroy descriptor tree */
2234 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2235 			      pctldev->desc->npins);
2236 	/* remove gpio ranges map */
2237 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2238 		list_del(&range->node);
2239 
2240 	mutex_unlock(&pctldev->mutex);
2241 	mutex_destroy(&pctldev->mutex);
2242 	kfree(pctldev);
2243 	mutex_unlock(&pinctrldev_list_mutex);
2244 }
2245 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2246 
devm_pinctrl_dev_release(struct device * dev,void * res)2247 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2248 {
2249 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2250 
2251 	pinctrl_unregister(pctldev);
2252 }
2253 
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2254 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2255 {
2256 	struct pctldev **r = res;
2257 
2258 	if (WARN_ON(!r || !*r))
2259 		return 0;
2260 
2261 	return *r == data;
2262 }
2263 
2264 /**
2265  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2266  * @dev: parent device for this pin controller
2267  * @pctldesc: descriptor for this pin controller
2268  * @driver_data: private pin controller data for this pin controller
2269  *
2270  * Returns an error pointer if pincontrol register failed. Otherwise
2271  * it returns valid pinctrl handle.
2272  *
2273  * The pinctrl device will be automatically released when the device is unbound.
2274  */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2275 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2276 					  struct pinctrl_desc *pctldesc,
2277 					  void *driver_data)
2278 {
2279 	struct pinctrl_dev **ptr, *pctldev;
2280 
2281 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2282 	if (!ptr)
2283 		return ERR_PTR(-ENOMEM);
2284 
2285 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2286 	if (IS_ERR(pctldev)) {
2287 		devres_free(ptr);
2288 		return pctldev;
2289 	}
2290 
2291 	*ptr = pctldev;
2292 	devres_add(dev, ptr);
2293 
2294 	return pctldev;
2295 }
2296 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2297 
2298 /**
2299  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2300  * @dev: parent device for this pin controller
2301  * @pctldesc: descriptor for this pin controller
2302  * @driver_data: private pin controller data for this pin controller
2303  * @pctldev: pin controller device
2304  *
2305  * Returns zero on success or an error number on failure.
2306  *
2307  * The pinctrl device will be automatically released when the device is unbound.
2308  */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2309 int devm_pinctrl_register_and_init(struct device *dev,
2310 				   struct pinctrl_desc *pctldesc,
2311 				   void *driver_data,
2312 				   struct pinctrl_dev **pctldev)
2313 {
2314 	struct pinctrl_dev **ptr;
2315 	int error;
2316 
2317 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2318 	if (!ptr)
2319 		return -ENOMEM;
2320 
2321 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2322 	if (error) {
2323 		devres_free(ptr);
2324 		return error;
2325 	}
2326 
2327 	*ptr = *pctldev;
2328 	devres_add(dev, ptr);
2329 
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2333 
2334 /**
2335  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2336  * @dev: device for which resource was allocated
2337  * @pctldev: the pinctrl device to unregister.
2338  */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2339 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2340 {
2341 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2342 			       devm_pinctrl_dev_match, pctldev));
2343 }
2344 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2345 
pinctrl_init(void)2346 static int __init pinctrl_init(void)
2347 {
2348 	pr_info("initialized pinctrl subsystem\n");
2349 	pinctrl_init_debugfs();
2350 	return 0;
2351 }
2352 
2353 /* init early since many drivers really need to initialized pinmux early */
2354 core_initcall(pinctrl_init);
2355