1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14
15 #include <linux/debugfs.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kref.h>
22 #include <linux/list.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/pinctrl/devinfo.h>
28 #include <linux/pinctrl/machine.h>
29 #include <linux/pinctrl/pinctrl.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include "../gpio/gpiolib.h"
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39
40 static bool pinctrl_dummy_state;
41
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59
60
61 /**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 pinctrl_dummy_state = true;
72 }
73
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93 /**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120 }
121
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (device_match_of_node(pctldev->dev, np)) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137 }
138
139 /**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 unsigned i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160 }
161
162 /**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 {
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181
182 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_pins)183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned num_pins)
186 {
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202 }
203
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206 {
207 struct pin_desc *pindesc;
208 int error;
209
210 pindesc = pin_desc_get(pctldev, pin->number);
211 if (pindesc) {
212 dev_err(pctldev->dev, "pin %d already registered\n",
213 pin->number);
214 return -EINVAL;
215 }
216
217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 if (!pindesc)
219 return -ENOMEM;
220
221 /* Set owner */
222 pindesc->pctldev = pctldev;
223 #ifdef CONFIG_PINMUX
224 mutex_init(&pindesc->mux_lock);
225 #endif
226
227 /* Copy basic pin info */
228 if (pin->name) {
229 pindesc->name = pin->name;
230 } else {
231 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
232 if (!pindesc->name) {
233 error = -ENOMEM;
234 goto failed;
235 }
236 pindesc->dynamic_name = true;
237 }
238
239 pindesc->drv_data = pin->drv_data;
240
241 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
242 if (error)
243 goto failed;
244
245 pr_debug("registered pin %d (%s) on %s\n",
246 pin->number, pindesc->name, pctldev->desc->name);
247 return 0;
248
249 failed:
250 kfree(pindesc);
251 return error;
252 }
253
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_descs)254 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
255 const struct pinctrl_pin_desc *pins,
256 unsigned num_descs)
257 {
258 unsigned i;
259 int ret = 0;
260
261 for (i = 0; i < num_descs; i++) {
262 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
263 if (ret)
264 return ret;
265 }
266
267 return 0;
268 }
269
270 /**
271 * gpio_to_pin() - GPIO range GPIO number to pin number translation
272 * @range: GPIO range used for the translation
273 * @gpio: gpio pin to translate to a pin number
274 *
275 * Finds the pin number for a given GPIO using the specified GPIO range
276 * as a base for translation. The distinction between linear GPIO ranges
277 * and pin list based GPIO ranges is managed correctly by this function.
278 *
279 * This function assumes the gpio is part of the specified GPIO range, use
280 * only after making sure this is the case (e.g. by calling it on the
281 * result of successful pinctrl_get_device_gpio_range calls)!
282 */
gpio_to_pin(struct pinctrl_gpio_range * range,unsigned int gpio)283 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
284 unsigned int gpio)
285 {
286 unsigned int offset = gpio - range->base;
287 if (range->pins)
288 return range->pins[offset];
289 else
290 return range->pin_base + offset;
291 }
292
293 /**
294 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
295 * @pctldev: pin controller device to check
296 * @gpio: gpio pin to check taken from the global GPIO pin space
297 *
298 * Tries to match a GPIO pin number to the ranges handled by a certain pin
299 * controller, return the range or NULL
300 */
301 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,unsigned gpio)302 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
303 {
304 struct pinctrl_gpio_range *range;
305
306 mutex_lock(&pctldev->mutex);
307 /* Loop over the ranges */
308 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
309 /* Check if we're in the valid range */
310 if (gpio >= range->base &&
311 gpio < range->base + range->npins) {
312 mutex_unlock(&pctldev->mutex);
313 return range;
314 }
315 }
316 mutex_unlock(&pctldev->mutex);
317 return NULL;
318 }
319
320 /**
321 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
322 * the same GPIO chip are in range
323 * @gpio: gpio pin to check taken from the global GPIO pin space
324 *
325 * This function is complement of pinctrl_match_gpio_range(). If the return
326 * value of pinctrl_match_gpio_range() is NULL, this function could be used
327 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
328 * of the same GPIO chip don't have back-end pinctrl interface.
329 * If the return value is true, it means that pinctrl device is ready & the
330 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
331 * is false, it means that pinctrl device may not be ready.
332 */
333 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(unsigned gpio)334 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
335 {
336 struct pinctrl_dev *pctldev;
337 struct pinctrl_gpio_range *range = NULL;
338 /*
339 * FIXME: "gpio" here is a number in the global GPIO numberspace.
340 * get rid of this from the ranges eventually and get the GPIO
341 * descriptor from the gpio_chip.
342 */
343 struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio));
344
345 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
346 return false;
347
348 mutex_lock(&pinctrldev_list_mutex);
349
350 /* Loop over the pin controllers */
351 list_for_each_entry(pctldev, &pinctrldev_list, node) {
352 /* Loop over the ranges */
353 mutex_lock(&pctldev->mutex);
354 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
355 /* Check if any gpio range overlapped with gpio chip */
356 if (range->base + range->npins - 1 < chip->base ||
357 range->base > chip->base + chip->ngpio - 1)
358 continue;
359 mutex_unlock(&pctldev->mutex);
360 mutex_unlock(&pinctrldev_list_mutex);
361 return true;
362 }
363 mutex_unlock(&pctldev->mutex);
364 }
365
366 mutex_unlock(&pinctrldev_list_mutex);
367
368 return false;
369 }
370 #else
pinctrl_ready_for_gpio_range(unsigned gpio)371 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
372 #endif
373
374 /**
375 * pinctrl_get_device_gpio_range() - find device for GPIO range
376 * @gpio: the pin to locate the pin controller for
377 * @outdev: the pin control device if found
378 * @outrange: the GPIO range if found
379 *
380 * Find the pin controller handling a certain GPIO pin from the pinspace of
381 * the GPIO subsystem, return the device and the matching GPIO range. Returns
382 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
383 * may still have not been registered.
384 */
pinctrl_get_device_gpio_range(unsigned gpio,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)385 static int pinctrl_get_device_gpio_range(unsigned gpio,
386 struct pinctrl_dev **outdev,
387 struct pinctrl_gpio_range **outrange)
388 {
389 struct pinctrl_dev *pctldev;
390
391 mutex_lock(&pinctrldev_list_mutex);
392
393 /* Loop over the pin controllers */
394 list_for_each_entry(pctldev, &pinctrldev_list, node) {
395 struct pinctrl_gpio_range *range;
396
397 range = pinctrl_match_gpio_range(pctldev, gpio);
398 if (range) {
399 *outdev = pctldev;
400 *outrange = range;
401 mutex_unlock(&pinctrldev_list_mutex);
402 return 0;
403 }
404 }
405
406 mutex_unlock(&pinctrldev_list_mutex);
407
408 return -EPROBE_DEFER;
409 }
410
411 /**
412 * pinctrl_add_gpio_range() - register a GPIO range for a controller
413 * @pctldev: pin controller device to add the range to
414 * @range: the GPIO range to add
415 *
416 * This adds a range of GPIOs to be handled by a certain pin controller. Call
417 * this to register handled ranges after registering your pin controller.
418 */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)419 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
420 struct pinctrl_gpio_range *range)
421 {
422 mutex_lock(&pctldev->mutex);
423 list_add_tail(&range->node, &pctldev->gpio_ranges);
424 mutex_unlock(&pctldev->mutex);
425 }
426 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
427
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned nranges)428 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
429 struct pinctrl_gpio_range *ranges,
430 unsigned nranges)
431 {
432 int i;
433
434 for (i = 0; i < nranges; i++)
435 pinctrl_add_gpio_range(pctldev, &ranges[i]);
436 }
437 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
438
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)439 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
440 struct pinctrl_gpio_range *range)
441 {
442 struct pinctrl_dev *pctldev;
443
444 pctldev = get_pinctrl_dev_from_devname(devname);
445
446 /*
447 * If we can't find this device, let's assume that is because
448 * it has not probed yet, so the driver trying to register this
449 * range need to defer probing.
450 */
451 if (!pctldev) {
452 return ERR_PTR(-EPROBE_DEFER);
453 }
454 pinctrl_add_gpio_range(pctldev, range);
455
456 return pctldev;
457 }
458 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
459
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned ** pins,unsigned * num_pins)460 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
461 const unsigned **pins, unsigned *num_pins)
462 {
463 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
464 int gs;
465
466 if (!pctlops->get_group_pins)
467 return -EINVAL;
468
469 gs = pinctrl_get_group_selector(pctldev, pin_group);
470 if (gs < 0)
471 return gs;
472
473 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
474 }
475 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
476
477 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)478 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
479 unsigned int pin)
480 {
481 struct pinctrl_gpio_range *range;
482
483 /* Loop over the ranges */
484 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
485 /* Check if we're in the valid range */
486 if (range->pins) {
487 int a;
488 for (a = 0; a < range->npins; a++) {
489 if (range->pins[a] == pin)
490 return range;
491 }
492 } else if (pin >= range->pin_base &&
493 pin < range->pin_base + range->npins)
494 return range;
495 }
496
497 return NULL;
498 }
499 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
500
501 /**
502 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
503 * @pctldev: the pin controller device to look in
504 * @pin: a controller-local number to find the range for
505 */
506 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)507 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
508 unsigned int pin)
509 {
510 struct pinctrl_gpio_range *range;
511
512 mutex_lock(&pctldev->mutex);
513 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
514 mutex_unlock(&pctldev->mutex);
515
516 return range;
517 }
518 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
519
520 /**
521 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
522 * @pctldev: pin controller device to remove the range from
523 * @range: the GPIO range to remove
524 */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)525 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
526 struct pinctrl_gpio_range *range)
527 {
528 mutex_lock(&pctldev->mutex);
529 list_del(&range->node);
530 mutex_unlock(&pctldev->mutex);
531 }
532 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
533
534 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
535
536 /**
537 * pinctrl_generic_get_group_count() - returns the number of pin groups
538 * @pctldev: pin controller device
539 */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)540 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
541 {
542 return pctldev->num_groups;
543 }
544 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
545
546 /**
547 * pinctrl_generic_get_group_name() - returns the name of a pin group
548 * @pctldev: pin controller device
549 * @selector: group number
550 */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)551 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
552 unsigned int selector)
553 {
554 struct group_desc *group;
555
556 group = radix_tree_lookup(&pctldev->pin_group_tree,
557 selector);
558 if (!group)
559 return NULL;
560
561 return group->name;
562 }
563 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
564
565 /**
566 * pinctrl_generic_get_group_pins() - gets the pin group pins
567 * @pctldev: pin controller device
568 * @selector: group number
569 * @pins: pins in the group
570 * @num_pins: number of pins in the group
571 */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)572 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
573 unsigned int selector,
574 const unsigned int **pins,
575 unsigned int *num_pins)
576 {
577 struct group_desc *group;
578
579 group = radix_tree_lookup(&pctldev->pin_group_tree,
580 selector);
581 if (!group) {
582 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
583 __func__, selector);
584 return -EINVAL;
585 }
586
587 *pins = group->pins;
588 *num_pins = group->num_pins;
589
590 return 0;
591 }
592 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
593
594 /**
595 * pinctrl_generic_get_group() - returns a pin group based on the number
596 * @pctldev: pin controller device
597 * @selector: group number
598 */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)599 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
600 unsigned int selector)
601 {
602 struct group_desc *group;
603
604 group = radix_tree_lookup(&pctldev->pin_group_tree,
605 selector);
606 if (!group)
607 return NULL;
608
609 return group;
610 }
611 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
612
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)613 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
614 const char *function)
615 {
616 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
617 int ngroups = ops->get_groups_count(pctldev);
618 int selector = 0;
619
620 /* See if this pctldev has this group */
621 while (selector < ngroups) {
622 const char *gname = ops->get_group_name(pctldev, selector);
623
624 if (gname && !strcmp(function, gname))
625 return selector;
626
627 selector++;
628 }
629
630 return -EINVAL;
631 }
632
633 /**
634 * pinctrl_generic_add_group() - adds a new pin group
635 * @pctldev: pin controller device
636 * @name: name of the pin group
637 * @pins: pins in the pin group
638 * @num_pins: number of pins in the pin group
639 * @data: pin controller driver specific data
640 *
641 * Note that the caller must take care of locking.
642 */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,int * pins,int num_pins,void * data)643 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
644 int *pins, int num_pins, void *data)
645 {
646 struct group_desc *group;
647 int selector, error;
648
649 if (!name)
650 return -EINVAL;
651
652 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
653 if (selector >= 0)
654 return selector;
655
656 selector = pctldev->num_groups;
657
658 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
659 if (!group)
660 return -ENOMEM;
661
662 group->name = name;
663 group->pins = pins;
664 group->num_pins = num_pins;
665 group->data = data;
666
667 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
668 if (error)
669 return error;
670
671 pctldev->num_groups++;
672
673 return selector;
674 }
675 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
676
677 /**
678 * pinctrl_generic_remove_group() - removes a numbered pin group
679 * @pctldev: pin controller device
680 * @selector: group number
681 *
682 * Note that the caller must take care of locking.
683 */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)684 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
685 unsigned int selector)
686 {
687 struct group_desc *group;
688
689 group = radix_tree_lookup(&pctldev->pin_group_tree,
690 selector);
691 if (!group)
692 return -ENOENT;
693
694 radix_tree_delete(&pctldev->pin_group_tree, selector);
695 devm_kfree(pctldev->dev, group);
696
697 pctldev->num_groups--;
698
699 return 0;
700 }
701 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
702
703 /**
704 * pinctrl_generic_free_groups() - removes all pin groups
705 * @pctldev: pin controller device
706 *
707 * Note that the caller must take care of locking. The pinctrl groups
708 * are allocated with devm_kzalloc() so no need to free them here.
709 */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)710 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
711 {
712 struct radix_tree_iter iter;
713 void __rcu **slot;
714
715 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
716 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
717
718 pctldev->num_groups = 0;
719 }
720
721 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)722 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
723 {
724 }
725 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
726
727 /**
728 * pinctrl_get_group_selector() - returns the group selector for a group
729 * @pctldev: the pin controller handling the group
730 * @pin_group: the pin group to look up
731 */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)732 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
733 const char *pin_group)
734 {
735 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
736 unsigned ngroups = pctlops->get_groups_count(pctldev);
737 unsigned group_selector = 0;
738
739 while (group_selector < ngroups) {
740 const char *gname = pctlops->get_group_name(pctldev,
741 group_selector);
742 if (gname && !strcmp(gname, pin_group)) {
743 dev_dbg(pctldev->dev,
744 "found group selector %u for %s\n",
745 group_selector,
746 pin_group);
747 return group_selector;
748 }
749
750 group_selector++;
751 }
752
753 dev_err(pctldev->dev, "does not have pin group %s\n",
754 pin_group);
755
756 return -EINVAL;
757 }
758
pinctrl_gpio_can_use_line(unsigned gpio)759 bool pinctrl_gpio_can_use_line(unsigned gpio)
760 {
761 struct pinctrl_dev *pctldev;
762 struct pinctrl_gpio_range *range;
763 bool result;
764 int pin;
765
766 /*
767 * Try to obtain GPIO range, if it fails
768 * we're probably dealing with GPIO driver
769 * without a backing pin controller - bail out.
770 */
771 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
772 return true;
773
774 mutex_lock(&pctldev->mutex);
775
776 /* Convert to the pin controllers number space */
777 pin = gpio_to_pin(range, gpio);
778
779 result = pinmux_can_be_used_for_gpio(pctldev, pin);
780
781 mutex_unlock(&pctldev->mutex);
782
783 return result;
784 }
785 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
786
787 /**
788 * pinctrl_gpio_request() - request a single pin to be used as GPIO
789 * @gpio: the GPIO pin number from the GPIO subsystem number space
790 *
791 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
792 * as part of their gpio_request() semantics, platforms and individual drivers
793 * shall *NOT* request GPIO pins to be muxed in.
794 */
pinctrl_gpio_request(unsigned gpio)795 int pinctrl_gpio_request(unsigned gpio)
796 {
797 struct pinctrl_dev *pctldev;
798 struct pinctrl_gpio_range *range;
799 int ret;
800 int pin;
801
802 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
803 if (ret) {
804 if (pinctrl_ready_for_gpio_range(gpio))
805 ret = 0;
806 return ret;
807 }
808
809 mutex_lock(&pctldev->mutex);
810
811 /* Convert to the pin controllers number space */
812 pin = gpio_to_pin(range, gpio);
813
814 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
815
816 mutex_unlock(&pctldev->mutex);
817
818 return ret;
819 }
820 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
821
822 /**
823 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
824 * @gpio: the GPIO pin number from the GPIO subsystem number space
825 *
826 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
827 * as part of their gpio_free() semantics, platforms and individual drivers
828 * shall *NOT* request GPIO pins to be muxed out.
829 */
pinctrl_gpio_free(unsigned gpio)830 void pinctrl_gpio_free(unsigned gpio)
831 {
832 struct pinctrl_dev *pctldev;
833 struct pinctrl_gpio_range *range;
834 int ret;
835 int pin;
836
837 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
838 if (ret) {
839 return;
840 }
841 mutex_lock(&pctldev->mutex);
842
843 /* Convert to the pin controllers number space */
844 pin = gpio_to_pin(range, gpio);
845
846 pinmux_free_gpio(pctldev, pin, range);
847
848 mutex_unlock(&pctldev->mutex);
849 }
850 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
851
pinctrl_gpio_direction(unsigned gpio,bool input)852 static int pinctrl_gpio_direction(unsigned gpio, bool input)
853 {
854 struct pinctrl_dev *pctldev;
855 struct pinctrl_gpio_range *range;
856 int ret;
857 int pin;
858
859 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
860 if (ret) {
861 return ret;
862 }
863
864 mutex_lock(&pctldev->mutex);
865
866 /* Convert to the pin controllers number space */
867 pin = gpio_to_pin(range, gpio);
868 ret = pinmux_gpio_direction(pctldev, range, pin, input);
869
870 mutex_unlock(&pctldev->mutex);
871
872 return ret;
873 }
874
875 /**
876 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
877 * @gpio: the GPIO pin number from the GPIO subsystem number space
878 *
879 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
880 * as part of their gpio_direction_input() semantics, platforms and individual
881 * drivers shall *NOT* touch pin control GPIO calls.
882 */
pinctrl_gpio_direction_input(unsigned gpio)883 int pinctrl_gpio_direction_input(unsigned gpio)
884 {
885 return pinctrl_gpio_direction(gpio, true);
886 }
887 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
888
889 /**
890 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
891 * @gpio: the GPIO pin number from the GPIO subsystem number space
892 *
893 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
894 * as part of their gpio_direction_output() semantics, platforms and individual
895 * drivers shall *NOT* touch pin control GPIO calls.
896 */
pinctrl_gpio_direction_output(unsigned gpio)897 int pinctrl_gpio_direction_output(unsigned gpio)
898 {
899 return pinctrl_gpio_direction(gpio, false);
900 }
901 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
902
903 /**
904 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
905 * @gpio: the GPIO pin number from the GPIO subsystem number space
906 * @config: the configuration to apply to the GPIO
907 *
908 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
909 * they need to call the underlying pin controller to change GPIO config
910 * (for example set debounce time).
911 */
pinctrl_gpio_set_config(unsigned gpio,unsigned long config)912 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
913 {
914 unsigned long configs[] = { config };
915 struct pinctrl_gpio_range *range;
916 struct pinctrl_dev *pctldev;
917 int ret, pin;
918
919 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
920 if (ret)
921 return ret;
922
923 mutex_lock(&pctldev->mutex);
924 pin = gpio_to_pin(range, gpio);
925 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
926 mutex_unlock(&pctldev->mutex);
927
928 return ret;
929 }
930 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
931
find_state(struct pinctrl * p,const char * name)932 static struct pinctrl_state *find_state(struct pinctrl *p,
933 const char *name)
934 {
935 struct pinctrl_state *state;
936
937 list_for_each_entry(state, &p->states, node)
938 if (!strcmp(state->name, name))
939 return state;
940
941 return NULL;
942 }
943
create_state(struct pinctrl * p,const char * name)944 static struct pinctrl_state *create_state(struct pinctrl *p,
945 const char *name)
946 {
947 struct pinctrl_state *state;
948
949 state = kzalloc(sizeof(*state), GFP_KERNEL);
950 if (!state)
951 return ERR_PTR(-ENOMEM);
952
953 state->name = name;
954 INIT_LIST_HEAD(&state->settings);
955
956 list_add_tail(&state->node, &p->states);
957
958 return state;
959 }
960
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)961 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
962 const struct pinctrl_map *map)
963 {
964 struct pinctrl_state *state;
965 struct pinctrl_setting *setting;
966 int ret;
967
968 state = find_state(p, map->name);
969 if (!state)
970 state = create_state(p, map->name);
971 if (IS_ERR(state))
972 return PTR_ERR(state);
973
974 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
975 return 0;
976
977 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
978 if (!setting)
979 return -ENOMEM;
980
981 setting->type = map->type;
982
983 if (pctldev)
984 setting->pctldev = pctldev;
985 else
986 setting->pctldev =
987 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
988 if (!setting->pctldev) {
989 kfree(setting);
990 /* Do not defer probing of hogs (circular loop) */
991 if (!strcmp(map->ctrl_dev_name, map->dev_name))
992 return -ENODEV;
993 /*
994 * OK let us guess that the driver is not there yet, and
995 * let's defer obtaining this pinctrl handle to later...
996 */
997 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
998 map->ctrl_dev_name);
999 return -EPROBE_DEFER;
1000 }
1001
1002 setting->dev_name = map->dev_name;
1003
1004 switch (map->type) {
1005 case PIN_MAP_TYPE_MUX_GROUP:
1006 ret = pinmux_map_to_setting(map, setting);
1007 break;
1008 case PIN_MAP_TYPE_CONFIGS_PIN:
1009 case PIN_MAP_TYPE_CONFIGS_GROUP:
1010 ret = pinconf_map_to_setting(map, setting);
1011 break;
1012 default:
1013 ret = -EINVAL;
1014 break;
1015 }
1016 if (ret < 0) {
1017 kfree(setting);
1018 return ret;
1019 }
1020
1021 list_add_tail(&setting->node, &state->settings);
1022
1023 return 0;
1024 }
1025
find_pinctrl(struct device * dev)1026 static struct pinctrl *find_pinctrl(struct device *dev)
1027 {
1028 struct pinctrl *p;
1029
1030 mutex_lock(&pinctrl_list_mutex);
1031 list_for_each_entry(p, &pinctrl_list, node)
1032 if (p->dev == dev) {
1033 mutex_unlock(&pinctrl_list_mutex);
1034 return p;
1035 }
1036
1037 mutex_unlock(&pinctrl_list_mutex);
1038 return NULL;
1039 }
1040
1041 static void pinctrl_free(struct pinctrl *p, bool inlist);
1042
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1043 static struct pinctrl *create_pinctrl(struct device *dev,
1044 struct pinctrl_dev *pctldev)
1045 {
1046 struct pinctrl *p;
1047 const char *devname;
1048 struct pinctrl_maps *maps_node;
1049 const struct pinctrl_map *map;
1050 int ret;
1051
1052 /*
1053 * create the state cookie holder struct pinctrl for each
1054 * mapping, this is what consumers will get when requesting
1055 * a pin control handle with pinctrl_get()
1056 */
1057 p = kzalloc(sizeof(*p), GFP_KERNEL);
1058 if (!p)
1059 return ERR_PTR(-ENOMEM);
1060 p->dev = dev;
1061 INIT_LIST_HEAD(&p->states);
1062 INIT_LIST_HEAD(&p->dt_maps);
1063
1064 ret = pinctrl_dt_to_map(p, pctldev);
1065 if (ret < 0) {
1066 kfree(p);
1067 return ERR_PTR(ret);
1068 }
1069
1070 devname = dev_name(dev);
1071
1072 mutex_lock(&pinctrl_maps_mutex);
1073 /* Iterate over the pin control maps to locate the right ones */
1074 for_each_pin_map(maps_node, map) {
1075 /* Map must be for this device */
1076 if (strcmp(map->dev_name, devname))
1077 continue;
1078 /*
1079 * If pctldev is not null, we are claiming hog for it,
1080 * that means, setting that is served by pctldev by itself.
1081 *
1082 * Thus we must skip map that is for this device but is served
1083 * by other device.
1084 */
1085 if (pctldev &&
1086 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1087 continue;
1088
1089 ret = add_setting(p, pctldev, map);
1090 /*
1091 * At this point the adding of a setting may:
1092 *
1093 * - Defer, if the pinctrl device is not yet available
1094 * - Fail, if the pinctrl device is not yet available,
1095 * AND the setting is a hog. We cannot defer that, since
1096 * the hog will kick in immediately after the device
1097 * is registered.
1098 *
1099 * If the error returned was not -EPROBE_DEFER then we
1100 * accumulate the errors to see if we end up with
1101 * an -EPROBE_DEFER later, as that is the worst case.
1102 */
1103 if (ret == -EPROBE_DEFER) {
1104 mutex_unlock(&pinctrl_maps_mutex);
1105 pinctrl_free(p, false);
1106 return ERR_PTR(ret);
1107 }
1108 }
1109 mutex_unlock(&pinctrl_maps_mutex);
1110
1111 if (ret < 0) {
1112 /* If some other error than deferral occurred, return here */
1113 pinctrl_free(p, false);
1114 return ERR_PTR(ret);
1115 }
1116
1117 kref_init(&p->users);
1118
1119 /* Add the pinctrl handle to the global list */
1120 mutex_lock(&pinctrl_list_mutex);
1121 list_add_tail(&p->node, &pinctrl_list);
1122 mutex_unlock(&pinctrl_list_mutex);
1123
1124 return p;
1125 }
1126
1127 /**
1128 * pinctrl_get() - retrieves the pinctrl handle for a device
1129 * @dev: the device to obtain the handle for
1130 */
pinctrl_get(struct device * dev)1131 struct pinctrl *pinctrl_get(struct device *dev)
1132 {
1133 struct pinctrl *p;
1134
1135 if (WARN_ON(!dev))
1136 return ERR_PTR(-EINVAL);
1137
1138 /*
1139 * See if somebody else (such as the device core) has already
1140 * obtained a handle to the pinctrl for this device. In that case,
1141 * return another pointer to it.
1142 */
1143 p = find_pinctrl(dev);
1144 if (p) {
1145 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1146 kref_get(&p->users);
1147 return p;
1148 }
1149
1150 return create_pinctrl(dev, NULL);
1151 }
1152 EXPORT_SYMBOL_GPL(pinctrl_get);
1153
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1154 static void pinctrl_free_setting(bool disable_setting,
1155 struct pinctrl_setting *setting)
1156 {
1157 switch (setting->type) {
1158 case PIN_MAP_TYPE_MUX_GROUP:
1159 if (disable_setting)
1160 pinmux_disable_setting(setting);
1161 pinmux_free_setting(setting);
1162 break;
1163 case PIN_MAP_TYPE_CONFIGS_PIN:
1164 case PIN_MAP_TYPE_CONFIGS_GROUP:
1165 pinconf_free_setting(setting);
1166 break;
1167 default:
1168 break;
1169 }
1170 }
1171
pinctrl_free(struct pinctrl * p,bool inlist)1172 static void pinctrl_free(struct pinctrl *p, bool inlist)
1173 {
1174 struct pinctrl_state *state, *n1;
1175 struct pinctrl_setting *setting, *n2;
1176
1177 mutex_lock(&pinctrl_list_mutex);
1178 list_for_each_entry_safe(state, n1, &p->states, node) {
1179 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1180 pinctrl_free_setting(state == p->state, setting);
1181 list_del(&setting->node);
1182 kfree(setting);
1183 }
1184 list_del(&state->node);
1185 kfree(state);
1186 }
1187
1188 pinctrl_dt_free_maps(p);
1189
1190 if (inlist)
1191 list_del(&p->node);
1192 kfree(p);
1193 mutex_unlock(&pinctrl_list_mutex);
1194 }
1195
1196 /**
1197 * pinctrl_release() - release the pinctrl handle
1198 * @kref: the kref in the pinctrl being released
1199 */
pinctrl_release(struct kref * kref)1200 static void pinctrl_release(struct kref *kref)
1201 {
1202 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1203
1204 pinctrl_free(p, true);
1205 }
1206
1207 /**
1208 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1209 * @p: the pinctrl handle to release
1210 */
pinctrl_put(struct pinctrl * p)1211 void pinctrl_put(struct pinctrl *p)
1212 {
1213 kref_put(&p->users, pinctrl_release);
1214 }
1215 EXPORT_SYMBOL_GPL(pinctrl_put);
1216
1217 /**
1218 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1219 * @p: the pinctrl handle to retrieve the state from
1220 * @name: the state name to retrieve
1221 */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1222 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1223 const char *name)
1224 {
1225 struct pinctrl_state *state;
1226
1227 state = find_state(p, name);
1228 if (!state) {
1229 if (pinctrl_dummy_state) {
1230 /* create dummy state */
1231 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1232 name);
1233 state = create_state(p, name);
1234 } else
1235 state = ERR_PTR(-ENODEV);
1236 }
1237
1238 return state;
1239 }
1240 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1241
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1242 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1243 struct device *consumer)
1244 {
1245 if (pctldev->desc->link_consumers)
1246 device_link_add(consumer, pctldev->dev,
1247 DL_FLAG_PM_RUNTIME |
1248 DL_FLAG_AUTOREMOVE_CONSUMER);
1249 }
1250
1251 /**
1252 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1253 * @p: the pinctrl handle for the device that requests configuration
1254 * @state: the state handle to select/activate/program
1255 */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1256 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1257 {
1258 struct pinctrl_setting *setting, *setting2;
1259 struct pinctrl_state *old_state = READ_ONCE(p->state);
1260 int ret;
1261
1262 if (old_state) {
1263 /*
1264 * For each pinmux setting in the old state, forget SW's record
1265 * of mux owner for that pingroup. Any pingroups which are
1266 * still owned by the new state will be re-acquired by the call
1267 * to pinmux_enable_setting() in the loop below.
1268 */
1269 list_for_each_entry(setting, &old_state->settings, node) {
1270 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1271 continue;
1272 pinmux_disable_setting(setting);
1273 }
1274 }
1275
1276 p->state = NULL;
1277
1278 /* Apply all the settings for the new state - pinmux first */
1279 list_for_each_entry(setting, &state->settings, node) {
1280 switch (setting->type) {
1281 case PIN_MAP_TYPE_MUX_GROUP:
1282 ret = pinmux_enable_setting(setting);
1283 break;
1284 case PIN_MAP_TYPE_CONFIGS_PIN:
1285 case PIN_MAP_TYPE_CONFIGS_GROUP:
1286 ret = 0;
1287 break;
1288 default:
1289 ret = -EINVAL;
1290 break;
1291 }
1292
1293 if (ret < 0)
1294 goto unapply_new_state;
1295
1296 /* Do not link hogs (circular dependency) */
1297 if (p != setting->pctldev->p)
1298 pinctrl_link_add(setting->pctldev, p->dev);
1299 }
1300
1301 /* Apply all the settings for the new state - pinconf after */
1302 list_for_each_entry(setting, &state->settings, node) {
1303 switch (setting->type) {
1304 case PIN_MAP_TYPE_MUX_GROUP:
1305 ret = 0;
1306 break;
1307 case PIN_MAP_TYPE_CONFIGS_PIN:
1308 case PIN_MAP_TYPE_CONFIGS_GROUP:
1309 ret = pinconf_apply_setting(setting);
1310 break;
1311 default:
1312 ret = -EINVAL;
1313 break;
1314 }
1315
1316 if (ret < 0) {
1317 goto unapply_new_state;
1318 }
1319
1320 /* Do not link hogs (circular dependency) */
1321 if (p != setting->pctldev->p)
1322 pinctrl_link_add(setting->pctldev, p->dev);
1323 }
1324
1325 p->state = state;
1326
1327 return 0;
1328
1329 unapply_new_state:
1330 dev_err(p->dev, "Error applying setting, reverse things back\n");
1331
1332 list_for_each_entry(setting2, &state->settings, node) {
1333 if (&setting2->node == &setting->node)
1334 break;
1335 /*
1336 * All we can do here is pinmux_disable_setting.
1337 * That means that some pins are muxed differently now
1338 * than they were before applying the setting (We can't
1339 * "unmux a pin"!), but it's not a big deal since the pins
1340 * are free to be muxed by another apply_setting.
1341 */
1342 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1343 pinmux_disable_setting(setting2);
1344 }
1345
1346 /* There's no infinite recursive loop here because p->state is NULL */
1347 if (old_state)
1348 pinctrl_select_state(p, old_state);
1349
1350 return ret;
1351 }
1352
1353 /**
1354 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1355 * @p: the pinctrl handle for the device that requests configuration
1356 * @state: the state handle to select/activate/program
1357 */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1358 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1359 {
1360 if (p->state == state)
1361 return 0;
1362
1363 return pinctrl_commit_state(p, state);
1364 }
1365 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1366
devm_pinctrl_release(struct device * dev,void * res)1367 static void devm_pinctrl_release(struct device *dev, void *res)
1368 {
1369 pinctrl_put(*(struct pinctrl **)res);
1370 }
1371
1372 /**
1373 * devm_pinctrl_get() - Resource managed pinctrl_get()
1374 * @dev: the device to obtain the handle for
1375 *
1376 * If there is a need to explicitly destroy the returned struct pinctrl,
1377 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1378 */
devm_pinctrl_get(struct device * dev)1379 struct pinctrl *devm_pinctrl_get(struct device *dev)
1380 {
1381 struct pinctrl **ptr, *p;
1382
1383 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1384 if (!ptr)
1385 return ERR_PTR(-ENOMEM);
1386
1387 p = pinctrl_get(dev);
1388 if (!IS_ERR(p)) {
1389 *ptr = p;
1390 devres_add(dev, ptr);
1391 } else {
1392 devres_free(ptr);
1393 }
1394
1395 return p;
1396 }
1397 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1398
devm_pinctrl_match(struct device * dev,void * res,void * data)1399 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1400 {
1401 struct pinctrl **p = res;
1402
1403 return *p == data;
1404 }
1405
1406 /**
1407 * devm_pinctrl_put() - Resource managed pinctrl_put()
1408 * @p: the pinctrl handle to release
1409 *
1410 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1411 * this function will not need to be called and the resource management
1412 * code will ensure that the resource is freed.
1413 */
devm_pinctrl_put(struct pinctrl * p)1414 void devm_pinctrl_put(struct pinctrl *p)
1415 {
1416 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1417 devm_pinctrl_match, p));
1418 }
1419 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1420
1421 /**
1422 * pinctrl_register_mappings() - register a set of pin controller mappings
1423 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1424 * keeps a reference to the passed in maps, so they should _not_ be
1425 * marked with __initdata.
1426 * @num_maps: the number of maps in the mapping table
1427 */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned num_maps)1428 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1429 unsigned num_maps)
1430 {
1431 int i, ret;
1432 struct pinctrl_maps *maps_node;
1433
1434 pr_debug("add %u pinctrl maps\n", num_maps);
1435
1436 /* First sanity check the new mapping */
1437 for (i = 0; i < num_maps; i++) {
1438 if (!maps[i].dev_name) {
1439 pr_err("failed to register map %s (%d): no device given\n",
1440 maps[i].name, i);
1441 return -EINVAL;
1442 }
1443
1444 if (!maps[i].name) {
1445 pr_err("failed to register map %d: no map name given\n",
1446 i);
1447 return -EINVAL;
1448 }
1449
1450 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1451 !maps[i].ctrl_dev_name) {
1452 pr_err("failed to register map %s (%d): no pin control device given\n",
1453 maps[i].name, i);
1454 return -EINVAL;
1455 }
1456
1457 switch (maps[i].type) {
1458 case PIN_MAP_TYPE_DUMMY_STATE:
1459 break;
1460 case PIN_MAP_TYPE_MUX_GROUP:
1461 ret = pinmux_validate_map(&maps[i], i);
1462 if (ret < 0)
1463 return ret;
1464 break;
1465 case PIN_MAP_TYPE_CONFIGS_PIN:
1466 case PIN_MAP_TYPE_CONFIGS_GROUP:
1467 ret = pinconf_validate_map(&maps[i], i);
1468 if (ret < 0)
1469 return ret;
1470 break;
1471 default:
1472 pr_err("failed to register map %s (%d): invalid type given\n",
1473 maps[i].name, i);
1474 return -EINVAL;
1475 }
1476 }
1477
1478 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1479 if (!maps_node)
1480 return -ENOMEM;
1481
1482 maps_node->maps = maps;
1483 maps_node->num_maps = num_maps;
1484
1485 mutex_lock(&pinctrl_maps_mutex);
1486 list_add_tail(&maps_node->node, &pinctrl_maps);
1487 mutex_unlock(&pinctrl_maps_mutex);
1488
1489 return 0;
1490 }
1491 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1492
1493 /**
1494 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1495 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1496 * when registering the mappings.
1497 */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1498 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1499 {
1500 struct pinctrl_maps *maps_node;
1501
1502 mutex_lock(&pinctrl_maps_mutex);
1503 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1504 if (maps_node->maps == map) {
1505 list_del(&maps_node->node);
1506 kfree(maps_node);
1507 mutex_unlock(&pinctrl_maps_mutex);
1508 return;
1509 }
1510 }
1511 mutex_unlock(&pinctrl_maps_mutex);
1512 }
1513 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1514
1515 /**
1516 * pinctrl_force_sleep() - turn a given controller device into sleep state
1517 * @pctldev: pin controller device
1518 */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1519 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1520 {
1521 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1522 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1523 return 0;
1524 }
1525 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1526
1527 /**
1528 * pinctrl_force_default() - turn a given controller device into default state
1529 * @pctldev: pin controller device
1530 */
pinctrl_force_default(struct pinctrl_dev * pctldev)1531 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1532 {
1533 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1534 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1535 return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1538
1539 /**
1540 * pinctrl_init_done() - tell pinctrl probe is done
1541 *
1542 * We'll use this time to switch the pins from "init" to "default" unless the
1543 * driver selected some other state.
1544 *
1545 * @dev: device to that's done probing
1546 */
pinctrl_init_done(struct device * dev)1547 int pinctrl_init_done(struct device *dev)
1548 {
1549 struct dev_pin_info *pins = dev->pins;
1550 int ret;
1551
1552 if (!pins)
1553 return 0;
1554
1555 if (IS_ERR(pins->init_state))
1556 return 0; /* No such state */
1557
1558 if (pins->p->state != pins->init_state)
1559 return 0; /* Not at init anyway */
1560
1561 if (IS_ERR(pins->default_state))
1562 return 0; /* No default state */
1563
1564 ret = pinctrl_select_state(pins->p, pins->default_state);
1565 if (ret)
1566 dev_err(dev, "failed to activate default pinctrl state\n");
1567
1568 return ret;
1569 }
1570
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1571 static int pinctrl_select_bound_state(struct device *dev,
1572 struct pinctrl_state *state)
1573 {
1574 struct dev_pin_info *pins = dev->pins;
1575 int ret;
1576
1577 if (IS_ERR(state))
1578 return 0; /* No such state */
1579 ret = pinctrl_select_state(pins->p, state);
1580 if (ret)
1581 dev_err(dev, "failed to activate pinctrl state %s\n",
1582 state->name);
1583 return ret;
1584 }
1585
1586 /**
1587 * pinctrl_select_default_state() - select default pinctrl state
1588 * @dev: device to select default state for
1589 */
pinctrl_select_default_state(struct device * dev)1590 int pinctrl_select_default_state(struct device *dev)
1591 {
1592 if (!dev->pins)
1593 return 0;
1594
1595 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1596 }
1597 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1598
1599 #ifdef CONFIG_PM
1600
1601 /**
1602 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1603 * @dev: device to select default state for
1604 */
pinctrl_pm_select_default_state(struct device * dev)1605 int pinctrl_pm_select_default_state(struct device *dev)
1606 {
1607 return pinctrl_select_default_state(dev);
1608 }
1609 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1610
1611 /**
1612 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1613 * @dev: device to select sleep state for
1614 */
pinctrl_pm_select_sleep_state(struct device * dev)1615 int pinctrl_pm_select_sleep_state(struct device *dev)
1616 {
1617 if (!dev->pins)
1618 return 0;
1619
1620 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1621 }
1622 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1623
1624 /**
1625 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1626 * @dev: device to select idle state for
1627 */
pinctrl_pm_select_idle_state(struct device * dev)1628 int pinctrl_pm_select_idle_state(struct device *dev)
1629 {
1630 if (!dev->pins)
1631 return 0;
1632
1633 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1634 }
1635 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1636 #endif
1637
1638 #ifdef CONFIG_DEBUG_FS
1639
pinctrl_pins_show(struct seq_file * s,void * what)1640 static int pinctrl_pins_show(struct seq_file *s, void *what)
1641 {
1642 struct pinctrl_dev *pctldev = s->private;
1643 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1644 unsigned i, pin;
1645 #ifdef CONFIG_GPIOLIB
1646 struct pinctrl_gpio_range *range;
1647 struct gpio_chip *chip;
1648 int gpio_num;
1649 #endif
1650
1651 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1652
1653 mutex_lock(&pctldev->mutex);
1654
1655 /* The pin number can be retrived from the pin controller descriptor */
1656 for (i = 0; i < pctldev->desc->npins; i++) {
1657 struct pin_desc *desc;
1658
1659 pin = pctldev->desc->pins[i].number;
1660 desc = pin_desc_get(pctldev, pin);
1661 /* Pin space may be sparse */
1662 if (!desc)
1663 continue;
1664
1665 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1666
1667 #ifdef CONFIG_GPIOLIB
1668 gpio_num = -1;
1669 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1670 if ((pin >= range->pin_base) &&
1671 (pin < (range->pin_base + range->npins))) {
1672 gpio_num = range->base + (pin - range->pin_base);
1673 break;
1674 }
1675 }
1676 if (gpio_num >= 0)
1677 /*
1678 * FIXME: gpio_num comes from the global GPIO numberspace.
1679 * we need to get rid of the range->base eventually and
1680 * get the descriptor directly from the gpio_chip.
1681 */
1682 chip = gpiod_to_chip(gpio_to_desc(gpio_num));
1683 else
1684 chip = NULL;
1685 if (chip)
1686 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1687 else
1688 seq_puts(s, "0:? ");
1689 #endif
1690
1691 /* Driver-specific info per pin */
1692 if (ops->pin_dbg_show)
1693 ops->pin_dbg_show(pctldev, s, pin);
1694
1695 seq_puts(s, "\n");
1696 }
1697
1698 mutex_unlock(&pctldev->mutex);
1699
1700 return 0;
1701 }
1702 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1703
pinctrl_groups_show(struct seq_file * s,void * what)1704 static int pinctrl_groups_show(struct seq_file *s, void *what)
1705 {
1706 struct pinctrl_dev *pctldev = s->private;
1707 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1708 unsigned ngroups, selector = 0;
1709
1710 mutex_lock(&pctldev->mutex);
1711
1712 ngroups = ops->get_groups_count(pctldev);
1713
1714 seq_puts(s, "registered pin groups:\n");
1715 while (selector < ngroups) {
1716 const unsigned *pins = NULL;
1717 unsigned num_pins = 0;
1718 const char *gname = ops->get_group_name(pctldev, selector);
1719 const char *pname;
1720 int ret = 0;
1721 int i;
1722
1723 if (ops->get_group_pins)
1724 ret = ops->get_group_pins(pctldev, selector,
1725 &pins, &num_pins);
1726 if (ret)
1727 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1728 gname);
1729 else {
1730 seq_printf(s, "group: %s\n", gname);
1731 for (i = 0; i < num_pins; i++) {
1732 pname = pin_get_name(pctldev, pins[i]);
1733 if (WARN_ON(!pname)) {
1734 mutex_unlock(&pctldev->mutex);
1735 return -EINVAL;
1736 }
1737 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1738 }
1739 seq_puts(s, "\n");
1740 }
1741 selector++;
1742 }
1743
1744 mutex_unlock(&pctldev->mutex);
1745
1746 return 0;
1747 }
1748 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1749
pinctrl_gpioranges_show(struct seq_file * s,void * what)1750 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1751 {
1752 struct pinctrl_dev *pctldev = s->private;
1753 struct pinctrl_gpio_range *range;
1754
1755 seq_puts(s, "GPIO ranges handled:\n");
1756
1757 mutex_lock(&pctldev->mutex);
1758
1759 /* Loop over the ranges */
1760 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1761 if (range->pins) {
1762 int a;
1763 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1764 range->id, range->name,
1765 range->base, (range->base + range->npins - 1));
1766 for (a = 0; a < range->npins - 1; a++)
1767 seq_printf(s, "%u, ", range->pins[a]);
1768 seq_printf(s, "%u}\n", range->pins[a]);
1769 }
1770 else
1771 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1772 range->id, range->name,
1773 range->base, (range->base + range->npins - 1),
1774 range->pin_base,
1775 (range->pin_base + range->npins - 1));
1776 }
1777
1778 mutex_unlock(&pctldev->mutex);
1779
1780 return 0;
1781 }
1782 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1783
pinctrl_devices_show(struct seq_file * s,void * what)1784 static int pinctrl_devices_show(struct seq_file *s, void *what)
1785 {
1786 struct pinctrl_dev *pctldev;
1787
1788 seq_puts(s, "name [pinmux] [pinconf]\n");
1789
1790 mutex_lock(&pinctrldev_list_mutex);
1791
1792 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1793 seq_printf(s, "%s ", pctldev->desc->name);
1794 if (pctldev->desc->pmxops)
1795 seq_puts(s, "yes ");
1796 else
1797 seq_puts(s, "no ");
1798 if (pctldev->desc->confops)
1799 seq_puts(s, "yes");
1800 else
1801 seq_puts(s, "no");
1802 seq_puts(s, "\n");
1803 }
1804
1805 mutex_unlock(&pinctrldev_list_mutex);
1806
1807 return 0;
1808 }
1809 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1810
map_type(enum pinctrl_map_type type)1811 static inline const char *map_type(enum pinctrl_map_type type)
1812 {
1813 static const char * const names[] = {
1814 "INVALID",
1815 "DUMMY_STATE",
1816 "MUX_GROUP",
1817 "CONFIGS_PIN",
1818 "CONFIGS_GROUP",
1819 };
1820
1821 if (type >= ARRAY_SIZE(names))
1822 return "UNKNOWN";
1823
1824 return names[type];
1825 }
1826
pinctrl_maps_show(struct seq_file * s,void * what)1827 static int pinctrl_maps_show(struct seq_file *s, void *what)
1828 {
1829 struct pinctrl_maps *maps_node;
1830 const struct pinctrl_map *map;
1831
1832 seq_puts(s, "Pinctrl maps:\n");
1833
1834 mutex_lock(&pinctrl_maps_mutex);
1835 for_each_pin_map(maps_node, map) {
1836 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1837 map->dev_name, map->name, map_type(map->type),
1838 map->type);
1839
1840 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1841 seq_printf(s, "controlling device %s\n",
1842 map->ctrl_dev_name);
1843
1844 switch (map->type) {
1845 case PIN_MAP_TYPE_MUX_GROUP:
1846 pinmux_show_map(s, map);
1847 break;
1848 case PIN_MAP_TYPE_CONFIGS_PIN:
1849 case PIN_MAP_TYPE_CONFIGS_GROUP:
1850 pinconf_show_map(s, map);
1851 break;
1852 default:
1853 break;
1854 }
1855
1856 seq_putc(s, '\n');
1857 }
1858 mutex_unlock(&pinctrl_maps_mutex);
1859
1860 return 0;
1861 }
1862 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1863
pinctrl_show(struct seq_file * s,void * what)1864 static int pinctrl_show(struct seq_file *s, void *what)
1865 {
1866 struct pinctrl *p;
1867 struct pinctrl_state *state;
1868 struct pinctrl_setting *setting;
1869
1870 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1871
1872 mutex_lock(&pinctrl_list_mutex);
1873
1874 list_for_each_entry(p, &pinctrl_list, node) {
1875 seq_printf(s, "device: %s current state: %s\n",
1876 dev_name(p->dev),
1877 p->state ? p->state->name : "none");
1878
1879 list_for_each_entry(state, &p->states, node) {
1880 seq_printf(s, " state: %s\n", state->name);
1881
1882 list_for_each_entry(setting, &state->settings, node) {
1883 struct pinctrl_dev *pctldev = setting->pctldev;
1884
1885 seq_printf(s, " type: %s controller %s ",
1886 map_type(setting->type),
1887 pinctrl_dev_get_name(pctldev));
1888
1889 switch (setting->type) {
1890 case PIN_MAP_TYPE_MUX_GROUP:
1891 pinmux_show_setting(s, setting);
1892 break;
1893 case PIN_MAP_TYPE_CONFIGS_PIN:
1894 case PIN_MAP_TYPE_CONFIGS_GROUP:
1895 pinconf_show_setting(s, setting);
1896 break;
1897 default:
1898 break;
1899 }
1900 }
1901 }
1902 }
1903
1904 mutex_unlock(&pinctrl_list_mutex);
1905
1906 return 0;
1907 }
1908 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1909
1910 static struct dentry *debugfs_root;
1911
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1912 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1913 {
1914 struct dentry *device_root;
1915 const char *debugfs_name;
1916
1917 if (pctldev->desc->name &&
1918 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1919 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1920 "%s-%s", dev_name(pctldev->dev),
1921 pctldev->desc->name);
1922 if (!debugfs_name) {
1923 pr_warn("failed to determine debugfs dir name for %s\n",
1924 dev_name(pctldev->dev));
1925 return;
1926 }
1927 } else {
1928 debugfs_name = dev_name(pctldev->dev);
1929 }
1930
1931 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1932 pctldev->device_root = device_root;
1933
1934 if (IS_ERR(device_root) || !device_root) {
1935 pr_warn("failed to create debugfs directory for %s\n",
1936 dev_name(pctldev->dev));
1937 return;
1938 }
1939 debugfs_create_file("pins", 0444,
1940 device_root, pctldev, &pinctrl_pins_fops);
1941 debugfs_create_file("pingroups", 0444,
1942 device_root, pctldev, &pinctrl_groups_fops);
1943 debugfs_create_file("gpio-ranges", 0444,
1944 device_root, pctldev, &pinctrl_gpioranges_fops);
1945 if (pctldev->desc->pmxops)
1946 pinmux_init_device_debugfs(device_root, pctldev);
1947 if (pctldev->desc->confops)
1948 pinconf_init_device_debugfs(device_root, pctldev);
1949 }
1950
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1951 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1952 {
1953 debugfs_remove_recursive(pctldev->device_root);
1954 }
1955
pinctrl_init_debugfs(void)1956 static void pinctrl_init_debugfs(void)
1957 {
1958 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1959 if (IS_ERR(debugfs_root) || !debugfs_root) {
1960 pr_warn("failed to create debugfs directory\n");
1961 debugfs_root = NULL;
1962 return;
1963 }
1964
1965 debugfs_create_file("pinctrl-devices", 0444,
1966 debugfs_root, NULL, &pinctrl_devices_fops);
1967 debugfs_create_file("pinctrl-maps", 0444,
1968 debugfs_root, NULL, &pinctrl_maps_fops);
1969 debugfs_create_file("pinctrl-handles", 0444,
1970 debugfs_root, NULL, &pinctrl_fops);
1971 }
1972
1973 #else /* CONFIG_DEBUG_FS */
1974
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1975 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1976 {
1977 }
1978
pinctrl_init_debugfs(void)1979 static void pinctrl_init_debugfs(void)
1980 {
1981 }
1982
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1983 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1984 {
1985 }
1986
1987 #endif
1988
pinctrl_check_ops(struct pinctrl_dev * pctldev)1989 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1990 {
1991 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1992
1993 if (!ops ||
1994 !ops->get_groups_count ||
1995 !ops->get_group_name)
1996 return -EINVAL;
1997
1998 return 0;
1999 }
2000
2001 /**
2002 * pinctrl_init_controller() - init a pin controller device
2003 * @pctldesc: descriptor for this pin controller
2004 * @dev: parent device for this pin controller
2005 * @driver_data: private pin controller data for this pin controller
2006 */
2007 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2008 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2009 void *driver_data)
2010 {
2011 struct pinctrl_dev *pctldev;
2012 int ret;
2013
2014 if (!pctldesc)
2015 return ERR_PTR(-EINVAL);
2016 if (!pctldesc->name)
2017 return ERR_PTR(-EINVAL);
2018
2019 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2020 if (!pctldev)
2021 return ERR_PTR(-ENOMEM);
2022
2023 /* Initialize pin control device struct */
2024 pctldev->owner = pctldesc->owner;
2025 pctldev->desc = pctldesc;
2026 pctldev->driver_data = driver_data;
2027 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2028 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2029 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2030 #endif
2031 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2032 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2033 #endif
2034 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2035 INIT_LIST_HEAD(&pctldev->node);
2036 pctldev->dev = dev;
2037 mutex_init(&pctldev->mutex);
2038
2039 /* check core ops for sanity */
2040 ret = pinctrl_check_ops(pctldev);
2041 if (ret) {
2042 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2043 goto out_err;
2044 }
2045
2046 /* If we're implementing pinmuxing, check the ops for sanity */
2047 if (pctldesc->pmxops) {
2048 ret = pinmux_check_ops(pctldev);
2049 if (ret)
2050 goto out_err;
2051 }
2052
2053 /* If we're implementing pinconfig, check the ops for sanity */
2054 if (pctldesc->confops) {
2055 ret = pinconf_check_ops(pctldev);
2056 if (ret)
2057 goto out_err;
2058 }
2059
2060 /* Register all the pins */
2061 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2062 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2063 if (ret) {
2064 dev_err(dev, "error during pin registration\n");
2065 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2066 pctldesc->npins);
2067 goto out_err;
2068 }
2069
2070 return pctldev;
2071
2072 out_err:
2073 mutex_destroy(&pctldev->mutex);
2074 kfree(pctldev);
2075 return ERR_PTR(ret);
2076 }
2077
pinctrl_uninit_controller(struct pinctrl_dev * pctldev,struct pinctrl_desc * pctldesc)2078 static void pinctrl_uninit_controller(struct pinctrl_dev *pctldev, struct pinctrl_desc *pctldesc)
2079 {
2080 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2081 pctldesc->npins);
2082 mutex_destroy(&pctldev->mutex);
2083 kfree(pctldev);
2084 }
2085
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2086 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2087 {
2088 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2089 if (PTR_ERR(pctldev->p) == -ENODEV) {
2090 dev_dbg(pctldev->dev, "no hogs found\n");
2091
2092 return 0;
2093 }
2094
2095 if (IS_ERR(pctldev->p)) {
2096 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2097 PTR_ERR(pctldev->p));
2098
2099 return PTR_ERR(pctldev->p);
2100 }
2101
2102 pctldev->hog_default =
2103 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2104 if (IS_ERR(pctldev->hog_default)) {
2105 dev_dbg(pctldev->dev,
2106 "failed to lookup the default state\n");
2107 } else {
2108 if (pinctrl_select_state(pctldev->p,
2109 pctldev->hog_default))
2110 dev_err(pctldev->dev,
2111 "failed to select default state\n");
2112 }
2113
2114 pctldev->hog_sleep =
2115 pinctrl_lookup_state(pctldev->p,
2116 PINCTRL_STATE_SLEEP);
2117 if (IS_ERR(pctldev->hog_sleep))
2118 dev_dbg(pctldev->dev,
2119 "failed to lookup the sleep state\n");
2120
2121 return 0;
2122 }
2123
pinctrl_enable(struct pinctrl_dev * pctldev)2124 int pinctrl_enable(struct pinctrl_dev *pctldev)
2125 {
2126 int error;
2127
2128 error = pinctrl_claim_hogs(pctldev);
2129 if (error) {
2130 dev_err(pctldev->dev, "could not claim hogs: %i\n", error);
2131 return error;
2132 }
2133
2134 mutex_lock(&pinctrldev_list_mutex);
2135 list_add_tail(&pctldev->node, &pinctrldev_list);
2136 mutex_unlock(&pinctrldev_list_mutex);
2137
2138 pinctrl_init_device_debugfs(pctldev);
2139
2140 return 0;
2141 }
2142 EXPORT_SYMBOL_GPL(pinctrl_enable);
2143
2144 /**
2145 * pinctrl_register() - register a pin controller device
2146 * @pctldesc: descriptor for this pin controller
2147 * @dev: parent device for this pin controller
2148 * @driver_data: private pin controller data for this pin controller
2149 *
2150 * Note that pinctrl_register() is known to have problems as the pin
2151 * controller driver functions are called before the driver has a
2152 * struct pinctrl_dev handle. To avoid issues later on, please use the
2153 * new pinctrl_register_and_init() below instead.
2154 */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2155 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2156 struct device *dev, void *driver_data)
2157 {
2158 struct pinctrl_dev *pctldev;
2159 int error;
2160
2161 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2162 if (IS_ERR(pctldev))
2163 return pctldev;
2164
2165 error = pinctrl_enable(pctldev);
2166 if (error) {
2167 pinctrl_uninit_controller(pctldev, pctldesc);
2168 return ERR_PTR(error);
2169 }
2170
2171 return pctldev;
2172 }
2173 EXPORT_SYMBOL_GPL(pinctrl_register);
2174
2175 /**
2176 * pinctrl_register_and_init() - register and init pin controller device
2177 * @pctldesc: descriptor for this pin controller
2178 * @dev: parent device for this pin controller
2179 * @driver_data: private pin controller data for this pin controller
2180 * @pctldev: pin controller device
2181 *
2182 * Note that pinctrl_enable() still needs to be manually called after
2183 * this once the driver is ready.
2184 */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2185 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2186 struct device *dev, void *driver_data,
2187 struct pinctrl_dev **pctldev)
2188 {
2189 struct pinctrl_dev *p;
2190
2191 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2192 if (IS_ERR(p))
2193 return PTR_ERR(p);
2194
2195 /*
2196 * We have pinctrl_start() call functions in the pin controller
2197 * driver with create_pinctrl() for at least dt_node_to_map(). So
2198 * let's make sure pctldev is properly initialized for the
2199 * pin controller driver before we do anything.
2200 */
2201 *pctldev = p;
2202
2203 return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2206
2207 /**
2208 * pinctrl_unregister() - unregister pinmux
2209 * @pctldev: pin controller to unregister
2210 *
2211 * Called by pinmux drivers to unregister a pinmux.
2212 */
pinctrl_unregister(struct pinctrl_dev * pctldev)2213 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2214 {
2215 struct pinctrl_gpio_range *range, *n;
2216
2217 if (!pctldev)
2218 return;
2219
2220 mutex_lock(&pctldev->mutex);
2221 pinctrl_remove_device_debugfs(pctldev);
2222 mutex_unlock(&pctldev->mutex);
2223
2224 if (!IS_ERR_OR_NULL(pctldev->p))
2225 pinctrl_put(pctldev->p);
2226
2227 mutex_lock(&pinctrldev_list_mutex);
2228 mutex_lock(&pctldev->mutex);
2229 /* TODO: check that no pinmuxes are still active? */
2230 list_del(&pctldev->node);
2231 pinmux_generic_free_functions(pctldev);
2232 pinctrl_generic_free_groups(pctldev);
2233 /* Destroy descriptor tree */
2234 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2235 pctldev->desc->npins);
2236 /* remove gpio ranges map */
2237 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2238 list_del(&range->node);
2239
2240 mutex_unlock(&pctldev->mutex);
2241 mutex_destroy(&pctldev->mutex);
2242 kfree(pctldev);
2243 mutex_unlock(&pinctrldev_list_mutex);
2244 }
2245 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2246
devm_pinctrl_dev_release(struct device * dev,void * res)2247 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2248 {
2249 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2250
2251 pinctrl_unregister(pctldev);
2252 }
2253
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2254 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2255 {
2256 struct pctldev **r = res;
2257
2258 if (WARN_ON(!r || !*r))
2259 return 0;
2260
2261 return *r == data;
2262 }
2263
2264 /**
2265 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2266 * @dev: parent device for this pin controller
2267 * @pctldesc: descriptor for this pin controller
2268 * @driver_data: private pin controller data for this pin controller
2269 *
2270 * Returns an error pointer if pincontrol register failed. Otherwise
2271 * it returns valid pinctrl handle.
2272 *
2273 * The pinctrl device will be automatically released when the device is unbound.
2274 */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2275 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2276 struct pinctrl_desc *pctldesc,
2277 void *driver_data)
2278 {
2279 struct pinctrl_dev **ptr, *pctldev;
2280
2281 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2282 if (!ptr)
2283 return ERR_PTR(-ENOMEM);
2284
2285 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2286 if (IS_ERR(pctldev)) {
2287 devres_free(ptr);
2288 return pctldev;
2289 }
2290
2291 *ptr = pctldev;
2292 devres_add(dev, ptr);
2293
2294 return pctldev;
2295 }
2296 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2297
2298 /**
2299 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2300 * @dev: parent device for this pin controller
2301 * @pctldesc: descriptor for this pin controller
2302 * @driver_data: private pin controller data for this pin controller
2303 * @pctldev: pin controller device
2304 *
2305 * Returns zero on success or an error number on failure.
2306 *
2307 * The pinctrl device will be automatically released when the device is unbound.
2308 */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2309 int devm_pinctrl_register_and_init(struct device *dev,
2310 struct pinctrl_desc *pctldesc,
2311 void *driver_data,
2312 struct pinctrl_dev **pctldev)
2313 {
2314 struct pinctrl_dev **ptr;
2315 int error;
2316
2317 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2318 if (!ptr)
2319 return -ENOMEM;
2320
2321 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2322 if (error) {
2323 devres_free(ptr);
2324 return error;
2325 }
2326
2327 *ptr = *pctldev;
2328 devres_add(dev, ptr);
2329
2330 return 0;
2331 }
2332 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2333
2334 /**
2335 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2336 * @dev: device for which resource was allocated
2337 * @pctldev: the pinctrl device to unregister.
2338 */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2339 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2340 {
2341 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2342 devm_pinctrl_dev_match, pctldev));
2343 }
2344 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2345
pinctrl_init(void)2346 static int __init pinctrl_init(void)
2347 {
2348 pr_info("initialized pinctrl subsystem\n");
2349 pinctrl_init_debugfs();
2350 return 0;
2351 }
2352
2353 /* init early since many drivers really need to initialized pinmux early */
2354 core_initcall(pinctrl_init);
2355