1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/kmod.h>
35 #include <linux/fsnotify.h>
36 #include <linux/fs_struct.h>
37 #include <linux/pipe_fs_i.h>
38 #include <linux/oom.h>
39 #include <linux/compat.h>
40 #include <linux/fs.h>
41 #include <linux/path.h>
42 #include <linux/timekeeping.h>
43 #include <linux/sysctl.h>
44 #include <linux/elf.h>
45 #include <uapi/linux/pidfd.h>
46
47 #include <linux/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/tlb.h>
50 #include <asm/exec.h>
51
52 #include <trace/events/task.h>
53 #include "internal.h"
54
55 #include <trace/events/sched.h>
56
57 static bool dump_vma_snapshot(struct coredump_params *cprm);
58 static void free_vma_snapshot(struct coredump_params *cprm);
59
60 /*
61 * File descriptor number for the pidfd for the thread-group leader of
62 * the coredumping task installed into the usermode helper's file
63 * descriptor table.
64 */
65 #define COREDUMP_PIDFD_NUMBER 3
66
67 static int core_uses_pid;
68 static unsigned int core_pipe_limit;
69 static char core_pattern[CORENAME_MAX_SIZE] = "core";
70 static int core_name_size = CORENAME_MAX_SIZE;
71
72 struct core_name {
73 char *corename;
74 int used, size;
75 };
76
expand_corename(struct core_name * cn,int size)77 static int expand_corename(struct core_name *cn, int size)
78 {
79 char *corename;
80
81 size = kmalloc_size_roundup(size);
82 corename = krealloc(cn->corename, size, GFP_KERNEL);
83
84 if (!corename)
85 return -ENOMEM;
86
87 if (size > core_name_size) /* racy but harmless */
88 core_name_size = size;
89
90 cn->size = size;
91 cn->corename = corename;
92 return 0;
93 }
94
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)95 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
96 va_list arg)
97 {
98 int free, need;
99 va_list arg_copy;
100
101 again:
102 free = cn->size - cn->used;
103
104 va_copy(arg_copy, arg);
105 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
106 va_end(arg_copy);
107
108 if (need < free) {
109 cn->used += need;
110 return 0;
111 }
112
113 if (!expand_corename(cn, cn->size + need - free + 1))
114 goto again;
115
116 return -ENOMEM;
117 }
118
cn_printf(struct core_name * cn,const char * fmt,...)119 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
120 {
121 va_list arg;
122 int ret;
123
124 va_start(arg, fmt);
125 ret = cn_vprintf(cn, fmt, arg);
126 va_end(arg);
127
128 return ret;
129 }
130
131 static __printf(2, 3)
cn_esc_printf(struct core_name * cn,const char * fmt,...)132 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
133 {
134 int cur = cn->used;
135 va_list arg;
136 int ret;
137
138 va_start(arg, fmt);
139 ret = cn_vprintf(cn, fmt, arg);
140 va_end(arg);
141
142 if (ret == 0) {
143 /*
144 * Ensure that this coredump name component can't cause the
145 * resulting corefile path to consist of a ".." or ".".
146 */
147 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
148 (cn->used - cur == 2 && cn->corename[cur] == '.'
149 && cn->corename[cur+1] == '.'))
150 cn->corename[cur] = '!';
151
152 /*
153 * Empty names are fishy and could be used to create a "//" in a
154 * corefile name, causing the coredump to happen one directory
155 * level too high. Enforce that all components of the core
156 * pattern are at least one character long.
157 */
158 if (cn->used == cur)
159 ret = cn_printf(cn, "!");
160 }
161
162 for (; cur < cn->used; ++cur) {
163 if (cn->corename[cur] == '/')
164 cn->corename[cur] = '!';
165 }
166 return ret;
167 }
168
cn_print_exe_file(struct core_name * cn,bool name_only)169 static int cn_print_exe_file(struct core_name *cn, bool name_only)
170 {
171 struct file *exe_file;
172 char *pathbuf, *path, *ptr;
173 int ret;
174
175 exe_file = get_mm_exe_file(current->mm);
176 if (!exe_file)
177 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
178
179 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
180 if (!pathbuf) {
181 ret = -ENOMEM;
182 goto put_exe_file;
183 }
184
185 path = file_path(exe_file, pathbuf, PATH_MAX);
186 if (IS_ERR(path)) {
187 ret = PTR_ERR(path);
188 goto free_buf;
189 }
190
191 if (name_only) {
192 ptr = strrchr(path, '/');
193 if (ptr)
194 path = ptr + 1;
195 }
196 ret = cn_esc_printf(cn, "%s", path);
197
198 free_buf:
199 kfree(pathbuf);
200 put_exe_file:
201 fput(exe_file);
202 return ret;
203 }
204
205 /* format_corename will inspect the pattern parameter, and output a
206 * name into corename, which must have space for at least
207 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
208 */
format_corename(struct core_name * cn,struct coredump_params * cprm,size_t ** argv,int * argc)209 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
210 size_t **argv, int *argc)
211 {
212 const struct cred *cred = current_cred();
213 const char *pat_ptr = core_pattern;
214 int ispipe = (*pat_ptr == '|');
215 bool was_space = false;
216 int pid_in_pattern = 0;
217 int err = 0;
218
219 cn->used = 0;
220 cn->corename = NULL;
221 if (expand_corename(cn, core_name_size))
222 return -ENOMEM;
223 cn->corename[0] = '\0';
224
225 if (ispipe) {
226 int argvs = sizeof(core_pattern) / 2;
227 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
228 if (!(*argv))
229 return -ENOMEM;
230 (*argv)[(*argc)++] = 0;
231 ++pat_ptr;
232 if (!(*pat_ptr))
233 return -ENOMEM;
234 }
235
236 /* Repeat as long as we have more pattern to process and more output
237 space */
238 while (*pat_ptr) {
239 /*
240 * Split on spaces before doing template expansion so that
241 * %e and %E don't get split if they have spaces in them
242 */
243 if (ispipe) {
244 if (isspace(*pat_ptr)) {
245 if (cn->used != 0)
246 was_space = true;
247 pat_ptr++;
248 continue;
249 } else if (was_space) {
250 was_space = false;
251 err = cn_printf(cn, "%c", '\0');
252 if (err)
253 return err;
254 (*argv)[(*argc)++] = cn->used;
255 }
256 }
257 if (*pat_ptr != '%') {
258 err = cn_printf(cn, "%c", *pat_ptr++);
259 } else {
260 switch (*++pat_ptr) {
261 /* single % at the end, drop that */
262 case 0:
263 goto out;
264 /* Double percent, output one percent */
265 case '%':
266 err = cn_printf(cn, "%c", '%');
267 break;
268 /* pid */
269 case 'p':
270 pid_in_pattern = 1;
271 err = cn_printf(cn, "%d",
272 task_tgid_vnr(current));
273 break;
274 /* global pid */
275 case 'P':
276 err = cn_printf(cn, "%d",
277 task_tgid_nr(current));
278 break;
279 case 'i':
280 err = cn_printf(cn, "%d",
281 task_pid_vnr(current));
282 break;
283 case 'I':
284 err = cn_printf(cn, "%d",
285 task_pid_nr(current));
286 break;
287 /* uid */
288 case 'u':
289 err = cn_printf(cn, "%u",
290 from_kuid(&init_user_ns,
291 cred->uid));
292 break;
293 /* gid */
294 case 'g':
295 err = cn_printf(cn, "%u",
296 from_kgid(&init_user_ns,
297 cred->gid));
298 break;
299 case 'd':
300 err = cn_printf(cn, "%d",
301 __get_dumpable(cprm->mm_flags));
302 break;
303 /* signal that caused the coredump */
304 case 's':
305 err = cn_printf(cn, "%d",
306 cprm->siginfo->si_signo);
307 break;
308 /* UNIX time of coredump */
309 case 't': {
310 time64_t time;
311
312 time = ktime_get_real_seconds();
313 err = cn_printf(cn, "%lld", time);
314 break;
315 }
316 /* hostname */
317 case 'h':
318 down_read(&uts_sem);
319 err = cn_esc_printf(cn, "%s",
320 utsname()->nodename);
321 up_read(&uts_sem);
322 break;
323 /* executable, could be changed by prctl PR_SET_NAME etc */
324 case 'e':
325 err = cn_esc_printf(cn, "%s", current->comm);
326 break;
327 /* file name of executable */
328 case 'f':
329 err = cn_print_exe_file(cn, true);
330 break;
331 case 'E':
332 err = cn_print_exe_file(cn, false);
333 break;
334 /* core limit size */
335 case 'c':
336 err = cn_printf(cn, "%lu",
337 rlimit(RLIMIT_CORE));
338 break;
339 /* CPU the task ran on */
340 case 'C':
341 err = cn_printf(cn, "%d", cprm->cpu);
342 break;
343 /* pidfd number */
344 case 'F': {
345 /*
346 * Installing a pidfd only makes sense if
347 * we actually spawn a usermode helper.
348 */
349 if (!ispipe)
350 break;
351
352 /*
353 * Note that we'll install a pidfd for the
354 * thread-group leader. We know that task
355 * linkage hasn't been removed yet and even if
356 * this @current isn't the actual thread-group
357 * leader we know that the thread-group leader
358 * cannot be reaped until @current has exited.
359 */
360 cprm->pid = task_tgid(current);
361 err = cn_printf(cn, "%d", COREDUMP_PIDFD_NUMBER);
362 break;
363 }
364 default:
365 break;
366 }
367 ++pat_ptr;
368 }
369
370 if (err)
371 return err;
372 }
373
374 out:
375 /* Backward compatibility with core_uses_pid:
376 *
377 * If core_pattern does not include a %p (as is the default)
378 * and core_uses_pid is set, then .%pid will be appended to
379 * the filename. Do not do this for piped commands. */
380 if (!ispipe && !pid_in_pattern && core_uses_pid) {
381 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
382 if (err)
383 return err;
384 }
385 return ispipe;
386 }
387
zap_process(struct task_struct * start,int exit_code)388 static int zap_process(struct task_struct *start, int exit_code)
389 {
390 struct task_struct *t;
391 int nr = 0;
392
393 /* Allow SIGKILL, see prepare_signal() */
394 start->signal->flags = SIGNAL_GROUP_EXIT;
395 start->signal->group_exit_code = exit_code;
396 start->signal->group_stop_count = 0;
397
398 for_each_thread(start, t) {
399 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
400 if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
401 sigaddset(&t->pending.signal, SIGKILL);
402 signal_wake_up(t, 1);
403 /* The vhost_worker does not particpate in coredumps */
404 if ((t->flags & (PF_USER_WORKER | PF_IO_WORKER)) != PF_USER_WORKER)
405 nr++;
406 }
407 }
408
409 return nr;
410 }
411
zap_threads(struct task_struct * tsk,struct core_state * core_state,int exit_code)412 static int zap_threads(struct task_struct *tsk,
413 struct core_state *core_state, int exit_code)
414 {
415 struct signal_struct *signal = tsk->signal;
416 int nr = -EAGAIN;
417
418 spin_lock_irq(&tsk->sighand->siglock);
419 if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
420 signal->core_state = core_state;
421 nr = zap_process(tsk, exit_code);
422 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
423 tsk->flags |= PF_DUMPCORE;
424 atomic_set(&core_state->nr_threads, nr);
425 }
426 spin_unlock_irq(&tsk->sighand->siglock);
427 return nr;
428 }
429
coredump_wait(int exit_code,struct core_state * core_state)430 static int coredump_wait(int exit_code, struct core_state *core_state)
431 {
432 struct task_struct *tsk = current;
433 int core_waiters = -EBUSY;
434
435 init_completion(&core_state->startup);
436 core_state->dumper.task = tsk;
437 core_state->dumper.next = NULL;
438
439 core_waiters = zap_threads(tsk, core_state, exit_code);
440 if (core_waiters > 0) {
441 struct core_thread *ptr;
442
443 wait_for_completion_state(&core_state->startup,
444 TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
445 /*
446 * Wait for all the threads to become inactive, so that
447 * all the thread context (extended register state, like
448 * fpu etc) gets copied to the memory.
449 */
450 ptr = core_state->dumper.next;
451 while (ptr != NULL) {
452 wait_task_inactive(ptr->task, TASK_ANY);
453 ptr = ptr->next;
454 }
455 }
456
457 return core_waiters;
458 }
459
coredump_finish(bool core_dumped)460 static void coredump_finish(bool core_dumped)
461 {
462 struct core_thread *curr, *next;
463 struct task_struct *task;
464
465 spin_lock_irq(¤t->sighand->siglock);
466 if (core_dumped && !__fatal_signal_pending(current))
467 current->signal->group_exit_code |= 0x80;
468 next = current->signal->core_state->dumper.next;
469 current->signal->core_state = NULL;
470 spin_unlock_irq(¤t->sighand->siglock);
471
472 while ((curr = next) != NULL) {
473 next = curr->next;
474 task = curr->task;
475 /*
476 * see coredump_task_exit(), curr->task must not see
477 * ->task == NULL before we read ->next.
478 */
479 smp_mb();
480 curr->task = NULL;
481 wake_up_process(task);
482 }
483 }
484
dump_interrupted(void)485 static bool dump_interrupted(void)
486 {
487 /*
488 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
489 * can do try_to_freeze() and check __fatal_signal_pending(),
490 * but then we need to teach dump_write() to restart and clear
491 * TIF_SIGPENDING.
492 */
493 return fatal_signal_pending(current) || freezing(current);
494 }
495
wait_for_dump_helpers(struct file * file)496 static void wait_for_dump_helpers(struct file *file)
497 {
498 struct pipe_inode_info *pipe = file->private_data;
499
500 pipe_lock(pipe);
501 pipe->readers++;
502 pipe->writers--;
503 wake_up_interruptible_sync(&pipe->rd_wait);
504 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
505 pipe_unlock(pipe);
506
507 /*
508 * We actually want wait_event_freezable() but then we need
509 * to clear TIF_SIGPENDING and improve dump_interrupted().
510 */
511 wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
512
513 pipe_lock(pipe);
514 pipe->readers--;
515 pipe->writers++;
516 pipe_unlock(pipe);
517 }
518
519 /*
520 * umh_coredump_setup
521 * helper function to customize the process used
522 * to collect the core in userspace. Specifically
523 * it sets up a pipe and installs it as fd 0 (stdin)
524 * for the process. Returns 0 on success, or
525 * PTR_ERR on failure.
526 * Note that it also sets the core limit to 1. This
527 * is a special value that we use to trap recursive
528 * core dumps
529 */
umh_coredump_setup(struct subprocess_info * info,struct cred * new)530 static int umh_coredump_setup(struct subprocess_info *info, struct cred *new)
531 {
532 struct file *files[2];
533 struct file *pidfs_file = NULL;
534 struct coredump_params *cp = (struct coredump_params *)info->data;
535 int err;
536
537 if (cp->pid) {
538 int fd;
539
540 fd = pidfd_prepare(cp->pid, 0, &pidfs_file);
541 if (fd < 0)
542 return fd;
543
544 /*
545 * We don't care about the fd. We also cannot simply
546 * replace it below because dup2() will refuse to close
547 * this file descriptor if its in a larval state. So
548 * close it!
549 */
550 put_unused_fd(fd);
551
552 /*
553 * Usermode helpers are childen of either
554 * system_unbound_wq or of kthreadd. So we know that
555 * we're starting off with a clean file descriptor
556 * table. So we should always be able to use
557 * COREDUMP_PIDFD_NUMBER as our file descriptor value.
558 */
559 err = replace_fd(COREDUMP_PIDFD_NUMBER, pidfs_file, 0);
560 if (err < 0)
561 goto out_fail;
562
563 pidfs_file = NULL;
564 }
565
566 err = create_pipe_files(files, 0);
567 if (err)
568 goto out_fail;
569
570 cp->file = files[1];
571
572 err = replace_fd(0, files[0], 0);
573 fput(files[0]);
574 if (err < 0)
575 goto out_fail;
576
577 /* and disallow core files too */
578 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
579
580 err = 0;
581
582 out_fail:
583 if (pidfs_file)
584 fput(pidfs_file);
585 return err;
586 }
587
do_coredump(const kernel_siginfo_t * siginfo)588 void do_coredump(const kernel_siginfo_t *siginfo)
589 {
590 struct core_state core_state;
591 struct core_name cn;
592 struct mm_struct *mm = current->mm;
593 struct linux_binfmt * binfmt;
594 const struct cred *old_cred;
595 struct cred *cred;
596 int retval = 0;
597 int ispipe;
598 size_t *argv = NULL;
599 int argc = 0;
600 /* require nonrelative corefile path and be extra careful */
601 bool need_suid_safe = false;
602 bool core_dumped = false;
603 static atomic_t core_dump_count = ATOMIC_INIT(0);
604 struct coredump_params cprm = {
605 .siginfo = siginfo,
606 .limit = rlimit(RLIMIT_CORE),
607 /*
608 * We must use the same mm->flags while dumping core to avoid
609 * inconsistency of bit flags, since this flag is not protected
610 * by any locks.
611 */
612 .mm_flags = mm->flags,
613 .vma_meta = NULL,
614 .cpu = raw_smp_processor_id(),
615 };
616
617 audit_core_dumps(siginfo->si_signo);
618
619 binfmt = mm->binfmt;
620 if (!binfmt || !binfmt->core_dump)
621 goto fail;
622 if (!__get_dumpable(cprm.mm_flags))
623 goto fail;
624
625 cred = prepare_creds();
626 if (!cred)
627 goto fail;
628 /*
629 * We cannot trust fsuid as being the "true" uid of the process
630 * nor do we know its entire history. We only know it was tainted
631 * so we dump it as root in mode 2, and only into a controlled
632 * environment (pipe handler or fully qualified path).
633 */
634 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
635 /* Setuid core dump mode */
636 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
637 need_suid_safe = true;
638 }
639
640 retval = coredump_wait(siginfo->si_signo, &core_state);
641 if (retval < 0)
642 goto fail_creds;
643
644 old_cred = override_creds(cred);
645
646 ispipe = format_corename(&cn, &cprm, &argv, &argc);
647
648 if (ispipe) {
649 int argi;
650 int dump_count;
651 char **helper_argv;
652 struct subprocess_info *sub_info;
653
654 if (ispipe < 0) {
655 printk(KERN_WARNING "format_corename failed\n");
656 printk(KERN_WARNING "Aborting core\n");
657 goto fail_unlock;
658 }
659
660 if (cprm.limit == 1) {
661 /* See umh_coredump_setup() which sets RLIMIT_CORE = 1.
662 *
663 * Normally core limits are irrelevant to pipes, since
664 * we're not writing to the file system, but we use
665 * cprm.limit of 1 here as a special value, this is a
666 * consistent way to catch recursive crashes.
667 * We can still crash if the core_pattern binary sets
668 * RLIM_CORE = !1, but it runs as root, and can do
669 * lots of stupid things.
670 *
671 * Note that we use task_tgid_vnr here to grab the pid
672 * of the process group leader. That way we get the
673 * right pid if a thread in a multi-threaded
674 * core_pattern process dies.
675 */
676 printk(KERN_WARNING
677 "Process %d(%s) has RLIMIT_CORE set to 1\n",
678 task_tgid_vnr(current), current->comm);
679 printk(KERN_WARNING "Aborting core\n");
680 goto fail_unlock;
681 }
682 cprm.limit = RLIM_INFINITY;
683
684 dump_count = atomic_inc_return(&core_dump_count);
685 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
686 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
687 task_tgid_vnr(current), current->comm);
688 printk(KERN_WARNING "Skipping core dump\n");
689 goto fail_dropcount;
690 }
691
692 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
693 GFP_KERNEL);
694 if (!helper_argv) {
695 printk(KERN_WARNING "%s failed to allocate memory\n",
696 __func__);
697 goto fail_dropcount;
698 }
699 for (argi = 0; argi < argc; argi++)
700 helper_argv[argi] = cn.corename + argv[argi];
701 helper_argv[argi] = NULL;
702
703 retval = -ENOMEM;
704 sub_info = call_usermodehelper_setup(helper_argv[0],
705 helper_argv, NULL, GFP_KERNEL,
706 umh_coredump_setup, NULL, &cprm);
707 if (sub_info)
708 retval = call_usermodehelper_exec(sub_info,
709 UMH_WAIT_EXEC);
710
711 kfree(helper_argv);
712 if (retval) {
713 printk(KERN_INFO "Core dump to |%s pipe failed\n",
714 cn.corename);
715 goto close_fail;
716 }
717 } else {
718 struct mnt_idmap *idmap;
719 struct inode *inode;
720 int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW |
721 O_LARGEFILE | O_EXCL;
722
723 if (cprm.limit < binfmt->min_coredump)
724 goto fail_unlock;
725
726 if (need_suid_safe && cn.corename[0] != '/') {
727 printk(KERN_WARNING "Pid %d(%s) can only dump core "\
728 "to fully qualified path!\n",
729 task_tgid_vnr(current), current->comm);
730 printk(KERN_WARNING "Skipping core dump\n");
731 goto fail_unlock;
732 }
733
734 /*
735 * Unlink the file if it exists unless this is a SUID
736 * binary - in that case, we're running around with root
737 * privs and don't want to unlink another user's coredump.
738 */
739 if (!need_suid_safe) {
740 /*
741 * If it doesn't exist, that's fine. If there's some
742 * other problem, we'll catch it at the filp_open().
743 */
744 do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
745 }
746
747 /*
748 * There is a race between unlinking and creating the
749 * file, but if that causes an EEXIST here, that's
750 * fine - another process raced with us while creating
751 * the corefile, and the other process won. To userspace,
752 * what matters is that at least one of the two processes
753 * writes its coredump successfully, not which one.
754 */
755 if (need_suid_safe) {
756 /*
757 * Using user namespaces, normal user tasks can change
758 * their current->fs->root to point to arbitrary
759 * directories. Since the intention of the "only dump
760 * with a fully qualified path" rule is to control where
761 * coredumps may be placed using root privileges,
762 * current->fs->root must not be used. Instead, use the
763 * root directory of init_task.
764 */
765 struct path root;
766
767 task_lock(&init_task);
768 get_fs_root(init_task.fs, &root);
769 task_unlock(&init_task);
770 cprm.file = file_open_root(&root, cn.corename,
771 open_flags, 0600);
772 path_put(&root);
773 } else {
774 cprm.file = filp_open(cn.corename, open_flags, 0600);
775 }
776 if (IS_ERR(cprm.file))
777 goto fail_unlock;
778
779 inode = file_inode(cprm.file);
780 if (inode->i_nlink > 1)
781 goto close_fail;
782 if (d_unhashed(cprm.file->f_path.dentry))
783 goto close_fail;
784 /*
785 * AK: actually i see no reason to not allow this for named
786 * pipes etc, but keep the previous behaviour for now.
787 */
788 if (!S_ISREG(inode->i_mode))
789 goto close_fail;
790 /*
791 * Don't dump core if the filesystem changed owner or mode
792 * of the file during file creation. This is an issue when
793 * a process dumps core while its cwd is e.g. on a vfat
794 * filesystem.
795 */
796 idmap = file_mnt_idmap(cprm.file);
797 if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode),
798 current_fsuid())) {
799 pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
800 cn.corename);
801 goto close_fail;
802 }
803 if ((inode->i_mode & 0677) != 0600) {
804 pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
805 cn.corename);
806 goto close_fail;
807 }
808 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
809 goto close_fail;
810 if (do_truncate(idmap, cprm.file->f_path.dentry,
811 0, 0, cprm.file))
812 goto close_fail;
813 }
814
815 /* get us an unshared descriptor table; almost always a no-op */
816 /* The cell spufs coredump code reads the file descriptor tables */
817 retval = unshare_files();
818 if (retval)
819 goto close_fail;
820 if (!dump_interrupted()) {
821 /*
822 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
823 * have this set to NULL.
824 */
825 if (!cprm.file) {
826 pr_info("Core dump to |%s disabled\n", cn.corename);
827 goto close_fail;
828 }
829 if (!dump_vma_snapshot(&cprm))
830 goto close_fail;
831
832 file_start_write(cprm.file);
833 core_dumped = binfmt->core_dump(&cprm);
834 /*
835 * Ensures that file size is big enough to contain the current
836 * file postion. This prevents gdb from complaining about
837 * a truncated file if the last "write" to the file was
838 * dump_skip.
839 */
840 if (cprm.to_skip) {
841 cprm.to_skip--;
842 dump_emit(&cprm, "", 1);
843 }
844 file_end_write(cprm.file);
845 free_vma_snapshot(&cprm);
846 }
847 if (ispipe && core_pipe_limit)
848 wait_for_dump_helpers(cprm.file);
849 close_fail:
850 if (cprm.file)
851 filp_close(cprm.file, NULL);
852 fail_dropcount:
853 if (ispipe)
854 atomic_dec(&core_dump_count);
855 fail_unlock:
856 kfree(argv);
857 kfree(cn.corename);
858 coredump_finish(core_dumped);
859 revert_creds(old_cred);
860 fail_creds:
861 put_cred(cred);
862 fail:
863 return;
864 }
865
866 /*
867 * Core dumping helper functions. These are the only things you should
868 * do on a core-file: use only these functions to write out all the
869 * necessary info.
870 */
__dump_emit(struct coredump_params * cprm,const void * addr,int nr)871 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
872 {
873 struct file *file = cprm->file;
874 loff_t pos = file->f_pos;
875 ssize_t n;
876 if (cprm->written + nr > cprm->limit)
877 return 0;
878
879
880 if (dump_interrupted())
881 return 0;
882 n = __kernel_write(file, addr, nr, &pos);
883 if (n != nr)
884 return 0;
885 file->f_pos = pos;
886 cprm->written += n;
887 cprm->pos += n;
888
889 return 1;
890 }
891
__dump_skip(struct coredump_params * cprm,size_t nr)892 static int __dump_skip(struct coredump_params *cprm, size_t nr)
893 {
894 static char zeroes[PAGE_SIZE];
895 struct file *file = cprm->file;
896 if (file->f_mode & FMODE_LSEEK) {
897 if (dump_interrupted() ||
898 vfs_llseek(file, nr, SEEK_CUR) < 0)
899 return 0;
900 cprm->pos += nr;
901 return 1;
902 } else {
903 while (nr > PAGE_SIZE) {
904 if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
905 return 0;
906 nr -= PAGE_SIZE;
907 }
908 return __dump_emit(cprm, zeroes, nr);
909 }
910 }
911
dump_emit(struct coredump_params * cprm,const void * addr,int nr)912 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
913 {
914 if (cprm->to_skip) {
915 if (!__dump_skip(cprm, cprm->to_skip))
916 return 0;
917 cprm->to_skip = 0;
918 }
919 return __dump_emit(cprm, addr, nr);
920 }
921 EXPORT_SYMBOL(dump_emit);
922
dump_skip_to(struct coredump_params * cprm,unsigned long pos)923 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
924 {
925 cprm->to_skip = pos - cprm->pos;
926 }
927 EXPORT_SYMBOL(dump_skip_to);
928
dump_skip(struct coredump_params * cprm,size_t nr)929 void dump_skip(struct coredump_params *cprm, size_t nr)
930 {
931 cprm->to_skip += nr;
932 }
933 EXPORT_SYMBOL(dump_skip);
934
935 #ifdef CONFIG_ELF_CORE
dump_emit_page(struct coredump_params * cprm,struct page * page)936 static int dump_emit_page(struct coredump_params *cprm, struct page *page)
937 {
938 struct bio_vec bvec;
939 struct iov_iter iter;
940 struct file *file = cprm->file;
941 loff_t pos;
942 ssize_t n;
943
944 if (cprm->to_skip) {
945 if (!__dump_skip(cprm, cprm->to_skip))
946 return 0;
947 cprm->to_skip = 0;
948 }
949 if (cprm->written + PAGE_SIZE > cprm->limit)
950 return 0;
951 if (dump_interrupted())
952 return 0;
953 pos = file->f_pos;
954 bvec_set_page(&bvec, page, PAGE_SIZE, 0);
955 iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE);
956 iov_iter_set_copy_mc(&iter);
957 n = __kernel_write_iter(cprm->file, &iter, &pos);
958 if (n != PAGE_SIZE)
959 return 0;
960 file->f_pos = pos;
961 cprm->written += PAGE_SIZE;
962 cprm->pos += PAGE_SIZE;
963
964 return 1;
965 }
966
dump_user_range(struct coredump_params * cprm,unsigned long start,unsigned long len)967 int dump_user_range(struct coredump_params *cprm, unsigned long start,
968 unsigned long len)
969 {
970 unsigned long addr;
971
972 for (addr = start; addr < start + len; addr += PAGE_SIZE) {
973 struct page *page;
974
975 /*
976 * To avoid having to allocate page tables for virtual address
977 * ranges that have never been used yet, and also to make it
978 * easy to generate sparse core files, use a helper that returns
979 * NULL when encountering an empty page table entry that would
980 * otherwise have been filled with the zero page.
981 */
982 page = get_dump_page(addr);
983 if (page) {
984 int stop = !dump_emit_page(cprm, page);
985 put_page(page);
986 if (stop)
987 return 0;
988 } else {
989 dump_skip(cprm, PAGE_SIZE);
990 }
991 }
992 return 1;
993 }
994 #endif
995
dump_align(struct coredump_params * cprm,int align)996 int dump_align(struct coredump_params *cprm, int align)
997 {
998 unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
999 if (align & (align - 1))
1000 return 0;
1001 if (mod)
1002 cprm->to_skip += align - mod;
1003 return 1;
1004 }
1005 EXPORT_SYMBOL(dump_align);
1006
1007 #ifdef CONFIG_SYSCTL
1008
validate_coredump_safety(void)1009 void validate_coredump_safety(void)
1010 {
1011 if (suid_dumpable == SUID_DUMP_ROOT &&
1012 core_pattern[0] != '/' && core_pattern[0] != '|') {
1013 pr_warn(
1014 "Unsafe core_pattern used with fs.suid_dumpable=2.\n"
1015 "Pipe handler or fully qualified core dump path required.\n"
1016 "Set kernel.core_pattern before fs.suid_dumpable.\n"
1017 );
1018 }
1019 }
1020
proc_dostring_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1021 static int proc_dostring_coredump(struct ctl_table *table, int write,
1022 void *buffer, size_t *lenp, loff_t *ppos)
1023 {
1024 int error = proc_dostring(table, write, buffer, lenp, ppos);
1025
1026 if (!error)
1027 validate_coredump_safety();
1028 return error;
1029 }
1030
1031 static struct ctl_table coredump_sysctls[] = {
1032 {
1033 .procname = "core_uses_pid",
1034 .data = &core_uses_pid,
1035 .maxlen = sizeof(int),
1036 .mode = 0644,
1037 .proc_handler = proc_dointvec,
1038 },
1039 {
1040 .procname = "core_pattern",
1041 .data = core_pattern,
1042 .maxlen = CORENAME_MAX_SIZE,
1043 .mode = 0644,
1044 .proc_handler = proc_dostring_coredump,
1045 },
1046 {
1047 .procname = "core_pipe_limit",
1048 .data = &core_pipe_limit,
1049 .maxlen = sizeof(unsigned int),
1050 .mode = 0644,
1051 .proc_handler = proc_dointvec,
1052 },
1053 { }
1054 };
1055
init_fs_coredump_sysctls(void)1056 static int __init init_fs_coredump_sysctls(void)
1057 {
1058 register_sysctl_init("kernel", coredump_sysctls);
1059 return 0;
1060 }
1061 fs_initcall(init_fs_coredump_sysctls);
1062 #endif /* CONFIG_SYSCTL */
1063
1064 /*
1065 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1066 * that are useful for post-mortem analysis are included in every core dump.
1067 * In that way we ensure that the core dump is fully interpretable later
1068 * without matching up the same kernel and hardware config to see what PC values
1069 * meant. These special mappings include - vDSO, vsyscall, and other
1070 * architecture specific mappings
1071 */
always_dump_vma(struct vm_area_struct * vma)1072 static bool always_dump_vma(struct vm_area_struct *vma)
1073 {
1074 /* Any vsyscall mappings? */
1075 if (vma == get_gate_vma(vma->vm_mm))
1076 return true;
1077
1078 /*
1079 * Assume that all vmas with a .name op should always be dumped.
1080 * If this changes, a new vm_ops field can easily be added.
1081 */
1082 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1083 return true;
1084
1085 /*
1086 * arch_vma_name() returns non-NULL for special architecture mappings,
1087 * such as vDSO sections.
1088 */
1089 if (arch_vma_name(vma))
1090 return true;
1091
1092 return false;
1093 }
1094
1095 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
1096
1097 /*
1098 * Decide how much of @vma's contents should be included in a core dump.
1099 */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1100 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1101 unsigned long mm_flags)
1102 {
1103 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1104
1105 /* always dump the vdso and vsyscall sections */
1106 if (always_dump_vma(vma))
1107 goto whole;
1108
1109 if (vma->vm_flags & VM_DONTDUMP)
1110 return 0;
1111
1112 /* support for DAX */
1113 if (vma_is_dax(vma)) {
1114 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1115 goto whole;
1116 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1117 goto whole;
1118 return 0;
1119 }
1120
1121 /* Hugetlb memory check */
1122 if (is_vm_hugetlb_page(vma)) {
1123 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1124 goto whole;
1125 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1126 goto whole;
1127 return 0;
1128 }
1129
1130 /* Do not dump I/O mapped devices or special mappings */
1131 if (vma->vm_flags & VM_IO)
1132 return 0;
1133
1134 /* By default, dump shared memory if mapped from an anonymous file. */
1135 if (vma->vm_flags & VM_SHARED) {
1136 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1137 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1138 goto whole;
1139 return 0;
1140 }
1141
1142 /* Dump segments that have been written to. */
1143 if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1144 goto whole;
1145 if (vma->vm_file == NULL)
1146 return 0;
1147
1148 if (FILTER(MAPPED_PRIVATE))
1149 goto whole;
1150
1151 /*
1152 * If this is the beginning of an executable file mapping,
1153 * dump the first page to aid in determining what was mapped here.
1154 */
1155 if (FILTER(ELF_HEADERS) &&
1156 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1157 if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1158 return PAGE_SIZE;
1159
1160 /*
1161 * ELF libraries aren't always executable.
1162 * We'll want to check whether the mapping starts with the ELF
1163 * magic, but not now - we're holding the mmap lock,
1164 * so copy_from_user() doesn't work here.
1165 * Use a placeholder instead, and fix it up later in
1166 * dump_vma_snapshot().
1167 */
1168 return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1169 }
1170
1171 #undef FILTER
1172
1173 return 0;
1174
1175 whole:
1176 return vma->vm_end - vma->vm_start;
1177 }
1178
1179 /*
1180 * Helper function for iterating across a vma list. It ensures that the caller
1181 * will visit `gate_vma' prior to terminating the search.
1182 */
coredump_next_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,struct vm_area_struct * gate_vma)1183 static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi,
1184 struct vm_area_struct *vma,
1185 struct vm_area_struct *gate_vma)
1186 {
1187 if (gate_vma && (vma == gate_vma))
1188 return NULL;
1189
1190 vma = vma_next(vmi);
1191 if (vma)
1192 return vma;
1193 return gate_vma;
1194 }
1195
free_vma_snapshot(struct coredump_params * cprm)1196 static void free_vma_snapshot(struct coredump_params *cprm)
1197 {
1198 if (cprm->vma_meta) {
1199 int i;
1200 for (i = 0; i < cprm->vma_count; i++) {
1201 struct file *file = cprm->vma_meta[i].file;
1202 if (file)
1203 fput(file);
1204 }
1205 kvfree(cprm->vma_meta);
1206 cprm->vma_meta = NULL;
1207 }
1208 }
1209
1210 /*
1211 * Under the mmap_lock, take a snapshot of relevant information about the task's
1212 * VMAs.
1213 */
dump_vma_snapshot(struct coredump_params * cprm)1214 static bool dump_vma_snapshot(struct coredump_params *cprm)
1215 {
1216 struct vm_area_struct *gate_vma, *vma = NULL;
1217 struct mm_struct *mm = current->mm;
1218 VMA_ITERATOR(vmi, mm, 0);
1219 int i = 0;
1220
1221 /*
1222 * Once the stack expansion code is fixed to not change VMA bounds
1223 * under mmap_lock in read mode, this can be changed to take the
1224 * mmap_lock in read mode.
1225 */
1226 if (mmap_write_lock_killable(mm))
1227 return false;
1228
1229 cprm->vma_data_size = 0;
1230 gate_vma = get_gate_vma(mm);
1231 cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1232
1233 cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1234 if (!cprm->vma_meta) {
1235 mmap_write_unlock(mm);
1236 return false;
1237 }
1238
1239 while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) {
1240 struct core_vma_metadata *m = cprm->vma_meta + i;
1241
1242 m->start = vma->vm_start;
1243 m->end = vma->vm_end;
1244 m->flags = vma->vm_flags;
1245 m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1246 m->pgoff = vma->vm_pgoff;
1247 m->file = vma->vm_file;
1248 if (m->file)
1249 get_file(m->file);
1250 i++;
1251 }
1252
1253 mmap_write_unlock(mm);
1254
1255 for (i = 0; i < cprm->vma_count; i++) {
1256 struct core_vma_metadata *m = cprm->vma_meta + i;
1257
1258 if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1259 char elfmag[SELFMAG];
1260
1261 if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1262 memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1263 m->dump_size = 0;
1264 } else {
1265 m->dump_size = PAGE_SIZE;
1266 }
1267 }
1268
1269 cprm->vma_data_size += m->dump_size;
1270 }
1271
1272 return true;
1273 }
1274